WO2022146113A1 - Multi-axis control-type object tracking system - Google Patents

Multi-axis control-type object tracking system Download PDF

Info

Publication number
WO2022146113A1
WO2022146113A1 PCT/KR2021/095138 KR2021095138W WO2022146113A1 WO 2022146113 A1 WO2022146113 A1 WO 2022146113A1 KR 2021095138 W KR2021095138 W KR 2021095138W WO 2022146113 A1 WO2022146113 A1 WO 2022146113A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
light
mems mirror
posture
tracking system
Prior art date
Application number
PCT/KR2021/095138
Other languages
French (fr)
Korean (ko)
Inventor
김도명
Original Assignee
주식회사 플로우토닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 플로우토닉 filed Critical 주식회사 플로우토닉
Priority to CN202180088711.7A priority Critical patent/CN116917766A/en
Publication of WO2022146113A1 publication Critical patent/WO2022146113A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present invention relates to a multi-axis control type object tracking system, and more particularly, to a multi-axis control type object tracking system for tracking an external object by being coupled to a platform.
  • tracking technology tracks a marker attached to an object
  • currently well-known tracking technologies such as PTAM (Positional tracking and mapping for small AR workspaces) and SLAM (Simultaneous localization and mapping) place a camera and place a tracking marker on the surrounding wall. is configured to install
  • the transmitter of the prior art has a limitation in that it can irradiate only an area up to 180° as the light pulses swept in the X and Y axes are irradiated while rotating in one direction through the horizontal and vertical rotors. , when light is emitted to the remaining area, it is covered by the device, thereby reducing its efficiency.
  • the present invention has been devised to solve the problems of the prior art, and an object of the present invention is to allow a platform and an object to interact with each other through an optical transmitter that reciprocates and sweeps within a predetermined angle, and a posture control unit that adjusts the posture of the optical transmitter. It aims to provide a multi-axis control type object tracking system that can acquire more precise data in a short time in a state where
  • an object tracking system of a multi-axis control method includes: a light transmitter mounted on a platform to emit light pulses to the outside; and a first posture adjusting unit coupled to the platform to adjust the posture of the light transmitting unit, wherein the light transmitting unit includes: a laser diode generating laser light; a MEMS mirror for emitting a light pulse to the outside by controlling the laser light generated from the laser diode to be reciprocally swept within a set angle (A°); and a light detection sensor receiving the reflected wave reflected from the object.
  • the first posture adjusting unit may include a plurality of controllers for controlling one of three rotation axes (Roll, Pitch, and Yaw), and the plurality of control units may control the light transmitter with different rotation axes.
  • the multi-axis control system object tracking system the first processor for calculating the position of the object based on the angle information about the platform, the first posture control unit, and the MEMS mirror; further comprising, 1 processor, first angle information that is information about the posture of the platform, second angle information that is information about the posture of the first posture adjusting unit on the platform, and the MEMS mirror in the first posture adjusting unit
  • first angle information that is information about the posture of the platform
  • second angle information that is information about the posture of the first posture adjusting unit on the platform
  • the MEMS mirror in the first posture adjusting unit
  • Each of the third angle information which is information about the sweep angle, may be received. (here, ⁇ Third angle information ⁇ )
  • the first processor receives the first angle information and the second angle information based on the time at which the reflected wave is detected by the light detection sensor, calculates the position of the object, calculates the position of the object, and calculates the position of the light. It can be transmitted via pulses.
  • the first processor may include an angle counter module for the sweep motion of the MEMS mirror, and when a reflected wave is detected, the third angle information may be calculated using the angle count value of the angle counter module.
  • the first processor receives the first position data for the direction of the MEMS mirror or the second position data for the position of the MEMS mirror, the first position data, the angle count is reset when the MEMS mirror turns , In the second position data, the angle count may be reset when the MEMS mirror is located at the center of the set angle.
  • the multi-axis control type object tracking system further includes; an IMU sensor connected to the first posture adjusting unit to measure angular velocity and acceleration, wherein the first processor includes the first posture adjusting unit The angular velocity measured by the IMU sensor is received to compensate the back electromotive force of the motor, the motor drive connected to the motor is controlled, and the angular velocity and acceleration measured by the IMU sensor are input to a Kalman filter to provide first angle information. can be calculated.
  • the first posture adjusting unit may include an angle sensor, and the first processor may calculate the second angle information by measuring a rotation angle of the first posture adjusting unit in the angle sensor.
  • the optical pulse emitted from the optical transmitter includes a data bit string and a sweep bit, and the sweep bit is generated when the MEMS mirror rotates in one direction within a set angle. It may include an up sweep bit generated and a down sweep bit generated when the MEMS mirror rotates in another direction within a set angle.
  • the optical transmitter consists of a plurality of light transmitters that emit swept optical pulses in different axes, and the optical pulses of the optical transmitter receive an axis bit that is data for the swept axis. may include more.
  • the first processor configures the beam angle of the light transmission unit calculated by the first angle information and the second angle information as an N-bit data bit string, and a part of the light pulses among the plurality of light pulses continuously emitted.
  • the upper N 1 bit of the data bit string may be emitted, and the lower N 2 bit of the data bit string may be emitted to some other light pulses.
  • the multi-axis control system object tracking system mounted on the object to receive the light pulse; a second posture adjusting unit coupled to the object to adjust the posture of the light receiving unit; and a second processor that analyzes the signal of the light pulses arriving at the light receiving unit, wherein the second processor calculates the position at which the platform is arranged based on a time difference at which at least two consecutive light pulses arrive. can do.
  • the second processor is configured to use a time variable ( ⁇ t) through the preset sweep setting angle, frequency, and period of the MEMS mirror of the optical transmitter and a time difference ( ⁇ t) between two or more consecutive optical pulses arriving at the optical receiver.
  • t is calculated, and the sweep angle ( ⁇ R ) of the MEMS mirror can be calculated by the following equation.
  • ⁇ R sweep angle of the MEMS mirror
  • time variable t may be calculated through any one of the following Relations 1 to 3.
  • the second processor calculates the position of the platform based on the information transmitted through the light pulse and the sweep angle ⁇ R of the MEMS mirror, so that the light receiver faces the platform. You can control the posture control unit.
  • the multi-axis control type object tracking system acquires a large number of data about an object based on a 360° rotation through an optical transmitter that reciprocates and sweeps within a predetermined angle, so that more precise object tracking is possible. There are possible advantages.
  • the light transmitter can continuously acquire data of the object by directing the detected object through the first posture adjusting unit for adjusting the posture of the light transmitter, and the light transmitter It has the advantage of providing a basis for detecting objects in all directions.
  • the multi-axis control type object tracking system receives data about the light pulse irradiation angle of the light transmitter and the angle of the first posture control unit from the processor mounted on the object, and calculates the position of the platform more precisely.
  • the data bit of the light pulse includes angle information between the object and the platform based on the absolute coordinate system so that the data can be analyzed more precisely.
  • FIG. 1 is a schematic diagram of a multi-axis control system object tracking system according to the present invention.
  • Figure 2 is a schematic diagram of a first posture control unit according to the present invention.
  • FIG. 3 is a schematic diagram of an optical transmitter according to the present invention.
  • FIG. 4 is a block diagram of a multi-axis control system object tracking system according to the present invention.
  • FIG. 5 is a diagram illustrating a signal change according to time of each configuration according to the present invention.
  • FIG. 6 is a graph showing the time-dependent angular change of the MEMS mirror according to the present invention.
  • FIG. 7 and 8 are diagrams illustrating signals of optical pulses emitted from a plurality of optical transmitters according to the present invention.
  • FIG. 9 is a view showing the positional relationship of a plurality of components according to the present invention.
  • FIG. 10 is a view showing a system of an object tracking loop according to the present invention.
  • FIG. 11 is a perspective view of an object according to the present invention.
  • FIG. 13 is a graph illustrating an angle change over time calculated by a second processor of an object according to the present invention.
  • FIG. 1 is a schematic diagram of the system
  • FIGS. 2 and 3 are schematic diagrams of a first posture control unit and a light transmitter, respectively.
  • the multi-axis control type object tracking system may include a light transmitter 100 and a first posture controller 200 mounted on a platform 10 .
  • the platform 10 may be formed of a structure fixed on the ground, a moving object, an aircraft, or the like.
  • the multi-axis control object tracking system according to the present invention may further include a light receiving unit 300 and a second posture adjusting unit 400 mounted on the object 20 .
  • the light transmitting unit 100 may be arranged to emit light pulses to the outside, and the first posture adjusting unit 200 may be partially fixed to the platform 10 to support the light transmitting unit 100 . .
  • the light receiving unit 300 may receive a light pulse from the outside, and the second posture adjusting unit 400 may be partially fixed on the object 20 to support the light receiving unit 400 .
  • the first posture adjusting unit 200 and the second posture adjusting unit 400 may adjust their postures to move or rotate in one or more axes with respect to the light transmitting unit 100 and the light receiving unit 300, respectively.
  • three linear axes (X, Y, Z) and three rotation axes (Roll, Pitch, Yaw) can be adjusted so that the posture can be changed by the motion of one or more.
  • the first posture adjusting unit 200 includes a plurality of adjusting units 210 , 220 , 230 , and each adjusting unit includes three linear axes (X, Y, Z) with respect to the optical transmitter 100 . and one of the three rotation axes (Roll, Pitch, Yaw) can be adjusted so that the posture can be changed.
  • the first posture adjusting unit 200 may be configured in a gimbal shape to control the light transmitting unit 100 to perform linear/rotational movement in the multi-axis direction.
  • the light transmitter 100 may include a laser diode 110 , a MEMS mirror 120 , a beam splitter 130 , or a light detection sensor 140 .
  • the MEMS mirror 120 is a MEMS (Micro-Electro-Mechanical Systems) mirror, and the lens may be configured to rotate with respect to one plane, and the laser light generated from the laser diode 110 may be emitted in the form of a light pulse to the outside. can be controlled
  • the MEMS mirror 120 may be reciprocally swept within a set angle (A°). It means that it is reciprocated between at after reaching It is defined as a return to , and will be described later.
  • set angle
  • the beam splitter 130 may be disposed between the laser diode 110 and the MEMS mirror 120 , and the laser light generated from the laser diode 110 reaches the MEMS mirror 120 , but the The reflected wave reflected from the object 20 may be adjusted to be transmitted to the light detection sensor 140 .
  • the beam splitter 130 transmits all of the laser light generated by the laser diode 110 to the MEMS mirror 120 , but the reflected wave received by the MEMS mirror 120 is transmitted to the light detection sensor 140 .
  • a portion of the laser light generated from the laser diode 110 may be transmitted to the light detection sensor 140 .
  • the light detection sensor 140 may be configured of, for example, an Avalanche Photo Diode (APD).
  • APD Avalanche Photo Diode
  • the multi-axis control system object tracking system may further include a processor for calculating and controlling data, wherein the processor controls the frequency of the laser light of the laser diode 110 to include a light pulse It may be configured to vary the information to be used or to additionally calculate other information based on the reflected wave received by the light detection sensor 140 .
  • the processor may frequency-modulate the optical pulse to include information as described above, and the receiving diode 301 of the optical receiving unit 300 may be composed of one or more, and when the optical pulse arrives, the corresponding information It may be configured to obtain
  • Figure 4 relates to a multi-axis control system object tracking system according to the present invention
  • Figure 4 shows the configuration of the system.
  • the multi-axis control type object tracking system according to the present invention will be described in more detail as follows.
  • the multi-axis control object tracking system includes an optical transmitter, a first position controller, and a processor, and is connected to the optical transmitter or the first posture controller
  • An Inertial Measurement Unit Sensor (IMU) for measuring angular velocity and acceleration may be further included.
  • IMU Inertial Measurement Unit Sensor
  • the light transmitter may include a laser diode, a beam splitter, a MEMS mirror, and an APD target sensor.
  • the laser light generated by the laser diode may be configured to reach and reflect the object through the MEMS mirror.
  • the optical transmitter may further include a laser diode driver and a MEMS mirror driver to convert control signals for the laser diode and the MEMS mirror generated by the processor.
  • the optical transmitter may be configured in plurality, and the plurality of optical transmitters may be configured to rotate the MEMS mirror on different planes. For example, an X-axis light transmitter may sweep the MEMS mirror on an X-Z axis plane, and a Y-axis optical transmitter may sweep the MEMS mirror on a Y-Z axis plane.
  • the first posture adjusting unit may include a gimbal motor, a gimbal motor driver, and an angle sensor.
  • the gimbal motor may be a device for generating power, and for example, may be configured as a DC motor or a servo motor.
  • the gimbal motor driver may convert a control signal for the gimbal motor generated by the processor, and the angle sensor may measure the current speed and angle of the shaft rotated by the gimbal motor. Encoder and It can be formed by the same means.
  • FIG. 5 is a multi-axis control type object tracking system according to the present invention, and FIG. 5 is a diagram illustrating signal changes according to time of each component.
  • the MEMS mirror is When rotated at a speed of a cosine function that is a predetermined sine function differential function at a set angle between In this case, the maximum angle , the minimum angle is can be And when the MEMS mirror rotates on the YZ plane, assuming that the angle of the MEMS mirror is oriented to the Z axis when the angle is 0°, In the case of between, a light pulse may be emitted in the -Y direction, In this case, a light pulse may be emitted in the +Y direction.
  • the first processor may include an angle counter module for a sweep motion of the MEMS mirror, and when a reflected wave is detected, the angle information of the MEMS mirror may be calculated using the angle count value of the angle counter module.
  • the first processor receives the first position data for the direction of the MEMS mirror or the second position data for the position of the MEMS mirror, respectively, and the angle counter module counts the first position data or the second position data, respectively , For the first position data, the angle counter module resets the angle count when the MEMS mirror turns, and for the second position data, the angle counter module resets the angle count when the MEMS mirror is located at the center of the set angle.
  • the second position data may include a 2-1 position data and a 2-2 position data, wherein the 2-1 position data and the 2-2 position data are the MEMS mirror located at the center of the set angle. Based on the case, one side may be defined as a positive direction and the other side may be defined as a negative direction. And for each it may be a counting.
  • the first processor receives the 2-1 position data in which the reflected wave is detected in the positive direction and the 2-2 position data in which the reflected wave is detected in the negative direction respectively according to the sweep direction of the MEMS mirror, respectively, and the second The -1 position data and the 2-2 position data may be counter values up to a point in time when a reflection is detected when the counter is reset with respect to the center 0° with respect to each sweep direction.
  • the count value may be matched with the sweep angle of the MEMS mirror, which performs angular motion with a predetermined sine function, in the form of a function or table in advance.
  • the first processor may calculate the angle of the MEMS mirror through the first position data or the second position data, as long as the first position data and the second position data are uniquely determined with respect to a target at a specific location. It may be configured to more accurately calculate data by using all of them as paired information.
  • the processor can receive or calculate the posture of the MEMS mirror based on the time recognized by the APD sensor. It is also possible to calculate the angle at which the object is placed in relation to the 0° it is directed at.
  • FIG. 6 is a graph showing the time-dependent angular change of the MEMS mirror
  • FIGS. 7 and 8 are light emitted from a plurality of light transmitters.
  • a diagram showing a signal of a pulse is shown.
  • a plurality of data may be embedded in an optical pulse emitted from the optical transmitter.
  • the light pulse may include an axis bit, a sweep bit, and a data bit string.
  • the axis bit may be information on an axis handled by the emitted light transmitter when a plurality of optical transmitters are included. For example, when the MEMS mirror rotates on the XZ axis, 1, the MEMS mirror rotates on the YZ axis. In this case, it may be 0.
  • the sweep bit may include an up sweep bit and a down sweep bit, and may include a current sweep direction of the MEMS mirror.
  • the Up Sweep and Down Sweep may be divided based on the rotation of the MEMS mirror, and the angle of the MEMS mirror is at as a downsweep when heading to at It can also be divided into an upsweep towards . Accordingly, the receiving side can also calculate the position of the object within the set angle of the MEMS mirror through the difference between the upsweep/downsweep and the arrival time of the reflected wave.
  • the data bit string may be an N-bit data bit string, and may include information on the posture of the light transmitter adjusted by the first posture adjusting unit with respect to the platform posture in the absolute coordinate system.
  • the posture of the platform in the absolute coordinate system is first angle information
  • the posture of the light transmitter adjusted by the first posture adjusting unit is controlled by the second angle information as second angle information based on a preset absolute coordinate system.
  • the direction of the light pulse emitted from the MEMS mirror will be defined and described as the third angle information.
  • the posture of the platform with respect to the absolute coordinate system can be calculated by a sensor fusion technique such as a Kalman filter using an inertial sensor.
  • the data bit string is such that the processor divides the first angle information obtained by measuring the first posture adjusting unit and the beam angle of the light transmitting unit with respect to the absolute coordinate system calculated by the platform posture into a plurality of light pulses and transmits them. You can also control it.
  • one of the light pulses continuously emitted with respect to an N-bit data bit string may include high-order N 1 bits, and the other may include low-order N 2 bits.
  • the sum of the N 1 bits and the N 2 bits may be more than N bits, so that all data may be included when a plurality of light pulses are collected.
  • the plurality of light transmitters may be controlled to emit light pulses to the outside at intervals therebetween.
  • FIG. 9 and 10 relate to an object tracking system of a multi-axis control method according to the present invention.
  • FIG. 9 is a diagram showing the positional relationship of a plurality of components
  • FIG. 10 is a diagram showing a system of an object tracking loop, respectively. indicates.
  • the posture of the light transmitter may be calculated on a corresponding plane. That is, when the platform maintains the same posture, the posture of the light transmitter may be changed by the first posture adjusting unit, and the posture of the light transmitter with respect to a plane corresponding to the swept plane may be extracted. have.
  • a first relative coordinate system (Relative Frame 1, RF1) can be built with respect to the posture of the platform, and the posture of the first posture control unit is determined with respect to the posture of the platform.
  • a second relative coordinate system (Relative Frame 2, RF2) can be constructed.
  • a third relative coordinate system (Relative Frame 3, RF3) centered on the sweep movement of the MEMS mirror with respect to the first posture adjusting unit may be constructed.
  • the angle at which the first relative coordinate system is inclined with respect to the absolute coordinate system is the first angle information ( ⁇ , ⁇ )
  • the angle at which the second relative coordinate system is inclined with respect to the first relative coordinate system is used as the second angle information ( , )
  • the third angle information ( , ) may be an angle oriented by the MEMS mirror in the third relative coordinate system.
  • the plurality of optical transmitters may calculate the first angle information and the second angle information based on different planes, respectively.
  • the processor uniaxial first angle information ( ⁇ ), uniaxial second angle information ( ) and uniaxial third angle information ( ) is calculated, and the first angle information ( ⁇ ) of the other axis and the second angle information of the other axis ( ) and uniaxial third angle information ( ) can be calculated.
  • the uniaxial third angle information ( ) can be calculated (detection of the reflected wave by the light detection sensor).
  • the processor may receive the uniaxial first angle information ⁇ through means such as an IMU sensor, or may calculate the uniaxial first angle information ⁇ by analyzing the control signal.
  • the processor may transmit a control signal to the first posture adjusting unit so that the center of the sweep motion of the MEMS mirror is directed toward the object (the calculated uniaxial third angle information is 0°).
  • the control signal is that the first posture adjusting unit adjusts the posture of the light transmitting unit, and in the drawing, uniaxial third angle information ( ), the light transmitter may rotate in a clockwise direction.
  • the multi-axis control object tracking system may measure the angular velocity and acceleration of the first posture control unit with respect to the gimbal motor by using the IMU sensor. And with the object tracking angle controller of the processor, the measured angular velocity is input to the angular velocity controller to compensate the back electromotive force of the gimbal motor, so that the object-oriented inner loop that can be more stabilized (Object Tracking Inner Loop) can be built.
  • the angular velocity and acceleration measured by the IMU sensor can calculate the multi-axis first angle information ( ⁇ , ⁇ ) through the Kalman filter of the processor, and the second through the information received from a separate device or data operation or MEMS mirror.
  • Multi-axis second angle information of the posture control unit ( , ) can also be calculated. And in a specific state, if the target is positioned so as to be aligned in the center of each axis of the optical transmitter, the multi-axis first angle information ( ⁇ , ⁇ ) and the multi-axis second angle information ( , ) is added, the direction ( , ) can be found.
  • the processor may transmit a control signal to the first posture adjusting unit so that the MEMS mirror can be swept around the object.
  • the third angle information ( , ) has a value of 0. That is, the angle of the first posture control unit is controlled to compensate for the orientation angle of the target from the sweep center of the MEMS mirror calculated from the third angle information, so that the center of the sweep of the MEMS mirror is directed toward the center of the object. to be continuously tracked.
  • the object orientation angle controller compensates for the change in the attitude of the platform in the outer loop, and also uses the angular velocity information in the inner loop to compensate for external influences such as disturbance, so that a stable orientation can be maintained even if the posture is shaken. .
  • FIG. 11 to 13 relate to an object tracking system of a multi-axis control method according to the present invention, wherein FIG. 11 is a perspective view of an object, FIG. 12 is a front view of the object, and FIG. represent each.
  • the object 20 may include a fixed body, a movable body, or an air vehicle, and in the case of an air vehicle, the object 20 may include a body 21 and a power unit 22 .
  • the light receiving unit 300 and the second posture adjusting unit 400 may be mounted on or embedded in the object 20 , and may be configured to calculate the position of the platform through the method as described above.
  • the object 20 may receive control data for the MEMS mirror of the optical transmitter through the optical receiver 300 , and may estimate control data for the MEMS mirror through the following method.
  • the multi-axis control system object tracking system may further include a second processor coupled to the object 20, and the second processor is configured to perform optical processing in the absolute coordinate system of the optical transmitter.
  • the sweep angle of the MEMS mirror ( ) can be calculated in real time.
  • the processor determines the sweep angle of the MEMS mirror ( ) can be calculated.
  • the time variable (t) is one of the first time variable (s 1 ) to the fourth time variable (s 4 ) calculated through any one of the following Relations 1 to 4 can be calculated.
  • the first time variable (s 1 ) to the fourth time variable (s 4 ) are inputted into the following equation and the sweep angle ( ) can be calculated.
  • the sweep angle of the MEMS mirror ( ) may be matched with the third angle information on the side of the optical transmitter, and the second processor determines the target orientation angle ( , ) is macroscopic information, and the sweep angle of the microscopic MEMS mirror at the time of measurement ( ), it is possible to calculate the precise viewing angle of the platform by calculating the second angle information together. Accordingly, all information capable of reconstructing the viewing angle, which is the direction of the target with respect to the optical transmitter in the absolute coordinate system, can be obtained, and this is expressed by the following equation.
  • A may be a preset angle of the pre-inputted set angle of the MEMS mirror and may be a radius of rotation
  • f is the pre-input frequency of the MEMS mirror indicating the number of sweeps of the MEMS mirror per unit time (s)
  • T is the pre-inputted MEMS mirror.
  • a period of the MEMS mirror indicating the time elapsed when the mirror is swept once, and ⁇ t n may indicate a time difference when light pulses are continuously detected by the light receiver 300 .
  • the second posture adjusting unit 400 may adjust the light receiving unit 300 to direct the calculated position of the platform.
  • the sweep angle of the MEMS mirror can be calculated through the time difference of the reflected light even in the light transmitter of the same method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The present invention relates to a multi-axis control-type object tracking system comprising: a light transmission unit mounted on a platform to emit a light pulse to the outside; and a first orientation adjustment unit coupled to the platform to adjust the orientation of the light transmission unit, wherein the light transmission unit comprises: a laser diode for generating laser light; a MEMS mirror for emitting a light pulse to the outside by adjusting the laser light generated from the laser diode so that the light reciprocates and sweeps within the set angle; and a light detection sensor for receiving a reflected wave reflected from an object, and thus the present invention can acquire more precise data.

