WO2022148099A1 - Dmrs配置方法、电子设备和存储介质 - Google Patents

Dmrs配置方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2022148099A1
WO2022148099A1 PCT/CN2021/125783 CN2021125783W WO2022148099A1 WO 2022148099 A1 WO2022148099 A1 WO 2022148099A1 CN 2021125783 W CN2021125783 W CN 2021125783W WO 2022148099 A1 WO2022148099 A1 WO 2022148099A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
dmrs configuration
access signaling
type
several pieces
Prior art date
Application number
PCT/CN2021/125783
Other languages
English (en)
French (fr)
Inventor
徐晓景
林伟
芮华
李瑞梅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022148099A1 publication Critical patent/WO2022148099A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a DMRS configuration method, an electronic device, and a storage medium.
  • New Radio New Radio
  • NR New Radio
  • 3GPP standard for short has formulated the pre-pilot (that is, the pilot symbol that appears for the first time) and the additional pilot (more
  • the 3GPP standard has a fixed number of pilot symbols for various scenarios to demodulate the reference signal (Demodulation Reference Signal, Abbreviation: DMRS) configuration.
  • DMRS Demodulation Reference Signal
  • the mobile state of the User Equipment will change constantly. If the number of pilot symbols in the fixed configuration is too small, the channel estimation accuracy may not be enough when the user moves in a medium-to-high-speed mobile scenario. lead to performance loss; if there are too many pilot symbols in the fixed configuration, resources will be wasted and the spectral efficiency of the cell system will be reduced when the user moves at a low speed, that is, the performance of the system is not high and the throughput of the system is insufficient. A bad user experience came.
  • the embodiment of the present application provides a DMRS configuration method, which is characterized by comprising: acquiring channel characteristics of a target channel for data transmission by a user equipment UE; according to the channel characteristics and a preset identification model for identifying the scene type of the channel , determine the scene type of the target channel; obtain a demodulation reference signal DMRS configuration suggestion according to the scene type; wherein, the DMRS configuration suggestion includes the number of configured pilot symbols; according to the DMRS configuration suggestion, indicate The UE performs DMRS configuration.
  • the embodiment of the present application further provides a DMRS configuration method, which is applied to a UE, and the UE and the base station transmit data through a target channel.
  • the method includes: acquiring a DMRS configuration suggestion sent by the base station; wherein the DMRS configuration suggestion includes a configuration The number of pilot symbols of the target channel, the DMRS configuration proposal is obtained according to the scene type of the target channel, and the scene type of the target channel is based on the channel characteristics of the target channel and the preset scene type used to identify the channel.
  • the identification model is determined; the DMRS configuration is performed according to the DMRS configuration suggestion.
  • An embodiment of the present application further provides an electronic device, comprising: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores a program that can be executed by the at least one processor The instruction is executed by the at least one processor, so that the at least one processor can execute the above-mentioned DMRS configuration method applied to the base station, or the above-mentioned DMRS configuration method applied to the UE.
  • the embodiment of the present application also provides a readable storage medium, which stores a computer program, and when the computer program is executed by the processor, realizes the above-mentioned DMRS configuration method applied to the base station, or realizes the above-mentioned DMRS configuration method applied to the UE.
  • FIG. 1 is a flowchart of a DMRS configuration method according to a first embodiment of the present application
  • FIG. 2 is a flow chart of acquiring channel characteristics of a target channel for data transmission by a user equipment UE according to the first embodiment of the present application;
  • FIG. 3 is a flow chart of acquiring random access channel characteristics according to the first embodiment of the present application.
  • FIG. 4 is a flowchart of a DMRS configuration method according to a second embodiment of the present application.
  • FIG. 5 is a flowchart of determining the scene type of the target channel according to the SINR corresponding to each access signaling and the scene type corresponding to each access signaling according to the second embodiment of the present application;
  • FIG. 6 is a schematic diagram of a specific implementation of a DMRS configuration provided according to a second embodiment of the present application.
  • FIG. 7 is a flowchart of a DMRS configuration method according to a third embodiment of the present application.
  • FIG. 8 is a flowchart of determining the scene type of PUSCH according to the channel characteristics acquired each time and a preset identification model for identifying the scene type of the channel according to the third embodiment of the present application;
  • FIG. 9 is a schematic diagram of a specific implementation of a DMRS configuration provided according to a third embodiment of the present application.
  • FIG. 10 is a flowchart of a DMRS configuration method according to a fourth embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device according to a fifth embodiment of the present application.
  • the main purpose of the embodiments of the present application is to provide a DMRS configuration method, electronic device and storage medium.
  • the purpose is to adaptively adjust the number of DMRS symbols of the traffic channel according to the channel change of the user, thereby effectively improving the performance of the system and improving the throughput of the system.
  • the first embodiment of the present application relates to a DMRS configuration method, which is applied to a base station.
  • the implementation details of the DMRS configuration method in this embodiment will be specifically described below, and the following content is only provided for the convenience of understanding, and is not necessary for implementing this solution.
  • the specific process of the DMRS configuration method in this embodiment may be as shown in FIG. 1 , including:
  • Step 101 acquiring the channel characteristics of the target channel of the user equipment UE to transmit data
  • the base station may first obtain the channel characteristics of the target channel for the user equipment UE to transmit data.
  • the target channel is the channel where the user equipment UE is located, and the channel characteristics of the target channel can truly and fully reflect the current channel state and working condition of the target channel.
  • the channel characteristics of the target channel for the user equipment UE to transmit data obtained by the base station include but are not limited to: channel time domain estimation value, channel frequency domain estimation value, channel equalized data and signal-to-interference plus noise ratio SINR, etc. .
  • the base station can also perform any combination of channel time domain estimates, channel frequency domain estimates, and channel equalized data and signal to interference plus noise ratio (SINR) to obtain a channel feature set.
  • SINR signal to interference plus noise ratio
  • the channel-equalized data includes channel-equalized IQ data
  • the base station can calculate the rotation angles of constellation diagrams on different data symbols according to the channel-equalized IQ data, and rotate the constellation diagrams on different data symbols Angle as channel feature.
  • acquiring the channel characteristics of the target channel for the user equipment UE to transmit data can be implemented by each sub-step as shown in FIG. 2 , which specifically includes:
  • Sub-step 1011 determine whether the UE is in the initial access stage, if so, execute sub-step 1012, otherwise, execute sub-step 1014;
  • the base station when the base station configures the DMRS for the UE, it can first determine whether the UE is in the initial access phase. If the UE is in the initial access phase, it enters the process of acquiring the channel characteristics of the target channel for the UE to transmit data in the initial access phase. ; If the UE is not in the initial access phase, the base station determines that the UE is in the normal service phase, and enters the process of acquiring the channel characteristics of the target channel for the UE to transmit data in the normal service phase.
  • Sub-step 1012 acquiring several pieces of access signaling sent by the UE to the base station in the initial access phase
  • the base station determines that the UE is in the initial access phase, it can acquire several pieces of access signaling sent by the UE in the initial access phase.
  • the access signaling may also be referred to as an access message, and the access signaling is used for description below.
  • the UE may send a first access signaling (message1, MSG1) for accessing the base station to the base station during the initial access phase, and the base station sends a second message to the UE for responding to MSG1 after receiving MSG1 Access signaling (message2, referred to as: MSG2), after receiving MSG2, the UE sends a third access signaling (message3, referred to as RRC) establishment request or re-establishment request to the base station : MSG3), after the base station receives MSG3, it can send the fourth access signaling (message4, referred to as: MSG4) to the UE instructing the UE to perform RRC establishment or reestablishment. After receiving MSG4, the UE can send the RRC establishment complete or The fifth access signaling (message5, MSG5 for short) that has been rebuilt.
  • MSG1 Access signaling (message2, referred to as: MSG2)
  • MSG3 Access signaling messagessage3, referred to as RRC
  • Sub-step 1013 according to several pieces of access signaling, obtain the channel characteristics of the channel carrying several pieces of access signaling;
  • the base station can acquire the channel characteristics of the channel carrying the several pieces of access signaling according to the several pieces of access signaling.
  • the channel characteristics of the channel carrying several access signaling can be obtained according to several access signaling, which can make the acquired channel characteristics more comprehensive and accurate. Appropriately reduce configuration signaling overhead.
  • the base station can obtain the channel time domain estimate value and the channel frequency domain estimate value of the channel carrying the access signaling when the access signaling is transmitted once. , the channel equalized data and signal to interference plus noise ratio SINR and so on.
  • the channel for transmitting the first access signaling is a physical random access channel (Physical Random Access Channel, PRACH for short), and the base station can obtain the channel characteristics of the random access channel through the steps shown in FIG. 3 .
  • PRACH Physical Random Access Channel
  • Step 201 according to the preset number of times n of repeated transmission of the first access signaling, obtain a channel estimation value of the first access signaling repeated n times on the PRACH;
  • the base station may obtain the channel estimation value of the first access signaling repeated n times on the PRACH according to the preset number of times n of repeated transmission of the first access signaling.
  • the preset number n of repeated sending of the first access signaling may be set by those skilled in the art according to actual needs, which is not specifically limited in the embodiment of the present application.
  • the preset number of times n of repeated sending of the first access signaling that is, the number of times the first access signaling is repeatedly sent in the PRACH.
