WO2022147953A1 - 显示面板及其像素补偿方法和装置 - Google Patents

显示面板及其像素补偿方法和装置 Download PDF

Info

Publication number
WO2022147953A1
WO2022147953A1 PCT/CN2021/097137 CN2021097137W WO2022147953A1 WO 2022147953 A1 WO2022147953 A1 WO 2022147953A1 CN 2021097137 W CN2021097137 W CN 2021097137W WO 2022147953 A1 WO2022147953 A1 WO 2022147953A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
data
compensation data
gray
grayscale
Prior art date
Application number
PCT/CN2021/097137
Other languages
English (en)
French (fr)
Inventor
张永雷
何涛
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/423,859 priority Critical patent/US20220223095A1/en
Publication of WO2022147953A1 publication Critical patent/WO2022147953A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a pixel compensation method and device thereof.
  • a liquid crystal display panel in a VA (Vertical Alignment, vertical alignment) mode has obvious disadvantages in its viewing angle.
  • VA Vertical Alignment, vertical alignment
  • an eight-domain pixel structure is generally used, or a four-domain pixel structure combined with a VAC technology (View Angle Compensation, viewing angle compensation) is used to improve the brightness effect of side view.
  • original brightness (brightness corresponding to relatively high grayscale + brightness corresponding to relatively low grayscale)/2, to ensure positive
  • the relationship between viewing angle brightness and grayscale remains unchanged, and the relationship between side viewing angle brightness and grayscale is corrected.
  • FIG. 1A shows a high and low grayscale compensation table (HL table, HL compensation table) in the prior art.
  • the original grayscale value of each sub-pixel corresponds to a pair of high grayscale value H and low grayscale value L , wherein the high grayscale value H is greater than the original grayscale value, and the low grayscale value L is smaller than the original grayscale value.
  • Both the high grayscale value H and the low grayscale value L have polarity. Due to the combination of high and low gray levels, serious graininess will be introduced.
  • HL processing can be performed on the sub-pixels at the same time in space and time.
  • FIG. 1B it is a schematic time sequence diagram of corresponding high and low gray scale compensation data in sub-pixel compensation adjustment in the prior art.
  • HL compensation table and timing F1 to F4
  • HL processing is performed on the sub-pixels simultaneously in space and time.
  • VAC debugging is performed between frames, the original grayscale value of each sub-pixel is in the high grayscale value H/low grayscale value L switching process, if the high grayscale value H and the low grayscale value L Graininess occurs when the polarity changes asymmetrically.
  • the sub-pixels in the upper and lower adjacent positions in the display panel switch from frame to frame, and the polarity of the high grayscale value H and the low grayscale value L changes asymmetrically, resulting in vertical stripes on the display screen. phenomenon, which in turn causes the display panel to appear grainy.
  • the refresh rate of the display panel of the display device is 120Hz
  • the sub-pixels of the display panel are switched from frame to frame and the brightness of each frame is not equal, and the screen will not change only when the two frames are switched back and forth. Flickering occurs, and flickering occurs when the screen switches of more than two frames with different brightness.
  • the large-size VA type liquid crystal display panel of the prior art adopts the viewing angle compensation technology and the four-domain pixel structure display.
  • the high grayscale value H and the low grayscale value L are switched between frames, the high grayscale value
  • the polarity changes of H and the low grayscale value L are asymmetrical, resulting in graininess in the display panel of the display device, which affects the technical problem of panel taste.
  • the present invention provides a display panel and a pixel compensation method and device thereof, which are used to solve the large-size VA type liquid crystal display panel in the prior art.
  • the viewing angle compensation technology adopted is matched with the four-domain pixel structure display.
  • An embodiment of the present invention provides a pixel compensation method for a display panel, the method comprising:
  • S10 receive a signal of a frame of image, wherein the signal includes grayscale data of a plurality of sub-pixels;
  • the plurality of gray-level compensation data of the same sub-pixel include high-level gray-level compensation data and low gray-level compensation data, wherein the high gray-level compensation data and the low gray level compensation data
  • the respective polarities of the compensation data are kept symmetrical, and the number of the high grayscale compensation data is equal to the number of the low grayscale compensation data.
  • the plurality of gray-scale compensation data of the same sub-pixel includes a gray-scale compensation data repeating unit, and the gray-level compensation data repeating unit includes n of the gray-scale compensation data repeating units.
  • n ⁇ f/30, f is the refresh frequency of the display panel.
  • the gray-scale data of each sub-pixel is the gray-scale data of the red sub-pixel, the gray-scale data of the green sub-pixel, and the gray-scale data of the blue sub-pixel. Any of the grayscale data of the pixel.
  • the step S20 includes:
  • the display brightness of the sub-pixel after performing the compensation of the high gray-scale compensation data is the same as the obtained gray-scale compensation data.
  • the average brightness of the display brightness of the sub-pixels after the compensation of the low gray-scale compensation data is performed is the display brightness of the gray-scale data of the sub-pixels.
  • the step S21 includes:
  • a first index relationship is established for the compensation values of each of the grayscale compensation tables in time sequence to obtain a first index value
  • a second index relationship is established for the compensation values of each of the grayscale compensation tables according to the grayscale values to obtain a second index relationship.
  • each combination of the first index value and the second index value corresponds to the high grayscale compensation data and the low grayscale compensation data.
  • the high gray-scale compensation data corresponding to the same sub-pixel in the case of different gray-scale data has different values, and the corresponding low gray-scale data has different values.
  • the value of the order compensation data is different.
  • the values of the high gray-scale compensation data corresponding to different sub-pixels in the case of the same gray-scale data are different, and the corresponding low gray-scale data are different.
  • the value of the order compensation data is different.
  • An embodiment of the present invention also provides a pixel compensation method for a display panel, the method comprising:
  • S10 receive a signal of a frame of image, wherein the signal includes grayscale data of a plurality of sub-pixels;
  • the plurality of gray-level compensation data of the same sub-pixel include high-level gray-level compensation data and low gray-level compensation data, wherein the high gray-level compensation data and the low gray level compensation data
  • the respective polarities of the compensation data are kept symmetrical, and the quantity of the high grayscale compensation data is equal to the quantity of the low grayscale compensation data
  • the high grayscale compensation data includes positive polarity high grayscale compensation data and negative polarity high grayscale compensation data
  • the low grayscale compensation data includes positive polarity low grayscale compensation data and negative polarity low grayscale compensation data; wherein, The quantity of the positive polarity high grayscale compensation data is equal to the quantity of the negative polarity high grayscale compensation data, and the quantity of the positive polarity low grayscale compensation data is equal to the quantity of the negative polarity low grayscale compensation data.
  • the plurality of gray-scale compensation data of the same sub-pixel includes a gray-scale compensation data repeating unit, and the gray-level compensation data repeating unit includes n of the gray-scale compensation data repeating units.
  • n ⁇ f/30, f is the refresh frequency of the display panel.
  • the gray-scale data of each sub-pixel is the gray-scale data of the red sub-pixel, the gray-scale data of the green sub-pixel, and the gray-scale data of the blue sub-pixel. Any of the grayscale data of the pixel.
  • the step S20 includes:
  • the display brightness of the sub-pixel after performing the compensation of the high gray-scale compensation data is the same as the obtained gray-scale compensation data.
  • the average brightness of the display brightness of the sub-pixels after the compensation of the low gray-scale compensation data is performed is the display brightness of the gray-scale data of the sub-pixels.
  • the step S21 includes:
  • a first index relationship is established for the compensation values of each of the grayscale compensation tables in time sequence to obtain a first index value
  • a second index relationship is established for the compensation values of each of the grayscale compensation tables according to the grayscale values to obtain a second index relationship.
  • each combination of the first index value and the second index value corresponds to the high grayscale compensation data and the low grayscale compensation data.
  • the high gray-scale compensation data corresponding to the same sub-pixel in the case of different gray-scale data has different values, and the corresponding low gray-scale data has different values.
  • the value of the order compensation data is different.
  • the values of the high gray-scale compensation data corresponding to different sub-pixels in the case of the same gray-scale data are different, and the corresponding low gray-scale data are different.
  • the value of the order compensation data is different.
  • An embodiment of the present invention further provides a pixel compensation device for a display panel, the pixel compensation device includes:
  • a receiving unit used for receiving a signal of an image of a to-be-displayed image, wherein the signal includes grayscale data of a plurality of sub-pixels
  • a compensation query unit connected to the receiving unit, for querying a preset compensation table set including a plurality of gray level compensation tables, and acquiring high gray level compensation data and low gray level compensation data of gray level data of each sub-pixel compensation data;
  • a compensation processing unit connected to the compensation query unit, and configured to alternately perform the compensation for the high gray level compensation data and the compensation for the low gray level compensation data on the gray level data of each sub-pixel in time sequence, wherein, In the signal of the same frame of the image, the polarities of the gray-scale compensation data of two adjacent sub-pixels are opposite; within a time period unit, the gray-scale compensation data of the same sub-pixel are of opposite polarity;
  • the compensation data includes high gray level compensation data and low gray level compensation data, wherein the respective polarities of the high gray level compensation data and the low gray level compensation data are kept symmetrical, and the number of the high gray level compensation data is the same as that of all the high gray level compensation data. the amount of the low grayscale compensation data is equal; and
  • the driving unit is connected to the compensation processing unit, and is used for driving the pixels of the display to display according to the compensated signal.
  • the high grayscale compensation data includes positive polarity high grayscale compensation data and negative polarity high grayscale compensation data
  • the low grayscale compensation data includes positive polarity low grayscale compensation data Grayscale compensation data and negative polarity low grayscale compensation data
  • the quantity of the positive polarity high grayscale compensation data is equal to the quantity of the negative polarity high grayscale compensation data
  • the quantity of the positive polarity low grayscale compensation data is equal to the quantity of the negative polarity low grayscale compensation data equal