Description

다축 제어방식의 객체 추적 시스템Multi-axis control type object tracking system
본 발명은 다축 제어방식의 객체 추적 시스템에 관한 것으로, 보다 상세히는 플랫폼에 결합되어 외부의 객체를 추적하기 위한 다축 제어 방식의 객체 추적 시스템에 관한 것이다.The present invention relates to a multi-axis control type object tracking system, and more particularly, to a multi-axis control type object tracking system for tracking an external object by being coupled to a platform.
가상현실 또는 증강현실을 운용하기 위해서는 일반적으로 객체의 인식(Recognition), 검출(Detection) 및 추적(Tracking)에 관한 고도의 기술이 요구된다. 이 중에서 추적 기술은 객체에 부착된 마커를 추적하며, PTAM(Positional tracking and mapping for small AR workspaces)이나 SLAM(Simultaneous localization and mapping) 등의 현재 주지된 추적 기술은 카메라를 배치하고 주위 벽에 추적 마커를 설치하도록 구성된다.In order to operate virtual reality or augmented reality, high-level skills related to object recognition, detection, and tracking are generally required. Among them, tracking technology tracks a marker attached to an object, and currently well-known tracking technologies such as PTAM (Positional tracking and mapping for small AR workspaces) and SLAM (Simultaneous localization and mapping) place a camera and place a tracking marker on the surrounding wall. is configured to install
다만, 카메라를 이용한 추적 기술은 정밀한 추적을 위해서는 보다 고 사양의 렌즈를 요구함에 따라 가격과 무게가 증가되는 문제점이 있으며, 이로 인해 최종 장비의 전체 중량 또한 증가되어 상품성이 저하되는 단점으로 이어진다. 이에 따라 한국공개특허공보 제10-2017-0106301호("위치 추적 시스템 및 방법", 2017.09.20. 공개, 이하 '종래기술'이라 함.)에서는, 팬형(fan-shaped) 레이저 빔을 방출하는 2개의 직교 회전자를 포함하는 추적 기술이 개시되어 있다. 이때, 도 1에서 도시된 바와 같이 위 종래기술에서는 레이저 광 펄스를 방출하는 송신부와, 광 센서를 포함하는 수신부를 포함하여, 장치의 중량 증가를 최소화하면서 추적 볼륨 및 추적 정밀도를 증대하는 기술이 개시되어 있다.However, the tracking technology using a camera has a problem in that the price and weight are increased as it requires a higher specification lens for precise tracking, and this leads to a disadvantage in that the overall weight of the final equipment is also increased, which leads to a disadvantage of lowering the marketability. Accordingly, in Korea Patent Publication No. 10-2017-0106301 ("Location tracking system and method", published on Sep. 20, 2017, hereinafter referred to as 'prior art'), a fan-shaped laser beam is emitted. A tracking technique comprising two orthogonal rotors is disclosed. At this time, as shown in FIG. 1 , in the prior art, a technique for increasing the tracking volume and tracking precision while minimizing the weight increase of the device, including a transmitter including a transmitter for emitting laser light pulses and a receiver including an optical sensor, is disclosed. has been
하지만, 위 종래기술의 송신부는 수평회전자 및 수직회전자를 통해 X축 및 Y축으로 스위핑된 광 펄스가 일 방향으로 회전하면서 조사됨에 따라 최대 180°까지의 영역만 조사할 수 있는 한계점이 있으며, 나머지 영역으로 광이 방출되는 경우 장치에 가려져 그 효율성이 저하되는 단점이 있었다.However, the transmitter of the prior art has a limitation in that it can irradiate only an area up to 180° as the light pulses swept in the X and Y axes are irradiated while rotating in one direction through the horizontal and vertical rotors. , when light is emitted to the remaining area, it is covered by the device, thereby reducing its efficiency.
본 발명은 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 소정 각도 내에서 왕복 스윕 운동되는 광 송신기와, 상기 광 송신기의 자세를 조절하는 자세조절부를 통해, 플랫폼과 객체가 서로를 지향한 상태에서 단 시간에 보다 정밀한 데이터를 취득할 수 있는 다축 제어방식의 객체 추적 시스템을 제공하는 것이다.The present invention has been devised to solve the problems of the prior art, and an object of the present invention is to allow a platform and an object to interact with each other through an optical transmitter that reciprocates and sweeps within a predetermined angle, and a posture control unit that adjusts the posture of the optical transmitter. It aims to provide a multi-axis control type object tracking system that can acquire more precise data in a short time in a state where
상기한 바와 같은 목적을 달성하기 위해 본 발명에 따른 다축 제어방식의 객체 추적 시스템은, 플랫폼 상에 탑재되어 외부로 광 펄스를 방출하는 광 송신부; 및 상기 플랫폼에 결합되어 상기 광 송신부의 자세를 조절하는 제1자세조절부;를 포함하고, 상기 광 송신부는, 레이저 광을 발생시키는 레이저 다이오드; 상기 레이저 다이오드에서 발생된 레이저 광을 설정각도(A°) 내에서 왕복 스윕 되도록 조절하여 외부로 광 펄스를 방출하는 멤스미러; 및 객체로부터 반사된 반사파를 수신받는 광 검출센서;를 포함할 수 있다.In order to achieve the above object, an object tracking system of a multi-axis control method according to the present invention includes: a light transmitter mounted on a platform to emit light pulses to the outside; and a first posture adjusting unit coupled to the platform to adjust the posture of the light transmitting unit, wherein the light transmitting unit includes: a laser diode generating laser light; a MEMS mirror for emitting a light pulse to the outside by controlling the laser light generated from the laser diode to be reciprocally swept within a set angle (A°); and a light detection sensor receiving the reflected wave reflected from the object.
또한, 상기 제1자세조절부는, 3개의 회전 축(Roll, Pitch, Yaw) 중 하나를 조절하는 제어부가 복수로 이루어지되, 복수의 제어부가 서로 다른 회전 축으로 상기 광 송신부를 조절할 수 있다.Also, the first posture adjusting unit may include a plurality of controllers for controlling one of three rotation axes (Roll, Pitch, and Yaw), and the plurality of control units may control the light transmitter with different rotation axes.
또한, 본 발명에 따른 다축 제어방식의 객체 추적 시스템은, 상기 플랫폼, 제1자세조절부 및 멤스미러에 대한 각도정보를 기반으로 객체의 위치를 산출하는 제1프로세서;를 더 포함하고, 상기 제1프로세서는, 상기 플랫폼의 자세에 대한 정보인 제1각도정보와, 상기 플랫폼에서의 상기 제1자세조절부의 자세에 대한 정보인 제2각도정보와, 상기 제1자세조절부에서의 상기 멤스미러 스윕각에 대한 정보인 제3각도정보를 각각 수신받을 수 있다. (여기서,
Figure PCTKR2021095138-appb-img-000001
≤ 제3각도정보 ≤
Figure PCTKR2021095138-appb-img-000002
)
In addition, the multi-axis control system object tracking system according to the present invention, the first processor for calculating the position of the object based on the angle information about the platform, the first posture control unit, and the MEMS mirror; further comprising, 1 processor, first angle information that is information about the posture of the platform, second angle information that is information about the posture of the first posture adjusting unit on the platform, and the MEMS mirror in the first posture adjusting unit Each of the third angle information, which is information about the sweep angle, may be received. (here,
Figure PCTKR2021095138-appb-img-000001
≤ Third angle information ≤
Figure PCTKR2021095138-appb-img-000002
)
또한, 상기 제1프로세서는, 상기 광 검출센서에서 반사파가 검출된 시각을 기준으로, 상기 제1각도정보 및 제2각도정보를 수신받아 객체의 위치를 연산하고, 객체의 위치를 산출하여 상기 광 펄스를 통해 전송할 수 있다.In addition, the first processor receives the first angle information and the second angle information based on the time at which the reflected wave is detected by the light detection sensor, calculates the position of the object, calculates the position of the object, and calculates the position of the light. It can be transmitted via pulses.
또한, 상기 제1프로세서는, 멤스미러의 스윕 운동에 대한 각도 카운터 모듈을 포함하고, 반사파가 검출되면 상기 각도 카운터 모듈의 각도 카운트 값으로 상기 제3각도정보를 산출할 수 있다.In addition, the first processor may include an angle counter module for the sweep motion of the MEMS mirror, and when a reflected wave is detected, the third angle information may be calculated using the angle count value of the angle counter module.
또한, 상기 제1프로세서는 멤스미러의 방향에 대한 제1포지션 데이터 또는 멤스미러의 위치에 대한 제2포지션 데이터를 수신 받으며, 상기 제1포지션 데이터는, 멤스미러의 선회 시에 각도 카운트가 리셋되고, 상기 제2포지션 데이터는, 멤스미러가 설정각도의 중심에 위치하는 경우 각도 카운트가 리셋될 수 있다.In addition, the first processor receives the first position data for the direction of the MEMS mirror or the second position data for the position of the MEMS mirror, the first position data, the angle count is reset when the MEMS mirror turns , In the second position data, the angle count may be reset when the MEMS mirror is located at the center of the set angle.
또한, 본 발명에 따른 다축 제어방식의 객체 추적 시스템은, 상기 제1자세조절부에 연결되어 각속도 및 가속도를 측정하는 IMU센서;를 더 포함하고, 상기 제1프로세서는, 상기 제1자세조절부의 모터의 역기전력을 보상하도록 상기 IMU센서에서 측정된 각속도를 입력받아 상기 모터에 연결된 모터드라이브를 제어하고, 상기 IMU센서에서 측정된 각속도 및 가속도를 칼만 필터(Kalman Filter)에 입력하여 제1각도정보를 연산할 수 있다.In addition, the multi-axis control type object tracking system according to the present invention further includes; an IMU sensor connected to the first posture adjusting unit to measure angular velocity and acceleration, wherein the first processor includes the first posture adjusting unit The angular velocity measured by the IMU sensor is received to compensate the back electromotive force of the motor, the motor drive connected to the motor is controlled, and the angular velocity and acceleration measured by the IMU sensor are input to a Kalman filter to provide first angle information. can be calculated.
또한, 상기 제1자세조절부는 각도센서를 포함하되, 상기 각도센서에서 상기 제1자세조절부의 회전 각도를 측정하여 상기 제1프로세서가 제2각도정보를 산출할 수 있다.In addition, the first posture adjusting unit may include an angle sensor, and the first processor may calculate the second angle information by measuring a rotation angle of the first posture adjusting unit in the angle sensor.
또한, 상기 광 송신부에서 방출되는 광 펄스는, 데이터 비트열(Data Bit String) 및 스윕 비트(Sweep Bit)를 포함하고, 상기 스윕 비트는, 상기 멤스미러가 설정각도 내에서 일 방향으로 회전 시에 발생되는 업 스윕 비트(Up Sweep Bit)와 상기 멤스미러가 설정각도 내에서 타 방향으로 회전 시에 발생되는 다운 스윕 비트(Down Sweep Bit)를 포함할 수 있다.In addition, the optical pulse emitted from the optical transmitter includes a data bit string and a sweep bit, and the sweep bit is generated when the MEMS mirror rotates in one direction within a set angle. It may include an up sweep bit generated and a down sweep bit generated when the MEMS mirror rotates in another direction within a set angle.
또한, 상기 광 송신부는 복수로 이루어져, 복수의 상기 광 송신부가 서로 다른 축으로 스위핑된 광 펄스를 방출하고, 상기 광 송신부의 광 펄스는, 스위핑된 축에 대한 데이터인 액시스 비트(Axis Bit)를 더 포함할 수 있다.In addition, the optical transmitter consists of a plurality of light transmitters that emit swept optical pulses in different axes, and the optical pulses of the optical transmitter receive an axis bit that is data for the swept axis. may include more.
또한, 상기 제1프로세서는 상기 제1각도정보 및 제2각도정보로 산출되는 광 송신부의 지향각을 N 비트의 데이터 비트열로 구성하되, 연속적으로 방출되는 복수의 광 펄스 중, 일부의 광 펄스에는 상기 데이터 비트열 중 상위 N1 비트가 방출되고, 다른 일부의 광 펄스에는 상기 데이터 비트열 중 하위 N2의 비트가 방출될 수 있다. (여기에서, 1 ≤ N1, N2 < N, N ≤ N1 + N2)In addition, the first processor configures the beam angle of the light transmission unit calculated by the first angle information and the second angle information as an N-bit data bit string, and a part of the light pulses among the plurality of light pulses continuously emitted. The upper N 1 bit of the data bit string may be emitted, and the lower N 2 bit of the data bit string may be emitted to some other light pulses. (where 1 ≤ N 1, N 2 < N, N ≤ N 1 + N 2 )
또한, 본 발명에 따른 다축 제어방식의 객체 추적 시스템은, 객체 상에 탑재되어 광 펄스를 수신받는 광 수신부; 상기 객체에 결합되어 상기 광 수신부의 자세를 조절하는 제2자세조절부; 및 상기 광 수신부로 도달된 광 펄스의 신호를 분석하는 제2프로세서;를 더 포함하고, 상기 제2프로세서는, 연속된 적어도 둘 이상의 광 펄스가 도달된 시간차를 통해 상기 플랫폼이 배치된 위치를 산출할 수 있다.In addition, the multi-axis control system object tracking system according to the present invention, the light receiver mounted on the object to receive the light pulse; a second posture adjusting unit coupled to the object to adjust the posture of the light receiving unit; and a second processor that analyzes the signal of the light pulses arriving at the light receiving unit, wherein the second processor calculates the position at which the platform is arranged based on a time difference at which at least two consecutive light pulses arrive. can do.
