WO2022149058A1 - Recombinant live immunogenic composition comprising newcastle disease virus (ndv) expressing the s1 subunit and the rbd of the spike protein of sars-cov-2 - Google Patents

Recombinant live immunogenic composition comprising newcastle disease virus (ndv) expressing the s1 subunit and the rbd of the spike protein of sars-cov-2 Download PDF

Info

Publication number
WO2022149058A1
WO2022149058A1 PCT/IB2022/050031 IB2022050031W WO2022149058A1 WO 2022149058 A1 WO2022149058 A1 WO 2022149058A1 IB 2022050031 W IB2022050031 W IB 2022050031W WO 2022149058 A1 WO2022149058 A1 WO 2022149058A1
Authority
WO
WIPO (PCT)
Prior art keywords
cov
sars
rbd
recombinant
rndv
Prior art date
Application number
PCT/IB2022/050031
Other languages
Spanish (es)
French (fr)
Inventor
Manolo Clemente Fernandez Diaz
Katherine Ivette CALDERON MAYO
Aldo Stanlee ROJAS NEYRA
Original Assignee
Farmacologicos Veterinarios Sac
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Farmacologicos Veterinarios Sac filed Critical Farmacologicos Veterinarios Sac
Priority to BR112022016492A priority Critical patent/BR112022016492A2/en
Priority to MX2022004220A priority patent/MX2022004220A/en
Publication of WO2022149058A1 publication Critical patent/WO2022149058A1/en
Priority to CONC2022/0010353A priority patent/CO2022010353A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof

Definitions

  • the present invention falls within the pharmaceutical industry.
  • the present invention is related to obtaining two vectorized recombinant viruses derived from Newcastle disease virus (NDV) comprising the S1 subunit and the receptor binding domain called RBD (RBD). : Receptor Binding Domain), both from the new Severe Acute Respiratory Syndrome coronavirus -2 (SARS-CoV-2) through the reverse genetics system, and to the corresponding product of a vaccine or recombinant live immunogenic composition obtained from the mixture of the two recombinant viruses: rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 to immunize, and protect against coronavirus disease 2019 (COVID-19) in mammals and superior human.
  • NDV Newcastle disease virus
  • RBD receptor binding domain
  • SARS-CoV-2 Severe Acute Respiratory Syndrome coronavirus -2
  • the present invention was developed based on the use of a viral vector previously elaborated, with the Title N° 9204 of the Registry of Industrial Property “VACCINE THAT COMPRISES RECOMBINANT NEWCASTLE DISEASE VIRUS (NDV) THAT EXPRESSES THE GENE OF THE SP ⁇ CULA S DEL VIRUS DE LA BRONQUITIS INFECCIOSA AVAR (IBV)”, granted by the Directorate of Inventions and New Technologies of INDECOPI certified in Resolution No. 003059-2018/DIN-INDECOPI. STATE OF THE TECHNIQUE
  • COVID-19 is an infectious disease in humans caused by the highly pathogenic coronavirus, SARS-CoV-2, which emerged in Wuhan and its rapid international spread has posed a serious global public health emergency (Zhou et al. 2020 ; Wu et al. 2020; Zhu et al. 2020). SARS-CoV-2 infected patients show a variety of symptoms including dry cough, fever, headache, tiredness and shortness of breath
  • SARS-CoV-2 belongs to the Coronaviridae family and possesses a single-stranded positive-sense ribonucleic acid (RNA) genome of -29.9 kilobases (kb) in length (Su et al. 2016; H. Zhou et al 2020). Phylogenetic analyzes of coronavirus genomes have revealed that SARS-CoV-2 is a member of the betacoronavirus genus (P. Zhou et al. 2020; Wu et al. 2020; Zhu et al. 2020; Lu et al.
  • Coronaviruses use the S-glycoprotein (comprised of an S1 subunit and an S2 subunit) in the envelope to bind to their cellular receptors. Such binding triggers a cascade of events leading to fusion between the membranes; cellular and viral for cellular entry of the virus.
  • the S protein of SARS-CoV-2 has a full size of 1273 amino acids, longer than that of SARS-CoV (1255 aa). It is distinct from the S proteins of most members of the Sarbecovirus subgenus of the betacoronavirus genus, and shares sequence similarities of amino acids from 76.7 to 77.0% with SARS-CoV from civets and humans. Regarding RBD, the amino acid similarity between SARS-CoV-2 and SARS-CoV is only 73%.
  • Another specific genomic feature of SARS-CoV-2 is the insertion of four amino acid residues (PRRA) at the junction of the S1 and S2 subunits of the S protein (Andersen et al. 2020).
  • This insertion generates a polybasic cleavage site (RRAR), which allows efficient cleavage by the presence of furin and other proteases (Coutard et al. 2020).
  • RRAR polybasic cleavage site
  • This S1-S2 cleavage site is not observed in all related viruses belonging to the subgenus Sarbecovirus, except for a similar three amino acid insertion (PAA) in RmYN02, a recently reported bat-derived coronavirus in Rhinolophus malayanus in China (H. Zhou et al 2020).
  • the antigenicity of the RBD plays an important role for the induction of antibodies, which could block the binding of the RBD to the ACE2 receptor, as shown in a study where a recombinant vaccine comprising residues 319-545 of the RBD SARS-CoV-2 S protein induce a potent functional antibody response in immunized mice, rabbits, and non-human primates ( Macaca mulatta) as early as 7 to 14 days after injection of a single dose of vaccine.
  • Sera from immunized animals blocked RBD binding to the ACE2 receptor expressed on the cell surface, and neutralized infection with a pseudovirus SARS-CoV-2 and SARS-CoV-2 in vitro.
  • vaccination also provided protection in nonhuman primates against an in vivo challenge with SARS-CoV-2 (Yang et al. 2020).
  • DNA deoxyribonucleic acid
  • mRNA messenger ribonucleic acid
  • inactivated viruses live attenuated viruses, subunit proteins, recombinant viral vectors (Hu et al. 2020).
  • the vector-viral vaccine has a potential advantage over the other vaccines, because it can be used as live vaccines and inactivated vaccines, which can induce a Th1 and Th2 immune response.
  • Various vaccine viral vectors have been proposed such as: adenovirus, measles virus, Ankara virus, acute vesicular stomatitis and human parainfluenza.
  • each viral vector presents some limitations that may or may not be possible to overcome, among them, for example, the immunogenicity of some viral vector vaccines has not been ideal, on the other hand, a defective replication of the adenovirus vaccine vector may not induce a good local immunity, in the case of the vesicular stomatitis virus so far it is questionable, and the human parainfluenza vector may not be effective in adult humans due to their pre-existing immunity.
  • NDV Newcastle disease virus
  • -CoV-2 avian virus
  • Avian orthoavulavirus 1 https://talk.ictvonline.org/taxonomy.
  • NDV has a single-stranded, non-segmented RNA genome of negative polarity.
  • the length of the NDV genome is 15,186 nucleotides (nt) and it contains six genes in the order of 3'-NP-PMF-HN-L-5', which code for the nucleoprotein (NP), phosphoprotein (P), protein matrix (M), fusion protein (F), hemagglutinin-neuraminidase protein (HN), long protein polymerase (L), in addition to the presence of two non-structural proteins called V and W that are produced at the time of transcription of the P gene (Cattoli et al. 2011; Dimitrov et al. 2016).
  • the length of the NDV genome must be a multiple of six for efficient RNA replication, thus fulfilling the so-called “rule of six”.
  • Each transcriptional unit contains a major ORF flanked by short untranslated regions (UTRs), which are followed by conserved transcription initiation and termination sequences known as gene initiation or gene start (GS) (GS, from the English: Gen Start), final gene or Gen End (GE) (GE, from the English: Gene End) and between both are located the intergenic sequences (IGSs) (IGSs, from the English: Intergenic Sequences) non-coding or also called untranslated sequences.
  • UTRs gene initiation or gene start
  • GE Gen End
  • IGSs intergenic sequences
  • the construction and assembly of the virion is associated with three glycoproteins; F, HN and M.
  • the glycoproteins F and HN are anchored in the envelope of the virion.
  • the M glycoprotein is located on the inner face of the viral envelope.
  • the HN and F glycoproteins are incorporated into the virion via the interaction of their cytoplasmic stems or also called cytoplasmic domains (DC) together with the M protein (Dolganiuc et al. 2003 ; Pantua et al. 2006).
  • the HN protein contains the binding and recognition site for the host cell receptor.
  • glycoprotein F mediates the fusion of the virus with the host cell membrane, thus contributing at the start of the NDV replicative cycle (Kim et al. 2011; Kumar et al. 2011). Both are capable of generating neutralizing antibodies since they are protective antigens against NDV.
  • glycoprotein F glycoprotein F
  • velogenic and some mesogenic strains the F cleavage site is rich in basic amino acids and is rapidly cleaved by intracellular proteases such as furin, thus allowing replication in a variety of tissues.
  • lentegenic and some mesogenic strains contain few basic residue sites that will depend on secretory proteases found mainly in the lung for their cleavage, therefore, their replication restriction is towards epithelial surfaces where the protease is found. .
  • the severity of the avian disease depends on the pathotype of the NDV strains:lentogenic, mesogenic, and velogenic.
  • Thelentogenic strains (LaSota), cause a mild or asymptomatic infection that is restricted to the respiratory tract. Viruses of intermediate virulence are called mesogenic, while viruses that cause systemic infection and high mortality are called velogenic. Lentegenic and mesogenic strains are in many cases used as live NDV vaccines for birds throughout the world.
  • RBD/SARS-CoV-2 in addition to having the intranasal (IN) route of immunization, proving to be a less invasive application route compared to other vaccines.
  • document CN112011521 refers to a new strain of coronavirus candidate for a recombinant Newcastle disease virus vector vaccine and its method of construction and application by means of genetically modified vaccine technology.
  • the candidate belongs to the Newcastle disease virus vaccine LaSota strain as a carrier, the P gene of the LaSota NDV strains, and the gene mutation (C3756T, M is inserted between the deletion of the BAMHI site) of the mutation of the new S gene coronaviruses; the novel nucleotide sequence of the coronavirus S gene shown in SEQ ID NO.1.
  • the LaSota strain of the attenuated strain of NDV is used as the vector background, and the S gene (full ORF) of the SARS-CoV-2 virus is inserted into the P gene and the M gene, and the silent mutation of C3756T is introduced into the conserved region of the S gene, thus removing the BamHI site.
  • Document CN101629178 describes a hand-combined Newcastle disease virus F gene and a recombinant expression vector and an application thereof, wherein the codons of the NDVF OFR gene are all replaced into NDVF bias codons.
  • chicken, EcoR V restriction sites and Kozak sequences are added upstream, Xbal I restriction sites and TGA stop codons are added downstream, and A bases downstream of the stop codons are changed to G, the obtained genes can be expressed efficiently in eukaryotic cells, and the expression efficiency of the obtained genes is higher than that of wild-type genes.
  • document CN 106047823 describes a bivalent vaccine strain R-H120-Lasota (HN) obtained by replacing a 5a gene of the H120 strain with an HN gene of the avian Newcastle disease virus based on a H120 avian infectious bronchitis virus reverse genetic system constructed.
  • the recombinant vaccine strain can simultaneously protect IBV standard toxin counteracting strains and Newcastle disease standard toxin counteracting strains and can be used to prevent avian infectious bronchitis virus and Newcastle disease virus. Poultry Newcastle. It also reports that the vaccine was applied with double doses of the SARS virus in experimental animals and the content of the virus at the peak of pulmonary replication was much lower.
  • WO2000/67786 relates to cDNAs for producing attenuated, infectious Newcastle disease virus (NDV) and to methods of making the cDNAs and to the vector containing the cDNA optionally linked to an operable promoter. Methods of preparing the vaccines and methods of using them to prevent or treat Newcastle disease in an avian host are also described. It reports nucleotide sequences of the entire NDV genome, the leading region, the trailing region, and the NP region, as well as the proteins encoded by these nucleotide sequences.
  • NDV infectious Newcastle disease virus
  • non-segmented negative-chain virus among which he suggests rabies virus, vesicular stomatitis virus, measles virus, Sendai virus, human respiratory syncytial virus, rinderpest virus and parainfluenza and suggests including the nucleotide sequences of the entire NP gene , the entire trailer region, and the intergenic regions in the NP-P and P.
  • patent W02015/013178 teaches the construction of recombinant NDV expressing ILTV gB, gC and gD and a schematic diagram representing the full-length antigenome of the NDV LaSota strain with the insertion of an added gene designed to express the ILTV gB consisting of the entire gB ORF fused to the last 12 amino acids of the cytoplasmic tail of the NDV F protein and also suggests methods of immunizing a mammal against a non-avian pathogen.
  • Patent WO2016/138160 provides methods for inducing an immune response in a subject to Middle East respiratory syndrome coronavirus (MERS-CoV).
  • the immune response is a protective immune response that inhibits or prevents MERS-CoV infection in the subject.
  • MERS-CoV Middle East respiratory syndrome coronavirus
  • the Peruvian patent 1179-2014/DIN reports a viral particle or chimeric virus that comprises an asymptomatic,lentogenic Newcastle disease virus (NDV) with values of the Intracranial Pathogenicity Index (IPIC) equal to zero that expresses at least a gene from a virus strain (IBV), wherein the gene or at least one of the genes from an IBV strain corresponds to the entire spike (S) gene or part of the spike (S) gene, where said entire S gene or part of the S gene may be located in a non-coding intergenic region, specifically between the P and M genes.
  • NDV Newcastle disease virus
  • IPIC Intracranial Pathogenicity Index
  • EP2251034 provides a negative carrier chimeric RNA virus that allows a subject, for example, a bird, to be immunized against two infectious agents using a single chimeric virus of the invention.
  • the invention provides chimeric Newcastle disease viruses (NDV) designed to express and incorporate into their virions a fusion protein comprising the ectodomain of an infectious agent protein and the transmembrane and cytoplasmic domain of an NDV protein. .
  • NDV Newcastle disease viruses
  • Such chimeric viruses induce an immune response against NDV and the infectious agent.
  • NDV Newcastlele disease virus
  • NDV Newcastle disease virus
  • SARS-CoV-2 membrane-anchored Spike 1 protein
  • NDV Newcastle disease virus
  • SARS-CoV Newcastle disease virus
  • NDV vectors were made in which one of the constructs was a recombinant copy of thelentogenic LaSota strain that was modified in such a way that the cleavage sequence of its F protein was replaced with that of NDV-BC, which resulted in the NDV-VF virus and based on these last two vaccine viruses are constructed that express the total length of 1,255 aa of the S protein of the SARS-Co-V. It also indicates that the S1 domain contains the S protein receptor-binding site as one of the major neutralizing epitopes.
  • FIG. 1 Prediction of domains; transmembrane (DTM) and cytoplasmic (DC) protein Hemagglutinin-neuraminidase (HN). The prediction was made using the amino acid sequence (aa) in the TMHMM Server 2.0 program.
  • Figure 2 Scheme showing the construction strategy of the new viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2. [038] Figure 3. Plasmid map pNDV-LS1-HN-RBD/SARS-CoV-2 (20315 bp).
  • FIG. 4 The subcloning strategy of the HN-RBD/SARS-CoV-2 gene (SEQ ID NO: 1) that generates the recombinant virus rNDV-LS1-HN-RBD/SARS-CoV- is shown schematically. 2 (16182 bp) (SEQ ID NO: 7). Two successive subclonings were performed to build the rNDV-LS1-HN-RBD/SARS-CoV-2 construct.
  • the NDV-LS1 plasmid (19319 bp) was linearized between the BbvCI cutting sites (third position of NDV) to insert the 1013 bp fragment (SEQ ID NO: 1) which includes the BbvCI sites, generating the NDV-LS1 plasmid -HN-RBD/SARS-CoV-2 (20315 bp).
  • FIG. 7 The subcloning strategy of the S1-F/SARS-CoV-2 gene (2441 bp) (SEQ ID NO: 8) generated by the rNDV-LS1-S1-F/SARS virus is shown schematically. -CoV-2 (17610 bp) (SEQ ID NO: 13). Two successive subclonings were performed to construct the rNDV-LS1-S1-F/SARS-CoV-2 virus construct.
  • Plasmid pNDV-LS1 (19319 bp) was linearized between the BbvCI cutting sites (third position of the NDV genome) to insert the 2441 bp fragment (SEQ ID NO: 8) which includes the BbvCI sites, generating the NDV plasmid -LS1-S1- F/SARS-CoV-2 (21743 bp).
  • Figure 8 Verification of the expression and incorporation of S1-F and HN-RBD in the virion, by Western blot assay.
  • Figure 9. Detection of the genetic sequence of the S1-F and HN-RBD inserts by RT-PCR.
  • Figure 10 Immunofluorescence Assay.
  • Figure 11 Assay of cell binding and internalization by efficiency to the ACE2 receptor expressed in Vero E6 cells.
  • A Graphical representation of S1-F and HN-RBD binding to the ACE2 receptor.
  • B Percentage of binding (%) between rNDV-LS1-HN-RBD/SARS-CoV-2 (10.2%) and rNDV-LS1-S1-F/SARS-CoV-2 (40.4%) to the cellular receptor ACE2.
  • Figure 12 In vitro growth properties of rNDV-LSI-HN-RBD/SARS-CoV-2, rNDV-LS1-S1-F/SARS-CoV-2, and rNDV-LS1 viruses in the cell line DF-1.
  • Figure 13 Hamster immunization and challenge scheme with rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2.
  • SEQ ID NO: 1 Nucleotide sequence that comprises the design of the HN-RBD/SARS-CoV-2 gene (1013 bp).
  • SEQ ID NO: 2 Nucleotide sequence comprising the hemagglutinin-neuraminides (HN) gene (1734 bp) of the plasmid pNDV-LS1 (7535-9268 nt).
  • SEQ ID NO: 3 Sequence of amino acids that comprise the HN protein (577 aa) of the plasmid pNDV-LS1.
  • SEQ ID NO: 4 Nucleotide sequence comprising the domains: cytoplasmic (DC) and transmembrane (DTM) of the HN protein (144 bp) of the plasmid pNDV-LS1 (7534-7678 nt).
  • SEQ ID NO: 5 Nucleotide sequence comprising the Spike (S) gene (3822 bp) of SARS-CoV-2 (21563-25384 nt) with access number GenBank- MN908947.3.
  • SEQ ID NO: 6 Nucleotide sequence comprising the RBD domain (636 bp) of S SARS-CoV-2 (990-1623 nt) with access number GenBank- MN908947.3 for HN gene design -RBD/SARS-CoV-2.
  • SEQ ID NO: 7 Nucleotide sequence comprising the complete genome of the recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 bp).
  • SEQ ID NO: 8 Nucleotide sequence comprising the design of the S1-F/SARS-CoV-2 gene (2441 bp) optimized for its expression in Gallus Gallus.
  • SEQ ID NO: 9 Nucleotide sequence comprising the Fusion (F) gene (1662 bp) of plasmid pNDV-LS1 (5667-7328 nt).
  • SEQ ID NO: 10 Sequence of amino acids that comprise the F protein (553 aa) of the plasmid pNDV-LS1 (5667-7328 nt).
  • SEQ ID NO: 11 Nucleotide sequence comprising domains: DC and DTM of protein F (162 bp) of plasmid pNDV-LS1 (7166-7328 nt), optimized for expression in Gallus Gallus.
  • SEQ ID NO: 12 Nucleotide sequence comprising the S1 subunit of the S gene (2043 bp) of SARS-CoV-2 with access number in GenBank-MN908947.3.
  • SEQ ID NO: 13 Nucleotide sequence comprising the complete genome of the recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 (17610 bp).
  • the present invention reports in a first aspect thereof, a recombinant vectorized live vaccine or recombinant live immunogenic composition
  • a recombinant vectorized live vaccine or recombinant live immunogenic composition comprising the recombinant Newcastle disease virus (NDV) that expresses the S1 subunit and the RBD of the S protein of SARS-CoV-2 with significant high levels of protection and high immunization titers, where the vaccine or immunogenic composition comprises the recombinant viruses called rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1- F/SARS-CoV-2 whose construction is described later in the invention.
  • NDV Newcastle disease virus
  • rNDV-LS1-HN-RBD/SARS-CoV-2 characterized by SEQ ID No. 7 that expresses the S1 subunit and the RBD of SARS-CoV-2 protein S.
  • a fourth aspect of the present invention contemplates a synergistic combination of a recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 characterized by SEQ ID No. 7 and a recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 characterized by SEQ ID No. 13 in combination in the same recombinant live immunogenic composition or live vaccine that express the S1 subunit and the RBD of the S protein of SARS-CoV- two.
  • the present invention further comprises the use of a recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 characterized by SEQ ID No.
  • a recombinant virus rNDV-LS1-S1-F/SARS-CoV -2 characterized by SEQ ID No. 13 for the manufacture of a recombinant immunogenic composition or live recombinant vaccine for the treatment of SARS-CoV-2.
  • the present invention comprises a method for controlling the infection caused by SARS-CoV-2 by administering to mammals the recombinant live immunogenic composition or recombinant live vaccine comprising a recombinant virus rNDV-LS1-HN-RBD /SARS-CoV-2 characterized by SEQ ID No. 7 and a recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 characterized by SEQ ID No. 13 in combination in the same recombinant live immunogenic composition or vaccine live.
  • the recombinant live immunogenic composition or vaccine according to the present invention comprising the Newcastle disease virus (NDV) expressing the S1 subunit and the RBD of the Spike protein of SARS-CoV-2 it may further comprise a pharmaceutically acceptable adjuvant and/or excipient(s), wherein pharmaceutically acceptable adjuvants are defined as substances that enhance antigen-specific immune responses by modulating immune cell activity.
  • NDV Newcastle disease virus
  • pharmaceutically acceptable adjuvants are defined as substances that enhance antigen-specific immune responses by modulating immune cell activity.
  • adjuvants examples include, but are not limited to saponins, agonist antibodies to co-stimulatory molecules, Freund's adjuvant, muramyl dipeptide (MPD), bacterial DNA (oligo CpG), lipo- polysaccharides (LPS), MPL (Mozilla Public license) and synthetic derivatives, lipopeptides and liposomes, among others.
  • the adjuvant is an immunomodulator.
  • other preferred adjuvants may be squalene, Quillaja saponaria, and surfactants.
  • Vaccine compositions suitable for parenteral administration conveniently comprise a sterile aqueous or nonaqueous vaccine preparation, which is preferably isotonic with the blood of the recipient.
  • a sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution.
  • sterile fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil can be used including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid can be used in the preparation of injectables.
  • a suitable carrier formulation can be found for subcutaneous, intravenous, intramuscular, oral administrations.
  • sterile water, yeasts, starches, gelatin, albumin, sucrose, lactose, sodium glutamate and glycine in pharmaceutically acceptable amounts can be used as adjuvants, vehicles and/or diluents.
  • the vaccine or recombinant live immunogenic composition comprises a recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 characterized by SEQ ID No. 7, a recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 characterized by SEQ ID No. 13 or a mixture thereof, sterile water and optionally, adjuvants such as squalene, quillaja saponaria and surfactants.
  • Recombinant live immunogenic compositions or vaccines according to the present invention may also optionally contain suitable preservatives, such as: chloride benzalkonium; chlorobutanol, parabens and thiomerosal, among others; inactivating agents such as formaldehyde, glutaraldehyde, propiolactone and beta-propiolactone are used in parts per million (ppm) or parts per billion (ppb) amounts.
  • suitable preservatives such as: chloride benzalkonium; chlorobutanol, parabens and thiomerosal, among others; inactivating agents such as formaldehyde, glutaraldehyde, propiolactone and beta-propiolactone are used in parts per million (ppm) or parts per billion (ppb) amounts.
  • a subject is a mammal, preferably a human, and includes primate, bovine, equine, porcine, ovine, feline, and rodent.
  • Vaccine compositions according to the present invention may also optionally contain suitable preservatives, such as: benzalkonium chloride; chlorobutanol, parabens and thiomerosal, among others; inactivating agents such as formaldehyde, glutaraldehyde, propiolactone and beta-propiolactone are used in an amount at the parts per million (ppm) or parts per billion (ppb) level.
  • suitable preservatives such as: benzalkonium chloride; chlorobutanol, parabens and thiomerosal, among others; inactivating agents such as formaldehyde, glutaraldehyde, propiolactone and beta-propiolactone are used in an amount at the parts per million (ppm) or parts per billion (ppb) level.
  • the immunogenic compositions or vaccine according to the present invention may be administered by any conventional route, including injection, oral, inhalation intranasal aerosol, more preferably intranasally.
  • any conventional route including injection, oral, inhalation intranasal aerosol, more preferably intranasally.
  • the recombinant plasmids obtained were named; pNDV-LSI-HN-RBD/SARS-CoV-2 and pN DV-LS1 -S1 -F/SARS-CoV-2.
  • the first step consisted in the design of the HN-RBD/SARS-CoV-2 gene (see SEQ ID NO: 1).
  • This gene consisted of an ORF corresponding to the gene HN which contains the DTM and DC of the HN protein (144 bp) of the plasmid pNDV-LS1 (see SEQ ID NO: 1, 2, and 4) and the ectodomain of the RBD protein (636 bp) (see SEQ ID NO : 6) of SARS-CoV-2, with the aim of expressing the RBD on the surface of the virion (see Figure 2C).
  • the sequence corresponding to the DTM and CT of the HN protein was predicted with the TMHMM Server 2.0 program (see Figure 1).
  • the new gene was named HN-RBD/SARS-CoV-2, which by containing the N-terminal region of the HN protein should be able to expose the HN-RBD/SARS-CoV-2 protein on the surface of the virion.
  • the RBD sequence selected for this design was 636 bp, which was taken from the strain isolated in Wuhan-Hu-1-China (GenBank Accession Number-MN908947.3) (990-1623 nt) (see SEQ ID NO : 6). https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3
  • This HN-RBD/SARS-CoV-2 gene sequence was chemically synthesized and then cloned into the pUC57 cloning plasmid by GenScript (Piscataway, NJ, USA), said sequence was designed to be flanked at both ends by the unique restriction site called BbvCI (NEB, New England BioLabs, Ipswich, MA, USA) which contains the "CCTCAGC" sequence, is located in the intergenic region between the P and M genes of pNDV-LS1 (19319 bp) (see Figure 4).
  • BbvCI NEB, New England BioLabs, Ipswich, MA, USA
  • This plasmid was then purified and extracted using QIAGEN Plasmid Midi Kit (100) (QIAGEN, Valencia, CA, USA), following the manufacturer's instructions.
  • pNDV-LS1 (19319 bp) was digested by this same single-cut enzyme BbvCI (NEB, New England BioLabs, Ipswich, MA, USA), which is located in the intergenic region between the P and M genes of the NDV as described above, thus obtaining the linearized plasmid.
  • the second step consisted in the insertion of the synthetic gene HN-RBD/SARS-CoV-2 (1013 bp) (SEQ ID NO: 1) in the plasmid pNDV-LS1 (19319 bp), generating the new plasmid called pNDV-LS1- HN-RBD/SARS-CoV-2 (20315 bp) (see Figures 3 and 4).
  • rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 bp) (see SEQ ID NO: 7).
  • pNDV-LS1 (19319 bp) was digested by this same single-cut enzyme BbvCI (NEB, New England BioLabs, Ipswich, MA, USA), which is located in the intergenic region between the P and M genes of the NDV as described above, thus obtaining the linearized plasmid.
  • the second step consisted in the insertion of the synthetic gene HN-RBD/SARS-CoV-2 (1013 bp) (SEQ ID NO: 1) in the plasmid pNDV-LS1 (19319 bp), generating the new plasmid called pNDV-LS1- HN-RBD/SARS-CoV-2 (20315 bp) (see Figures 3 and 4).
  • rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 bp) (see SEQ ID NO: 7).
  • the first step consisted in the design of the S1-F/SARS-CoV-2 gene (2441 bp) (see SEQ ID NO: 8).
  • This gene consisted of the "creation of an ORF", comprised of the "atg” nucleotides, then fused with the ectodomain of the S1 subunit of the S of SARS-CoV-2, and with the fragment that encodes the DTM and CT of the protein F (162 bp) of the NDV (see SEQ ID NO: 8, 9 and 11), with the aim that S1 is expressed on the surface of the virion (see Figure 2C).
  • the new gene was named S1-F/SARS-CoV-2 (2441 bp) (see SEQ ID NO: 8), and having the N-terminal region of the F protein should be able to expose the protein of the S1 subunit on the surface of the virion.
  • the S1 sequence selected for this design was 2043 bp, which was taken from the strain isolated in Wuhan-Hu-1-China (GenBank Accession Number-MN908947.3) (987-1563 nt) (see SEQ ID NO : 12). https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3
  • the new gene was named S1-F/SARS-CoV-2 (2441 bp) (see SEQ ID NO: 8), and having the N-terminal region of the F protein should be able to expose the protein of the S1 subunit on the surface of the virion.
  • the S1 sequence selected for this design was 2043 bp, which was taken from the strain isolated in Wuhan-Hu-1-China (GenBank Accession Number-MN908947.3) (987-1563 nt) (see SEQ ID NO : 12). https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3.
  • each plasmid had to comply with the "rule of six", which consists in that the length of the virus genome must be a multiple of 6, this because it seems that the packaging of the genome occurs every 6 nucleotides ( Peeters et al. 2000) for which the "tgac" nucleotides were added followed by the stop condom of the S1-F/SARS-CoV-2 gene (see SEQ ID NO: 8).
  • a flaw in the number of nucleotides in the NDV genome can severely alter viral replication.
  • This S1-F/SARS-CoV-2 gene sequence was chemically synthesized, optimized for Gallus Gallus and then cloned into the pUC57 cloning plasmid by GenScript (Piscataway, NJ, USA), said sequence was designed to that is flanked at both ends by the unique restriction site called BbvCI (NEB, New England BioLabs, Ipswich, MA, USA) which contains the "CCTCAGC" sequence. which is located in the intergenic region between the P and M genes of NDV.
  • BbvCI NEB, New England BioLabs, Ipswich, MA, USA
  • This plasmid was purified and extracted using the QIAGEN Plasmid Midi Kit (100) (QIAGEN, Valencia, CA, USA), following the manufacturer's instructions.
  • Plasmid pNDV-LS1 (19319 bp) was digested by this same single-cut enzyme BbvCI (NEB, New England BioLabs, Ipswich, MA, USA), which is located in the intergenic region between the P and M genes from NDV as mentioned above, thus obtaining the linearized plasmid.
  • the second step consisted in the insertion of the synthetic gene S1-F/SARS-CoV-2 (2441 bp) (see SEQ ID NO: 8) in the plasmid pNDV-LS1 (19319 bp), generating the new plasmid called pNDV-LS1 -S1- F/SARS-CoV-2 (21743 bp) (see Figure 8).
  • SEQ ID NO: 13 the virus called rNDV-LS1-S1-F/SARS-CoV-2 (17610 bp) (see SEQ ID NO: 13).
  • the new recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 were recovered by co-transfecting with support plasmids containing the genes that synthesize the complex RNP, pCI-L, pCI-N and pCI-P together with the plasmid pNDV-LS1-HN-RBD and pNDV-LS1-S1-F in Vero cells as described in a previous publication (Chumbe et al 2017).
  • Pathogenicity of rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 viruses were recovered by co-transfecting with support plasmids containing the genes that synthesize the complex RNP, pCI-L, pCI-N and pCI-P together with the plasmid pNDV-LS1-
  • ICPI Intracerebral Pathogenicity Index
  • MDT mean death time
  • EIDso/mL mean infective dose
  • Intracerebral Pathogenicity Index was evaluated in 1-day-old birds.
  • the maximum score of a virulent strain is 2.0, while the score of the Lentogenic strain is 0.0.
  • Mean death time was elaborated in 10-day-old embryonated eggs. The value of 60 hours corresponds to velogenic strains, values between 60 and 90 hours correspond to mesogenic strains, andlentogenic have a value greater than 90 hours.
  • Vero E6 cells were infected with the recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS -CoV-2 at a multiplicity of infection (MOI) of 1. After 48 hours of infection, cells were harvested and used.
  • MOI multiplicity of infection
  • Western blot assay was carried out using viruses partially purified from allantoic fluid and used from infected cells, using a rabbit antibody specific for the RBD protein of SARS-CoV-2 (Sino biologycal, Cat: 4059-2-T62 ) 2/5000 and a secondary antibody Anti rabbit IgG conjugated to HRP (Cat. A01827) 2/5000.
  • RNA of the recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 was extracted from allantoic fluid using the QlAamp MinElute Virus kit Spin (Qiagen, Germany), according to the manufacturer's instructions, with some modifications. 200 ⁇ l of sample was added to a tube containing 25 ml of Proteinase K and homogenized for 15 seconds. Then, 200 pL of buffer AL was added, previously mixed with 6.2 pL of carrier (1 pg/pL), homogenized for 15 seconds and incubated at 56°C for 1 hour. Lysed samples were placed in the QIAcube Connect (Qiagen, Germany) for automated RNA extraction. RNA quantity and quality were determined using a Biophotometer plus (Eppendorf, Germany).
  • cDNA Complementary DNA
  • RNA was generated from 5 pL of total RNA in a reaction volume of 20 pL, containing 4 pL of ProtoScript II 5X buffer (New England Biolabs, USA), 2 pL of Dithiothreitol 0.1 M, 1 pL of 10 mM dNTP, 0.2 pL of 40 U/pL RNase Inhibitor (New England Biolabs, USA), 1 pL of 200 U/pL ProtoScript II reverse transcriptase (New England Biolabs, USA) , 2 pL of random primer mix (60 mM) and 4.8 pL of nuclease-free water.
  • ProtoScript II 5X buffer New England Biolabs, USA
  • Dithiothreitol 0.1 M 1 pL of 10 mM dNTP
  • 0.2 pL of 40 U/pL RNase Inhibitor New England Biolabs, USA
  • the reaction was conducted at 42°C for 60 minutes, with a denaturation and inactivation step at 65°C for 5 minutes and 20 minutes, respectively.
  • the cDNA obtained was used as a template for the polymerase chain reaction (PCR). from English: Polymerase Chain Reactor).
  • Amplification was carried out in a total volume of 20 pL, using 10 pL of high-fidelity 2X Master mix Q5 (New England Biolabs, USA), 0.36 pL of primers NDV-3LS1-2020-F1 (5 ' -GATCATGTCACGCCCAATGC-3 ' ) and NDV-3LS1-2020-R1 ( 5' -GCATCGCAGCGGAAAGTAAC-3 ' ), respectively, 7.28 pL of nuclease-free water (Ambion, USA) and 2 pL of total cDNA.
  • the thermal cycling protocol comprised an initial denaturation step at 98 °C for 30 seconds, followed by 35 cycles of 98 °C for 10 seconds, 72 °C for 20 seconds, 72 °C for 30 seconds for detection of HN- RBD and for 40 seconds for the detection of S1-F.
  • the final extension was performed at 72 °C for 2 min.
  • the PCR products were analyzed by electrophoresis in 1% agarose gels and visualized with a CCD camera (Azure Biosystems, USA).
  • the RT-PCR results detected a band with a size of -3028 bp in the rNDV-LS1-S1-F/SARS-CoV-2 virus sample, which would correspond to the S1-F insert (see Figure 9B) .
  • a -1600 bp band was detected in the rNDV-LS1-HN-RBD/SARS-CoV-2 virus sample that would correspond to the HN-RBD insert (see Figure 9A).
  • the RT-PCR products that were sequenced (Macrogen, Seoul, Korea), showed that the genetic sequences of the HN-RBD and S1-F inserts were intact and without alterations (Data not shown).
  • Vero-E6 cells were infected with the recombinant viruses at an MOI of 0.5. After 48 hours of infection, cells were fixed with 4% paraformaldehyde for 25 min, then the monolayer was washed three times with Dulbecco's phosphate-buffered saline (DPBS) and permeabilized with 0.1% of Triton X-100 for 15 minutes at room temperature.
  • DPBS Dulbecco's phosphate-buffered saline
  • the S1 insert In the case of the S1 insert, it was fused with the DTM and DC of the NDV F protein. These construction designs were made so that the RBD and S1 were expressed and incorporated into the viral envelope of the recombinant viruses and had affinity for the ACE2 receptor.
  • DF-1 cells (DF-1, English: Chicken Embryo Fibroblasf), were seeded at 70% confluence in a 12-well plate, after 18 hours of post seeding they were infected with rNDV- LSI-HN-RBD/SARS-CoV-2, rN DV-LS1 -S1 -F/SARS-CoV-2, and rNDV-LS1 at an MOI of 1.
  • CPE cytopathic effect
  • rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1 -F/SARS-CoV-2 showed the typical CPE of the NDV. This may explain why the insertion of both foreign genes, did not alter their biological properties of rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2.
  • Hamsters were randomly divided into four groups (12 hamsters/group). Hamsters were inoculated intranasally (IN) with 40mI (2x10 6 PFU/hamster) of the viruses rNDV-LS1-HN-RBD/SARS-CoV- 2 (Group #1), rN DV- LS 1 -S 1 - F/SARS-CoV-2 (Group #2), the mixture of both rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 (Group #3), and a non-immunized control group (Group #4). An IN immunization booster with 40mI (2x10 6 PFU/hamster) of each vaccine was applied to all groups 15 days post-vaccination (DPV).
  • DPV post-vaccination
  • rNDV-LS1-HN-RBD/SARS-CoV-2 Group #1
  • rNDV-LS1-S1-F/SARS-CoV-2 Group #2
  • the mixture of both rNDV-LS1-HN - RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 Group #3
  • a non-immunized control group Group #4
  • the sera were mixed with the SARS-CoV virus -2 (serum-virus) and incubated for 1 hour at 37°C, and then 10 pL of the mixture was transferred to each well containing the previously seeded Vero E6 cell culture monolayer.
  • the cells were incubated for 4 days at 37°C, then they were fixed with 10% paraformaldehyde for 6 hours and stained with 2% crystal violet for 15 minutes, then washed and dried at room temperature. The limiting dilution was determined by the appearance of plaques or CPE of the virus. SARS-CoV-2 on cells.