  • the short format PRACH format B4 is used in the initial access phase, and the subcarrier interval is 30 kHz.
  • the number of repeated transmissions of the first access signaling can be set to 12 times. Record as:
  • Step 202 according to the channel estimation value of PRACH and the preset times interval ⁇ n, determine the correlation value of the channel estimation value during the ith repetition and the channel estimation value during the i+ ⁇ n repetition;
  • the base station may determine the ith repetition according to the channel estimation value repeated n times on the PRACH and the preset times interval ⁇ n
  • i is an integer greater than 0 and less than n- ⁇ n.
  • the correlation value of the two values can represent the correlation between the two values. The larger the correlation value, the more related the two values are, that is, the UE moves slowly. The smaller the correlation value, the less the two values are related, that is, the UE moving speed. quick.
  • the preset times interval ⁇ n may be set by those skilled in the art according to actual needs, which is not specifically limited in the embodiments of the present application.
  • the number of times of repeated sending of the first access signaling is 12, and ⁇ n can be 1, 2, 4, 6, 8, and 10. That is, when ⁇ n is set to 1, the correlation value between the channel estimation value at the first repetition and the channel estimation value at the second repetition is calculated, and the channel estimation value at the second repetition and the channel estimation at the third repetition are calculated. Correlation value between estimated values, etc.; when ⁇ n is 4, calculate the correlation value between the channel estimated value at the first repetition and the channel estimated value at the fifth repetition, and the channel estimated value at the second repetition The correlation value with the channel estimation value at the sixth repetition, etc.
  • ⁇ n is set to 6
  • the channel estimation value at the first repetition is The channel estimate at the seventh repetition is
  • the correlation value between the channel estimation value at the first repetition and the channel estimation value at the seventh repetition can be denoted as H corr,6 .
  • Step 203 Acquire channel characteristics of the PRACH according to the correlation value.
  • the base station can obtain the channel characteristics of the PRACH according to the correlation value.
  • the base station can obtain the channel characteristics of the PRACH according to the correlation value.
  • the channel characteristics of the PRACH are acquired, that is, the channel characteristics of the PRACH corresponding to the first access signaling are acquired.
  • the base station can calculate the amplitude and phase values of the correlation value between the channel estimation value obtained at the i-th time and the channel estimation value obtained at the i+ ⁇ n-th time, and the base station can use these amplitude and phase values as the PRACH channel. feature set.
  • the correlation value between the channel estimation value obtained for the first time and the channel estimation value obtained for the seventh time is H corr,6
  • , the phase value of the correlation value is: ⁇ corr,6 angle(H corr,6 ).
  • the channel for transmitting the third access signaling and the fifth access signaling is an uplink shared channel (Physical uplink shared channel, PUSCH for short), and the base station can obtain the PUSCH according to the third access signaling Channel characteristics: According to the fifth access signaling, the channel characteristics of the PUSCH are acquired.
  • PUSCH Physical uplink shared channel
  • the PUSCH transmitting MSG3 and MSG5 occupies 14 symbols, and the two pilot symbols are DMRS Type1, located in symbols 2 and 11.
  • the base station can calculate the normalized signal power in the time-frequency domain according to the channel estimation value of the two pilot symbols.
  • the amplitude and phase values of the normalized correlation values of the channel estimation values of the 2 pilot symbols calculate the normalized signal power in the time-frequency domain from the channel estimation values of the 2 pilot symbols, and the 2 pilot symbols
  • the magnitude and phase values of the normalized correlation values of the channel estimates constitute the channel feature set.
  • Sub-step 1014 acquiring service data sent by the UE to the base station in the normal service phase
  • the base station determines that the UE is in the normal service phase, it can acquire service data sent by the UE to the base station in the normal service phase.
  • the UE in the normal service phase can send service data to the base station, and the service data can complete the mobile service of the UE regarding calls, the Internet, and the like.
  • Sub-step 1015 obtain the channel characteristics of the target channel for the UE to transmit data
  • the base station may acquire the channel characteristics of the target channel through which the UE transmits data according to the service data.
  • the base station can obtain the channel time domain estimation value, the channel frequency domain estimation value, the channel equalized data and the signal and interference when the target channel transmits the service data. plus noise ratio SINR and so on.
  • Step 102 determining the scene type of the target channel according to the channel characteristics and a preset identification model for identifying the scene type of the channel;
  • the base station may determine the scene type of the target channel according to the channel characteristics and a preset identification model for identifying the scene type of the channel.
  • the scenario type is the scenario type of the UE transmitting data in the target channel under the scenario type.
  • the use of the identification model can more accurately and comprehensively consider the channel characteristics, so as to determine the scene type of the target channel, which can greatly improve the identification of the scene type of the target channel. Accuracy.
  • the preset identification model for identifying the scene type of the channel may be an open-source model obtained from the Internet, or may be a model trained according to a marked training set. No specific limitation is made.
  • the preset recognition model for recognizing the scene type of the channel may be a deep learning-based neural network model.
  • the base station can obtain the channel feature information of several scene types marked with channels in advance, as a training set of the neural network model, and iteratively train the neural network model according to the training set until a recognition model whose recognition accuracy reaches a preset standard is obtained.
  • the scene types of the target channel may include a first scene type, a second scene type, and a third scene type.
  • the scene where the moving speed of the UE is not greater than 20km/h is the first scene type, such as fine stationary, walking, cycling, etc.
  • the scene where the moving speed of the UE is greater than 20km/h and not greater than 160km/h is the second scene type , such as a moving car, etc.
  • the scene where the UE's moving speed is greater than 160km/h is the third scene type, such as a moving train, high-speed rail, etc.
  • the base station acquires, according to several pieces of access signaling, the channel characteristics corresponding to each access signaling of the target channel for the UE to transmit data, and may obtain channel characteristics corresponding to each access signaling and preset channel characteristics.
  • the identification model used to identify the scene type of the channel determines the scene type corresponding to each access signaling.
  • Step 103 obtain a demodulation reference signal DMRS configuration suggestion
  • the base station may obtain a demodulation reference signal DMRS configuration suggestion according to the scene type, where the DMRS configuration suggestion includes the number of configured pilot symbols.
  • the base station can provide DMRS configuration suggestions such as the number of pilot symbols to be configured and the location of pilot symbols according to the scene type.
  • the scenario type includes a first scenario type, a second scenario type, and a third scenario type
  • the moving speed of the UE in the first scenario type is lower than the moving speed of the UE in the second scenario type
  • the moving speed of the UE in the second scenario type is lower than that in the second scenario type.
  • the movement speed of the UE in the scenario type is lower than the movement speed of the UE in the third scenario type.
  • the first scenario type may be a stationary and low-speed moving scenario
  • the second scenario type may be a medium-high-speed moving scenario
  • the third scenario type Can be used for ultra-high-speed mobile scenarios.
  • the DMRS configuration suggestion given by the base station includes 1 pilot symbol; for the second scenario type, the DMRS configuration suggestion given by the base station includes 2 pilot symbols. or 3; for the third scenario type, the DMRS configuration suggestion given by the base station includes 3 or 4 pilot symbols to be configured.
  • the service channel It is necessary to configure 2 or 3 pilot symbols to track the time-varying channel well.
  • 3 or 4 pilot symbols need to be configured on the traffic channel to track the channel's time-varying well. Configuring multiple pilot symbols in scenarios with high moving speed can ensure channel estimation accuracy and system performance. In scenarios with low moving speed, configuring one pilot symbol can save resources and improve system spectrum efficiency.
  • Step 104 instruct the UE to perform DMRS configuration.
  • the base station may instruct the UE to perform the DMRS configuration according to the DMRS configuration suggestion.
  • the steps of identifying the scene type of the target channel and obtaining the DMRS configuration suggestion are all performed at the network layer.
  • the base station After the base station obtains the DMRS configuration suggestion, it can send the DMRS configuration suggestion to the physical layer to instruct the UE to perform DMRS configuration. configuration.
  • the first embodiment of the present application acquires the channel characteristics of the target channel through which the user equipment UE transmits data, and the channel characteristics of the target channel through which the user equipment UE transmits data can truly and fully reflect the current channel state and working conditions of the target channel.
  • the use of the identification model can be more accurate.
  • a demodulation reference signal DMRS configuration suggestion is obtained, wherein the configuration suggestion includes the number of configured pilot symbols, and the UE is instructed to perform DMRS configuration according to the DMRS configuration suggestion.
  • the configuration suggestion includes the number of configured pilot symbols
  • the UE is instructed to perform DMRS configuration according to the DMRS configuration suggestion.
  • FIG. 4 is the DMRS configuration method described in the second embodiment of the present application, including:
  • Step 301 if the UE is in the initial access phase, obtain several pieces of access signaling sent by the UE to the base station in the initial access phase;
  • Step 302 according to several pieces of access signaling, obtain the channel characteristics of the channel carrying several pieces of access signaling;
  • Step 303 Determine the scenario type corresponding to the several access signaling according to the channel characteristics of the channel carrying the several access signaling and the preset identification model for identifying the scenario type of the channel;
  • steps 301 to 303 have been similarly described in the first embodiment, and will not be repeated here.