  • a plurality of the gray-scale compensation data of the same sub-pixel include gray-level compensation data repeating units, and the gray-level compensation data repeating unit includes n pieces of the high gray-level compensation data and the low gray-level compensation data , where n is an even number greater than 0, n ⁇ f/30, and f is the refresh frequency of the display device.
  • the high gray-scale compensation data corresponding to the same sub-pixel has different values of the gray-scale data in the case of different gray-scale data, and the corresponding low gray-scale data has different values.
  • the value of the order compensation data is different.
  • An embodiment of the present invention further provides a display panel, including a memory and a controller, where the memory is used for storing program instructions, and the controller is used for executing the program instructions to implement the pixel compensation of the display panel according to any one of the above method.
  • the respective polarities of the high gray-scale compensation data and the low gray-scale compensation data corresponding to the gray-scale data of the sub-pixels of the display panel are
  • the symmetry is kept symmetrical and the number of high-gray-level compensation data is equal to the number of low-gray-level compensation data, so that there will appear between adjacent sub-pixels from high-gray-level compensation data to original gray-level data and from low-gray-level compensation data to original gray-level data.
  • the short-term balance of grayscale data, the screen has no obvious light and dark changes, and effectively eliminates the graininess of the display panel while avoiding vertical streaks on the screen.
  • FIG. 1A is a high and low gray scale compensation table in sub-pixel compensation adjustment in the prior art.
  • FIG. 1B is a schematic time sequence diagram of corresponding high and low grayscale compensation data in sub-pixel compensation adjustment in the prior art.
  • FIG. 2 is a flowchart of a pixel compensation method for a display panel of the present invention.
  • FIG. 3A is a high and low grayscale compensation table in the sub-pixel compensation adjustment according to the first embodiment of the present invention.
  • 3B is a schematic time sequence diagram of corresponding high and low grayscale compensation data in sub-pixel compensation adjustment according to the first embodiment of the present invention.
  • FIG. 4A is a high and low gray scale compensation table in the sub-pixel compensation adjustment according to the second embodiment of the present invention.
  • 4B is a schematic time sequence diagram of corresponding high and low grayscale compensation data in sub-pixel compensation adjustment according to the second embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a pixel compensation device of a display panel of the present invention.
  • the embodiment of the present invention adopts the viewing angle compensation technology combined with the four-domain pixel structure to display when the high grayscale value H and the low grayscale value L are switched between frames.
  • the polarity changes of the high gray-scale value H and the low gray-scale value L are asymmetrical, which causes the display panel to appear grainy and affects the technical problem of the display panel taste. This embodiment can solve this defect.
  • an embodiment of the present invention provides a pixel compensation method for a display panel, the method includes:
  • S10 Receive a signal of a frame of image, wherein the signal includes grayscale data of a plurality of sub-pixels.
  • the S10 further includes:
  • the signal includes the grayscale data of a plurality of sub-pixels; wherein, the grayscale data of each sub-pixel is the grayscale data of the red R subpixel and the grayscale data of the green G subpixel. either of the grayscale data and the grayscale data of the blue B sub-pixel.
  • a frame of image is usually composed of multiple pixels, and each pixel includes three primary color components of red R, green G, and blue B, also known as sub-pixels.
  • each primary color component of each pixel is provided with grayscale data required for display, so as to control the brightness of the primary color component, so that the primary color component displays a corresponding color, thereby realizing image display by combination.
  • the VAC debugging method refers to adding a relatively high gray-scale data H to the gray-scale data corresponding to a certain primary color component (R, or G, or B) of a pixel to replace the original gray-scale data;
  • the gray-scale data corresponding to the above-mentioned primary color component is added with a relatively low gray-scale data L to replace the original gray-scale data, and the relatively high gray-scale data H is compensated for the corresponding brightness plus a relatively low grayscale.
  • the brightness corresponding to the level data L after compensation is equal to twice the brightness corresponding to the original gray level data.
  • the root cause of subjective graininess is the difference in gray scale.
  • the difference in brightness value caused by the compensation of the high grayscale compensation data H and the low grayscale compensation data L of VAC debugging is large, resulting in a bright and dark effect, that is, graininess. Affect panel taste.
  • the S20 further includes:
  • a preset compensation table set including multiple gray level compensation tables is queried according to the gray level data of each sub-pixel; the compensation table set is formed by acquiring multiple gray level compensation tables through debugging.
  • the first index value is obtained by establishing a first index relationship for the compensation values of each of the grayscale compensation tables according to the time sequence, and the second index relationship is established for the compensation values of each grayscale compensation table according to the grayscale values to obtain The second index value.
  • each combination of the first index value and the second index value corresponds to the high grayscale compensation data H and the low grayscale compensation data L. That is, a pair of the high grayscale compensation data H and the low grayscale compensation data L corresponding to the corresponding grayscale data is set at the time of each frame in each grayscale compensation table.
  • the high grayscale compensation data H corresponding to the same sub-pixel has different values of the grayscale data, and the corresponding low grayscale compensation data L has different values.
  • the red sub-pixel R is in grayscale of 128, its corresponding high grayscale compensation data H is 184, and the low grayscale compensation data L is 72; when the same red subpixel R is in grayscale of 100, its corresponding high grayscale The compensation data H is 170, and the low grayscale compensation data L is 60.
  • different sub-pixels have different values of the high gray-scale compensation data H corresponding to the same gray-scale data, and different values of the corresponding low gray-scale compensation data L.
  • the red sub-pixel R is at 128 gray levels
  • its corresponding high gray level compensation data H is 184
  • the low gray level compensation data L is 72
  • the green sub-pixel G is at 128 gray levels
  • its corresponding high gray level compensation data is 180
  • the low grayscale compensation data L is 69.
  • the S30 also includes:
  • the plurality of gray-level compensation data of the same sub-pixel include high gray-level compensation data H and low gray-level compensation data L, wherein the high gray-level compensation data H and the low gray level compensation data H
  • the respective polarities of the level compensation data L are kept symmetrical, and the number of the high gray level compensation data H is equal to the number of the low gray level compensation data L.
  • the polarities of the gray-scale compensation data of two adjacent sub-pixels are opposite.
  • the high grayscale compensation data H includes positive polarity high grayscale compensation data +H and negative polarity high grayscale compensation data -H
  • the low grayscale compensation data L includes positive polarity low grayscale compensation data +L and negative polarity low grayscale compensation data-L; wherein, the number of the positive polarity high grayscale compensation data +H is equal to the number of the negative polarity high grayscale compensation data-H, and the positive polarity low grayscale compensation data The number of data +L is equal to the number of the negative polarity low grayscale compensation data -L.
  • the principle that the above method can eliminate the graininess is: if there is no high and low grayscale data compensation in time sequence, the same sub-pixel at a fixed position in space is always relatively bright or relatively dark, and the picture will appear bright and dark grainy.
  • high and low grayscale data compensation there will be a short-term balance between the adjacent sub-pixels from the high grayscale compensation data H to the original grayscale data and from the low grayscale compensation data L to the original grayscale data, and the picture is not significantly bright. dark change.
  • vertical streaks tend to appear on the display screen.
  • the polarities of the high grayscale compensation data H and the low grayscale compensation data L need to be kept symmetrical, and the high grayscale compensation data L needs to be symmetrical.
  • the number of compensation data H is equal to the number of low grayscale compensation data L.
  • the plurality of gray-scale compensation data of the same sub-pixel includes a gray-scale compensation data repeating unit
  • the gray-level compensation data repeating unit includes n pieces of the high gray-level compensation data H and the low gray-level compensation data H Compensation data L, where n is an even number greater than 0.
  • n is an even number greater than 0.
  • the gray-scale compensation data repeating unit is HL (continuous sub-pixel brightness and dark adjustment repeats)
  • n is 2
  • the gray-scale compensation data repeating unit is HHLL (continuous sub-pixel brightness and dark adjustment Repeated arrangement)
  • n is 4
  • the gray-scale compensation data repeating unit is HLLHHL (continuous sub-pixel brightness, dark, bright and dark adjustment repeat arrangement), n is 6.
  • n needs to satisfy the condition n ⁇ f/30; where f is the refresh frequency of the display panel. This is because during the compensation of high and low grayscale data, the brightness of each frame of the picture will change, and the frequency that the human eye perceives the brightness change is at least 30Hz. In order to avoid flickering, the continuous frequency of each grayscale compensation data repetition unit is at least 30Hz.
  • the high and low grayscale data compensation method to eliminate graininess can be switched by HL (continuous sub-pixel light and dark adjustment and repeat arrangement).
  • HL Continuous sub-pixel light and dark adjustment and repeated arrangement
  • HHLL Continuous sub-pixel light and dark adjustment and repeated arrangement
  • FIG. 3A it is a high and low gray scale compensation table in the sub-pixel compensation adjustment according to the first embodiment of the present invention.
  • a time-indexed grayscale compensation table provided by an embodiment of the present invention, a first index relationship is established for compensation data according to time sequence, and a second index relationship is established for compensation values according to grayscale values; in the compensation table, each The combination of the first index value and a second index value corresponds to a pair of high grayscale compensation data H and low grayscale compensation data L.
  • the first index value is obtained by establishing a first index relationship for the compensation data of each gray-scale compensation table according to the time sequence, and the second index relationship is established for the compensation data of each gray-scale compensation table according to the gray-scale data to obtain The second index value.
  • the vertical direction is four frames ( F1 , F2 , F3 , and F4 ), and the horizontal direction represents 8 adjacent sub-pixels in the same frame.
  • the original grayscale value 0 of a certain sub-pixel (not marked in the chart, it should appear at the top of each column), the original grayscale value 0 corresponds to a pair of corresponding high grayscale compensation data H at a certain moment. and low grayscale compensation data L.