Abstract

The present invention relates to the obtainment of two live recombinant or vectored NDV vaccines expressing the S1 subunit and the RBD of the S protein of SARS-CoV-2 which, when applied intranasally in a hamster animal model, generate the production of neutralising antibodies against SARS-CoV-2. The invention also shows that these live vaccines are compatible for combined use with each other to induce the production of neutralising antibodies against SARS-CoV-2 without substantial cross-interference, indicating a synergy between the two vaccines, wherein recombinant NDV viruses (rNDV-LS1-HN-RBD/SARS-CoV-2 (SEQ ID No. 7) and rNDV-LS1-S1-F/SARS-CoV-2 (SEQ ID No. 13) express the S1 subunit and the RBD of the S protein of SARS-CoV-2 in mammals.

Description

i Yo
COMPOSICIÓN INMUNOGÉNICA VIVA RECOMBINANTE QUE COMPRENDE EL VIRUS DE LA ENFERMEDAD DE NEWCASTLE (NDV) QUE EXPRESA LA SUBUNIDAD S1 Y EL RBD DE LA PROTEINA SPIKE DEL SARS-CoV-2 RECOMBINANT LIVE IMMUNOGENIC COMPOSITION COMPRISING THE NEWCASTLE DISEASE VIRUS (NDV) EXPRESSING THE S1 SUBUNIT AND THE RBD OF THE SARS-CoV-2 SPIKE PROTEIN
CAMPO TÉCNICO TECHNICAL FIELD
[001] La presente invención se enmarca dentro de la industria farmacéutica. La presente invención se relaciona a la obtención de dos virus recombinantes vectorizadas derivadas del virus de la enfermedad de Newcastle (NDV, del inglés: Newcastle disease virus) que comprende la subunidad S1 y el dominio de unión al receptor denominado RBD (RBD, del inglés: Receptor Binding Domain), ambos provenientes del nuevo coronavirus -2 del Síndrome Respiratorio Agudo Severo (SARS-CoV-2) a través del sistema de genética inversa, y al producto correspondiente de una vacuna o composición inmunogénica viva recombinante obtenida de la mezcla de los dos virus recombinantes: rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 para inmunizar, y proteger contra la enfermedad por coronavirus 2019 (COVID-19) en mamíferos y humano superior. [001] The present invention falls within the pharmaceutical industry. The present invention is related to obtaining two vectorized recombinant viruses derived from Newcastle disease virus (NDV) comprising the S1 subunit and the receptor binding domain called RBD (RBD). : Receptor Binding Domain), both from the new Severe Acute Respiratory Syndrome coronavirus -2 (SARS-CoV-2) through the reverse genetics system, and to the corresponding product of a vaccine or recombinant live immunogenic composition obtained from the mixture of the two recombinant viruses: rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 to immunize, and protect against coronavirus disease 2019 (COVID-19) in mammals and superior human.
ANTECEDENTES BACKGROUND
[002] La presente invención se desarrolló basándose en el uso de un vector viral previamente elaborado, con el Título N° 9204 del Registro de Propiedad Industrial “VACUNA QUE COMPRENDE VIRUS DE LA ENFERMEDAD DE NEWCASTLE (NDV) RECOMBINANTE QUE EXPRESA EL GEN DE LA ESPÍCULA S DEL VIRUS DE LA BRONQUITIS INFECCIOSA AVIAR (IBV)”, otorgado por la Dirección de Invenciones y Nuevas Tecnología de INDECOPI certificado en la Resolución N° 003059- 2018/DIN-INDECOPI. ESTADO DE LA TECNICA [002] The present invention was developed based on the use of a viral vector previously elaborated, with the Title N° 9204 of the Registry of Industrial Property “VACCINE THAT COMPRISES RECOMBINANT NEWCASTLE DISEASE VIRUS (NDV) THAT EXPRESSES THE GENE OF THE SPÍCULA S DEL VIRUS DE LA BRONQUITIS INFECCIOSA AVAR (IBV)”, granted by the Directorate of Inventions and New Technologies of INDECOPI certified in Resolution No. 003059-2018/DIN-INDECOPI. STATE OF THE TECHNIQUE
[003] El COVID-19 es una enfermedad infecciosa en humanos causada por el coronavirus altamente patógeno, SARS-CoV-2, que apareció en Wuhan y su rápida difusión internacional ha planteado una grave emergencia mundial de salud pública (Zhou et al. 2020; Wu et al. 2020; Zhu et al. 2020). Los pacientes infectados por SARS-CoV-2 muestran una variedad de síntomas que incluyen tos seca, fiebre, dolor de cabeza, cansancio y dificultad para respirar[003] COVID-19 is an infectious disease in humans caused by the highly pathogenic coronavirus, SARS-CoV-2, which emerged in Wuhan and its rapid international spread has posed a serious global public health emergency (Zhou et al. 2020 ; Wu et al. 2020; Zhu et al. 2020). SARS-CoV-2 infected patients show a variety of symptoms including dry cough, fever, headache, tiredness and shortness of breath
(https://www.who.int/es/emergencies/diseases/novel-coronavirus- 2019/advice-for-public/q-a-coronaviruses), con una tasa de mortalidad estimada que oscila entre el 3 y el 5% (Huang et al. 2020; Liu et al. 2020; Wang et al. 2020). Desde el brote inicial en diciembre de 2019, el SARS- CoV-2 se ha extendido por toda China y a más de 80 países y áreas en todo el mundo. (https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public/q-a-coronaviruses), with an estimated mortality rate of between 3 and 5% ( Huang et al 2020; Liu et al 2020; Wang et al 2020). Since the initial outbreak in December 2019, SARS-CoV-2 has spread throughout China and to more than 80 countries and areas worldwide.
[004] El SARS-CoV-2 pertenece a la familia Coronaviridae y poseen un genoma de ácido ribonucleico (ARN) de sentido positivo de una sola hebra de -29.9 kilobases (kb) de longitud (Su et al. 2016; H. Zhou et al. 2020). Los análisis filogenéticos de los genomas de los coronavirus han revelado que el SARS-CoV-2 es miembro del género betacoronavirus (P. Zhou et al. 2020; Wu et al. 2020; Zhu et al. 2020; Lu et al. 2020), y dentro de ese género comparte una identidad de secuencia genómica del 79% con el SARS-CoV y el 50% con el MERS-CoV (Lu et al. 2020). Posee seis marcos de lectura abiertos (ORFs, del inglés Open Reading Frames) que están ordenados de sentido 5' a 3': replicasa (ORF1a/ORF1b), spike (S), envoltura (E), membrana (M) y nucleocápside (N). Además, siete ORFs putativos que codifican proteínas accesorias que se intercalan entre los genes estructurales (Chan et al. 2020). La mayoría de las proteínas codificadas por el SARS-CoV-2 tienen una longitud similar a las proteínas correspondientes del SARS-CoV. De cuatro genes estructurales, el SARS- CoV-2 comparte más del 90% de identidad de aminoácidos (aa) con el SARS-CoV, excepto el gen S, que diverge (H. Zhou et al. 2020; Lu et al. 2020). [004] SARS-CoV-2 belongs to the Coronaviridae family and possesses a single-stranded positive-sense ribonucleic acid (RNA) genome of -29.9 kilobases (kb) in length (Su et al. 2016; H. Zhou et al 2020). Phylogenetic analyzes of coronavirus genomes have revealed that SARS-CoV-2 is a member of the betacoronavirus genus (P. Zhou et al. 2020; Wu et al. 2020; Zhu et al. 2020; Lu et al. 2020) , and within that genus it shares 79% genomic sequence identity with SARS-CoV and 50% with MERS-CoV (Lu et al. 2020). It has six open reading frames (ORFs) that are ordered from 5' to 3' sense: replicase (ORF1a/ORF1b), spike (S), envelope (E), membrane (M), and nucleocapsid ( N). Additionally, seven putative ORFs encoding accessory proteins are interspersed between structural genes (Chan et al. 2020). Most of the proteins encoded by SARS-CoV-2 are similar in length to the corresponding SARS-CoV proteins. Of four structural genes, SARS-CoV-2 shares more than 90% amino acid (aa) identity with SARS-CoV-2. SARS-CoV, except for the S gene, which diverges (H. Zhou et al. 2020; Lu et al. 2020).
[005] Los coronavirus utilizan la glicoproteína S (comprendida por una subunidad S1 y una subunidad S2) en la envoltura para unirse a sus receptores celulares. Tal unión desencadena una cascada de eventos que conducen a la fusión entre las membranas; celular y viral para la entrada celular del virus. Estudios previos con microscopía crio-electrónica de la proteína S del SARS-CoV y su interacción con el receptor celular ACE2 (ACE2, del inglés: Angiotensin-Converting Enzyme 2), han demostrado que la subunidad S1 se une al receptor, luego esta unión con el receptor induce una disociación del S1 con el ACE2, lo que induce al S2 a pasar de un estado pre-fusión metaestable a un estado más estable post-fusión que es esencial para la fusión de la membrana (Gui et al. 2017; Song et al. 2018; Kirchdoerfer et al. 2018; Yuan et al. 2017). Por lo tanto, la unión al receptor ACE2 es un paso inicial y crítico para que el SARS-CoV ingrese a las células diana. Estudios recientes también destacaron el importante papel del receptor ACE2 en la mediación de la entrada de SARS-CoV-2 (P. Zhou et al. 2020; Walls et al. 2020; Letko, Marzi, and Munster 2020; Hoffmann et al. 2020). Por ejemplo, las células HeLa que expresan el receptor ACE2 son susceptibles a la infección por SARS-CoV-2, mientras que aquellas sin ACE2 no lo son (P. Zhou et al. 2020). Las mediciones de unión in vitro también mostraron que el dominio de unión al receptor (RBD) (RBD, del inglés: Receptor Binding Domain) de la subunidad S1 del SARS-CoV-2 se une al receptor ACE2 con una afinidad en el rango nanomolar bajo, lo que indica que el RBD es un componente funcional clave dentro de la subunidad S1 que es responsable de la unión del SARS-CoV-2 al receptor ACE2 (Walls et al. 2020; Tian et al. 2020). [005] Coronaviruses use the S-glycoprotein (comprised of an S1 subunit and an S2 subunit) in the envelope to bind to their cellular receptors. Such binding triggers a cascade of events leading to fusion between the membranes; cellular and viral for cellular entry of the virus. Previous studies with cryo-electron microscopy of the S protein of SARS-CoV and its interaction with the cellular receptor ACE2 (ACE2, English: Angiotensin-Converting Enzyme 2), have shown that the S1 subunit binds to the receptor, then this binding with the receptor induces a dissociation of S1 with ACE2, which induces S2 to go from a metastable pre-fusion state to a more stable post-fusion state that is essential for membrane fusion (Gui et al. 2017; Song et al 2018; Kirchdoerfer et al 2018; Yuan et al 2017). Therefore, binding to the ACE2 receptor is an initial and critical step for SARS-CoV to enter target cells. Recent studies also highlighted the important role of the ACE2 receptor in mediating SARS-CoV-2 entry (P. Zhou et al. 2020; Walls et al. 2020; Letko, Marzi, and Munster 2020; Hoffmann et al. 2020 ). For example, HeLa cells expressing the ACE2 receptor are susceptible to SARS-CoV-2 infection, while those without ACE2 are not (P. Zhou et al. 2020). In vitro binding measurements also showed that the receptor binding domain (RBD) of the SARS-CoV-2 S1 subunit binds to the ACE2 receptor with an affinity in the nanomolar range. low, indicating that the RBD is a key functional component within the S1 subunit that is responsible for SARS-CoV-2 binding to the ACE2 receptor (Walls et al. 2020; Tian et al. 2020).
[006] La proteína S del SARS-CoV-2 tiene un tamaño completo de 1273 aminoácidos, más larga que la del SARS-CoV (1255 aa). Es distinto de las proteínas S de la mayoría de los miembros del subgénero Sarbecovirus del género betacoronavirus, y comparte similitudes de secuencia de aminoácidos del 76,7 al 77,0% con el SARS-CoV de civetas y seres humanos. Con respecto al RBD, la similitud de aminoácidos entre el SARS- CoV-2 y el SARS-CoV es solo del 73%. Otra característica genómica específica del SARS-CoV-2 es la inserción de cuatro residuos de aminoácidos (PRRA) en la unión de las subunidades S1 y S2 de la proteína S (Andersen et al. 2020). Esta inserción genera un sitio de escisión polibásico (RRAR), que permite una escisión eficaz mediante la presencia de furina y otras proteasas (Coutard et al. 2020). Este sitio de escisión S1- S2 no se observa en todos los virus relacionados que pertenecen al subgénero Sarbecovirus, excepto en una inserción similar de tres aminoácidos (PAA) en RmYN02, un coronavirus derivado del murciélago reportado recientemente en Rhinolophus malayanus en China (H. Zhou et al. 2020). [006] The S protein of SARS-CoV-2 has a full size of 1273 amino acids, longer than that of SARS-CoV (1255 aa). It is distinct from the S proteins of most members of the Sarbecovirus subgenus of the betacoronavirus genus, and shares sequence similarities of amino acids from 76.7 to 77.0% with SARS-CoV from civets and humans. Regarding RBD, the amino acid similarity between SARS-CoV-2 and SARS-CoV is only 73%. Another specific genomic feature of SARS-CoV-2 is the insertion of four amino acid residues (PRRA) at the junction of the S1 and S2 subunits of the S protein (Andersen et al. 2020). This insertion generates a polybasic cleavage site (RRAR), which allows efficient cleavage by the presence of furin and other proteases (Coutard et al. 2020). This S1-S2 cleavage site is not observed in all related viruses belonging to the subgenus Sarbecovirus, except for a similar three amino acid insertion (PAA) in RmYN02, a recently reported bat-derived coronavirus in Rhinolophus malayanus in China (H. Zhou et al 2020).
[007] Por otro lado, la antigenicidad del RBD juega un rol importante para la inducción de anticuerpos, que podrían bloquear la unión del RBD al receptor ACE2, como lo muestra un estudio donde una vacuna recombinante que comprende los residuos 319-545 del RBD de la proteína de S del SARS-CoV-2 inducen una potente respuesta funcional de anticuerpos en ratones, conejos y primates no humanos ( Macaca mulatta) inmunizados, tan pronto como 7 o 14 días después de la inyección de una dosis única de vacuna. Los sueros de los animales inmunizados bloquearon la unión del RBD al receptor ACE2 que se expresa en la superficie celular, y neutralizaron la infección con un pseudovirus SARS-CoV-2 y SARS-CoV- 2 in vitro. En particular, la vacunación también brindó protección en primates no humanos frente a un desafío in vivo con SARS-CoV-2 (Yang et al. 2020). [007] On the other hand, the antigenicity of the RBD plays an important role for the induction of antibodies, which could block the binding of the RBD to the ACE2 receptor, as shown in a study where a recombinant vaccine comprising residues 319-545 of the RBD SARS-CoV-2 S protein induce a potent functional antibody response in immunized mice, rabbits, and non-human primates ( Macaca mulatta) as early as 7 to 14 days after injection of a single dose of vaccine. Sera from immunized animals blocked RBD binding to the ACE2 receptor expressed on the cell surface, and neutralized infection with a pseudovirus SARS-CoV-2 and SARS-CoV-2 in vitro. Notably, vaccination also provided protection in nonhuman primates against an in vivo challenge with SARS-CoV-2 (Yang et al. 2020).
[008] A futuro, la vacunación podría ser el método más efectivo para una estrategia de prevención, reducción de morbilidad y mortalidad del COVID- 19 a largo tiempo. Hasta el 2 de octubre del 2020, -174 candidatos vacunales contra el COVID-19 han sido reportados y 51 se encuentran iniciando los ensayos clínicos en humanos. Por lo tanto, la elección de una vacuna ideal podría tardar más tiempo. [008] In the future, vaccination could be the most effective method for a strategy of prevention, reduction of morbidity and mortality of COVID-19 in the long term. As of October 2, 2020, -174 vaccine candidates against COVID-19 have been reported and 51 are beginning clinical trials in humans. Therefore, the choice of an ideal vaccine could take longer.
[009] Diferentes plataformas de obtención de vacunas contra el SARS- CoV-2 se encuentran en ejecución, entre ellas estrategias en el cual incluyen: ácido desoxirribonucleico (ADN), ácido ribonucleico mensajero (ARNm) este último envuelto en una nano partícula de lípido, virus inactivados, virus vivos atenuados, proteínas de subunidad, vectores virales recombinantes (Hu et al. 2020). [009] Different platforms for obtaining vaccines against SARS-CoV-2 are underway, including strategies that include: deoxyribonucleic acid (DNA), messenger ribonucleic acid (mRNA), the latter wrapped in a lipid nanoparticle , inactivated viruses, live attenuated viruses, subunit proteins, recombinant viral vectors (Hu et al. 2020).
[010] Entre las diferentes plataformas de desarrollo de vacunas, la vacuna vector - viral tienen una potencial ventaja sobre las demás vacunas, debido a que pueden ser utilizadas cono vacunas vivas y vacunas inactivadas, las cuales pueden inducir una respuesta inmune Th1 y Th2. Varios vectores virales vacunales han sido propuestos tales como: adenovirus, virus de sarampión, el virus Ankara, estomatitis vesicular aguda y parainfluenza humano. Sin embargo, cada vector viral presenta algunas limitaciones que pueden o no ser posibles de superar, entre ellas por ejemplo, la inmunogenicidad de algunas vacunas vectores virales no han sido ideales, por otro lado, una replicación defectiva del vector vacunal adenovirus podría no inducir una buena inmunidad local, en el caso del virus estomatitis vesicular hasta el momento es cuestionable, y el vector parainfluenza humano podría no ser efectiva en humanos-adultos debido a su inmunidad pre-existente. [010] Among the different vaccine development platforms, the vector-viral vaccine has a potential advantage over the other vaccines, because it can be used as live vaccines and inactivated vaccines, which can induce a Th1 and Th2 immune response. Various vaccine viral vectors have been proposed such as: adenovirus, measles virus, Ankara virus, acute vesicular stomatitis and human parainfluenza. However, each viral vector presents some limitations that may or may not be possible to overcome, among them, for example, the immunogenicity of some viral vector vaccines has not been ideal, on the other hand, a defective replication of the adenovirus vaccine vector may not induce a good local immunity, in the case of the vesicular stomatitis virus so far it is questionable, and the human parainfluenza vector may not be effective in adult humans due to their pre-existing immunity.
[011] Superando todas estas limitaciones se encuentra el virus de la enfermedad de Newcastle (NDV) (NDV, del inglés: Newcastle disease virus), un virus aviar, que tiene muchas características que lo hacen adecuado como un potencial vector vacunal para el SARS-CoV-2 (Rohaim and Muñir 2020). El NDV, es un importante patógeno en la industria avícola, pertenece al género Orthoavulavirus, familia Paramyxoviridae, y es formalmente conocido como Avian orthoavulavirus 1 [https://talk.ictvonline.org/ taxonomy]. [012] El NDV tiene un genoma de ARN de cadena simple, no segmentado de polaridad negativa. La longitud del genoma del NDV es de 15,186 nucleótidos (nt) y contiene seis genes en el orden de 3’-NP-P-M-F-HN-L-5’, los cuales codifican la nucleoproteína (NP), fosfoproteína (P), proteína matriz (M), proteína fusión (F), proteína de hemaglutinina-neuraminidasa (HN), proteína larga polimerasa (L), además de la presencia de dos proteínas no estructurales denominadas V y W que se producen en el momento de la transcripción del gen P (Cattoli et al. 2011; Dimitrov et al. 2016). La longitud del genoma del NDV debe ser múltiplo de seis para una eficiente replicación del ARN, cumpliendo así la llamada “regla de seis”. [011] Overcoming all these limitations is Newcastle disease virus (NDV), an avian virus, which has many characteristics that make it suitable as a potential vaccine vector for SARS. -CoV-2 (Rohaim and Muñir 2020). NDV, an important pathogen in the poultry industry, belongs to the genus Orthoavulavirus, family Paramyxoviridae, and is formally known as Avian orthoavulavirus 1 [https://talk.ictvonline.org/taxonomy]. [012] NDV has a single-stranded, non-segmented RNA genome of negative polarity. The length of the NDV genome is 15,186 nucleotides (nt) and it contains six genes in the order of 3'-NP-PMF-HN-L-5', which code for the nucleoprotein (NP), phosphoprotein (P), protein matrix (M), fusion protein (F), hemagglutinin-neuraminidase protein (HN), long protein polymerase (L), in addition to the presence of two non-structural proteins called V and W that are produced at the time of transcription of the P gene (Cattoli et al. 2011; Dimitrov et al. 2016). The length of the NDV genome must be a multiple of six for efficient RNA replication, thus fulfilling the so-called “rule of six”.
[013] Cada unidad transcripcional contiene un principal ORF flanqueado por regiones cortas no traducida (UTRs) (UTRs, del inglés: Untranslated Regions Unit), las cuales son seguidas por secuencias de iniciación y de terminación conservadas de transcripción conocidas como gen de inicio o gene start (GS) (GS, del inglés: Gen Start), gen final o Gen End (GE) (GE, del inglés: Gene End) y entre ambos se ubican las secuencias intergénicas (IGSs) (IGSs, del inglés: Intergenic Sequences) no codificantes o llamadas también secuencias no traducidas. [013] Each transcriptional unit contains a major ORF flanked by short untranslated regions (UTRs), which are followed by conserved transcription initiation and termination sequences known as gene initiation or gene start (GS) (GS, from the English: Gen Start), final gene or Gen End (GE) (GE, from the English: Gene End) and between both are located the intergenic sequences (IGSs) (IGSs, from the English: Intergenic Sequences) non-coding or also called untranslated sequences.
[014] La construcción y ensamblaje del virión está asociado a tres glicoproteínas; F, HN y M. Las glicoproteínas F y HN, se encuentran ancladas en la envoltura del virión. La glicoproteína M se encuentra localizada en la cara interna de la envoltura viral. Las glicoproteínas HN y F, son incorporadas en el virión por la vía de interacción de sus tallos citoplasmáticos o llamados también dominios citoplasmáticos (DC) (DC, del inglés: Cytoplasmic Tai! Domain) junto con la proteína M (Dolganiuc et al. 2003; Pantua et al. 2006). [014] The construction and assembly of the virion is associated with three glycoproteins; F, HN and M. The glycoproteins F and HN are anchored in the envelope of the virion. The M glycoprotein is located on the inner face of the viral envelope. The HN and F glycoproteins are incorporated into the virion via the interaction of their cytoplasmic stems or also called cytoplasmic domains (DC) together with the M protein (Dolganiuc et al. 2003 ; Pantua et al. 2006).
[015] La proteína HN, contiene el sitio de unión y de reconocimiento al receptor celular del hospedador. Por otro lado, la glicoproteína F media la fusión del virus con la membrana de la célula hospedera, contribuyendo así al inicio del ciclo replicativo del NDV (Kim et al. 2011 ; Kumar et al. 2011). Ambas son capaces de generar anticuerpos neutralizantes ya que son antígenos protectivos contra el NDV. [015] The HN protein contains the binding and recognition site for the host cell receptor. On the other hand, glycoprotein F mediates the fusion of the virus with the host cell membrane, thus contributing at the start of the NDV replicative cycle (Kim et al. 2011; Kumar et al. 2011). Both are capable of generating neutralizing antibodies since they are protective antigens against NDV.
