WO2022145750A1 - Phosphor composition and preparation method therefor - Google Patents

Phosphor composition and preparation method therefor Download PDF

Info

Publication number
WO2022145750A1
WO2022145750A1 PCT/KR2021/017941 KR2021017941W WO2022145750A1 WO 2022145750 A1 WO2022145750 A1 WO 2022145750A1 KR 2021017941 W KR2021017941 W KR 2021017941W WO 2022145750 A1 WO2022145750 A1 WO 2022145750A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
range
phosphor composition
present specification
wavelength
Prior art date
Application number
PCT/KR2021/017941
Other languages
French (fr)
Korean (ko)
Inventor
임원빈
김하준
오현진
최일훈
김홍건
김현준
마니칸타 비스와나뜨 놀루시리니바사
Original Assignee
한양대학교 산학협력단
한국조폐공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단, 한국조폐공사 filed Critical 한양대학교 산학협력단
Publication of WO2022145750A1 publication Critical patent/WO2022145750A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals

Definitions

  • the present application relates to a phosphor composition and a method for preparing the same, and more particularly, to a phosphor composition having infrared light emitting properties and a method for preparing the same.
  • the infrared phosphor refers to a phosphor that is excited by light of a visible or ultraviolet wavelength and emits light of an infrared wavelength (900 to 1600 nm). Infrared phosphors are used for infrared treatment devices, materials for infrared light emitting LEDs and lasers, or contrast agents for cancer diagnosis that non-invasively image cancerous tissues in vivo. It is narrow and difficult to apply to other industries. In addition, the infrared phosphor currently under development has a low production yield and has a tendency to agglomerate or pulverize, so it is difficult to mass-produce, and its wavelength range is mainly 1550 nm, so it is difficult to use it for various purposes.
  • An object of the present invention is to provide a phosphor that is excited by a wavelength of an ultraviolet or visible ray region and emits a wavelength of an infrared ray, and a method for manufacturing the same.
  • the present invention is represented by the formula ABCDO6: Cr3+, Yb3+ containing Cr3+ and Yb3+, and has a down conversion characteristic, wherein A is at least one of Li, Na, K and Rb, the B may provide a phosphor composition selected from at least one of Gd, La, and Y, C is Mg, and D is at least one selected from W and Mo.
  • an oxide of at least one metal selected from Li, Na, K and Rb, an oxide of at least one metal selected from Gd, La and Y, an oxide of at least one metal selected from W and Mo Mixing the oxide of Mg, the oxide of Cr and the oxide of Yb in the mixture, heat-treating the mixture at 800 to 1400° C. for 10 hours or more, heat-treating the heat-treated mixture at 900 to 1300° C. for 10 hours or more, and It is possible to provide a method for producing a phosphor composition comprising the step of pulverizing the heat-treated product.
  • a phosphor and a method for manufacturing the same according to an embodiment of the present invention can absorb light of a wavelength of ultraviolet or visible light, emit light of an infrared wavelength, and have high light emitting characteristics, so that it can be used in various industries. .
  • FIG. 1 is a diagram illustrating a crystal structure of a phosphor according to an embodiment of the present specification.
  • FIG. 2 is a diagram illustrating a Rietveld analysis result using an X-ray diffraction pattern of a phosphor according to an embodiment of the present specification.
  • FIG. 3(a) and 3(b) are results of particle size analysis of the phosphor according to an embodiment of the present specification
  • FIG. 3(c) is an SEM image of the phosphor according to an embodiment of the present specification.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a phosphor according to an exemplary embodiment of the present specification.
  • FIG. 5 is a graph of an emission spectrum of a phosphor according to an exemplary embodiment of the present specification.
  • a phosphor composition may be provided.
  • A is at least one of Li, Na, K and Rb,
  • B is at least one of Gd, La and Y;
  • D may provide a phosphor composition selected from at least one of W and Mo.
  • the phosphor composition may be excited by an excitation source in a wavelength range of 300 to 800 nm to have an emission peak wavelength within a wavelength range in a range of 900 to 1300 nm.
  • the phosphor composition may have a monoclinic structure of space group P21/c, and a lattice constant ( ⁇ ) may have a range of 5.4010 ⁇ a ⁇ 5.4032, 5.4921 ⁇ b ⁇ 5.4945, and 7.8228 ⁇ c ⁇ 7.8256. .
  • the first intensity peak in the X-ray diffraction pattern of the phosphor composition may be located in a range where the diffraction angle (2 ⁇ ) is 31.50 ⁇ 2 ⁇ ⁇ 33.50.
  • the first intensity peak has a diffraction angle (2 ⁇ ) in the range of 31.50 ⁇ 2 ⁇ ⁇ 33.50
  • the second intensity peak smaller than the first intensity peak has a diffraction angle (2 ⁇ )
  • the third intensity peak located in the range of 18.75 ⁇ 2 ⁇ ⁇ 20.75 and smaller than the second intensity peak may have a diffraction angle (2 ⁇ ) in the range of 25.00 ⁇ 2 ⁇ ⁇ 27.00.
  • x has the range of 0.03 ⁇ x ⁇ 0.10
  • the y may have a range of 0.01 ⁇ y ⁇ 0.20.
  • the phosphor may be excited by an excitation source in a wavelength range of 300 to 700 nm and have an emission peak wavelength within a wavelength range in a range of 900 to 1100 nm.
  • an oxide of at least one metal selected from Li, Na, K and Rb, an oxide of at least one metal selected from Gd, La and Y, an oxide of at least one metal selected from W and Mo Mixing the oxide of Mg, the oxide of Cr and the oxide of Yb in the mixture, heat-treating the mixture at 800 to 1400° C. for 10 hours or more, heat-treating the heat-treated mixture at 900 to 1300° C. for 10 hours or more, and It is possible to provide a method for producing a phosphor composition comprising the step of pulverizing the heat-treated product.
  • the present specification relates to a phosphor and a method for manufacturing the same.
  • the phosphor according to an embodiment of the present specification may be used in various industrial fields requiring a material having infrared light emission characteristics.
  • the phosphor according to an embodiment of the present specification may be used in a device or device having a medical purpose.
  • the phosphor according to an embodiment of the present specification may be used for security purposes or identification purposes together with a device capable of confirming a wavelength in an infrared region.
  • the phosphor includes a phosphor composition having light emitting properties, it is clarified in advance that it may be referred to as a phosphor, a phosphor, or a phosphor composition.
  • the phosphor according to an embodiment of the present specification may have a down-conversion characteristic.
  • the phosphor according to an embodiment of the present specification may be excited by a wavelength in the ultraviolet or visible ray region (300 to 800 nm) to emit a wavelength in the infrared (900 to 1300 nm) region, specifically, 900 to 1100 nm, or may have an emission peak wavelength within a region of 950 to 1050 nm.
  • the phosphor according to an embodiment of the present specification may include a host having a structural formula of ABCDO6.
  • A may be selected from at least one of Li, Na, K, and Rb
  • B may be selected from at least one of Gd, La, and Y
  • C may be Mg
  • D may be selected from at least one of W and Mo. Details related to this will be described later.
  • the phosphor according to an embodiment of the present specification may include Yb (Ytterbium, ytterbium) as an activator, and may include Cr (Chromium, chromium) as a sensitizer.
  • the activator and the sensitizer included in the phosphor of the present specification may be doped in an ionic state.
  • the phosphor according to an exemplary embodiment of the present specification may be represented by a structural formula of ABCDO6:Cr3+, Yb3+.
  • the phosphor according to the exemplary embodiment of the present specification may be represented by a structural formula of AB(1-y)C(1-x)DO6: xCr3+, yYb3+.
  • x may have a range of 0.03 ⁇ x ⁇ 0.1
  • y may have a range of 0.01 ⁇ y ⁇ 0.2.
  • the method of manufacturing a phosphor includes an oxide of one or more metals selected from Li, Na, K and Rb, an oxide of one or more metals selected from Gd, La and Y, and one selected from W and Mo Mixing the oxides of the above metals, the oxides of Mg, and the oxides of Cr and Yb in a mixture, heat-treating the mixture at 800 to 1400° C. for 10 hours or more, and heat-treating the heat-treated mixture at 900 to 1300° C. for 10 It may include the step of heat-treating for more than an hour, and the step of pulverizing the heat-treated product. Details related thereto will be described later with reference to FIG. 4 .
  • FIG. 1 is a diagram illustrating a crystal structure of a phosphor according to an embodiment of the present specification.
  • the phosphor or host of the phosphor may be represented by the chemical formula of ABCDO6.
  • A is at least one of Li, Na, K, and Rb
  • B is at least one of Gd
  • C is Mg
  • D may be selected from at least one of W and Mo, and in FIG.
  • the crystal structure of NaGdMgWO6 is shown. Na, Gd, Mg, and W may each have an octahedral or dodecahedral structure with oxygen.
  • the crystal structure of the host includes luminescent properties (excitation wavelength, absorption intensity, emission wavelength or emission intensity, etc.) of the phosphor, quenching of the phosphor -concentration quenching, thermal quenching, temperature quenching, etc., but limited thereto Not-can affect.
  • the crystal structure of the phosphor or the host may be expressed by a coordination number, a space group, a structure, a lattice constant, and the like.
  • the crystal structure of the host may determine the position of the active agent or sensitizer, the active agent and the active agent, the sensitizer and the sensitizer or the distance between the active agent and the sensitizer, and the like.