또한, 상기 제2프로세서는, 기 입력된 상기 광 송신부의 멤스미러의 스윕 설정각도, 주파수 및 주기와, 상기 광 수신부로 도달된 연속된 둘 이상의 광 펄스 간의 시간차(△t)를 통해 시간변수(t)가 산출되어 아래의 식으로 멤스미러의 스윕각(ΨR)을 연산할 수 있다.In addition, the second processor is configured to use a time variable (Δt) through the preset sweep setting angle, frequency, and period of the MEMS mirror of the optical transmitter and a time difference (Δt) between two or more consecutive optical pulses arriving at the optical receiver. t) is calculated, and the sweep angle (Ψ R ) of the MEMS mirror can be calculated by the following equation.
Figure PCTKR2021095138-appb-img-000003
Figure PCTKR2021095138-appb-img-000003
(여기에서, (From here,
ΨR = 멤스미러의 스윕각,Ψ R = sweep angle of the MEMS mirror,
A = 설정 각도,A = set angle,
f = 멤스미러의 주파수 = 단위 시간당 멤스미러의 스윕 수,f = frequency of the MEMS mirror = number of sweeps of the MEMS mirror per unit time,
T = 멤스미러의 주기= 1회 스윕 시 경과되는 시간)T = period of MEMS mirror = time elapsed in one sweep)
또한, 상기 시간변수(t)는 아래의 관계식 1 내지 관계식 3 중 어느 하나의 수식을 통해 산출될 수 있다.In addition, the time variable t may be calculated through any one of the following Relations 1 to 3.
[관계식 1][Relational Expression 1]
Figure PCTKR2021095138-appb-img-000004
Figure PCTKR2021095138-appb-img-000004
[관계식 2][Relational Expression 2]
Figure PCTKR2021095138-appb-img-000005
Figure PCTKR2021095138-appb-img-000005
[관계식 3][Relational Expression 3]
Figure PCTKR2021095138-appb-img-000006
Figure PCTKR2021095138-appb-img-000006
또한, 상기 제2프로세서는, 상기 광 펄스를 통해 전달된 정보와, 상기 멤스미러의 스윕각(ΨR)을 통해 상기 플랫폼의 위치를 산출하여, 상기 광 수신부가 상기 플랫폼을 지향하도록 상기 제2자세조절부를 제어할 수 있다.In addition, the second processor calculates the position of the platform based on the information transmitted through the light pulse and the sweep angle Ψ R of the MEMS mirror, so that the light receiver faces the platform. You can control the posture control unit.
상기와 같은 구성에 의한 본 발명에 따른 다축 제어방식의 객체 추적 시스템은, 소정각도 내에서 왕복 스윕 운동되는 광 송신부를 통해 360° 회전 기준으로 객체에 대한 다수의 데이터를 취득하여 보다 정밀한 객체 추적이 가능한 장점이 있다.The multi-axis control type object tracking system according to the present invention according to the configuration as described above acquires a large number of data about an object based on a 360° rotation through an optical transmitter that reciprocates and sweeps within a predetermined angle, so that more precise object tracking is possible. There are possible advantages.
또한, 본 발명에 따른 다축 제어방식의 객체 추적 시스템은, 광 송신부의 자세를 조절하는 제1자세조절부를 통해 광 송신부가 검출된 객체를 지향하여 객체의 데이터를 지속적으로 취득할 수 있으며, 광 송신부가 전 방위에 걸쳐 객체를 검출할 수 있는 기반을 제공해줄 수 있는 장점이 있다.In addition, in the multi-axis control object tracking system according to the present invention, the light transmitter can continuously acquire data of the object by directing the detected object through the first posture adjusting unit for adjusting the posture of the light transmitter, and the light transmitter It has the advantage of providing a basis for detecting objects in all directions.
또한, 본 발명에 따른 다축 제어방식의 객체 추적 시스템은, 객체에 탑재된 프로세서에서 광 송신부의 광 펄스 조사 각도와, 제1자세조절부의 각도에 대한 데이터를 수신받아 플랫폼의 위치를 보다 정밀하게 산출할 수 있는 장점이 있으며, 광 펄스의 데이터 비트에 절대좌표계를 기준으로 한 객체와 플랫폼 간의 각도 정보가 포함되어 보다 정밀하게 데이터를 분석할 수 있는 장점이 있다.In addition, the multi-axis control type object tracking system according to the present invention receives data about the light pulse irradiation angle of the light transmitter and the angle of the first posture control unit from the processor mounted on the object, and calculates the position of the platform more precisely There is an advantage in that the data bit of the light pulse includes angle information between the object and the platform based on the absolute coordinate system so that the data can be analyzed more precisely.
도 1은 본 발명에 따른 다축 제어 방식의 객체 추적 시스템의 개략도.1 is a schematic diagram of a multi-axis control system object tracking system according to the present invention.
도 2는 본 발명에 따른 제1자세조절부의 개략도.Figure 2 is a schematic diagram of a first posture control unit according to the present invention.
도 3은 본 발명에 따른 광 송신부의 개략도.3 is a schematic diagram of an optical transmitter according to the present invention;
도 4는 본 발명에 따른 다축 제어 방식의 객체 추적 시스템의 구성도.4 is a block diagram of a multi-axis control system object tracking system according to the present invention.
도 5는 본 발명에 따른 각 구성들의 시간별 신호 변화를 도시한 도면.5 is a diagram illustrating a signal change according to time of each configuration according to the present invention.
도 6은 본 발명에 따른 멤스미러의 시간별 각도변화를 도시한 그래프.6 is a graph showing the time-dependent angular change of the MEMS mirror according to the present invention.
도 7 및 도 8은 본 발명에 따른 복수의 광 송신부에서 방출되는 광 펄스의 신호를 도시한 도면.7 and 8 are diagrams illustrating signals of optical pulses emitted from a plurality of optical transmitters according to the present invention.
도 9는 본 발명에 따른 복수의 구성들의 위치관계를 도시한 도면.9 is a view showing the positional relationship of a plurality of components according to the present invention.
도 10은 본 발명에 따른 객체추적루프의 시스템을 도시한 도면.10 is a view showing a system of an object tracking loop according to the present invention.
도 11은 본 발명에 따른 객체의 사시도.11 is a perspective view of an object according to the present invention;
도 12는 본 발명에 따른 객체의 정면도.12 is a front view of an object according to the present invention;
도 13은 본 발명에 따른 객체의 제2프로세서에서 연산되는 시간별 각도변화를 도시한 그래프.13 is a graph illustrating an angle change over time calculated by a second processor of an object according to the present invention.
이하 첨부한 도면들을 참조하여 본 발명에 따른 다축 제어방식의 객체 추적 시스템을 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, an object tracking system of a multi-axis control method according to the present invention will be described in detail with reference to the accompanying drawings. The drawings introduced below are provided as examples so that the spirit of the present invention can be sufficiently conveyed to those skilled in the art. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms. Also, like reference numerals refer to like elements throughout.
이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.If there is no other definition in the technical and scientific terms used at this time, it has the meaning commonly understood by those of ordinary skill in the technical field to which this invention belongs, and the gist of the present invention is unnecessary in the following description and accompanying drawings Descriptions of known functions and configurations that may be blurry will be omitted.
도 1 내지 3은 본 발명에 따른 다축 제어방식의 객체 추적 시스템에 관한 것으로, 도 1은 시스템의 개략도를, 도 2 및 도 3은 제1자세조절부 및 광 송신부의 개략도를 각각 나타낸다.1 to 3 relate to an object tracking system of a multi-axis control method according to the present invention. FIG. 1 is a schematic diagram of the system, and FIGS. 2 and 3 are schematic diagrams of a first posture control unit and a light transmitter, respectively.
도 1을 참조하면, 본 발명에 따른 다축 제어 방식의 객체 추적 시스템은, 플랫폼(10)에 탑재되는 광 송신부(100) 및 제1자세조절부(200)를 포함하여 구성될 수 있다. 이때 상기 플랫폼(10)은 지상에 고정된 구조물이나, 이동체 및 비행체 등으로 형성될 수 있다. 이와 더불어 본 발명에 따른 다축 제어 방식의 객체 추적 시스템은, 객체(20) 상에 탑재되는 광 수신부(300) 및 제2자세조절부(400)를 더 포함할 수 있다.Referring to FIG. 1 , the multi-axis control type object tracking system according to the present invention may include a light transmitter 100 and a first posture controller 200 mounted on a platform 10 . In this case, the platform 10 may be formed of a structure fixed on the ground, a moving object, an aircraft, or the like. In addition, the multi-axis control object tracking system according to the present invention may further include a light receiving unit 300 and a second posture adjusting unit 400 mounted on the object 20 .
상기 광 송신부(100)는 외부로 광 펄스를 방출하도록 배치될 수 있으며, 상기 제1자세조절부(200)는 상기 플랫폼(10)에 일부가 고정되어 상기 광 송신부(100)를 지지할 수 있다. 그리고 상기 광 수신부(300)는 외부로부터 광 펄스를 수신받을 수 있으며, 상기 제2자세조절부(400)는 상기 객체(20) 상에 일부가 고정되어 상기 광 수신부(400)를 지지할 수 있다. 여기서, 상기 제1자세조절부(200) 및 제2자세조절부(400)는 각각 상기 광 송신부(100) 및 광 수신부(300)에 대해서, 하나 이상의 축으로 이동 또는 회전하도록 자세를 조절할 수 있으며, 3개의 직선축(X, Y, Z) 및 3개의 회전축(Roll, Pitch, Yaw) 중 하나 이상의 모션으로 자세가 변화될 수 있도록 조절할 수 있다.The light transmitting unit 100 may be arranged to emit light pulses to the outside, and the first posture adjusting unit 200 may be partially fixed to the platform 10 to support the light transmitting unit 100 . . In addition, the light receiving unit 300 may receive a light pulse from the outside, and the second posture adjusting unit 400 may be partially fixed on the object 20 to support the light receiving unit 400 . . Here, the first posture adjusting unit 200 and the second posture adjusting unit 400 may adjust their postures to move or rotate in one or more axes with respect to the light transmitting unit 100 and the light receiving unit 300, respectively. , three linear axes (X, Y, Z) and three rotation axes (Roll, Pitch, Yaw) can be adjusted so that the posture can be changed by the motion of one or more.
도 2를 참조하면, 상기 제1자세조절부(200)는 복수의 조절부(210,220,230)를 포함하되, 각각의 조절부가 상기 광 송신부(100)에 대해 3개의 직선축(X, Y, Z) 및 3개의 회전축(Roll, Pitch, Yaw) 중 하나의 모션으로 자세가 변화될 수 있도록 조절할 수 있다. 이때 상기 제1자세조절부(200)는 짐벌(Gimbal) 형태로 이루어져 상기 광 송신부(100)가 상기 다축으로 직선/회전 운동할 수 있도록 제어할 수 있다.Referring to FIG. 2 , the first posture adjusting unit 200 includes a plurality of adjusting units 210 , 220 , 230 , and each adjusting unit includes three linear axes (X, Y, Z) with respect to the optical transmitter 100 . and one of the three rotation axes (Roll, Pitch, Yaw) can be adjusted so that the posture can be changed. In this case, the first posture adjusting unit 200 may be configured in a gimbal shape to control the light transmitting unit 100 to perform linear/rotational movement in the multi-axis direction.
도 3을 참조하면, 상기 광 송신부(100)는, 레이저 다이오드(110), 멤스미러(120), 빔 분배기(130) 또는 광 검출센서(140)를 포함할 수 있다 이때 상기 멤스미러(120)는 MEMS(Micro-Electro-Mechanical Systems)미러로 일 평면을 기준으로 렌즈가 회전운동이 될 수 있도록 구성될 수 있으며, 상기 레이저 다이오드(110)에서 발생된 레이저 광을 외부로 광 펄스 형태로 방출되도록 제어할 수 있다. 이때 상기 멤스미러(120)는 설정각도(A°) 내에서 왕복 스윕될 수 있으며, 이때 왕복 스윕이란, 일 평면 상에서의 멤스미러의 회전이
Figure PCTKR2021095138-appb-img-000007
사이에서 왕복되는 것을 의미하며, 1 주기는 상기 멤스미러의 지향각이
Figure PCTKR2021095138-appb-img-000008
에서
Figure PCTKR2021095138-appb-img-000009
로 도달 후
Figure PCTKR2021095138-appb-img-000010
로 회귀하는 것으로 정의하여 후술한다.
Referring to FIG. 3 , the light transmitter 100 may include a laser diode 110 , a MEMS mirror 120 , a beam splitter 130 , or a light detection sensor 140 . In this case, the MEMS mirror 120 . is a MEMS (Micro-Electro-Mechanical Systems) mirror, and the lens may be configured to rotate with respect to one plane, and the laser light generated from the laser diode 110 may be emitted in the form of a light pulse to the outside. can be controlled At this time, the MEMS mirror 120 may be reciprocally swept within a set angle (A°).
Figure PCTKR2021095138-appb-img-000007
It means that it is reciprocated between
Figure PCTKR2021095138-appb-img-000008
at
Figure PCTKR2021095138-appb-img-000009
after reaching
Figure PCTKR2021095138-appb-img-000010
It is defined as a return to , and will be described later.
