WO2022148211A1 - 用于原子钟的微型微波腔及制备方法 - Google Patents

用于原子钟的微型微波腔及制备方法 Download PDF

Info

Publication number
WO2022148211A1
WO2022148211A1 PCT/CN2021/137340 CN2021137340W WO2022148211A1 WO 2022148211 A1 WO2022148211 A1 WO 2022148211A1 CN 2021137340 W CN2021137340 W CN 2021137340W WO 2022148211 A1 WO2022148211 A1 WO 2022148211A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal coating
gas chamber
atomic
substrate
top surface
Prior art date
Application number
PCT/CN2021/137340
Other languages
English (en)
French (fr)
Inventor
王鹏飞
王晨
赵峰
梅刚华
Original Assignee
中国科学院精密测量科学与技术创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院精密测量科学与技术创新研究院 filed Critical 中国科学院精密测量科学与技术创新研究院
Publication of WO2022148211A1 publication Critical patent/WO2022148211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type

Definitions

  • the invention relates to the technical field of atomic clocks, more particularly to a miniature microwave cavity for atomic clocks, and a preparation method for the miniature microwave cavity for atomic clocks, which is suitable for the development and production of miniature or chip-type atomic clocks.
  • An atomic clock is a time-frequency device based on the precise and stable transition frequency between atomic energy levels.
  • the rubidium atomic clock has become the most widely used atomic clock due to its small size, light weight, low power consumption and high reliability.
  • the loaded frequency source is required to be small in size, low in power consumption and High stability to maintain good battery life of the device.
  • the chip CPT coherent layout trap
  • the atomic clock uses the CPT spectral lines generated by the interaction of coherent dichromatic light and alkali metal atoms as the frequency discrimination signal. With the help of micro-electromechanical system and application-specific integrated circuit technology, it realizes the chipization of key modules of the physical system and circuit system, and achieves a small size and low power consumption of the atomic clock. the goal of. However, the frequency stability performance of the CPT chip atomic clock is worse than that of the traditional rubidium atomic clock. If a rubidium atomic clock with a volume and power consumption similar to the CPT chip atomic clock can be designed, it can provide higher stability under the premise of meeting the power supply requirements of the above equipment. time frequency source.
  • the rubidium atomic clock is a high-stability time-frequency device that uses the optical-microwave double resonance transition line of the rubidium atom as a frequency discrimination signal to implement microwave frequency stabilization. It consists of a physical system and a circuit system. Among them, the physical system is the core of rubidium atomic clock, which determines the volume and performance of rubidium clock, mainly including atomic pumping light source, microwave cavity, atomic gas chamber and photodetector.
  • the pump light source is usually an electrodeless discharge rubidium spectral lamp or a laser.
  • the microwave cavity resonates near the atomic transition frequency, generates and maintains a specific microwave field distribution (microwave field mode) under the excitation of an external electromagnetic field, and stores the electromagnetic energy of the microwave field.
  • the two ends of the atomic gas chamber are transparent and placed in the microwave cavity.
  • the pumping light emitted by the pump light source enters the gas inlet chamber through a transparent end of the gas chamber, and the 87 Rb vapor atoms in the gas chamber are optically pumped.
  • the microwave cavity The stored microwave magnetic field also acts on the 87 Rb vapor atoms in the gas chamber to generate atomic frequency discrimination signals, which are received by the photodetector and processed by the circuit system for microwave frequency stabilization.
  • the volume and power consumption of the physical system mainly depend on the miniaturization and integration degree of the microwave cavity.
  • the microwave cavity is the most important structural component in the rubidium clock physical system, which determines the volume of the physical system.
  • the microwave cavity needs to be heated to about 70°C, and the microwave cavity of the current rubidium clock is composed of discrete components, which are made of metal sheets or bars and high specific heat.
  • the non-metallic material is made by the traditional machining process, the heat capacity is large, and it needs a large heating power consumption under normal working conditions.
  • the present invention provides a miniature microwave cavity for the atomic clock integrated on the silicon substrate, and also provides a micro-microwave cavity for the atomic clock.
  • the preparation method of the micro microwave cavity is based on the micro-electromechanical processing technology such as micro-body machining, surface micro-machining, chip bonding, etc., to integrate the atomic gas chamber, the microwave resonant cavity and the shielding cover on the silicon substrate to form a simple structure and a microwave inside the cavity.
  • the micro-microwave cavity with high parallelism of magnetic field lines can be used to develop rubidium atomic clocks with high integration and low power consumption.
  • the technical scheme adopted in the present invention is:
  • a miniature microwave cavity for an atomic clock including an atomic gas chamber, and a substrate
  • the substrate includes a rectangular thin plate-like dielectric, the bottom surface of the rectangular thin plate-like dielectric is plated with a metal coating film, and the middle of the top surface of the rectangular thin plate-like dielectric is plated with rectangular metal Coating, the top surface of the rectangular thin plate-shaped dielectric is coated with a mouth-shaped metal coating,
  • the atomic gas chamber includes a gas chamber base, which is hollow and has two openings at both ends.
  • the two openings of the gas cell base are respectively provided with a front glass and a back glass, and two side walls of the gas chamber are plated with the same rotation direction.
  • Spiral copper traces, two helical copper traces with the same direction of rotation constitute a Helmholtz coil, and two helical copper traces with the same direction of rotation generate a static magnetic field perpendicular to the direction of the optical axis,