  • Step 304 according to the SINR of the channel carrying several pieces of access signaling and the scenario type corresponding to several pieces of access signaling, determine the scenario type of the channel carrying several pieces of access signaling;
  • the channel characteristics corresponding to each access signaling obtained by the base station include the Signal to Interference plus Noise Ratio (Signal to Interference plus Noise Ratio, SINR for short) corresponding to each access signaling.
  • SINR Signal to Interference plus Noise Ratio
  • the SINR corresponding to each access signaling and the scenario type corresponding to each access signaling determine the scenario type of the target channel. The larger the SINR, the smaller the received interference, and the smaller the SINR value, the greater the received interference.
  • the scenario type of the channel determined according to the scenario type corresponding to the access signaling with the SINR greater than the preset SINR threshold value is more stable, the interference is smaller, and the possibility of misjudgment is low.
  • determining the scenario type of the target channel according to the SINR corresponding to each access signaling and the scenario type corresponding to each access signaling can be implemented by the sub-steps shown in FIG. 5 , as follows:
  • Sub-step 3041 judging whether the SINR of the channel carrying several pieces of access signaling is greater than the preset SINR threshold, and according to the judgment result, determine the valid scene type among the scene types corresponding to the several pieces of access signaling;
  • the base station can determine whether the SINR of a channel carrying several pieces of access signaling is greater than a preset SINR threshold, and according to the judgment result, determine an effective scenario type among the scenario types corresponding to several pieces of access signaling, wherein, The valid scenario type is the scenario type corresponding to the access signaling whose SINR is greater than the preset SINR threshold.
  • the SINR threshold can be set by those skilled in the art according to actual needs, which is not specifically limited in the embodiments of the present application, and the SINR threshold is generally set to 5dB-10dB.
  • the SINR threshold is 5dB
  • the SINR corresponding to MSG1 is 10dB
  • the SINR corresponding to MSG3 is 4dB
  • the SINR corresponding to MSG5 is 8dB
  • the base station determines that the scene type corresponding to MSG1 and the scene type corresponding to MSG5 are valid scenes type.
  • Sub-step 3042 determine the scenario type of the channel carrying several pieces of access signaling.
  • the base station may determine the scenario type of the channel carrying several pieces of access signaling according to the valid scenario type.
  • the base station may select the scenario type corresponding to the access signaling with the largest SINR value among all valid scenario types, and determine it as the scenario type of the channel carrying several pieces of access signaling.
  • the SINR corresponding to MSG1 is 10dB, the scene type corresponding to MSG1 is medium and high-speed scene; the SINR corresponding to MSG5 is 8dB, the scene type corresponding to MSG5 is ultra-high-speed scene, and the SINR corresponding to MSG1 is greater than the SINR corresponding to MSG5.
  • the base station determines that the scenario type of the channel carrying several pieces of access signaling is a medium-high-speed scenario.
  • Step 305 obtain a demodulation reference signal DMRS configuration suggestion
  • Step 306 according to the DMRS configuration suggestion, instruct the UE to perform DMRS configuration.
  • steps 305 to 306 have been described in the first embodiment, and are not repeated here.
  • the specific implementation process of the DMRS configuration method in this embodiment may be as shown in FIG. 6 , which specifically includes:
  • Step 401 the UE sends MSG1, MSG3 and MSG5 to the base station;
  • the base station may acquire MSG1, MSG3 and MSG5 sent by the UE to the base station.
  • Step 402 the base station identifies the scene type corresponding to MSG1, the scene type corresponding to MSG3 and the scene type corresponding to MSG5;
  • Step 403 the base station performs a comprehensive judgment according to the scene type corresponding to MSG1, the scene type corresponding to MSG3 and the scene type corresponding to MSG5, and determines the scene type of the channel carrying several access signaling;
  • Step 404 select a DMRS configuration suggestion
  • Step 405 the base station sends a DMRS configuration suggestion to the UE through RRC to perform DMRS reconfiguration.
  • the channel characteristics include the signal-to-interference-plus-noise ratio SINR of the channel carrying several pieces of access signaling; the channel characteristics and a preset scenario for identifying the channel
  • the identification model of the type determining the scene type of the target channel, including: according to the channel characteristics of the channel carrying several access signaling and the preset identification model for identifying the scene type of the channel, determining the connection with the several access signaling
  • the scenario type corresponding to the signaling including: according to the SINR of the channel carrying several pieces of access signaling and the scenario type corresponding to the several pieces of access signaling, determine the scenario of the channel carrying several pieces of access signaling
  • the comprehensive judgment can make the acquired channel scene type more accurate and fit the actual usage of the user, thus making the DMRS configuration more reasonable and further improving the performance and throughput of the system.
  • Determining the scenario type of the target channel according to the SINR corresponding to each access signaling and the scenario type corresponding to each access signaling includes: judging the channel carrying several pieces of access signaling. Whether the SINR of the channel is greater than the preset SINR threshold, and according to the judgment result, determine the effective scene type from the scene types corresponding to several pieces of access signaling; wherein, the effective scene type is the access signaling whose SINR is greater than the SINR threshold Corresponding scene type; according to the valid scene type, determine the scene type of the channel carrying several pieces of access signaling, and determine the channel type according to the scene type corresponding to the access signaling whose SINR is greater than the preset SINR threshold.
  • the scene type is more stable, the interference is smaller, and the possibility of misjudgment is low.
  • FIG. 7 It is a schematic diagram of the DMRS configuration method described in the third embodiment of the present application, including:
  • Step 501 if the UE is in a normal service phase, within a preset time window, acquire channel characteristics of the PUSCH for k times;
  • the UE sends service data to the base station through the PUSCH. If the base station determines that the UE is in a normal service phase, the base station may acquire the channel characteristics of the PUSCH k times within a preset time window. Wherein, k is an integer greater than 1, and the preset time window and acquisition times can be set by those skilled in the art according to actual needs, which are not specifically limited in the embodiments of the present application.
  • the PUSCH occupies 14 symbols, 1 pilot symbol, and adopts DMRS Type 1, the pilot symbol is located in symbol 3, the base station can obtain the channel estimation value corresponding to the pilot symbol, and calculate the time-frequency domain normalization
  • the signal power according to the IQ data after channel equalization, obtains the rotation angle of the constellation diagram of each data symbol, and forms the channel feature set.
  • the PUSCH occupies 14 symbols, 2 pilot symbols, and adopts DMRS Type 1.
  • One pilot symbol is located in symbol 3, and the other pilot symbol is located in symbol 11.
  • the base station obtains the corresponding pilot symbols of the two pilot symbols.
  • the normalized signal power in the time-frequency domain is calculated, and the amplitude and phase values of the normalized correlation values of the channel estimation values of the two pilot symbols are calculated to form a channel feature set.
  • Step 502 determining the scene type of the PUSCH according to the channel characteristics obtained each time and a preset identification model for identifying the scene type of the channel;
  • the base station may determine the scene type of the PUSCH according to the channel characteristics acquired each time and a preset identification model for identifying the scene type of the channel.
  • determining the scene type of PUSCH according to the channel characteristics acquired each time and the preset identification model used to identify the scene type of the channel can be implemented by each sub-step as shown in FIG. 8 , as follows:
  • Sub-step 5021 according to the channel characteristics acquired each time and a preset identification model for identifying the scene type of the channel, determine the identification result corresponding to the channel characteristics acquired each time;
  • the base station may determine the identification result corresponding to the channel characteristics acquired each time according to the channel characteristics acquired each time and a preset identification model for identifying the scene type of the channel.
  • the identification result includes probability values of the PUSCH belonging to each scene type respectively.
  • the base station determines, according to the channel characteristics acquired for the sixth time and a preset identification model for identifying the scene type of the channel, that the probability values of the PUSCH corresponding to the channel characteristics acquired for the sixth time belong to each scene type respectively are:
  • the probability value is 27% for stationary and low-speed moving scenarios, 88% for medium-high-speed moving scenarios, and 3% for ultra-high-speed moving scenarios.
  • the channel characteristics acquired each time include the corresponding SINR acquired each time
  • the base station may regard the corresponding identification result whose SINR is greater than the preset SINR threshold as the valid identification result, and discard the invalid identification result.
  • Sub-step 5022 perform long-term filtering according to the probability values that the PUSCH belongs to each scene type in the identification result, and obtain the long-term probability values belonging to each scene type;
  • the value determines the scenario type of the channel, which can make the determined scenario type of the channel more reasonable, thereby making the DMRS configuration more reasonable and improving the user experience.
  • the base station may perform long-term filtering according to the probability values of the PUSCH belonging to each scene type in the identification result, and obtain the long-term probability values belonging to each scene type.
  • the base station can perform long-term filtering by the following formula:
  • n is the nth identification
  • m is the mth channel type
  • is the preset filter factor
  • the probability value of the mth type identified for the nth time is the long-term probability value of the mth type identified for the n-1th time
  • the long-term probability value of the mth type identified for the nth time is the preset filter factor
  • the preset filter factor is 0.9
  • the long-term probability value of the second type identified for the fifth time is 25%
  • the probability value of the second type identified for the sixth time is 41%.
  • Sub-step 5023 according to the long-term probability values belonging to each scene type, determine the scene type of PUSCH;
  • the base station may determine the PUSCH scenario type according to the long-term probability values belonging to each scenario type.