[016] El principal determinante de la virulencia en el NDV en aves es la activación de la glicoproteína F, la cual ocurre por el clivaje mediada por endo-proteasas celulares. En muchos casos las cepas velogénicas y algunas mesogénicas el sitio de clivaje de F es rico en aminoácidos básicos y es rápidamente clivada por proteasas intracelulares tales como la furina, permitiendo así una replicación en una variedad de tejidos. Por otro lado, las cepas lentogénicas y algunas mesogénicas, contienen pocos sitios de residuos básicos que va a depender de proteasas secretoras encontradas en principalmente en pulmón para su clivaje, por lo tanto, su restricción de replicación esta hacia superficies epiteliales donde la proteasa es encontrada. [016] The main determinant of virulence in NDV in birds is the activation of glycoprotein F, which occurs by cellular endoprotease-mediated cleavage. In many velogenic and some mesogenic strains, the F cleavage site is rich in basic amino acids and is rapidly cleaved by intracellular proteases such as furin, thus allowing replication in a variety of tissues. On the other hand, lentegenic and some mesogenic strains contain few basic residue sites that will depend on secretory proteases found mainly in the lung for their cleavage, therefore, their replication restriction is towards epithelial surfaces where the protease is found. .
[017] Su hospedador natural son las aves, y es antigénicamente distinto a los patógenos humanos comunes. Son exclusivamente virus citoplasmático y por lo tanto el no integra sus genes virales dentro del genoma del hospedador, lo cual favorece y levanta su perfil de seguridad. [017] Its natural host is birds, and it is antigenically distinct from common human pathogens. They are exclusively cytoplasmic viruses and therefore they do not integrate their viral genes into the host genome, which favors and raises their safety profile.
[018] La severidad de la enfermedad aviar depende en el patotipo de las cepas de NDV: lentogénicas, mesogénicas, y velogénicas. Las cepas lentogénicas (LaSota), causan una leve o asintomática infección que son restringidas hacia el tracto respiratorio. Los virus de virulencia intermedia son llamadas mesogénicas, mientras los virus que causan una infección sistémica y una alta mortalidad son llamadas velogénicas. Las cepas lentogénicas y mesogénicas en muchos casos son usadas como vacunas vivas de NDV para aves en todo el mundo. [018] The severity of the avian disease depends on the pathotype of the NDV strains:lentogenic, mesogenic, and velogenic. Thelentogenic strains (LaSota), cause a mild or asymptomatic infection that is restricted to the respiratory tract. Viruses of intermediate virulence are called mesogenic, while viruses that cause systemic infection and high mortality are called velogenic. Lentegenic and mesogenic strains are in many cases used as live NDV vaccines for birds throughout the world.
[019] Recientes estudios, han resaltado el potencial uso del NDV para ser usado como vector vacunal ya sea para uso veterinario y/o humano. El sistema de genética inversa ha sido utilizado para el diseño y desarrollo de diversas vacunas modernas. [019] Recent studies have highlighted the potential use of NDV to be used as a vaccine vector for either veterinary and/or human use. The Reverse genetics system has been used for the design and development of various modern vaccines.
[020] Si se requiere que las inserciones de genes foráneos se expresen en la superficie del NDV, es importante considerar ciertas estrategias de construcción, una de ellas es que se fusionen con los dominios: DC y transmembrana (DTM) (DTM, del inglés: Domain Transmembrane ) de la proteína F y/o HN, otra opción es que la proteína foránea sea insertada con sus CT y DTM completos. [020] If foreign gene inserts are required to be expressed on the surface of the NDV, it is important to consider certain construction strategies, one of which is to fuse with the domains: DC and transmembrane (DTM) (DTM). : Domain Transmembrane ) of the F and/or HN protein, another option is for the foreign protein to be inserted with its complete CT and DTM.
[021] De esta manera y con la finalidad de desarrollar una vacuna o composición inmunogénica viva recombinante para el SARS-CoV-2, basada en un vector de NDV, que pueda expresar la subunidad S1 y el RBD de la proteína S provenientes del SARS-CoV-2. La presente invención se enfoca en el desarrollo de dos vacunas recombinantes vectorizadas denominados: rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS- CoV-2, obtenidos por el sistema de genética inversa utilizando fragmentos complementarios que abarcan los genomas completos de rNDV-LS1-S1- F/SARS-CoV-2 y rNDV-LS1-HN-RBD/SARS-CoV-2. Así como su aplicación en una sola formulación combinando ambos virus recombinantes: rNDV-LS1-S1-F/SARS-CoV-2 y rNDV-LS1-HN-[021] In this way and in order to develop a vaccine or recombinant live immunogenic composition for SARS-CoV-2, based on an NDV vector, which can express the S1 subunit and the RBD of the S protein from SARS -CoV-2. The present invention focuses on the development of two vectorized recombinant vaccines called: rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2, obtained by the reverse genetics system using complementary fragments spanning the entire genomes of rNDV-LS1-S1-F/SARS-CoV-2 and rNDV-LS1-HN-RBD/SARS-CoV-2. As well as its application in a single formulation combining both recombinant viruses: rNDV-LS1-S1-F/SARS-CoV-2 and rNDV-LS1-HN-
RBD/SARS-CoV-2, además de tener como vía de inmunización la vía intranasal (IN), demostrando ser una vía de aplicación menos invasiva comparada hacia otras vacunas. RBD/SARS-CoV-2, in addition to having the intranasal (IN) route of immunization, proving to be a less invasive application route compared to other vaccines.
[022] Desde el ámbito de las patentes, se sabe del documento CN112011521 el cual refiere a una nueva cepa de coronavirus candidata a vacuna de vector de virus de la enfermedad de Newcastle recombinante y su método de construcción y aplicación mediante tecnología de vacuna modificada genéticamente. El candidato pertenece a la cepa de LaSota de la vacuna del virus de la enfermedad de Newcastle como portador, el gen P de las cepas de LaSota NDV y la mutación del gen (C3756T, M se inserta entre la eliminación del sitio BAMHI) de la mutación del nuevo gen S del coronavirus; la nueva secuencia de nucleótidos del gen S del coronavirus mostrada en la SEQ ID NO.1. Se emplea la cepa LaSota de la cepa atenuada del NDV como fondo del vector y se inserta el gen S (ORF completo) del virus SARS-CoV-2 en el gen P y el gen M, y se introduce la mutación silenciosa de C3756T en la región conservada del gen S, eliminando así el sitio BamHI. [022] From the field of patents, document CN112011521 is known, which refers to a new strain of coronavirus candidate for a recombinant Newcastle disease virus vector vaccine and its method of construction and application by means of genetically modified vaccine technology. . The candidate belongs to the Newcastle disease virus vaccine LaSota strain as a carrier, the P gene of the LaSota NDV strains, and the gene mutation (C3756T, M is inserted between the deletion of the BAMHI site) of the mutation of the new S gene coronaviruses; the novel nucleotide sequence of the coronavirus S gene shown in SEQ ID NO.1. The LaSota strain of the attenuated strain of NDV is used as the vector background, and the S gene (full ORF) of the SARS-CoV-2 virus is inserted into the P gene and the M gene, and the silent mutation of C3756T is introduced into the conserved region of the S gene, thus removing the BamHI site.
[023] También se conoce el documento CN101629178 describe un gen F del virus de enfermedades de Newcastle combinado manualmente y un vector de expresión recombinante y una aplicación del mismo, en donde los codones del gen OFR del NDVF se reemplazan todos en codones de sesgo de pollo, los sitios de restricción EcoR V y las secuencias Kozak se agregan corriente arriba, los sitios de restricción Xbal I y los codones de terminación de TGA se agregan cadena abajo, y las bases A de cadena abajo de los codones de terminación se cambian a G, los genes obtenidos se pueden expresar de manera eficiente en células eucariotas, y la eficiencia de expresión de los genes obtenidos es mayor que el de los genes de tipo salvaje. [023] Document CN101629178 describes a hand-combined Newcastle disease virus F gene and a recombinant expression vector and an application thereof, wherein the codons of the NDVF OFR gene are all replaced into NDVF bias codons. chicken, EcoR V restriction sites and Kozak sequences are added upstream, Xbal I restriction sites and TGA stop codons are added downstream, and A bases downstream of the stop codons are changed to G, the obtained genes can be expressed efficiently in eukaryotic cells, and the expression efficiency of the obtained genes is higher than that of wild-type genes.
[024] Por su parte, el documento CN 106047823 describe una cepa de vacuna bivalente R-H120-Lasota (HN) obtenida al reemplazar un gen 5a de la cepa H120 con un gen HN del virus de la enfermedad de Newcastle avícola basado en un sistema genético inverso del virus de la bronquitis infecciosa aviar H120 construido. La cepa de vacuna recombinante puede proteger simultáneamente las cepas que contrarrestan la toxina estándar del IBV y las cepas que contrarrestan la toxina estándar de la enfermedad de Newcastle y se puede utilizar para prevenir el virus de la bronquitis infecciosa aviar y el virus de la enfermedad de Newcastle avícola. Reporta además que la vacuna se aplicó con dosis dobles del virus del SARS en animales de experimentación y el contenido del virus en el pico de replicación pulmonar fue mucho menor. [025] La patente W02000/67786 se refiere a los ADNc para producir el virus de la enfermedad de Newcastle (NDV) infeccioso, atenuado y a métodos de elaboración de los ADNc y al vector que contiene el ADNc opcionalmente unido a un promotor operable. También se describen métodos para preparar las vacunas y métodos para usarlas para prevenir o tratar la enfermedad de Newcastle en un huésped aviar. Reporta secuencias de nucleótidos de todo el genoma de NDV, la región principal, la región final y la región NP, así como las proteínas codificadas por estas secuencias de nucleótidos. Esta patente sugiere que estos enfoques han hecho posible comenzar la caracterización de los factores que actúan en la transcripción y replicación de varios virus de ARN de cadena negativa no segmentados para recuperar virus recombinantes infecciosos completos a partir de ADNc de longitud completa para varios virus de ARN de cadena negativa no segmentados entre los cuales sugiere virus de la rabia, virus de la estomatitis vesicular, virus del sarampión, virus Sendai, virus sincitial respiratorio humano, virus de la peste bovina y parainfluenza y sugiere incluir las secuencias de nucleótidos del gen NP completo, la región tráiler completa y las regiones intergénicas en el NP-P y P. [024] For its part, document CN 106047823 describes a bivalent vaccine strain R-H120-Lasota (HN) obtained by replacing a 5a gene of the H120 strain with an HN gene of the avian Newcastle disease virus based on a H120 avian infectious bronchitis virus reverse genetic system constructed. The recombinant vaccine strain can simultaneously protect IBV standard toxin counteracting strains and Newcastle disease standard toxin counteracting strains and can be used to prevent avian infectious bronchitis virus and Newcastle disease virus. Poultry Newcastle. It also reports that the vaccine was applied with double doses of the SARS virus in experimental animals and the content of the virus at the peak of pulmonary replication was much lower. [025] WO2000/67786 relates to cDNAs for producing attenuated, infectious Newcastle disease virus (NDV) and to methods of making the cDNAs and to the vector containing the cDNA optionally linked to an operable promoter. Methods of preparing the vaccines and methods of using them to prevent or treat Newcastle disease in an avian host are also described. It reports nucleotide sequences of the entire NDV genome, the leading region, the trailing region, and the NP region, as well as the proteins encoded by these nucleotide sequences. This patent suggests that these approaches have made it possible to begin the characterization of factors acting in the transcription and replication of various non-segmented negative-stranded RNA viruses to recover whole infectious recombinant viruses from full-length cDNAs for various RNA viruses. non-segmented negative-chain virus among which he suggests rabies virus, vesicular stomatitis virus, measles virus, Sendai virus, human respiratory syncytial virus, rinderpest virus and parainfluenza and suggests including the nucleotide sequences of the entire NP gene , the entire trailer region, and the intergenic regions in the NP-P and P.
[026] Por su parte, la patente W02015/013178 enseña la construcción de NDV recombinantes que expresan ILTV gB, gC y gD y un diagrama esquemático que representa el antigenoma de longitud completa de la cepa LaSota del NDV con la inserción de un gen agregado diseñado para expresar el gB de ILTV que consiste en el ORF completo de gB fusionado a los últimos 12 aminoácidos de la cola citoplásmica de la proteína F del NDV y también sugiere métodos para inmunizar a un mamífero contra un patógeno no aviar. [026] For its part, patent W02015/013178 teaches the construction of recombinant NDV expressing ILTV gB, gC and gD and a schematic diagram representing the full-length antigenome of the NDV LaSota strain with the insertion of an added gene designed to express the ILTV gB consisting of the entire gB ORF fused to the last 12 amino acids of the cytoplasmic tail of the NDV F protein and also suggests methods of immunizing a mammal against a non-avian pathogen.
[027] La patente WO2016/138160 proporciona métodos para inducir una respuesta inmune en un sujeto al coronavirus del síndrome respiratorio de Oriente Medio (MERS-CoV). La respuesta inmune es una respuesta inmune protectora que inhibe o previene la infección por MERS-CoV en el sujeto. También proporciona polipéptidos de CoV y moléculas de ácido nucleico que los codifican y anticuerpos neutralizantes que se unen específicamente a la proteína S de MERS-CoV y fragmentos de unión a antígeno de la misma. [027] Patent WO2016/138160 provides methods for inducing an immune response in a subject to Middle East respiratory syndrome coronavirus (MERS-CoV). The immune response is a protective immune response that inhibits or prevents MERS-CoV infection in the subject. Also provides CoV polypeptides and acid molecules nucleic encoding them and neutralizing antibodies that specifically bind to the S protein of MERS-CoV and antigen-binding fragments thereof.
[028] La patente peruana 1179-2014/DIN reporta una partícula viral o virus quimérico que comprende un virus de la enfermedad de Newcastle (NDV) lentogénico asintomático con valores del índice de Patogenicidad Intra Craneal (IPIC) igual a cero que expresa al menos un gen proveniente de una cepa del virus (IBV), en donde el gen o al menos uno de los genes proveniente de una cepa de IBV corresponde al gen de la espícula (S) completo o parte del gen de la espícula (S), donde dicho gen S completo o parte del gen S puede estar situado en una región intergénica no codificante, específicamente entre los genes P y M. También reporta que estudios en SARS, un coronavirus humano, demuestran que el dominio S2 es capaz de generar anticuerpos neutralizantes y que un correcto plegamiento y formación del homotrímero de la proteína S requiere la presencia de los dominios S1 y S2, debido a que S2 contiene sitios de trimerización específicos que a su vez participan en el proceso de fusión. [028] The Peruvian patent 1179-2014/DIN reports a viral particle or chimeric virus that comprises an asymptomatic,lentogenic Newcastle disease virus (NDV) with values of the Intracranial Pathogenicity Index (IPIC) equal to zero that expresses at least a gene from a virus strain (IBV), wherein the gene or at least one of the genes from an IBV strain corresponds to the entire spike (S) gene or part of the spike (S) gene, where said entire S gene or part of the S gene may be located in a non-coding intergenic region, specifically between the P and M genes. It also reports that studies in SARS, a human coronavirus, show that the S2 domain is capable of generating neutralizing antibodies and that a correct folding and formation of the homotrimer of the S protein requires the presence of the S1 and S2 domains, since S2 contains specific trimerization sites that in turn participate in the fusion process.
[029] De otra parte, el documento EP2251034 proporciona un virus de ARN quiméricos de soporte negativo que permiten inmunizar a un sujeto, por ejemplo, un ave, contra dos agentes infecciosos utilizando un solo virus quimérico de la invención. En particular, la invención proporciona virus quiméricos de la enfermedad de Newcastle (NDV) diseñados para expresar e incorporar en sus viriones una proteína de fusión que comprende el ectodominio de una proteína de un agente infeccioso y el dominio transmembrana y citoplásmico de una proteína del NDV. Tales virus quiméricos inducen una respuesta inmune contra el NDV y el agente infeccioso. [029] On the other hand, EP2251034 provides a negative carrier chimeric RNA virus that allows a subject, for example, a bird, to be immunized against two infectious agents using a single chimeric virus of the invention. In particular, the invention provides chimeric Newcastle disease viruses (NDV) designed to express and incorporate into their virions a fusion protein comprising the ectodomain of an infectious agent protein and the transmembrane and cytoplasmic domain of an NDV protein. . Such chimeric viruses induce an immune response against NDV and the infectious agent.
[030] Adicionalmente, en la literatura científica se encuentra el artículo titulado “Virus de la enfermedad de Newcastle (NDV) que expresa la proteína de pico del SARS-1 CoV-2 como vacuna candidata" enseña que la vacuna vector NDV contra el SARS-CoV-2 descrita dicho estudio tiene ventajas similares a las de otras vacunas de vectores virales, pero el vector de NDV se puede amplificar en huevos de gallina embrionados, que permite altos rendimientos y bajos costos por dosis y que proporciona una opción importante para una vacuna rentable contra el SARS-CoV-2. Enseña un método para el rescate de NDV LaSota que expresa la proteína Spike de SARS-CoV-2. [030] Additionally, in the scientific literature, the article entitled "Newcastle disease virus (NDV) expressing the SARS-1 CoV-2 spike protein as a candidate vaccine" teaches that The NDV vector vaccine against SARS-CoV-2 described in this study has advantages similar to those of other viral vector vaccines, but the NDV vector can be amplified in embryonated chicken eggs, which allows high yields and low costs per dose and providing an important option for a cost-effective vaccine against SARS-CoV-2. Teaches a method for the rescue of NDV LaSota expressing the Spike protein from SARS-CoV-2.
[031] También se sabe del artículo “Un virus de la enfermedad de Newcastle (NDV) que expresa la proteína Spike 1 anclada a la membrana como una vacuna inactivada contra el SARS-CoV-2” e indica que se investigó un NDV recombinante atenuado que expresa la quimera S-F anclada a la membrana (NDV-S) como candidata a vacuna inactivada contra el SARS-CoV-2 con y sin adyuvante en ratones y hámsteres, en donde se encontró que la quimera S-F expresada por el vector NDV es muy estable sin pérdida de antigenicidad después de 3 semanas de almacenamiento a 4°C en líquido alantoideo. [031] It is also known from the article “A Newcastle disease virus (NDV) expressing membrane-anchored Spike 1 protein as an inactivated vaccine against SARS-CoV-2” and indicates that an attenuated recombinant NDV was investigated expressing the membrane-anchored S-F chimera (NDV-S) as a candidate for an inactivated vaccine against SARS-CoV-2 with and without adjuvant in mice and hamsters, where it was found that the S-F chimera expressed by the NDV vector is very stable without loss of antigenicity after 3 weeks of storage at 4°C in allantoic fluid.
[032] Por último, se conoce también el artículo titulado “Virus de la enfermedad de Newcastle, un virus de rango de hospedadores restringido, como vector de vacuna para la inmunización intranasal contra patógenos emergentes” el cual involucra al virus de la enfermedad de Newcastle (NDV) como vector de vacuna potencial contra el SARS-CoV. Como el virus de la parainfluenza humana tipo 3, el NDV es un virus de hebra de ARN de cadena negativa no segmentada de la familia Paramyxoviridae. No obstante, su huésped natural son las aves, y es antigénicamente distinto de los patógenos humanos comunes. Sin embargo, se realizó vectores de NDV en donde uno de los constructos fue una copia recombinante de la cepa LaSota lentogénica que se modificó de tal forma que la secuencia de clivaje de su proteína F fue reemplazada con la del NDV-BC que resultó en el virus NDV-VF y con base en estos dos últimos se construye los virus de vacuna que expresan la longitud total de 1.255 aa de la proteína S del SARS-Co-V. Indica también que el dominio de S1 contiene el sitio de unión- receptor de la proteína S como de los mayores epítopos neutralizantes. [032] Finally, the article entitled "Newcastle disease virus, a restricted host range virus, as a vaccine vector for intranasal immunization against emerging pathogens" is also known, which involves the Newcastle disease virus (NDV) as a potential vaccine vector against SARS-CoV. Like human parainfluenza virus type 3, NDV is a non-segmented negative-stranded RNA virus of the family Paramyxoviridae. However, its natural host is birds, and it is antigenically distinct from common human pathogens. However, NDV vectors were made in which one of the constructs was a recombinant copy of thelentogenic LaSota strain that was modified in such a way that the cleavage sequence of its F protein was replaced with that of NDV-BC, which resulted in the NDV-VF virus and based on these last two vaccine viruses are constructed that express the total length of 1,255 aa of the S protein of the SARS-Co-V. It also indicates that the S1 domain contains the S protein receptor-binding site as one of the major neutralizing epitopes.
[033] Por otro lado, hasta la actualidad, no existe una vacuna viva vectorizada del NDV o composición inmunogénica viva recombinante vectorizada del NDV candidata contra el SARS-CoV-2 que exprese la subunidad S1 o el RBD del S del SARS-CoV-2, y que a su vez provoque una robusta respuesta humoral y celular, además de tener una vía de aplicación por vía intranasal (IN) no invasiva. [033] On the other hand, to date, there is no candidate live NDV vectored vaccine or recombinant live NDV vectored immunogenic composition against SARS-CoV-2 that expresses the S1 subunit or the RBD of the S of SARS-CoV-2. 2, and which in turn provokes a robust humoral and cellular response, in addition to having a non-invasive intranasal (IN) application route.
[034] Además de tener una producción rentable, económica y barata, en huevos embrionados de pollo y/o su producción en múltiples líneas celulares. [034] In addition to having a profitable, economical and cheap production, in embryonated chicken eggs and/or its production in multiple cell lines.
[035] En este sentido, es claro que existe una necesidad, aún no satisfecha en el estado del arte en cuanto a la obtención de una vacuna viva recombinante o composición inmunogénica viva recombinante vectorizada que comprenda el virus de la NDV que exprese e incorpore en su estructura viral, la subunidad S1 y el RBD de la proteína S del SARS- CoV-2, y que al ser aplicada por vía intranasal, presenten niveles significativos de protección ante el SARS-CoV-2, como también altos títulos de anticuerpos neutralizantes contra el SARS-CoV-2. [035] In this sense, it is clear that there is a need, not yet satisfied in the state of the art, in terms of obtaining a recombinant live vaccine or vectorized recombinant live immunogenic composition that comprises the NDV virus that expresses and incorporates into its viral structure, the S1 subunit and the RBD of the SARS-CoV-2 protein S, and that when applied intranasally, they present significant levels of protection against SARS-CoV-2, as well as high titers of neutralizing antibodies against SARS-CoV-2.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