  • the bottom surface of the shielding cover is opened on the mouth-shaped metal coating around the top surface of the rectangular thin-plate dielectric.
  • One end of the coupling antenna is insulated and fixed on the side wall of the shielding case, and the other end of the coupling antenna is close to but not in contact with the rectangular metal coating in the middle of the top surface of the rectangular thin plate dielectric.
  • the hollow cross section of the air chamber base body is rectangular, and the material of the air chamber base body is silicon wafer.
  • the preparation method of a micro-microwave cavity for atomic clocks includes the following steps:
  • Step 1 By performing photolithography and etching on the silicon oxide wafer with the metal coating on the top surface and the metal coating on the bottom surface, retaining the metal coating on the bottom surface of the silicon oxide wafer, and performing etching on the metal coating on the top surface of the silicon oxide wafer to form silicon oxide
  • the rectangular metal coating in the middle of the top surface of the wafer and the mouth-shaped metal coating around the top surface of the silicon oxide wafer are used to obtain a substrate;
  • Step 2 Etching the silicon base to obtain a gas cell base, which is a rectangular parallelepiped shell with openings at both ends and hollow through; the front glass is fixed on an open end face of the gas cell base by anodic bonding, Then, the rubidium metal vapor and buffer gas are filled into the gas chamber base, and then the back glass is bonded and fixed on the other open end face of the gas cell base to obtain an atomic gas cell, and copper is plated on a pair of side walls of the gas cell base. film, etching and filling the two sidewalls plated with the copper film to obtain a spiral copper wire with the same direction of rotation, and the two spiral copper wires together form a Helmholtz coil;
  • Step 3 Use a mechanical processing method to prepare a shielding cover.
  • the shape of the shielding cover is a rectangular box body with an opening on the bottom surface.
  • the two ends of the shielding cover are respectively provided with through holes corresponding to the front glass and the rear glass.
  • the bottom surface of the shielding cover is opened to the The mouth-shaped metal coating that covers the substrate and is in close contact, the bottom opening of the shielding cover and the mouth-shaped metal coating are connected by conductive glue.
  • One end of the coupling antenna is fixed in the coupling antenna mounting hole opened on the side wall of the shielding cover through epoxy resin glue, and the other end is close to but does not contact the rectangular metal coating on the top surface of the substrate.
  • the structure of the microwave cavity is simple, and the cavity can be integrated on the silicon substrate with the help of MEMS processing technology, replacing the traditional metal cavity made by mechanical processing technology, greatly reducing the volume and power consumption of the microwave cavity, and realizing the rubidium clock. Miniaturization and chip design;
  • the polarization direction of the microwave magnetic field in the atomic gas chamber is consistent and parallel to the direction of the quantization axis, which is easy to obtain high-intensity atomic frequency discrimination signals, which is beneficial to the production of high-stability atomic clocks.
  • FIG. 1 is a partial cross-sectional view of a micro-microwave cavity for an atomic clock.
  • Figure 2 is an exploded view of a miniature microwave cavity for an atomic clock.
  • FIG. 3 is a structural diagram of a substrate for a micro-microwave cavity of an atomic clock.
  • Fig. 4 is the distribution diagram of the microwave magnetic field in the atomic gas chamber in the miniature microwave cavity for atomic clock, wherein (a) is the microwave field pattern along the optical axis direction, parallel to the substrate, (b) is along the optical axis direction, Microwave field pattern of a section perpendicular to the substrate.
  • 1-substrate 2-atomic gas chamber; 2a-gas chamber substrate; 2b-front glass; 2c-back glass; 2d-Helmholtz coil; 3-shield; 4-coupled antenna.
  • the micro-microwave cavity used for the atomic clock includes a substrate 1 , an atomic gas chamber 2 , a shield 3 and a coupling antenna 4 .
  • the substrate 1 includes a rectangular thin plate-shaped dielectric and a metal coating film plated on the top and bottom surfaces of the rectangular thin-plate dielectric, the material of the rectangular thin-plate dielectric is silicon, and the outer dimensions of the rectangular thin-plate dielectric are width ⁇ length ⁇ height 7mm ⁇ 9mm ⁇ 0.5mm.
  • the bottom surface of the rectangular thin plate-shaped dielectric is plated with a metal coating film over the entire area, and the material of the metal coating film on the bottom surface of the rectangular thin plate-shaped dielectric is copper, and the thickness is 1 um.
  • the top surface of the rectangular sheet-shaped dielectric is partitioned with metal coating, the top surface of the rectangular sheet-shaped dielectric is provided with a mouth-shaped metal coating and a rectangular metal coating, the rectangular metal coating is located in the middle of the top surface of the rectangular sheet-shaped dielectric, and the mouth-shaped metal coating is located in the Around the top surface of the rectangular thin plate dielectric, the material of the mouth-shaped metal coating and the rectangular metal coating is copper, and the thickness is 1um.
  • the shape of the rectangular metal coating is a rectangle, and the external dimensions are width ⁇ length 4mm ⁇ 6.6mm.
  • the metal coating around the top surface of the rectangular sheet-like dielectric is a mouth-shaped metal coating, and the outer frame size of the mouth-shaped metal coating is width ⁇ length. It is 7mm x 9mm, and the size of the inner frame is 5.8mm x 7.8mm in width x length.
  • the atomic gas chamber 2 is a rectangular parallelepiped-shaped shell with transparent two ends, the outer dimensions are 4mm ⁇ 6mm ⁇ 3mm in width ⁇ length ⁇ height, and the shell thickness is 1mm.