상기 빔 분배기(130)는 상기 레이저 다이오드(110) 및 멤스미러(120) 사이에 배치될 수 있으며, 상기 레이저 다이오드(110)에서 발생된 레이저 광은 상기 멤스미러(120)로 도달되도록 하되, 상기 객체(20)에서 반사되어 돌아온 반사파가 상기 광 검출센서(140)로 전달되도록 조절될 수 있다. 이때 상기 빔 분배기(130)는 상기 레이저 다이오드(110)에서 발생된 레이저 광을 전부 상기 멤스미러(120)로 전달하되 상기 멤스미러(120)로 수신된 반사파가 상기 광 검출센서(140)로 전달되도록 조절하거나, 상기 레이저 다이오드(110)에서 발생된 레이저 광의 일부를 상기 광 검출센서(140)로 전달할 수도 있다. 이때 상기 광 검출센서(140)는 일 예로APD(Avalanche Photo Diode)로 구성될 수도 있다.The beam splitter 130 may be disposed between the laser diode 110 and the MEMS mirror 120 , and the laser light generated from the laser diode 110 reaches the MEMS mirror 120 , but the The reflected wave reflected from the object 20 may be adjusted to be transmitted to the light detection sensor 140 . At this time, the beam splitter 130 transmits all of the laser light generated by the laser diode 110 to the MEMS mirror 120 , but the reflected wave received by the MEMS mirror 120 is transmitted to the light detection sensor 140 . Alternatively, a portion of the laser light generated from the laser diode 110 may be transmitted to the light detection sensor 140 . In this case, the light detection sensor 140 may be configured of, for example, an Avalanche Photo Diode (APD).
본 발명에 따른 다축 제어방식의 객체 추적 시스템은, 데이터를 연산 및 제어하는 프로세서(Processor)를 더 포함할 수 있으며, 상기 프로세서는 상기 레이저 다이오드(110)의 레이저 광의 주파수를 제어하여 광 펄스가 포함하는 정보들을 가변하거나, 상기 광 검출센서(140)로 수신된 반사파를 기초로 다른 정보들을 추가적으로 연산하도록 구성될 수도 있다. 이때 상기 프로세서는 상술한 바와 같이 광 펄스 상에 정보가 포함되도록 주파수 변조할 수 있으며, 상기 광 수신부(300)의 수신다이오드(301)는 한 개 이상으로 구성될 수 있으며 광 펄스가 도달하여 해당 정보를 취득할 수 있도록 구성될 수도 있다.The multi-axis control system object tracking system according to the present invention may further include a processor for calculating and controlling data, wherein the processor controls the frequency of the laser light of the laser diode 110 to include a light pulse It may be configured to vary the information to be used or to additionally calculate other information based on the reflected wave received by the light detection sensor 140 . At this time, the processor may frequency-modulate the optical pulse to include information as described above, and the receiving diode 301 of the optical receiving unit 300 may be composed of one or more, and when the optical pulse arrives, the corresponding information It may be configured to obtain
도 4는 본 발명에 따른 다축 제어방식의 객체 추적 시스템에 관한 것으로, 도 4는 시스템의 구성도를 나타낸다. 도 4를 참조하여 본 발명에 따른 다축 제어방식의 객체 추적 시스템을 보다 상세히 설명하자면 다음과 같다.Figure 4 relates to a multi-axis control system object tracking system according to the present invention, Figure 4 shows the configuration of the system. With reference to FIG. 4, the multi-axis control type object tracking system according to the present invention will be described in more detail as follows.
본 발명에 따른 다축 제어방식의 객체 추적 시스템은, 광 송신부(Otical Transmitter), 제1자세조절부(Position Controller), 프로세서(Processor)를 포함하고, 상기 광 송신부 또는 제1자세조절부에 연결되어 각속도 및 가속도를 측정하는 IMU센서(Inertial Measurement Unit Sensor)를 더 포함할 수 있다. The multi-axis control object tracking system according to the present invention includes an optical transmitter, a first position controller, and a processor, and is connected to the optical transmitter or the first posture controller An Inertial Measurement Unit Sensor (IMU) for measuring angular velocity and acceleration may be further included.
상기 광 송신부는, 레이저 다이오드(Laser Diode), 빔 분배기(Beam Slitter), 멤스미러(MEMS Mirror) 및 광 검출센서(APD Target Sensor)를 포함할 수 있다. 이때 상기 레이저 다이오드에서 생성된 레이저 광이 상기 멤스미러를 거쳐 상기 객체(Object)에 도달 및 반사될 수 있도록 구성될 수 있다. 이때 상기 광 송신부는 상기 프로세서에서 생성한 상기 레이저 다이오드 및 멤스미러에 대한 제어 신호를 변환하도록 레이저 다이오드 드라이버(Laser Diode Driver) 및 멤스미러 드라이버(MEMS Mirror Driver)를 더 포함하여 구성될 수 있다. 그리고 상기 광 송신부는 복수로 구성될 수 있으며, 복수의 광 송신부는 서로 다른 평면 상에서 상기 멤스미러가 회전될 수 있도록 구성될 수 있다. 일 예로 X축(X-axis) 광 송신부는 X-Z축 평면 상에서 상기 멤스미러가 스윕 운동되고, Y축(Y-axis) 광 송신부는 Y-Z축 평면 상에서 상기 멤스미러가 스윕 운동될 수 있다. The light transmitter may include a laser diode, a beam splitter, a MEMS mirror, and an APD target sensor. In this case, the laser light generated by the laser diode may be configured to reach and reflect the object through the MEMS mirror. In this case, the optical transmitter may further include a laser diode driver and a MEMS mirror driver to convert control signals for the laser diode and the MEMS mirror generated by the processor. The optical transmitter may be configured in plurality, and the plurality of optical transmitters may be configured to rotate the MEMS mirror on different planes. For example, an X-axis light transmitter may sweep the MEMS mirror on an X-Z axis plane, and a Y-axis optical transmitter may sweep the MEMS mirror on a Y-Z axis plane.
상기 제1자세조절부는, 짐벌모터(Gimbal Motor), 짐벌모터 드라이버(Gimbal Motor Driver), 각도센서(Angle Sensor)를 포함할 수 있다. 이때 상기 짐벌모터는 동력을 발생시키는 장치일 수 있으며, 일 예로 DC모터 또는 서보모터 등으로 구성될 수 있다. 상기 짐벌모터 드라이버는 상기 프로세서에서 생성한 상기 짐벌모터에 대한 제어 신호를 변환할 수 있으며, 상기 각도센서는 상기 짐벌모터에 의해서 회전된 축의 현재 속도, 각도 등을 측정할 수 있도록 엔코더(Encoder)와 같은 수단으로 형성될 수 있다.The first posture adjusting unit may include a gimbal motor, a gimbal motor driver, and an angle sensor. In this case, the gimbal motor may be a device for generating power, and for example, may be configured as a DC motor or a servo motor. The gimbal motor driver may convert a control signal for the gimbal motor generated by the processor, and the angle sensor may measure the current speed and angle of the shaft rotated by the gimbal motor. Encoder and It can be formed by the same means.
도 5는 본 발명에 따른 다축 제어방식의 객체 추적 시스템에 관한 것으로, 도 5는 각 구성들의 시간별 신호 변화를 도시한 도면을 나타낸다.5 is a multi-axis control type object tracking system according to the present invention, and FIG. 5 is a diagram illustrating signal changes according to time of each component.
도 5를 참조하면, 상술한 바와 같이 멤스미러가
Figure PCTKR2021095138-appb-img-000011
사이의 설정각도에서 소정의 사인함수 미분함수인 코싸인 함수의 속도로 회전되면, 시간별 상기 멤스미러의 각도가 파형의 그래프로 나타날 수 있다. 이때 최대각은
Figure PCTKR2021095138-appb-img-000012
로, 최소각은
Figure PCTKR2021095138-appb-img-000013
일 수 있다. 그리고 상기 멤스미러가 Y-Z평면 상에서 회전 시에, 상기 멤스미러의 각도가 0°일 때를 Z축으로 지향한다고 가정하면,
Figure PCTKR2021095138-appb-img-000014
사이인 경우에는 -Y 방향으로 광 펄스가 방출될 수 있고,
Figure PCTKR2021095138-appb-img-000015
사이인 경우에는 +Y 방향으로 광 펄스가 방출될 수 있다. 그리고 상기 제1프로세서는, 멤스미러의 스윕 운동에 대한 각도 카운터 모듈을 포함하고, 반사파가 검출되면 상기 각도 카운터 모듈의 각도 카운트 값으로 상기 멤스미러의 각도 정보를 산출할 수 있다.
Referring to FIG. 5 , as described above, the MEMS mirror is
Figure PCTKR2021095138-appb-img-000011
When rotated at a speed of a cosine function that is a predetermined sine function differential function at a set angle between In this case, the maximum angle
Figure PCTKR2021095138-appb-img-000012
, the minimum angle is
Figure PCTKR2021095138-appb-img-000013
can be And when the MEMS mirror rotates on the YZ plane, assuming that the angle of the MEMS mirror is oriented to the Z axis when the angle is 0°,
Figure PCTKR2021095138-appb-img-000014
In the case of between, a light pulse may be emitted in the -Y direction,
Figure PCTKR2021095138-appb-img-000015
In this case, a light pulse may be emitted in the +Y direction. The first processor may include an angle counter module for a sweep motion of the MEMS mirror, and when a reflected wave is detected, the angle information of the MEMS mirror may be calculated using the angle count value of the angle counter module.
상기 제1프로세서는 멤스미러의 방향에 대한 제1포지션 데이터 또는 멤스미러의 위치에 대한 제2포지션 데이터를 각각 수신받고, 상기 제1포지션 데이터 또는 제2포지션 데이터에 대해서 각도 카운터 모듈이 각각 카운팅하되, 상기 제1포지션 데이터에 대해서 각도 카운터 모듈은 멤스미러의 선회 시에 각도 카운트가 리셋되고, 상기 제2포지션 데이터에 대해서 각도 카운터 모듈은 멤스미러가 설정각도의 중심에 위치하는 경우 각도 카운트가 리셋될 수 있다. The first processor receives the first position data for the direction of the MEMS mirror or the second position data for the position of the MEMS mirror, respectively, and the angle counter module counts the first position data or the second position data, respectively , For the first position data, the angle counter module resets the angle count when the MEMS mirror turns, and for the second position data, the angle counter module resets the angle count when the MEMS mirror is located at the center of the set angle. can be
상기 제2포지션 데이터는 제2-1포지션 데이터 및 제2-2포지션 데이터를 포함할 수 있으며, 상기 제2-1포지션 데이터 및 제2-2포지션 데이터는 상기 멤스미러가 설정각도 중심에 위치하는 경우를 기준으로 일측이 양의 방향으로 타측이 음의 방향으로 정의될 수 있다. 그리고 각각에 대해서는 카운팅이 될 수도 있다. 여기서 상기 제1프로세서는 멤스미러의 스윕 방향에 따라서 양의 방향에서 반사파 검출이 된 제2-1포지션 데이터와 음의 방향에서 반사파 검출이 된 제2-2포지션 데이터를 각각 수신받고, 상기 제2-1포지션 데이터 및 제2-2포지션 데이터는 각 스윕방향에 대하여 중심 0°를 기준으로 카운터가 리셋되어 반사가 검출된 시점까지의 카운터 값일 수 있다. 이때 상기 카운트 값은 소정의 사인함수로 각운동을 하는 멤스미러의 스윕각도와 사전에 함수 및 테이블 형태로 메칭될 수 있다. 이에 따라 상기 제1프로세서는 상기 제1포지션 데이터 또는 제2포지션 데이터를 통해 멤스미러의 각도를 산출할 수 있으며, 제1포지션 데이터 및 제2포지션 데이터는 특정 위치의 타깃에 대하여 유일하게 결정되는 한 쌍의 정보로서 이를 모두 활용하여 데이터를 보다 정확하게 산출할 수 있도록 구성될 수도 있다. 또는 광 펄스가 멤스미러에 의해서 방출되는 방향에 객체가 배치된 경우에는 반사파가 멤스미러로 회귀되어 상기 광 검출센서에서 인식될 수 있다. 이에 따라 프로세서는 APD센서에서 인식된 시각을 기준으로 멤스미러의 자세를 수신 또는 산출할 수 있으며, 둘 이상의 연속된 반사파가 도달된 경우에는 반사파가 도달된 시각의 차를 이용하여 멤스미러의 Z축 지향한 0°에 대비하여 객체가 배치된 각도를 산출할 수도 있다. The second position data may include a 2-1 position data and a 2-2 position data, wherein the 2-1 position data and the 2-2 position data are the MEMS mirror located at the center of the set angle. Based on the case, one side may be defined as a positive direction and the other side may be defined as a negative direction. And for each it may be a counting. Here, the first processor receives the 2-1 position data in which the reflected wave is detected in the positive direction and the 2-2 position data in which the reflected wave is detected in the negative direction respectively according to the sweep direction of the MEMS mirror, respectively, and the second The -1 position data and the 2-2 position data may be counter values up to a point in time when a reflection is detected when the counter is reset with respect to the center 0° with respect to each sweep direction. In this case, the count value may be matched with the sweep angle of the MEMS mirror, which performs angular motion with a predetermined sine function, in the form of a function or table in advance. Accordingly, the first processor may calculate the angle of the MEMS mirror through the first position data or the second position data, as long as the first position data and the second position data are uniquely determined with respect to a target at a specific location. It may be configured to more accurately calculate data by using all of them as paired information. Alternatively, when the object is disposed in the direction in which the light pulse is emitted by the MEMS mirror, the reflected wave may be returned to the MEMS mirror and recognized by the optical detection sensor. Accordingly, the processor can receive or calculate the posture of the MEMS mirror based on the time recognized by the APD sensor. It is also possible to calculate the angle at which the object is placed in relation to the 0° it is directed at.
도 6 내지 도 8은 본 발명에 따른 다축 제어방식의 객체 추적 시스템에 관한 것으로, 도 6은 멤스미러의 시간별 각도변화를 도시한 그래프를, 도 7 및 도 8은 복수의 광 송신부에서 방출되는 광 펄스의 신호를 도시한 도면을 나타낸다.6 to 8 relate to an object tracking system of a multi-axis control method according to the present invention. FIG. 6 is a graph showing the time-dependent angular change of the MEMS mirror, and FIGS. 7 and 8 are light emitted from a plurality of light transmitters. A diagram showing a signal of a pulse is shown.
도 6 내지 도 8을 참조하면, 상기 광 송신부에서 방출되는 광 펄스에는 다수의 데이터가 내장될 수 있다. 일 예로 상기 광 펄스는 액시스 비트(Axis Bit), 스윕 비트(Sweep Bit) 및 데이터 비트열(Data Bit String)을 포함할 수 있다. 상기 액시스 비트는 복수의 광 송신부가 포함된 경우, 방출되는 광 송신부가 담당하고 있는 축에 대한 정보일 수 있으며, 일 예로 X-Z축 상에서 멤스미러가 회전하는 경우에는 1, Y-Z축 상에서 멤스미러가 회전하는 경우에는 0일 수 있다. 상기 스윕 비트는 업 스윕 비트(Up Sweep Bit) 및 다운 스윕 비트(Down Sweep Bit)를 포함하여 구성될 수 있으며, 상기 멤스미러의 현재 스윕 방향을 포함할 수 있다. 이때 상기 업 스윕(Up Sweep) 및 다운스윕(Down Sweep)은 멤스미러가 선회하는 것을 기준으로 구분될 수 있으며, 상기 멤스미러의 각도가