  • energy by the excitation source may be well transferred in the host, and energy transfer between the activator or the sensitizer may be actively performed, thereby increasing the luminescence intensity of the phosphor and minimizing the quenching phenomenon.
  • some electrons may be localized depending on the crystal structure of the host or the characteristics of ions included in the host, and interference by the localized electrons may be minimized, thereby increasing the quantum efficiency of the phosphor.
  • the phosphor according to an exemplary embodiment of the present specification has a structural formula of ABCDO6:Cr3+,Yb3+, and a valence at the B position may be replaced by a Yb ion, and a valence at the C position may be replaced by a Cr ion. Therefore, the position of Yb ions and Cr ions or the distance between Yb ions and Cr ions is determined according to the positions of B and C atoms of the host, so that the luminescent properties of the phosphor of the present specification may appear, and the quenching phenomenon of the phosphor may be minimized.
  • FIG. 2 is a diagram illustrating a result of analyzing an X-ray diffraction pattern of a phosphor according to an embodiment of the present specification using a Rietveld analysis method.
  • XRD X-ray diffraction analyzer
  • the phosphors (or hosts) ABCDO6, ABCDO6:Cr3+, Yb3+ of the present specification may have a monoclinic structure of space group P21/c.
  • the lattice constant ( ⁇ ) may have a range of 5.4010 ⁇ a ⁇ 5.4032, 5.4921 ⁇ b ⁇ 5.4945, and 7.8228 ⁇ c ⁇ 7.8256.
  • the number of elements per unit cell in the phosphor may be four.
  • the first intensity peak may be located in a range where the diffraction angle (2 ⁇ ) is 31.50 ⁇ 2 ⁇ ⁇ 33.50.
  • the second intensity peak smaller than the first intensity peak may be located in a range of 18.75 ⁇ 2 ⁇ ⁇ 20.75.
  • the third intensity peak smaller than the second intensity peak may be located in a range of 25.00 ⁇ 2 ⁇ ⁇ 27.00.
  • the phosphor of the present specification has a crystal structure derived from the graph and table of FIG. 2 , and through this, the luminescent property of the phosphor of the present specification may be exhibited, and the quenching phenomenon of the phosphor may be minimized.
  • the phosphor shown in FIGS. 1 and 2 is for NaGdMgWO6, an example of ABCDO6.
  • Elements that can be positioned in A are Li, Na, K, and Rb, which are all Group 1 alkali metals
  • elements that can be positioned in B are Gd, La, and Y, which are all rare earth elements
  • C is Mg
  • D is Since both W and Mo are chromium elements, it can be understood by those skilled in the art that elements located at each position will exhibit similar properties to each other, and accordingly, even if NaGdMgWO6 and other elements are located in A, B, D, at this time
  • the crystal structure may appear substantially similar to the crystal structure of FIGS. 1 and 2 . However, this is not necessarily the case, and it is obvious that the result may appear differently depending on the relationship or ratio between the elements included in the composition.
  • FIG. 3(a) and 3(b) are results of particle size analysis of the phosphor according to an embodiment of the present specification
  • FIG. 3(c) is an SEM image of the phosphor according to an embodiment of the present specification.
  • the particle size or shape of the phosphor herein may affect the emission intensity of the phosphor.
  • the particle size of the phosphor of the present specification may be within 1 to 20 ⁇ m or 1 to 18 ⁇ m. If the particle size of the phosphor exceeds 20 ⁇ m, non-uniformity in emission intensity or color tone of the phosphor may occur. Therefore, the light emission intensity of the phosphor may appear somewhat low. Therefore, in order to manufacture a phosphor exhibiting high emission intensity, it may be necessary to control the particle size or shape of the phosphor by varying the concentration of the reactant, the heat treatment temperature and time, and the like. In addition, since it may be desirable to make the manufactured phosphor have a uniform size or shape in order to increase the manufacturing yield, the concentration of the reactant, the heat treatment temperature, and the time may be adjusted to improve the manufacturing yield.
  • the average particle size of the sintered phosphor is 10 to 11 ⁇ m. More than 90% of the particle size of the sintered phosphor may be less than or equal to 18 ⁇ m.
  • the particle size value of the sintered phosphor is mainly concentrated in 5 to 15 ⁇ m, it can be confirmed that a phosphor having a uniform size is manufactured. In addition, it can be confirmed that a phosphor having a uniform shape is manufactured through the shape of the phosphor shown through the SEM image.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a phosphor according to an exemplary embodiment of the present specification.
  • an oxide of one or more metals selected from Li, Na, K and Rb, an oxide of one or more metals selected from Gd, La and Y, W and mixing the oxide of at least one metal selected from Mo, the oxide of Mg, and the oxide of Cr and the oxide of Yb in the mixture (S1100), heat-treating the mixture at 800 to 1400° C. for 10 hours or more (S1200), and heat-treating the heat-treated mixture at 900 to 1300° C. for 10 hours or more (S1300) and pulverizing the heat-treated product (S1400).
  • step (S1100) the reaction material included in the mixture is marked as an oxide because, even if any of carbonate, nitrate, oxalate, or acetate is used as a starting material, it is oxidized during high-temperature synthesis and eventually turned into an oxide. Therefore, as the starting material, if the molar ratio of the oxide falls within the above range, other forms such as carbonate, nitrate, oxalate, and acetate as well as oxides of metals may be possible.
  • NaCO3, Gd2O3, MgO, WO3, Cr2O3 and Yb2O3 may be included as a starting material for the preparation of NaGdMgWO6:Cr3+, Yb3+, and each may be mixed according to a stoichiometric equivalent ratio of the phosphor.
  • NaCO3, Y2O3, MgO, WO3, Cr2O3, and Yb2O3 may be included as a starting material for preparing NaYMgWO6:Cr3+, Yb3+, and each may be mixed according to a stoichiometric equivalent ratio of the phosphor.
  • NaCO3, La2O3, MgO, WO3, Cr2O3, and Yb2O3 may be included as a starting material for preparing NaLaMgWO6:Cr3+, Yb3+, and each may be mixed according to a stoichiometric equivalent ratio of the phosphor.
  • NaCO3, Gd2O3, MgO, MoO3, Cr2O3 and Yb2O3 may be included as a starting material for the preparation of NaGdMgMoO6:Cr3+, Yb3+, and each may be mixed according to a stoichiometric equivalent ratio of the phosphor.
  • the oxide of Cr and the oxide of Yb in the mixture may be doped with ions inside the phosphor crystal during heat treatment to be described later to act as an activator and a sensitizer during light emission.
  • step (S1100) the mixture of the reactants may be mixed and pulverized in a wet manner by using an agate pestle and mortar for 30 minutes.
  • the mixture may be filled in an alumina crucible, and after the filled crucible is dried for a sufficient time, it may be placed in an electric furnace for heat treatment.
  • the mixture of step (S1100) may be sintered through the two-step heat treatment of steps (S1200) and (S1300).
  • the mixture heat-treated in steps (S1200) and (S1300) may be naturally cooled, and the naturally cooled mixture may be pulverized.
  • step (S1200) the mixture may be heat-treated at 800 to 1400° C. for 10 hours or more, preferably, at 900° C. for 12 hours.
  • step (S1300) the mixture may be heat-treated at 900 to 1300° C. for 10 hours or more, preferably at 1050° C. for 12 hours.
  • the heat treatment temperature or time may affect the crystal structure, crystal size, crystallinity, or luminous efficiency of the phosphor. For example, if the heat treatment temperature is 800° C. or 900° C. or lower, crystals are difficult to form, and when the heat treatment temperature is 1400° C. or higher, crystals are difficult to form from the reactants or the resulting crystallinity is reduced. Yield and luminous efficiency may be reduced.
  • the heat treatment temperature is at least an appropriate synthesis temperature, for example, at or above the melting point of the composition, the prepared composition may be difficult to melt or obtain in the form of power. Therefore, the heat treatment may have to be performed within an appropriate temperature.
  • FIG. 5 is a graph of an emission spectrum of a phosphor according to an exemplary embodiment of the present specification.
  • the phosphor according to an exemplary embodiment of the present specification may be excited by a wavelength in an ultraviolet or visible ray region (300 to 800 nm) to emit a wavelength in an infrared (900 to 1300 nm) region.
  • the phosphor may be excited by an excitation source in a wavelength range of 300 to 700 nm and have an emission peak wavelength within a wavelength range in a wavelength range of 900 to 1100 nm, specifically, excited by an excitation source in a wavelength range of 300 to 600 nm. It may have an emission peak wavelength within a range of 900 to 1100 nm, or 950 to 1050 nm.
  • the phosphor according to an embodiment of the present specification may be a material that emits red light.
  • the phosphor according to an embodiment of the present specification may be expressed as AB(1-y)C(1-x)DO6: xCr3+,yYb3+, where x may have a range of 0.03 ⁇ x ⁇ 0.1, and y may have a range of 0.01 ⁇ y ⁇ 0.2.
  • the concentration of the active agent should be at least 1% or more and the concentration of the sensitizer should be at least 3% or more.
  • the concentration of the active agent exceeds 20%
  • the concentration of the sensitizer exceeds 10%
  • the quenching effect may occur due to interference between the active agent, the sensitizer, or the host. It may be desirable that the concentration of the agent be 10% or less.