[036] Figura 1. Predicción de los dominios; transmembrana (DTM) y citoplasmático (DC) de la proteína Hemaglutinina-neuraminidasa (HN). La predicción fue realizada utilizando la secuencia de aminoácidos (aa) en el programa TMHMM Server 2.0. [036] Figure 1. Prediction of domains; transmembrane (DTM) and cytoplasmic (DC) protein Hemagglutinin-neuraminidase (HN). The prediction was made using the amino acid sequence (aa) in the TMHMM Server 2.0 program.
[037] Figura 2. Esquema que muestra la estrategia de construcción de los nuevos virus rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS- CoV-2. [038] Figura 3. Mapa del plásmido pNDV-LS1-HN-RBD/SARS-CoV-2 (20315 pb). [037] Figure 2. Scheme showing the construction strategy of the new viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2. [038] Figure 3. Plasmid map pNDV-LS1-HN-RBD/SARS-CoV-2 (20315 bp).
[039] Figura 4. Se muestra de forma esquemática la estrategia de subclonamiento del gen HN-RBD/SARS-CoV-2 (SEQ ID NO: 1) que genera el virus recombinante rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 pb) (SEQ ID NO: 7). Dos subclonamientos sucesivos fueron realizados para construir el constructo rNDV-LS1-HN-RBD/SARS-CoV-2. El plásmido NDV-LS1 (19319 pb) fue linealizado entre los sitios de corte BbvCI (tercera posición de NDV) para insertar el fragmento de 1013 bp (SEQ ID NO: 1) el cual incluye los sitios BbvCI, generando el plásmido NDV-LS1-HN-RBD/SARS- CoV-2 (20315 pb). [039] Figure 4. The subcloning strategy of the HN-RBD/SARS-CoV-2 gene (SEQ ID NO: 1) that generates the recombinant virus rNDV-LS1-HN-RBD/SARS-CoV- is shown schematically. 2 (16182 bp) (SEQ ID NO: 7). Two successive subclonings were performed to build the rNDV-LS1-HN-RBD/SARS-CoV-2 construct. The NDV-LS1 plasmid (19319 bp) was linearized between the BbvCI cutting sites (third position of NDV) to insert the 1013 bp fragment (SEQ ID NO: 1) which includes the BbvCI sites, generating the NDV-LS1 plasmid -HN-RBD/SARS-CoV-2 (20315 bp).
[040] Figura 5. Predicción de los DTM y DC de la proteína Fusión (F). La predicción fue realizada utilizando la secuencia de aminoácidos (aa) en el programa TMHMM Server 2.0. [040] Figure 5. Prediction of Fusion protein DTMs and DCs (F). The prediction was made using the amino acid sequence (aa) in the TMHMM Server 2.0 program.
[041] Figura 6. Mapa del plásmido pNDV-LS1-S1-F/SARS-CoV-2 (21743 pb). [041] Figure 6. Plasmid map pNDV-LS1-S1-F/SARS-CoV-2 (21743 bp).
[042] Figura 7. Se muestra de forma esquemática la estrategia de subclonamiento del gen S1-F/SARS-CoV-2 (2441 pb) (SEQ ID NO: 8) que genera el virus rNDV-LS1-S1-F/SARS-CoV-2 (17610 pb) (SEQ ID NO: 13). Dos subclonamientos sucesivos fueron realizados para construir el constructo del virus rNDV-LS1-S1-F/SARS-CoV-2. El plásmido pNDV-LS1 (19319 pb) fue linealizado entre los sitios de corte BbvCI (tercera posición del genoma de NDV) para insertar el fragmento de 2441 bp (SEQ ID NO: 8) el cual incluye los sitios BbvCI, generando el plásmido NDV-LS1-S1- F/SARS-CoV-2 (21743 pb). [042] Figure 7. The subcloning strategy of the S1-F/SARS-CoV-2 gene (2441 bp) (SEQ ID NO: 8) generated by the rNDV-LS1-S1-F/SARS virus is shown schematically. -CoV-2 (17610 bp) (SEQ ID NO: 13). Two successive subclonings were performed to construct the rNDV-LS1-S1-F/SARS-CoV-2 virus construct. Plasmid pNDV-LS1 (19319 bp) was linearized between the BbvCI cutting sites (third position of the NDV genome) to insert the 2441 bp fragment (SEQ ID NO: 8) which includes the BbvCI sites, generating the NDV plasmid -LS1-S1- F/SARS-CoV-2 (21743 bp).
[043] Figura 8. Verificación de la expresión e incorporación del S1-F y HN- RBD en el virión, mediante ensayo de Western blot. [044] Figura 9. Detección de la secuencia genética de los insertos S1-F y HN-RBD mediante RT-PCR. [043] Figure 8. Verification of the expression and incorporation of S1-F and HN-RBD in the virion, by Western blot assay. [044] Figure 9. Detection of the genetic sequence of the S1-F and HN-RBD inserts by RT-PCR.
[045] Figura 10. Ensayo de Inmunofluorescencia. [045] Figure 10. Immunofluorescence Assay.
[046] Figura 11. Ensayo de unión e internalización celular por eficiencia al receptor ACE2 expresado en células Vero E6. A. Representación gráfica de la unión S1-F y HN-RBD al receptor ACE2. B. Porcentaje de unión (%) entre los rNDV-LS1-HN-RBD/SARS-CoV-2 (10.2%) y rNDV-LS1-S1- F/SARS-CoV-2 (40.4%) al receptor celular ACE2. [046] Figure 11. Assay of cell binding and internalization by efficiency to the ACE2 receptor expressed in Vero E6 cells. A. Graphical representation of S1-F and HN-RBD binding to the ACE2 receptor. B. Percentage of binding (%) between rNDV-LS1-HN-RBD/SARS-CoV-2 (10.2%) and rNDV-LS1-S1-F/SARS-CoV-2 (40.4%) to the cellular receptor ACE2.
[047] Figura 12. Propiedades de crecimiento in vitro de los virus rNDV- LSI-HN-RBD/SARS-CoV-2, rNDV-LS1-S1-F/SARS-CoV-2, y rNDV-LS1 en la línea celular DF-1. [047] Figure 12. In vitro growth properties of rNDV-LSI-HN-RBD/SARS-CoV-2, rNDV-LS1-S1-F/SARS-CoV-2, and rNDV-LS1 viruses in the cell line DF-1.
[048] Figura 13. Esquema de inmunización y desafío en hámster con rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2. [048] Figure 13. Hamster immunization and challenge scheme with rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2.
[049] Figura 14. Evaluación de anticuerpos neutralizantes mediante test de neutralización sustituto (TNs). [049] Figure 14. Evaluation of neutralizing antibodies by surrogate neutralization test (NTs).
[050] Figura 15. Evaluación de niveles de IgG anti-RBD de SARS-CoV-2 mediante ELISA indirecto. [050] Figure 15. Evaluation of SARS-CoV-2 anti-RBD IgG levels by indirect ELISA.
DESCRIPCIÓN DEL LISTADO DE SECUENCIAS DESCRIPTION OF THE LISTING OF SEQUENCES
[051] SEQ ID NO: 1= Secuencia de nucleótidos que comprende en el diseño del gen HN-RBD/SARS-CoV-2 (1013 pb). [051] SEQ ID NO: 1= Nucleotide sequence that comprises the design of the HN-RBD/SARS-CoV-2 gene (1013 bp).
[052] SEQ ID NO: 2= Secuencia de nucleótidos que comprende el gen de la hemaglutinina-neuraminidas (HN) (1734 pb) del plásmido pNDV-LS1 (7535-9268 nt). [052] SEQ ID NO: 2= Nucleotide sequence comprising the hemagglutinin-neuraminides (HN) gene (1734 bp) of the plasmid pNDV-LS1 (7535-9268 nt).
[053] SEQ ID NO: 3 = Secuencia de aminoácidos que comprenden la proteína HN (577 aa) del plásmido pNDV-LS1. [054] SEQ ID NO: 4 = Secuencia de nucleótidos que comprenden los dominios: citoplasmático (DC) y de transmembrana (DTM) de la proteína HN (144 pb) del plásmido pNDV-LS1 (7534-7678 nt). [053] SEQ ID NO: 3 = Sequence of amino acids that comprise the HN protein (577 aa) of the plasmid pNDV-LS1. [054] SEQ ID NO: 4 = Nucleotide sequence comprising the domains: cytoplasmic (DC) and transmembrane (DTM) of the HN protein (144 bp) of the plasmid pNDV-LS1 (7534-7678 nt).
[055] SEQ ID NO: 5 = Secuencia de nucleótidos que comprende el gen Spike (S) (3822 pb) del SARS-CoV-2 (21563-25384 nt) con el número de acceso GenBank- MN908947.3. [055] SEQ ID NO: 5 = Nucleotide sequence comprising the Spike (S) gene (3822 bp) of SARS-CoV-2 (21563-25384 nt) with access number GenBank- MN908947.3.
[056] SEQ ID NO: 6 = Secuencia de nucleótidos que comprenden el dominio RBD (636 pb) del S SARS-CoV-2 (990-1623 nt) con el número de acceso GenBank- MN908947.3 para el diseño del gen HN-RBD/SARS- CoV-2. [056] SEQ ID NO: 6 = Nucleotide sequence comprising the RBD domain (636 bp) of S SARS-CoV-2 (990-1623 nt) with access number GenBank- MN908947.3 for HN gene design -RBD/SARS-CoV-2.
[057] SEQ ID NO: 7= Secuencia de nucleótidos que comprende el genoma completo del virus recombinante rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 pb). [057] SEQ ID NO: 7= Nucleotide sequence comprising the complete genome of the recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 bp).
[058] SEQ ID NO: 8= Secuencia de nucleótidos que comprende el diseño del gen S1-F/SARS-CoV-2 (2441 pb) optimizado para su expresión en Gallus Gallus. [058] SEQ ID NO: 8= Nucleotide sequence comprising the design of the S1-F/SARS-CoV-2 gene (2441 bp) optimized for its expression in Gallus Gallus.
[059] SEQ ID NO: 9 = Secuencia de nucleótidos que comprende el gen de Fusión (F) (1662 bp) del plásmido pNDV-LS1 (5667-7328 nt). [059] SEQ ID NO: 9 = Nucleotide sequence comprising the Fusion (F) gene (1662 bp) of plasmid pNDV-LS1 (5667-7328 nt).
[060] SEQ ID NO: 10= Secuencia de aminoácidos que comprenden la proteína de F (553 aa) del plásmido pNDV-LS1 (5667-7328 nt). [060] SEQ ID NO: 10 = Sequence of amino acids that comprise the F protein (553 aa) of the plasmid pNDV-LS1 (5667-7328 nt).
[061] SEQ ID NO: 11= Secuencia de nucleótidos que comprenden los dominios: DC y de DTM de la proteína F (162 pb) del plásmido pNDV-LS1 (7166-7328 nt), optimizado para su expresión en Gallus Gallus. [061] SEQ ID NO: 11= Nucleotide sequence comprising domains: DC and DTM of protein F (162 bp) of plasmid pNDV-LS1 (7166-7328 nt), optimized for expression in Gallus Gallus.
[062] SEQ ID NO: 12= Secuencia de nucleótidos que comprende la subunidad S1 del gen S (2043 pb) del SARS-CoV-2 con el número de acceso en GenBank-MN908947.3. [063] SEQ ID NO: 13= Secuencia de nucleótidos que comprende el genoma completo del virus recombinante rNDV-LS1-S1-F/SARS-CoV-2 (17610 pb). [062] SEQ ID NO: 12= Nucleotide sequence comprising the S1 subunit of the S gene (2043 bp) of SARS-CoV-2 with access number in GenBank-MN908947.3. [063] SEQ ID NO: 13= Nucleotide sequence comprising the complete genome of the recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 (17610 bp).
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
[064] La presente invención reporta en un primer aspecto de la misma, una vacuna viva recombinante vectorizada o composición inmunogénica viva recombinante que comprende el virus de la enfermedad de Newcastle (NDV) recombinante que expresa la subunidad S1 y el RBD de la proteína S del SARS-CoV-2 con altos niveles significativos de protección y altos títulos de inmunización, en donde la vacuna o composición inmunogénica comprende los virus recombinantes denominados rNDV-LS1-HN- RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 cuya construcción se describe más adelante en la invención. [064] The present invention reports in a first aspect thereof, a recombinant vectorized live vaccine or recombinant live immunogenic composition comprising the recombinant Newcastle disease virus (NDV) that expresses the S1 subunit and the RBD of the S protein of SARS-CoV-2 with significant high levels of protection and high immunization titers, where the vaccine or immunogenic composition comprises the recombinant viruses called rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1- F/SARS-CoV-2 whose construction is described later in the invention.
[065] Por consiguiente, en un segundo aspecto de la presente invención, la misma contempla un virus recombinante rNDV-LS1-HN-RBD/SARS- CoV-2 caracterizada por la SEQ ID No. 7 que expresa la subunidad S1 y el RBD de la proteína S del SARS-CoV-2. [065] Consequently, in a second aspect of the present invention, it contemplates a recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 characterized by SEQ ID No. 7 that expresses the S1 subunit and the RBD of SARS-CoV-2 protein S.
[066] Adicionalmente, en un tercer aspecto de la presente invención, la misma contempla un virus recombinante rNDV-LS1-S1-F/SARS-CoV-2 caracterizada por la SEQ ID No. 13 que expresa la subunidad S1 y el RBD de la proteína S del SARS-CoV-2. [066] Additionally, in a third aspect of the present invention, it contemplates a recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 characterized by SEQ ID No. 13 that expresses the S1 subunit and the RBD of the S protein of SARS-CoV-2.
[067] Aún más, en un cuarto aspecto de la presente invención, la misma contempla una combinación sinérgica de un virus recombinante rNDV-LS1- HN-RBD/SARS-CoV-2 caracterizado por la SEQ ID No. 7 y un virus recombinante rNDV-LS1-S1-F/SARS-CoV-2 caracterizado por la SEQ ID No. 13 en combinación en una misma composición inmunogénica viva recombinante o vacuna viva que expresan la subunidad S1 y el RBD de la proteína S del SARS-CoV-2. [068] La presente invención además comprende el uso de un virus recombinante rNDV-LS1-HN-RBD/SARS-CoV-2 caracterizado por la SEQ ID No. 7 y un virus recombinante rNDV-LS1-S1-F/SARS-CoV-2 caracterizado por la SEQ ID No. 13 para la fabricación de una composición inmunogénica recombinante o vacuna recombinante viva para el tratamiento de SARS-CoV-2. [067] Even more, in a fourth aspect of the present invention, it contemplates a synergistic combination of a recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 characterized by SEQ ID No. 7 and a recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 characterized by SEQ ID No. 13 in combination in the same recombinant live immunogenic composition or live vaccine that express the S1 subunit and the RBD of the S protein of SARS-CoV- two. [068] The present invention further comprises the use of a recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 characterized by SEQ ID No. 7 and a recombinant virus rNDV-LS1-S1-F/SARS-CoV -2 characterized by SEQ ID No. 13 for the manufacture of a recombinant immunogenic composition or live recombinant vaccine for the treatment of SARS-CoV-2.
[069] Adicionalmente, la presente invención comprende un método para controlar la infección causada por el SARS-CoV-2 mediante la administración a mamíferos de la composición inmunogénica viva recombinante o vacuna viva recombinante que comprende un virus recombinante rNDV-LS1-HN-RBD/SARS-CoV-2 caracterizado por la SEQ ID No. 7 y un virus recombinante rNDV-LS1-S1-F/SARS-CoV-2 caracterizado por la SEQ ID No. 13 en combinación en una misma composición inmunogénica viva recombinante o vacuna viva. [069] Additionally, the present invention comprises a method for controlling the infection caused by SARS-CoV-2 by administering to mammals the recombinant live immunogenic composition or recombinant live vaccine comprising a recombinant virus rNDV-LS1-HN-RBD /SARS-CoV-2 characterized by SEQ ID No. 7 and a recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 characterized by SEQ ID No. 13 in combination in the same recombinant live immunogenic composition or vaccine live.
[070] En este sentido, la composición inmunogénica viva recombinante o vacuna de acuerdo con la presente invención que comprende el virus de la enfermedad de Newcastle (NDV) que expresa la subunidad S1 y el RBD de la proteína Spike del SARS-CoV-2 además puede comprender un adyuvante y/o excipiente o vehículos farmacéuticamente aceptables, en donde los adyuvantes farmacéuticamente aceptables se definen como sustancias que aumentan las respuestas inmunitarias específicas a los antígenos modulando la actividad de las células inmunitarias. Ejemplos de adyuvantes que pueden ser empleados en la presente invención para la vacuna viva recombinante incluyen, pero no se limitan a saponinas, anticuerpos agonistas para moléculas coestimuladoras, adyuvante de Freund, muramil dipéptido (MPD), DNA bacteriano (oligo CpG), lipo- polisacáridos (LPS), MPL (Mozilla Public license) y derivados sintéticos, lipopéptidos y liposomas, entre otros. El adyuvante es un inmunomodulador. En una modalidad de la invención, otros adyuvantes preferidos pueden ser escualeno, Quillaja saponaria y surfactantes. [071] Las composiciones de vacuna adecuadas para el caso de la administración parenteral comprenden convenientemente una preparación de vacuna acuosa o no acuosa estéril, que preferiblemente es isotónica con la sangre del receptor. Estas vacunas se pueden formular de acuerdo con métodos conocidos usando agentes dispersantes o humectantes y agentes de suspensión adecuados. La preparación inyectable estéril también puede ser una solución o suspensión inyectable estéril en un diluyente o solvente no tóxico parenteralmente aceptable, por ejemplo, como una solución en 1 ,3-butanodiol. Entre los vehículos y disolventes aceptables que se pueden emplear se encuentran el agua, la solución de Ringer y la solución isotónica de cloruro de sodio. Además, convencionalmente se emplean aceites fijos estériles como disolvente o medio de suspensión. Para este propósito, se puede emplear cualquier aceite fijo suave incluyendo mono o diglicéridos sintéticos. Además, los ácidos grasos como el ácido oleico pueden usarse en la preparación de inyectables. Se puede encontrar una formulación de vehículo adecuada para administraciones subcutáneas, intravenosas, intramusculares, orales. Para el caso de vacunas vivas recombinantes de acuerdo con la presente invención, se puede tener como adyuvantes, vehículos y/o diluyentes, agua estéril, levaduras, almidones, gelatina, albúmina, sacarosa, lactosa, glutamato sódico y glicina en cantidades farmacéuticamente aceptables. [070] In this sense, the recombinant live immunogenic composition or vaccine according to the present invention comprising the Newcastle disease virus (NDV) expressing the S1 subunit and the RBD of the Spike protein of SARS-CoV-2 it may further comprise a pharmaceutically acceptable adjuvant and/or excipient(s), wherein pharmaceutically acceptable adjuvants are defined as substances that enhance antigen-specific immune responses by modulating immune cell activity. Examples of adjuvants that can be used in the present invention for the recombinant live vaccine include, but are not limited to saponins, agonist antibodies to co-stimulatory molecules, Freund's adjuvant, muramyl dipeptide (MPD), bacterial DNA (oligo CpG), lipo- polysaccharides (LPS), MPL (Mozilla Public license) and synthetic derivatives, lipopeptides and liposomes, among others. The adjuvant is an immunomodulator. In one embodiment of the invention, other preferred adjuvants may be squalene, Quillaja saponaria, and surfactants. [071] Vaccine compositions suitable for parenteral administration conveniently comprise a sterile aqueous or nonaqueous vaccine preparation, which is preferably isotonic with the blood of the recipient. These vaccines can be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil can be used including synthetic mono- or diglycerides. Also, fatty acids such as oleic acid can be used in the preparation of injectables. A suitable carrier formulation can be found for subcutaneous, intravenous, intramuscular, oral administrations. In the case of live recombinant vaccines according to the present invention, sterile water, yeasts, starches, gelatin, albumin, sucrose, lactose, sodium glutamate and glycine in pharmaceutically acceptable amounts can be used as adjuvants, vehicles and/or diluents.
[072] En otra modalidad de la invención, la vacuna o composición inmunogénica viva recombinante de acuerdo con la presente invención, comprende un virus recombinante rNDV-LS1-HN-RBD/SARS-CoV-2 caracterizado por la SEQ ID No. 7, un virus recombinante rNDV-LS1-S1- F/SARS-CoV-2 caracterizado por la SEQ ID No. 13 o una mezcla de los mismos, agua estéril y opcionalmente, adyuvantes tales como el escualeno, quillaja saponaria y surfactantes. [072] In another embodiment of the invention, the vaccine or recombinant live immunogenic composition according to the present invention, comprises a recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 characterized by SEQ ID No. 7, a recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 characterized by SEQ ID No. 13 or a mixture thereof, sterile water and optionally, adjuvants such as squalene, quillaja saponaria and surfactants.
[073] Las composiciones inmunogénicas vivas recombinantes o vacunas de acuerdo con la presente invención también pueden contener, opcionalmente conservantes adecuados, tales como: cloruro de benzalconio; clorobutanol, parabenos y tiomerosal, entre oíros; inactivantes como los que se usan formaldehido, glutaraldehído, propiolactona y beta- propiolactona en cantidades de partes por millón (ppm) o partes por billón (ppb). [073] Recombinant live immunogenic compositions or vaccines according to the present invention may also optionally contain suitable preservatives, such as: chloride benzalkonium; chlorobutanol, parabens and thiomerosal, among others; inactivating agents such as formaldehyde, glutaraldehyde, propiolactone and beta-propiolactone are used in parts per million (ppm) or parts per billion (ppb) amounts.
[074] Un experto en la técnica conocerá otros protocolos para la administración de las composiciones de vacuna, en los que la cantidad de dosis, el programa de inyecciones, los lugares de las inyecciones, el modo de administración y similares podrían variar de acuerdo con la práctica recomendada. La administración de las composiciones de vacuna a mamíferos distintos de los seres humanos (por ejemplo, con fines de prueba o con fines terapéuticos veterinarios) se lleva a cabo sustancialmente en las mismas condiciones que las descritas anteriormente. Un sujeto, como se usa en este documento, es un mamífero, preferiblemente un ser humano, e incluye un primates, bovinos, equinos, porcinos, ovinos, felinos y roedores. [074] Other protocols for administration of vaccine compositions will be known to one of ordinary skill in the art, in which the number of doses, schedule of injections, injection sites, mode of administration, and the like may vary according to recommended practice. Administration of the vaccine compositions to mammals other than humans (eg, for testing purposes or for veterinary therapeutic purposes) is carried out under substantially the same conditions as described above. A subject, as used herein, is a mammal, preferably a human, and includes primate, bovine, equine, porcine, ovine, feline, and rodent.
[075] Las composiciones de vacuna de acuerdo con la presente invención también pueden contener, opcionalmente, conservantes adecuados, tales como: cloruro de benzalconio; clorobutanol, parabenos y tiomerosal, entre otros; inactivantes como los que se usan formaldehido, glutaraldehído, propiolactona y beta-propiolactona en una cantidad a nivel de partes por millón (ppm) o partes por billón (ppb). [075] Vaccine compositions according to the present invention may also optionally contain suitable preservatives, such as: benzalkonium chloride; chlorobutanol, parabens and thiomerosal, among others; inactivating agents such as formaldehyde, glutaraldehyde, propiolactone and beta-propiolactone are used in an amount at the parts per million (ppm) or parts per billion (ppb) level.
[076] Las composiciones inmunogénicas o vacuna de acuerdo con la presente invención se pueden administrar por cualquier vía convencional, que incluye inyección, oral, aerosol intranasal por inhalación, más de preferencia por vía intranasal. I. Diseño y construcción de plásmidos que contienen el genoma completo de los nuevos virus recombinantes [076] The immunogenic compositions or vaccine according to the present invention may be administered by any conventional route, including injection, oral, inhalation intranasal aerosol, more preferably intranasally. I. Design and construction of plasmids containing the complete genome of the new recombinant viruses