Figure PCTKR2021095138-appb-img-000016
에서
Figure PCTKR2021095138-appb-img-000017
로 향하는 경우에 다운스윕으로,
Figure PCTKR2021095138-appb-img-000018
에서
Figure PCTKR2021095138-appb-img-000019
로 향하는 업스윕으로 구분될 수도 있다. 이에 따라 수신 측에서도 업스윕/다운스윕과 반사파의 도달된 시각의 차를 통해 멤스미러의 설정각도 내에서 객체의 위치를 산출할 수 있다.
6 to 8 , a plurality of data may be embedded in an optical pulse emitted from the optical transmitter. For example, the light pulse may include an axis bit, a sweep bit, and a data bit string. The axis bit may be information on an axis handled by the emitted light transmitter when a plurality of optical transmitters are included. For example, when the MEMS mirror rotates on the XZ axis, 1, the MEMS mirror rotates on the YZ axis. In this case, it may be 0. The sweep bit may include an up sweep bit and a down sweep bit, and may include a current sweep direction of the MEMS mirror. In this case, the Up Sweep and Down Sweep may be divided based on the rotation of the MEMS mirror, and the angle of the MEMS mirror is
Figure PCTKR2021095138-appb-img-000016
at
Figure PCTKR2021095138-appb-img-000017
as a downsweep when heading to
Figure PCTKR2021095138-appb-img-000018
at
Figure PCTKR2021095138-appb-img-000019
It can also be divided into an upsweep towards . Accordingly, the receiving side can also calculate the position of the object within the set angle of the MEMS mirror through the difference between the upsweep/downsweep and the arrival time of the reflected wave.
상기 데이터 비트열은 N 비트의 데이터 비트열일 수 있으며, 절대좌표계에서 플랫폼 자세에 대한 상기 제1자세조절부에 의해서 조절된 상기 광 송신부의 자세에 대한 정보를 포함할 수 있다. 이때 절대좌표계에서 플랫폼의 자세를 제1각도정보, 제1자세조절부에 의해서 조절된 상기 광 송신부의 자세는 기 설정된 절대좌표계를 기준으로 제2각도정보로, 상기 제2각도정보에 의해서 제어된 상태에서 상기 멤스미러에서 방출되는 광 펄스의 방향을 제3각도정보로 정의하여 설명한다. 이때 절대좌표계에 대한 플랫폼의 자세는 관성센서를 이용한 칼만필터 등의 센서퓨전 기법으로 산출될 수 있다.The data bit string may be an N-bit data bit string, and may include information on the posture of the light transmitter adjusted by the first posture adjusting unit with respect to the platform posture in the absolute coordinate system. At this time, the posture of the platform in the absolute coordinate system is first angle information, and the posture of the light transmitter adjusted by the first posture adjusting unit is controlled by the second angle information as second angle information based on a preset absolute coordinate system. In the state, the direction of the light pulse emitted from the MEMS mirror will be defined and described as the third angle information. At this time, the posture of the platform with respect to the absolute coordinate system can be calculated by a sensor fusion technique such as a Kalman filter using an inertial sensor.
상기 데이터 비트열은 상기 제1자세조절부를 측정하여 얻어지는 상기 제1각도정보와 플랫폼 자세로 산출되는 절대좌표계에 대한 광 송신부의 지향각에 대해서 상기 프로세서가 복수의 광 펄스로 분할하여 송출할 수 있도록 제어할 수도 있다. 일 예로, N 비트의 데이터 비트열에 대해서 연속적으로 방출되는 광 펄스 중 하나에는 상위 N1비트가 포함되고, 다른 하나에는 하위 N2비트가 포함될 수 있다. 이때 상기 N1비트와 N2비트의 합은 N비트 이상으로 이루어져 복수의 광 펄스를 취합시에 모든 데이터가 포함될 수 있도록 제어될 수 있다. 이때 복수의 광 송신부는 서로 인터벌을 두고 광 펄스를 외부로 방출할 수 있도록 제어될 수도 있다.The data bit string is such that the processor divides the first angle information obtained by measuring the first posture adjusting unit and the beam angle of the light transmitting unit with respect to the absolute coordinate system calculated by the platform posture into a plurality of light pulses and transmits them. You can also control it. For example, one of the light pulses continuously emitted with respect to an N-bit data bit string may include high-order N 1 bits, and the other may include low-order N 2 bits. In this case, the sum of the N 1 bits and the N 2 bits may be more than N bits, so that all data may be included when a plurality of light pulses are collected. In this case, the plurality of light transmitters may be controlled to emit light pulses to the outside at intervals therebetween.
도 9 및 도 10은 본 발명에 따른 다축 제어방식의 객체 추적 시스템에 관한 것으로, 도 9는 복수의 구성들의 위치관계를 도시한 도면을, 도 10은 객체추적루프의 시스템을 도시한 도면을 각각 나타낸다.9 and 10 relate to an object tracking system of a multi-axis control method according to the present invention. FIG. 9 is a diagram showing the positional relationship of a plurality of components, and FIG. 10 is a diagram showing a system of an object tracking loop, respectively. indicates.
도 9를 참조하여, 상술한 제1각도정보, 제2각도정보 및 제3각도정보에 대해서 보다 상세히 설명하자면 다음과 같다. 멤스미러가 하나의 평면 상에서 설정각도 내에서 왕복 스윕되는 경우, 이와 대응되는 평면 상에서 상기 광 송신부의 자세가 산출될 수 있다. 즉, 상기 플랫폼이 동일한 자세가 유지되는 경우에는 상기 광 송신부는 상기 제1자세조절부에 의해서 자세가 변화될 수 있으며, 이 중 스윕되는 평면과 대응되는 평면에 대한 광 송신부의 자세를 추출할 수 있다. 이때 절대좌표계(Absolute Frame, AF)을 기준으로, 상기 플랫폼의 자세에 대하여 제1상대좌표계(Relative Frame 1, RF1)를 구축할 수 있고, 상기 제1자세조절부의 자세는 상기 플랫폼의 자세에 대하여 제2상대좌표계(Relative Frame 2, RF2)를 구축할 수 있다 아울러 하나의 평면을 기준으로
Figure PCTKR2021095138-appb-img-000020
사이로 멤스미러가 스윕운동되는 과정에서, 상기 제1자세조절부 대비 상기 멤스미러의 스윕운동을 중심으로 한 제3상대좌표계(Relative Frame 3, RF3)가 구축될 수 있다. 이때 절대좌표계에 대비하여 상기 제1상대좌표계가 기울어진 각도를 제1각도정보(Φ, θ)로, 제1상대좌표계에 대비하여 상기 제2상대좌표계가 기울어진 각도를 제2각도정보(
Figure PCTKR2021095138-appb-img-000021
,
Figure PCTKR2021095138-appb-img-000022
)로 각각 정의할 수 있다. 그리고 제3각도정보(
Figure PCTKR2021095138-appb-img-000023
,
Figure PCTKR2021095138-appb-img-000024
)는 제3상대좌표계 상에서의 상기 멤스미러가 지향하는 각도일 수 있다. 그리고 도 9-(a) 및 도 9-(b)에서 도시된 바와 같이 복수의 광 송신부는 각각 서로 다른 평면을 기준으로 제1각도정보 및 제2각도정보가 산출될 수 있다. 그리고 상기 프로세서는, 하나의 광 송신부에 대해서 하나의 평면을 기준으로 일축 제1각도정보(Φ), 일축 제2각도정보(
Figure PCTKR2021095138-appb-img-000025
) 및 일축 제3각도정보(
Figure PCTKR2021095138-appb-img-000026
)를 산출하고, 다른 하나의 광 송신부에 대해서 다른 하나의 평면을 기준으로 타축 제1각도정보(θ), 타축 제2각도정보(
Figure PCTKR2021095138-appb-img-000027
) 및 일축 제3각도정보(
Figure PCTKR2021095138-appb-img-000028
)를 산출할 수 있다.
Referring to FIG. 9 , the above-described first angle information, second angle information, and third angle information will be described in more detail as follows. When the MEMS mirror is reciprocally swept within a set angle on one plane, the posture of the light transmitter may be calculated on a corresponding plane. That is, when the platform maintains the same posture, the posture of the light transmitter may be changed by the first posture adjusting unit, and the posture of the light transmitter with respect to a plane corresponding to the swept plane may be extracted. have. At this time, based on the Absolute Frame (AF), a first relative coordinate system (Relative Frame 1, RF1) can be built with respect to the posture of the platform, and the posture of the first posture control unit is determined with respect to the posture of the platform. A second relative coordinate system (Relative Frame 2, RF2) can be constructed.
Figure PCTKR2021095138-appb-img-000020
In the process in which the MEMS mirror is swept through, a third relative coordinate system (Relative Frame 3, RF3) centered on the sweep movement of the MEMS mirror with respect to the first posture adjusting unit may be constructed. In this case, the angle at which the first relative coordinate system is inclined with respect to the absolute coordinate system is the first angle information (Φ, θ), and the angle at which the second relative coordinate system is inclined with respect to the first relative coordinate system is used as the second angle information (
Figure PCTKR2021095138-appb-img-000021
,
Figure PCTKR2021095138-appb-img-000022
) can be defined as And the third angle information (
Figure PCTKR2021095138-appb-img-000023
,
Figure PCTKR2021095138-appb-img-000024
) may be an angle oriented by the MEMS mirror in the third relative coordinate system. And, as shown in FIGS. 9-(a) and 9-(b), the plurality of optical transmitters may calculate the first angle information and the second angle information based on different planes, respectively. And the processor, uniaxial first angle information (Φ), uniaxial second angle information (
Figure PCTKR2021095138-appb-img-000025
) and uniaxial third angle information (
Figure PCTKR2021095138-appb-img-000026
) is calculated, and the first angle information (θ) of the other axis and the second angle information of the other axis (
Figure PCTKR2021095138-appb-img-000027
) and uniaxial third angle information (
Figure PCTKR2021095138-appb-img-000028
) can be calculated.
하나의 평면을 기준으로
Figure PCTKR2021095138-appb-img-000029
사이로 멤스미러가 스윕운동되는 과정에서, 프로세서에서 일축 제3각도정보(
Figure PCTKR2021095138-appb-img-000030
)가 산출(광 검출센서 반사파 검출)될 수 있다. 이때 산출된 시각을 기준으로 상기 프로세서는 IMU센서 등의 수단을 통해 일축 제1각도정보(Φ)를 수신 받거나, 제어신호를 분석하여 일축 제1각도정보(Φ)를 산출할 수 있다. 이때 도시된 도면을 기준으로, 상기 프로세서는 상기 멤스미러의 스윕 운동의 중심이 상기 객체를 지향(산출된 상기 일축 제3각도정보가 0°)하도록 상기 제1자세조절부로 제어신호를 전송할 수 있다. 이때 상기 제어신호는 상기 제1자세조절부가 상기 광 송신부의 자세를 조절하는 것으로, 도시된 도면 상에서는 일축 제3각도정보(
Figure PCTKR2021095138-appb-img-000031
)에 해당되는 각도로 상기 광 송신부가 시계 방향으로 회전할 수 있다.
based on one plane
Figure PCTKR2021095138-appb-img-000029
In the process of the sweeping motion of the MEMS mirror, the uniaxial third angle information (
Figure PCTKR2021095138-appb-img-000030
) can be calculated (detection of the reflected wave by the light detection sensor). At this time, based on the calculated time, the processor may receive the uniaxial first angle information Φ through means such as an IMU sensor, or may calculate the uniaxial first angle information Φ by analyzing the control signal. At this time, based on the illustrated drawing, the processor may transmit a control signal to the first posture adjusting unit so that the center of the sweep motion of the MEMS mirror is directed toward the object (the calculated uniaxial third angle information is 0°). . In this case, the control signal is that the first posture adjusting unit adjusts the posture of the light transmitting unit, and in the drawing, uniaxial third angle information (
Figure PCTKR2021095138-appb-img-000031
), the light transmitter may rotate in a clockwise direction.
도 10을 함께 참조하면, 본 발명에 따른 다축 제어방식의 객체 추적 시스템은 상기 IMU센서를 이용하여 상기 제1자세조절부의 짐벌모터에 대한 각속도 및 가속도를 측정할 수 있다. 그리고 프로세서의 객체 지향각 제어기(Object Tracking Angle Controller)와 함께, 측정된 각속도가 각속도 제어기(Angular Velocity Controller)로 입력되어 짐벌모터의 역기전력을 보상함에 따라, 보다 안정화될 수 있는 객체 지향 내부 루프(Object Tracking Inner Loop)를 구축할 수 있다.10 , the multi-axis control object tracking system according to the present invention may measure the angular velocity and acceleration of the first posture control unit with respect to the gimbal motor by using the IMU sensor. And with the object tracking angle controller of the processor, the measured angular velocity is input to the angular velocity controller to compensate the back electromotive force of the gimbal motor, so that the object-oriented inner loop that can be more stabilized (Object Tracking Inner Loop) can be built.
그리고 상기 IMU센서에서 측정된 각속도 및 가속도는 프로세서의 칼만필터를 통해 다축 제1각도정보(Φ, θ)를 산출할 수 있으며, 별도의 장치 또는 데이터 연산이나 멤스미러로부터 수신된 정보를 통해 상기 제1자세조절부의 다축 제2각도정보(
Figure PCTKR2021095138-appb-img-000032
,
Figure PCTKR2021095138-appb-img-000033
) 또한 산출될 수 있다. 그리고 특정 상태에서 타겟이 광송신부의 각축의 정중앙에 정렬되도록 위치한다면 상기 다축 제1각도정보(Φ, θ) 및 다축 제2각도정보(
Figure PCTKR2021095138-appb-img-000034
,
Figure PCTKR2021095138-appb-img-000035