  • the concentration range of the above-described active agent or sensitizer is not absolute, and may vary depending on the type of element included in the host of the composition, the crystal structure of the host, the size of the phosphor, and the like. This may be because the luminescent properties of the composition are affected by various factors in addition to the concentration of the above-described active agent or sensitizer.
  • the light emitting properties of the composition may appear differently depending on the concentration of the active agent or sensitizer.
  • the concentration of the activator or the sensitizer when included in the composition at a specific concentration or more, the light emission intensity of the phosphor may be reduced.
  • concentration of the activator or the sensitizer and the emission intensity of the phosphor is not proportional may be because the energy transfer is disturbed or the quenching effect occurs due to the interaction between the host and the activator or the sensitizer.
  • An appropriate concentration of the active agent or sensitizer may be different depending on the host crystal structure of the phosphor, which may have the above-described interaction effect, luminescence property-including absorption intensity or emission intensity, etc.- or quenching effect, etc. depending on the host crystal structure. It may be because they appear different.
  • the concentration of an appropriate activator or sensitizer may differ depending on the particle size and shape of the phosphor. This is because when the particle size of the phosphor is small and the surface area per cross-sectional area increases, the luminescence intensity or absorption intensity increases or the quenching phenomenon is promoted. It could be because
  • each step described in each method is not essential, each method may be performed including all of the steps as well as only a part thereof.
  • each step in the above-described method does not necessarily have to be performed in the described order.

Abstract

The present application relates to a phosphor and a preparation method therefor, and disclosed is a phosphor, which is represented by the chemical formula of ABCDO6:Cr3+,Yb3 comprising Cr3+ and Yb3+ and has a down conversion property, wherein A is at least one from among Li, Na, K and Rb, B is at least one from among Gd, La and Y, C is Mg, and D is W and/or Mo.

Description

형광체 조성물 및 이의 제조 방법Phosphor composition and method for preparing same
본 출원은 형광체 조성물 및 이의 제조 방법에 관한 것으로, 상세하게는 적외선 발광 특성을 가지는 형광체 조성물 및 이의 제조 방법에 관한 것이다. The present application relates to a phosphor composition and a method for preparing the same, and more particularly, to a phosphor composition having infrared light emitting properties and a method for preparing the same.
적외선 형광체는 가시광선 또는 자외선 파장의 빛에 의해 여기되어 적외선 파장(900~1600 nm)의 빛을 방출하는 형광체를 말한다. 적외선 형광체는 적외선 치료기, 적외선 발광 LED 및 레이저용 소재, 또는 생체 내 암 조직을 비침투적으로 영상화하는 암 진단용 조영제 등에 사용되나, 의료 목적으로 활용되는 적외선 형광체는 주로 방출 파장 영역이 700~900 nm으로 좁아 다른 산업군에 적용되기 어려운 문제가 있다. 또한 현재 개발 중인 적외선 형광체는 제조 수율이 낮고, 응집 또는 분말화 되는 성질이 있어 대량생산에 어려움이 있을 뿐 아니라, 그 파장대가 주로 1550 nm에 그쳐 다양한 목적으로 활용되기 어렵다는 한계가 있다. The infrared phosphor refers to a phosphor that is excited by light of a visible or ultraviolet wavelength and emits light of an infrared wavelength (900 to 1600 nm). Infrared phosphors are used for infrared treatment devices, materials for infrared light emitting LEDs and lasers, or contrast agents for cancer diagnosis that non-invasively image cancerous tissues in vivo. It is narrow and difficult to apply to other industries. In addition, the infrared phosphor currently under development has a low production yield and has a tendency to agglomerate or pulverize, so it is difficult to mass-produce, and its wavelength range is mainly 1550 nm, so it is difficult to use it for various purposes.
본 발명의 일 과제는, 자외선 또는 가시광선 영역의 파장에 의해 여기되어, 적외선 영역의 파장을 방출하는 형광체 및 이의 제조방법을 제공하는 것이다. An object of the present invention is to provide a phosphor that is excited by a wavelength of an ultraviolet or visible ray region and emits a wavelength of an infrared ray, and a method for manufacturing the same.
본 발명의 일 양상에 따르면, Cr3+ 및 Yb3+를 포함하는 화학식ABCDO6:Cr3+,Yb3+ 으로 표시되며, 하향변환(down conversion) 특성을 가지고, 상기 A는 Li, Na, K 및 Rb 중 적어도 하나, 상기 B는 Gd, La 및 Y 중 적어도 하나, 상기C는 Mg, 상기 D는 W 및 Mo 중 적어도 하나로 선택되는 형광체 조성물을 제공할 수있다. According to an aspect of the present invention, it is represented by the formula ABCDO6: Cr3+, Yb3+ containing Cr3+ and Yb3+, and has a down conversion characteristic, wherein A is at least one of Li, Na, K and Rb, the B may provide a phosphor composition selected from at least one of Gd, La, and Y, C is Mg, and D is at least one selected from W and Mo.
본 발명의 다른 양상에 따르면, Li, Na, K 및 Rb 중에서 선택된 1종 이상의 금속의 산화물, Gd, La 및 Y 중에서 선택된 1종 이상의 금속의 산화물, W 및 Mo 중에서 선택된 1종 이상의 금속의 산화물, Mg의 산화물, 혼합물에 Cr의 산화물 및 Yb의 산화물을 혼합하는 단계, 상기 혼합물을 800 내지 1400℃에서 10시간 이상 열처리하는 단계, 상기 열처리한 혼합물을 900 내지 1300℃에서 10시간 이상 열처리하는 단계 및 상기 열처리한 결과물을 분쇄하는 단계를 포함하는 형광체 조성물의 제조 방법을 제공할 수 있다. According to another aspect of the present invention, an oxide of at least one metal selected from Li, Na, K and Rb, an oxide of at least one metal selected from Gd, La and Y, an oxide of at least one metal selected from W and Mo, Mixing the oxide of Mg, the oxide of Cr and the oxide of Yb in the mixture, heat-treating the mixture at 800 to 1400° C. for 10 hours or more, heat-treating the heat-treated mixture at 900 to 1300° C. for 10 hours or more, and It is possible to provide a method for producing a phosphor composition comprising the step of pulverizing the heat-treated product.
본 발명의 일 실시예에 따른 형광체 및 이의 제조방법은 자외선 또는 가시광선 영역의 파장의 빛을 흡수하고, 적외선 파장의 빛을 방출할 수 있으며, 높은 발광 특성을 지니고 있어 다양한 산업군에 이용될 수 있다. A phosphor and a method for manufacturing the same according to an embodiment of the present invention can absorb light of a wavelength of ultraviolet or visible light, emit light of an infrared wavelength, and have high light emitting characteristics, so that it can be used in various industries. .
도 1은 본 명세서의 일 실시예에 따른 형광체의 결정 구조를 도시한 도면이다. 1 is a diagram illustrating a crystal structure of a phosphor according to an embodiment of the present specification.
도 2는 본 명세서의 일 실시예에 따른 형광체의 X선 회절 패턴을 이용한 리트벨트(Rietveld) 분석 결과를 도시한 도면이다. 2 is a diagram illustrating a Rietveld analysis result using an X-ray diffraction pattern of a phosphor according to an embodiment of the present specification.
도 3(a) 및 도 3(b)는 본 명세서의 일 실시예에 따른 형광체의 입도 분석 결과이고, 도 3(c)는 본 명세서의 일 실시예에 따른 형광체의 SEM 이미지이다.3(a) and 3(b) are results of particle size analysis of the phosphor according to an embodiment of the present specification, and FIG. 3(c) is an SEM image of the phosphor according to an embodiment of the present specification.
도 4는 본 명세서의 일 실시예에 따른 형광체의 제조방법을 도시한 순서도이다. 4 is a flowchart illustrating a method of manufacturing a phosphor according to an exemplary embodiment of the present specification.
도 5는 본 명세서의 일 실시예에 따른 형광체의 발광 스펙트럼 그래프이다.5 is a graph of an emission spectrum of a phosphor according to an exemplary embodiment of the present specification.
본 발명의 일 실시예에 따르면, Cr3+ 및 Yb3+를 포함하는 화학식 ABCDO6:Cr3+,Yb3+으로 표시되며, 하향변환(down conversion) 특성을 가지고, 상기 A는 Li, Na, K 및 Rb 중 적어도 하나, 상기 B는 Gd, La 및 Y 중 적어도 하나, 상기 C는 Mg, 상기 D는 W 및 Mo 중 적어도 하나로 선택되는 형광체 조성물이 제공될 수 있다.According to an embodiment of the present invention, it is represented by the formula ABCDO6:Cr3+, Yb3+ containing Cr3+ and Yb3+, and has a down conversion property, wherein A is at least one of Li, Na, K and Rb, the B is at least one of Gd, La, and Y, C is Mg, and D is at least one selected from W and Mo. A phosphor composition may be provided.