  • the atomic gas chamber 2 includes a gas chamber substrate 2a, which is made by etching a silicon wafer.
  • the gas chamber substrate 2a is hollow and has open ends at both ends and is cylindrical.
  • the hollow cross-section of the gas chamber substrate 2a is rectangular;
  • the openings at both ends of the base body 2a are respectively provided with a front glass slide 2b and a back slide glass 2c, which are made of Pyrex glass slides or schott borosilicate float glass, which are respectively fixed on both ends of the gas chamber base body 2a by means of anodic bonding.
  • a closed atomic gas chamber 2 with an inner hollow is formed.
  • the atomic gas chamber 2 is filled with working atomic rubidium metal vapor and a buffer gas with a set gas pressure.
  • the two side walls of the air chamber base 2a are plated with the same spiral copper traces, and the two spiral copper traces with the same direction together constitute the Helmholtz coil 2d, which produces a uniform and stable coil perpendicular to the optical axis direction.
  • the static magnetic field, the optical axis direction is the direction from the front glass 2b to the back glass 2c, provides a quantization axis for the microwave transition of the atoms in the atomic gas chamber 2 .
  • the shielding cover 3 is made of brass material, and the shape is a rectangular box body with an opening on the bottom surface.
  • the through holes corresponding to the sheet 2b and the rear glass sheet 2c, the bottom surface of the shielding cover 3 is open and the mask is provided on the mouth-shaped metal coating around the top surface of the rectangular thin plate-shaped dielectric.
  • the coupling antenna 4 is a round copper wire with a diameter of 0.5mm.
  • One end of the coupling antenna 4 is insulated and fixed to the side wall of the shielding cover 3, and is insulated from the shielding cover 3.
  • the other end of the coupling antenna 3 is close to but not in contact with the top surface of the rectangular thin plate-shaped dielectric. Central rectangular metal coating.
  • Step 1 By performing photolithography and etching on the silicon oxide wafer with the metal coating on the top surface and the metal coating on the bottom surface, retaining the metal coating on the bottom surface of the silicon oxide wafer, and performing etching on the metal coating on the top surface of the silicon oxide wafer to form silicon oxide
  • the rectangular metal coating in the middle of the top surface of the wafer and the mouth-shaped metal coating around the top surface of the silicon oxide wafer are used to obtain the substrate.
  • the gas cell base 2a is obtained by etching on the silicon base.
  • the gas cell base 2a is a rectangular parallelepiped shell with openings at both ends and a hollow through it; the front glass 2b is fixed by anodic bonding
  • rubidium metal vapor and a buffer gas with a set pressure are filled into the gas cell base 2a, and then the back glass 2c is bonded and fixed on the other open end face of the gas cell base 2a, to prepare the atomic gas chamber 2 .
  • a pair of side walls of the gas chamber base 2a is plated with copper films, and the two side walls plated with copper films are etched and filled to obtain spiral copper with the same direction of rotation.
  • the two spiral copper traces together form the Helmholtz coil 2d.
  • the shielding cover 3 is made by machining.
  • the shape of the shielding cover 3 is a rectangular box body with an open bottom surface.
  • the two ends of the shielding cover 3 are respectively provided with through holes corresponding to the front glass 2b and the rear glass 2c.
  • the open bottom of the cover 3 faces down, and covers the substrate 1 downward.
  • the atomic gas chamber 2 is located in the shielding cover 3.
  • the four opening edges of the bottom surface of the shielding cover 3 are respectively connected with the mouth-shaped metal coating on the outer edge of the top surface of the substrate 1.
  • the four sides of the shield 3 are in close contact, and the four open sides of the bottom surface of the shielding cover 3 are fixed on the four sides of the mouth-shaped metal coating on the outer edge of the top surface of the substrate 1 using conductive glue.
  • One end of the coupling antenna 4 is fixed in the coupling antenna mounting hole opened on the side wall of the shielding cover 3 by epoxy glue, the axis of the coupling antenna 4 is perpendicular to the side wall of the connected shielding cover 3, and the other end is close to but not touching the substrate. 1 Rectangular metal coating on the front.
  • Figure 4 shows the distribution of the microwave magnetic field in the atomic gas chamber 2 of the micro-microwave cavity used for atomic clocks, (a) is the microwave field pattern along the optical axis and is parallel to the section of the substrate 1, (b) is along the optical axis A microwave field pattern of a cross-section perpendicular to the substrate 1 in the axial direction. It can be seen from the figure that by setting and adjusting the outer frame and inner frame of the mouth-shaped metal coating and the inner space of the shielding cover, the microwave field in the shielding cover box is in the TEM mode at a suitable resonant frequency. The polarization direction of the microwave magnetic field is perpendicular to the direction of the optical axis and parallel to the quantization axis.
  • the distribution of the magnetic field in the atomic gas chamber 2 is very uniform, which is conducive to the excitation of rubidium atoms to generate clock transitions, thereby obtaining a microwave search signal with a high signal-to-noise ratio.
  • a miniature high performance rubidium atomic frequency scale would be beneficial.
  • the miniature microwave cavity used for atomic clocks has the characteristics of simple structure, high parallelism of microwave magnetic lines of force in the cavity, and potential for chip formation, and can be used for the development of low-power rubidium atomic clocks.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明公开了用于原子钟的微型微波腔,包括原子气室和基片,基片的长方形薄板状电介质的底面全区域镀金属镀膜,顶面中部镀设矩形金属镀膜,顶面四周镀设口字型金属镀膜,原子气室包括气室基体,气室基体的两个侧壁上镀有旋向相同的螺旋铜走线,产生与光轴方向垂直的静磁场,屏蔽罩的底面开口罩设在口字型金属镀膜上,还包括用于原子钟的微型微波腔的制备方法,本发明微波腔结构简单,可借助微机电加工工艺将原子气室集成在硅基片上,大幅降低微波腔的体积和功耗;原子气室内微波磁场的偏振方向一致性好且与量子化轴的方向平行,易于获得高强度原子鉴频信号,对制得高稳定度的原子钟是有益的。