  • the number of acquisitions (recognitions) is 10
  • the base station determines that the long-term probability value of the first type identified for the tenth time is 12.3%
  • the long-term probability value of the second type identified for the tenth time is 37.8%
  • the The long-term probability value of the third type identified 10 times is 91.4%
  • the base station determines that the scene type of the PUSCH is the third type.
  • Step 503 obtain a demodulation reference signal DMRS configuration suggestion
  • Step 504 according to the DMRS configuration suggestion, instruct the UE to perform DMRS configuration.
  • steps 503 to 504 have been described in the first embodiment, and will not be repeated here.
  • the base station may enter the next preset time window, update the DMRS configuration suggestion, and update the DMRS configuration according to the updated DMRS configuration suggestion.
  • the specific implementation process of the DMRS configuration method in this embodiment may be as shown in FIG. 9 , which specifically includes:
  • Step 601 within a preset time window, obtain service data sent by the UE to the base station for k times;
  • Step 602 the base station identifies the scene type corresponding to the service data acquired k times;
  • Step 603 the base station performs long-term statistical judgment on the identified scene type corresponding to the secondary acquired service data
  • Step 604 select a DMRS configuration suggestion
  • Step 605 the base station sends a DMRS configuration suggestion to the UE through RRC, and performs DMRS reconfiguration;
  • Step 606 perform the next preset time window, and perform the next round of configuration.
  • the target channel includes the physical uplink shared channel PUSCH
  • the acquiring channel characteristics of the channel through which the user equipment UE transmits data includes: in a preset time window , obtain the channel characteristics of the PUSCH k times; wherein, k is an integer greater than 0; the scene type of the channel is determined according to the channel characteristics and a preset identification model for identifying the scene type of the channel , which includes: determining the scene type of the PUSCH according to the channel characteristics acquired each time and a preset identification model for identifying the scene type of the channel.
  • the UE is in the normal service stage, and within a preset time window, obtains multiple channel characteristics to determine the channel scenario type, which can make the acquired channel scenario type more accurate and fit the actual usage of the user, so that the DMRS configuration can be improved. It is more reasonable and improves the user experience.
  • Determining the scene type of the PUSCH according to the channel characteristics acquired each time and a preset identification model used to identify the scene type of the channel includes: according to the channel characteristics acquired each time and a preset identification model.
  • the identification result corresponding to the channel feature obtained each time is determined; wherein, the identification result includes the probability value that the PUSCH belongs to each scene type;
  • the PUSCH belongs to the probability value of each scene type, and performs long-term filtering to obtain the long-term probability value of each scene type; according to the long-term probability value of each scene type, the scene type of the PUSCH is determined.
  • the method further includes: entering a next preset time window, updating the DMRS configuration suggestion; and updating the DMRS configuration according to the updated DMRS configuration suggestion. It can adapt to the changing usage scenarios of users, further improve the performance and throughput of the system, and bring users a better experience.
  • FIG. 10 is the DMRS configuration method described in the fourth embodiment of the present application, including:
  • Step 701 obtaining a DMRS configuration suggestion sent by a base station
  • Step 702 according to the DMRS configuration suggestion, perform DMRS configuration.
  • this embodiment is an embodiment applied to the UE corresponding to the first to third embodiments, and this embodiment can be implemented in cooperation with the first to third embodiments.
  • the related technical details and technical effects mentioned in the first to third embodiments are still valid in this embodiment, and in order to reduce repetition, they will not be repeated here.
  • the related technical details mentioned in this embodiment can also be applied to the first to third embodiments.
  • the fifth embodiment of the present application relates to an electronic device, as shown in FIG. 11 , comprising: at least one processor 801 ; and a memory 802 communicatively connected to the at least one processor 801 ; wherein the memory 802 stores The instructions that can be executed by the at least one processor 801.
  • the instructions are executed by the at least one processor 801, so that the at least one processor 801 can execute the application in the above embodiments.