[077] Utilizando el sistema de genética inversa, se logró desarrollar una nueva vacuna para el SARS-CoV-2, basada en un vector de NDV, que pueda expresar los genes de la subunidad S1 y el RBD provenientes de la proteína S del SARS-CoV-2. La presente invención se enfoca en el desarrollo de dos virus recombinantes denominados rNDV-LS1-HN- R B D/SA RS-Co V-2 y rNDV-LS1-S1-F/SARS-CoV-2, así como su aplicación en una sola composición inmunogénica viva recombinante o formulación de combinación de ambas vacunas o composiciones inmumogénicas (rLS1- HN-RBD/SARS-CoV-2 + rNDV-LS1-S1-F/SARS-CoV-2). [077] Using the reverse genetics system, it was possible to develop a new vaccine for SARS-CoV-2, based on an NDV vector, which can express the S1 subunit and RBD genes from the SARS S protein -CoV-2. The present invention focuses on the development of two recombinant viruses called rNDV-LS1-HN-R B D/SA RS-Co V-2 and rNDV-LS1-S1-F/SARS-CoV-2, as well as their application in a single Recombinant live immunogenic composition or combination formulation of both vaccines or immunogenic compositions (rLS1-HN-RBD/SARS-CoV-2 + rNDV-LS1-S1-F/SARS-CoV-2).
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
[078] Para lograr esto, se han diseñado 2 versiones del virus, donde las secuencias basadas en la subunidad S1 y RBD de la proteína S de la nueva cepa del SARS-CoV-2 aislada en Wuhan-Hu-1 -China fue utilizada en este estudio (Número de acceso GenBank- MN908947.3) https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3, fueron diseñadas para ser clonadas de diferentes maneras en el plásmido pNDV-LS1 (19319 pb), que contiene el genoma completo del NDV de la cepa vacunal LaSota (patotipo lentogénica) (15186 pb) el cual ha sido recuperado y descrito anteriormente (Izquierdo-Lara et al. 2019). [078] To achieve this, 2 versions of the virus have been designed, where the S1 and RBD subunit-based sequences of the S protein from the new strain of SARS-CoV-2 isolated in Wuhan-Hu-1-China was used. in this study (GenBank Accession Number- MN908947.3) https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3, they were designed to be cloned in different ways in the plasmid pNDV-LS1 (19319 bp ), which contains the complete NDV genome of the LaSota vaccine strain (lentogenic pathotype) (15186 bp) which has been previously recovered and described (Izquierdo-Lara et al. 2019).
[079] Los plásmidos recombinantes obtenidos se denominaron; pNDV- LSI-HN-RBD/SARS-CoV-2 y pN DV-LS1 -S1 -F/SARS-CoV-2. [079] The recombinant plasmids obtained were named; pNDV-LSI-HN-RBD/SARS-CoV-2 and pN DV-LS1 -S1 -F/SARS-CoV-2.
1) pNDV-LS1-HN-RBD/SARS-CoV-2 1) pNDV-LS1-HN-RBD/SARS-CoV-2
1. Mapa genético del plásmido pNDV-LS1-HN-RBD/SARS-CoV-2 1. Genetic map of the plasmid pNDV-LS1-HN-RBD/SARS-CoV-2
[080] El primer paso consistió en el diseño del gen HN-RBD/SARS-CoV-2 (ver SEQ ID NO: 1). Este gen consistió en un ORF correspondiente al gen HN el cual contiene el DTM y DC de la proteína HN (144 pb) del plásmido pNDV-LS1 (ver SEQ ID NO: 1 , 2, y 4) y el ectodominio de la proteína RBD (636 pb) (ver SEQ ID NO: 6) del SARS-CoV-2, con el objetivo de que el RBD se exprese en la superficie del virión (ver Figura 2C). La secuencia correspondiente al DTM y CT de la proteína HN fue predicha con el programa TMHMM Server 2.0 (ver Figura 1). El nuevo gen se denominó HN-RBD/SARS-CoV-2, que al contener la región N-terminal de la proteína HN debería ser capaz de exponer la proteína HN-RBD/SARS-CoV-2 en la superficie del virión. La secuencia del RBD seleccionada para este diseño fue de 636 pb, la cual fue tomada de la cepa aislada en Wuhan-Hu-1-China (Número de acceso GenBank- MN908947.3) (990-1623 nt) (ver SEQ ID NO: 6). https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3 [080] The first step consisted in the design of the HN-RBD/SARS-CoV-2 gene (see SEQ ID NO: 1). This gene consisted of an ORF corresponding to the gene HN which contains the DTM and DC of the HN protein (144 bp) of the plasmid pNDV-LS1 (see SEQ ID NO: 1, 2, and 4) and the ectodomain of the RBD protein (636 bp) (see SEQ ID NO : 6) of SARS-CoV-2, with the aim of expressing the RBD on the surface of the virion (see Figure 2C). The sequence corresponding to the DTM and CT of the HN protein was predicted with the TMHMM Server 2.0 program (see Figure 1). The new gene was named HN-RBD/SARS-CoV-2, which by containing the N-terminal region of the HN protein should be able to expose the HN-RBD/SARS-CoV-2 protein on the surface of the virion. The RBD sequence selected for this design was 636 bp, which was taken from the strain isolated in Wuhan-Hu-1-China (GenBank Accession Number-MN908947.3) (990-1623 nt) (see SEQ ID NO : 6). https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3
[081] Seguidamente a esta secuencia HN-RBD/SARS-CoV-2 (ver SEQ ID NO: 6) se agregó a los extremos las secuencias corriente arriba y corriente abajo de la proteína M del NDV. La construcción final de cada plásmido debió cumplir con la “regla de seis”, la cual consiste en que la longitud del genoma del virus debe ser múltiplo de 6, esto debido a que parece ser que el empaquetamiento del genoma se da cada 6 nucleótidos (Peeters et al. 2000) , para lo cual se añadió un nucleótido Timina “t” seguido del codón de stop del gen HN-RBD/SARS-CoV-2 (ver SEQ ID NO: 1). Una falla en el número de nucleótidos del genoma de NDV puede alterar severamente la replicación viral. [081] Following this HN-RBD/SARS-CoV-2 sequence (see SEQ ID NO: 6), the upstream and downstream sequences of the NDV M protein were added to the ends. The final construction of each plasmid had to comply with the "rule of six", which consists in that the length of the virus genome must be a multiple of 6, this because it seems that the packaging of the genome occurs every 6 nucleotides ( Peeters et al. 2000), for which a Thymine "t" nucleotide was added followed by the stop codon of the HN-RBD/SARS-CoV-2 gene (see SEQ ID NO: 1). A flaw in the number of nucleotides in the NDV genome can severely alter viral replication.
[082] Esta secuencia del gen HN-RBD/SARS-CoV-2, fue químicamente sintetizada y seguidamente clonada dentro del plásmido de clonamiento pUC57 porGenScript (Piscataway, NJ, USA), dicha secuencia fue diseñada para que esté flanqueada en ambos extremos por el sitio único de restricción denominado BbvCI (NEB, New England BioLabs, Ipswich, MA, USA) el cual contiene la secuencia de “CCTCAGC”, se encuentra en la región intergénica entre los genes P y M del pNDV-LS1 (19319 pb) (ver Figura 4). Seguidamente este plásmido fue purificado y extraído usando QIAGEN Plasmid Midi Kit (100) (QIAGEN, Valencia, CA, USA), siguiendo las indicaciones del fabricante. [082] This HN-RBD/SARS-CoV-2 gene sequence was chemically synthesized and then cloned into the pUC57 cloning plasmid by GenScript (Piscataway, NJ, USA), said sequence was designed to be flanked at both ends by the unique restriction site called BbvCI (NEB, New England BioLabs, Ipswich, MA, USA) which contains the "CCTCAGC" sequence, is located in the intergenic region between the P and M genes of pNDV-LS1 (19319 bp) (see Figure 4). This plasmid was then purified and extracted using QIAGEN Plasmid Midi Kit (100) (QIAGEN, Valencia, CA, USA), following the manufacturer's instructions.
[083] El pNDV-LS1 (19319 pb), fue digerido por esta misma enzima de único corte BbvCI (NEB, New England BioLabs, Ipswich, MA, USA), que se encuentra en la región intergénica entre los genes P y M del NDV como se ha descrito anteriormente, obteniendo así el plásmido linealizado. El segundo paso consistió en la inserción del gen sintético HN-RBD/SARS- CoV-2 (1013 pb) (SEQ ID NO: 1) en el plásmido pNDV-LS1 (19319 pb), generando el nuevo plásmido denominado pNDV-LS1-HN-RBD/SARS- CoV-2 (20315 pb) (ver Figura 3 y 4). Obteniendo así el virus recombinante denominado rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 pb) (ver SEQ ID NO: 7). [083] pNDV-LS1 (19319 bp), was digested by this same single-cut enzyme BbvCI (NEB, New England BioLabs, Ipswich, MA, USA), which is located in the intergenic region between the P and M genes of the NDV as described above, thus obtaining the linearized plasmid. The second step consisted in the insertion of the synthetic gene HN-RBD/SARS-CoV-2 (1013 bp) (SEQ ID NO: 1) in the plasmid pNDV-LS1 (19319 bp), generating the new plasmid called pNDV-LS1- HN-RBD/SARS-CoV-2 (20315 bp) (see Figures 3 and 4). Thus obtaining the recombinant virus called rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 bp) (see SEQ ID NO: 7).
[084] El pNDV-LS1 (19319 pb), fue digerido por esta misma enzima de único corte BbvCI (NEB, New England BioLabs, Ipswich, MA, USA), que se encuentra en la región intergénica entre los genes P y M del NDV como se ha descrito anteriormente, obteniendo así el plásmido linealizado. El segundo paso consistió en la inserción del gen sintético HN-RBD/SARS- CoV-2 (1013 pb) (SEQ ID NO: 1) en el plásmido pNDV-LS1 (19319 pb), generando el nuevo plásmido denominado pNDV-LS1-HN-RBD/SARS- CoV-2 (20315 pb) (ver Figura 3 y 4). Obteniendo así el virus recombinante denominado rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 pb) (ver SEQ ID NO: 7). [084] pNDV-LS1 (19319 bp), was digested by this same single-cut enzyme BbvCI (NEB, New England BioLabs, Ipswich, MA, USA), which is located in the intergenic region between the P and M genes of the NDV as described above, thus obtaining the linearized plasmid. The second step consisted in the insertion of the synthetic gene HN-RBD/SARS-CoV-2 (1013 bp) (SEQ ID NO: 1) in the plasmid pNDV-LS1 (19319 bp), generating the new plasmid called pNDV-LS1- HN-RBD/SARS-CoV-2 (20315 bp) (see Figures 3 and 4). Thus obtaining the recombinant virus called rNDV-LS1-HN-RBD/SARS-CoV-2 (16182 bp) (see SEQ ID NO: 7).
2. Mapa genético del plásmido pNDV-LS1-S1-F/SARS-CoV-2 2. Genetic map of the plasmid pNDV-LS1-S1-F/SARS-CoV-2
[085] El primer paso consistió en el diseño del gen S1-F/SARS-CoV-2 (2441 pb) (ver SEQ ID NO: 8). Este gen consistió en la “creación de un ORF”, comprendido por los nucleótidos “atg” seguidamente fusionado con el ectodominio de la subunidad S1 del S del SARS-CoV-2, y con el fragmento que codifica el DTM y CT de la proteína F (162 pb) del NDV (ver SEQ ID NO: 8, 9 y 11), con el objetivo de que el S1 se exprese en la superficie del virión (ver Figura 2C). [085] The first step consisted in the design of the S1-F/SARS-CoV-2 gene (2441 bp) (see SEQ ID NO: 8). This gene consisted of the "creation of an ORF", comprised of the "atg" nucleotides, then fused with the ectodomain of the S1 subunit of the S of SARS-CoV-2, and with the fragment that encodes the DTM and CT of the protein F (162 bp) of the NDV (see SEQ ID NO: 8, 9 and 11), with the aim that S1 is expressed on the surface of the virion (see Figure 2C).
[086] La secuencia correspondiente al TM y CT de la proteína F fue predicha con el programa TMHMM Server 2.0 (ver Figura 5). [086] The sequence corresponding to the TM and CT of the F protein was predicted with the TMHMM Server 2.0 program (see Figure 5).
[087] El nuevo gen se denominó S1-F/SARS-CoV-2 (2441 pb) (ver SEQ ID NO: 8), y al tener la región N-terminal de la proteína F debería ser capaz de exponer la proteína de la subunidad S1 en la superficie del virión. La secuencia del S1 seleccionada para este diseño fue de 2043 pb, la cual fue tomada de la cepa aislada en Wuhan-Hu-1-China (Número de acceso GenBank- MN908947.3) (987-1563 nt) (ver SEQ ID NO: 12). https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3 [087] The new gene was named S1-F/SARS-CoV-2 (2441 bp) (see SEQ ID NO: 8), and having the N-terminal region of the F protein should be able to expose the protein of the S1 subunit on the surface of the virion. The S1 sequence selected for this design was 2043 bp, which was taken from the strain isolated in Wuhan-Hu-1-China (GenBank Accession Number-MN908947.3) (987-1563 nt) (see SEQ ID NO : 12). https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3
[088] El nuevo gen se denominó S1-F/SARS-CoV-2 (2441 pb) (ver SEQ ID NO: 8), y al tener la región N-terminal de la proteína F debería ser capaz de exponer la proteína de la subunidad S1 en la superficie del virión. La secuencia del S1 seleccionada para este diseño fue de 2043 pb, la cual fue tomada de la cepa aislada en Wuhan-Hu-1-China (Número de acceso GenBank- MN908947.3) (987-1563 nt) (ver SEQ ID NO: 12). https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3. [088] The new gene was named S1-F/SARS-CoV-2 (2441 bp) (see SEQ ID NO: 8), and having the N-terminal region of the F protein should be able to expose the protein of the S1 subunit on the surface of the virion. The S1 sequence selected for this design was 2043 bp, which was taken from the strain isolated in Wuhan-Hu-1-China (GenBank Accession Number-MN908947.3) (987-1563 nt) (see SEQ ID NO : 12). https://www.ncbi.nlm.nih.gOv/nuccore/MN908947.3.
[089] Seguidamente a esta secuencia S1-F/SARS-CoV-2 (ver SEQ ID NO: 8) se agregó a los extremos las secuencias corriente arriba y corriente abajo de la proteína M del NDV. La construcción final de cada plásmido debió cumplir con la “regla de seis”, la cual consiste en que la longitud del genoma del virus debe ser múltiplo de 6, esto debido a que parece ser que el empaquetamiento del genoma se da cada 6 nucleótidos (Peeters et al. 2000) para lo cual se añadió los nucleótidos “tgac” seguido del condón de stop del gen S1-F/SARS-CoV-2 (ver SEQ ID NO: 8). Una falla en el número de nucleótidos del genoma de NDV puede alterar severamente la replicación viral. [090] Esta secuencia del gen S1-F/SARS-CoV-2, fue químicamente sintetizada, optimizada para Gallus Gallus y fue seguidamente clonada dentro del plásmido de clonamiento pUC57 por GenScript (Piscataway, NJ, USA), dicha secuencia fue diseñada para que esté flanqueada en ambos extremos por el sitio único de restricción denominado BbvCI (NEB, New England BioLabs, Ipswich, MA, USA) el cual contiene la secuencia de “CCTCAGC”. la cual se encuentra en la región intergénica entre los genes P y M de NDV. Este plásmido fue purificado y extraído usando QIAGEN Plasmid Midi Kit (100) (QIAGEN, Valencia, CA, USA), siguiendo las indicaciones del fabricante. [089] Following this S1-F/SARS-CoV-2 sequence (see SEQ ID NO: 8), the upstream and downstream sequences of the NDV M protein were added to the ends. The final construction of each plasmid had to comply with the "rule of six", which consists in that the length of the virus genome must be a multiple of 6, this because it seems that the packaging of the genome occurs every 6 nucleotides ( Peeters et al. 2000) for which the "tgac" nucleotides were added followed by the stop condom of the S1-F/SARS-CoV-2 gene (see SEQ ID NO: 8). A flaw in the number of nucleotides in the NDV genome can severely alter viral replication. [090] This S1-F/SARS-CoV-2 gene sequence was chemically synthesized, optimized for Gallus Gallus and then cloned into the pUC57 cloning plasmid by GenScript (Piscataway, NJ, USA), said sequence was designed to that is flanked at both ends by the unique restriction site called BbvCI (NEB, New England BioLabs, Ipswich, MA, USA) which contains the "CCTCAGC" sequence. which is located in the intergenic region between the P and M genes of NDV. This plasmid was purified and extracted using the QIAGEN Plasmid Midi Kit (100) (QIAGEN, Valencia, CA, USA), following the manufacturer's instructions.
[091] El plásmido pNDV-LS1 (19319 pb), fue digerido por esta misma enzima de único corte BbvCI (NEB, New England BioLabs, Ipswich, MA, USA), que se encuentra en la región intergénica entre los genes P y M del NDV como se ha mencionado anteriormente, obteniendo así el plásmido linealizado. El segundo paso consistió en la inserción del gen sintético S1- F/SARS-CoV-2 (2441 pb) (ver SEQ ID NO: 8) en el plásmido pNDV-LS1 (19319 pb), generando el nuevo plásmido denominado pNDV-LS1-S1- F/SARS-CoV-2 (21743 pb) (ver Figura 8). Obteniendo así el virus denominado rNDV-LS1-S1-F/SARS-CoV-2 (17610 pb) (ver SEQ ID NO: 13). [091] Plasmid pNDV-LS1 (19319 bp) was digested by this same single-cut enzyme BbvCI (NEB, New England BioLabs, Ipswich, MA, USA), which is located in the intergenic region between the P and M genes from NDV as mentioned above, thus obtaining the linearized plasmid. The second step consisted in the insertion of the synthetic gene S1-F/SARS-CoV-2 (2441 bp) (see SEQ ID NO: 8) in the plasmid pNDV-LS1 (19319 bp), generating the new plasmid called pNDV-LS1 -S1- F/SARS-CoV-2 (21743 bp) (see Figure 8). Thus obtaining the virus called rNDV-LS1-S1-F/SARS-CoV-2 (17610 bp) (see SEQ ID NO: 13).
I. Recuperación de los virus rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 I. Recovery of rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 viruses
[092] Los nuevos virus recombinantes rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2, fueron recuperados co-transfectando con los plásmidos de soporte que contienen los genes que sintetizan el complejo RNP, pCI-L, pCI-N y pCI-P junto con el plásmido pNDV-LS1-HN- RBD y el pNDV-LS1-S1-F en células Vero tal como se describe en previa publicación (Chumbe et al. 2017). II. Patogenicidad de los virus rNDV-LS1-HN-RBD/SARS- CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 [092] The new recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2, were recovered by co-transfecting with support plasmids containing the genes that synthesize the complex RNP, pCI-L, pCI-N and pCI-P together with the plasmid pNDV-LS1-HN-RBD and pNDV-LS1-S1-F in Vero cells as described in a previous publication (Chumbe et al 2017). II. Pathogenicity of rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 viruses
[093] Para evaluar la patogenicidad y determinar sus características biológicas de los virus, se empleó diferentes índices, tales como: índice de Patogenicidad Intracerebral (ICPI, del inglés: Intracerebral Pathogenicity Index), tiempo medio de muerte (MDT, del inglés: Mean Death Timé), ambas pruebas fueron evaluadas en pollos de 1 día de edad (Laboratorios de Charles River), a diferencia de la dosis infectiva media (EIDso/mL) que fue evaluada en huevos embrionados de 9 a 10 días de edad (Laboratorios de Charles River), el análisis del sitio de clivaje del gen Fusión de los virus rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2, no mostró cambios a nivel de nucleótidos y aminoácidos, manteniendo el sitio de clivaje de ambos virus similares al rNDV-LS1 (Tabla 1). [093] To evaluate the pathogenicity and determine the biological characteristics of viruses, different indices were used, such as: Intracerebral Pathogenicity Index (ICPI), mean death time (MDT, English: Mean Death Time), both tests were evaluated in 1-day-old chickens (Charles River Laboratories), unlike the mean infective dose (EIDso/mL) that was evaluated in 9- to 10-day-old embryonated eggs (Charles River Laboratories). Charles River), analysis of the cleavage site of the Fusion gene of the viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2, showed no changes at the level of nucleotides and amino acids, keeping the cleavage site of both viruses similar to rNDV-LS1 (Table 1).
Tabla 1. Patogenicidad y características biológicas de los virus rNDV-LS1- HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2
Figure imgf000028_0001
Table 1. Pathogenicity and biological characteristics of the rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 viruses.
Figure imgf000028_0001
Indice de patogenicidad intracerebral (ICPI) fue evaluado en aves de 1 día de edad. La máxima score de una cepa virulenta es de 2.0, mientras el score de la cepa Lentogénica es de 0.0. Intracerebral Pathogenicity Index (ICPI) was evaluated in 1-day-old birds. The maximum score of a virulent strain is 2.0, while the score of the Lentogenic strain is 0.0.
Tiempo medio de muerte (MDT), fue elaborado en huevos embrionados de 10 días de edad. El valor de 60 horas corresponde a las cepas velogénicas, valores entre 60 y 90 horas corresponde a cepas mesogénicas, lentogénicas tienen un valor mayor de 90 horas. III. Verificación de la expresión del HN-RBD y S1-F Mean death time (MDT) was elaborated in 10-day-old embryonated eggs. The value of 60 hours corresponds to velogenic strains, values between 60 and 90 hours correspond to mesogenic strains, andlentogenic have a value greater than 90 hours. III. Verification of HN-RBD and S1-F expression
[094] Para evaluar la expresión de las proteínas HN-RBD y S1-F, células Vero E6 fueron infectados con los virus recombinantes rNDV-LS1-HN- RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 a una multiplicidad de infección (MOI, del inglés: Multiplicity of infectiorí) de 1. Luego de 48 horas de infección, se recolectaron las células y fueron Usadas. Por otro lado, para verificar la incorporación de las proteínas HN-RBD y S1-F en los virus rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2, se concentró las partículas virales por ultracentrifugación utilizando una ultracentrífuga (Ultracentrifuga, Beckam, Culter), estas partículas virales fueron obtenidas a partir de una cosecha proveniente de fluido alantoideo de huevos embrionados de pollo libres de patógenos (SPF) (SPF, del inglés: Specific-Pathogen-Freé) (Laboratorios de Charles River) infectados con los nuevos virus recombinantes, seguidamente fueron parcialmente purificados en sucrosa al 30%. El ensayo de Western blot se llevó a cabo usando los virus parcialmente purificados de fluido alantoideo y Usados de células infectadas, usando un anticuerpo de conejo específico para la proteína RBD del SARS-CoV-2 (Sino biologycal, Cat: 4059-2-T62) 2/5000 y un anticuerpo secundario Anti IgG de conejo conjugado a HRP (Cat. A01827) 2/5000. [094] To evaluate the expression of HN-RBD and S1-F proteins, Vero E6 cells were infected with the recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS -CoV-2 at a multiplicity of infection (MOI) of 1. After 48 hours of infection, cells were harvested and used. On the other hand, to verify the incorporation of the HN-RBD and S1-F proteins in the rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 viruses, concentrated the viral particles by ultracentrifugation using an ultracentrifuge (Ultracentrifuga, Beckam, Culter), these viral particles were obtained from a harvest from allantoic fluid of embryonated pathogen-free chicken eggs (SPF) (SPF, English: Specific- Pathogen-Freé) (Charles River Laboratories) infected with the new recombinant viruses were then partially purified in 30% sucrose. Western blot assay was carried out using viruses partially purified from allantoic fluid and used from infected cells, using a rabbit antibody specific for the RBD protein of SARS-CoV-2 (Sino biologycal, Cat: 4059-2-T62 ) 2/5000 and a secondary antibody Anti rabbit IgG conjugated to HRP (Cat. A01827) 2/5000.
[095] Los resultados a partir del ensayo de Western blot, mostraron que los anticuerpos reaccionaron con el lisado de células infectadas con los virus rNDV-LS1-HN-RB D/SA RS- Co V-2 y rNDV-LS1-S1-F/SARS-CoV-2, detectando una banda con un peso molecular de ~30 kDa y ~90 kDa respectivamente que corresponderían al HN-RBD y S1-F, por otro lado, no se observó reactividad con los Usados infectados con el virus parental (ver Figura 8B). [095] The results from the Western blot assay showed that the antibodies reacted with the lysate of cells infected with the viruses rNDV-LS1-HN-RB D/SA RS- Co V-2 and rNDV-LS1-S1- F/SARS-CoV-2, detecting a band with a molecular weight of ~30 kDa and ~90 kDa respectively that would correspond to HN-RBD and S1-F, on the other hand, no reactivity was observed with the Usados infected with the virus parent (see Figure 8B).