)가 합산되면 절대좌표계를 기준으로 객체가 배치된 방향(
Figure PCTKR2021095138-appb-img-000036
,
Figure PCTKR2021095138-appb-img-000037
)을 알 수 있다.
And the angular velocity and acceleration measured by the IMU sensor can calculate the multi-axis first angle information (Φ, θ) through the Kalman filter of the processor, and the second through the information received from a separate device or data operation or MEMS mirror. 1 Multi-axis second angle information of the posture control unit (
Figure PCTKR2021095138-appb-img-000032
,
Figure PCTKR2021095138-appb-img-000033
) can also be calculated. And in a specific state, if the target is positioned so as to be aligned in the center of each axis of the optical transmitter, the multi-axis first angle information (Φ, θ) and the multi-axis second angle information (
Figure PCTKR2021095138-appb-img-000034
,
Figure PCTKR2021095138-appb-img-000035
) is added, the direction (
Figure PCTKR2021095138-appb-img-000036
,
Figure PCTKR2021095138-appb-img-000037
) can be found.
Figure PCTKR2021095138-appb-img-000038
,
Figure PCTKR2021095138-appb-img-000039
Figure PCTKR2021095138-appb-img-000038
,
Figure PCTKR2021095138-appb-img-000039
타겟이 광송신부와 정렬되지 않았을 때는 광송신부에서 방출된 스윕광의 반사파가 광검출센서로 회귀할 때 산출된 타겟의 스윕각인 제3각도정보(
Figure PCTKR2021095138-appb-img-000040
,
Figure PCTKR2021095138-appb-img-000041
)를 오차로 정의하여 상기 프로세서는 상기 멤스미러가 상기 객체를 중심으로 스윕운동될 수 있도록 상기 제1자세조절부로 제어신호를 전송할 수 있다. 이상적으로 광송신부가 객체를 지향하고 있을 경우 제3각도정보(
Figure PCTKR2021095138-appb-img-000042
,
Figure PCTKR2021095138-appb-img-000043
)는 0값을 가진다. 즉, 상기 제3각도정보에서 산출된 멤스미러의 스윕중심으로부터 타겟의 지향각을 보상할 수 있도록 상기 제1자세제어부의 각도를 제어하는 것으로, 멤스미러의 스윕의 중심이 객체의 중심을 향하도록 지속적으로 추적하는 것이다. 따라서 상기 객체 지향각 제어기는 외부루프에서 플랫폼의 자세변화가 보상되며, 또한 내부루프에서 각속도 정보를 이용하여 외란 등 외부의 영향을 보상하여 자세가 흔들려도 안정적인 지향 상태가 유지될 수 있는 장점이 있다.
When the target is not aligned with the optical transmitter, the third angle information (
Figure PCTKR2021095138-appb-img-000040
,
Figure PCTKR2021095138-appb-img-000041
) as an error, the processor may transmit a control signal to the first posture adjusting unit so that the MEMS mirror can be swept around the object. Ideally, the third angle information (
Figure PCTKR2021095138-appb-img-000042
,
Figure PCTKR2021095138-appb-img-000043
) has a value of 0. That is, the angle of the first posture control unit is controlled to compensate for the orientation angle of the target from the sweep center of the MEMS mirror calculated from the third angle information, so that the center of the sweep of the MEMS mirror is directed toward the center of the object. to be continuously tracked. Therefore, the object orientation angle controller compensates for the change in the attitude of the platform in the outer loop, and also uses the angular velocity information in the inner loop to compensate for external influences such as disturbance, so that a stable orientation can be maintained even if the posture is shaken. .
도 11 내지 도 13은 본 발명에 따른 다축 제어방식의 객체 추적 시스템에 관한 것으로, 도 11은 객체의 사시도를, 도 12는 객체의 정면도를, 도 13은 멤스미러의 시간별 각도변화를 도시한 그래프를 각각 나타낸다.11 to 13 relate to an object tracking system of a multi-axis control method according to the present invention, wherein FIG. 11 is a perspective view of an object, FIG. 12 is a front view of the object, and FIG. represent each.
도 11 및 도 12를 참조하면, 상기 객체(20)는 고정물, 이동체 또는 비행체 등으로 구성될 수 있으며, 비행체로 구성된 경우에는 동체(21) 및 동력부(22)를 포함할 수 있다. 이때 상기 광 수신부(300) 및 제2자세조절부(400)는 객체(20) 상에 탑재되거나 내장될 수 있으며, 상술한 바와 같은 방법을 통해 플랫폼의 위치를 산출하도록 구성될 수 있다. 여기서 상기 객체(20)는 상기 광 수신부(300)를 통해 광 송신부의 멤스미러에 대한 제어 데이터를 수신받을 수도 있으며, 아래와 같은 방법을 통해 멤스미러에 대한 제어 데이터를 추산할 수도 있다.Referring to FIGS. 11 and 12 , the object 20 may include a fixed body, a movable body, or an air vehicle, and in the case of an air vehicle, the object 20 may include a body 21 and a power unit 22 . In this case, the light receiving unit 300 and the second posture adjusting unit 400 may be mounted on or embedded in the object 20 , and may be configured to calculate the position of the platform through the method as described above. Here, the object 20 may receive control data for the MEMS mirror of the optical transmitter through the optical receiver 300 , and may estimate control data for the MEMS mirror through the following method.
도 13을 참조하면, 본 발명에 다른 다축 제어방식의 객체 추적 시스템은 상기 객체(20) 상에 결합된 제2프로세서를 더 포함할 수 있으며, 상기 제2프로세서는 광 송신부 측의 절대좌표계에서 광 송신부의 타겟 지향각을 수신된 스윕광의 데이터 비트를 디코딩하여 수취한 상태에서 멤스미러의 스윕각(
Figure PCTKR2021095138-appb-img-000044
)을 실시간으로 산출할 수 있다. 보다 상세히는 상기 프로세서가 아래의 식을 통해 멤스미러의 스윕각(
Figure PCTKR2021095138-appb-img-000045
)을 산출할 수 있다.
Referring to FIG. 13 , the multi-axis control system object tracking system according to the present invention may further include a second processor coupled to the object 20, and the second processor is configured to perform optical processing in the absolute coordinate system of the optical transmitter. When the target beam angle of the transmitter is decoded and received, the sweep angle of the MEMS mirror (
Figure PCTKR2021095138-appb-img-000044
) can be calculated in real time. In more detail, the processor determines the sweep angle of the MEMS mirror (
Figure PCTKR2021095138-appb-img-000045
) can be calculated.
Figure PCTKR2021095138-appb-img-000046
Figure PCTKR2021095138-appb-img-000046
이때 도 13의 기호를 참조하면 시간변수(t)는 아래의 관계식 1 내지 관계식 4 중 어느 하나의 수식을 통해 산출되는 제1시간변수(s1) 내지 제4시간변수(s4)중 어느 하나로 산출될 수 있다.At this time, referring to the symbol of FIG. 13 , the time variable (t) is one of the first time variable (s 1 ) to the fourth time variable (s 4 ) calculated through any one of the following Relations 1 to 4 can be calculated.
[관계식 1][Relational Expression 1]
Figure PCTKR2021095138-appb-img-000047
Figure PCTKR2021095138-appb-img-000047
[관계식 2][Relational Expression 2]
Figure PCTKR2021095138-appb-img-000048
Figure PCTKR2021095138-appb-img-000048
[관계식 3][Relational Expression 3]
Figure PCTKR2021095138-appb-img-000049
Figure PCTKR2021095138-appb-img-000049
[관계식 4][Relational Expression 4]
Figure PCTKR2021095138-appb-img-000050
Figure PCTKR2021095138-appb-img-000050
이때 제1시간변수(s1) 내지 제4시간변수(s4)는 아래의 수식 상에 입력되어 스윕각(
Figure PCTKR2021095138-appb-img-000051
)을 산출할 수 있다.
At this time, the first time variable (s 1 ) to the fourth time variable (s 4 ) are inputted into the following equation and the sweep angle (
Figure PCTKR2021095138-appb-img-000051
) can be calculated.
Figure PCTKR2021095138-appb-img-000052
Figure PCTKR2021095138-appb-img-000052
Figure PCTKR2021095138-appb-img-000053
Figure PCTKR2021095138-appb-img-000053
여기에서, 상기 멤스미러의 스윕각(
Figure PCTKR2021095138-appb-img-000054
)은 상기 광 송신부 측의 제3각도정보와 매칭될 수 있으며, 상기 제2프로세서는 광 펄스를 통해 수신되는 절대좌표계에서 광 송신부의 타겟 지향각(
Figure PCTKR2021095138-appb-img-000055
,
Figure PCTKR2021095138-appb-img-000056
)은 거시적인 정보이며, 측정시점의 미시적인 멤스미러의 스윕각(
Figure PCTKR2021095138-appb-img-000057
)인 상기 제2각도정보를 함께 연산하여 상기 플랫폼의 정밀한 시선각을 산출할 수 있다. 따라서 절대좌표계에서 광 송신부에 대한 타겟의 방향인 시선각을 복원할 수 있는 모든 정보를 획들할 수 있으며 이는 다음과 같은 수식으로 표현된다.
Here, the sweep angle of the MEMS mirror (
Figure PCTKR2021095138-appb-img-000054
) may be matched with the third angle information on the side of the optical transmitter, and the second processor determines the target orientation angle (
Figure PCTKR2021095138-appb-img-000055
,
Figure PCTKR2021095138-appb-img-000056
) is macroscopic information, and the sweep angle of the microscopic MEMS mirror at the time of measurement (
Figure PCTKR2021095138-appb-img-000057
), it is possible to calculate the precise viewing angle of the platform by calculating the second angle information together. Accordingly, all information capable of reconstructing the viewing angle, which is the direction of the target with respect to the optical transmitter in the absolute coordinate system, can be obtained, and this is expressed by the following equation.
Figure PCTKR2021095138-appb-img-000058
,
Figure PCTKR2021095138-appb-img-000059
Figure PCTKR2021095138-appb-img-000058
,
Figure PCTKR2021095138-appb-img-000059
객체에서 복수의 광 검출센서에서 수집된 3차원 공간의 시선각정보(
Figure PCTKR2021095138-appb-img-000060
,
Figure PCTKR2021095138-appb-img-000061
)로부터 VR 및 컴퓨터비젼 분야에서 널리 사용되는 PnP(Perspective-n-Point) 해법을 통하여 광송신부에 대한 광수신부의 3차원 공간상의 상대적인 위치와 자세를 계산할 수 있다. 이때 상기 A는 기 입력된 멤스미러의 설정각도로 회전각도 반경일 수 있으며, f는 기 입력된 단위 시간(s)당 멤스미러의 스윕 수를 나타내는 멤스미러의 주파수이고, T는 기 입력된 멤스미러가 1회 스윕 시 경과되는 시간을 나타내는 멤스미러의 주기이며, △tn는 상기 광 수신부(300)에서 연속적으로 광 펄스가 검출되는 경우에 시간의 차이를 나타낼 수 있다. 그리고 이를 통해 산출된 플랫폼의 위치로 상기 광 수신부(300)가 지향하도록 상기 제2자세조절부(400)가 조절할 수 있다. 같은 방법의 광 송신부에서도 반사광의 시간차이를 통하여 멤스미러의 스윕각을 산출할 수 있다.
Visual angle information in 3D space collected from a plurality of light detection sensors on an object (
Figure PCTKR2021095138-appb-img-000060
,
Figure PCTKR2021095138-appb-img-000061
) from the perspective-n-point (PnP) solution widely used in VR and computer vision fields, the relative position and posture of the light receiver with respect to the light transmitter can be calculated in 3D space. In this case, A may be a preset angle of the pre-inputted set angle of the MEMS mirror and may be a radius of rotation, f is the pre-input frequency of the MEMS mirror indicating the number of sweeps of the MEMS mirror per unit time (s), and T is the pre-inputted MEMS mirror. A period of the MEMS mirror indicating the time elapsed when the mirror is swept once, and Δt n may indicate a time difference when light pulses are continuously detected by the light receiver 300 . In addition, the second posture adjusting unit 400 may adjust the light receiving unit 300 to direct the calculated position of the platform. The sweep angle of the MEMS mirror can be calculated through the time difference of the reflected light even in the light transmitter of the same method.
이상과 같이 본 발명에서는 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 일 실시예에 한정되는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, in the present invention, specific matters such as specific components and the like and limited embodiment drawings have been described, but these are only provided to help a more general understanding of the present invention, and the present invention is not limited to the above one embodiment. No, various modifications and variations are possible from these descriptions by those of ordinary skill in the art to which the present invention pertains.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술되는 특허 청구 범위뿐 아니라 이 특허 청구 범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and not only the claims described below, but also all of the claims and all equivalents or equivalent modifications are said to be within the scope of the spirit of the present invention. will be.
[부호의 설명][Explanation of code]
10 : 플랫폼10: platform
20 : 객체20 : object
21 : 동체21: fuselage
22 : 동력부22: power unit
100 : 광 송신부100: optical transmitter
101 : 방출구101: outlet
110 : 레이저 다이오드110: laser diode
120 : 멤스미러120: mems mirror
130 : 빔 분배기130: beam splitter
140 : 광 검출센서140: light detection sensor
200 : 제1자세조절부200: first posture control unit
210 : 제1조절부210: first control unit
220 : 제2조절부220: second control unit
230 : 제3조절부230: third control unit
300 : 광 수신부300: light receiving unit
301 : 수신 다이오드301: receive diode
400 : 제2자세조절부400: second posture control unit