본 명세서에 기재된 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 명확히 설명하기 위한 것이므로, 본 발명이 본 명세서에 기재된 실시예에 의해 한정되는 것은 아니며, 본 발명의 범위는 본 발명의 사상을 벗어나지 아니하는 수정예 또는 변형예를 포함하는 것으로 해석되어야 한다.The embodiments described herein are for clearly explaining the spirit of the present invention to those of ordinary skill in the art to which the present invention pertains, so the present invention is not limited by the embodiments described herein, and the present invention It should be construed as including modifications or variations that do not depart from the spirit of the present invention.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하여 가능한 현재 널리 사용되고 있는 일반적인 용어를 선택하였으나 이는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 다만, 이와 달리 특정한 용어를 임의의 의미로 정의하여 사용하는 경우에는 그 용어의 의미에 관하여 별도로 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가진 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 한다.The terms used in this specification have been selected as widely used general terms as possible in consideration of the functions in the present invention, but they may vary depending on the intention, custom, or emergence of new technology of those of ordinary skill in the art to which the present invention belongs. can However, if a specific term is defined and used in an arbitrary sense, the meaning of the term will be separately described. Therefore, the terms used in this specification should be interpreted based on the actual meaning of the terms and the contents of the entire specification, rather than the names of simple terms.
본 명세서에 첨부된 도면은 본 발명을 용이하게 설명하기 위한 것으로 도면에 도시된 형상은 본 발명의 이해를 돕기 위하여 필요에 따라 과장되어 표시된 것일 수 있으므로 본 발명이 도면에 의해 한정되는 것은 아니다.The drawings attached to this specification are for easily explaining the present invention, and the shapes shown in the drawings may be exaggerated as necessary to help understand the present invention, so the present invention is not limited by the drawings.
본 명세서에서 본 발명에 관련된 공지의 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에 이에 관한 자세한 설명은 필요에 따라 생략하기로 한다.In the present specification, when it is determined that a detailed description of a known configuration or function related to the present invention may obscure the gist of the present invention, a detailed description thereof will be omitted if necessary.
본 명세서의 일 양상에 따르면, Cr3+ 및 Yb3+를 포함하는 화학식 ABCDO6:Cr3+,Yb3+으로 표시되며, 하향변환(down conversion) 특성을 가지고, According to an aspect of the present specification, it is represented by the formula ABCDO6: Cr3+, Yb3+ including Cr3+ and Yb3+, and has a down conversion characteristic,
상기 A는 Li, Na, K 및 Rb 중 적어도 하나, Wherein A is at least one of Li, Na, K and Rb,
상기 B는 Gd, La 및 Y 중 적어도 하나, B is at least one of Gd, La and Y;
상기 C는 Mg, Wherein C is Mg,
상기 D는 W 및 Mo 중 적어도 하나로 선택되는 형광체 조성물을 제공할 수 있다. D may provide a phosphor composition selected from at least one of W and Mo.
여기서, 상기 형광체 조성물은 300~800 nm 파장 범위의 여기원에 의해 여기되어 900~1300nm 범위의 파장 범위 내에서 발광 피크 파장을 가질 수 있다. Here, the phosphor composition may be excited by an excitation source in a wavelength range of 300 to 800 nm to have an emission peak wavelength within a wavelength range in a range of 900 to 1300 nm.
여기서, 상기 형광체 조성물은 공간군 P21/c의 단사정계(monoclinic) 구조를 가지며, 격자 상수(Å)가 5.4010≤a≤5.4032, 5.4921≤b≤5.4945 및 7.8228≤c≤7.8256의 범위를 가질 수 있다. Here, the phosphor composition may have a monoclinic structure of space group P21/c, and a lattice constant (Å) may have a range of 5.4010≤a≤5.4032, 5.4921≤b≤5.4945, and 7.8228≤c≤7.8256. .
여기서, 상기 형광체 조성물의 X-선 회절 패턴에서 제1강도 피크는 회절각(2θ)이 31.50 ≤ 2θ ≤ 33.50 인 범위에 위치할 수 있다. Here, the first intensity peak in the X-ray diffraction pattern of the phosphor composition may be located in a range where the diffraction angle (2θ) is 31.50 ≤ 2θ ≤ 33.50.
여기서, 상기 형광체 조성물의 X-선 회절 패턴에서 제1 강도 피크는 회절각(2θ)이 31.50 ≤ 2θ ≤ 33.50 범위에 위치하고, 상기 제1 강도 피크보다 작은 제2강도 피크는 회절각(2θ)이 18.75 ≤ 2θ ≤ 20.75 범위에 위치하고, 상기 제2 강도 피크보다 작은 제3강도 피크는 회절각(2θ)이 25.00 ≤ 2θ ≤ 27.00 범위에 위치할 수 있다. Here, in the X-ray diffraction pattern of the phosphor composition, the first intensity peak has a diffraction angle (2θ) in the range of 31.50 ≤ 2θ ≤ 33.50, and the second intensity peak smaller than the first intensity peak has a diffraction angle (2θ) The third intensity peak located in the range of 18.75 ≤ 2θ ≤ 20.75 and smaller than the second intensity peak may have a diffraction angle (2θ) in the range of 25.00 ≤ 2θ ≤ 27.00.
여기서, 상기 화학식은 AB(1-y)C(1-x)DO6: xCr3+,yYb3+ 로 표시되며,Here, the formula is represented by AB(1-y)C(1-x)DO6: xCr3+, yYb3+,
상기 x가 0.03 ≤ x ≤ 0.10의 범위를 가지고, wherein x has the range of 0.03 ≤ x ≤ 0.10,
상기 y가 0.01 ≤ y ≤ 0.20의 범위를 가질 수 있다. The y may have a range of 0.01 ≤ y ≤ 0.20.
여기서, 상기 형광체는 300~700 nm 파장 범위의 여기원에 의해 여기되어 900~1100 nm 범위의 파장 범위 내에서 발광 피크 파장을 가질 수 있다. Here, the phosphor may be excited by an excitation source in a wavelength range of 300 to 700 nm and have an emission peak wavelength within a wavelength range in a range of 900 to 1100 nm.
본 명세서의 다른 양상에 따르면, Li, Na, K 및 Rb 중에서 선택된 1종 이상의 금속의 산화물, Gd, La 및 Y 중에서 선택된 1종 이상의 금속의 산화물, W 및 Mo 중에서 선택된 1종 이상의 금속의 산화물, Mg의 산화물, 혼합물에 Cr의 산화물 및 Yb의 산화물을 혼합하는 단계, 상기 혼합물을 800 내지 1400℃에서 10시간 이상 열처리하는 단계, 상기 열처리한 혼합물을 900 내지 1300℃에서 10시간 이상 열처리하는 단계 및 상기 열처리한 결과물을 분쇄하는 단계를 포함하는 형광체 조성물의 제조 방법을 제공할 수 있다. According to another aspect of the present specification, an oxide of at least one metal selected from Li, Na, K and Rb, an oxide of at least one metal selected from Gd, La and Y, an oxide of at least one metal selected from W and Mo, Mixing the oxide of Mg, the oxide of Cr and the oxide of Yb in the mixture, heat-treating the mixture at 800 to 1400° C. for 10 hours or more, heat-treating the heat-treated mixture at 900 to 1300° C. for 10 hours or more, and It is possible to provide a method for producing a phosphor composition comprising the step of pulverizing the heat-treated product.
본 명세서는 형광체 및 이의 제조방법에 관한 것이다. The present specification relates to a phosphor and a method for manufacturing the same.
이하에서는 본 명세서의 일 실시예에 따른 형광체에 관하여 설명한다. Hereinafter, a phosphor according to an embodiment of the present specification will be described.
본 명세서의 일 실시예에 따른 형광체는 적외선 발광 특성을 가지는 물질이 필요한 다양한 산업분야에 활용하기 위한 것일 수 있다. 일 예로, 본 명세서의 일 실시예에 따른 형광체는 의료 목적을 가지는 기기 또는 장치 등에 활용될 수 있다. 다른 예로, 본 명세서의 일 실시예에 따른 형광체는 적외선 영역의 파장을 확인할 수 있는 기기와 함께 보안 목적 또는 감별 목적에 활용될 수 있다.The phosphor according to an embodiment of the present specification may be used in various industrial fields requiring a material having infrared light emission characteristics. As an example, the phosphor according to an embodiment of the present specification may be used in a device or device having a medical purpose. As another example, the phosphor according to an embodiment of the present specification may be used for security purposes or identification purposes together with a device capable of confirming a wavelength in an infrared region.
여기서, 형광체는 발광 특성을 가진 형광체 조성물을 포함하는 것으로써, 형광체, 형광 물질 또는 형광체 조성물 등으로 지칭될 수 있음을 미리 밝혀둔다. Here, as the phosphor includes a phosphor composition having light emitting properties, it is clarified in advance that it may be referred to as a phosphor, a phosphor, or a phosphor composition.
본 명세서의 일 실시예에 따른 형광체는 하향변환(down conversion)하는 특성을 가질 수 있다. The phosphor according to an embodiment of the present specification may have a down-conversion characteristic.
본 명세서의 일 실시예에 따른 형광체는 자외선 또는 가시광선 영역(300~800 nm)의 파장에 의해 여기되어, 적외선(900~1300 nm) 영역의 파장을 방출할 수 있으며, 구체적으로는 900~1100 nm, 또는 950~1050 nm 영역 내에서 발광 피크 파장을 가질 수 있다. The phosphor according to an embodiment of the present specification may be excited by a wavelength in the ultraviolet or visible ray region (300 to 800 nm) to emit a wavelength in the infrared (900 to 1300 nm) region, specifically, 900 to 1100 nm, or may have an emission peak wavelength within a region of 950 to 1050 nm.