  • any high grayscale compensation data H is greater than or equal to the grayscale data 0; any low grayscale compensation data L is less than or equal to the grayscale data 0.
  • the high grayscale compensation data H and the low grayscale compensation data L both have polarities and their polarities are kept symmetrical, and the number of the high grayscale compensation data H and the low grayscale compensation data L are equal, and the polarities of each pair of the high grayscale compensation data H and the low grayscale compensation data L are opposite.
  • the high grayscale compensation data H includes positive polarity high grayscale compensation data +H and negative polarity high grayscale compensation data -H
  • the low grayscale compensation data L includes positive polarity low grayscale compensation data +L and negative polarity low grayscale compensation data-L; wherein, the number of the positive polarity high grayscale compensation data +H is equal to the number of the negative polarity high grayscale compensation data-H, and the positive polarity low grayscale compensation data The number of data +L is equal to the number of the negative polarity low grayscale compensation data -L.
  • FIG. 3B it is a schematic time sequence diagram of corresponding high and low grayscale compensation data in the sub-pixel compensation adjustment according to the first embodiment of the present invention.
  • the sub-pixel compensates a positive polarity high gray-scale compensation data +H under a certain gray-scale data
  • the sub-pixel in the current second frame F2, the sub-pixel is in the same gray-scale A negative polarity low grayscale compensation data-L is compensated under the data
  • the sub-pixel compensates a negative polarity high grayscale compensation data-H under the same grayscale data
  • the sub-pixel compensates a positive-polarity low-gray-scale compensation data +L under the same gray-scale data.
  • the grayscale data corresponding to the two adjacent sub-pixels in the picture of the one frame of image and in the same time period unit T are alternately switched during the switching process , at this time, the multiple gray-scale compensation data of the same sub-pixel include gray-scale compensation data repeating units, and the gray-level compensation data repeating unit includes one of the high gray-scale compensation data H and one of the Low grayscale compensation data L (n is 2).
  • the polarities of the high grayscale compensation data H and the low grayscale compensation data L corresponding to the grayscale data of the sub-pixels are kept symmetrical;
  • the number of positive-polarity high-gray-scale compensation data +H (1) is different from the negative high-polarity compensation data H.
  • the number of grayscale compensation data -H (1) is equal, and the number of positive low grayscale compensation data +L (1) is equal to the number of negative low grayscale compensation data - L (1) .
  • FIG. 4A it is a high and low gray scale compensation table in the sub-pixel compensation adjustment according to the second embodiment of the present invention.
  • the vertical direction is four frames (F1, F2, F3, F4), and the horizontal direction represents 8 adjacent sub-pixels in the same frame.
  • the original grayscale value 0 of a certain sub-pixel (not marked in the chart, it should appear at the top of each column), the original grayscale value 0 corresponds to a pair of corresponding high grayscale compensation data H at a certain moment. and low grayscale compensation data L.
  • any high grayscale compensation data H is greater than or equal to the grayscale data 0; any low grayscale compensation data L is less than or equal to the grayscale data 0.
  • the high grayscale compensation data H and the low grayscale compensation data L both have polarities and their polarities are kept symmetrical, and the number of the high grayscale compensation data H and the low grayscale compensation data L are equal, and the polarities of each pair of the high grayscale compensation data H and the low grayscale compensation data L are opposite.
  • the high grayscale compensation data H includes positive polarity high grayscale compensation data +H and negative polarity high grayscale compensation data -H
  • the low grayscale compensation data L includes positive polarity low grayscale compensation data +L and negative polarity low grayscale compensation data-L; wherein, the number of the positive polarity high grayscale compensation data +H is equal to the number of the negative polarity high grayscale compensation data-H, and the positive polarity low grayscale compensation data The number of data +L is equal to the number of the negative polarity low grayscale compensation data -L.
  • FIG. 4B it is a schematic time sequence diagram of corresponding high and low grayscale compensation data in the sub-pixel compensation adjustment according to the second embodiment of the present invention.
  • the sub-pixel compensates a positive polarity high gray-scale compensation data +H under a certain gray-scale data; in the current second frame F2, the sub-pixel is in the same gray-scale data.
  • a negative polarity high grayscale compensation data-H is compensated under the grayscale data; in the current third frame F3, the sub-pixel compensates a negative polarity low grayscale compensation data-L under the same grayscale data; In the fourth frame F4, the sub-pixel compensates a positive-polarity low-gray-scale compensation data +L under the same gray-scale data.
  • the grayscale data corresponding to the two adjacent sub-pixels in the picture of the one frame of image and in the same time period unit T are alternately switched during the switching process , at this time, the multiple gray-scale compensation data of the same sub-pixel include gray-scale compensation data repeating units, and the gray-level compensation data repeating units include two of the high gray-scale compensation data H and two of the Low grayscale compensation data L (n is 4).
  • the polarities of the high grayscale compensation data H and the low grayscale compensation data L corresponding to the grayscale data of the sub-pixels are kept symmetrical;
  • the number of positive-polarity high-gray-scale compensation data +H (1) is different from the negative high-polarity compensation data H.
  • the number of grayscale compensation data -H (1) is equal, and the number of positive low grayscale compensation data +L (1) is equal to the number of negative low grayscale compensation data - L (1) .
  • the first embodiment and the second embodiment of the present invention can eliminate the graininess of the display panel of the display device when switching between frames, and at the same time, according to the refresh frequency of the known display device, it can be determined and realized to eliminate the display of the display device.
  • the grainy VAC switching method of the panel can eliminate the graininess of the display panel of the display device when switching between frames, and at the same time, according to the refresh frequency of the known display device, it can be determined and realized to eliminate the display of the display device.
  • the present invention also provides a pixel compensation device for a display panel.
  • the pixel compensation device of the display panel of the present application can be implemented in a timing controller of the display panel.
  • FIG. 5 it is a structural block diagram of a pixel compensation device of a display device of the present invention.
  • the pixel compensation device of the display panel includes:
  • a receiving unit 501 configured to receive a signal of an image of a to-be-displayed frame, wherein the signal includes grayscale data of a plurality of sub-pixels;
  • the compensation query unit 502 connected with the receiving unit 501, is used for querying a preset compensation table set including a plurality of gray level compensation tables, and obtaining high gray level compensation data H and Low gray-scale compensation data L, wherein the average brightness of the display brightness after the sub-pixel is compensated by the high gray-scale compensation data H and the display brightness after the sub-pixel is compensated by the low gray-scale compensation data L is: the display brightness of the gray-scale data of the sub-pixel;
  • a compensation processing unit 503, connected to the compensation query unit 502, is configured to alternately perform the compensation of the high gray level compensation data H and the low gray level compensation data L on the gray level data of each sub-pixel in time sequence compensation, wherein in the signal of the same frame of the image, the polarities of the gray-scale compensation data of the adjacent two sub-pixels are opposite; in the time period unit, a plurality of the same sub-pixels
  • the grayscale compensation data includes high grayscale compensation data H and low grayscale compensation data L, wherein the respective polarities of the high grayscale compensation data H and the low grayscale compensation data L are kept symmetrical, and the high grayscale compensation data L
  • the number of level compensation data H is equal to the number of the low gray level compensation data L;
  • the driving unit 504 is connected to the compensation processing unit 503, and is used for driving the pixels of the display to display according to the compensated signal.
  • the high grayscale compensation data H includes positive polarity high grayscale compensation data +H and negative polarity high grayscale compensation data -H
  • the low grayscale compensation data includes positive polarity low grayscale compensation data +L and Negative polarity low grayscale compensation data-L;
  • the number of the positive polarity high grayscale compensation data +H is equal to the number of the negative polarity high grayscale compensation data -H, and the positive polarity low grayscale compensation data +L is equal to the negative polarity low grayscale compensation data +L.
  • the number of gray-scale compensation data-L is equal; the plurality of gray-scale compensation data of the same sub-pixel includes gray-scale compensation data repeating units, and the gray-level compensation data repeating unit includes n pieces of the high gray-scale compensation data H and the low grayscale compensation data L, wherein n is an even number greater than 0, n ⁇ f/30, and f is the refresh frequency of the display device.
  • the present invention further provides a display panel, the display panel includes a memory and a controller, the memory is used for storing program instructions, and the controller is used for executing the program instructions to achieve any of the above The pixel compensation method of the display panel described in item.
  • the high grayscale compensation data and the low grayscale compensation data corresponding to the grayscale data of the sub-pixels of the display panel are The respective polarities of the compensation data are kept symmetrical, and the number of high-gray-level compensation data is equal to the number of low-gray-level compensation data, so that adjacent sub-pixels will appear from high-gray-level compensation data to original gray-scale data and from low-gray-level compensation data.
  • the picture has no obvious light and dark changes, which can effectively eliminate the graininess of the display panel while avoiding the vertical streak phenomenon on the screen.
  • a display panel and a pixel compensation method and device thereof provided by the embodiments of the present application have been introduced in detail above.
  • the principles and implementations of the present application are described with specific examples in this paper.
  • the descriptions of the above embodiments are only used for Help to understand the technical solution of the present application and its core idea; those of ordinary skill in the art should understand: it can still modify the technical solutions recorded in the foregoing embodiments, or perform equivalent replacements to some of the technical features; and these modifications Or alternatively, the essence of the corresponding technical solution does not deviate from the scope of the technical solutions of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本发明提供一种显示面板及其像素补偿方法和装置,该方法包括:接收一帧图像的讯号;获取灰阶补偿数据;对灰阶数据进行补偿;在同一帧图像中,相邻的两个子像素的灰阶补偿数据的极性相反;在时间周期单元内,同一子像素的多个高灰阶补偿数据以及多个低灰阶补偿数据各自的极性保持对称。

