WO2022148261A1 - 可调耦合器及其校准方法和装置、量子测控系统 - Google Patents

可调耦合器及其校准方法和装置、量子测控系统 Download PDF

Info

Publication number
WO2022148261A1
WO2022148261A1 PCT/CN2021/141637 CN2021141637W WO2022148261A1 WO 2022148261 A1 WO2022148261 A1 WO 2022148261A1 CN 2021141637 W CN2021141637 W CN 2021141637W WO 2022148261 A1 WO2022148261 A1 WO 2022148261A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
bias voltage
superconducting qubit
superconducting
data
Prior art date
Application number
PCT/CN2021/141637
Other languages
English (en)
French (fr)
Inventor
孔伟成
Original Assignee
合肥本源量子计算科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥本源量子计算科技有限责任公司 filed Critical 合肥本源量子计算科技有限责任公司
Priority to US18/271,091 priority Critical patent/US20240077524A1/en
Priority to EP21917301.0A priority patent/EP4266066A4/en
Publication of WO2022148261A1 publication Critical patent/WO2022148261A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the present disclosure relates to the technical field of quantum computing, and in particular, to a tunable coupler, a calibration method and device thereof, a quantum measurement and control system, and a readable storage medium.
  • two superconducting qubits are coupled through a fixed capacitive coupling and a tunable coupler that can adjust the coupling coefficient.
  • the coupling parameter can be positive or negative, so under certain parameters, the effect of completely turning off the coupling can be achieved.
  • the working principle of the tunable coupler is to change the effective coupling between two superconducting qubits by adjusting the frequency of the tunable coupler, thereby achieving isolation, or two-bit gate operation. Therefore, in the research and development stage of the tunable coupler, we need to know the exact corresponding relationship between the effective coupling and the frequency of the tunable coupler, so as to realize the calibration of the working point of the tunable coupler.
  • the tunable coupler is regarded as a superconducting qubit, and its energy spectrum is measured.
  • the inventor found that the frequency characterization of the tunable coupler in the prior art requires an additional single-cavity multi-bit joint reading technology, and in the energy spectrum experiment, a frequency source that can actually reach the operating frequency of the tunable coupler is required. , greatly increasing the cost of the entire hardware system.
  • the purpose of the present disclosure is to provide a tunable coupler and its calibration method and device, a quantum measurement and control system, and a readable storage medium, which are used to solve the problem in the prior art that directly characterizing the frequency of the tunable coupler will increase the cost of the hardware system .
  • the present disclosure provides a method for calibrating a tunable coupler.
  • the tunable coupler is used for coupling between two superconducting qubits, where the two superconducting qubits are a first superconducting qubit and a second superconducting qubit respectively. bit;
  • the calibration method includes the following steps:
  • a Ramsey interference experiment is performed on the first superconducting qubit to obtain the first frequency of the first superconducting qubit ;
  • the bias voltage corresponding to the first frequency is obtained as a first bias voltage, and the bias voltage of the adjustable coupler is set as the first bias voltage a bias voltage.
  • the first frequencies of qubits including:
  • the frequency of the first superconducting qubit is the first frequency.
  • the frequency of the first superconducting qubit is the first frequency, including:
  • the pulse voltage corresponding to when the result of the Ramsey interference experiment of the first superconducting qubit varies minimally with the change of the pulse voltage is the first pulse voltage
  • the frequency of the first superconducting qubit corresponding to the second data is obtained as the first frequency.
  • the method before acquiring the first frequency, the method further includes:
  • a degeneracy point of the adjustable coupler is acquired, and the bias voltage is set to a value corresponding to the degeneracy point.
  • the method before acquiring the first frequency, the method further includes:
  • the first parameter calibration is performed on the two superconducting qubits; wherein, the parameter calibration includes frequency calibration, logic gate operation parameter calibration and measurement parameter calibration.
  • the method further includes:
  • the adjusting the size of the bias voltage includes:
  • the bias voltage is adjusted by using a gradient descent method, a Newton method, a random walk method, or an evolution strategy method.
  • the method before preparing the quantum states of any one of the two superconducting qubits to
  • the parameter calibration is performed a second time on the two superconducting qubits, wherein the parameter calibration includes frequency calibration, logic gate operation parameter calibration and measurement parameter calibration.
  • the pulse voltage of the tunable coupler is changed between two ⁇ /2 quantum logic gates in the Ramsey interference experiment.
  • the present disclosure also provides a calibration device for a tunable coupler, where the tunable coupler is used for coupling between two superconducting qubits, where the two superconducting qubits are a first superconducting qubit and a second superconducting qubit respectively quantum bit;
  • the calibration device includes:
  • a first data acquisition unit configured to acquire first data in which the frequency of the first superconducting qubit varies with the bias voltage of the tunable coupler
  • a first frequency acquisition unit configured to perform a Ramsey interference experiment on the first superconducting qubit based on the quantum state of the second superconducting qubit and the pulse voltage of the tunable coupler, and acquire the first frequency of the first superconducting qubit;
  • a first bias voltage obtaining unit is configured to obtain, based on the first data and the first frequency, the bias voltage corresponding to the first frequency as a first bias voltage, and use the available The bias voltage of the regulated coupler is set to the first bias voltage.
  • a first difference acquisition unit which is configured to prepare the quantum state of either one of the two superconducting qubits to
  • a judgment unit configured to judge whether the first difference is within a preset range
  • a processing unit which is configured to set the bias voltage as the working point of the adjustable coupler if the result from the judging unit is that the first difference is within a preset range;
  • the result from the judging unit is that the first difference is not within the preset range, adjust the magnitude of the bias voltage, and send the adjusted bias voltage to the first difference an acquiring unit, so that the first difference acquiring unit performs the preparing the quantum state of any one of the two superconducting qubits to
  • the present disclosure also proposes a tunable coupler, which is used for coupling between two superconducting qubits, where the two superconducting qubits are a first superconducting qubit and a second superconducting qubit respectively bit;
  • the adjustable coupler is calibrated as follows:
  • a Ramsey interference experiment is performed on the first superconducting qubit to obtain the first frequency of the first superconducting qubit ;
  • the bias voltage corresponding to the first frequency is obtained as a first bias voltage, and the bias voltage of the adjustable coupler is set as the first bias voltage a bias voltage.
  • the present disclosure also proposes a quantum measurement and control system, including the tunable coupler described in the above feature description.
  • the present disclosure also provides a readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for calibrating an adjustable coupler described in any one of the above feature descriptions can be implemented.
  • the embodiments of the present disclosure may have the following beneficial effects:
  • the first step is to obtain first data of the frequency of the first superconducting qubit changing with the bias voltage of the tunable coupler;
  • the quantum state, the pulse voltage of the adjustable coupler, the Ramsey interference experiment is performed on the first superconducting qubit, and the first frequency of the first superconducting qubit is obtained, wherein the first frequency is the result of the Ramsey interference experiment described in the first section.
  • the quantum states of the two superconducting qubits are in
  • the first bias voltage obtained at this time is the operating point of the tunable coupler that we need.
  • the frequency of the tunable coupler is not directly characterized.
  • the magnetic flux bias that is, the bias voltage and the pulse voltage
  • the calibration method proposed in the present disclosure does not need to consider the problem of how to characterize the frequency of the tunable coupler, so it does not depend on the frequency source of the operating frequency of the tunable coupler, which effectively saves the cost of the entire hardware system.
  • the calibration device, tunable coupler, quantum measurement and control system, and readable storage medium proposed in the present disclosure are similar to the calibration method of the tunable coupler, and therefore have similar beneficial effects, which will not be repeated here. .
  • FIG. 1 is a schematic flowchart of a method for calibrating an adjustable coupler according to the first embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of another method for calibrating an adjustable coupler according to Embodiment 2 of the present disclosure
  • FIG. 3 is a schematic diagram of first data in an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of second data and third data in an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a calibration device for an adjustable coupler proposed in Embodiment 3 of the present disclosure
  • FIG. 5 10 - calibration device, 101 - first data acquisition unit, 102 - first frequency acquisition unit, 103 - first bias voltage acquisition unit.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • “plurality” means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • the Ramsey interference experiment refers to applying two ⁇ /2 quantum logic gate operations to a qubit, and the time interval between the two operations is ⁇ , and at the same time, the qubit is read after the second ⁇ /2 quantum logic gate operation.