본 명세서의 일 실시예에 따른 형광체는 ABCDO6의 구조식을 가지는 호스트를 포함할 수 있다. 여기서, 상기 A는 Li, Na, K 및 Rb 중 적어도 하나, 상기 B는 Gd, La 및 Y 중 적어도 하나, 상기 C는 Mg, 상기 D는 W 및 Mo 중 적어도 하나로 선택될 수 있다. 이와 관련된 자세한 내용은 후술하기로 한다. The phosphor according to an embodiment of the present specification may include a host having a structural formula of ABCDO6. Here, A may be selected from at least one of Li, Na, K, and Rb, B may be selected from at least one of Gd, La, and Y, C may be Mg, and D may be selected from at least one of W and Mo. Details related to this will be described later.
본 명세서의 일 실시예에 따른 형광체는 활성제(activator)로 Yb(Ytterbium, 이터븀)을 포함할 수 있고, 증감제(sensitizer)로 Cr(Chromium, 크롬)을 포함할 수 있다. 여기서, 본 명세서의 형광체가 포함하는 활성제 및 증감제는 이온 상태로 도핑된 것일 수 있다. The phosphor according to an embodiment of the present specification may include Yb (Ytterbium, ytterbium) as an activator, and may include Cr (Chromium, chromium) as a sensitizer. Here, the activator and the sensitizer included in the phosphor of the present specification may be doped in an ionic state.
본 명세서의 일 실시예에 따른 형광체는 ABCDO6:Cr3+,Yb3+ 의 구조식으로 표시될 수 있다. The phosphor according to an exemplary embodiment of the present specification may be represented by a structural formula of ABCDO6:Cr3+, Yb3+.
본 명세서의 일 실시예에 따른 형광체는 AB(1-y)C(1-x)DO6: xCr3+,yYb3+의 구조식으로 표시될 수 있다. 여기서, 상기 x는 0.03 ≤ x ≤ 0.1의 범위를 가지고 상기 y는 0.01 ≤ y ≤ 0.2의 범위를 가질 수 있다. The phosphor according to the exemplary embodiment of the present specification may be represented by a structural formula of AB(1-y)C(1-x)DO6: xCr3+, yYb3+. Here, x may have a range of 0.03 ≤ x ≤ 0.1, and y may have a range of 0.01 ≤ y ≤ 0.2.
이하에서는 본 명세서의 일 실시예에 따른 형광체의 제조 방법에 관하여 설명한다. Hereinafter, a method of manufacturing a phosphor according to an embodiment of the present specification will be described.
본 명세서의 일 실시예에 따른 형광체의 제조 방법은 Li, Na, K 및 Rb 중에서 선택된 1종 이상의 금속의 산화물, Gd, La 및 Y 중에서 선택된 1종 이상의 금속의 산화물, W 및 Mo 중에서 선택된 1종 이상의 금속의 산화물, Mg의 산화물, 혼합물에 Cr의 산화물 및 Yb의 산화물을 혼합하는 단계, 상기 혼합물을 800 내지 1400℃에서 10시간 이상 열처리하는 단계, 및 상기 열처리한 혼합물을 900 내지 1300℃에서 10시간 이상 열처리하는 단계 및 상기 열처리한 결과물을 분쇄하는 단계를 포함할 수 있다. 이와 관련된 자세한 내용은 도 4를 통해 후술하기로 한다. The method of manufacturing a phosphor according to an embodiment of the present specification includes an oxide of one or more metals selected from Li, Na, K and Rb, an oxide of one or more metals selected from Gd, La and Y, and one selected from W and Mo Mixing the oxides of the above metals, the oxides of Mg, and the oxides of Cr and Yb in a mixture, heat-treating the mixture at 800 to 1400° C. for 10 hours or more, and heat-treating the heat-treated mixture at 900 to 1300° C. for 10 It may include the step of heat-treating for more than an hour, and the step of pulverizing the heat-treated product. Details related thereto will be described later with reference to FIG. 4 .
이하에서는 도면을 참조하여 구체적인 실시 예를 상세하게 설명한다. 다만, 발명의 사상은 제시되는 실시 예에 제한되지 아니하고, 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 발명 사상의 범위 내에 포함되는 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 발명 사상의 범위 내에 포함 된다고 할 것이다. Hereinafter, specific embodiments will be described in detail with reference to the drawings. However, the spirit of the invention is not limited to the presented embodiments, and those skilled in the art who understand the spirit of the invention may add, change, delete, etc. other components within the scope of the same idea, and may develop other degenerative inventions or invention ideas. Other embodiments included within the scope may be easily proposed, but this will also be included within the scope of the invention.
또한, 각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.In addition, components having the same function within the scope of the same idea shown in the drawings of each embodiment will be described using the same reference numerals.
도 1은 본 명세서의 일 실시예에 따른 형광체의 결정 구조를 도시한 도면이다. 1 is a diagram illustrating a crystal structure of a phosphor according to an embodiment of the present specification.
도 1을 참조하면, 본 명세서의 일 실시예에 따른 형광체 또는 형광체의 호스트는 ABCDO6의 화학식으로 표시될 수 있다. 여기서, 상기 A는 Li, Na, K 및 Rb 중 적어도 하나, 상기 B는 Gd, La 및 Y 중 적어도 하나, 상기 C는 Mg, 상기 D는 W 및 Mo 중 적어도 하나로 선택될 수 있으며, 도 1에서는 이의 예로써 NaGdMgWO6의 결정구조를 도시하고 있다. Na, Gd, Mg, W는 각각 산소와 8면체 또는 12면체의 구조를 가질 수 있다. Referring to FIG. 1 , the phosphor or host of the phosphor according to an embodiment of the present specification may be represented by the chemical formula of ABCDO6. Here, A is at least one of Li, Na, K, and Rb, B is at least one of Gd, La and Y, C is Mg, and D may be selected from at least one of W and Mo, and in FIG. As an example, the crystal structure of NaGdMgWO6 is shown. Na, Gd, Mg, and W may each have an octahedral or dodecahedral structure with oxygen.
형광체에 있어서, 호스트의 결정 구조는 형광체의 발광 특성(여기파장, 흡광 강도, 방출파장 또는 발광 강도 등), 형광체의 소광(quenching) -농도 소광, 열 소광, 온도 소광 등을 포함하며, 이에 한정되지 않음-에 영향을 미칠 수 있다. 여기서, 형광체, 또는 호스트의 결정 구조는 배위수, 공간군, 구조, 격자 상수등에 의해 표현될 수 있을 것이다. In the phosphor, the crystal structure of the host includes luminescent properties (excitation wavelength, absorption intensity, emission wavelength or emission intensity, etc.) of the phosphor, quenching of the phosphor -concentration quenching, thermal quenching, temperature quenching, etc., but limited thereto Not-can affect. Here, the crystal structure of the phosphor or the host may be expressed by a coordination number, a space group, a structure, a lattice constant, and the like.
예를 들어, 호스트의 결정 구조는 활성제 또는 증감제의 위치, 활성제와 활성제, 증감제와 증감제 또는 활성제와 증감제 사이의 거리등을 결정할 수 있다. 호스트의 결정 구조에 따라 여기원에 의한 에너지가 호스트 내에서 잘 이동될 수 있고, 활성제 또는 증감제 사이의 에너지 이동이 활발하게 수행됨으로써 형광체의 발광 강도가 높게 나타나고, 소광 현상이 최소화될 수 있다. For example, the crystal structure of the host may determine the position of the active agent or sensitizer, the active agent and the active agent, the sensitizer and the sensitizer or the distance between the active agent and the sensitizer, and the like. Depending on the crystal structure of the host, energy by the excitation source may be well transferred in the host, and energy transfer between the activator or the sensitizer may be actively performed, thereby increasing the luminescence intensity of the phosphor and minimizing the quenching phenomenon.
다른 예를 들어, 호스트의 결정 구조 또는 호스트에 포함된 이온의 특성에 따라 일부 전자는 국부화될 수 있고, 국부화된 전자에 의해 간섭이 최소화됨으로써 형광체의 양자효율이 증가될 수 있다. For another example, some electrons may be localized depending on the crystal structure of the host or the characteristics of ions included in the host, and interference by the localized electrons may be minimized, thereby increasing the quantum efficiency of the phosphor.
본 명세서의 일 실시예에 따른 형광체는 ABCDO6:Cr3+,Yb3+ 의 구조식을 가지며, B위치의 원자가 Yb이온으로, C위치의 원자가 Cr이온으로 대체될 수 있다. 따라서 호스트의 B 및 C 원자의 위치에 따라 Yb이온과 Cr이온의 위치 또는 Yb이온과 Cr이온 사이의 거리가 결정됨으로써, 본 명세서의 형광체의 발광 특성이 나타날 수 있고, 형광체의 소광 현상이 최소화될 수 있다. The phosphor according to an exemplary embodiment of the present specification has a structural formula of ABCDO6:Cr3+,Yb3+, and a valence at the B position may be replaced by a Yb ion, and a valence at the C position may be replaced by a Cr ion. Therefore, the position of Yb ions and Cr ions or the distance between Yb ions and Cr ions is determined according to the positions of B and C atoms of the host, so that the luminescent properties of the phosphor of the present specification may appear, and the quenching phenomenon of the phosphor may be minimized. can
도 2는 본 명세서의 일 실시예에 따른 형광체의 X선 회절 패턴을 리트벨트(Rietveld) 해석법을 이용하여 분석한 결과를 도시한 도면이다. 여기서, 도 2의 분석 결과는 X-선 회절분석기(XRD)를 통해 CuKα(λ= 1.5405Å)으로 회절시킨 것일 수 있다. FIG. 2 is a diagram illustrating a result of analyzing an X-ray diffraction pattern of a phosphor according to an embodiment of the present specification using a Rietveld analysis method. Here, the analysis result of FIG. 2 may be diffracted with CuKα (λ = 1.5405 Å) through an X-ray diffraction analyzer (XRD).