Claims (15)

  1. 플랫폼 상에 탑재되어 외부로 광 펄스를 방출하는 광 송신부; 및a light transmitter mounted on the platform to emit light pulses to the outside; and
    상기 플랫폼에 결합되어 상기 광 송신부의 자세를 조절하는 제1자세조절부;a first posture adjusting unit coupled to the platform to adjust the posture of the light transmitting unit;
    를 포함하고,including,
    상기 광 송신부는,The optical transmitter,
    레이저 광을 발생시키는 레이저 다이오드;a laser diode that generates laser light;
    상기 레이저 다이오드에서 발생된 레이저 광을 설정각도(A°) 내에서 왕복 스윕 되도록 조절하여 외부로 광 펄스를 방출하는 멤스미러; 및a MEMS mirror for emitting a light pulse to the outside by controlling the laser light generated from the laser diode to be reciprocally swept within a set angle (A°); and
    객체로부터 반사된 반사파를 수신받는 광 검출센서;를 포함하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.A multi-axis control system object tracking system comprising a; a light detection sensor that receives the reflected wave reflected from the object.
  2. 제1항에 있어서,According to claim 1,
    상기 제1자세조절부는,The first posture control unit,
    3개의 회전 축(Roll, Pitch, Yaw) 중 하나를 조절하는 제어부가 복수로 이루어지되, A control unit for controlling one of the three rotation axes (Roll, Pitch, Yaw) is made in plurality,
    복수의 제어부가 서로 다른 회전 축으로 상기 광 송신부를 조절하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.A multi-axis control system object tracking system, characterized in that a plurality of controllers control the light transmitter with different rotation axes.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 플랫폼, 제1자세조절부 및 멤스미러에 대한 각도정보를 기반으로 객체의 위치를 산출하는 제1프로세서;a first processor for calculating the position of an object based on angle information about the platform, the first posture control unit, and the MEMS mirror;
    를 더 포함하고,further comprising,
    상기 제1프로세서는,The first processor,
    상기 플랫폼의 자세에 대한 정보인 제1각도정보와, 상기 플랫폼에서의 상기 제1자세조절부의 자세에 대한 정보인 제2각도정보와, 상기 제1자세조절부에서의 상기 멤스미러 스윕각에 대한 정보인 제3각도정보를 각각 수신받는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템. (여기서,
    Figure PCTKR2021095138-appb-img-000062
    ≤ 제3각도정보 ≤
    Figure PCTKR2021095138-appb-img-000063
    )
    First angle information, which is information about the posture of the platform, second angle information, which is information about the posture of the first posture adjusting unit on the platform, and the MEMS mirror sweep angle in the first posture adjusting unit A multi-axis control system object tracking system, characterized in that each of the third angle information is received. (here,
    Figure PCTKR2021095138-appb-img-000062
    ≤ Third angle information ≤
    Figure PCTKR2021095138-appb-img-000063
    )
  4. 제3항에 있어서,4. The method of claim 3,
    상기 제1프로세서는,The first processor,
    상기 광 검출센서에서 반사파가 검출된 시각을 기준으로,Based on the time at which the reflected wave is detected by the light detection sensor,
    상기 제1각도정보 및 제2각도정보를 수신받아 객체의 위치를 연산하고,receiving the first angle information and the second angle information and calculating the position of the object;
    객체의 위치를 산출하여 상기 광 펄스를 통해 전송하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.An object tracking system of a multi-axis control method, characterized in that the position of an object is calculated and transmitted through the light pulse.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제1프로세서는,The first processor,
    멤스미러의 스윕 운동에 대한 각도 카운터 모듈을 포함하고,Includes an angle counter module for the sweep motion of the MEMS mirror,
    반사파가 검출되면 상기 각도 카운터 모듈의 각도 카운트 값으로 상기 제3각도정보를 산출하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.When the reflected wave is detected, the object tracking system of the multi-axis control method, characterized in that calculating the third angle information as the angle count value of the angle counter module.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제1프로세서는 멤스미러의 방향에 대한 제1포지션 데이터 또는 멤스미러의 위치에 대한 제2포지션 데이터를 수신 받으며,The first processor receives the first position data for the direction of the MEMS mirror or the second position data for the position of the MEMS mirror,
    상기 제1포지션 데이터는,The first position data is
    멤스미러의 선회 시에 각도 카운트가 리셋되고,When the MEMS mirror turns, the angle count is reset,
    상기 제2포지션 데이터는,The second position data is
    멤스미러가 설정각도의 중심에 위치하는 경우 각도 카운트가 리셋되는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.Multi-axis control type object tracking system, characterized in that the angle count is reset when the MEMS mirror is located at the center of the set angle.
  7. 제3항에 있어서,4. The method of claim 3,
    상기 제1자세조절부에 연결되어 각속도 및 가속도를 측정하는 IMU센서;an IMU sensor connected to the first posture control unit to measure angular velocity and acceleration;
    를 더 포함하고,further comprising,
    상기 제1프로세서는,The first processor,
    상기 제1자세조절부의 모터의 역기전력을 보상하도록 상기 IMU센서에서 측정된 각속도를 입력받아 상기 모터에 연결된 모터드라이브를 제어하고,Controls a motor drive connected to the motor by receiving the angular velocity measured by the IMU sensor to compensate the back electromotive force of the motor of the first posture control unit,
    상기 IMU센서에서 측정된 각속도 및 가속도를 칼만 필터(Kalman Filter)에 입력하여 제1각도정보를 연산하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.The multi-axis control system object tracking system, characterized in that the first angle information is calculated by inputting the angular velocity and acceleration measured by the IMU sensor into a Kalman filter.
  8. 제3항에 있어서,4. The method of claim 3,
    상기 제1자세조절부는 각도센서를 포함하되, The first posture control unit includes an angle sensor,
    상기 각도센서에서 상기 제1자세조절부의 회전 각도를 측정하여 By measuring the rotation angle of the first posture control unit in the angle sensor
    상기 제1프로세서가 제2각도정보를 산출하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템Multi-axis control system object tracking system, characterized in that the first processor calculates the second angle information
  9. 제3항에 있어서,4. The method of claim 3,
    상기 광 송신부에서 방출되는 광 펄스는, The optical pulses emitted from the optical transmitter,
    데이터 비트열(Data Bit String) 및 스윕 비트(Sweep Bit)를 포함하고,including a data bit string and a sweep bit;
    상기 스윕 비트는,The sweep bit is
    상기 멤스미러가 설정각도 내에서 일 방향으로 회전 시에 발생되는 업 스윕 비트(Up Sweep Bit)와 상기 멤스미러가 설정각도 내에서 타 방향으로 회전 시에 발생되는 다운 스윕 비트(Down Sweep Bit)를 포함하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.An up sweep bit generated when the MEMS mirror rotates in one direction within a set angle and a down sweep bit generated when the MEMS mirror rotates in the other direction within a set angle. Multi-axis control method object tracking system, characterized in that it includes.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 광 송신부는 복수로 이루어져,The optical transmitter consists of a plurality of
    복수의 상기 광 송신부가 서로 다른 축으로 스위핑된 광 펄스를 방출하고,A plurality of the optical transmitter emits optical pulses swept in different axes,
    상기 광 송신부의 광 펄스는,The optical pulse of the optical transmitter is
    스위핑된 축에 대한 데이터인 액시스 비트(Axis Bit)를 더 포함하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.Multi-axis control type object tracking system, characterized in that it further comprises an axis bit (Axis Bit) that is data for the swept axis.
  11. 제9항에 있어서,10. The method of claim 9,
    상기 제1프로세서는 상기 제1각도정보 및 제2각도정보로 산출되는 광 송신부의 지향각을 N 비트의 데이터 비트열로 구성하되,The first processor configures the beam angle of the optical transmitter calculated by the first angle information and the second angle information as an N-bit data bit string,
    연속적으로 방출되는 복수의 광 펄스 중,Among the plurality of light pulses continuously emitted,
    일부의 광 펄스에는 상기 데이터 비트열 중 상위 N1 비트가 방출되고,In some light pulses, the upper N 1 bits of the data bit string are emitted,
    다른 일부의 광 펄스에는 상기 데이터 비트열 중 하위 N2의 비트가 방출되는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.A multi-axis control system object tracking system, characterized in that the lower N 2 bits of the data bit string are emitted to some other light pulses.
    (여기에서, 1 ≤ N1, N2 < N, N ≤ N1 + N2)(where 1 ≤ N 1, N 2 < N, N ≤ N 1 + N 2 )
  12. 제1항에 있어서,According to claim 1,
    객체 상에 탑재되어 광 펄스를 수신받는 광 수신부;a light receiver mounted on an object to receive a light pulse;
    상기 객체에 결합되어 상기 광 수신부의 자세를 조절하는 제2자세조절부; 및a second posture adjusting unit coupled to the object to adjust the posture of the light receiving unit; and
    상기 광 수신부로 도달된 광 펄스의 신호를 분석하는 제2프로세서;a second processor for analyzing the signal of the light pulse arriving at the light receiving unit;
    를 포함하고,including,
    상기 제2프로세서는,The second processor,
    연속된 적어도 둘 이상의 광 펄스가 도달된 시간차를 통해 상기 플랫폼이 배치된 위치를 산출하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.A multi-axis control system object tracking system, characterized in that the position at which the platform is arranged is calculated based on the time difference at which at least two or more consecutive light pulses arrive.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 제2프로세서는,The second processor,
    기 입력된 상기 광 송신부의 멤스미러의 스윕 설정각도, 주파수 및 주기와,The pre-input sweep setting angle, frequency and period of the MEMS mirror of the optical transmitter;
    상기 광 수신부로 도달된 연속된 둘 이상의 광 펄스 간의 시간차(△t)를 통해 시간변수(t)가 산출되어 아래의 식으로 멤스미러의 스윕각(ΨR)을 연산하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.Multi-axis control, characterized in that the time variable (t) is calculated through the time difference (Δt) between two or more consecutive light pulses arriving at the light receiving unit, and the sweep angle (Ψ R ) of the MEMS mirror is calculated by the following equation way object tracking system.
    Figure PCTKR2021095138-appb-img-000064
    Figure PCTKR2021095138-appb-img-000064
    (여기에서, (From here,
    ΨR = 멤스미러의 스윕각Ψ R = sweep angle of the MEMS mirror
    A = 설정 각도,A = set angle,
    f = 멤스미러의 주파수 = 단위 시간당 멤스미러의 스윕 수,f = frequency of the MEMS mirror = number of sweeps of the MEMS mirror per unit time,
    T = 멤스미러의 주기= 1회 스윕 시 경과되는 시간,T = period of MEMS mirror = time elapsed in one sweep,
    t = 시간변수)t = time variable)
  14. 제13항에 있어서,14. The method of claim 13,
    상기 시간변수(t)는 아래의 관계식 1 내지 관계식 3 중 어느 하나의 수식을 통해 산출되는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.The time variable (t) is a multi-axis control system object tracking system, characterized in that calculated through any one of the following Relations 1 to 3.
    [관계식 1][Relational Expression 1]
    Figure PCTKR2021095138-appb-img-000065
    Figure PCTKR2021095138-appb-img-000065
    [관계식 2][Relational Expression 2]
    Figure PCTKR2021095138-appb-img-000066
    Figure PCTKR2021095138-appb-img-000066
    [관계식 3][Relational Expression 3]
    Figure PCTKR2021095138-appb-img-000067
    Figure PCTKR2021095138-appb-img-000067
  15. 제13항에 있어서,14. The method of claim 13,
    상기 제2프로세서는,The second processor,
    상기 광 펄스를 통해 전달된 정보와, 상기 멤스미러의 스윕각(ΨR)을 통해 상기 플랫폼의 위치를 산출하여,By calculating the position of the platform through the information transmitted through the light pulse and the sweep angle Ψ R of the MEMS mirror,
    상기 광 수신부가 상기 플랫폼을 지향하도록 상기 제2자세조절부를 제어하는 것을 특징으로 하는 다축 제어방식의 객체 추적 시스템.Multi-axis control system object tracking system, characterized in that for controlling the second posture control unit so that the light receiving unit is directed toward the platform.
PCT/KR2021/095138 2020-12-31 2021-12-27 Multi-axis control-type object tracking system WO2022146113A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180088711.7A CN116917766A (en) 2020-12-31 2021-12-27 Object tracking system with multi-axis control mode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0189048 2020-12-31
KR1020200189048A KR102282802B1 (en) 2020-12-31 2020-12-31 Object tracking system of multi-axis control type