Description

用于原子钟的微型微波腔及制备方法 技术领域
本发明涉及到原子钟技术领域,更具体涉及用于原子钟的微型微波腔,还涉及用于原子钟的微型微波腔的制备方法,适用于微型或芯片型原子钟的研制生产。
背景技术
原子钟是一种以原子能级间精确且稳定的跃迁频率为计时基准的时频装置。其中,铷原子钟以其体积小、重量轻、功耗低、可靠性高等特点,成为目前应用最广泛的原子钟。然而,在自主导航终端设备、远程通讯系统同步、水下导航系统和武器装备的便携化等应用领域,仪器设备往往不具备长期持续供电能力,要求所装载的频率源体积小、功耗低且稳定度高,以维持设备较好的续航能力。目前,仅芯片CPT(相干布局囚禁)原子钟的体积、功耗能满足需求。该原子钟采用相干双色光与碱金属原子作用产生的CPT谱线做鉴频信号,借助微机电系统和专用集成电路技术,实现物理系统和电路系统关键模块的芯片化,达到原子钟小体积低功耗的目的。但是CPT芯片原子钟的频率稳定度性能较传统铷原子钟差,若能设计一款体积、功耗与CPT芯片原子钟相近的铷原子钟,就可以在满足上述设备供电要求的前提下提供更高稳定度的时间频率源。
铷原子钟是利用铷原子的光-微波双共振跃迁谱线作为鉴频信号来实施微波稳频的高稳时频装置,它由物理系统和电路系统两部分组成。其中物理系统是铷原子钟的核心,决定铷钟的体积和性能,主要包括原子抽运光源、微波腔、原子气室和光电探测器等。抽运光源通常为无极放电铷光谱灯或激光器。微波腔谐振于原子跃迁频率附近,在外加电磁场的激励下产生并维持特定的微波场分布(微波场模式),并将微波场的电磁能量贮存起来。原子气室两端透明并置于微波腔内,抽运光源发出的抽运光经气室的一个透明端入射进气室,对气室内的 87Rb蒸气原子进行光抽运,同时,微波腔内存储的微波磁场也作用于气室内的 87Rb蒸气原子,产生原子鉴频信号,并被光电探测器接收,经电路系统处理后用于微波稳频。
物理系统的体积和功耗主要取决于微波腔的小型化、集成化程度。首先微波腔是铷钟物理系统中最主要的结构组件,决定物理系统的体积。其次,为了维持 原子正常工作的热环境,需要将微波腔加热到70℃左右,而当前铷钟的微波腔均由分立的零部件组成,这些零部件均由金属板材或棒材以及高比热的非金属材料经传统机械加工工艺制得,热容较大,正常工作状态下需要较大的加热功耗。
发明内容
为了解决现有技术中铷原子钟微波腔分立零部件多、结构难于集成、加热功耗大的问题,本发明提供一种集成于硅基片上的用于原子钟的微型微波腔,还提供用于原子钟的微型微波腔的制备方法,利用微体加工、表面微加工、片键合等微机电加工工艺,将原子气室、微波谐振腔、屏蔽罩集成在硅基片上,形成结构简单、腔内微波磁力线平行度高的微型微波腔,可用于研制高集成度、低功耗的铷原子钟。
为了解决上述技术问题,本发明所采用的技术方案是:
用于原子钟的微型微波腔,包括原子气室,还包括基片,基片包括长方形薄板状电介质,长方形薄板状电介质的底面全区域镀金属镀膜,长方形薄板状电介质的顶面中部镀设矩形金属镀膜,长方形薄板状电介质的顶面四周镀设口字型金属镀膜,
原子气室包括气室基体,气室基体中空且两端开口,气室基体的两端开口分别设置有前玻片和后玻片,气室基体的两个侧壁上镀有旋向相同的螺旋铜走线,两个旋向相同的螺旋铜走线构成亥姆霍兹线圈,两个旋向相同的螺旋铜走线产生与光轴方向垂直的静磁场,
屏蔽罩的底面开口罩设在长方形薄板状电介质的顶面四周的口字型金属镀膜上,
耦合天线一端绝缘固定在屏蔽罩的侧壁,耦合天线另一端靠近但不接触长方形薄板状电介质的顶面中部的矩形金属镀膜。