도 2를 참조하면, 본 명세서의 형광체(또는 호스트)인 ABCDO6, ABCDO6:Cr3+,Yb3+는 공간군 P21/c의 단사정계(monoclinic) 구조를 가질 수 있다. 본 명세서의 형광체(또는 호스트)의 결정구조에 있어서, 격자 상수(Å)는 5.4010≤a≤5.4032, 5.4921≤b≤5.4945 및 7.8228≤c≤7.8256의 범위를 가질 수 있다. 형광체내에서 단위 셀당 원소의 수는 4개일 수 있다. Referring to FIG. 2 , the phosphors (or hosts) ABCDO6, ABCDO6:Cr3+, Yb3+ of the present specification may have a monoclinic structure of space group P21/c. In the crystal structure of the phosphor (or host) of the present specification, the lattice constant (Å) may have a range of 5.4010≤a≤5.4032, 5.4921≤b≤5.4945, and 7.8228≤c≤7.8256. The number of elements per unit cell in the phosphor may be four.
본 명세서의 형광체(또는 호스트)의 결정 구조를 나타내는 도 2의 X-선 회절 패턴에서, 제1강도 피크는 회절각(2θ)이 31.50 ≤ 2θ ≤ 33.50 인 범위에 위치할 수 있다. 제1 강도 피크보다 작은 제2 강도 피크는 18.75 ≤ 2θ ≤ 20.75인 범위에 위치할 수 있다. 제2 강도 피크보다 작은 제3 강도 피크는 25.00 ≤ 2θ ≤ 27.00인 범위에 위치할 수 있다.In the X-ray diffraction pattern of FIG. 2 showing the crystal structure of the phosphor (or host) of the present specification, the first intensity peak may be located in a range where the diffraction angle (2θ) is 31.50 ≤ 2θ ≤ 33.50. The second intensity peak smaller than the first intensity peak may be located in a range of 18.75 ≤ 2θ ≤ 20.75. The third intensity peak smaller than the second intensity peak may be located in a range of 25.00 ≤ 2θ ≤ 27.00.
상술한 것과 같이, 본 명세서의 형광체는 도 2의 그래프 및 표를 통해 도출되는 결정 구조를 가지며, 이를 통해 본 명세서의 형광체의 발광 특성이 나타날 수 있고, 형광체의 소광 현상이 최소화될 수 있다.As described above, the phosphor of the present specification has a crystal structure derived from the graph and table of FIG. 2 , and through this, the luminescent property of the phosphor of the present specification may be exhibited, and the quenching phenomenon of the phosphor may be minimized.
한편, 도 1 및 도 2를 통해 도시된 형광체는 NaGdMgWO6에 대한 것으로, ABCDO6의 예시이나. A에 위치할 수 있는 원소가 Li, Na, K 및 Rb로 모두 1족 알칼리 금속이고, B에 위치할 수 있는 원소가 Gd, La 및 Y로 모두 희토류 원소이며, C는 Mg, 이고, D는 W 및 Mo 로 모두 크롬족 원소이므로, 각 위치에 위치하는 원소들이 서로 유사한 특성을 나타날 것으로 통상의 기술자에게 이해될 수 있으며, 이에 따라 A, B, D에 NaGdMgWO6와 다른 원소가 위치하더라도 이 때의 결정 구조는 도 1 및 도 2의 결정 구조와 실질적으로 유사하게 나타날 수 있을 것이다. 그러나 반드시 그러한 것은 아니며, 조성물에 포함되는 원소들 간의 관계 또는 비율에 따라 그 결과가 다르게 나타나는 것도 가능함은 자명하다. Meanwhile, the phosphor shown in FIGS. 1 and 2 is for NaGdMgWO6, an example of ABCDO6. Elements that can be positioned in A are Li, Na, K, and Rb, which are all Group 1 alkali metals, elements that can be positioned in B are Gd, La, and Y, which are all rare earth elements, C is Mg, and D is Since both W and Mo are chromium elements, it can be understood by those skilled in the art that elements located at each position will exhibit similar properties to each other, and accordingly, even if NaGdMgWO6 and other elements are located in A, B, D, at this time The crystal structure may appear substantially similar to the crystal structure of FIGS. 1 and 2 . However, this is not necessarily the case, and it is obvious that the result may appear differently depending on the relationship or ratio between the elements included in the composition.
도 3(a) 및 도 3(b)는 본 명세서의 일 실시예에 따른 형광체의 입도 분석 결과이고, 도 3(c)는 본 명세서의 일 실시예에 따른 형광체의 SEM이미지이다.3(a) and 3(b) are results of particle size analysis of the phosphor according to an embodiment of the present specification, and FIG. 3(c) is an SEM image of the phosphor according to an embodiment of the present specification.
본 명세서의 형광체의 입도 또는 형상은 형광체의 발광 강도에 영향을 미칠 수 있다. 본 명세서의 형광체의 입도는 1~20 μm 또는 1~18 μm 내의 값일 수 있다. 형광체의 입도가 20 μm를 초과하면 형광체의 발광 강도 또는 색조의 불균일이 발생할 수 있고, 형광체가 나노 크기 인 경우에는 단위 부피에 대한 표면 결함의 비율이 큰폭으로 증가하고, 이로 인해 소광이 야기될 수 있으므로, 형광체의 발광 강도가 다소 낮게 나타날 수도 있을 것이다. 따라서, 높은 발광 강도를 나타내는 형광체를 제조하기 위해서는 반응 물질의 농도, 열처리 온도 및 시간 등을 달리함으로써 형광체의 입도 또는 형상을 조절해야 할 수 있다. 또한, 제조 수율을 높이기 위해서 제조된 형광체가 균일한 크기 또는 형상을 가지도록 하는 것이 바람직할 수 있으므로, 제조 수율을 향상시키기 위해 반응 물질의 농도, 열처리 온도 및 시간등이 조절될 수도 있을 것이다.The particle size or shape of the phosphor herein may affect the emission intensity of the phosphor. The particle size of the phosphor of the present specification may be within 1 to 20 μm or 1 to 18 μm. If the particle size of the phosphor exceeds 20 μm, non-uniformity in emission intensity or color tone of the phosphor may occur. Therefore, the light emission intensity of the phosphor may appear somewhat low. Therefore, in order to manufacture a phosphor exhibiting high emission intensity, it may be necessary to control the particle size or shape of the phosphor by varying the concentration of the reactant, the heat treatment temperature and time, and the like. In addition, since it may be desirable to make the manufactured phosphor have a uniform size or shape in order to increase the manufacturing yield, the concentration of the reactant, the heat treatment temperature, and the time may be adjusted to improve the manufacturing yield.
도 3을 참조하면, 본 명세서의 일 실시예에 따른 형광체의 형상, 크기, 크기의 분포를 확인할 수 있다. 소결된 형광체의 입도는 평균적으로 10 내지 11 μm이다. 소결된 형광체의 입도는 전체의 90% 이상이 18 μm 값 이하일 수 있다. 소결된 형광체의 입도 값이 주로 5~15 μm에 집중되어 있는 것을 볼 때, 균일한 크기를 가지는 형광체가 제조된 것을 확인할 수 있다. 또, SEM이미지를 통해 나타나는 형광체의 형상을 통해, 균일한 형상을 가지는 형광체가 제조된 것을 확인 할 수 있다.Referring to FIG. 3 , the shape, size, and size distribution of the phosphor according to an embodiment of the present specification can be confirmed. The average particle size of the sintered phosphor is 10 to 11 μm. More than 90% of the particle size of the sintered phosphor may be less than or equal to 18 μm. When the particle size value of the sintered phosphor is mainly concentrated in 5 to 15 μm, it can be confirmed that a phosphor having a uniform size is manufactured. In addition, it can be confirmed that a phosphor having a uniform shape is manufactured through the shape of the phosphor shown through the SEM image.
도 4는 본 명세서의 일 실시예에 따른 형광체의 제조방법을 도시한 순서도이다. 4 is a flowchart illustrating a method of manufacturing a phosphor according to an exemplary embodiment of the present specification.
도 4를 참조하면, 본 명세서의 일 실시예에 따른 형광체의 제조방법은 Li, Na, K 및 Rb 중에서 선택된 1종 이상의 금속의 산화물, Gd, La 및 Y 중에서 선택된 1종 이상의 금속의 산화물, W 및 Mo 중에서 선택된 1종 이상의 금속의 산화물, Mg의 산화물, 혼합물에 Cr의 산화물 및 Yb의 산화물을 혼합하는 단계(S1100), 상기 혼합물을 800 내지 1400℃에서 10시간 이상 열처리하는 단계(S1200), 및 상기 열처리한 혼합물을 900 내지 1300℃에서 10시간 이상 열처리하는 단계(S1300) 및 상기 열처리한 결과물을 분쇄하는 단계(S1400)를 포함할 수 있다.Referring to FIG. 4 , in the method of manufacturing a phosphor according to an embodiment of the present specification, an oxide of one or more metals selected from Li, Na, K and Rb, an oxide of one or more metals selected from Gd, La and Y, W and mixing the oxide of at least one metal selected from Mo, the oxide of Mg, and the oxide of Cr and the oxide of Yb in the mixture (S1100), heat-treating the mixture at 800 to 1400° C. for 10 hours or more (S1200), and heat-treating the heat-treated mixture at 900 to 1300° C. for 10 hours or more (S1300) and pulverizing the heat-treated product (S1400).