Description

显示面板及其像素补偿方法和装置 技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及其像素补偿方法和装置。
背景技术
随着显示技术的发展,液晶显示屏的尺寸也越来越大,对于大尺寸的液晶显示屏,其视角参数尤其重要。在不同类型的液晶显示面板中,VA(Vertical Alignment,垂直配向)模式的液晶显示面板其视角存在明显的劣势。对于大尺寸的VA类型的液晶显示面板,一般采用八畴的像素结构,或者采用四畴的像素结构搭配VAC技术(View Angle Compensation,视角补偿)来改善侧视的亮度效果。
由于八畴像素结构存在成本高、穿透率低等缺陷,现有技术一般采用基于亮度参数的VAC调试方法来搭配四畴像素结构,即:将原始像素灰阶值用相对高(H)和相对低(L)的两个灰阶在相邻两个像素区替代显示,其亮度关系满足:原始亮度=(相对高灰阶对应的亮度+相对低灰阶对应的亮度)/2,保证正视角亮度与灰阶关系不变,修正侧视角亮度与灰阶关系。
为提升大视角品味,目前大多可利用对RGB每个子像素的灰阶做高低灰阶(HL)补偿处理的算法实现。图1A给出了现有技术中的高低灰阶补偿表(HL table,HL补偿表),对每一子像素的原始灰阶值,都对应一对高灰阶值H和低灰阶值L,其中,所述高灰阶值H大于所述原始灰阶值,所述低灰阶值L小于所述原始灰阶值。所述高灰阶值H和所述低灰阶值L均具有极性。由于高低灰阶的搭配,会引入严重的颗粒感。
为减弱颗粒感,可在空间和时间上同时对子像素做HL处理。如图1B所示,为现有技术中子像素补偿调整中对应的高低灰阶补偿数据的时序示意图。根据HL补偿表以及时序(F1至F4),在空间和时间上同时对子像素做HL处理。然而,当帧与帧之间进行VAC调试时,每一子像素的原始灰阶值在高灰阶值H/低灰阶值L切换过程中,若高灰阶值H和低灰阶值L极性变化不对称就会出现颗粒感。如纯灰阶画面下,显示面板中上下相邻位置的子像素随着帧与帧之间切换,高灰阶值H和低灰阶值L极性变化不对称,导致显示画面容易出现竖纹现象,进而导致显示面板出现颗粒感。另一方面,当显示设备的显示面板的刷新频率为120Hz时,显示面板的子像素随着帧与帧之间切换且每帧画面亮度不等时,只有在两帧来回切换时画面才不会出现闪烁,两帧以上不同亮度的画面切换就会出现闪烁。
因此,有必要提供一种显示面板及其像素补偿方法和装置,以克服上述缺陷。
技术问题
现有技术的大尺寸VA型液晶显示面板,采用的视角补偿技术搭配四畴像素结构显示,在高灰阶值H和低灰阶值L随着帧与帧之间切换时,高灰阶值H和低灰阶值L的极性变化不对称,导致显示设备的显示面板出现颗粒感,影响面板品味的技术问题。
技术解决方案
本发明提供一种显示面板及其像素补偿方法和装置,用于解决现有技术的大尺寸VA型液晶显示面板,采用的视角补偿技术搭配四畴像素结构显示,在高灰阶值H和低灰阶值L随着帧与帧之间切换时,高灰阶值H和低灰阶值L的极性变化不对称,导致显示设备的显示面板出现颗粒感,影响面板品味的技术问题。
为达到上述目的,本发明实施例采用如下技术方案:
本发明实施例提供一种显示面板的像素补偿方法,所述方法包括:
S10,接收一帧图像的讯号,其中所述讯号包含多个子像素的灰阶数据;
S20,获取每个所述子像素的灰阶补偿数据;以及
S30,根据所述灰阶补偿数据对所述子像素的所述灰阶数据进行补偿;
其中,在时间周期单元内,同一所述子像素的多个所述灰阶补偿数据包括高灰阶补偿数据和低灰阶补偿数据,其中,所述高灰阶补偿数据以及所述低灰阶补偿数据各自的极性保持对称,所述高灰阶补偿数据的数量与所述低灰阶补偿数据的数量相等。
在本申请实施例提供的显示面板的像素补偿方法中,同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括n个所述高灰阶补偿数据和所述低灰阶补偿数据,其中,n为大于0的偶数。
在本申请实施例提供的显示面板的像素补偿方法中, n≤f/30, f为所述显示面板的刷新频率。
在本申请实施例提供的显示面板的像素补偿方法中,所述S10中,每个所述子像素的灰阶数据为红色子像素的灰阶数据、绿色子像素的灰阶数据以及蓝色子像素的灰阶数据中的任意一种。
在本申请实施例提供的显示面板的像素补偿方法中,其中,所述步骤S20包括:
S21,根据每个所述子像素的所述灰阶数据查询预设的包括多个灰阶补偿表的补偿表集;以及
S22,将查询结果作为获取到的所述子像素的所述灰阶补偿数据,其中,在所述时间周期单元内,所述子像素进行所述高灰阶补偿数据补偿后的显示亮度与所述子像素进行所述低灰阶补偿数据补偿后的显示亮度的平均亮度为所述子像素的所述灰阶数据的显示亮度。
在本申请实施例提供的显示面板的像素补偿方法中,所述步骤S21包括:
按照时间顺序对每一所述灰阶补偿表的补偿值建立第一索引关系得到第一索引值,按照灰阶值对每一所述灰阶补偿表的补偿值建立第二索引关系得到第二索引值;
其中,在所述灰阶补偿表中,每一所述第一索引值和一所述第二索引值的组合,对应一所述高灰阶补偿数据以及一所述低灰阶补偿数据。
在本申请实施例提供的显示面板的像素补偿方法中,同一所述子像素在不同所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。
在本申请实施例提供的显示面板的像素补偿方法中,不同所述子像素在同一所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。
本发明实施例还提供一种显示面板的像素补偿方法,所述方法包括:
S10,接收一帧图像的讯号,其中所述讯号包含多个子像素的灰阶数据;
S20,获取每个所述子像素的灰阶补偿数据;以及
S30,根据所述灰阶补偿数据对所述子像素的所述灰阶数据进行补偿;
其中,在时间周期单元内,同一所述子像素的多个所述灰阶补偿数据包括高灰阶补偿数据和低灰阶补偿数据,其中,所述高灰阶补偿数据以及所述低灰阶补偿数据各自的极性保持对称,所述高灰阶补偿数据的数量与所述低灰阶补偿数据的数量相等;
所述高灰阶补偿数据包括正极性高灰阶补偿数据和负极性高灰阶补偿数据,所述低灰阶补偿数据包括正极性低灰阶补偿数据和负极性低灰阶补偿数据;其中,所述正极性高灰阶补偿数据的数量与所述负极性高灰阶补偿数据的数量相等,所述正极性低灰阶补偿数据的数量与所述负极性低灰阶补偿数据的数量相等。
在本申请实施例提供的显示面板的像素补偿方法中,同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括n个所述高灰阶补偿数据和所述低灰阶补偿数据,其中,n为大于0的偶数。
在本申请实施例提供的显示面板的像素补偿方法中, n≤f/30, f为所述显示面板的刷新频率。
在本申请实施例提供的显示面板的像素补偿方法中,所述S10中,每个所述子像素的灰阶数据为红色子像素的灰阶数据、绿色子像素的灰阶数据以及蓝色子像素的灰阶数据中的任意一种。
在本申请实施例提供的显示面板的像素补偿方法中,其中,所述步骤S20包括:
S21,根据每个所述子像素的所述灰阶数据查询预设的包括多个灰阶补偿表的补偿表集;以及
S22,将查询结果作为获取到的所述子像素的所述灰阶补偿数据,其中,在所述时间周期单元内,所述子像素进行所述高灰阶补偿数据补偿后的显示亮度与所述子像素进行所述低灰阶补偿数据补偿后的显示亮度的平均亮度为所述子像素的所述灰阶数据的显示亮度。
在本申请实施例提供的显示面板的像素补偿方法中,所述步骤S21包括:
按照时间顺序对每一所述灰阶补偿表的补偿值建立第一索引关系得到第一索引值,按照灰阶值对每一所述灰阶补偿表的补偿值建立第二索引关系得到第二索引值;
其中,在所述灰阶补偿表中,每一所述第一索引值和一所述第二索引值的组合,对应一所述高灰阶补偿数据以及一所述低灰阶补偿数据。
在本申请实施例提供的显示面板的像素补偿方法中,同一所述子像素在不同所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。
在本申请实施例提供的显示面板的像素补偿方法中,不同所述子像素在同一所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。
本发明实施例还提供一种显示面板的像素补偿装置,所述像素补偿装置包括:
接收单元,用于接收待显示画面的图像的讯号,其中所述讯号包含多个子像素的灰阶数据;
补偿查询单元,与所述接收单元相连,用于查询预设的包括多个灰阶补偿表的补偿表集,获取每个所述子像素的灰阶数据的高灰阶补偿数据与低灰阶补偿数据;