如上所述的气室基体的中空横截面为矩形,气室基体材质为硅片。
用于原子钟的微型微波腔的制备方法,包括以下步骤:
步骤1、通过对具有顶面金属镀膜和底面金属镀膜的氧化硅片进行光刻、腐蚀,保留氧化硅片的底面金属镀膜,在氧化硅片的顶面金属镀膜上进行刻蚀,形成氧化硅片的顶面中部的矩形金属镀膜和氧化硅片的顶面四周的口字型金属镀膜,获得基片;
步骤2、在硅基上刻蚀得到气室基体,气室基体为两端开口、中空贯穿的长方体状壳体;通过阳极键合的方式将前玻片固定在气室基体的一开口端面,再将铷金属蒸气和缓冲气体充入气室基体内,然后将后玻片键合固定在气室基体的另一开口端面,获得原子气室,在气室基体的一对侧壁镀设铜膜,对两个镀设有铜膜的侧壁进行刻蚀、填充,得到旋向相同的螺旋铜走线,两螺旋铜走线一起构成亥姆霍兹线圈;
步骤3、使用机械加工方式制得屏蔽罩,屏蔽罩外形为底面开口的矩形盒体,屏蔽罩两端面分别开设有与前玻片和后玻片对应的通孔,将屏蔽罩的底面开口向下罩住基片的口字型金属镀膜并紧密接触,屏蔽罩的底面开口与口字型金属镀膜之间通过导电胶连接,
将耦合天线一端通过环氧树脂胶固定在开设在屏蔽罩侧壁的耦合天线安装孔内,另一端靠近但不接触基片顶面的矩形金属镀膜。
与现有技术相比,本发明的有益效果是:
1、微波腔结构简单,可借助微机电加工工艺将腔体集成在硅基片上,取代传统的采用机械加工工艺制得的金属腔体,大幅降低微波腔的体积和功耗,实现铷钟的微型化和芯片化设计;
2、原子气室内微波磁场的偏振方向一致性好且与量子化轴的方向平行,易于获得高强度原子鉴频信号,对制得高稳定度的原子钟是有益的。
附图说明
图1为用于原子钟的微型微波腔的局部剖视图。
图2为用于原子钟的微型微波腔的爆炸图。
图3为用于原子钟的微型微波腔的基片的结构图。
图4为用于原子钟的微型微波腔中原子气室内的微波磁场分布图,其中(a)为沿光轴方向、平行于基板的剖面的微波场型图,(b)为沿光轴方向、垂直于基板的剖面的微波场型图。
其中:1-基片;2-原子气室;2a-气室基体;2b-前玻片;2c-后玻片;2d-赫姆霍兹线圈;3-屏蔽罩;4-耦合天线。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合实施例对本发明 作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
由图1、2、3可知,用于原子钟的微型微波腔,包括基片1、原子气室2、屏蔽罩3和耦合天线4。
基片1包括长方形薄板状电介质和镀设在长方形薄板状电介质的顶面和底面的金属镀膜,长方形薄板状电介质的材料为硅,长方形薄板状电介质外形尺寸为宽×长×高为7mm×9mm×0.5mm。
长方形薄板状电介质的底面全区域镀金属镀膜,长方形薄板状电介质的底面的金属镀膜的材料为铜,厚度为1um。
长方形薄板状电介质的顶面分区镀金属镀膜,长方形薄板状电介质的顶面设置有口字型金属镀膜和矩形金属镀膜,矩形金属镀膜位于长方形薄板状电介质的顶面中部,口字型金属镀膜位于长方形薄板状电介质的顶面四周,口字型金属镀膜和矩形金属镀膜的材料为铜,厚度为1um。矩形金属镀膜形状为矩形,外形尺寸为宽×长为4mm×6.6mm,长方形薄板状电介质的顶面四周的金属镀膜为口字型金属镀膜,口字型金属镀膜的外边框尺寸为宽×长为7mm×9mm,内边框尺寸为宽×长为5.8mm×7.8mm。