이하에서는 각 단계를 보다 구체적으로 설명한다. Hereinafter, each step will be described in more detail.
(S1100)단계에서, 혼합물에 포함되는 반응 물질을 산화물로 표시한 것은 출발 물질로 탄산염, 질산염, 수산염 또는 아세트산화물 등의 어떤 것을 사용하더라도 고온 합성시 산화되어 결국 산화물로 바뀌기 때문일 수 있다. 따라서 출발물질은 산화물의 몰 비 가 상기 범위 내에 든다면 금속의 산화물뿐 아니라 탄산염, 질산염, 수산염, 아세트산화물 등 다른 형태의 것도 가능할 수 있다. In step (S1100), the reaction material included in the mixture is marked as an oxide because, even if any of carbonate, nitrate, oxalate, or acetate is used as a starting material, it is oxidized during high-temperature synthesis and eventually turned into an oxide. Therefore, as the starting material, if the molar ratio of the oxide falls within the above range, other forms such as carbonate, nitrate, oxalate, and acetate as well as oxides of metals may be possible.
일 실시예에 있어서, NaGdMgWO6:Cr3+,Yb3+ 제조를 위한 출발 물질로 NaCO3, Gd2O3, MgO, WO3, Cr2O3 및 Yb2O3 가 포함될 수 있으며, 각각은 형광체의 화학양론적 당량비에 따라 혼합될 수 있다.In one embodiment, NaCO3, Gd2O3, MgO, WO3, Cr2O3 and Yb2O3 may be included as a starting material for the preparation of NaGdMgWO6:Cr3+, Yb3+, and each may be mixed according to a stoichiometric equivalent ratio of the phosphor.
일 실시예에 있어서, NaYMgWO6:Cr3+,Yb3+ 제조를 위한 출발 물질로 NaCO3, Y2O3, MgO, WO3, Cr2O3 및 Yb2O3가 포함될 수 있으며, 각각은 형광체의 화학 양론적 당량비에 따라 혼합될 수 있다.In an embodiment, NaCO3, Y2O3, MgO, WO3, Cr2O3, and Yb2O3 may be included as a starting material for preparing NaYMgWO6:Cr3+, Yb3+, and each may be mixed according to a stoichiometric equivalent ratio of the phosphor.
일 실시예에 있어서, NaLaMgWO6:Cr3+,Yb3+ 제조를 위한 출발 물질로 NaCO3, La2O3, MgO, WO3, Cr2O3 및 Yb2O3가 포함될 수 있으며, 각각은 형광체의 화학 양론적 당량비에 따라 혼합될 수 있다.In an embodiment, NaCO3, La2O3, MgO, WO3, Cr2O3, and Yb2O3 may be included as a starting material for preparing NaLaMgWO6:Cr3+, Yb3+, and each may be mixed according to a stoichiometric equivalent ratio of the phosphor.
일 실시예에 있어서, NaGdMgMoO6:Cr3+,Yb3+ 제조를 위한 출발 물질로 NaCO3, Gd2O3, MgO, MoO3, Cr2O3 및 Yb2O3가 포함될 수 있으며, 각각은 형광체의 화학 양론적 당량비에 따라 혼합될 수 있다.In one embodiment, NaCO3, Gd2O3, MgO, MoO3, Cr2O3 and Yb2O3 may be included as a starting material for the preparation of NaGdMgMoO6:Cr3+, Yb3+, and each may be mixed according to a stoichiometric equivalent ratio of the phosphor.
(S1100)단계에서, 혼합물 중 Cr의 산화물 및 Yb의 산화물은 후술할 열처리 시 형광체 결정 내부에 이온으로 도핑되어 발광시 활성제 및 증감제로 작용할 수 있다. In step (S1100), the oxide of Cr and the oxide of Yb in the mixture may be doped with ions inside the phosphor crystal during heat treatment to be described later to act as an activator and a sensitizer during light emission.
(S1100)단계에서, 상기 반응 물질의 혼합물은 아게이트 유봉 및 유발에 의해 습식으로 30분 동안 혼합 및 분쇄될 수 있다. 상기 혼합물은 알루미나도가니에 충진될 수 있으며, 충진된 도가니는 충분한 시간동안 건조 후, 열처리를 위해 전기로에 배치될 수 있다. In step (S1100), the mixture of the reactants may be mixed and pulverized in a wet manner by using an agate pestle and mortar for 30 minutes. The mixture may be filled in an alumina crucible, and after the filled crucible is dried for a sufficient time, it may be placed in an electric furnace for heat treatment.
(S1100)단계의 혼합물은 (S1200)단계 및 (S1300)단계의 2단계 열처리를 통해 소결될 수 있다. (S1200)단계 및 (S1300)단계에서 열처리된 혼합물은 자연냉각될 수 있고, 자연 냉각된 혼합물은 분쇄될 수 있다.The mixture of step (S1100) may be sintered through the two-step heat treatment of steps (S1200) and (S1300). The mixture heat-treated in steps (S1200) and (S1300) may be naturally cooled, and the naturally cooled mixture may be pulverized.
(S1200)단계에서, 상기 혼합물은 800 내지 1400℃에서 10시간 이상, 바람직하게는, 900℃에서 12시간 동안 열처리될 수 있다. (S1300) 단계에서, 상기 혼합물은 900 내지 1300℃에서 10시간 이상, 바람직하게는 1050℃에서 12시간 동안 열처리될 수 있다. In step (S1200), the mixture may be heat-treated at 800 to 1400° C. for 10 hours or more, preferably, at 900° C. for 12 hours. In step (S1300), the mixture may be heat-treated at 900 to 1300° C. for 10 hours or more, preferably at 1050° C. for 12 hours.
상기 열처리 온도 또는 시간은 형광체의 결정 구조, 결정 크기, 결정성 또는 발광 효율 등에 영향을 미칠 수 있다. 구체적인 예를 들어, 상기 열처리 온도가 800℃ 또는 900℃이하이면 결정이 생성되기 어렵고, 상기 열처리 온도가 1400℃이상이면 반응물로부터 결정이 생성되기 어렵거나, 생성된 결정성이 저하되는 등 형광체의 제조 수율 및 발광 효율을 떨어뜨릴 수 있다. 또한 상기 열처리 온도가 적절한 합성 온도 이상, 예를 들어 조성물의 녹는 점 이상인 경우, 제조된 조성물이 녹거나 power 형태로 수득되기 어려울 수 있다. 따라서, 상기 열처리는 적정한 온도 내에서 수행되어야 할 수 있다. The heat treatment temperature or time may affect the crystal structure, crystal size, crystallinity, or luminous efficiency of the phosphor. For example, if the heat treatment temperature is 800° C. or 900° C. or lower, crystals are difficult to form, and when the heat treatment temperature is 1400° C. or higher, crystals are difficult to form from the reactants or the resulting crystallinity is reduced. Yield and luminous efficiency may be reduced. In addition, when the heat treatment temperature is at least an appropriate synthesis temperature, for example, at or above the melting point of the composition, the prepared composition may be difficult to melt or obtain in the form of power. Therefore, the heat treatment may have to be performed within an appropriate temperature.
도 5는 본 명세서의 일 실시예에 따른 형광체의 발광 스펙트럼 그래프이다.5 is a graph of an emission spectrum of a phosphor according to an exemplary embodiment of the present specification.
도 5를 참조하면, 본 명세서의 일 실시예에 따른 형광체는 자외선 또는 가시광선 영역(300~800 nm)의 파장에 의해 여기되어, 적외선(900~1300 nm) 영역의 파장을 방출할 수 있다.Referring to FIG. 5 , the phosphor according to an exemplary embodiment of the present specification may be excited by a wavelength in an ultraviolet or visible ray region (300 to 800 nm) to emit a wavelength in an infrared (900 to 1300 nm) region.
상기 형광체는 300~700 nm 파장 범위의 여기원에 의해 여기되어 900~1100 nm 범위의 파장 범위 내에서 발광 피크 파장을 가질 수 있으며, 구체적으로는 300~600 nm 파장 범위의 여기원에 의해 여기되어 900~1100 nm, 또는 950~1050nm 영역 내에서 발광 피크 파장을 가질 수 있다. 본 명세서의 일 실시예에 따른 형광체는 적색 발광을 나타내는 물질일 수 있다.The phosphor may be excited by an excitation source in a wavelength range of 300 to 700 nm and have an emission peak wavelength within a wavelength range in a wavelength range of 900 to 1100 nm, specifically, excited by an excitation source in a wavelength range of 300 to 600 nm. It may have an emission peak wavelength within a range of 900 to 1100 nm, or 950 to 1050 nm. The phosphor according to an embodiment of the present specification may be a material that emits red light.