[096] En otro ensayo de western blot con los virus purificados rNDV-LS1- HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2, los resultados mostraron una banda con un peso molecular de ~30 kDa y ~90 kDa respectivamente que corresponderían al HN-RBD y S1-F, por otro lado, no se observó reactividad con el virus parental purificado. Estos resultados confirmarían la incorporación del HN-RBD y el S1-F en la estructura viral debido a que en la construcción del inserto de RBD fue fusionado al DC y DTM de la proteína HN del NDV. En el caso del inserto S1 fue fusionado con el DC y DTM de la proteína F del NDV (ver Figura 8A). [096] In another western blot assay with the purified viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2, the results showed a band with a molecular weight ~30kDa and ~90kDa respectively that would correspond to HN-RBD and S1-F, on the other hand, no reactivity with the purified parental virus was observed. These results would confirm the incorporation of HN-RBD and S1-F in the viral structure, since in the construction of the RBD insert it was fused to the DC and DTM of the NDV HN protein. In the case of the S1 insert, it was fused with the DC and DTM of the NDV F protein (see Figure 8A).
IV. Detección de la secuencia genética de los insertos HN- RBD y S1-F mediante RT-PCR IV. Detection of the genetic sequence of the HN-RBD and S1-F inserts by RT-PCR
[097] El ARN de los virus recombinantes rNDV-LS1-HN-RBD/SARS-CoV- 2 y rNDV-LS1-S1-F/SARS-CoV-2, fue extraído a partir de fluido alantoideo utilizando el kit QlAamp MinElute Virus Spin (Qiagen, Alemania), de acuerdo a las instrucciones del fabricante, con algunas modificaciones. Se agregó 200 pl_ de muestra a un tubo que contenía 25 mI_ de Proteinasa K y se homogenizó durante 15 segundos. Luego, se agregó 200 pL de buffer AL, mezclado previamente con 6.2 pL de carrier (1 pg/pL), se homogenizó por 15 segundos y se incubó a 56°C por 1 hora. Las muestras lisadas fueron colocadas en el equipo QIAcube Connect (Qiagen, Alemania) para la extracción de ARN automatizada. La cantidad y calidad de ARN fueron determinadas usando un Biofotómetro plus (Eppendorf, Alemania). [097] The RNA of the recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2, was extracted from allantoic fluid using the QlAamp MinElute Virus kit Spin (Qiagen, Germany), according to the manufacturer's instructions, with some modifications. 200 µl of sample was added to a tube containing 25 ml of Proteinase K and homogenized for 15 seconds. Then, 200 pL of buffer AL was added, previously mixed with 6.2 pL of carrier (1 pg/pL), homogenized for 15 seconds and incubated at 56°C for 1 hour. Lysed samples were placed in the QIAcube Connect (Qiagen, Germany) for automated RNA extraction. RNA quantity and quality were determined using a Biophotometer plus (Eppendorf, Germany).
[098] El ADN complementario (ADNc) fue generado a partir de 5 pL de ARN total en un volumen de reacción de 20 pL, conteniendo 4 pL de tampón ProtoScript II 5X (New England Biolabs, EE. UU), 2 pL de Ditiotreitol 0.1 M, 1 pL de dNTP 10 mM, 0.2 pL de Inhibidor de RNasa 40 U/pL (New England Biolabs, EE. UU), 1 pL de transcriptasa reversa ProtoScript II 200 U/pL (New England Biolabs, EE. UU), 2 pL de mix de cebadores aleatorios (60mM) y 4.8 pL de agua libre de nucleasas. La reacción fue conducida a 42°C por 60 minutos, con un paso de desnaturalización e inactivación a 65°C por 5 minutos y 20 minutos, respectivamente. El ADNc obtenido fue utilizado como plantilla para la reacción en cadena de la polimerasa (PCR, del inglés: Polymerase Chain Reactiorí). La amplificación fue llevada a cabo en un volumen total de 20 pL, utilizando 10 pL de Master mix 2X de alta fidelidad Q5 (New England Biolabs, EE. UU), 0.36 pL de los cebadores NDV-3LS1-2020-F1 (5'-GATCATGTCACGCCCAATGC-3') y NDV-3LS1- 2020-R1 (5'-GCATCGCAGCGGAAAGTAAC-3'), respectivamente, 7.28 pL de agua libre de nucleasas (Ambion, EE. UU) y 2 pL de ADNc total. El protocolo de ciclos térmicos comprendió un paso de desnaturalización inicial a 98 °C por 30 segundos, seguido por 35 ciclos de 98 °C por 10 segundos, 72 °C por 20 segundos, 72 °C por 30 segundos para la detección de HN-RBD y por 40 segundos para la detección de S1-F. La extensión final fue realizada a 72 °C por 2 minutos. Los productos de la PCR fueron analizados por electroforesis en geles de agarosa de 1% y visualizados con una CCD camera (Azure Biosystems, EE. UU). [098] Complementary DNA (cDNA) was generated from 5 pL of total RNA in a reaction volume of 20 pL, containing 4 pL of ProtoScript II 5X buffer (New England Biolabs, USA), 2 pL of Dithiothreitol 0.1 M, 1 pL of 10 mM dNTP, 0.2 pL of 40 U/pL RNase Inhibitor (New England Biolabs, USA), 1 pL of 200 U/pL ProtoScript II reverse transcriptase (New England Biolabs, USA) , 2 pL of random primer mix (60 mM) and 4.8 pL of nuclease-free water. The reaction was conducted at 42°C for 60 minutes, with a denaturation and inactivation step at 65°C for 5 minutes and 20 minutes, respectively. The cDNA obtained was used as a template for the polymerase chain reaction (PCR). from English: Polymerase Chain Reactor). Amplification was carried out in a total volume of 20 pL, using 10 pL of high-fidelity 2X Master mix Q5 (New England Biolabs, USA), 0.36 pL of primers NDV-3LS1-2020-F1 (5 ' -GATCATGTCACGCCCAATGC-3 ' ) and NDV-3LS1-2020-R1 ( 5' -GCATCGCAGCGGAAAGTAAC-3 ' ), respectively, 7.28 pL of nuclease-free water (Ambion, USA) and 2 pL of total cDNA. The thermal cycling protocol comprised an initial denaturation step at 98 °C for 30 seconds, followed by 35 cycles of 98 °C for 10 seconds, 72 °C for 20 seconds, 72 °C for 30 seconds for detection of HN- RBD and for 40 seconds for the detection of S1-F. The final extension was performed at 72 °C for 2 min. The PCR products were analyzed by electrophoresis in 1% agarose gels and visualized with a CCD camera (Azure Biosystems, USA).
[099] Los resultados de RT-PCR detectaron una banda de un tamaño de -3028 pb en la muestra de virus rNDV-LS1-S1-F/SARS-CoV-2, que correspondería al inserto S1-F (ver Figura 9B). Por otro lado, se detectó una banda de -1600 pb en la muestra del virus rNDV-LS1-HN-RBD/SARS- CoV-2 que correspondería al inserto HN-RBD (ver Figura 9A). Además, los productos de la RT-PCR que fueron secuenciados (Macrogen, Seúl, Korea), mostraron que las secuencias genéticas de los insertos HN-RBD y S1-F se encontraban íntegros y sin alteraciones (Datos no mostrados). [099] The RT-PCR results detected a band with a size of -3028 bp in the rNDV-LS1-S1-F/SARS-CoV-2 virus sample, which would correspond to the S1-F insert (see Figure 9B) . On the other hand, a -1600 bp band was detected in the rNDV-LS1-HN-RBD/SARS-CoV-2 virus sample that would correspond to the HN-RBD insert (see Figure 9A). In addition, the RT-PCR products that were sequenced (Macrogen, Seoul, Korea), showed that the genetic sequences of the HN-RBD and S1-F inserts were intact and without alterations (Data not shown).
V. Ensayo de inmunofluorescencia V. Immunofluorescence Assay
[100] Para examinar la expresión de las proteínas HN-RBD y S1-F mediante los virus recombinantes rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2, las células Vero-E6 fueron infectadas con los virus recombinantes a una MOI de 0.5. Después de 48 horas de infección, las células se fijaron con paraformaldehído al 4% durante 25 minutos, luego la monocapa se lavó tres veces con solución salina tamponada con fosfato de Dulbecco (DPBS) y se permeabilizó con 0.1% de Tritón X-100 durante 15 minutos a temperatura ambiente. Luego se lavó tres veces con DPBS y se incubó la monocapa con el anticuerpo de conejo específico contra la proteína RBD de SARS-CoV-2 (1: 200) (cat, 40592- T62), y un antisuero de pollo específico contra el virus de la enfermedad de Newcastle (1: 200) (Charles River) durante 1,5 horas a temperatura ambiente. Posteriormente, la monocapa se incubó con los anticuerpos secundarios IgG anti-conejo de cabra conjugado a Alexa Fluor 594 (1 : 250) (Abcam), e IgY anti-pollo de cabra conjugado a Alexa Fluor 488 (1: 1000) (ab150169, Abcam) durante 1 hora a temperatura ambiente. Finalmente, los núcleos de las células fueron teñidas con medio de montaje DAPI (ab104139, Abcam) durante 5 minutos. Los resultados se observaron utilizando un microscopio de fluorescencia ObserverAI (Cari Zeiss, Alemania). Las imágenes digitales se tomaron con un aumento de 400x y se procesaron con la cámara AxioCam MRc5 (Cari Zeiss, Alemania). [100] To examine the expression of HN-RBD and S1-F proteins by the recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2, Vero-E6 cells were infected with the recombinant viruses at an MOI of 0.5. After 48 hours of infection, cells were fixed with 4% paraformaldehyde for 25 min, then the monolayer was washed three times with Dulbecco's phosphate-buffered saline (DPBS) and permeabilized with 0.1% of Triton X-100 for 15 minutes at room temperature. It was then washed three times with DPBS, and the monolayer was incubated with the rabbit antibody specific against the RBD protein of SARS-CoV-2 (1:200) (cat, 40592-T62), and a chicken antiserum specific against the virus. Newcastle disease (1:200) (Charles River) for 1.5 hours at room temperature. Subsequently, the monolayer was incubated with the secondary antibodies goat anti-rabbit IgG conjugated to Alexa Fluor 594 (1:250) (Abcam), and goat anti-chicken IgY conjugated to Alexa Fluor 488 (1:1000) (ab150169, Abcam) for 1 hour at room temperature. Finally, cell nuclei were stained with DAPI mounting medium (ab104139, Abcam) for 5 minutes. Results were observed using an ObserverAI fluorescence microscope (Cari Zeiss, Germany). Digital images were taken at 400x magnification and processed with the AxioCam MRc5 camera (Cari Zeiss, Germany).
[101] Los resultados de inmunofluorescencia en las células infectadas con los virus recombinantes rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1- F/SARS-CoV-2 fueron positivos, cuando reaccionaron con los anticuerpos de conejo específico contra la proteína RBD de SARS-CoV-2 y el antisuero de pollo específico contra NDV, demostrando de esta manera la presencia de proteínas de NDV y la expresión del RBD y S1 del SARS-CoV-2. Por otro lado, en las células infectadas con el NDV parental, solo se observó reactividad con el antisuero de pollo específico contra NDV (ver Figura 10). [101] Immunofluorescence results in cells infected with the recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 were positive, when they reacted with the antibodies specific rabbit antiserum against the RBD protein of SARS-CoV-2 and the chicken antiserum specific against NDV, thus demonstrating the presence of NDV proteins and the expression of the RBD and S1 of SARS-CoV-2. On the other hand, in cells infected with the parental NDV, reactivity was only observed with the NDV-specific chicken antiserum (see Figure 10).
VI. Ensayo de unión e internalización celular por eficiencia al receptor ACE2 expresado en células Vero E6 SAW. Assay of binding and cellular internalization by efficiency to the ACE2 receptor expressed in Vero E6 cells
[102] Para determinar la eficacia de unión entre el receptor ACE2 y el RBD ó la subunidad S1 de los virus recombinantes rNDV-S1-HN-RBD/SARS- CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 respectivamente. Las células Vero E6 que expresan el receptor ACE2 en la membrana celular, fueron recolectadas y lavadas con DPBS suplementadas con 5% de suero fetal bovino bovino (SFB, del inglés: Serum Fetal Bovino). Luego, una concentración de 1x 106 células fueron bloqueadas con DPBS con 5% de suero normal de ratón durante 30 minutos, y seguidamente fueron incubadas con la presencia de los virus recombinantes (purificados con sucrosa al 25% previamente) con las concentraciones finales de 0,05 y 0,2 pg durante 30 minutos a 37 °C. Para lograr eliminar las partículas virales residuales que no se unieron al receptor ACE2 de las células Vero E6 durante el tiempo de incubación, las células fueron lavadas con DPBS suplementado con 5% de SFB dos veces. Posteriormente, se marcaron con anticuerpos monoclonales de conejo anti S1 de SARS (1:200) (Sino biological) durante 1 hora a temperatura ambiente, seguido por el anticuerpo secundario de cabra anti-lgG de conejo conjugado a Alexa Fluor 488 (1:200). Finalmente, las células fueron analizadas con ayuda del citómetro de flujo FACS Canto II (BD), y los datos obtenidos fueron analizados usando el software FlowJo v.10.6 (BD). [102] To determine the binding efficiency between the ACE2 receptor and the RBD or the S1 subunit of the recombinant viruses rNDV-S1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV- 2 respectively. Vero E6 cells expressing the ACE2 receptor on the cell membrane were harvested and washed with DPBS supplemented with 5% fetal bovine serum (SFB). Then one concentration of 1x 10 6 cells were blocked with DPBS with 5% normal mouse serum for 30 minutes, and then incubated with the presence of recombinant viruses (previously purified with 25% sucrose) with final concentrations of 0.05 and 0.2 pg for 30 minutes at 37°C. In order to remove residual viral particles that did not bind to the ACE2 receptor from Vero E6 cells during the incubation time, cells were washed with DPBS supplemented with 5% FBS twice. Subsequently, they were labeled with rabbit anti-SARS S1 monoclonal antibodies (1:200) (Sino biological) for 1 hour at room temperature, followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG secondary antibody (1:200). ). Finally, the cells were analyzed with the help of the FACS Canto II flow cytometer (BD), and the data obtained were analyzed using the FlowJo v.10.6 software (BD).
[103] Los resultados mostraron una reactividad de unión al receptor ACE2 de ~10% y ~40% de las células analizadas con los virus recombinantes rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 respectivamente. Demostrando de esta manera la presencia del RBD y la subunidad S1 del SARS-CoV-2 en la estructura de la envoltura de los virus rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 respectivamente (ver Figura 11). Esto se esperaba, debido a que en la construcción del inserto de RBD fue fusionado al DTM y DC de la proteína HN del NDV. En el caso del inserto S1 fue fusionado con el DTM y DC de la proteína F del NDV. Estos diseños de construcción fueron realizados con la finalidad de que el RBD y S1 fuera expresados e incorporados en la envoltura viral de los virus recombinantes y tengan afinidad al receptor ACE2. [103] The results showed ACE2 receptor binding reactivity of ~10% and ~40% of the cells tested with the recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F /SARS-CoV-2 respectively. Thus demonstrating the presence of the RBD and the SARS-CoV-2 S1 subunit in the envelope structure of the rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS viruses. -CoV-2 respectively (see Figure 11). This was expected, because in the construction of the RBD insert it was fused to the DTM and DC of the NDV HN protein. In the case of the S1 insert, it was fused with the DTM and DC of the NDV F protein. These construction designs were made so that the RBD and S1 were expressed and incorporated into the viral envelope of the recombinant viruses and had affinity for the ACE2 receptor.
Vil. Propiedades de crecimiento ¡n vitro de los virus rNDV- LSI-HN-RBD/SARS-CoV-2 y rN DV-LS 1 -S 1 -F/SARS-CoV-2 [104] Células de DF-1 (DF-1 , del inglés: Chicken Embryo Fibroblasf), fueron sembradas a una confluencia de 70% en una placa de 12 pocilios, luego de 18 horas de post sembrado fueron infectadas con los virus rNDV- LSI-HN-RBD/SARS-CoV-2, rN DV-LS1 -S1 -F/SARS-CoV-2 y rNDV-LS1 a una MOI de 1. Vile. In vitro growth properties of rNDV-LSI-HN-RBD/SARS-CoV-2 and rN DV-LS 1 -S 1 -F/SARS-CoV-2 viruses [104] DF-1 cells (DF-1, English: Chicken Embryo Fibroblasf), were seeded at 70% confluence in a 12-well plate, after 18 hours of post seeding they were infected with rNDV- LSI-HN-RBD/SARS-CoV-2, rN DV-LS1 -S1 -F/SARS-CoV-2, and rNDV-LS1 at an MOI of 1.
[105] Las células fueron mantenidas en DMEM conteniendo 1% SFB y 10% de fluido alantoideo (FA) con 5% de CO2 a 37°C. [105] Cells were maintained in DMEM containing 1% FBS and 10% allantoic fluid (AF) with 5% CO2 at 37°C.
[106] Los sobrenadantes fueron recolectados a las 12, 24, 36, 48, 60, 72, 84, 96 y a las 108 horas post infección (h.p.i), clarificados a 500 rpm por 5 minutos a 4°C para remover el debris celular. Los sobrenadantes fueron cuantificados por ensayo en placa en células de DF-1 , tal como se describió previamente (Chumbe et al. 2017). [106] Supernatants were collected at 12, 24, 36, 48, 60, 72, 84, 96 and 108 hours post infection (h.p.i), clarified at 500 rpm for 5 minutes at 4°C to remove cell debris. . Supernatants were quantified by plaque assay on DF-1 cells, as previously described (Chumbe et al. 2017).
[107] Cinco días post incubación, las células fueron fijadas con paraformaldehído al 3.2% por 6 hora a temperatura ambiente, y luego teñidos con cristal violeta al 0.2%. [107] Five days post incubation, cells were fixed with 3.2% paraformaldehyde for 6 hours at room temperature, and then stained with 0.2% crystal violet.
[108] Los títulos obtenidos por ensayo en placa, fueron calculados y reportados como unidades formadoras de placa (UFP). Este experimento fue repetido en tres diferentes tiempos. [108] Titers obtained by plaque assay were calculated and reported as plaque-forming units (PFU). This experiment was repeated at three different times.
[109] Los resultados mostraron que ambos virus: rNDV-LS1-HN- RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 mostraron propiedades de crecimiento similares al virus parental rNDV-LS1 , sin embargo, el rNDV- LS1 , mostró a las 24 y 36 hpi títulos ligeramente elevados en comparación con los rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2, pero no significativos (ver Figura 12). [109] The results showed that both viruses: rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 showed growth properties similar to the parental virus rNDV-LS1, without However, rNDV-LS1 showed slightly elevated titers at 24 and 36 hpi compared to rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2, but not significant (see Figure 12).
[110] El efecto citopático (ECP) o la formación de sincitios de los virus rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1 -F/SARS-CoV-2, mostraron el típico ECP del NDV. Esto puede explicar que la inserción de ambos genes foráneos, no alteró sus propiedades biológicas de rNDV-LS1- HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2. [110] The cytopathic effect (CPE) or the formation of syncytia of the viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1 -F/SARS-CoV-2, showed the typical CPE of the NDV. This may explain why the insertion of both foreign genes, did not alter their biological properties of rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2.
VIII. Inmunización en modelo de animal Hámster VII. Immunization in Hamster animal model
[111] Para evaluar la seguridad, inmunogenicidad y eficacia de las vacunas, cuarenta y ocho hámsteres de 5 semanas de edad entre machos y hembras, fueron utilizados en este estudio. Los experimentos fueron desarrollados siguiendo los protocolos previamente aprobados por el Instituto Nacional de Salud (INS) del Perú en conjunto con FARVET S.A.C. [111] To assess the safety, immunogenicity, and efficacy of the vaccines, forty-eight 5-week-old male and female hamsters were used in this study. The experiments were developed following the protocols previously approved by the National Institute of Health (INS) of Peru in conjunction with FARVET S.A.C.
[112] Los hámsteres fueron divididos al azar dentro de cuatro grupos (12 hámsteres/grupo). Los hámsteres fueron inoculados por vía intranasal (IN) con 40mI (2x106 UFP/hámster) de los virus rNDV-LS1-HN-RBD/SARS-CoV- 2 (Grupo #1), rN DV- LS 1 -S 1 - F/SARS-CoV-2 (Grupo #2), la mezcla de ambos rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 (Grupo #3), y un grupo control no inmunizado (Grupo #4). Un refuerzo de inmunización por vía IN con 40mI (2x106 UFP/hámster) de cada vacuna fue aplicado en todos los grupos a los 15 días post-vacunación (DPV). [112] Hamsters were randomly divided into four groups (12 hamsters/group). Hamsters were inoculated intranasally (IN) with 40mI (2x10 6 PFU/hamster) of the viruses rNDV-LS1-HN-RBD/SARS-CoV- 2 (Group #1), rN DV- LS 1 -S 1 - F/SARS-CoV-2 (Group #2), the mixture of both rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 (Group #3), and a non-immunized control group (Group #4). An IN immunization booster with 40mI (2x10 6 PFU/hamster) of each vaccine was applied to all groups 15 days post-vaccination (DPV).
[113] A los 15 y 30 DPV, fueron recolectadas las muestras de sangre para medir los títulos de anticuerpos generados por las vacunas: anticuerpos anti- IgG por ELISA-SARS-CoV-2 in house (ELISA, del inglés: enzyme- linked immunosorbent assay) y para medir los anticuerpos neutralizantes circulantes producidos por las vacunas se realizó un test de neutralización sustituto (TNs) anti RBD-SARS-CoV-2 de un kit comercial (GenScript, Piscataway, NJ, USA) (Cat. No. L00847). [113] At 15 and 30 DPV, blood samples were collected to measure the titers of antibodies generated by the vaccines: anti-IgG antibodies by ELISA-SARS-CoV-2 in house (ELISA, English: enzyme-linked immunosorbent assay) and to measure the circulating neutralizing antibodies produced by the vaccines, an anti-RBD-SARS-CoV-2 surrogate neutralization test (TNs) was performed from a commercial kit (GenScript, Piscataway, NJ, USA) (Cat. No. L00847).
IX. Evaluación de Anticuerpos Neutralizantes Anti-RBD mediante un Test de Neutralización sustituto (TNs) [114] Cuarenta y ocho muestras de sueros fueron analizadas para evaluar los títulos de anticuerpos neutralizantes contra el SARS-CoV-2. Los ensayos de test de neutralización se elaboraron utilizando el Kit de test de neutralización sustituto (TNs) (GenScript, Piscataway, NJ, USA) (Cat. No. L00847), este test utiliza proteínas purificadas a diferencia del test de neutralización de virus convencional (TNc): 1) RBD de la proteína S del SARS-CoV-2 y 2) el receptor celular ACE2, disimulando así la interacción del virus con el hospedador en una placa de ELISA. Cuando no ocurre la interacción del “RBD - ACE2” se da la “neutralización”, es decir la existencia de un bloqueo por específicos anticuerpos neutralizantes en el suero. IX. Evaluation of Neutralizing Anti-RBD Antibodies using a Surrogate Neutralization Test (TNs) [114] Forty-eight serum samples were tested for neutralizing antibody titers against SARS-CoV-2. Neutralization test assays were developed using the Surrogate Neutralization Test (TNs) Kit (GenScript, Piscataway, NJ, USA) (Cat. No. L00847), this test uses purified proteins unlike the conventional virus neutralization test. (TNc): 1) SARS-CoV-2 protein S RBD and 2) the cellular receptor ACE2, thus disguising the interaction of the virus with the host in an ELISA plate. When the interaction of "RBD - ACE2" does not occur, "neutralization" occurs, that is, the existence of a blockade by specific neutralizing antibodies in the serum.
[115] La ventaja de este TNs, es la facilidad de desarrollarlo en Laboratorios de Bioseguridad Nivel 2 (BSL-2) sin ninguna dificultad, resiguiendo exactamente las instrucciones del fabricante. Las placas fueron analizadas usando un lector de microplaca Epoch 2 (Bioteck, USA) a 450 nm. [115] The advantage of these TNs is the ease of developing it in Biosafety Level 2 Laboratories (BSL-2) without any difficulty, exactly following the manufacturer's instructions. Plates were analyzed using an Epoch 2 microplate reader (Bioteck, USA) at 450 nm.