原子气室2为两端透明的长方体状壳体,外形尺寸宽×长×高为4mm×6mm×3mm,壳厚为1mm。原子气室2包括气室基体2a,气室基体2a由硅片经刻蚀制得,气室基体2a中空且两端开口,呈筒状,气室基体2a的中空横截面为矩形;气室基体2a的两端开口分别设置有前玻片2b和后玻片2c,材料为Pyrex玻璃片或schott硼硅酸盐浮法玻璃,通过阳极键合的方式分别固定在气室基体2a两端,形成内空的封闭原子气室2。原子气室2内充有工作原子铷金属蒸气和设定气压的缓冲气体。气室基体2a的两个侧壁上镀有旋向相同的螺旋铜走线,两个旋向相同的螺旋铜走线一起构成亥姆霍兹线圈2d,产生与光轴方向垂直的均匀稳定的静磁场,光轴方向为前玻片2b至后玻片2c方向,为原子气室2内原子的微波跃迁提供量子化轴。
屏蔽罩3由黄铜材料制得,外形为底面开口的矩形盒体,外形尺寸为宽×长×高7mm×9mm×4mm,盒体壁厚0.3mm,盒体两端面分别开设有与前玻片2b和后玻片2c对应的通孔,屏蔽罩3的底面开口罩设在长方形薄板状电介质的顶 面四周的口字型金属镀膜上。
耦合天线4为直径0.5mm的圆铜线,耦合天线4一端绝缘固定在屏蔽罩3的侧壁,与屏蔽罩3绝缘,耦合天线3另一端靠近但不接触所述长方形薄板状电介质的顶面中部的矩形金属镀膜。
用于原子钟的微型微波腔的制备方法,具体步骤如下:
步骤1、通过对具有顶面金属镀膜和底面金属镀膜的氧化硅片进行光刻、腐蚀,保留氧化硅片的底面金属镀膜,在氧化硅片的顶面金属镀膜上进行刻蚀,形成氧化硅片的顶面中部的矩形金属镀膜和氧化硅片的顶面四周的口字型金属镀膜,获得所述基片。
步骤2、采用体微加工方法,在硅基上刻蚀得到气室基体2a,气室基体2a为两端开口、中空贯穿的长方体状壳体;通过阳极键合的方式将前玻片2b固定在气室基体2a的一开口端面,再将铷金属蒸气和设定气压的缓冲气体充入气室基体2a内,然后将后玻片2c键合固定在气室基体2a的另一开口端面,以制备所述原子气室2。采用光刻、腐蚀、微铸造技术,在气室基体2a的一对侧壁镀设有铜膜,对两个镀设有铜膜的侧壁进行刻蚀、填充,得到旋向相同的螺旋铜走线,两螺旋铜走线一起构成亥姆霍兹线圈2d。
步骤3、使用机械加工方式制得屏蔽罩3,屏蔽罩3外形为底面开口的矩形盒体,屏蔽罩3两端面分别开设有与前玻片2b和后玻片2c对应的通孔,将屏蔽罩3开放底面朝下,向下罩住基片1,原子气室2位于屏蔽罩3内,屏蔽罩3的底面的四条开口边分别与基片1的顶面外沿的口字型金属镀膜的四条边紧密接触,使用导电胶将屏蔽罩3的底面的四条开口边固定在基片1的顶面外沿的口字型金属镀膜的四条边上。
将耦合天线4一端通过环氧树脂胶固定在开设在屏蔽罩3侧壁的耦合天线安装孔内,耦合天线4的轴线与所连接的屏蔽罩3侧壁垂直,另一端靠近但不接触基片1正面的矩形金属镀膜。
图4给出了用于原子钟的微型微波腔原子气室2内的微波磁场分布图,(a)为沿光轴方向、平行于基板1的剖面的微波场型图,(b)为沿光轴方向、垂直于基板1的剖面的微波场型图。从图中可以看出,通过设定、调整口字型金属镀膜的外边框、内边框以及屏蔽罩的内空尺寸,使得在合适的谐振频率下,屏蔽罩盒 体内的微波场呈TEM模式,微波磁场偏振方向垂直于光轴方向,与量子化轴平行,原子气室2内的磁场分布十分均匀,有利于激发铷原子发生钟跃迁,进而获得高信噪比的微波探寻信号,这对研制微型高性能铷原子频标是有益的。
由以上实施例可以看出,用于原子钟的微型微波腔,具有结构简单、腔内微波磁力线平行度高、具备芯片化潜力的特点,可用于低功耗铷原子钟的研制。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (3)