  • P 1 ( ⁇ ) is a mathematical model that satisfies exponential oscillation decay with time interval ⁇ as follows:
  • Equation 1 A and B are the fitting coefficients, T 0 is the decoherence time of the qubit, f d is the carrier frequency of the microwave pulse signal corresponding to the operation of the ⁇ /2 quantum logic gate, and f 0 is the oscillation frequency of the qubit , and f 0 and the real frequency f q of the qubit, the carrier frequency of the ⁇ /2 quantum logic gate operation satisfies:
  • the result of the Ramsey interference experiment that is, the oscillation frequency of the curve is equal to the difference between the carrier frequency of the quantum logic gate operation and the real frequency of the qubit, so the Ramsey interference experiment can be used in addition to In addition to obtaining the decoherence time of the qubit, the true frequency of the qubit can also be accurately obtained at the same time.
  • an embodiment of the present disclosure proposes a method for calibrating a tunable coupler.
  • the tunable coupler is used for coupling between two superconducting qubits, where the two superconducting qubits are the first superconducting qubits respectively. bit and a second superconducting qubit.
  • FIG. 1 is a schematic flowchart of the calibration method of the adjustable coupler in this embodiment. It can be seen from FIG. 1 that the calibration method includes the following steps:
  • S104 Based on the quantum state of the second superconducting qubit and the pulse voltage of the tunable coupler, perform a Ramsey interference experiment on the first superconducting qubit to obtain the first superconducting qubit of the first superconducting qubit. a frequency;
  • S106 Based on the first data and the first frequency, obtain the bias voltage corresponding to the first frequency as a first bias voltage, and set the bias voltage of the adjustable coupler to be the first bias voltage.
  • the calibration method proposed in this embodiment is different from the prior art in that it does not directly characterize the frequency of the tunable coupler. and pulse voltage) to set correspondingly, complete the calibration of the adjustable coupler, and obtain the working point where the effective coupling of the adjustable coupler is in the closed state.
  • the calibration method proposed in the present disclosure does not need to consider the problem of how to characterize the frequency of the tunable coupler, so it does not depend on the frequency source of the operating frequency of the tunable coupler, which effectively saves the cost of the entire hardware system.
  • the magnetic flux bias includes the cumulative result of the static bias voltage and the dynamic pulse voltage.
  • the pulse voltage of the adjustable coupler should be included in the two steps of the Ramsey interference experiment. ⁇ /2 quantum logic gates change over time.
  • the frequency of the first superconducting qubit can be obtained through a qubit energy spectrum experiment
  • the qubit energy spectrum measurement experiment refers to applying a read pulse signal with a frequency interval to a qubit , wherein the frequency interval includes a plurality of frequency values with intervals.
  • FIG. 3 is a schematic diagram of the first data according to an embodiment of the present disclosure.
  • the abscissa is the bias voltage of the tunable coupler, and the ordinate is the frequency of the first superconducting qubit.
  • the first data can be considered as a mapping relationship or functional relationship, and this mapping relationship or functional relationship includes two parameters, which are the first superconductor
  • the frequency of the qubit and the bias voltage of the tunable coupler as long as the frequency of one of the first superconducting qubits is determined, a corresponding bias voltage can be obtained, and vice versa.
  • a Ramsey interference experiment is performed on the first superconducting qubit to obtain all the the first frequency of the first superconducting qubit.
  • the quantum state of the second superconducting qubit mentioned here means that the quantum states of the second superconducting qubit are in
  • the step 104 may include:
  • the second data obtained in the step S1041 and the third data obtained in the step S1042 are used to obtain the first frequency.
  • the The order of obtaining the second data and the third data is not limited.
  • the second data may be obtained first and then the third data may be obtained, or the third data may be obtained first and then the second data may be obtained.
  • the specific selection can be made according to actual needs, which is not limited here.
  • step S1043 may specifically include:
  • the pulse voltage corresponding to when the result of the Ramsey interference experiment of the first superconducting qubit varies minimally with the change of the pulse voltage is the first pulse voltage
  • the frequency of the first superconducting qubit corresponding to the second data is obtained as the first frequency.
  • step S1043 obtain the pulse voltage corresponding to the minimum change in the result of the Ramsey interference experiment of the first superconducting qubit with the change of the pulse voltage.
  • the second data can be understood as when the quantum state of the second superconducting qubit is in
  • the frequency of the first superconducting qubit and the pulse voltage of the tunable coupler as long as one pulse voltage is determined, the first superconducting qubit corresponding to the quantum state of the second superconducting qubit can be obtained when
  • the third data can be understood as a mapping relationship between the frequency of the first superconducting qubit and the pulse voltage of the tunable coupler when the quantum state of the second superconducting qubit is in
  • the mapping relationship or functional relationship here includes two parameters, which are the frequency of the first superconducting qubit and the pulse voltage of the tunable coupler when the superconducting qubit is in the quantum state
  • FIG. 4 is a schematic diagram of a second data and a third data proposed in an embodiment of the disclosure.
  • the abscissa of FIG. 4 is the pulse voltage of the adjustable coupler.
  • the ordinate is the frequency of the first superconducting qubit
  • the solid line part in FIG. 4 is the frequency of the first superconducting qubit when the quantum state of the second superconducting qubit is at
  • the dotted line part is the frequency of the first superconducting qubit is the frequency of the first superconducting qubit when the quantum state of the second superconducting qubit is in
  • How to use the second data and the third data to obtain the first pulse voltage can be understood as: when the quantum state of the second superconducting qubit is in
  • the quantum state of the second superconducting qubit is in
  • the frequency of the first superconducting qubit can be oscillated through the results of the Ramsey interference experiment Frequency calibration, that is, using the second data when the pulse voltage of the tunable coupler is V2 and the quantum state of the second qubit is
  • the frequency of a superconducting qubit ie, the first frequency).
  • a degeneracy point of the adjustable coupler is acquired, and the bias voltage is set to a value corresponding to the degeneracy point.
  • setting the bias voltage at the degenerate point before acquiring the first frequency is to facilitate the reference parameters required in subsequent steps, and does not mean that it is necessary to obtain all the parameters before acquiring the first frequency.
  • the bias voltage is set at the degenerate point before the first frequency. In other embodiments, the bias voltage may also be set at other positions, which is not limited here.
  • the following steps may also be performed:
  • S101 Perform a first parameter calibration on the two superconducting qubits; wherein, the parameter calibration includes frequency calibration, logic gate operation parameter calibration, and measurement parameter calibration.
  • Step S101 and step S102 are not in order, that is, step S101 may be performed first and then step S102 may be performed, or step S102 may be performed first and then step S101, which is not limited here, as long as the bias voltage of the adjustable coupler can be kept within Step S101 and step S104 may be the same.
  • the frequency calibration in the parameter calibration can be calibrated by an energy spectrum experiment or a Ramsey interference experiment
  • the logic gate operation parameter calibration refers to the calibration of the control signal used for the qubit
  • the measurement parameter calibration refers to the qubit.
  • the parameters of the resonant cavity to be measured are calibrated.
  • this embodiment is mainly aimed at further calibration of the first bias voltage obtained in the first embodiment.
  • the steps before obtaining the first bias voltage may refer to the solution shown in Embodiment 1, which will not be repeated here.
  • FIG. 2 is a schematic flowchart of the calibration method proposed in this embodiment. It can be seen from FIG. 2 that the specific scheme of this embodiment is as follows:
  • S108 prepare the quantum state of any one of the two superconducting qubits to
  • S112 Determine whether the first difference is within a preset range
  • step S116 if it is determined that the first difference exceeds the preset range, the bias voltage needs to be adjusted accordingly.
  • the bias voltage can be adjusted by using a gradient descent method, a Newton method, a random walk method, or an evolution strategy method. These methods are briefly introduced below.
  • the calculation process of the gradient descent method is to solve the minimum value along the direction of gradient descent (the maximum value can also be solved along the direction of gradient rise).
  • the gradient direction can be obtained by derivation of the function. It is difficult to determine the step size. If it is too large, it may diverge, and if it is too small, the convergence speed is too slow.
  • the general method of determining the step size is determined by a linear search algorithm. Because in general, if the gradient vector is 0, it means that it has reached an extreme point, and the magnitude of the gradient is also 0 at this time. When the gradient descent algorithm is used for the optimization solution, the termination condition of the algorithm iteration is that the amplitude of the gradient vector is close to 0, and a very small constant threshold can be set.