补偿处理单元,与所述补偿查询单元相连,用于依时间顺序对每个所述子像素的灰阶数据交替进行所述高灰阶补偿数据补偿与所述低灰阶补偿数据补偿,其中,在同一帧所述图像的所述讯号中,相邻的两所述子像素的所述灰阶补偿数据的极性相反;在时间周期单元内,同一所述子像素的多个所述灰阶补偿数据包括高灰阶补偿数据和低灰阶补偿数据,其中,所述高灰阶补偿数据以及所述低灰阶补偿数据各自的极性保持对称,所述高灰阶补偿数据的数量与所述低灰阶补偿数据的数量相等;以及
驱动单元,与所述补偿处理单元相连,用于根据补偿后的所述讯号驱动显示器的所述像素进行显示。
在本申请实施例提供的显示面板的像素补偿装置中,所述高灰阶补偿数据包括正极性高灰阶补偿数据和负极性高灰阶补偿数据,所述低灰阶补偿数据包括正极性低灰阶补偿数据和负极性低灰阶补偿数据;
其中,所述正极性高灰阶补偿数据的数量与所述负极性高灰阶补偿数据的数量相等,所述正极性低灰阶补偿数据的数量与所述负极性低灰阶补偿数据的数量相等;同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括n个所述高灰阶补偿数据和所述低灰阶补偿数据,其中,n为大于0的偶数, n≤f/30, f为所述显示设备的刷新频率。
在本申请实施例提供的显示面板的像素补偿装置中,同一所述子像素在不同所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。本发明实施例又提供一种显示面板,包括存储器和控制器,所述存储器用于存储程序指令,所述控制器用于执行所述程序指令以实现如上任一项所述的显示面板的像素补偿方法。
有益效果
本发明实施例所提供的显示面板的像素补偿方法,在帧与帧之间交替切换过程中,显示面板的子像素的灰阶数据对应的高灰阶补偿数据以及低灰阶补偿数据各自的极性保持对称且高灰阶补偿数据的数量与低灰阶补偿数据的数量相等,使得相邻的子像素间会出现从高灰阶补偿数据至原始灰阶数据和从低灰阶补偿数据至原始灰阶数据的短暂平衡,画面无明显亮暗变化,在避免画面出现竖纹现象的同时有效消除显示面板的颗粒感,同时能够在已知显示面板的刷新频率的情况下,确定实现消除显示面板的颗粒感的同一子像素的灰阶补偿数据的亮暗排列切换方式。
附图说明
图1A为现有技术中子像素补偿调整中的高低灰阶补偿表。
图1B为现有技术中子像素补偿调整中对应的高低灰阶补偿数据的时序示意图。
图2为本发明显示面板的像素补偿方法的流程图。
图3A为本发明第一实施例的子像素补偿调整中的高低灰阶补偿表。
图3B为本发明第一实施例的子像素补偿调整中的对应的高低灰阶补偿数据的时序示意图。
图4A为本发明第二实施例的子像素补偿调整中的高低灰阶补偿表。
图4B为本发明第二实施例的子像素补偿调整中的对应的高低灰阶补偿数据的时序示意图。
图5为本发明显示面板的像素补偿装置的结构框图。
本发明的实施方式
本发明实施例针对现有技术的大尺寸VA型液晶显示面板,采用的视角补偿技术搭配四畴像素结构显示在高灰阶值H和低灰阶值L随着帧与帧之间切换时,高灰阶值H和低灰阶值L的极性变化不对称,导致显示面板出现颗粒感,影响显示面板品味的技术问题,本实施例能够解决该缺陷。
请参阅图2,本发明实施例提供一种显示面板的像素补偿方法,所述方法包括:
S10,接收一帧图像的讯号,其中所述讯号包含多个子像素的灰阶数据。
具体地,所述S10还包括:
首先读取一帧图像的讯号,其中所述讯号包含多个子像素的灰阶数据;其中,每个所述子像素的灰阶数据为红色R子像素的灰阶数据、绿色G子像素的灰阶数据以及蓝色B子像素的灰阶数据中的任意一种。
需要说明的是,一帧图像通常由多个像素构成,每个像素均包括红色R、绿色G、蓝色B三种基色分量,又称为子像素,在驱动一帧图像进行显示时,通过对每个像素的每个基色分量提供一个显示所需的灰阶数据,以控制该基色分量的亮度,进而使得该基色分量显示相应的颜色,由此组合实现图像的显示。而VAC调试方法指的是将某一像素的某一种基色分量(R、或G、或B)所对应的灰阶数据加上一个相对高的灰阶数据H代替原始灰阶数据;然后在相邻的像素中将上述基色分量所对应的灰阶数据加上一个相对低的灰阶数据L代替原始灰阶数据,而相对高的灰阶数据H补偿后对应的亮度加上相对低的灰阶数据L补偿后对应的亮度,等于原始灰阶数据对应的亮度的两倍。
需要说明的是,灰阶与亮度并不是线性关系,其关系曲线接近Gamma 2.2。
需要说明的是,主观颗粒感根因在于灰阶差,VAC调试的高灰阶补偿数据H以及低灰阶补偿数据L补偿造成的亮度值的差距较大,造成亮暗效果,即颗粒感,影响面板品味。
S20,获取每个所述子像素的灰阶补偿数据。
具体地,所述S20还包括:
首先,根据每个所述子像素的所述灰阶数据查询预设的包括多个灰阶补偿表的补偿表集;所述补偿表集通过调试获取多个灰阶补偿表而形成。其中,按照时间顺序对每一所述灰阶补偿表的补偿值建立第一索引关系得到第一索引值,按照灰阶值对每一所述灰阶补偿表的补偿值建立第二索引关系得到第二索引值。
具体地,在所述灰阶补偿表中,每一所述第一索引值和一所述第二索引值的组合,对应一所述高灰阶补偿数据H以及一所述低灰阶补偿数据L。即,每一所述灰阶补偿表中每一帧所在时间,均设有与相应的灰阶数据对应的一对所述高灰阶补偿数据H和所述低灰阶补偿数据L。
优选地,同一所述子像素在不同所述灰阶数据的情况下对应的所述高灰阶补偿数据H的数值不同,且对应的所述低灰阶补偿数据L的数值不同。例如,红色子像素R在128灰阶时,其对应的高灰阶补偿数据H为184,低灰阶补偿数据L为72;同一红色子像素R在100灰阶时,其对应的高灰阶补偿数据H为170,低灰阶补偿数据L为60。
优选地,不同所述子像素在同一所述灰阶数据的情况下对应的所述高灰阶补偿数据H的数值不同,且对应的所述低灰阶补偿数据L的数值不同。例如,红色子像素R在128灰阶时,其对应的高灰阶补偿数据H为184,低灰阶补偿数据L为72;绿色子像素G在128灰阶时,其对应的高灰阶补偿数据H为180,低灰阶补偿数据L为69。
S30,根据所述灰阶补偿数据对所述子像素的所述灰阶数据进行补偿。
具体地,所述  S30还包括:
在时间周期单元内,同一所述子像素的多个所述灰阶补偿数据包括高灰阶补偿数据H和低灰阶补偿数据L,其中,所述高灰阶补偿数据H以及所述低灰阶补偿数据L各自的极性保持对称,所述高灰阶补偿数据H的数量与所述低灰阶补偿数据L的数量相等。
具体地,在同一帧所述图像的所述讯号中,相邻的两所述子像素的所述灰阶补偿数据的极性相反。
具体地,所述高灰阶补偿数据H包括正极性高灰阶补偿数据+H和负极性高灰阶补偿数据-H,所述低灰阶补偿数据L包括正极性低灰阶补偿数据+L和负极性低灰阶补偿数据-L;其中,所述正极性高灰阶补偿数据+H的数量与所述负极性高灰阶补偿数据-H的数量相等,所述正极性低灰阶补偿数据+L的数量与所述负极性低灰阶补偿数据-L的数量相等。
进一步地,还需要根据补偿后的所述讯号驱动显示设备的所述像素进行显示;
其具体包括:将获取的灰阶补偿值发送给显示面板,显示面板在图像显示时,可以根据图像中每一子像素相应的灰阶补偿数据,对每一子像素进行补偿,使得在所述灰阶补偿数据输入后,根据补偿后的所述讯号驱动显示面板的所述像素进行显示,从而改善各子像素的亮度不均匀,提高图像显示质量。
上述方法能够消除颗粒感的原理是:若时间顺序上没有进行高低灰阶数据补偿,空间固定位置的同一子像素始终是相对亮或相对暗的状态,画面就会出现亮暗的颗粒感。在进行高低灰阶数据补偿时,相邻的子像素间会出现从高灰阶补偿数据H至原始灰阶数据和从低灰阶补偿数据L至原始灰阶数据的短暂平衡,画面无明显亮暗变化。然而,在进行高低灰阶数据补偿时,显示画面容易出现竖纹现象,为了克服这种副作用,需要高灰阶补偿数据H以及低灰阶补偿数据L各自的极性保持对称,且高灰阶补偿数据H的数量与低灰阶补偿数据L的数量相等。
具体地,同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括n个所述高灰阶补偿数据H和所述低灰阶补偿数据L,其中,n为大于0的偶数。例如,在进行高低灰阶数据补偿时灰阶补偿数据重复单元为HL(连续子像素亮暗调整重复排列)时,n为2;灰阶补偿数据重复单元为HHLL(连续子像素亮亮暗暗调整重复排列)时,n为4;灰阶补偿数据重复单元为HLLHHL(连续子像素亮暗暗亮亮暗调整重复排列)时,n为6。
进一步地,为保证在帧切换的过程中画面不出现闪烁,n需要满足条件n≤f/30;其中f为所述显示面板的刷新频率。这是因为在进行高低灰阶数据补偿时,画面每帧亮度都会发生变化,人眼感受到亮度变化的频率至少为30Hz,为避免闪烁现象,每个灰阶补偿数据重复单元的持续频率至少为30Hz。