  • DMRS configuration method of a base station When the electronic device is a UE, the instruction is executed by the at least one processor 801, so that the at least one processor 801 can execute the DMRS configuration method applied to the UE in the foregoing embodiments.
  • the memory and the processor are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory.
  • the bus may also connect together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface between the bus and the transceiver.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory may be used to store data used by the processor in performing operations.
  • the sixth embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • a storage medium includes several instructions to make a device ( It may be a single chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or optical disk, etc. medium of program code.

Abstract

本申请实施例涉及通信技术领域,特别涉及一种DMRS配置方法、电子设备和计算机可读存储介质。上述DMRS配置方法包括:获取用户设备UE传输数据的目标信道的信道特征;根据所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述目标信道的场景类型;根据所述场景类型,获取解调参考信号DMRS配置建议;其中,所述DMRS配置建议包括配置的导频符号的个数;根据所述DMRS配置建议,指示所述UE进行DMRS配置。

Description

DMRS配置方法、电子设备和存储介质
相关申请的交叉引用
本申请基于申请号为“202110013322.X”、申请日为2021年01月06日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信技术领域,特别涉及一种DMRS配置方法、电子设备和存储介质。
背景技术
随着通信技术的飞速发展,在第五代移动通信技术(5th generation wireless systems,简称:5G)新无线(New Radio,简称:NR)中,为了支持不同的无线信道场景,满足对信道时变性的估计精度,第三代合作伙伴计划(3rd Generation Partnership Project,简称:3GPP标准)制定了前置导频(即首次出现的导频符号)和附加导频(在调度持续时间内安插的更多的导频符号,用于满足对信道时变性的估计精度)的各种组合以满足需求,3GPP标准对于各种场景均设置有固定的导频符号个数进行解调参考信号(Demodulation Reference Signal,简称:DMRS)配置。
然而,在实际情况中,用户设备(User Equipment,简称:UE)的移动状态会不断变化,如果固定配置导频符号个数过少,用户在中高速移动场景时,信道估计精度可能不够,从而导致性能损失;如果固定配置导频符号个数过多,用户在低速移动场景时,会导致资源的浪费,小区系统频谱效率降低,即系统的性能不高,系统的吞吐量不足,给用户带来了不好的使用体验。
发明内容
本申请实施例提供了一种DMRS配置方法,其特征在于,包括:获取用户设备UE传输数据的目标信道的信道特征;根据所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述目标信道的场景类型;根据所述场景类型,获取解调参考信号DMRS配置建议;其中,所述DMRS配置建议包括配置的导频符号的个数;根据所述DMRS配置建议,指示所述UE进行DMRS配置。
本申请实施例还提供了一种DMRS配置方法,应用于UE,所述UE与基站通过目标信道传输数据,所述方法包括:获取基站发送的DMRS配置建议;其中,所述DMRS配置建议包括配置的导频符号的个数,所述DMRS配置建议根据所述目标信道的场景类型获取,所述目标信道的场景类型根据所述目标信道的信道特征和预设的用于识别信道的场景类型的识别模型确定;根据所述DMRS配置建议,进行DMRS配置。
本申请实施例还提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述应用于基站的DMRS配置方法,或者执行上述应用于UE的DMRS配置方法。
本申请实施例还提供了一种可读存储介质,存储有计算机程序,所述计算机程序被处理 器执行时实现上述应用于基站的DMRS配置方法,或者实现上述应用于UE的DMRS配置方法。
附图说明
图1是根据本申请第一实施例的DMRS配置方法的流程图;
图2是根据本申请第一实施例中,获取用户设备UE传输数据的目标信道的信道特征的流程图;
图3是根据本申请第一实施例提供的一种获取随机接入信道特征的流程图;
图4是根据本申请第二实施例的DMRS配置方法的流程图;
图5是根据本申请第二实施例中,根据与各接入信令对应的SINR和与各接入信令对应的场景类型,确定目标信道的场景类型的流程图;
图6是根据本申请第二实施例提供的一种DMRS配置具体实现的示意图;
图7是根据本申请第三实施例的DMRS配置方法的流程图;
图8是根据本申请第三实施例中,根据每次获取的信道特征和预设的用于识别信道的场景类型的识别模型,确定PUSCH的场景类型的流程图;
图9是根据本申请第三实施例提供的一种DMRS配置具体实现的示意图;
图10是根据本申请第四实施例的DMRS配置方法的流程图;
图11是根据本申请第五实施例的电子设备的结构示意图。
具体实施方式
本申请实施例的主要目的在于提出一种DMRS配置方法、电子设备和存储介质。旨在根据用户的信道变化情况自适应的调整业务信道的DMRS符号个数,从而有效提高系统的性能,提高系统的吞吐量。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的第一实施例涉及一种DMRS配置方法,应用于基站。下面对本实施例的DMRS配置方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
本实施例的DMRS配置方法的具体流程可以如图1所示,包括:
步骤101,获取用户设备UE传输数据的目标信道的信道特征;
具体而言,基站在指示UE进行DMRS配置时,可以先获取用户设备UE传输数据的目标信道的信道特征。目标信道即用户设备UE所处的信道,目标信道的信道特征可以真实地、充分地反映目标信道当前的信道状态和工作情况。
在具体实现中,基站获取的用户设备UE传输数据的目标信道的信道特征包括但不限于:信道时域估计值,信道频域估计值,信道均衡后的数据和信号与干扰加噪声比SINR等。基站还可以对信道时域估计值,信道频域估计值,信道均衡后的数据和信号与干扰加噪声比 SINR等进行任意组合,获取信道特征集。综合考虑多种信道特征,可以使DMRS配置更加准确。
在一个例子中,信道均衡后的数据包括信道均衡后的IQ数据,基站可以根据信道均衡后的IQ数据计算出不同数据符号上的星座图的旋转角度,将不同数据符号上的星座图的旋转角度作为信道特征。
在一个例子中,获取用户设备UE传输数据的目标信道的信道特征,可以由如图2所示的各子步骤实现,具体包括:
子步骤1011,判断UE是否处于初始接入阶段,如果是,执行子步骤1012,否则,执行子步骤1014;
具体而言,基站在对UE进行DMRS配置时,可以先判断UE是否处于初始接入阶段,若UE处于初始接入阶段,进入初始接入阶段的获取UE传输数据的目标信道的信道特征的流程;若UE不处于初始接入阶段,基站确定UE处于正常业务阶段,进入正常业务阶段的获取UE传输数据的目标信道的信道特征的流程。
子步骤1012,获取UE在初始接入阶段向基站发送的若干条接入信令;
具体而言,若基站确定UE处于初始接入阶段,可以获取UE在初始接入阶段发送的若干条接入信令。其中,接入信令也可称作接入消息,以下均以接入信令进行说明。
在具体实现中,UE在初始接入阶段可以向基站发送用于接入基站的第一接入信令(message1,简称:MSG1),基站收到MSG1后向UE发送用于响应MSG1的第二接入信令(message2,简称:MSG2),UE在接收到MSG2后,向基站发送无线资源控制(Radio Resource Control,简称:RRC)建立请求或重建请求的第三接入信令(message3,简称:MSG3),基站收到MSG3后,可以向UE发送指示UE进行RRC建立或重建的第四接入信令(message4,简称:MSG4),UE接收到MSG4后,可以向基站发送RRC建立完成或重建完成的第五接入信令(message5,简称:MSG5)。
子步骤1013,根据若干条接入信令,获取承载若干条接入信令的信道的信道特征;
具体而言,基站在获取UE在初始接入阶段向基站发送的若干条接入信令后,可以根据若干条接入信令,获取承载若干条接入信令的信道的信道特征。在初始接入阶段,根据若干接入信令获取承载若干条接入信令的信道的信道特征,可以使获取到的信道特征更加全面、准确,而且在初始接入阶段进行信道场景识别,可以适当减少配置信令开销。
在具体实现中,UE每向基站发送一条接入信令,基站就可以获取一次承载该接入信令的信道在传输该条接入信令时的信道时域估计值,信道频域估计值,信道均衡后的数据和信号与干扰加噪声比SINR等。
在一个例子中,传输第一接入信令的信道为随机接入信道(Physical Random Access Channel,简称:PRACH),基站获取随机接入信道的信道特征可以通过如图3所示的各步骤实现,具体如下:
步骤201,根据预设的第一接入信令的重复发送次数n,获取第一接入信令在PRACH上重复n次的信道估计值;
具体而言,基站可以根据预设的第一接入信令的重复发送次数n,获取第一接入信令在PRACH上重复n次的信道估计值。其中,预设的第一接入信令的重复发送次数n可以由本领域的技术人员根据实际需要进行设定,本申请的实施例对此不做具体限定。
在具体实现中,预设的第一接入信令的重复发送次数n,即第一接入信令在PRACH中重复发送的次数。
在一个例子中,初始接入阶段采用的是短格式PRACH format B4,子载波间隔为30kHz,可以设置第一接入信令的重复发送次数为12次,第一次重复时的信道估计值可以记为:
Figure PCTCN2021125783-appb-000001
步骤202,根据PRACH的信道估计值和预设的次数间隔△n,确定第i次重复时的信道估计值和第i+△n次重复时的信道估计值的相关值;
具体而言,基站在获取第一接入信令在PRACH上重复n次的信道估计值后,可以根据PRACH上重复n次的信道估计值和预设的次数间隔△n,确定第i次重复时的信道估计值和第i+△n次重复时的信道估计值的相关值。其中,i为大于0且小于n-△n的整数。两个值的相关值可以表示两个值之间的相关性,相关值越大说明两个值越相关,即UE移动速度慢,相关值越小说明两个值越不相关,即UE移动速度快。预设的次数间隔△n可以由本领域的技术人员根据实际需要进行设定,本申请的实施例对此不做具体限定。
在一个例子中,第一接入信令的重复发送次数为12次,△n可以取1,2,4,6,8,10。即△n取1时,计算第1次重复时的信道估计值与第2次重复时的信道估计值之间的相关值,第2次重复时的信道估计值与第3次重复时的信道估计值之间的相关值等;△n取4时,计算第1次重复时的信道估计值与第5次重复时的信道估计值之间的相关值,第2次重复时的信道估计值与第6次重复时的信道估计值之间的相关值等。
比如:△n取6,第1次重复时的信道估计值为
Figure PCTCN2021125783-appb-000002
第7次重复时的信道估计值为