[116] El límite de corte de positivos y negativos de anticuerpos neutralizantes para el SARS-CoV-2 fue interpretado como la tasa de inhibición. La interpretación de corte de resultados se interpretó de la siguiente manera: resultado positivo >20% (anticuerpos neutralizantes detectados), resultado negativo <20% (anticuerpos neutralizantes no detectados). [116] The cut-off limit of positive and negative neutralizing antibodies for SARS-CoV-2 was interpreted as the rate of inhibition. The cut-off interpretation of results was interpreted as follows: positive result >20% (neutralizing antibodies detected), negative result <20% (neutralizing antibodies not detected).
[117] rNDV-LS1-HN-RBD/SARS-CoV-2 (Grupo #1), rNDV-LS1-S1- F/SARS-CoV-2 (Grupo #2), la mezcla de ambos rNDV-LS1-HN- RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2 (Grupo #3), y un grupo control no inmunizado (Grupo #4). [117] rNDV-LS1-HN-RBD/SARS-CoV-2 (Group #1), rNDV-LS1-S1-F/SARS-CoV-2 (Group #2), the mixture of both rNDV-LS1-HN - RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 (Group #3), and a non-immunized control group (Group #4).
[118] Los resultados de los sueros recolectados de los hámsteres indicaron la circulación temprana de anticuerpos neutralizantes desde los primeros 15 días post lera inmunización en los grupos: # 2 (rNDV-LS1-S1- F/SARS-CoV-2) y #3 (rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1- F/SARS-CoV-2) presentaron una inhibición ³60%, mientras el grupo #1 (rNDV-LS1-HN-RBD/SARS-CoV-2) presentó una inhibición de 30%, a diferencia del grupo #4 (grupo control no inmunizado) que presentó una tasa de inhibición <20%. Por otro lado, como era de esperarse estos títulos de anticuerpos fueron en aumento es así que a los 30 días post lera inmunización se detectó que los grupos: # 2 (rNDV-LS1-S1-F/SARS-CoV- 2) presentaron una tasa de inhibición entre 70 a 80%, el grupo #3 (rNDV- LSI-HN-RBD/SARS-CoV-2 y rN DV-LS1 -S1 -F/SARS-CoV-2) presentó una tasa de inhibición entre 80 a 100%, mientras el grupo #1 (rNDV-LS1-HN- RBD/SARS-CoV-2) presentó una inhibición de 35%, a diferencia del grupo #4 (grupo control no inmunizado) que presentó una tasa de inhibición <5%. Los resultados de este estudio demuestran que existe una sinergia entre los virus recombinantes rNDV-LS1-HN-RBD/SARS-CoV-2 y rNDV-LS1-S1- F/SARS-CoV-2 cuando están presentes en la misma composición inmunogénica viva recombinante o vacuna viva recombinante de acuerdo con la presente invención. [118] The results of sera collected from hamsters indicated the early circulation of neutralizing antibodies from the first 15 days post immunization in groups: # 2 (rNDV-LS1-S1- F/SARS-CoV-2) and #3 (rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2) showed ³60% inhibition, while group # 1 (rNDV-LS1-HN-RBD/SARS-CoV-2) presented an inhibition of 30%, unlike group #4 (non-immunized control group) that presented an inhibition rate of <20%. On the other hand, as expected, these antibody titers were increasing, so that 30 days after immunization, it was detected that the groups: # 2 (rNDV-LS1-S1-F/SARS-CoV-2) presented a inhibition rate between 70 to 80%, group #3 (rNDV- LSI-HN-RBD/SARS-CoV-2 and rN DV-LS1 -S1 -F/SARS-CoV-2) presented an inhibition rate between 80 at 100%, while group #1 (rNDV-LS1-HN-RBD/SARS-CoV-2) presented an inhibition of 35%, unlike group #4 (non-immunized control group) that presented an inhibition rate < 5%. The results of this study demonstrate that there is a synergy between the recombinant viruses rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV-2 when they are present in the same live immunogenic composition. recombinant or live recombinant vaccine according to the present invention.
[119] Con estos resultados obtenidos nosotros hipotetizamos, que los animales de los grupos #1 , #2 y #3 presentan una protección a los primeros 15 días post lera inmunización, y que esta es repotenciada a los 30 días post lera inmunización (post booster), generan títulos de anticuerpos neutralizantes hasta 100% de inhibición en comparación con animales no inmunizados. Estos resultados determinan la eficacia de las vacunas debido a su capacidad rápida de generar una respuesta humoral. [119] With these results obtained, we hypothesize that the animals of groups #1, #2 and #3 present protection in the first 15 days after immunization, and that this is re-potentiated 30 days after immunization (post booster), generate neutralizing antibody titers up to 100% inhibition compared to non-immunized animals. These results determine the efficacy of vaccines due to their rapid ability to generate a humoral response.
X. Evaluación de Anticuerpos Neutralizantes Anti SARS- CoV-2 mediante un Test de ser neutralización convencional (TNc) X. Evaluation of Neutralizing Anti SARS-CoV-2 Antibodies by means of a Conventional Neutralization Test (TNc)
[120] Todos los ensayos de neutralización fueron desarrollados en el Laboratorio de bioseguridad nivel 3 (BSL-3) del Instituto Nacional de Salud (INS). Los sueros recolectados fueron inactivados a 56°C por 60 minutos previamente a su uso. Células Vero E6 fueron mantenidas en medio de cultivo de DMEM 1X suplementado con 5% de SFB y sembradas previamente 18 a 24 horas, en una placa de 24 pocilios de cultivo celular. Seguidamente de la inactivación, se realizaron mezclas de todos los sueros “pool" correspondientes de cada grupo, seguidamente se realizaron diluciones seriadas de dos veces, iniciando a partir de la dilución 1:20. Luego los sueros fueron mezclados con el virus SARS-CoV-2 (suero-virus) e incubados por 1 hora a 37°C, y luego 10 pL de la mezcla fueron traspasados a cada pocilio que contiene la monocapa de cultivo celular de Vero E6 previamente sembrada. Las células fueron incubadas por 4 días a 37°C, luego fueron fijadas con 10% de paraformaldehído por 6 horas y teñidas con 2% de cristal violeta por 15 minutos, luego fueron lavadas y secadas a temperatura ambiente. La dilución límite fue determinada por la aparición de placas o ECP del virus SARS-CoV-2 sobre las células. [120] All neutralization assays were developed at the Biosafety Level 3 Laboratory (BSL-3) of the National Institute of Health (INS). The collected sera were inactivated at 56°C for 60 minutes prior to use. Vero E6 cells were maintained in the medium of 1X DMEM culture supplemented with 5% FBS and pre-seeded 18 to 24 hours, in a 24-well cell culture plate. Following inactivation, mixtures of all the corresponding "pool" sera of each group were made, then serial dilutions of two times were made, starting from the 1:20 dilution. Then the sera were mixed with the SARS-CoV virus -2 (serum-virus) and incubated for 1 hour at 37°C, and then 10 pL of the mixture was transferred to each well containing the previously seeded Vero E6 cell culture monolayer.The cells were incubated for 4 days at 37°C, then they were fixed with 10% paraformaldehyde for 6 hours and stained with 2% crystal violet for 15 minutes, then washed and dried at room temperature.The limiting dilution was determined by the appearance of plaques or CPE of the virus. SARS-CoV-2 on cells.
[121] Los resultados obtenidos demostraron que los hámsteres inmunizados con ambos virus rNDV-LS1-HN-RBD/SARS-CoV-2 + rNDV- LS1-S1-F/SARS-CoV-2 alcanzaron un título de neutralización de 1/40 al 100%, mientras el grupo que fueron inmunizados con rNDV-LS1-HN- RBD/SARS-CoV-2 tuvieron un título de 1/20 al 100%, y sólo la rNDV-LS1- S1-F/SARS-CoV-2 alcanzó un título de 1/160 al 100%, lo que indica que el rNDV-LS1-S1-F/SARS-CoV-2 ha provocado mayor cantidad de anticuerpos neutralizantes, esto se debe posiblemente a que la región S1 presenta otras regiones epítopes antigénicas importantes del S del SARS- CoV-2 (ver resultados Tabla 2). [121] The results obtained showed that hamsters immunized with both viruses rNDV-LS1-HN-RBD/SARS-CoV-2 + rNDV-LS1-S1-F/SARS-CoV-2 reached a neutralization titer of 1/40 at 100%, while the group that were immunized with rNDV-LS1-HN-RBD/SARS-CoV-2 had a titer of 1/20 at 100%, and only the rNDV-LS1-S1-F/SARS-CoV- 2 reached a titer of 1/160 to 100%, which indicates that the rNDV-LS1-S1-F/SARS-CoV-2 has caused a greater amount of neutralizing antibodies, this is possibly due to the fact that the S1 region presents other regions important antigenic epitopes of SARS-CoV-2 S (see results Table 2).
Tabla 2. Porcentajes de seroneutralización contra el SARS-CoV-2, obtenidos de un pool de sueros de hámsteres inmunizados con rNDV-LS1- HN-RBD/SARS-CoV-2 y rNDV-LS1-S1-F/SARS-CoV-2
Figure imgf000038_0001
Figure imgf000039_0001
Table 2. Percentages of serum neutralization against SARS-CoV-2, obtained from a pool of sera from hamsters immunized with rNDV-LS1-HN-RBD/SARS-CoV-2 and rNDV-LS1-S1-F/SARS-CoV- two
Figure imgf000038_0001
Figure imgf000039_0001
XI. Evaluación de IgG Anti-RBD del SARS-CoV-2 mediante ELISA indirecto XI. Evaluation of SARS-CoV-2 Anti-RBD IgG by indirect ELISA
[122] La presencia de las IgG anti RBD en los hámsteres vacunados se evaluó mediante un ELISA inirecto in house. Las microplacas fueron fijadas con 1ug/ml de proteína purificada RBD diluida en buffer carbonato, pH 9, durante toda la noche. Las placas se lavaron con tampón fosfato y tween (PBS-T) y se bloqueó con leche al 3% (PBS-T y leche 3%) (Difeo Skim Milk 232100), durante 2 horas en agitación a temperatura ambiente. Después del bloqueo, las placas se lavaron con PBS-T. Se agregó suero en las diluciones 1:100 para suero de Hámster y se incubó por 1 hora a 37°C. Como anticuerpo secundario se usó 100 pL de Anti-Hamster IgG (1 :28000) (Abcam 6892) conjugado con HRP. Se realizaron los lavados y se añadió el sustrato peroxidasa 3,3 ', 5,5'-tetrametilbencidina (TMB). Después de 15 minutos se procedió a detener la reacción con H2S04 2 N y se realizó la lectura de la absorbancia a 450 nm. Como control negativo se usó los sueros pre-inmunes y mock de cada tratamiento. [122] The presence of anti-RBD IgG in vaccinated hamsters was assessed by in-house indirect ELISA. The microplates were fixed with 1ug/ml of purified RBD protein diluted in carbonate buffer, pH 9, overnight. The plates were washed with phosphate buffer and tween (PBS-T) and blocked with 3% milk (PBS-T and 3% milk) (Difeo Skim Milk 232100), shaking for 2 hours at room temperature. After blocking, plates were washed with PBS-T. Serum was added at 1:100 dilutions for Hamster serum and incubated for 1 hour at 37°C. As secondary antibody, 100 pL of Anti-Hamster IgG (1:28000) (Abcam 6892) conjugated with HRP was used. Washes were performed and the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) was added. After 15 minutes, the reaction was stopped with 2N H 2 S0 4 and the absorbance was read at 450 nm. Pre-immune and mock sera from each treatment were used as negative control.
[123] Los resultados obtenidos demostraron que a los 30 días post lera inmunización se detectó que los grupos: # 2 (rNDV-LS1-S1-F/SARS-CoV- 2) presentaron un OD superior de 3.5, mientras que el grupo #3 (rNDV-LS1- HN-RBD/SARS-CoV-2 + rNDV-LS1-S1-F/SARS-CoV-2) presentó un OD de 1.8, mientras el grupo #1 (rNDV-LS1-HN-RBD/SARS-CoV-2) presentó un OD de 1.5 a diferencia del grupo #4 (grupo control no inmunizado) que presentó un OD de 0.02. [124] Estos resultados indican la capacidad de la vacuna de generar anticuerpos contra el SARS-CoV-2 (ver Figura 15). [123] The results obtained showed that 30 days after immunization it was detected that groups: # 2 (rNDV-LS1-S1-F/SARS-CoV-2) presented a higher OD of 3.5, while group # 3 (rNDV-LS1- HN-RBD/SARS-CoV-2 + rNDV-LS1-S1-F/SARS-CoV-2) presented an OD of 1.8, while group #1 (rNDV-LS1-HN-RBD/ SARS-CoV-2) presented an OD of 1.5, unlike group #4 (non-immunized control group) that presented an OD of 0.02. [124] These results indicate the ability of the vaccine to generate antibodies against SARS-CoV-2 (see Figure 15).
REFERENCIAS REFERENCES
Andersen, Kristian G. et al. 2020. “The Proximal Origin of SARS-CoV-2.” Nature Medicine 26(4): 450-52. Andersen, Kristian G. et al. 2020. “The Proximal Origin of SARS-CoV-2.” Nature Medicine 26(4): 450-52.
Cattoli, Giovanni, Leonardo Susta, Calogero Terregino, and Corrie Brown. 2011. “Newcastle Disease: A Review of Field Recognition and Current Methods of Laboratory Detection.” J. Vet. Diagn. Investigation 23(4): 637-56. Cattoli, Giovanni, Leonardo Susta, Calogero Terregino, and Corrie Brown. 2011. “Newcastle Disease: A Review of Field Recognition and Current Methods of Laboratory Detection.” J. Vet. Diag. Research 23(4): 637-56.
Chan, Jasper Fuk Woo et al. 2020. “Genomic Characterization of the 2019 Novel Human-Pathogenic Coronavirus Isolated from a Patient with Atypical Pneumonía after Visiting Wuhan.” Emerging Microbes and Infections 9(1): 221-36. Chan, Jasper Fuk Woo et al. 2020. “Genomic Characterization of the 2019 Novel Human-Pathogenic Coronavirus Isolated from a Patient with Atypical Pneumonia after Visiting Wuhan.” Emerging Microbes and Infections 9(1): 221-36.
Chumbe, Ana et al. 2017. “Development of a Novel Newcastle Disease Virus (NDV) Neutralization Test Based on Recombinant NDV Expressing Enhanced Green Fluorescent Protein.” Virology Journal 14(1): 1-11. Chumbe, Ana et al. 2017. “Development of a Novel Newcastle Disease Virus (NDV) Neutralization Test Based on Recombinant NDV Expressing Enhanced Green Fluorescent Protein.” Virology Journal 14(1): 1-11.
Coutard, B. et al. 2020. “The Spike Glycoprotein of the New Coronavirus 2019-NCoV Contains a Furin-like Cleavage Site Absent in CoV of the Same Clade.” Antiviral Research 176(February): 104742. https://doi.Org/10.1016/j.antiviral.2020.104742. Coutard, B. et al. 2020. “The Spike Glycoprotein of the New Coronavirus 2019-NCoV Contains a Furin-like Cleavage Site Absent in CoV of the Same Clade.” Antiviral Research 176(February): 104742. https://doi.Org/10.1016/j.antiviral.2020.104742.
Dimitrov, Kiril M., Claudio L. Afonso, Qingzhong Yu, and Patti J. Miller. 2016. “Newcastle Disease Vaccines — A Solved Problem or a Continuous Challenge?” Vet. Microbiol. 206: 126-36. http://dx.doi.Org/10.1016/j.vetmic.2016.12.019. Dimitrov, Kiril M., Claudio L. Afonso, Qingzhong Yu, and Patti J. Miller. 2016. “Newcastle Disease Vaccines—A Solved Problem or a Continuous Challenge?” Vet. microbiol. 206: 126-36. http://dx.doi.Org/10.1016/j.vetmic.2016.12.019.
Dolganiuc, V., L. McGinnes, E. J. Luna, and T. G. Morrison. 2003. “Role of the Cytoplasmic Domain of the NewcastleDisease Virus Fusión Protein in Association with LipidRafts.” Journal of Virology 77 (24): 12968-79. Dolganiuc, V., L. McGinnes, E. J. Luna, and T. G. Morrison. 2003. “Role of the Cytoplasmic Domain of the NewcastleDisease Virus Fusion Protein in Association with LipidRafts.” Journal of Virology 77 (24): 12968-79.
Gui, Miao et al. 2017. “Cryo- Electron Microscopy Structures of the SARS- CoV Spike Glycoprotein Reveal a Prerequisite Conformational State for Receptor Binding.” Cell Research 27(1): 119-29. Gui, Miao et al. 2017. “Cryo- Electron Microscopy Structures of the SARS-CoV Spike Glycoprotein Reveal a Prerequisite Conformational State for Receptor Binding.” Cell Research 27(1): 119-29.
Hoffmann, Markus et al. 2020. “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and ls Blocked by a Clinically Proven Protease Inhibitor.” Cell 181(2): 271-280.e8. Hoffman, Markus et al. 2020. “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and ls Blocked by a Clinically Proven Protease Inhibitor.” Cell 181(2): 271-280.e8.
Hu, Ben, Hua Guo, Peng Zhou, and Zheng Li Shi. 2020. “Characteristics of SARS-CoV-2 and COVID-19.” Nature Reviews Microbiology (December). http://dx.doi.org/10.1038/s41579-020-00459-7. Hu, Ben, Hua Guo, Peng Zhou, and Zheng Li Shi. 2020. “Characteristics of SARS-CoV-2 and COVID-19.” Nature Reviews Microbiology (December). http://dx.doi.org/10.1038/s41579-020-00459-7.
Huang, Chaolin et al. 2020. “Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China.” The Lancet 395(10223): 497-506. Huang, Chaolin et al. 2020. “Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China.” The Lancet 395(10223): 497-506.
Izquierdo-Lara, Ray et al. 2019. “Genotype-Matched Newcastle Disease Virus Vaccine Confers Improved Protection against Genotype XII Challenge: The Importance of Cytoplasmic Tails in Viral Replication and Vaccine Design.” bioRxiv 492421: 1-16. https://www.biorxiv.Org/content/10.1101/492421 v1. Izquierdo-Lara, Ray et al. 2019. “Genotype-Matched Newcastle Disease Virus Vaccine Confers Improved Protection against Genotype XII Challenge: The Importance of Cytoplasmic Tails in Viral Replication and Vaccine Design.” bioRxiv 492421: 1-16. https://www.biorxiv.org/content/10.1101/492421v1.
Kim, S.-H. et al. 2011. “Roles of the Fusión and Hemagglutinin-Kim, S.-H. et al. 2011. “Roles of the Fusion and Hemagglutinin-
Neuraminidase Proteins in Replication, Tropism, and Pathogenicity of Avian Paramyxoviruses.” Journal of Virology. Neuraminidase Proteins in Replication, Tropism, and Pathogenicity of Avian Paramyxoviruses.” Journal of Virology.
Kirchdoerfer, Robert N. et al. 2018. “Stabilized Coronavirus Spikes Are Resistant to Conformational Changes Induced by Receptor Recognition or Proteolysis.” Scientific Reports 8(1): 1-11. http://dx.doi.Org/10.1038/S41598-018-34171-7. Kirchdoerfer, Robert N. et al. 2018. “Stabilized Coronavirus Spikes Are Resistant to Conformational Changes Induced by Receptor Recognition or Proteolysis.” Scientific Reports 8(1): 1-11. http://dx.doi.org/10.1038/S41598-018-34171-7.
Kumar, S., B. Nayak, P. L. Collins, and S. K. Samal. 2011. “Evaluation of the Newcastle Disease Virus F and HN Proteins in Protective Immunity by Using a Recombinant Avian Paramyxovirus Type 3 Vector in Chickens.” Journal of Virology 85(13): 6521-34. Kumar, S., B. Nayak, P. L. Collins, and S. K. Samal. 2011. “Evaluation of the Newcastle Disease Virus F and HN Proteins in Protective Immunity by Using a Recombinant Avian Paramyxovirus Type 3 Vector in Chickens.” Journal of Virology 85(13): 6521-34.
Letko, Michael, Andrea Marzi, and Vincent Munster. 2020. “Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses.” Nature Microbiology 5(4): 562- 69. http://dx. doi . org/10.1038/s41564-020-0688-y . Letko, Michael, Andrea Marzi, and Vincent Munster. 2020. “Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses.” Nature Microbiology 5(4): 562-69. http://dx. doi . org/10.1038/s41564-020-0688-y.
Liu, Kui et al. 2020. “Clinical Characteristics of Novel Coronavirus Cases in Tertiary Hospitals in Hubei Province.” Chínese medical journal 133(9): 1025-31. Liu, Kui et al. 2020. “Clinical Characteristics of Novel Coronavirus Cases in Tertiary Hospitals in Hubei Province.” Chinese medical journal 133(9): 1025-31.
Lu, Roujian et al. 2020. “Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding.” The Lancet 395(10224): 565-74. http://dx.doi. org/10.1016/S0140-6736(20)30251-8. Lu, Roujian et al. 2020. “Genomic Characterization and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding.” The Lancet 395(10224): 565-74. http://dx.doi. org/10.1016/S0140-6736(20)30251-8.
Pantua, H. D., L. W. McGinnes, M. E. Peeples, and T. G. Morrison. 2006. “Requirements for the Assembly and Release of Newcastle Disease Virus-Like Partióles.” Journal of Virology. Pantua, H.D., L.W. McGinnes, M.E. Peeples, and T.G. Morrison. 2006. “Requirements for the Assembly and Release of Newcastle Disease Virus-Like Parties.” Journal of Virology.
Peeters, B. P.H., Y. K. Gruijthuijsen, O. S. De Leeuw, and A. L.J. Peeters, B.P.H., Y.K. Gruijthuijsen, O.S. De Leeuw, and A.L.J.
Gielkens. 2000. “Genome Replication of Newcastle Disease Virus: Involvement of the Rule-of-Six.” Archives of Virology 145(9): 1829-45.Gielkens. 2000. “Genome Replication of Newcastle Disease Virus: Involvement of the Rule-of-Six.” Archives of Virology 145(9): 1829-45.
Rohaim, Mohammed A, and Muhammad Muñir. 2020. “A Scalable Topical Vectored Vaccine Candidate Against SARS-CoV-2.” bioRxiv (June): 2020.05.31.126524. Rohaim, Mohammed A, and Muhammad Munir. 2020. “A Scalable Topical Vectored Vaccine Candidate Against SARS-CoV-2.” bioRxiv (June): 2020.05.31.126524.
Song, Wenfei, Miao Gui, Xinquan Wang, and Ye Xiang. 2018. “Cryo-EM Structure of the SARS Coronavirus Spike Glycoprotein in Complex with Its Host Cell Receptor ACE2.” PLoS Pathogens 14(8): 1-19.Song, Wenfei, Miao Gui, Xinquan Wang, and Ye Xiang. 2018. “Cryo-EM Structure of the SARS Coronavirus Spike Glycoprotein in Complex with Its Host Cell Receptor ACE2.” PLoS Pathogens 14(8): 1-19.
Su, Shuo et al. 2016. “Epidemiology, Genetic Recombination, andSu, Shuo et al. 2016. “Epidemiology, Genetic Recombination, and
Pathogenesis of Coronaviruses.” Trends in Microbiology 24(6): 490- 502. Pathogenesis of Coronaviruses.” Trends in Microbiology 24(6): 490-502.
Tian, Xiaolong et al. 2020. “Potent Binding of 2019 Novel Coronavirus Spike Protein by a SARS Coronavirus-Specific Human Monoclonal Antibody.” bioRxiv 9. Tian, Xiaolong et al. 2020. “Potent Binding of 2019 Novel Coronavirus Spike Protein by a SARS Coronavirus-Specific Human Monoclonal Antibody.” bioRxiv 9.
Walls, Alexandra C. et al. 2020. “Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.” Cell 181(2): 281-292. e6. http://dx.doi.Org/10.1016/j.cell.2020.02.058. Walls, Alexandra C. et al. 2020. “Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.” Cell 181(2): 281-292. e6. http://dx.doi.org/10.1016/j.cell.2020.02.058.
Wang, Dawei et al. 2020. “Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-lnfected Pneumonía in Wuhan, China.” JAMA - Journal ofthe American Medical Association 323(11): 1061-69. Wang, Dawei et al. 2020. “Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-lnfected Pneumonia in Wuhan, China.” JAMA - Journal of the American Medical Association 323(11): 1061-69.
Wu, Fan et al. 2020. “A New Coronavirus Associated with Human Respiratory Disease in China.” Nature 579(7798): 265-69. Wu, Fan et al. 2020. “A New Coronavirus Associated with Human Respiratory Disease in China.” Nature 579(7798): 265-69.
Yang, Jingyun et al. 2020. “A Vaccine Targeting the RBD of the S Protein of SARS-CoV-2 Induces Protective Immunity.” Nature 586(7830): 572-77. Yang, Jingyun et al. 2020. “A Vaccine Targeting the RBD of the S Protein of SARS-CoV-2 Induces Protective Immunity.” Nature 586(7830): 572-77.
Yuan, Yuan et al. 2017. “Cryo-EM Structures of MERS-CoV and SARS- CoV Spike Glycoproteins Reveal the Dynamic Receptor Binding Domains.” Nature Communications 8(China CDC): 1-9. Yuan, Yuan et al. 2017. “Cryo-EM Structures of MERS-CoV and SARS-CoV Spike Glycoproteins Reveal the Dynamic Receptor Binding Domains.” Nature Communications 8(China CDC): 1-9.
Zhou, Hong et al. 2020. “A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein.” Current Biology 30(11): 2196-2203. e3. https://doi.Org/10.1016/j.cub.2020.05.023. Zhu, Hong et al. 2020. “A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein.” Current Biology 30(11): 2196-2203. e3. https://doi.org/10.1016/j.cub.2020.05.023.
Zhou, Peng et al. 2020. “A Pneumonía Outbreak Associated with a New Coronavirus of Probable Bat Origin.” Nature 579(7798): 270-73. http://dx.doi . org/10.1038/s41586-020-2012-7. Zhou, Peng et al. 2020. “A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin.” Nature 579(7798): 270-73. http://dx.doi. org/10.1038/s41586-020-2012-7.
Zhu, Na et al. 2020. “A Novel Coronavirus from Patients with Pneumonía in China, 2019.” New England Journal of Medicine 382(8): 727-33. Zhu, Na et al. 2020. “A Novel Coronavirus from Patients with Pneumonia in China, 2019.” New England Journal of Medicine 382(8): 727-33.