  • Newton's method is second-order convergence, and gradient descent is first-order convergence, so Newton's method is faster. If you put it more generally, for example, you want to find the shortest path to the bottom of a basin, the gradient descent method only chooses a direction with the largest slope each time from your current position. When choosing a direction, Newton's method not only considers whether the slope is large enough, but also considers whether the slope will become larger after you take a step. Therefore, it can be said that the Newton method can see farther than the gradient descent method and can go to the bottom faster. It can be seen from the comparison that the Newton method has a longer-term vision, so it takes less detours; relatively speaking, the gradient descent method only considers the local optimum, and has no global idea.
  • the random walk method is the simplest one of the local search algorithms, and its basic strategy is to select a better one from the neighbors of the current candidate solution to transfer each time. Each time, a neighborhood point of the current solution is randomly selected for comparison, and if it is better than the current solution, this point is used as the new center. If a better value cannot be found for N consecutive times, it is considered that the optimal solution is in an N-dimensional sphere with the current optimal solution as the center and the current step size as the radius. At this point, if the step size is already smaller than the threshold, the algorithm ends; otherwise, the step size is halved and a new round of walking starts.
  • the natural selection in the evolutionary strategy method is carried out in a deterministic manner, which is different from the random selection method in the genetic algorithm and evolutionary programming.
  • the recombination operator is provided in the evolutionary strategy method, but the recombination in the evolutionary strategy is different from the exchange in the genetic algorithm. That is, instead of exchanging a certain part of the individual, it combines each bit in the individual, and each bit in the new individual contains the corresponding information in the two old individuals.
  • the method before preparing the quantum states of any one of the two superconducting qubits to
  • the parameter calibration is performed a second time on the two superconducting qubits, and specifically, a second calibration is performed on the frequencies of the two superconducting qubits.
  • This embodiment provides a calibration device 10 for a tunable coupler.
  • the tunable coupler is used for coupling between two superconducting qubits, where the two superconducting qubits are a first superconducting qubit and a second superconducting qubit respectively.
  • the calibration device 10 includes:
  • a first data acquisition unit 101 which is configured to acquire first data in which the frequency of the first superconducting qubit varies with the bias voltage of the tunable coupler;
  • the first frequency obtaining unit 102 is configured to obtain a first frequency, the first frequency being the result of the Ramsey interference experiment of the first superconducting qubit when the quantum states of the second superconducting qubit are in
  • the first bias voltage obtaining unit 103 is configured to obtain, based on the first data and the first frequency, the bias voltage corresponding to the first frequency as a first bias voltage, and convert the The bias voltage of the adjustable coupler is set to the first bias voltage.
  • the first data acquisition unit 101 , the first frequency acquisition unit 102 and the first bias voltage acquisition unit 103 may be combined in one device, or any one of the modules may be disassembled. is divided into multiple sub-modules, or, at least part of the functions of one or more modules in the first data acquisition unit 101, the first frequency acquisition unit 102, and the first bias voltage acquisition unit 103 may be combined with other At least part of the functions of the modules are combined and implemented in one functional module.
  • At least one of the first data acquisition unit 101 , the first frequency acquisition unit 102 and the first bias voltage acquisition unit 103 may be at least partially implemented as a hardware circuit, such as Field Programmable Gate Array (FPGA), Programmable Logic Array (PLA), System on Chip, System on Substrate, System on Package, Application Specific Integrated Circuit (ASIC), or any other circuit that can be integrated or packaged It can be realized by hardware or firmware in a reasonable manner, or by an appropriate combination of software, hardware and firmware.
  • FPGA Field Programmable Gate Array
  • PLA Programmable Logic Array
  • ASIC Application Specific Integrated Circuit
  • At least one of the first data acquisition unit 101 , the first frequency acquisition unit 102 and the first bias voltage acquisition unit 103 may be at least partially implemented as a computer program module, when the program is executed by a computer At runtime, the functions of the corresponding modules can be executed.
  • the calibration device for the adjustable coupler may further include:
  • a first difference obtaining unit which is configured to prepare quantum states of either one of the two superconducting qubits to
  • a judgment unit configured to judge whether the first difference is within a preset range
  • a processing unit which is configured to set the bias voltage as the working point of the adjustable coupler if the result from the judging unit is that the first difference is within a preset range;
  • the result from the judging unit is that the first difference is not within the preset range, adjust the magnitude of the bias voltage, and send the adjusted bias voltage to the first difference an acquiring unit, so that the first difference acquiring unit performs the preparing the quantum state of any one of the two superconducting qubits to
  • This embodiment proposes a tunable coupler, which is used for coupling between two superconducting qubits, where the two superconducting qubits are a first superconducting qubit and a second superconducting qubit respectively bit;
  • the adjustable coupler is calibrated as follows:
  • the first frequency is obtained, and the first frequency is the result of the Ramsey interference experiment of the first superconducting qubit.
  • the quantum states of the second superconducting qubit are in
  • the bias voltage corresponding to the first frequency is obtained as a first bias voltage, and the bias voltage of the adjustable coupler is set as the first bias voltage a bias voltage.
  • This embodiment also proposes a quantum measurement and control system, including the tunable coupler described in the above feature description.
  • This embodiment provides a readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the method for calibrating an adjustable coupler described in any one of the above feature descriptions can be implemented.
  • the readable storage medium may be a tangible device that can hold and store instructions for use by the instruction execution device, such as, but not limited to, electrical storage devices, magnetic storage devices, optical storage devices, electromagnetic storage devices, semiconductor storage devices, or the above. any suitable combination. More specific examples (non-exhaustive list) of readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or Flash memory), static random access memory (SRAM), portable compact disk read only memory (CD-ROM), digital versatile disk (DVD), memory sticks, floppy disks, mechanically encoded devices, such as punch holes on which instructions are stored Cards or raised structures in grooves, and any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or Flash memory erasable programmable read only memory
  • SRAM static random access memory
  • CD-ROM compact disk read only memory
  • DVD digital versatile disk
  • memory sticks floppy disks
  • mechanically encoded devices
  • the computer programs described herein can be downloaded to various computing/processing devices from readable storage media, or to external computers or external storage devices over a network such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives the computer program from the network and forwards the computer program for storage in a readable storage medium in the respective computing/processing device.
  • Computer programs for performing operations in embodiments of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or in one or more Source or object code written in any combination of programming languages, including object-oriented programming languages, such as Smalltalk, C++, etc., and conventional procedural programming languages, such as the "C" language or similar programming languages.
  • the computer program may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server .
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, through the Internet using an Internet service provider) connect).
  • electronic circuits such as programmable logic circuits, field programmable gate arrays (FPGAs), or programmable logic arrays (PLAs), that can execute computer programmable logic circuits, are personalized by utilizing state information from a computer program. Program instructions are read to implement various aspects of the present disclosure.
  • These computer programs can also be stored in a readable storage medium, and these computer programs cause computers, programmable data processing devices and/or other devices to operate in a specific manner, so that the readable storage medium storing the computer program includes a An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks of the flowchart and/or block diagrams.
  • a computer program can also be loaded onto a computer, other programmable data processing apparatus, or other equipment, causing a series of operational steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process that causes A computer program executing on a computer, other programmable data processing apparatus, or other device implements the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • description with reference to the terms “one embodiment,” “some embodiments,” “example,” or “specific example,” etc. means a specific feature, structure, material, or characteristic described in connection with the embodiment or example. Included in at least one embodiment or example of the present disclosure.
  • schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in one or more embodiments.
  • those skilled in the art may combine and combine the different embodiments or examples described in this specification.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