Figure PCTCN2021125783-appb-000003
第1次重复时的信道估计值与第7次重复时的信道估计值之间的相关值可以记为H corr,6
步骤203,根据相关值,获取PRACH的信道特征。
具体而言,基站确定第i次获取的信道估计值和第i+△n次获取的信道估计值的相关值后,可以根据相关值,获取PRACH的信道特征。其中,PRACH上只传输第一接入信令,因此获取PRACH的信道特征,即获取PRACH的与第一接入信令对应的信道特征。
在具体实现中,基站可以计算第i次获取的信道估计值和第i+△n次获取的信道估计值的相关值的幅值和相位值,基站可以将这些幅值和相位值作为PRACH的信道特征集。
在一个例子中,第1次获取的信道估计值与第7次获取的信道估计值之间的相关值为H corr,6,该相关值的幅值为:A corr,6=|H corr,6|,该相关值的相位值为:θ corr,6=angle(H corr,6)。
在另一个例子中,传输第三接入信令和第五接入信令的信道为上行共享信道(Physical uplink shared channel,简称:PUSCH),基站可以根据第三接入信令,获取PUSCH的信道特征,根据第五接入信令,获取PUSCH的信道特征。
比如:传输MSG3和MSG5的PUSCH占用14个符号,2个导频符号采用DMRS Type1,位于符号2和11,基站可以根据这个2个导频符号的信道估计值计算时频域归一化信号功率,以及2个导频符号信道估计值的归一化相关值的幅值和相位值,将这个2个导频符号的信道估计值计算时频域归一化信号功率,以及2个导频符号信道估计值的归一化相关值的幅值和相位值组成信道特征集。
子步骤1014,获取UE在正常业务阶段向基站发送的业务数据;
具体而言,若基站确定UE处于正常业务阶段,可以获取UE在正常业务阶段向基站发送的业务数据。
在具体实现中,处于正常业务阶段的UE可以向基站发送业务数据,业务数据可以完成UE的关于通话、互联网等的移动业务。
子步骤1015,根据业务数据,获取UE传输数据的目标信道的信道特征;
具体而言,基站在获取UE在正常业务阶段向基站发送的业务数据后,可以根据业务数据,获取UE传输数据的目标信道的信道特征。
在具体实现中,UE每向基站发送一条业务数据,基站就可以获取一次目标信道在传输该条业务数据时的信道时域估计值,信道频域估计值,信道均衡后的数据和信号与干扰加噪声比SINR等。
步骤102,根据信道特征和预设的用于识别信道的场景类型的识别模型,确定目标信道的场景类型;
具体而言,基站在获取UE传输数据的目标信道的信道特征后,可以根据信道特征和预设的用于识别信道的场景类型的识别模型,确定目标信道的场景类型。场景类型为在处于场景类型下的目标信道中传输数据的UE的场景类型。考虑到传统判决方法无法准确地判决出复杂的无线信道环境,使用识别模型可以更准确、全面地考虑信道特征,从而确定目标信道的场景类型,可以很大幅度地提升目标信道的场景类型的识别准确率。
在具体实现中,预设的用于识别信道的场景类型的识别模型可以是从互联网中获取的开源模型,也可以是根据标注好的训练集训练得来的模型,本申请的实施例对此不做具体限定。
在一个例子中,预设的用于识别信道的场景类型的识别模型可以为基于深度学习的神经网络模型。基站可以预先获取若干标注有信道的场景类型的信道特征信息,作为神经网络模型的训练集,根据训练集对神经网络模型进行迭代训练,直到获得识别精度达到预设标准的识别模型。
在一个例子中,目标信道的场景类型可以包括第一场景类型、第二场景类型和第三场景类型。其中,UE的移动速度不大于20km/h的场景为第一场景类型,如精静止、步行、骑车等;UE的移动速度大于20km/h且不大于160km/h的场景为第二场景类型,如行进中的汽车等;UE的移动速度大于160km/h的场景为第三场景类型,如行进中的火车、高铁等。
在一个例子中,基站在根据若干条接入信令,获取UE传输数据的目标信道的与各接入信令对应的信道特征,可以根据与各接入信令对应的信道特征和预设的用于识别信道的场景类型的识别模型,确定与各接入信令对应的场景类型。
步骤103,根据场景类型,获取解调参考信号DMRS配置建议;
具体而言,基站在确定目标信道的场景类型后,可以根据场景类型,获取解调参考信号DMRS配置建议,其中,DMRS配置建议包括配置的导频符号的个数。
在具体实现中,基站在确定目标信道的场景类型后,可以根据场景类型,给出需配置的导频符号的个数和导频符号的位置等DMRS配置建议。
在一个例子中,场景类型包括第一场景类型、第二场景类型和第三场景类型,处于第一场景类型下的UE的移动速度小于处于第二场景类型下的UE的移动速度,处于第二场景类型下的UE的移动速度小于处于第三场景类型下的UE的移动速度,换言之,第一场景类型可以为静止与低速移动场景,第二场景类型可以为中高速移动场景,第三场景类型可以为超高速移动场景。对于第一场景类型,基站给出的DMRS配置建议包括配置的导频符号的个数为1个;对于第二场景类型,基站给出的DMRS配置建议包括配置的导频符号的个数为2个 或3个;对于第三场景类型,基站给出的DMRS配置建议包括配置的导频符号的个数为3个或4个。对于静止和低速移动性场景,由于相干时间比较长,业务信道上只需要配置前置导频(即1个导频符号)就可以比较准确地估计信道状态,但对于中高速移动场景,业务信道上需要配置2个或3个导频符号才能很好地跟踪信道的时变性,对于超高速移动场景,业务信道上需要配置3个或4个导频符号才能很好地跟踪信道的时变性。移动速度高的场景配置多个导频符号,可以保证信道估计精度,从而保证系统性能,移动速度低的场景配置1个导频符号,可以节约资源,提高系统频谱效率。
步骤104,根据DMRS配置建议,指示UE进行DMRS配置。
具体而言,基站获取DMRS配置建议后,可以根据DMRS配置建议,指示UE进行DMRS配置。
在具体实现中,进行目标信道的场景类型的识别和获取DMRS配置建议等步骤都是在网络层进行的,基站获取DMRS配置建议后,可以将DMRS配置建议下发给物理层,指示UE进行DMRS配置。
本申请的第一实施例,获取用户设备UE传输数据的目标信道的信道特征,用户设备UE传输数据的目标信道的信道特征可以真实地、充分地反映目标信道当前的信道状态和工作情况。根据所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述目标信道的场景类型,考虑到传统判决方法无法准确地判决出复杂的无线信道环境,使用识别模型可以更准确、全面地考虑信道特征,从而确定目标信道的场景类型,可以很大幅度地提升目标信道的场景类型的识别准确率。根据所述场景类型,获取解调参考信号DMRS配置建议,其中,所述配置建议包括配置的导频符号的个数,根据所述DMRS配置建议,指示UE进行DMRS配置。考虑到只根据一个测量量对信道场景进行判决的技术方案,对复杂的信道环境刻画不准确,无法准确地进行DMRS符号的自适应切换,并且没有给出整个DMRS符号个数切换的流程,因此无法保证系统的性能,而本申请的实施例,对于不同的场景类型对应有不同的DMRS配置建议,根据场景类型获取DMRS配置建议、进行DMRS配置,可以根据用户的信道变化情况自适应的调整信道的DMRS导频符号个数,从而有效提高系统的性能,提高系统的吞吐量。
本申请的第二实施例涉及一种DMRS配置方法,下面对本实施例的DMRS配置方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须,图4是本申请第二实施例所述的DMRS配置方法,包括:
步骤301,若UE处于初始接入阶段,获取UE在初始接入阶段向基站发送的若干条接入信令;
步骤302,根据若干条接入信令,获取承载若干条接入信令的信道的信道特征;
步骤303,根据承载若干条接入信令的信道的信道特征和预设的用于识别信道的场景类型的识别模型,确定与若干条接入信令对应的场景类型;
其中,步骤301至步骤303在第一实施例中已有类似说明,此处不再赘述。
步骤304,根据承载若干条接入信令的信道的SINR和与若干接入信令对应的场景类型,确定承载若干条接入信令的信道的场景类型;
在具体实现中,基站获取的与各接入信令对应的信道特征包括与各接入信令对应的信号 与干扰加噪声比(Signal to Interference plus Noise Ratio,简称:SINR),基站可以根据与各接入信令对应的SINR和与各接入信令对应的场景类型,确定目标信道的场景类型。SINR越大表示受到的干扰越小,SINR值越小表示收到的干扰越大。根据SINR大于预设的SINR阈值的接入信令对应的场景类型判决出来的信道的场景类型更加稳定,干扰更小,误判的可能性低。
在一个例子中,根据与各接入信令对应的SINR和与各接入信令对应的场景类型,确定目标信道的场景类型,可以由如图5所示的各子步骤实现,具体如下:
子步骤3041,判断承载若干条接入信令的信道的SINR是否大于预设的SINR阈值,并根据判断结果在与若干条接入信令对应的场景类型中确定有效场景类型;
具体而言,基站可以判断承载若干条接入信令的信道的SINR是否大于预设的SINR阈值,并根据判断结果在与若干条接入信令对应的场景类型中确定有效场景类型,其中,有效场景类型为SINR大于预设的SINR阈值的接入信令对应的场景类型。SINR阈值可以由本领域的技术人员根据实际需要进行设定,本申请的实施例对此不做具体限定,SINR阈值一般设置为5dB-10dB。
在一个例子中,SINR阈值为5dB,与MSG1对应的SINR为10dB,与MSG3对应的SINR为4dB,与MSG5对应的SINR为8dB,基站确定MSG1对应的场景类型和MSG5对应的场景类型为有效场景类型。
子步骤3042,根据有效场景类型,确定承载若干条接入信令的信道的场景类型。
具体而言,基站在确定有效场景类型后,可以根据有效场景类型,确定承载若干条接入信令的信道的场景类型。
在一个例子中,基站可以在所有有效场景类型中,选取SINR值最大的接入信令对应的场景类型确定为承载若干条接入信令的信道的场景类型。
比如:与MSG1对应的SINR为10dB,MSG1对应的场景类型为中高速场景;与MSG5对应的SINR为8dB,MSG5对应的场景类型为超高速场景,与MSG1对应的SINR大于与MSG5对应的SINR。基站确定承载若干条接入信令的信道的场景类型为中高速场景。
步骤305,根据场景类型,获取解调参考信号DMRS配置建议;
步骤306,根据DMRS配置建议,指示UE进行DMRS配置。
其中,步骤305至步骤306在第一实施例中已有说明,此处不再赘述。
在一个例子中,本实施例的DMRS配置方法的具体实现过程可以如图6所示,具体包括:
步骤401,UE向基站发送MSG1、MSG3和MSG5;
具体而言,基站可以获取UE向基站发送的MSG1、MSG3和MSG5。
步骤402,基站识别MSG1对应的场景类型,MSG3对应的场景类型和MSG5对应的场景类型;
步骤403,基站根据MSG1对应的场景类型,MSG3对应的场景类型和MSG5对应的场景类型进行综合判决,确定承载若干条接入信令的信道的场景类型;
步骤404,根据场景类型,选择DMRS配置建议;
步骤405,基站向UE通过RRC发送DMRS配置建议,进行DMRS重配。
本申请的第二实施例,所述信道特征包括所述承载若干条接入信令的信道的信号与干扰加噪声比SINR;所述根据所述信道特征和预设的用于识别信道的场景类型的识别模型,确定 所述目标信道的场景类型,包括:根据承载若干条接入信令的信道的信道特征和预设的用于识别信道的场景类型的识别模型,确定与若干条接入信令对应的场景类型;根据所述承载若干条接入信令的信道的SINR和所述与若干条接入信令对应的场景类型,确定所述承载若干条接入信令的信道的场景类型,根据若干条接入信令对应的信道特征进行综合判断,可以使获取的信道的场景类型更加准确,贴合用户的实际使用情况,从而使得DMRS配置更加合理,进一步提高系统的性能和吞吐量,提升用户的使用体验。所述根据所述与各接入信令对应的SINR和所述与各接入信令对应的场景类型,确定所述目标信道的场景类型,包括:判断所述承载若干条接入信令的信道的SINR是否大于预设的SINR阈值,并根据判断结果在与若干条接入信令对应的场景类型中确定有效场景类型;其中,有效场景类型为SINR大于所述SINR阈值的接入信令对应的场景类型;根据所述有效场景类型,确定所述承载若干条接入信令的信道的场景类型,根据SINR大于预设的SINR阈值的接入信令对应的场景类型判决出来的信道的场景类型更加稳定,干扰更小,误判的可能性低。