Claims

REIVINDICACIONES
1. Una composición inmunogénica viva recombinante que comprende el virus de la enfermedad de Newcastle (NDV) recombinante que expresa la subunidad S1 y el RBD de la proteína S del SARS-CoV- 2 caracterizada porque comprende un virus recombinante denominado rNDV-LS1-HN-RBD/SARS-CoV-2 de SEQ ID No. 7, un virus recombinante denominado rNDV-LS1-S1-F/SARS-CoV-2 de SEQ ID No. 13 o una mezcla de los mismos. 1. A recombinant live immunogenic composition comprising the recombinant Newcastle disease virus (NDV) expressing the S1 subunit and the RBD of the S protein of SARS-CoV-2 characterized in that it comprises a recombinant virus called rNDV-LS1-HN -RBD/SARS-CoV-2 of SEQ ID No. 7, a recombinant virus called rNDV-LS1-S1-F/SARS-CoV-2 of SEQ ID No. 13 or a mixture thereof.
2. La composición inmunogénica viva recombinante de acuerdo con la reivindicación 1 caracterizada porque comprende el virus recombinante denominado rNDV-LS1-HN-RBD/SARS-CoV-2 de SEQ ID No. 7. 2. The recombinant live immunogenic composition according to claim 1, characterized in that it comprises the recombinant virus called rNDV-LS1-HN-RBD/SARS-CoV-2 of SEQ ID No. 7.
3. La composición inmunogénica viva recombinante de acuerdo con la reivindicación 1 caracterizada porque comprende el virus recombinante denominado rNDV-LS1-S1-F/SARS-CoV-2 de SEQ ID No. 13. 3. The recombinant live immunogenic composition according to claim 1, characterized in that it comprises the recombinant virus called rNDV-LS1-S1-F/SARS-CoV-2 of SEQ ID No. 13.
4. La composición inmunogénica viva recombinante de acuerdo con la reivindicación 1 caracterizada porque comprende el virus recombinante rNDV-LS1-HN-RBD/SARS-CoV-2 de SEQ ID No. 7 y el virus recombinante rNDV-LS1-S1-F/SARS-CoV-2 de SEQ ID No. 13 en combinación en la misma composición inmunogénica. 4. The recombinant live immunogenic composition according to claim 1, characterized in that it comprises the recombinant virus rNDV-LS1-HN-RBD/SARS-CoV-2 of SEQ ID No. 7 and the recombinant virus rNDV-LS1-S1-F/ SARS-CoV-2 of SEQ ID No. 13 in combination in the same immunogenic composition.
5. La composición inmunogénica viva recombinante de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada porque comprende, además un adyuvantes, excipientes o vehículos farmacéuticamente aceptables. 5. The recombinant live immunogenic composition according to any of the preceding claims, characterized in that it also comprises pharmaceutically acceptable adjuvants, excipients or vehicles.
6. La composición inmunogénica viva recombinante de acuerdo con la reivindicación 5, caracterizada porque los adyuvantes se seleccionan del grupo que consiste de saponinas, anticuerpos agonistas para moléculas coestimuladoras, adyuvante de Freund, muramil dipéptido (MDP), DNA bacteriano (oligo CpG), lipo- polisacáridos (LPS), MPL (Monofosforil lipido A) y derivados sintéticos, lipopéptidos, liposomas, escualeno, Quillaja y surfactantes. 6. The recombinant live immunogenic composition according to claim 5, characterized in that the adjuvants are selected from the group consisting of saponins, agonistic antibodies to costimulatory molecules, Freund's adjuvant, muramyl dipeptide (MDP), bacterial DNA (oligo CpG), lipopolysaccharides (LPS), MPL (Monophosphoryl lipid A) and synthetic derivatives, lipopeptides, liposomes, squalene, Quillaja and surfactants.
7. La composición inmunogénica viva recombinante de acuerdo con la reivindicación 5, caracterizada porque el vehículo farmacéuticamente aceptable se selecciona del grupo que consiste de agua estéril, solución de Ringer y solución isotónica de cloruro de sodio. 7. The recombinant live immunogenic composition according to claim 5, characterized in that the pharmaceutically acceptable vehicle is selected from the group consisting of sterile water, Ringer's solution and isotonic sodium chloride solution.
8. La composición inmunogénica viva recombinante de acuerdo con cualquiera de las reivindicaciones anteriores caracterizada porque es una composición intranasal. 8. The recombinant live immunogenic composition according to any of the preceding claims, characterized in that it is an intranasal composition.
9. Un método para controlar la infección causada por el SARS-CoV-2 mediante la administración a mamíferos de una composición inmunogénica viva recombinante o vacuna viva recombinante que comprende un virus recombinante rNDV-LS1-HN-RBD/SARS-CoV- 2 caracterizado por la SEQ ID No. 7 y un virus recombinante rNDV- LS1-S1-F/SARS-CoV-2 caracterizado por la SEQ ID No. 13 en combinación en una misma composición inmunogénica viva recombinante o vacuna viva. 9. A method for controlling the infection caused by SARS-CoV-2 by administering to mammals a live recombinant immunogenic composition or live recombinant vaccine comprising a recombinant rNDV-LS1-HN-RBD/SARS-CoV-2 virus characterized by SEQ ID No. 7 and a recombinant virus rNDV-LS1-S1-F/SARS-CoV-2 characterized by SEQ ID No. 13 in combination in the same recombinant live immunogenic composition or live vaccine.
PCT/IB2022/050031 2021-01-08 2022-01-04 Recombinant live immunogenic composition comprising newcastle disease virus (ndv) expressing the s1 subunit and the rbd of the spike protein of sars-cov-2 WO2022149058A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112022016492A BR112022016492A2 (en) 2021-01-08 2022-01-04 RECOMBINANT LIVE IMMUNOGENIC COMPOSITION COMPRISING NEWCASTLE DISEASE VIRUS (NDV) EXPRESSING THE S1 SUBUNIT AND RBD OF THE SARS-COV-2 SPIKE PROTEIN
MX2022004220A MX2022004220A (en) 2021-01-08 2022-01-04 Recombinant live immunogenic composition comprising newcastle disease virus (ndv) expressing the s1 subunit and the rbd of the spike protein of sars-cov-2.
CONC2022/0010353A CO2022010353A2 (en) 2021-01-08 2022-07-22 Recombinant live immunogenic composition comprising the newcastle disease virus (ndv) expressing the s1 subunit and the rbd of the sars-cov-2 spike protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PE000033-2021/DIN 2021-01-08
PE2021000033A PE20210318A1 (en) 2021-01-08 2021-01-08 RECOMBINANT LIVE IMMUNOGENIC COMPOSITION INCLUDING NEWCASTLE DISEASE VIRUS (NDV) EXPRESSING THE S1 SUBUNIT AND THE SPIKE PROTEIN RBD OF SARS-COV-2

Publications (1)

Publication Number Publication Date
WO2022149058A1 true WO2022149058A1 (en) 2022-07-14

Family

ID=74855966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/050031 WO2022149058A1 (en) 2021-01-08 2022-01-04 Recombinant live immunogenic composition comprising newcastle disease virus (ndv) expressing the s1 subunit and the rbd of the spike protein of sars-cov-2

Country Status (7)

Country Link
AR (1) AR124522A1 (en)
BR (1) BR112022016492A2 (en)
CO (1) CO2022010353A2 (en)
EC (1) ECSP22064620A (en)
MX (1) MX2022004220A (en)
PE (1) PE20210318A1 (en)
WO (1) WO2022149058A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251034A1 (en) * 2005-12-02 2010-11-17 Mount Sinai School of Medicine of New York University Chimeric Newcastle Disease viruses presenting non-native surface proteins and uses thereof
CN112011521A (en) * 2020-06-15 2020-12-01 浙江迪福润丝生物科技有限公司 Novel recombinant newcastle disease virus vector coronavirus vaccine candidate strain as well as construction method and application thereof
WO2021229311A1 (en) * 2020-05-13 2021-11-18 Laboratorio Avi-Mex, S.A. De C.V. Recombinant vaccine against covid-19 based on a paramyxovirus viral vector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2251034A1 (en) * 2005-12-02 2010-11-17 Mount Sinai School of Medicine of New York University Chimeric Newcastle Disease viruses presenting non-native surface proteins and uses thereof
WO2021229311A1 (en) * 2020-05-13 2021-11-18 Laboratorio Avi-Mex, S.A. De C.V. Recombinant vaccine against covid-19 based on a paramyxovirus viral vector
CN112011521A (en) * 2020-06-15 2020-12-01 浙江迪福润丝生物科技有限公司 Novel recombinant newcastle disease virus vector coronavirus vaccine candidate strain as well as construction method and application thereof

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHUMBE ANA, IZQUIERDO-LARA RAY, CALDERÓN KATHERINE, FERNÁNDEZ-DÍAZ MANOLO, VAKHARIA VIKRAM N.: "Development of a novel Newcastle disease virus (NDV) neutralization test based on recombinant NDV expressing enhanced green fluorescent protein", VIROLOGY JOURNAL, vol. 14, no. 1, 1 December 2017 (2017-12-01), XP055954047, DOI: 10.1186/s12985-017-0900-8 *
DÍAZ MANOLO FERNANDEZ, ET EL: "Development and pre-clinical evaluation of Newcastle disease virus-vectored SARS-CoV-2 intranasal vaccine candidate", BIORXIV, 10 March 2021 (2021-03-10), pages 1 - 53, XP055954045, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2021.03.07.434276v2.full.pdf> [retrieved on 20220823], DOI: 10.1101/2021.03.07.434276 *
DINAPOLI, J. ET AL.: "Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 104, no. 23, 2007, pages 9788 - 9793, XP055115670, DOI: 10.1073/pnas.0703584104 *
LARA-PUENTE JESÚS HORACIO, ET AL: "Safety and Immunogenicity of a Newcastle Disease Virus Vector-Based SARS-CoV-2 Vaccine Candidate, AVX/COVID-12-HEXAPRO (Patria), in Pigs", MBIO, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 12, no. 5, 26 October 2021 (2021-10-26), US , pages e0190821 - e0190821, XP055954046, ISSN: 2150-7511, DOI: 10.1128/mBio.01908-21 *
ROHAIM MOHAMMED A., MUNIR MUHAMMAD: "A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2", VACCINES, vol. 8, no. 3, pages 472, XP055954048, DOI: 10.3390/vaccines8030472 *
SHIRVANI EDRIS, SAMAL SIBA K.: "Newcastle Disease Virus as a Vaccine Vector for SARS-CoV-2", PATHOGENS, vol. 9, no. 8, 29 July 2020 (2020-07-29), pages 619 - 626, XP055954050, DOI: 10.3390/pathogens9080619 *
SUN, W. ET AL.: "Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate", EBIOMEDICINE, vol. 62, no. 10313 2, 2020, XP055872539, DOI: 10.1016/j.ebiom.2020.103132 *
WANG YUNFEI, WANG LICHUN, CAO HAN, LIU CUNBAO: "SARS‐CoV‐2 S1 is superior to the RBD as a COVID‐19 subunit vaccine antigen", JOURNAL OF MEDICAL VIROLOGY, JOHN WILEY & SONS, INC., US, vol. 93, no. 2, 1 February 2021 (2021-02-01), US , pages 892 - 898, XP055954044, ISSN: 0146-6615, DOI: 10.1002/jmv.26320 *
YANG, Y. ET AL.: "Newcastle Disease Virus-Like Particles Displaying Prefusion-Stabilized SARS-CoV-2 Spikes Elicit Potent Neutralizing Responses", VACCINES, vol. 9, no. 2, 2021, pages 73, XP055806654, DOI: 10.3390/vaccines9020073 *

Also Published As

Publication number Publication date
MX2022004220A (en) 2022-08-08
ECSP22064620A (en) 2022-09-30
AR124522A1 (en) 2023-04-05
BR112022016492A2 (en) 2023-10-31
PE20210318A1 (en) 2021-02-16
CO2022010353A2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
US11542527B2 (en) Parainfluenza virus 5 based vaccines
ES2655051T3 (en) Influenza virus with mutant PB2 gene segment as live attenuated vaccines
US20190358316A1 (en) Infectious bronchitis virus vaccine using newcastle disease viral vector
JP2023524990A (en) Recombinant Newcastle disease virus expressing SARS-CoV-2 spike protein and uses thereof
EP3103474A1 (en) Live recombinant measles-m2 virus and its use in eliciting immunity against influenza viruses
US20240082386A1 (en) Methods for immunizing pre-immune subjects against respiratory syncytial virus (rsv)
US20160030550A1 (en) Compositions, vectors, kits, and methods for immunizing against avian infectious bronchitis virus
Le et al. Induction of influenza-specific mucosal immunity by an attenuated recombinant Sendai virus
Park et al. Intranasal immunization with avian paramyxovirus type 3 expressing SARS-CoV-2 spike protein protects hamsters against SARS-CoV-2
US10383936B2 (en) Infectious laryngotracheitis virus (ILTV) vaccine using recombinant newcastle disease virus vector
WO2022149058A1 (en) Recombinant live immunogenic composition comprising newcastle disease virus (ndv) expressing the s1 subunit and the rbd of the spike protein of sars-cov-2
WO2015013178A1 (en) Infectious laryngotracheitis virus (iltv) vaccine using recombinant newcastle disease virus vector
US20240000920A1 (en) Recombinant vectors encoding chimeric coronavirus spike proteins and use thereof
US20220396809A1 (en) Engineered newcastle disease virus vector and uses thereof
Huertas-Diaz Developing Vaccines Using the Amplifying Virus-Like Particle System Based on Parainfluenza Virus 5
US10232033B2 (en) Respiratory syncytial virus vaccine
Subbarao SARS vaccines
Dubois et al. New mucosal bivalent live-attenuated vaccine is protective against Human Metapneumovirus and Respiratory Syncytial Virus
CN116685347A (en) Recombinant vector for encoding chimeric coronavirus spike protein and application thereof
Jingjiao et al. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus
Ogonczyk-Makowska et al. New Mucosal Bivalent Live-Attenuated Vaccine is Protective Against Human Metapneumovirus and Respiratory Syncytial Virus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736680

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016492

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022016492

Country of ref document: BR

Free format text: COM BASE NA PORTARIA 405 DE 21/12/2020, SOLICITA-SE QUE SEJA APRESENTADO, EM ATE 60 (SESSENTA) DIAS, NOVO CONTEUDO DE LISTAGEM DE SEQUENCIA POIS O CONTEUDO APRESENTADO NA PETICAO NO 870220074335 DE 18/08/2022 NAO ESTA NO FORMATO ST.25. (CAMPO 151 FORA DO PADRAO)DEVERA SER INCLUIDO O CAMPO 140 / 141 UMA VEZ QUE O DEPOSITANTE JA POSSUI O NUMERO DO PEDIDO NO BRASIL.

ENP Entry into the national phase

Ref document number: 112022016492

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220818

122 Ep: pct application non-entry in european phase

Ref document number: 22736680

Country of ref document: EP

Kind code of ref document: A1