一种可调耦合器及其校准方法和装置(10)、量子测控系统、可读存储介质。校准方法不直接对可调耦合器的频率进行直接表征,通过对可调耦合器的磁通偏置(也即偏置电压以及脉冲电压)进行相应设置,完成可调耦合器的校准,并获得有效耦合处于关闭状态的可调耦合器的工作点。

Description

可调耦合器及其校准方法和装置、量子测控系统
本公开要求于2021年01月06日提交的、申请号为CN202110013689.1、申请名称为“可调耦合器及其校准方法和装置、量子测控系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及量子计算技术领域,尤其是涉及一种可调耦合器及其校准方法和装置、量子测控系统、可读存储介质。
背景技术
一般地,在基于可调耦合器的超导量子比特扩展架构中,两个超导量子比特间通过一个固定的电容耦合以及一个可以调节耦合系数的可调耦合器实现耦合,可调耦合器的耦合参数可正可负,因此在实现在一定参数下,可实现完全关断耦合的效果。可调耦合器的工作原理是通过调节可调耦合器的频率,改变两个超导量子比特之间的有效耦合,进而实现隔离,或者两比特门操作。因此,在可调耦合器的研发阶段,我们需要知道有效耦合与可调耦合器的频率的精确对应关系,以实现对可调耦合器工作点的校准。
现有技术中有关如何获取可调耦合器的频率,实际上是将可调耦合器视为一个超导量子比特,对其进行能谱测量。发明人发现,现有技术中对可调耦合器的频率表征,要求额外的单腔多比特联合读取技术,并且在能谱实验中,需要有切实能够达到可调耦合器工作频率的频率源,大大提高了整个硬件系统的成本。
因此,如何在有效降低对硬件系统成本的前提下实现可调耦合器的工作点校准,成为本领域亟待解决的技术问题。
需要说明的是,公开于本申请背景技术部分的信息仅仅旨在加深对本申请一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
发明内容
本公开的目的在于提供一种可调耦合器及其校准方法和装置、量子测控系统、可读 存储介质,用于解决现有技术中直接表征可调耦合器的频率会提高硬件系统成本的问题。
本公开提出一种可调耦合器的校准方法,可调耦合器用于两个超导量子比特间的耦合,所述两个超导量子比特分别为第一超导量子比特以及第二超导量子比特;
所述校准方法包括以下步骤:
获取所述第一超导量子比特的频率随所述可调耦合器的偏置电压变化的第一数据;
基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率;
基于所述第一数据以及所述第一频率,获取所述第一频率对应的所述偏置电压为第一偏置电压,并将所述可调耦合器的偏置电压设置为所述第一偏置电压。
可选地,所述基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率,包括:
获取所述第二超导量子比特的量子态处于|0>时,所述第一超导量子比特的振荡频率随所述脉冲电压变化的第二数据;
获取所述第二超导量子比特的量子态处于|1>时,所述第一超导量子比特的振荡频率随所述脉冲电压变化的第三数据;
基于所述第二数据以及所述第三数据,获取所述第一超导量子比特的Ramsey干涉实验结果随所述脉冲电压变化而发生变化最小时,对应的所述第一超导量子比特的频率,此时,所述第一超导量子比特的频率为所述第一频率。
可选地,所述基于所述第二数据以及所述第三数据,获取所述第一超导量子比特的Ramsey干涉实验结果随所述脉冲电压变化而发生变化最小时,对应的所述第一超导量子比特的频率,此时,所述第一超导量子比特的频率为所述第一频率,包括:
基于所述第二数据以及所述第三数据,获取所述第一超导量子比特的Ramsey干涉实验结果随所述脉冲电压变化而发生变化最小时对应的所述脉冲电压为第一脉冲电压;
获取在所述脉冲电压为所述第一脉冲电压时,所述第二数据中对应的所述第一超导量子比特的频率为所述第一频率。
可选地,在获取所述第一频率前,还包括:
基于所述第一数据,获取所述可调耦合器的简并点,并将所述偏置电压设置为简并点对应的值。
可选地,在获取所述第一频率前,还包括:
对所述两个超导量子比特进行第一次参数校准;其中,所述参数校准包括频率校准、 逻辑门操作参数校准以及测量参数校准。
可选地,在将所述可调耦合器的偏置电压设置为所述第一偏置电压后,还包括:
将所述两个超导量子比特中任一个的量子态制备到|0>和|1>,并对另一个超导量子比特进行所述Ramsey干涉实验;
获取所述另一个超导量子比特的量子态在|0>时和|1>时振荡频率的第一差值;
判断所述第一差值是否在预设范围内;
若是,则设置此时偏置电压为所述可调耦合器的工作点;
若否,则调整所述偏置电压,并返回执行所述将所述两个超导量子比特中任一个的量子态制备到|0>和|1>。
可选地,所述调整偏置电压大小,包括:
基于所述第一差值的大小,利用梯度下降法,或牛顿法,或随机游走法,或进化策略法调整所述偏置电压。
可选地,在将所述两个超导量子比特中任一个的量子态分别制备到|0>和|1>前,还包括:
对所述两个超导量子比特进行第二次所述参数校准,其中,所述参数校准包括频率校准、逻辑门操作参数校准以及测量参数校准。
可选地,在所述Ramsey干涉实验的两个π/2量子逻辑门间,改变所述可调耦合器的脉冲电压。
本公开还提出一种可调耦合器的校准装置,可调耦合器用于两个超导量子比特间的耦合,所述两个超导量子比特分别为第一超导量子比特以及第二超导量子比特;
所述校准装置包括:
第一数据获取单元,其被配置为获取所述第一超导量子比特的频率随所述可调耦合器的偏置电压变化的第一数据;
第一频率获取单元,其被配置为基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率;
第一偏置电压获取单元,其被配置为基于所述第一数据以及所述第一频率,获取所述第一频率对应的所述偏置电压为第一偏置电压,并将所述可调耦合器的偏置电压设置为所述第一偏置电压。
可选地,还包括:
第一差值获取单元,其被配置为将所述两个超导量子比特中任一个的量子态制备到|0> 和|1>,并对另一个超导量子比特进行所述Ramsey干涉实验,获取所述另一个超导量子比特的量子态在|0>时和|1>时振荡频率的第一差值;
判断单元,其被配置为判断所述第一差值是否在预设范围内;
处理单元,其被配置为若接受到来自所述判断单元的结果为所述第一差值在预设范围内,则设置此时偏置电压为所述可调耦合器的工作点;若接受到来自所述判断单元的结果为不在所述第一差值在预设范围内,则调整所述偏置电压的大小,并将调整后的所述偏置电压发送给所述第一差值获取单元,以使所述第一差值获取单元在此执行所述将所述两个超导量子比特中任一个的量子态制备到|0>和|1>。
本公开还提出一种可调耦合器,所述可调耦合器用于两个超导量子比特间的耦合,所述两个超导量子比特分别为第一超导量子比特以及第二超导量子比特;
所述可调耦合器按照以下方法进行校准:
获取所述第一超导量子比特的频率随所述可调耦合器的偏置电压变化的第一数据;
基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率;
基于所述第一数据以及所述第一频率,获取所述第一频率对应的所述偏置电压为第一偏置电压,并将所述可调耦合器的偏置电压设置为所述第一偏置电压。
本公开还提出一种量子测控系统,包括上述特征描述中所述的可调耦合器。
本公开还提出一种可读存储介质,其上存储有计算机程序,所述计算机程序被一处理器执行时能实现上述特征描述中任一项所述的可调耦合器的校准方法。
与现有技术相比,本公开的实施例可以具有以下有益效果:
本公开提出的可调耦合器的校准方法,第一步获取第一超导量子比特的频率随可调耦合器的偏置电压变化的第一数据;第二步利用第二超导量子比特的量子态、可调耦合器的脉冲电压,对第一超导量子比特进行Ramsey干涉实验,并获取第一超导量子比特的第一频率,其中,第一频率是Ramsey干涉实验结果在所述第二超导量子比特的量子态分别处于|0>和|1>,随所述可调耦合器的脉冲电压变化而发生变化最小时,对应的第一超导量子比特的频率;第三步利用第一数据以及第一频率获取相应的第一偏置电压,并将可调耦合器的偏置电压设置为第一偏置电压。此时获得的第一偏置电压即我们所需要的可调耦合器的工作点,本公开提出的校准方法中,不直接对可调耦合器的频率进行直接表征,通过对可调耦合器的磁通偏置(也即偏置电压以及脉冲电压)进行相应设置,完成可调耦合器的校准,并获得有效耦合处于关闭状态的可调耦合器的工作点。本公开提出的校准方法,不需要考虑如何表征可调耦合器频率的问题,故而不依赖可调耦合器工作频率的频率源,有 效节省了整个硬件系统的成本。
本公开提出的可调耦合器的校准装置、可调耦合器、量子测控系统以及可读存储介质,与所述可调耦合器的校准方法类似,因此具有类似的有益效果,在此不做赘述。
附图说明
图1为本公开实施例一提出一种可调耦合器的校准方法的流程示意图;
图2为本公开实施例二提出的另一种可调耦合器的校准方法的流程示意图;
图3为本公开实施例中第一数据的示意图;
图4为本公开实施例中第二数据和第三数据的示意图;
图5为本公开实施例三提出的一种可调耦合器的校准装置的结构示意图;
其中,图5中:10-校准装置,101-第一数据获取单元,102-第一频率获取单元,103-第一偏置电压获取单元。
具体实施方式
下面将结合示意图对本公开的具体实施方式进行更详细的描述。根据下列描述和权利要求书,本公开实施例的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本公开实施例的目的。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“左”、“右”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
为了更好地理解本申请的技术方案,以下先对本申请所涉及的Ramsey干涉实验进行简要阐述:
Ramsey干涉实验是指对一个量子比特,施加两个π/2量子逻辑门操作,两个操作的时间间隔为τ,同时在第二个π/2量子逻辑门操作后对该量子比特施加读取脉冲信号以获得量子比特的量子态分布P 1(τ),并且改变时间间隔τ以获得P 1(τ)的过程。典型的Ramsey干涉实验的结果是P 1(τ)是随时间间隔τ满足指数振荡衰减的数学模型如下:
Figure PCTCN2021141637-appb-000001
在公式1中,A和B为拟合系数,T 0为量子比特的退相干时间,f d为π/2量子逻辑门操作对应的微波脉冲信号的载频,f 0为量子比特的振荡频率,且f 0与该量子比特的真实频率f q、π/2量子逻辑门操作的载频频率满足:
f 0(f d)=|f q-f d|   (2)
综上所述并结合公式2,可以得到:Ramsey干涉实验的结果,也就是曲线的振荡频率等于量子逻辑门操作的载频频率以及量子比特真实频率的差值,因而Ramsey干涉实验除了能够用于获得量子比特的退相干时间以外,还能同时精确获得量子比特的真实频率。
实施例一
请参考图1,本公开实施例提出一种可调耦合器的校准方法,可调耦合器用于两个超导量子比特间的耦合,所述两个超导量子比特分别为第一超导量子比特以及第二超导量子比特。图1为本实施例中所述可调耦合器的校准方法的流程示意图,从图1可以看出,所述校准方法包括以下步骤:
S102:获取所述第一超导量子比特的频率随所述可调耦合器的偏置电压变化的第一数据;
S104:基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率;
S106:基于所述第一数据以及所述第一频率,获取所述第一频率对应的所述偏置电压为第一偏置电压,并将所述可调耦合器的偏置电压设置为所述第一偏置电压。
本实施例中提出的所述校准方法,与现有技术不同之处在于,不直接对可调耦合器的频率进行直接表征,通过对可调耦合器的磁通偏置(也即偏置电压以及脉冲电压)进行相应设置,完成可调耦合器的校准,并获得可调耦合器的有效耦合处于关闭状态的工作点。本公开提出的校准方法,不需要考虑如何表征可调耦合器频率的问题,故而不依赖可调耦合器工作频率的频率源,有效节省了整个硬件系统的成本。本领域技术人员应当理解的是,所述磁通偏置包含了静态的偏置电压与动态的脉冲电压的累加结果,另外,可调耦合器的脉冲电压应当在所述Ramsey干涉实验的两个π/2量子逻辑门间时改变。
在所述步骤S102中,所述第一超导量子比特的频率可通过量子比特能谱实验获取,所述量子比特能谱测量实验是指对一个量子比特施加一个具有频率区间的读取脉冲信号,其中,所述频率区间内包括多个具有间隔的频率值。通过对该量子比特输出的信号进行处理,获得该量子比特的测量频率随所述读取脉冲信号的频率值变化的曲线,将曲线中该量 子比特的测量频率最大值确定为该量子比特的频率。
请参考图3,图3为本公开实施例提出的第一数据的一种示意图,其横坐标为所述可调耦合器的偏置电压,纵坐标为所述第一超导量子比特的频率,结合图3,本领域技术人员可以理解的是,所述第一数据可以认为是一种映射关系或函数关系,这种映射关系或函数关系包含两个参数,分别为所述第一超导量子比特的频率以及所述可调耦合器的偏置电压,只要确定一个所述第一超导量子比特的频率,就可以得到对应的一个偏置电压,反之亦然。需要注意的是,图3中示出所述第一数据,仅是为了便于本领域技术人员更好地理解本申请的技术方案所作出的示例性图形,并不能视为对所述第一数据的任何限定,所述第一数据的具体图形需根据实际统计情况调整,在此不做限制。
在本实施例的所述步骤104中,基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率。其中,这里提到的所述第二超导量子比特的量子态是指所述第二超导量子比特的量子态分别处于|0>以及|1>,第一频率是Ramsey干涉实验结果在所述第二超导量子比特的量子态分别处于|0>和|1>,随所述可调耦合器的脉冲电压变化而发生变化最小时,对应的第一超导量子比特的频率。
具体地,所述步骤104可包括:
S1041:获取所述第二超导量子比特的量子态处于|0>时,所述第一超导量子比特的振荡频率随所述脉冲电压变化的第二数据;
S1042:获取所述第二超导量子比特的量子态处于|1>时,所述第一超导量子比特的振荡频率随所述脉冲电压变化的第三数据;
S1043:基于所述第二数据以及所述第三数据,获取所述第一超导量子比特的Ramsey干涉实验结果随所述脉冲电压变化而发生变化最小时,对应的所述第一超导量子比特的频率,此时,所述第一超导量子比特的频率为所述第一频率。
本领域技术人员可以理解的是,在所述步骤S1043中,利用步骤S1041中获取的第二数据以及步骤S1042中获取的第三数据,获取所述第一频率,在具体实施过程中,所述第二数据以及所述第三数据的获取先后顺序不做限制,可先获取所述第二数据再获取所述第三数据,还可先获取所述第三数据再获取所述第二数据,具体可根据实际需要来选择,在此不做限制。
进一步地,步骤S1043可具体包括:
基于所述第二数据以及所述第三数据,获取所述第一超导量子比特的Ramsey干涉实验结果随所述脉冲电压变化而发生变化最小时对应的所述脉冲电压为第一脉冲电压;
获取在所述脉冲电压为所述第一脉冲电压时,所述第二数据中对应的所述第一超导量子比特的频率为所述第一频率。
在步骤S1043中,获取所述第一超导量子比特的Ramsey干涉实验结果随所述脉冲电压变化而发生变化最小时对应的脉冲电压,由于通过Ramsey干涉实验的实验结果可精确获得量子比特的真实频率,与所述第一数据类似地,请参考图4,所述第二数据可理解为所述第二超导量子比特的量子态处于|0>时,所述第一超导量子比特的频率随可调耦合器的脉冲电压变化的一种映射关系或函数关系,此处的映射关系或函数关系中包含两个参数,分别为所述超导量子比特的量子态处于|0>时所述第一超导量子比特的频率、可调耦合器的脉冲电压,只要确定一个脉冲电压,就可以得到对应的一个所述第二超导量子比特的量子态处于|0>时所述第一超导量子比特的频率。所述第三数据可理解为所述第二超导量子比特的量子态处于|1>时,所述第一超导量子比特的频率随可调耦合器的脉冲电压变化的一种映射关系或函数关系,此处的映射关系或函数关系中包含两个参数,分别为所述超导量子比特处于量子态|1>时所述第一超导量子比特的频率、可调耦合器的脉冲电压,只要确定一个脉冲电压,就可以得到对应的一个所述第二超导量子比特的量子态处于|1>时所述第一超导量子比特的频率。
另外,步骤S1043中,请参考图4,图4为本公开实施例中提出的一种第二数据和第三数据的示意图,图4的横坐标为所述可调耦合器的脉冲电压,其纵坐标为所述第一超导量子比特的频率,图4中实线部分为所述第二超导量子比特的量子态处于|0>时所述第一超导量子比特的频率,虚线部分为所述第二超导量子比特的量子态处于|1>时所述第一超导量子比特的频率。如何利用所述第二数据和所述第三数据获取所述第一脉冲电压,可以理解为所述第二超导量子比特的量子态处于|0>时以及|1>时,所述第一超导量子比特的频率在同一脉冲电压下的变化差值,并找出该变化差值最小时对应的脉冲电压大小,并设此时的脉冲电压为所述第一脉冲电压。例如,图4当所述可调耦合器的脉冲电压为V1时,所述第一超导量子比特的频率在同一脉冲电压下的变化差值为Δf1,当所述可调耦合器的脉冲电压为V2时,所述第一超导量子比特的频率在同一脉冲电压下的变化差值为Δf2,当所述可调耦合器的脉冲电压为V3时,所述第一超导量子比特的频率在同一脉冲电压下的变化差值为Δf3。经计算比对可知,当所述可调耦合器的脉冲电压为V2时,所述第一超导量子比特的频率在同一脉冲电压下的变化差值最小,因此,可取V2为所述第一脉冲电压。利用当所述可调耦合器的脉冲电压为V2,并且所述第二量子比特的量子态处于|0>时,所述第一超导量子比特的频率可以通过Ramsey干涉实验的结果中的振荡频率校准,也即利用当所述可调耦合器的脉冲电压为V2,并且所述第二量子比特的量子态处于|0>时的第二数 据,获取所述第一脉冲对应的所述第一超导量子比特的频率(也即所述第一频率)。需要注意的是,图4中示出所述第二数据以及第三数据,仅是为了便于本领域技术人员更好地理解本申请的技术方案所作出的示例性图形,并不能视为对所述第二数据和第三数据的任何限定,所述第二数据和所述第三数据的具体图形需根据实际统计情况调整,在此不做限制。
需要注意的是,在获取所述第一频率前,还可进行以下步骤:
基于所述第一数据,获取所述可调耦合器的简并点,并将所述偏置电压设置为简并点对应的值。
可以理解的是,在本公开实施例中,在获取所述第一频率前将所述偏置电压设置在简并点上是为了便于后续步骤需要的基准参数,并非意味着必须要在获取所述第一频率前将所述偏置电压设置在简并点上,在其它实施例中,还可将所述偏置电压设置在其它位置上,在此不做限制。
可选地,在所述获取第一频率前,还可执行以下步骤:
S101:对所述两个超导量子比特进行第一次参数校准;其中,所述参数校准包括频率校准、逻辑门操作参数校准以及测量参数校准。
步骤S101和步骤S102没有先后顺序,也即可先执行步骤S101再执行步骤S102,也可先执行步骤S102再执行步骤S101,在此不做限制,只要能保持可调耦合器的偏置电压在步骤S101和步骤S104时一致即可。所述参数校准中的频率校准可通过能谱实验或Ramsey干涉实验进行校准,所述逻辑门操作参数校准是指对用于量子比特的调控信号进行校准,所述测量参数校准是指对量子比特进行测量的谐振腔的参数进行校准。
实施例二
发明人发现,在利用实施例一中提供的校准方法对可调耦合器进行校准后,可得出所述第一偏置电压,但是由于可调耦合器的畸变或者是一些其它外部因素的影响,实施例一得出的所述第一偏置电压与我们希望可调耦合器的工作点间会存在误差。因此,需要对所述第一偏置电压进行进一步校准,以提高可调耦合器的校准精度。