  1. 用于原子钟的微型微波腔,包括原子气室(2),其特征在于,还包括基片(1),基片(1)包括长方形薄板状电介质,长方形薄板状电介质的底面全区域镀金属镀膜,长方形薄板状电介质的顶面中部镀设矩形金属镀膜,长方形薄板状电介质的顶面四周镀设口字型金属镀膜,
    原子气室(2)包括气室基体(2a),气室基体(2a)中空且两端开口,气室基体(2a)的两端开口分别设置有前玻片(2b)和后玻片(2c),气室基体(2a)的两个侧壁上镀有旋向相同的螺旋铜走线,两个旋向相同的螺旋铜走线构成亥姆霍兹线圈(2d),两个旋向相同的螺旋铜走线产生与光轴方向垂直的静磁场,
    屏蔽罩(3)的底面开口罩设在长方形薄板状电介质的顶面四周的口字型金属镀膜上,
    耦合天线(4)一端绝缘固定在屏蔽罩(3)的侧壁,耦合天线(4)另一端靠近但不接触长方形薄板状电介质的顶面中部的矩形金属镀膜。
  2. 根据权利要求1所述的用于原子钟的微型微波腔,其特征在于,所述的气室基体(2a)的中空横截面为矩形,气室基体(2a)材质为硅片。
  3. 用于原子钟的微型微波腔的制备方法,其特征在于,包括以下步骤:
    步骤1、通过对具有顶面金属镀膜和底面金属镀膜的氧化硅片进行光刻、腐蚀,保留氧化硅片的底面金属镀膜,在氧化硅片的顶面金属镀膜上进行刻蚀,形成氧化硅片的顶面中部的矩形金属镀膜和氧化硅片的顶面四周的口字型金属镀膜,获得基片(1);
    步骤2、在硅基上刻蚀得到气室基体(2a),气室基体(2a)为两端开口、中空贯穿的长方体状壳体;通过阳极键合的方式将前玻片(2b)固定在气室基体(2a)的一开口端面,再将铷金属蒸气和缓冲气体充入气室基体(2a)内,然后将后玻片(2c)键合固定在气室基体(2a)的另一开口端面,获得原子气室(2),在气室基体(2a)的一对侧壁镀设铜膜,对两个镀设有铜膜的侧壁进行刻蚀、填充,得到旋向相同的螺旋铜走线,两螺旋铜走线一起构成亥姆霍兹线圈(2d);
    步骤3、使用机械加工方式制得屏蔽罩(3),屏蔽罩(3)外形为底面开口的矩形盒体,屏蔽罩(3)两端面分别开设有与前玻片(2b)和后玻片(2c)对应的通孔,将屏蔽罩(3)开放底面朝下,向下罩住基片(1),原子气室(2)位 于屏蔽罩(3)内,屏蔽罩(3)的底面的四条开口边分别与基片(1)的顶面外沿的口字型金属镀膜的四条边紧密接触,使用导电胶将屏蔽罩(3)的底面的四条开口边固定在基片(1)的顶面外沿的口字型金属镀膜的四条边上。
PCT/CN2021/137340 2021-01-05 2021-12-13 用于原子钟的微型微波腔及制备方法 WO2022148211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110007942.2A CN112886176B (zh) 2021-01-05 2021-01-05 用于原子钟的微型微波腔及制备方法
CN202110007942.2 2021-01-05