如在60Hz 的TV 显示面板中,消除颗粒感的高低灰阶数据补偿方式可以采用HL(连续子像素亮暗调整重复排列)切换。如在165Hz 的电竞monitor 显示面板中,消除颗粒感的高低灰阶数据补偿方式可以采用HL(连续子像素亮暗调整重复排列)切换或HHLL(连续子像素亮亮暗暗调整重复排列)切换。
如图3A所示,为本发明第一实施例的子像素补偿调整中的高低灰阶补偿表。本发明实施例提供的一个时间索引的灰阶补偿表中,按照时间顺序对补偿数据建立第一索引关系,按照灰阶值对补偿值建立第二索引关系;在所述补偿表中,每一第一索引值和一第二索引值的组合对应一对高灰阶补偿数据H以及低灰阶补偿数据L。
其中,按照时间顺序对每一所述灰阶补偿表的补偿数据建立第一索引关系得到第一索引值,按照灰阶数据对每一所述灰阶补偿表的补偿数据建立第二索引关系得到第二索引值。
图3A中,纵向为四帧(F1、F2、F3、F4),横向表示同一帧相邻的8个子像素。对于某子像素的原始灰阶值0(图表中未做标示,应对应出现在每列最上方),所述原始灰阶值0在某一时刻均对应一对相应的高灰阶补偿数据H以及低灰阶补偿数据L。其中,任一高灰阶补偿数据H均大于或等于所述灰阶数据0;任一低灰阶补偿数据L均小于或等于所述灰阶数据0。所述高灰阶补偿数据H以及所述低灰阶补偿数据L均具有极性且各自的极性保持对称,所述高灰阶补偿数据H的数量与所述低灰阶补偿数据L的数量相等,同时每一对所述高灰阶补偿数据H以及低灰阶补偿数据L的极性均相反。
具体地,所述高灰阶补偿数据H包括正极性高灰阶补偿数据+H和负极性高灰阶补偿数据-H,所述低灰阶补偿数据L包括正极性低灰阶补偿数据+L和负极性低灰阶补偿数据-L;其中,所述正极性高灰阶补偿数据+H的数量与所述负极性高灰阶补偿数据-H的数量相等,所述正极性低灰阶补偿数据+L的数量与所述负极性低灰阶补偿数据-L的数量相等。
如图3B所示,为本发明第一实施例的子像素补偿调整中的对应的高低灰阶补偿数据的时序示意图。其中,在当前第一帧F1时,所述子像素在某一个灰阶数据下补偿了一个正极性高灰阶补偿数据+H;在当前第二帧F2时,所述子像素在同一灰阶数据下补偿了一个负极性低灰阶补偿数据-L;在当前第三帧F3时,所述子像素在同一灰阶数据下补偿了一个负极性高灰阶补偿数据-H;在当前第四帧F4时,所述子像素在同一灰阶数据下补偿了一个正极性低灰阶补偿数据+L。
具体地,对应于所述一帧图像的画面中相邻的两个所述子像素的灰阶数据且在同一时间周期单元T(当前第一帧F1至当前第四帧F4)交替切换过程中,此时,同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括1个所述高灰阶补偿数据H和1个所述低灰阶补偿数据L(n为2)。
具体地,所述子像素的灰阶数据对应的所述高灰阶补偿数据H以及所述低灰阶补偿数据L的极性各自保持对称;即所述子像素的灰阶数据对应的所述高灰阶补偿数据H在同一时间周期单元T(当前第一帧F1至当前第四帧F4)交替切换过程中,正极性高灰阶补偿数据+H的个数(1个)与负极性高灰阶补偿数据-H的个数(1个)相等,同时正极性低灰阶补偿数据+L的个数(1个)与负极性低灰阶补偿数据-  L的个数(1个)相等。
如图4A所示,为本发明第二实施例的子像素补偿调整中的高低灰阶补偿表。纵向为四帧(F1、F2、F3、F4),横向表示同一帧相邻的8个子像素。对于某子像素的原始灰阶值0(图表中未做标示,应对应出现在每列最上方),所述原始灰阶值0在某一时刻均对应一对相应的高灰阶补偿数据H以及低灰阶补偿数据L。其中,任一高灰阶补偿数据H均大于或等于所述灰阶数据0;任一低灰阶补偿数据L均小于或等于所述灰阶数据0。所述高灰阶补偿数据H以及所述低灰阶补偿数据L均具有极性且各自的极性保持对称,所述高灰阶补偿数据H的数量与所述低灰阶补偿数据L的数量相等,同时每一对所述高灰阶补偿数据H以及低灰阶补偿数据L的极性均相反。
具体地,所述高灰阶补偿数据H包括正极性高灰阶补偿数据+H和负极性高灰阶补偿数据-H,所述低灰阶补偿数据L包括正极性低灰阶补偿数据+L和负极性低灰阶补偿数据-L;其中,所述正极性高灰阶补偿数据+H的数量与所述负极性高灰阶补偿数据-H的数量相等,所述正极性低灰阶补偿数据+L的数量与所述负极性低灰阶补偿数据-L的数量相等。
如图4B所示,为本发明第二实施例的子像素补偿调整中的对应的高低灰阶补偿数据的时序示意图。其中,在当前第一帧F1时,所述子像素在某一个灰阶数据下补偿了一个正极性高灰阶补偿数据+H;在当前第二帧F2时,所述子像素在同一个灰阶数据下补偿了一个负极性高灰阶补偿数据-H;在当前第三帧F3时,所述子像素在同一个灰阶数据下补偿了一个负极性低灰阶补偿数据-L;在当前第四帧F4时,所述子像素在同一个灰阶数据下补偿了一个正极性低灰阶补偿数据+L。
具体地,对应于所述一帧图像的画面中相邻的两个所述子像素的灰阶数据且在同一时间周期单元T(当前第一帧F1至当前第四帧F4)交替切换过程中,此时,同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括2个所述高灰阶补偿数据H和2个所述低灰阶补偿数据L(n为4)。
具体地,所述子像素的灰阶数据对应的所述高灰阶补偿数据H以及所述低灰阶补偿数据L的极性各自保持对称;即所述子像素的灰阶数据对应的所述高灰阶补偿数据H在同一时间周期单元T(当前第一帧F1至当前第四帧F4)交替切换过程中,正极性高灰阶补偿数据+H的个数(1个)与负极性高灰阶补偿数据-H的个数(1个)相等,同时正极性低灰阶补偿数据+L的个数(1个)与负极性低灰阶补偿数据-  L的个数(1个)相等。
本发明第一实施例以及第二实施例能够在帧与帧之间切换的时候,消除显示设备的显示面板的颗粒感,同时能够根据已知显示设备的刷新频率,确定实现消除显示设备的显示面板的颗粒感的VAC切换方式。
基于同一发明构思,本发明还提供了一种显示面板的像素补偿装置。本申请显示面板的像素补偿装置可以在显示面板的时序控制器中实现。
如图5所示,为本发明显示设备的像素补偿装置的结构框图。
其中,所述显示面板的像素补偿装置包括:
接收单元501,用于接收待显示画面的图像的讯号,其中所述讯号包含多个子像素的灰阶数据;
补偿查询单元502,与所述接收单元501相连,用于查询预设的包括多个灰阶补偿表的补偿表集,获取每个所述子像素的灰阶数据的高灰阶补偿数据H与低灰阶补偿数据L,其中所述子像素进行所述高灰阶补偿数据H补偿后的显示亮度与所述子像素进行所述低灰阶补偿数据L补偿后的显示亮度的平均亮度为所述子像素的灰阶数据的显示亮度;
补偿处理单元503,与所述补偿查询单元502相连,用于依时间顺序对每个所述子像素的灰阶数据交替进行所述高灰阶补偿数据H补偿与所述低灰阶补偿数据L补偿,其中在同一帧所述图像的所述讯号中,相邻的两所述子像素的所述灰阶补偿数据的极性相反;在时间周期单元内,同一所述子像素的多个所述灰阶补偿数据包括高灰阶补偿数据H和低灰阶补偿数据L,其中,所述高灰阶补偿数据H以及所述低灰阶补偿数据L各自的极性保持对称,所述高灰阶补偿数据H的数量与所述低灰阶补偿数据L的数量相等;以及
驱动单元504,与所述补偿处理单元503相连,用于根据补偿后的所述讯号驱动显示器的所述像素进行显示。
具体地,所述高灰阶补偿数据H包括正极性高灰阶补偿数据+H和负极性高灰阶补偿数据-H,所述低灰阶补偿数据包括正极性低灰阶补偿数据+L和负极性低灰阶补偿数据-L;
其中,所述正极性高灰阶补偿数据+H的数量与所述负极性高灰阶补偿数据-H的数量相等,所述正极性低灰阶补偿数据+L的数量与所述负极性低灰阶补偿数据-L的数量相等;同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括n个所述高灰阶补偿数据H和所述低灰阶补偿数据L,其中,n为大于0的偶数,n≤f/30,f为所述显示设备的刷新频率。
基于同一发明构思,本发明又提供了一种显示面板,所述显示面板包括存储器和控制器,所述存储器用于存储程序指令,所述控制器用于执行所述程序指令以实现如上述任一项所述显示面板的像素补偿方法。
综上所述,本发明实施例所提供的显示面板的像素补偿方法,在帧与帧之间交替切换过程中,显示面板的子像素的灰阶数据对应的高灰阶补偿数据以及低灰阶补偿数据各自的极性保持对称且高灰阶补偿数据的数量与低灰阶补偿数据的数量相等,使得相邻的子像素间会出现从高灰阶补偿数据至原始灰阶数据和从低灰阶补偿数据至原始灰阶数据的短暂平衡,画面无明显亮暗变化,在避免画面出现竖纹现象的同时有效消除显示面板的颗粒感,同时能够在已知显示面板的刷新频率的情况下,确定实现消除显示面板的颗粒感的同一子像素的灰阶补偿数据的亮暗排列切换方式。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种显示面板及其像素补偿方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种显示面板的像素补偿方法,其中,所述方法包括:
    S10,接收一帧图像的讯号,其中所述讯号包含多个子像素的灰阶数据;
    S20,获取每个所述子像素的灰阶补偿数据;以及
    S30,根据所述灰阶补偿数据对所述子像素的所述灰阶数据进行补偿;
    其中,在时间周期单元内,同一所述子像素的多个所述灰阶补偿数据包括高灰阶补偿数据和低灰阶补偿数据,其中,所述高灰阶补偿数据以及所述低灰阶补偿数据各自的极性保持对称,所述高灰阶补偿数据的数量与所述低灰阶补偿数据的数量相等。
  2. 根据权利要求1所述的显示面板的像素补偿方法,其中,同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括n个所述高灰阶补偿数据和所述低灰阶补偿数据,其中,n为大于0的偶数。
  3. 根据权利要2所述的显示面板的像素补偿方法,其中, n≤f/30, f为所述显示面板的刷新频率。
  4. 根据权利要求1所述的显示面板的像素补偿方法,其中,所述S10中,每个所述子像素的灰阶数据为红色子像素的灰阶数据、绿色子像素的灰阶数据以及蓝色子像素的灰阶数据中的任意一种。
  5. 根据权利要求1所述的显示面板的像素补偿方法,其中,所述步骤S20包括:
    S21,根据每个所述子像素的所述灰阶数据查询预设的包括多个灰阶补偿表的补偿表集;以及
    S22,将查询结果作为获取到的所述子像素的所述灰阶补偿数据,其中,在所述时间周期单元内,所述子像素进行所述高灰阶补偿数据补偿后的显示亮度与所述子像素进行所述低灰阶补偿数据补偿后的显示亮度的平均亮度为所述子像素的所述灰阶数据的显示亮度。
  6. 根据权利要求5所述的显示面板的像素补偿方法,其中,所述步骤S21包括:
    按照时间顺序对每一所述灰阶补偿表的补偿值建立第一索引关系得到第一索引值,按照灰阶值对每一所述灰阶补偿表的补偿值建立第二索引关系得到第二索引值;
    其中,在所述灰阶补偿表中,每一所述第一索引值和一所述第二索引值的组合,对应一所述高灰阶补偿数据以及一所述低灰阶补偿数据。
  7. 根据权利要求3所述的显示面板的像素补偿方法,其中,同一所述子像素在不同所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。
  8. 根据权利要求3所述的显示面板的像素补偿方法,其中,不同所述子像素在同一所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。
  9. 一种显示面板的像素补偿方法,其中,所述方法包括:
    S10,接收一帧图像的讯号,其中所述讯号包含多个子像素的灰阶数据;
    S20,获取每个所述子像素的灰阶补偿数据;以及
    S30,根据所述灰阶补偿数据对所述子像素的所述灰阶数据进行补偿;
    其中,在时间周期单元内,同一所述子像素的多个所述灰阶补偿数据包括高灰阶补偿数据和低灰阶补偿数据,其中,所述高灰阶补偿数据以及所述低灰阶补偿数据各自的极性保持对称,所述高灰阶补偿数据的数量与所述低灰阶补偿数据的数量相等;
    所述高灰阶补偿数据包括正极性高灰阶补偿数据和负极性高灰阶补偿数据,所述低灰阶补偿数据包括正极性低灰阶补偿数据和负极性低灰阶补偿数据;其中,所述正极性高灰阶补偿数据的数量与所述负极性高灰阶补偿数据的数量相等,所述正极性低灰阶补偿数据的数量与所述负极性低灰阶补偿数据的数量相等。
  10. 根据权利要求9所述的显示面板的像素补偿方法,其中,同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括n个所述高灰阶补偿数据和所述低灰阶补偿数据,其中,n为大于0的偶数。
  11. 根据权利要10所述的显示面板的像素补偿方法,其中, n≤f/30, f为所述显示面板的刷新频率。
  12. 根据权利要求9所述的显示面板的像素补偿方法,其中,所述S10中,每个所述子像素的灰阶数据为红色子像素的灰阶数据、绿色子像素的灰阶数据以及蓝色子像素的灰阶数据中的任意一种。
  13. 根据权利要求9所述的显示面板的像素补偿方法,其中,所述步骤S20包括:
    S21,根据每个所述子像素的所述灰阶数据查询预设的包括多个灰阶补偿表的补偿表集;以及
    S22,将查询结果作为获取到的所述子像素的所述灰阶补偿数据,其中,在所述时间周期单元内,所述子像素进行所述高灰阶补偿数据补偿后的显示亮度与所述子像素进行所述低灰阶补偿数据补偿后的显示亮度的平均亮度为所述子像素的所述灰阶数据的显示亮度。
  14. 根据权利要求13所述的显示面板的像素补偿方法,其中,所述步骤S21包括:
    按照时间顺序对每一所述灰阶补偿表的补偿值建立第一索引关系得到第一索引值,按照灰阶值对每一所述灰阶补偿表的补偿值建立第二索引关系得到第二索引值;
    其中,在所述灰阶补偿表中,每一所述第一索引值和一所述第二索引值的组合,对应一所述高灰阶补偿数据以及一所述低灰阶补偿数据。
  15. 根据权利要求10所述的显示面板的像素补偿方法,其中,同一所述子像素在不同所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。
  16. 根据权利要求10所述的显示面板的像素补偿方法,其中,不同所述子像素在同一所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。
  17. 一种显示面板的像素补偿装置,其中,所述像素补偿装置包括:
    接收单元,用于接收待显示画面的图像的讯号,其中所述讯号包含多个子像素的灰阶数据;
    补偿查询单元,与所述接收单元相连,用于查询预设的包括多个灰阶补偿表的补偿表集,获取每个所述子像素的灰阶数据的高灰阶补偿数据与低灰阶补偿数据;
    补偿处理单元,与所述补偿查询单元相连,用于依时间顺序对每个所述子像素的灰阶数据交替进行所述高灰阶补偿数据补偿与所述低灰阶补偿数据补偿,其中,在同一帧所述图像的所述讯号中,相邻的两所述子像素的所述灰阶补偿数据的极性相反;在时间周期单元内,同一所述子像素的多个所述灰阶补偿数据包括高灰阶补偿数据和低灰阶补偿数据,其中,所述高灰阶补偿数据以及所述低灰阶补偿数据各自的极性保持对称,所述高灰阶补偿数据的数量与所述低灰阶补偿数据的数量相等;以及驱动单元,与所述补偿处理单元相连,用于根据补偿后的所述讯号驱动显示器的所述像素进行显示。
  18. 根据权利要求17所述的显示面板的像素补偿装置,其中,所述高灰阶补偿数据包括正极性高灰阶补偿数据和负极性高灰阶补偿数据,所述低灰阶补偿数据包括正极性低灰阶补偿数据和负极性低灰阶补偿数据;
    其中,所述正极性高灰阶补偿数据的数量与所述负极性高灰阶补偿数据的数量相等,所述正极性低灰阶补偿数据的数量与所述负极性低灰阶补偿数据的数量相等;同一所述子像素的多个所述灰阶补偿数据包括灰阶补偿数据重复单元,所述灰阶补偿数据重复单元包括n个所述高灰阶补偿数据和所述低灰阶补偿数据,其中,n为大于0的偶数,n≤f/30,f为所述显示设备的刷新频率。
  19. 根据权利要求17所述的显示面板的像素补偿方法,其中,同一所述子像素在不同所述灰阶数据的情况下对应的所述高灰阶补偿数据的数值不同,且对应的所述低灰阶补偿数据的数值不同。
  20. 一种显示面板,其中,包括存储器和控制器,所述存储器用于存储程序指令,所述控制器用于执行所述程序指令以实现如权利要求1所述的显示面板的像素补偿方法。
PCT/CN2021/097137 2021-01-11 2021-05-31 显示面板及其像素补偿方法和装置 WO2022147953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/423,859 US20220223095A1 (en) 2021-01-11 2021-05-31 Display panel, and method and device for pixel compensation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110029966.8 2021-01-11
CN202110029966.8A CN112669785B (zh) 2021-01-11 2021-01-11 显示面板及其像素补偿方法和装置