基于上述发现,本实施例主要是针对实施例一中获取的所述第一偏置电压的进一步校准。需要注意的是,本实施例中,在获取所述第一偏置电压之前的步骤均可参考实施例一中示出的方案,在此不做赘述。请参考图2,图2为本实施例提出的校准方法的流程示意图,通过图2可以看出,本实施例的具体方案如下:
S108:将所述两个超导量子比特中任一个的量子态制备到|0>和|1>,并对另一个超导量子比特进行所述Ramsey干涉实验;
S110:获取所述另一个超导量子比特的量子态在|0>时和|1>时振荡频率的第一差值;
S112:判断所述第一差值是否在预设范围内;
S114:若是,则设置此时偏置电压为所述可调耦合器的工作点;
S116:若否,则调整所述偏置电压,并返回执行所述将所述两个超导量子比特中任一个的量子态制备到|0>和|1>。
通过本实施例提出的校准方法,对所述第一偏置电压进行进一步的校准,可以提高可调耦合器的校准精度,完成可调耦合器磁通偏置的设置,使得此时两个超导量子比特之间的有效耦合处于我们需要的关断状态,并且该校准方法的实施成本低,易于扩展。
进一步地,在步骤S116中,若判断出所述第一差值超出预设的范围,则需要相应地调整偏置电压大小,有关如何调整偏置电压大小,本实施例中给出以下几种方法:基于所述第一差值的大小,可利用梯度下降法,或牛顿法,或随机游走法,或进化策略法调整所述偏置电压。以下对这几种方法进行简要介绍,梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。梯度方向我们可以通过对函数求导得到,步长的确定比较麻烦,太大了的话可能会发散,太小收敛速度又太慢。一般确定步长的方法是由线性搜索算法来确定。因为一般情况下,梯度向量为0的话说明是到了一个极值点,此时梯度的幅值也为0。而采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值接近0即可,可以设置个非常小的常数阈值。
牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步。牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。比较可知牛顿法的目光更加长远,所以少走弯路;相对而言,梯度下降法只考虑了局部的最优,没有全局思想。
随机游走法是局部搜索算法中最简单的一个,它的基本策略就是每次从当前候选解的邻居中选择一个更优的进行转移。每次随机选择一个当前解的邻域点进行比较,如果优于当前解则将该点作为新的中心。如果连续N次都找不到更优的值,则认为,最优解就在以当前最优解为中心,当前步长为半径的N维球内。此时,如果步长已经小于阈值,则结束算法;否则,令步长减半,开始新一轮游走。
进化策略法中的自然选择是按照确定方式进行的,有别于遗传算法和进化规划中的随机选择方式。进化策略法中提供了重组算子,但进化策略中的重组不同于遗传算法中的交换。即它不是将个体的某一部分互换,而是使个体中的每一位发生结合,新个体中的每 一位都包含有两个旧个体中的相应信息。
当然,除了本实施例中列举出来的这几种方法来调整偏置电压外,还有很多其它的方法供选择,在此不一一赘述。另外,在对偏置电压进行调整时,除了可以选择这些方法中的某一个进行处理外,还可选择结合多种方法的方式来进行处理,在此不做限制,可根据实际需要来选择。
可选地,在将所述两个超导量子比特中任一个的量子态分别制备到|0>和|1>前,还包括:
对所述两个超导量子比特进行第二次所述参数校准,具体的,对所述两个超导量子比特的频率进行二次校准。
实施例三
本实施例提出一种可调耦合器的校准装置10,可调耦合器用于两个超导量子比特间的耦合,所述两个超导量子比特分别为第一超导量子比特以及第二超导量子比特;
请参考图5,所述校准装置10包括:
第一数据获取单元101,其被配置为获取所述第一超导量子比特的频率随所述可调耦合器的偏置电压变化的第一数据;
第一频率获取单元102,其被配置为获取第一频率,所述第一频率为所述第一超导量子比特的Ramsey干涉实验结果在所述第二超导量子比特的量子态分别处于|0>和|1>,随所述可调耦合器的脉冲电压变化而发生变化最小时,对应的所述第一超导量子比特的频率;
第一偏置电压获取单元103,其被配置为基于所述第一数据以及所述第一频率,获取所述第一频率对应的所述偏置电压为第一偏置电压,并将所述可调耦合器的偏置电压设置为所述第一偏置电压。
可以理解的是,所述第一数据获取单元101、所述第一频率获取单元102以及所述第一偏置电压获取单元103可以合并在一个装置中实现,或者其中的任意一个模块可以被拆分成多个子模块,或者,所述第一数据获取单元101、所述第一频率获取单元102以及所述第一偏置电压获取单元103中的一个或多个模块的至少部分功能可以与其他模块的至少部分功能相结合,并在一个功能模块中实现。根据本公开的实施例,所述第一数据获取单元101、所述第一频率获取单元102以及所述第一偏置电压获取单元103中的至少一个可以至少被部分地实现为硬件电路,例如现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)、片上系统、基板上的系统、封装上的系统、专用集成电路(ASIC),或可以以对电路进行集成或封装的任何其他的合理方式等硬件或固件来实现,或以软件、硬件以及固件三种实现 方式的适当组合来实现。或者,所述第一数据获取单元101、所述第一频率获取单元102以及所述第一偏置电压获取单元103中的至少一个可以至少被部分地实现为计算机程序模块,当该程序被计算机运行时,可以执行相应模块的功能。
具体地,所述可调耦合器的校准装置还可包括:
第一差值获取单元,其被配置为将所述两个超导量子比特中任一个的量子态制备到|0>和|1>,并对另一个超导量子比特进行所述Ramsey干涉实验,获取所述另一个超导量子比特的量子态在|0>时和|1>时振荡频率的第一差值;
判断单元,其被配置为判断所述第一差值是否在预设范围内;
处理单元,其被配置为若接受到来自所述判断单元的结果为所述第一差值在预设范围内,则设置此时偏置电压为所述可调耦合器的工作点;若接受到来自所述判断单元的结果为不在所述第一差值在预设范围内,则调整所述偏置电压的大小,并将调整后的所述偏置电压发送给所述第一差值获取单元,以使所述第一差值获取单元在此执行所述将所述两个超导量子比特中任一个的量子态制备到|0>和|1>。
实施例四
本实施例提出一种可调耦合器,所述可调耦合器用于两个超导量子比特间的耦合,所述两个超导量子比特分别为第一超导量子比特以及第二超导量子比特;
所述可调耦合器按照以下方法进行校准:
获取所述第一超导量子比特的频率随所述可调耦合器的偏置电压变化的第一数据;
获取第一频率,所述第一频率为所述第一超导量子比特的Ramsey干涉实验结果在所述第二超导量子比特的量子态分别处于|0>和|1>,随所述可调耦合器的脉冲电压变化而发生变化最小时,对应的所述第一超导量子比特的频率;
基于所述第一数据以及所述第一频率,获取所述第一频率对应的所述偏置电压为第一偏置电压,并将所述可调耦合器的偏置电压设置为所述第一偏置电压。
本实施例还提出一种量子测控系统,包括上述特征描述中所述的可调耦合器。
实施例五
本实施例提出一种可读存储介质,其上存储有计算机程序,所述计算机程序被一处理器执行时能实现上述特征描述中任一项所述的可调耦合器的校准方法。
所述可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备,例如可以是但不限于电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储 设备或者上述的任意合适的组合。可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所描述的计算机程序可以从可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收所述计算机程序,并转发该计算机程序,以供存储在各个计算/处理设备中的可读存储介质中。用于执行本公开实施例中的操作的计算机程序可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。所述计算机程序可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机程序的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、系统和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机程序实现。这些计算机程序可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些程序在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机程序存储在可读存储介质中,这些计算机程序使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有该计算机程序的可读存储介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机程序加载到计算机、其它可编程数据处理装置、或其它设备上,使 得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的计算机程序实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”或“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
上述仅为本公开的优选实施例而已,并不对本公开的内容起到任何限制作用。任何所属技术领域的普通技术人员,在不脱离本公开的技术方案的范围的情况下,可以对这里公开的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本公开的技术方案的内容,仍属于本公开的实施例的保护范围之内。