Publications (1)

Publication Number Publication Date
WO2022146113A1 true WO2022146113A1 (en) 2022-07-07

Family

ID=77126169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/095138 WO2022146113A1 (en) 2020-12-31 2021-12-27 Multi-axis control-type object tracking system

Country Status (3)

Country Link
KR (1) KR102282802B1 (en)
CN (1) CN116917766A (en)
WO (1) WO2022146113A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511056A (en) * 2015-04-06 2018-04-19 ウェイモ エルエルシー Long distance maneuverable LIDAR system
KR20180130327A (en) * 2017-05-29 2018-12-07 주식회사 에스 피 지 The three-axis driving device
KR20190099322A (en) * 2017-01-05 2019-08-26 이노뷰전 아일랜드 리미티드 High resolution LIDAR with high frequency pulse firing
KR20190130454A (en) * 2018-05-14 2019-11-22 주식회사 에스오에스랩 Lidar device
KR20200102899A (en) * 2019-02-22 2020-09-01 주식회사 에스오에스랩 A lidar device and rotating mirror used in the lidar device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985212B2 (en) * 2003-05-19 2006-01-10 Rosemount Aerospace Inc. Laser perimeter awareness system
KR100682955B1 (en) * 2006-01-06 2007-02-15 삼성전자주식회사 Apparatus and method for evaluating driving characteristic of scanner
KR102446123B1 (en) 2014-11-10 2022-09-23 밸브 코포레이션 Positional tracking systems and methods
KR101888171B1 (en) * 2017-11-16 2018-08-13 엘아이지넥스원 주식회사 Method and device for recognizing environment based on position information of unmanned surface vessel
KR20200059427A (en) * 2018-11-21 2020-05-29 주식회사 라이드로 Lidar optical apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511056A (en) * 2015-04-06 2018-04-19 ウェイモ エルエルシー Long distance maneuverable LIDAR system
KR20190099322A (en) * 2017-01-05 2019-08-26 이노뷰전 아일랜드 리미티드 High resolution LIDAR with high frequency pulse firing
KR20180130327A (en) * 2017-05-29 2018-12-07 주식회사 에스 피 지 The three-axis driving device
KR20190130454A (en) * 2018-05-14 2019-11-22 주식회사 에스오에스랩 Lidar device
KR20200102899A (en) * 2019-02-22 2020-09-01 주식회사 에스오에스랩 A lidar device and rotating mirror used in the lidar device

Also Published As

Publication number Publication date
CN116917766A (en) 2023-10-20
KR102282802B1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
CN113029117B (en) Flight sensor
US10324183B2 (en) UAV measuring apparatus and UAV measuring system
EP2869024B1 (en) Three-dimensional measuring method and surveying system
WO2018088610A1 (en) 3d laser scanner system capable of real-time dynamic positioning of target object by using laser scanner
EP0785848B1 (en) Control equipment with a movable control member
JP2023051993A (en) Display of virtual image of building information model
US6176837B1 (en) Motion tracking system
KR102210083B1 (en) Drone Control System
EP3669138B1 (en) Laser tracker with improved roll angle measurement
WO2012018168A1 (en) Control system and method for a drive instruction-based vision device for target tracking
EP2249997A1 (en) System and method for precise real-time measurement of a target position and orientation relative to a base position, and control thereof
US20220210335A1 (en) Autofocusing camera and systems
CN106289235A (en) Autonomous computational accuracy controllable chamber inner position air navigation aid based on architecture structure drawing
WO2013158050A1 (en) Stabilization control system for flying or stationary platforms
WO2012049438A1 (en) Hover cmm
JP4924342B2 (en) Motion tracker device
WO2022146113A1 (en) Multi-axis control-type object tracking system
Bosse et al. A vision augmented navigation system
US4192002A (en) Apparatus and methods for position determining and plotting
CN114323016A (en) Measuring system
CN112882498B (en) Triaxial photoelectric searching and tracking device and method with image rotation inhibiting function
WO2022034950A1 (en) Unmanned aerial vehicle and self-destruct drone operating system including same
CN212988387U (en) Indoor unmanned aerial vehicle system based on two-dimensional code array
US4932777A (en) Electro-optical spin measurement system
US20240201649A1 (en) Device for monitoring the position and/or attitude and/or movement of a tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180088711.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915910

Country of ref document: EP

Kind code of ref document: A1