Publications (1)

Publication Number Publication Date
WO2022147953A1 true WO2022147953A1 (zh) 2022-07-14

Family

ID=75414122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097137 WO2022147953A1 (zh) 2021-01-11 2021-05-31 显示面板及其像素补偿方法和装置

Country Status (2)

Country Link
CN (1) CN112669785B (zh)
WO (1) WO2022147953A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112669785B (zh) * 2021-01-11 2022-09-09 Tcl华星光电技术有限公司 显示面板及其像素补偿方法和装置
CN113241032B (zh) * 2021-05-10 2022-05-03 深圳市华星光电半导体显示技术有限公司 显示面板的驱动方法、显示面板及液晶显示装置
CN113380209B (zh) * 2021-06-08 2022-05-31 惠州华星光电显示有限公司 显示装置及其显示方法
CN113593491B (zh) * 2021-07-13 2022-08-05 Tcl华星光电技术有限公司 显示面板的驱动方法、显示面板及显示装置
CN113707065B (zh) * 2021-08-16 2023-10-13 Tcl华星光电技术有限公司 显示面板、显示面板的驱动方法及电子装置
CN113689816B (zh) * 2021-09-02 2023-09-01 Tcl华星光电技术有限公司 驱动电路
CN114863891B (zh) * 2022-05-09 2023-06-27 Tcl华星光电技术有限公司 显示器亮度调节方法、装置、电子设备及存储介质
CN114999416B (zh) * 2022-06-07 2023-05-30 Tcl华星光电技术有限公司 显示面板画面优化方法、装置、电子设备及存储介质
CN114898699B (zh) * 2022-06-29 2024-06-14 Tcl华星光电技术有限公司 显示控制方法及显示面板
CN115798431B (zh) * 2022-12-26 2024-05-28 深圳市华星光电半导体显示技术有限公司 显示面板的驱动方法及显示模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136761A1 (en) * 2006-12-12 2008-06-12 Samsung Electronics Co., Ltd. Display Apparatus and Method of Driving the Same
CN103456257A (zh) * 2012-05-31 2013-12-18 三星显示有限公司 显示设备及其驱动方法
CN109949763A (zh) * 2017-12-21 2019-06-28 咸阳彩虹光电科技有限公司 一种像素矩阵驱动方法及显示装置
CN111540324A (zh) * 2020-05-20 2020-08-14 Tcl华星光电技术有限公司 一种显示设备及其像素补偿方法和装置
CN111798807A (zh) * 2020-07-02 2020-10-20 Tcl华星光电技术有限公司 一种显示驱动方法及显示驱动装置
CN112669785A (zh) * 2021-01-11 2021-04-16 Tcl华星光电技术有限公司 显示面板及其像素补偿方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106991982B (zh) * 2017-05-03 2018-09-14 深圳市华星光电技术有限公司 一种显示面板的mura现象补偿方法及显示面板
CN108766372B (zh) * 2018-04-28 2020-12-01 咸阳彩虹光电科技有限公司 一种改善显示面板的mura现象的方法
CN112180630B (zh) * 2020-10-16 2021-12-03 Tcl华星光电技术有限公司 一种显示面板
CN112185313B (zh) * 2020-10-16 2022-05-31 Tcl华星光电技术有限公司 一种像素结构驱动方法及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080136761A1 (en) * 2006-12-12 2008-06-12 Samsung Electronics Co., Ltd. Display Apparatus and Method of Driving the Same
CN103456257A (zh) * 2012-05-31 2013-12-18 三星显示有限公司 显示设备及其驱动方法
CN109949763A (zh) * 2017-12-21 2019-06-28 咸阳彩虹光电科技有限公司 一种像素矩阵驱动方法及显示装置
CN111540324A (zh) * 2020-05-20 2020-08-14 Tcl华星光电技术有限公司 一种显示设备及其像素补偿方法和装置
CN111798807A (zh) * 2020-07-02 2020-10-20 Tcl华星光电技术有限公司 一种显示驱动方法及显示驱动装置
CN112669785A (zh) * 2021-01-11 2021-04-16 Tcl华星光电技术有限公司 显示面板及其像素补偿方法和装置

Also Published As

Publication number Publication date
CN112669785B (zh) 2022-09-09
CN112669785A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2022147953A1 (zh) 显示面板及其像素补偿方法和装置
TWI578303B (zh) 顯示面板及顯示面板的驅動方法
WO2018120608A1 (zh) 液晶显示装置及其驱动方法
US9799281B2 (en) Liquid crystal panel and driving method for the same
JP3999081B2 (ja) 液晶表示装置
US8704744B2 (en) Systems and methods for temporal subpixel rendering of image data
US20100238203A1 (en) Driving pixels of a display
WO2020056885A1 (zh) 显示装置及其驱动方法
TW201715498A (zh) 顯示面板
US20080238911A1 (en) Apparatus and method for controlling picture quality of flat panel display
TWI473055B (zh) 平面顯示器及其驅動方法
TWI662524B (zh) 顯示裝置及顯示面板的灰階補償方法
US20120169787A1 (en) Method and device for driving pixel of display panel
WO2022257193A1 (zh) 显示装置及其显示方法
US11205393B2 (en) Display device and driving method therefor
WO2011148530A1 (en) Methods for off axis halo mitigation
CN114913821B (zh) 显示模组及其控制方法、显示装置
US8471795B2 (en) Method of driving pixels and displaying images on a display device
US20220223095A1 (en) Display panel, and method and device for pixel compensation thereof
WO2023019602A1 (zh) 显示面板、显示面板的驱动方法及电子装置
TWI717853B (zh) 垂直排列液晶顯示器與控制方法
TWI670700B (zh) 用於顯示面板之顯示方法與顯示裝置
CN107256700A (zh) 一种图像显示方法及液晶显示装置
JP5301644B2 (ja) 画像処理方法及びそれを用いた液晶表示装置
TWI541789B (zh) 壓縮反應時間之畫面控制訊號產生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917002

Country of ref document: EP

Kind code of ref document: A1