Claims (14)

  1. 一种可调耦合器的校准方法,其特征在于,可调耦合器用于两个超导量子比特间的耦合,所述两个超导量子比特分别为第一超导量子比特以及第二超导量子比特;
    所述校准方法包括以下步骤:
    获取所述第一超导量子比特的频率随所述可调耦合器的偏置电压变化的第一数据;
    基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率;
    基于所述第一数据以及所述第一频率,获取所述第一频率对应的所述偏置电压为第一偏置电压,并将所述可调耦合器的偏置电压设置为所述第一偏置电压。
  2. 如权利要求1所述的可调耦合器的校准方法,其特征在于,所述基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率,包括:
    获取所述第二超导量子比特的量子态处于|0>时,所述第一超导量子比特的振荡频率随所述脉冲电压变化的第二数据;
    获取所述第二超导量子比特的量子态处于|1>时,所述第一超导量子比特的振荡频率随所述脉冲电压变化的第三数据;
    基于所述第二数据以及所述第三数据,获取所述第一超导量子比特的Ramsey干涉实验结果随所述脉冲电压变化而发生变化最小时,对应的所述第一超导量子比特的频率,此时,所述第一超导量子比特的频率为所述第一频率。
  3. 如权利要求2所述的可调耦合器的校准方法,其特征在于,所述基于所述第二数据以及所述第三数据,获取所述第一超导量子比特的Ramsey干涉实验结果随所述脉冲电压变化而发生变化最小时,对应的所述第一超导量子比特的频率,此时,所述第一超导量子比特的频率为所述第一频率,包括:
    基于所述第二数据以及所述第三数据,获取所述第一超导量子比特的Ramsey干涉实验结果随所述脉冲电压变化而发生变化最小时对应的所述脉冲电压为第一脉冲电压;
    获取在所述脉冲电压为所述第一脉冲电压时,所述第二数据中对应的所述第一超导量子比特的频率为所述第一频率。
  4. 如权利要求1所述的可调耦合器的校准方法,其特征在于,在获取所述第一频率前,还包括:
    基于所述第一数据,获取所述可调耦合器的简并点,并将所述偏置电压设置为简并点对应的值。
  5. 如权利要求1所述的可调耦合器的校准方法,其特征在于,在获取所述第一频率前,还包括:
    对所述两个超导量子比特进行第一次参数校准;其中,所述参数校准包括频率校准、逻辑门操作参数校准以及测量参数校准。
  6. 如权利要求1所述的可调耦合器的校准方法,其特征在于,在将所述可调耦合器的偏置电压设置为所述第一偏置电压后,还包括:
    将所述两个超导量子比特中任一个的量子态制备到|0>和|1>,并对另一个超导量子比特进行所述Ramsey干涉实验;
    获取所述另一个超导量子比特的量子态在|0>时和|1>时振荡频率的第一差值;
    判断所述第一差值是否在预设范围内;
    若是,则设置此时偏置电压为所述可调耦合器的工作点;
    若否,则调整所述偏置电压,并返回执行所述将所述两个超导量子比特中任一个的量子态制备到|0>和|1>。
  7. 如权利要求6所述的可调耦合器的校准方法,其特征在于,所述调整偏置电压大小,包括:
    基于所述第一差值的大小,利用梯度下降法,或牛顿法,或随机游走法,或进化策略法调整所述偏置电压。
  8. 如权利要求6所述的可调耦合器的校准方法,其特征在于,在将所述两个超导量子比特中任一个的量子态分别制备到|0>和|1>前,还包括:
    对所述两个超导量子比特进行第二次参数校准,其中,所述参数校准包括频率校准、逻辑门操作参数校准以及测量参数校准。
  9. 如权利要求1所述的可调耦合器的校准方法,其特征在于,在所述Ramsey干涉实验的两个π/2量子逻辑门间,改变所述可调耦合器的脉冲电压。
  10. 一种可调耦合器的校准装置,其特征在于,可调耦合器用于两个超导量子比特间的耦合,所述两个超导量子比特分别为第一超导量子比特以及第二超导量子比特;
    所述校准装置包括:
    第一数据获取单元,其被配置为获取所述第一超导量子比特的频率随所述可调耦合器的偏置电压变化的第一数据;
    第一频率获取单元,其被配置为基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率;
    第一偏置电压获取单元,其被配置为基于所述第一数据以及所述第一频率,获取所述第一频率对应的所述偏置电压为第一偏置电压,并将所述可调耦合器的偏置电压设置为所述第一偏置电压。
  11. 如权利要求10所述的可调耦合器的校准装置,其特征在于,还包括:
    第一差值获取单元,其被配置为将所述两个超导量子比特中任一个的量子态制备到|0>和|1>,并对另一个超导量子比特进行所述Ramsey干涉实验,获取所述另一个超导量子比特的量子态在|0>时和|1>时振荡频率的第一差值;
    判断单元,其被配置为判断所述第一差值是否在预设范围内;
    处理单元,其被配置为若接受到来自所述判断单元的结果为所述第一差值在预设范围内,则设置此时偏置电压为所述可调耦合器的工作点;若接受到来自所述判断单元的结果为不在所述第一差值在预设范围内,则调整所述偏置电压的大小,并将调整后的所述偏置电压发送给所述第一差值获取单元,以使所述第一差值获取单元在此执行所述将所述两个超导量子比特中任一个的量子态制备到|0>和|1>。
  12. 一种可调耦合器,其特征在于,所述可调耦合器用于两个超导量子比特间的耦合,所述两个超导量子比特分别为第一超导量子比特以及第二超导量子比特;
    所述可调耦合器按照以下方法进行校准:
    获取所述第一超导量子比特的频率随所述可调耦合器的偏置电压变化的第一数据;
    基于所述第二超导量子比特的量子态、所述可调耦合器的脉冲电压,对所述第一超导量子比特进行Ramsey干涉实验,获取所述第一超导量子比特的第一频率;
    基于所述第一数据以及所述第一频率,获取所述第一频率对应的所述偏置电压为第一偏置电压,并将所述可调耦合器的偏置电压设置为所述第一偏置电压。
  13. 一种量子测控系统,其特征在于,包括如权利要求12所述的可调耦合器。
  14. 一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被一处理器执行时能实现权利要求1至9中任一项所述的可调耦合器的校准方法。
PCT/CN2021/141637 2021-01-06 2021-12-27 可调耦合器及其校准方法和装置、量子测控系统 WO2022148261A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/271,091 US20240077524A1 (en) 2021-01-06 2021-12-27 Tunable Coupler, Calibrating Method and Device for the Tunable Coupler, and Quantum Controlling System
EP21917301.0A EP4266066A4 (en) 2021-01-06 2021-12-27 TUNEABLE COUPLER, CALIBRATION METHOD AND APPARATUS THEREFOR, AND QUANTUM MEASUREMENT AND CONTROL SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110013689.1A CN114720763B (zh) 2021-01-06 2021-01-06 可调耦合器及其校准方法和装置、量子测控系统
CN202110013689.1 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022148261A1 true WO2022148261A1 (zh) 2022-07-14