Publications (1)

Publication Number Publication Date
WO2022148211A1 true WO2022148211A1 (zh) 2022-07-14

Family

ID=76046801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137340 WO2022148211A1 (zh) 2021-01-05 2021-12-13 用于原子钟的微型微波腔及制备方法

Country Status (2)

Country Link
CN (1) CN112886176B (zh)
WO (1) WO2022148211A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886176B (zh) * 2021-01-05 2021-10-08 中国科学院精密测量科学与技术创新研究院 用于原子钟的微型微波腔及制备方法
CN115505869B (zh) * 2021-06-22 2024-06-21 北京华信泰科技股份有限公司 原子气室的加工设备、加工方法和原子钟
CN117790042B (zh) * 2024-02-27 2024-05-28 中国科学院国家授时中心 一种基于弯曲四导体的光抽运原子束装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323738A (zh) * 2011-07-20 2012-01-18 中国科学院上海微系统与信息技术研究所 一种槽型原子气体腔及其构造的原子钟物理系统
CN104090481A (zh) * 2014-06-30 2014-10-08 中国科学院上海光学精密机械研究所 漫反射激光冷却原子的柱形微波腔
EP3244269A1 (en) * 2016-05-11 2017-11-15 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Alkali vapor cell
CN111610711A (zh) * 2020-06-15 2020-09-01 中国科学院国家授时中心 一种微型脉冲激光抽运铷钟物理系统
CN112886176A (zh) * 2021-01-05 2021-06-01 中国科学院精密测量科学与技术创新研究院 用于原子钟的微型微波腔及制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030704B2 (en) * 2003-08-26 2006-04-18 California Institute Of Technology Method and apparatus for a solid-state atomic frequency standard
US7468637B2 (en) * 2006-04-19 2008-12-23 Sarnoff Corporation Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock
CN101567691A (zh) * 2008-04-22 2009-10-28 中国科学院上海天文台 一种氢原子钟用的微波腔
CN101846965B (zh) * 2010-04-28 2011-12-14 北京大学 灯泵铷气体激光抽运铷泡输出标准频率的方法及铷原子钟
CN104733270A (zh) * 2015-03-06 2015-06-24 兰州空间技术物理研究所 一种铷原子钟磁控管微波腔
EP3112853A1 (en) * 2015-07-03 2017-01-04 Memscap S.A. Apparatus for an atomic clock
CN106067816B (zh) * 2016-06-07 2018-08-14 中国科学院上海天文台 氢原子钟用变容调谐装置
CN107561916B (zh) * 2017-10-10 2020-03-06 兰州空间技术物理研究所 一种基于法拉第激光抽运的铷原子微波钟
CN107908096B (zh) * 2017-12-13 2019-05-07 北京大学 具有复眼式堆叠密集型多泡结构原子气室的铷原子钟
CN108667454B (zh) * 2018-04-17 2021-10-22 中国科学院国家授时中心 一种高均匀度低温度系数腔泡系统
KR102189866B1 (ko) * 2019-03-25 2020-12-11 국방과학연구소 알칼리 원자 시계 전이에 안정화된 양자 발진기 시스템
CN111245434B (zh) * 2020-01-21 2021-03-05 中国科学院精密测量科学与技术创新研究院 一种用于高精度铷原子频标的腔泡系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323738A (zh) * 2011-07-20 2012-01-18 中国科学院上海微系统与信息技术研究所 一种槽型原子气体腔及其构造的原子钟物理系统
CN104090481A (zh) * 2014-06-30 2014-10-08 中国科学院上海光学精密机械研究所 漫反射激光冷却原子的柱形微波腔
EP3244269A1 (en) * 2016-05-11 2017-11-15 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Alkali vapor cell
CN111610711A (zh) * 2020-06-15 2020-09-01 中国科学院国家授时中心 一种微型脉冲激光抽运铷钟物理系统
CN112886176A (zh) * 2021-01-05 2021-06-01 中国科学院精密测量科学与技术创新研究院 用于原子钟的微型微波腔及制备方法

Also Published As

Publication number Publication date
CN112886176B (zh) 2021-10-08
CN112886176A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022148211A1 (zh) 用于原子钟的微型微波腔及制备方法
US6570459B1 (en) Physics package apparatus for an atomic clock
CN105958956B (zh) 一种薄膜体声波谐振器及其制备方法
WO2022148210A1 (zh) 基于微带线结构的超小型原子频标微波腔
CN110504963A (zh) 一种矩形原子频标微波腔
CN105973217A (zh) 一种微型核磁共振陀螺仪气室
CN112864566B (zh) 一种基于平行板波导的超小型原子频标微波腔
CN114578677B (zh) 悬挂式芯片原子钟物理系统
CN213423723U (zh) 一种用于相干布居数囚禁冷原子钟的玻璃气室磁光阱系统
CN112332841B (zh) 一种用于铷频标的矩形结构微波腔
CN111133628A (zh) 一种mems同轴滤波器和制作方法
CN214311335U (zh) 一种用于铷原子钟的小型化谐振腔
CN203786476U (zh) 一种芯片级原子钟气室
EP3633786B1 (en) Filter device and filter
WO2011026276A1 (zh) 恒温晶体振荡器
CN101510779B (zh) 一种芯片式铷滤光泡
CN101807042B (zh) 小型氢原子钟谐振腔及其制造方法
CN220421791U (zh) 一种石英晶体振动体
CN111717883A (zh) 原子腔结构及其制作方法
CN117190996B (zh) 一种基于无应力粘接的半球谐振陀螺及其装配方法
CN116566328A (zh) 一种晶体振荡器及集成方法
CN213581763U (zh) 一种用于小型激光抽运铷钟的环隙腔
CN101521142B (zh) 一种芯片式铷灯
RU2812252C1 (ru) Малогабаритный кольцевой лазер
CN117970768A (zh) 一种用于微型原子钟的真空封装结构及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917252

Country of ref document: EP

Kind code of ref document: A1