本申请的第三实施例涉及一种DMRS配置方法,下面对本实施例的DMRS配置方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须,图7是本申请第三实施例所述的DMRS配置方法的示意图,包括:
步骤501,若UE处于正常业务阶段,在预设的时间窗内,获取k次PUSCH的信道特征;
具体而言,正常业务阶段,UE通过PUSCH向基站发送业务数据。若基站确定UE处于正常业务阶段,基站可以在预设的时间窗内,获取k次PUSCH的信道特征。其中,k为大于1的整数,预设的时间窗和获取次数可以由本领域的技术人员根据实际需要进行设定,本申请的实施例对此不做具体限定。
在一个例子中,PUSCH占用14个符号,1个导频符号,并采用DMRS Type1,该导频符号位于符号3,基站可以获取该导频符号对应的信道估计值,计算时频域归一化信号功率,根据信道均衡后的IQ数据,获得各数据符号的星座图的旋转角度,组成信道特征集。
在另一个例子中,PUSCH占用14个符号,2个导频符号,并采用DMRS Type1,一个导频符号位于符号3,另一个导频符号位于符号11,基站获取这两个导频符号对应的信道估计值,计算时频域归一化信号功率,并计算这两个导频符号的信道估计值的归一化相关值的幅值和相位值,组成信道特征集。
步骤502,根据每次获取的信道特征和预设的用于识别信道的场景类型的识别模型,确定PUSCH的场景类型;
具体而言,基站获取k次PUSCH的信道特征后,可以根据每次获取的信道特征和预设的用于识别信道的场景类型的识别模型,确定PUSCH的场景类型。
在一个例子中,根据每次获取的信道特征和预设的用于识别信道的场景类型的识别模型,确定PUSCH的场景类型,可以由如图8所示的各子步骤实现,具体如下:
子步骤5021,根据每次获取的信道特征和预设的用于识别信道的场景类型的识别模型,确定每次获取的所述信道特征对应的识别结果;
具体而言,基站可以根据每次获取的信道特征和预设的用于识别信道的场景类型的识别模型,确定每次获取的所述信道特征对应的识别结果。其中,识别结果包括PUSCH分别属于各场景类型的概率值。
在一个例子中,基站根据第六次获取的信道特征和预设的用于识别信道的场景类型的识别模型,确定第六次获取的信道特征对应的PUSCH分别属于各场景类型的概率值为:静止和低速移动场景的概率值为27%,中高速移动场景的概率值为88%,超高速移动场景的概率值为3%。
在另一个例子中,每次获取的信道特征包括每次获取对应的SINR,基站可以将SINR大于预设SINR阈值的对应的识别结果作为有效识别结果,舍弃掉无效识别结果。
子步骤5022,根据识别结果中PUSCH分别属于各场景类型的概率值,进行长期滤波,获取分别属于各场景类型的长期概率值;考虑到用户在正常业务阶段处于的场景可能不断变化,根据长期概率值确定信道的场景类型,可以使确定的信道的场景类型更加合理,从而使得DMRS配置更加合理,提升用户的使用体验。
具体而言,基站确定每次获取的所述信道特征对应的识别结果后,可以根据识别结果中PUSCH分别属于各场景类型的概率值,进行长期滤波,获取分别属于各场景类型的长期概率值。
在一个例子中,基站可以通过以下公式进行长期滤波:
Figure PCTCN2021125783-appb-000004
其中,n为第n次识别,m为第m种信道类型,β为预设的滤波因子,
Figure PCTCN2021125783-appb-000005
为第n次识别的第m种类型的概率值,
Figure PCTCN2021125783-appb-000006
为第n-1次识别的第m种类型的长期概率值,
Figure PCTCN2021125783-appb-000007
为第n次识别的第m种类型的长期概率值,其中,预设的滤波因子可以由本领域的技术人员进行设定,本申请的实施例对此不做具体限定。
比如:预设的滤波因子为0.9,第5次识别的第2种类型的长期概率值为25%,第6次识别的第2种类型的概率值为41%,基站确定第6次识别的第2种类型的长期概率值为:0.9×25%+(1-0.9)×41%=26.6%。
子步骤5023,根据分别属于各场景类型的长期概率值,确定PUSCH的场景类型;
具体而言,基站获取分别属于各场景类型的长期概率值后,可以根据分别属于各场景类型的长期概率值,确定PUSCH的场景类型。
在一个例子中,获取(识别)次数为10,基站确定第10次识别的第1种类型的长期概率值为12.3%,第10次识别的第2种类型的长期概率值为37.8%,第10次识别的第3种类型的长期概率值为91.4%,基站确定PUSCH的场景类型为第3种类型。
步骤503,根据场景类型,获取解调参考信号DMRS配置建议;
步骤504,根据DMRS配置建议,指示UE进行DMRS配置。
其中,步骤503至步骤504在第一实施例中已有说明,此处不再赘述。
在一个例子中,基站根据DMRS配置建议,进行DMRS配置后,还可以进入下一个预设的时间窗,更新DMRS配置建议,并根据更新后的DMRS配置建议,更新DMRS配置。
在一个例子中,本实施例的DMRS配置方法的具体实现过程可以如图9所示,具体包括:
步骤601,在预设的时间窗内,获取k次UE向基站发送的业务数据;
步骤602,基站识别k次获取的业务数据对应的场景类型;
步骤603,基站对识别的次获取的业务数据对应的场景类型进行长期统计判决;
步骤604,根据场景类型,选择DMRS配置建议;
步骤605,基站向UE通过RRC发送DMRS配置建议,进行DMRS重配;
步骤606,进行下一个预设的时间窗,进行下一轮配置。
本申请的第三实施例,若所述UE处于正常业务阶段,所述目标信道包括物理上行共享信道PUSCH,所述获取用户设备UE传输数据的信道的信道特征,包括:在预设的时间窗内,获取k次所述PUSCH的信道特征;其中,k为大于0的整数;所述根据所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述信道的场景类型,包括:根据每次获取的所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述PUSCH的场景类型。UE处于正常业务阶段,在预设的时间窗内,获取多次信道特征进行信道的场景类型的判决,可以使获取的信道的场景类型更加准确,贴合用户的实际使用情况,从而使得DMRS配置更加合理,提升用户的使用体验。所述根据每次获取的所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述PUSCH的场景类型,包括:根据每次获取的所述信道特征和预设的用于识别信道的场景类型的识别模型,确定每次获取的所述信道特征对应的识别结果;其中,所述识别结果包括所述PUSCH分别属于各场景类型的概率值;根据所述识别结果中所述PUSCH分别属于各场景类型的概率值,进行长期滤波,获取分别属于各场景类型的长期概率值;根据所述分别属于各场景类型的长期概率值,确定所述PUSCH的场景类型。考虑到用户在正常业务阶段处于的场景可能不断变化,根据长期概率值确定信道的场景类型,可以使确定的信道的场景类型更加合理,从而使得DMRS配置更加合理,提升用户的使用体验。在所述根据所述DMRS配置建议,进行DMRS配置后,还包括:进入下一个预设的时间窗,更新所述DMRS配置建议;根据更新后的DMRS配置建议,更新所述DMRS配置。可以适应用户不断变化的使用场景,进一步提高系统的性能和吞吐量,给用户带来更好的使用体验。
本申请的第四实施例涉及一种DMRS配置方法,下面对本实施例的DMRS配置方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须,图10是本申请第四实施例所述的DMRS配置方法,包括:
步骤701,获取基站发送的DMRS配置建议;
步骤702,根据DMRS配置建议,进行DMRS配置。
不难发现,本实施例为与第一至第三实施例相对应的应用于UE的实施例,本实施例可与第一至第三实施例互相配合实施。第一至第三实施例中提到的相关技术细节和技术效果在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第一至第三实施例中。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请第五实施例涉及一种电子设备,如图11所示,包括:至少一个处理器801;以及,与所述至少一个处理器801通信连接的存储器802;其中,所述存储器802存储有可被所述至少一个处理器801执行的指令,当电子设备为基站,所述指令被所述至少一个处理器801执行,以使所述至少一个处理器801能够执行上述各实施例中应用于基站的DMRS配置方法; 当电子设备为UE,所述指令被所述至少一个处理器801执行,以使所述至少一个处理器801能够执行上述各实施例中应用于UE的DMRS配置方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请第六实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称:ROM)、随机存取存储器(Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (14)

  1. 一种DMRS配置方法,包括:
    获取用户设备UE传输数据的目标信道的信道特征;
    根据所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述目标信道的场景类型;
    根据所述场景类型,获取解调参考信号DMRS配置建议;其中,所述DMRS配置建议包括配置的导频符号的个数;
    根据所述DMRS配置建议,指示所述UE进行DMRS配置。
  2. 根据权利要求1所述的DMRS配置方法,其中,若所述UE处于初始接入阶段,所述目标信道包括承载若干条接入信令的信道,所述获取用户设备UE传输数据的目标信道的信道特征,包括:
    获取所述UE在所述初始接入阶段向基站发送的所述若干条接入信令;
    根据所述若干条接入信令,获取所述承载若干条接入信令的信道的信道特征。
  3. 根据权利要求2所述的DMRS配置方法,其中,所述信道特征包括所述承载若干条接入信令的信道的信号与干扰加噪声比SINR;
    所述根据所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述目标信道的场景类型,包括:
    根据承载若干条接入信令的信道的信道特征和预设的用于识别信道的场景类型的识别模型,确定与若干条接入信令对应的场景类型;
    根据所述承载若干条接入信令的信道的SINR和所述与若干条接入信令对应的场景类型,确定所述承载若干条接入信令的信道的场景类型。
  4. 根据权利要求3所述的DMRS配置方法,其中,所述根据所述承载若干条接入信令的信道的SINR和所述与若干条接入信令对应的场景类型,确定所述承载若干条接入信令的信道的场景类型,包括:
    判断所述承载若干条接入信令的信道的SINR是否大于预设的SINR阈值,并根据判断结果在与若干条接入信令对应的场景类型中确定有效场景类型;其中,有效场景类型为SINR大于所述SINR阈值的接入信令对应的场景类型;
    根据所述有效场景类型,确定所述承载若干条接入信令的信道的场景类型。
  5. 根据权利要求1或2所述的DMRS配置方法,其中,若所述UE处于正常业务阶段,所述目标信道包括物理上行共享信道PUSCH,所述获取用户设备UE传输数据的信道的信道特征,包括:
    在预设的时间窗内,获取k次所述PUSCH的信道特征;其中,k为大于0的整数;
    所述根据所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述信道的场景类型,包括:
    根据每次获取的所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述PUSCH的场景类型。
  6. 根据权利要求5所述的DMRS配置方法,其中,所述根据每次获取的所述信道特征和预设的用于识别信道的场景类型的识别模型,确定所述PUSCH的场景类型,包括:
    根据每次获取的所述信道特征和预设的用于识别信道的场景类型的识别模型,确定每次获取的所述信道特征对应的识别结果;其中,所述识别结果包括所述PUSCH分别属于各场景类型的概率值;
    根据所述识别结果中所述PUSCH分别属于各场景类型的概率值,进行长期滤波,获取所述PUSCH分别属于各场景类型的长期概率值;
    根据所述PUSCH分别属于各场景类型的长期概率值,确定所述PUSCH的场景类型。
  7. 根据权利要求5所述的DMRS配置方法,其中,在所述根据所述DMRS配置建议,进行DMRS配置后,还包括:
    进入下一个预设的时间窗,更新所述DMRS配置建议;
    根据更新后的DMRS配置建议,更新所述DMRS配置。
  8. 根据权利要求1-7中任一项所述的DMRS配置方法,其中,所述场景类型为在处于所述场景类型下的目标信道中传输数据的UE的场景类型,所述场景类型包括第一场景类型、第二场景类型和第三场景类型;其中,处于所述第一场景类型下的UE的移动速度小于处于所述第二场景类型下的UE的移动速度,处于所述第二场景类型下的UE的移动速度小于处于所述第三场景类型下的UE的移动速度;
    所述根据所述场景类型,获取解调参考信号DMRS配置建议,包括:
    若所述场景类型为第一场景类型,所述DMRS配置建议包括配置的导频符号的个数为1个;
    若所述场景类型为第二场景类型,所述DMRS配置建议包括配置的导频符号的个数为2个或3个;
    若所述场景类型为第三场景类型,所述DMRS配置建议包括配置的导频符号的个数为3个或4个。
  9. 根据权利要求2所述的DMRS配置方法,其中,所述承载若干条接入信令的信道包括:随机接入信道PRACH,所述若干条接入信令包括第一接入信令,所述第一接入信令为所述UE在所述PRACH中发送的用于接入基站的信令;
    所述根据所述若干条接入信令,获取所述承载若干条接入信令的信道的信道特征,包括:
    根据预设的所述第一接入信令的重复发送次数n,获取所述第一接入信令在所述PRACH上重复n次的信道估计值;
    根据所述信道估计值和预设的次数间隔△n,确定第i次重复时的信道估计值和第i+△n次重复时的信道估计值的相关值;其中,i为大于0且小于n-△n的整数;
    根据所述相关值,获取所述PRACH的信道特征。
  10. 根据权利要求2所述的DMRS配置方法,其中,所述所述承载若干条接入信令的信道包括PUSCH;
    所述若干条接入信令包括第三接入信令,所述第三接入信令为所述UE向基站发送无线资源控制RRC建立请求或重建请求;
    所述根据所述若干条接入信令,获取所述承载若干条接入信令的信道的信道特征,包括:
    根据所述第三接入信令,获取所述PUSCH的信道特征;
    和/或,
    所述若干条接入信令包括第五接入信令,所述第五接入信令为所述UE向基站发送RRC建立完成信息或重建完成信息;
    所述根据所述若干条接入信令,获取所述承载若干条接入信令的信道的信道特征,包括:
    根据所述第五接入信令,获取所述PUSCH的信道特征。
  11. 根据权利要求1-10中任一项所述的DMRS配置方法,其中,所述信道特征包括以下任意组合:信道时域估计值,信道频域估计值,信道均衡后的数据和信号与干扰加噪声比SINR。
  12. 一种DMRS配置方法,应用于UE,所述UE与基站通过目标信道传输数据,所述方法包括:
    获取基站发送的DMRS配置建议;其中,所述DMRS配置建议包括配置的导频符号的个数,所述DMRS配置建议根据所述目标信道的场景类型获取,所述目标信道的场景类型根据所述目标信道的信道特征和预设的用于识别信道的场景类型的识别模型确定;
    根据所述DMRS配置建议,进行DMRS配置。
  13. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令;
    当所述电子设备为基站,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至11中任一项所述的DMRS配置方法;
    当所述电子设备为UE,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求12所述的DMRS配置方法。
  14. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至11中任一项所述的DMRS配置方法,或者,实现权利要求12所述的DMRS配置方法。
PCT/CN2021/125783 2021-01-06 2021-10-22 Dmrs配置方法、电子设备和存储介质 WO2022148099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110013322.X 2021-01-06
CN202110013322.XA CN114726491A (zh) 2021-01-06 2021-01-06 Dmrs配置方法、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022148099A1 true WO2022148099A1 (zh) 2022-07-14

Family

ID=82234921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125783 WO2022148099A1 (zh) 2021-01-06 2021-10-22 Dmrs配置方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN114726491A (zh)
WO (1) WO2022148099A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132806A1 (zh) * 2016-02-01 2017-08-10 华为技术有限公司 配置导频信号的方法及第一设备
CN103891374B (zh) * 2011-03-25 2017-11-21 北京新岸线移动多媒体技术有限公司 无线通信系统中解调导频的调整方法及系统
WO2018063042A1 (en) * 2016-09-29 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Method for demodulation reference signal allocation and signaling
CN108631986A (zh) * 2017-03-24 2018-10-09 电信科学技术研究院 一种确定下行控制信道dmrs资源的方法和装置
CN109274472A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 数据传输方法、网络设备和终端设备
CN111669263A (zh) * 2020-05-19 2020-09-15 武汉领芯智能科技有限公司 5g通信中dmrs配置方法、装置和终端
CN111769923A (zh) * 2019-04-02 2020-10-13 华为技术有限公司 解调导频参考信号生成方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891374B (zh) * 2011-03-25 2017-11-21 北京新岸线移动多媒体技术有限公司 无线通信系统中解调导频的调整方法及系统
WO2017132806A1 (zh) * 2016-02-01 2017-08-10 华为技术有限公司 配置导频信号的方法及第一设备
WO2018063042A1 (en) * 2016-09-29 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Method for demodulation reference signal allocation and signaling
CN108631986A (zh) * 2017-03-24 2018-10-09 电信科学技术研究院 一种确定下行控制信道dmrs资源的方法和装置
CN109274472A (zh) * 2017-07-17 2019-01-25 华为技术有限公司 数据传输方法、网络设备和终端设备
CN111769923A (zh) * 2019-04-02 2020-10-13 华为技术有限公司 解调导频参考信号生成方法及装置
CN111669263A (zh) * 2020-05-19 2020-09-15 武汉领芯智能科技有限公司 5g通信中dmrs配置方法、装置和终端

Also Published As

Publication number Publication date
CN114726491A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US10404516B2 (en) Data demodulation method, user equipment, base station, and system
TWI591995B (zh) Reduced Demodulation Reference Signal (DMRS) configuration and method and apparatus for adaptively selecting a DMRS configuration
US11343814B2 (en) Slot scheduling method and apparatus
WO2019011089A1 (zh) 一种功率控制方法和终端设备
WO2018058470A1 (zh) 传输数据的方法及其终端设备
WO2020088227A1 (zh) 边链路传输方法、终端及计算机可读存储介质
WO2014110747A1 (zh) 功率余量的报告方法和装置
CN110072290A (zh) 一种laa系统的通信方法和装置
US20230292355A1 (en) Information Sending Method and Apparatus
US20170289918A1 (en) Power allocation method and communications device
CN115669088A (zh) 基于流量预测来调整电信网络中的功耗
WO2020098575A1 (zh) 一种容量规划方法及装置
US11546081B2 (en) Method and apparatus for configuring uplink time-frequency resource set, and method and apparatus for receiving uplink time-frequency resource set
WO2022148099A1 (zh) Dmrs配置方法、电子设备和存储介质
US20230396480A1 (en) Wireless Communication Method and Apparatus
WO2017156789A1 (zh) 基于设备到设备的通信方法和终端
WO2017080251A1 (zh) 一种无线通信系统中用户终端速度估计的方法和装置
WO2021248421A1 (zh) 边链路资源选择方法以及装置
WO2017193395A1 (zh) 传输上行数据的方法、终端设备和网络侧设备
CN116326042A (zh) 用于资源确定的方法及装置
WO2023123112A1 (zh) 资源排除方法、装置、设备、存储介质及程序产品
CN114640424B (zh) 一种基于窄带dmrs配置的pdcch盲检测方法、存储介质及计算装置
CN107257542A (zh) 一种异步d2d网络中基于ppp分布和ofdm系统的建模方法
CN111294184B (zh) 侧链路信息传输方法、用户终端及计算机可读存储介质
WO2023040688A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/11/2023)