Family

ID=82233838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141637 WO2022148261A1 (zh) 2021-01-06 2021-12-27 可调耦合器及其校准方法和装置、量子测控系统

Country Status (4)

Country Link
US (1) US20240077524A1 (zh)
EP (1) EP4266066A4 (zh)
CN (1) CN114720763B (zh)
WO (1) WO2022148261A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115470923A (zh) * 2022-08-22 2022-12-13 合肥本源量子计算科技有限责任公司 可调耦合器dc谱的获取方法、装置、量子计算机
CN115660093A (zh) * 2022-10-17 2023-01-31 北京百度网讯科技有限公司 含耦合器超导量子比特结构的性能检验信息输出方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116341668B (zh) * 2023-05-26 2023-08-15 苏州浪潮智能科技有限公司 一种量子比特补偿方法、装置、设备、介质和量子系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475353A (zh) * 2015-12-31 2018-08-31 国际商业机器公司 采用固定频率超导量子比特的多量子比特可调耦合结构
US10097186B1 (en) * 2018-03-02 2018-10-09 Northrop Grumman Systems Corporation Robust tunable coupling between superconductive circuits
WO2018236922A1 (en) * 2017-06-19 2018-12-27 Rigetti & Co, Inc. QUANTITIC LOGIC DOORS WITH PARAMETRIC ACTIVATION
CN110488091A (zh) * 2018-12-07 2019-11-22 合肥本源量子计算科技有限责任公司 一种基于串扰分析的超导量子比特调控方法
CN111091195A (zh) * 2019-12-24 2020-05-01 北京百度网讯科技有限公司 一种超导电路结构及超导量子芯片、超导量子计算机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11727295B2 (en) * 2019-04-02 2023-08-15 International Business Machines Corporation Tunable superconducting resonator for quantum computing devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475353A (zh) * 2015-12-31 2018-08-31 国际商业机器公司 采用固定频率超导量子比特的多量子比特可调耦合结构
WO2018236922A1 (en) * 2017-06-19 2018-12-27 Rigetti & Co, Inc. QUANTITIC LOGIC DOORS WITH PARAMETRIC ACTIVATION
US10097186B1 (en) * 2018-03-02 2018-10-09 Northrop Grumman Systems Corporation Robust tunable coupling between superconductive circuits
CN110488091A (zh) * 2018-12-07 2019-11-22 合肥本源量子计算科技有限责任公司 一种基于串扰分析的超导量子比特调控方法
CN111091195A (zh) * 2019-12-24 2020-05-01 北京百度网讯科技有限公司 一种超导电路结构及超导量子芯片、超导量子计算机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266066A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115470923A (zh) * 2022-08-22 2022-12-13 合肥本源量子计算科技有限责任公司 可调耦合器dc谱的获取方法、装置、量子计算机
CN115470923B (zh) * 2022-08-22 2024-04-05 本源量子计算科技(合肥)股份有限公司 可调耦合器dc谱的获取方法、装置、量子计算机
CN115660093A (zh) * 2022-10-17 2023-01-31 北京百度网讯科技有限公司 含耦合器超导量子比特结构的性能检验信息输出方法及装置
CN115660093B (zh) * 2022-10-17 2023-08-01 北京百度网讯科技有限公司 含耦合器超导量子比特结构性能检验信息输出方法及装置

Also Published As

Publication number Publication date
US20240077524A1 (en) 2024-03-07
CN114720763A (zh) 2022-07-08
EP4266066A4 (en) 2024-06-12
CN114720763B (zh) 2023-03-28
EP4266066A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2022148261A1 (zh) 可调耦合器及其校准方法和装置、量子测控系统
JP2022536063A (ja) ロバストな振幅推定のための工学的尤度関数を用いたベイズ推論のためのハイブリッド量子古典コンピュータ
Calsamiglia et al. Quantum Chernoff bound as a measure of distinguishability between density matrices: Application to qubit and Gaussian states
CN111033531A (zh) 用于格式化神经网络参数的系统和设备
AU2022201682B2 (en) Method and apparatus for denoising quantum device, electronic device, and computer readable medium
KR102586405B1 (ko) 반도체 제조용 측정 및 공정 제어
JP7499540B2 (ja) 開放量子系のための量子情報処理方法、古典コンピュータ、量子コンピュータ、量子情報処理プログラム、及びデータ構造
WO2022121809A1 (zh) 超导量子比特频率的校准方法以及装置、可读存储介质
WO2022179104A1 (zh) 一种量子设备校准方法、装置、设备及介质
Wang et al. Gaussian copula precision estimation with missing values
Katsman et al. Equivariant manifold flows
US20240133827A1 (en) Measurement system, method, apparatus, and device
Gillard et al. Stochastic resonance with unital quantum noise
US11550548B2 (en) Autonomous pseudo-random seed generator for computing devices
Bordel et al. Predictor-corrector models for lightweight massive machine-type communications in Industry 4.0
US20240046065A1 (en) System, devices and/or processes for defining a search space for neural network processing device architectures
WO2023213821A1 (en) Quantum extremal learning
Vaz Quantum collapse of a thin shell revisited
US20230140189A1 (en) Binary Optimization with Boson Sampling
Wang et al. Iterative reconstruction of graph signal in low-frequency subspace
Barrenechea et al. Local two-sided bounds for eigenvalues of self-adjoint operators
US11550872B1 (en) Systems and methods for quantum tomography using an ancilla
CN117454997A (zh) 离子阱芯片参数修正方法及装置、电子设备和介质
Tian et al. Real-time parameter estimation for two-qubit systems based on hybrid control
WO2021197671A1 (en) Autonomous pseudo-random seed generator for computing devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18271091

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021917301

Country of ref document: EP

Effective date: 20230718

NENP Non-entry into the national phase

Ref country code: DE