한편, 본 명세서의 일 실시예에 따른 형광체는 AB(1-y)C(1-x)DO6: xCr3+,yYb3+ 로 표시될 수 있으며, x는 0.03 ≤ x ≤ 0.1의 범위를 가질 수 있고, y는 0.01 ≤ y ≤ 0.2의 범위를 가질 수 있다.Meanwhile, the phosphor according to an embodiment of the present specification may be expressed as AB(1-y)C(1-x)DO6: xCr3+,yYb3+, where x may have a range of 0.03 ≤ x ≤ 0.1, and y may have a range of 0.01 ≤ y ≤ 0.2.
이는 활성제의 농도가 1% 미만, 증감제의 농도가 3% 미만일 때는 발광 원소의 부족으로 발광 특성이 나타나기 어렵기 때문일 수 있다. 따라서, 본 명세서에서 목적하는 형광체의 발광 특성이 나타나기 위해서는 활성제의 농도가 적어도 1% 이상, 증감제의 농도가 적어도 3% 이상이 되어야 할 수 있다. This may be because when the concentration of the active agent is less than 1% and the concentration of the sensitizer is less than 3%, it is difficult to show the luminescent property due to the lack of the luminescent element. Therefore, in order to exhibit the desired light emitting characteristics of the phosphor in the present specification, the concentration of the active agent should be at least 1% or more and the concentration of the sensitizer should be at least 3% or more.
또 활성제의 농도가 20%를 초과할 때, 증감제의 농도가 10%를 초과할 때는 활성제, 증감제 또는 호스트 사이의 간섭등에 의해 소광 효과가 발생할 수 있으므로, 활성제의 농도는 20% 이하, 증감제의 농도는 10% 이하인 것이 바람직할 수 있다. In addition, when the concentration of the active agent exceeds 20%, when the concentration of the sensitizer exceeds 10%, the quenching effect may occur due to interference between the active agent, the sensitizer, or the host. It may be desirable that the concentration of the agent be 10% or less.
그러나 상술한 활성제 또는 증감제의 농도범위는 절대적인 것은 아니고, 각각 조성물의 호스트가 포함하는 원소의 종류, 호스트의 결정 구조, 형광체의 크기 등에 따라 달라질 수 있다. 이는 조성물의 발광 특성이 상술한 활성제 또는 증감제의 농도 외에도 다양한 요소에 따른 영향을 받기 때문일 수 있다. However, the concentration range of the above-described active agent or sensitizer is not absolute, and may vary depending on the type of element included in the host of the composition, the crystal structure of the host, the size of the phosphor, and the like. This may be because the luminescent properties of the composition are affected by various factors in addition to the concentration of the above-described active agent or sensitizer.
한편, 상술한 범위 내에서도 조성물의 발광 특성은 활성제 또는 증감제의 농도에 따라 상이하게 나타날 수 있다. 구체적인 예로, 활성제 또는 증감제가 특정 농도 이상으로 조성물에 포함되는 경우 오히려 형광체의 발광 강도가 저하될 수 있다. 이처럼 활성제 또는 증감제의 농도와 형광체의 발광 강도가 비례하지 않는 것은 호스트와 활성제 또는 증감제 사이의 상호작용으로 인하여 에너지 이동이 방해되거나, 소광 효과가 발생하기 때문일 수 있다. On the other hand, even within the above-mentioned range, the light emitting properties of the composition may appear differently depending on the concentration of the active agent or sensitizer. As a specific example, when the activator or the sensitizer is included in the composition at a specific concentration or more, the light emission intensity of the phosphor may be reduced. The reason that the concentration of the activator or the sensitizer and the emission intensity of the phosphor is not proportional may be because the energy transfer is disturbed or the quenching effect occurs due to the interaction between the host and the activator or the sensitizer.
적절한 활성제 또는 증감제의 농도는 형광체의 호스트 결정 구조에 따라 상이할 수 있으며, 이는 호스트 결정 구조에 따라 상술한 상호작용 효과, 발광 특성-흡광 강도 또는 발광 강도 등을 포함함- 또는 소광 효과 등이 달리 나타나기 때문일 수 있다. 또, 적절한 활성제 또는 증감제의 농도는 형광체 입도 및 형상에 따라 상이할 수 있으며, 이는 형광체의 입도가 작아 단면적당 표면적이 증가하게 되면, 발광 강도 또는 흡광 강도가 증가하거나 이에 따른 소광 현상이 촉진되기 때문일 수 있다. An appropriate concentration of the active agent or sensitizer may be different depending on the host crystal structure of the phosphor, which may have the above-described interaction effect, luminescence property-including absorption intensity or emission intensity, etc.- or quenching effect, etc. depending on the host crystal structure. It may be because they appear different. In addition, the concentration of an appropriate activator or sensitizer may differ depending on the particle size and shape of the phosphor. This is because when the particle size of the phosphor is small and the surface area per cross-sectional area increases, the luminescence intensity or absorption intensity increases or the quenching phenomenon is promoted. It could be because
이상에서 설명한 본 명세서의 실시예에 따른 방법들은 단독으로 또는 서로 조합되어 이용될 수 있다. 또 각 방법에서 설명된 각 단계들은 모두 필수적인 것은 아니므로 각 방법은 그 단계들을 전부 포함하는 것은 물론 일부만 포함하여 수행되는 것도 가능하다. 또 각 단계들이 설명된 순서는 설명의 편의를 위한것에 불과하므로, 상술한 방법에서 각 단계들이 반드시 설명된 순서대로 진행되어야 하는 것은 아니다.The methods according to the embodiments of the present specification described above may be used alone or in combination with each other. In addition, since each step described in each method is not essential, each method may be performed including all of the steps as well as only a part thereof. In addition, since the order in which each step is described is only for convenience of description, each step in the above-described method does not necessarily have to be performed in the described order.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 명세서의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.The above description is merely illustrative of the technical spirit of the present invention, and various modifications and variations will be possible without departing from the essential characteristics of the present invention by those skilled in the art to which the present invention pertains. Accordingly, the embodiments of the present specification described above may be implemented separately or in combination with each other.
따라서, 본 명세서에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Accordingly, the embodiments disclosed in the present specification are intended to explain, not to limit the technical spirit of the present invention, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (8)

  1. Cr3+ 및 Yb3+를 포함하는 화학식 ABCDO6:Cr3+,Yb3+으로 표시되며,represented by the formula ABCDO6:Cr3+,Yb3+ comprising Cr3+ and Yb3+,
    하향변환(down conversion) 특성을 가지고,It has down-conversion characteristics,
    상기 A는 Li, Na, K 및 Rb 중 적어도 하나, Wherein A is at least one of Li, Na, K and Rb,
    상기 B는 Gd, La 및 Y 중 적어도 하나, B is at least one of Gd, La and Y;
    상기 C는 Mg, Wherein C is Mg,
    상기 D는 W 및 Mo 중 적어도 하나로 선택되는wherein D is selected from at least one of W and Mo
    형광체 조성물.Phosphor composition.
  2. 제1 항에 있어서,According to claim 1,
    상기 형광체 조성물은 300~800nm 파장 범위의 여기원에 의해 여기되어 900~1300nm 범위의 파장 범위 내에서 발광 피크 파장을 가지는The phosphor composition is excited by an excitation source in a wavelength range of 300 to 800 nm and has an emission peak wavelength in a wavelength range in the range of 900 to 1300 nm.
    형광체 조성물.Phosphor composition.
  3. 제1 항에 있어서,According to claim 1,
    상기 형광체 조성물은 공간군 P21/c의 단사정계(monoclinic) 구조를 가지며, 격자 상수(Å)가 5.4010≤a≤5.4032, 5.4921≤b≤5.4945 및 7.8228≤c≤7.8256의 범위를 가지는The phosphor composition has a monoclinic structure of space group P21/c, and has a lattice constant (Å) in the range of 5.4010≤a≤5.4032, 5.4921≤b≤5.4945, and 7.8228≤c≤7.8256
    형광체 조성물.Phosphor composition.
  4. 제1 항에 있어서,According to claim 1,
    상기 형광체 조성물의 X-선 회절 패턴에서 제1강도 피크는 회절각(2θ)이 31.50 ≤ 2θ ≤ 33.50 인 범위에 위치하는The first intensity peak in the X-ray diffraction pattern of the phosphor composition is located in a range where the diffraction angle (2θ) is 31.50 ≤ 2θ ≤ 33.50.
    형광체 조성물.Phosphor composition.
  5. 제1 항에 있어서,According to claim 1,
    상기 형광체 조성물의 X-선 회절 패턴에서 In the X-ray diffraction pattern of the phosphor composition,
    제1 강도 피크는 회절각(2θ)이 31.50 ≤ 2θ ≤ 33.50 범위에 위치하고,The first intensity peak has a diffraction angle (2θ) located in the range of 31.50 ≤ 2θ ≤ 33.50,
    상기 제1 강도 피크보다 작은 제2강도 피크는 회절각(2θ)이 18.75 ≤ 2θ ≤ 20.75 범위에 위치하고, The second intensity peak smaller than the first intensity peak has a diffraction angle (2θ) located in the range of 18.75 ≤ 2θ ≤ 20.75,
    상기 제2 강도 피크보다 작은 제3강도 피크는 회절각(2θ)이 25.00 ≤ 2θ ≤ 27.00 범위에 위치하는 The third intensity peak smaller than the second intensity peak has a diffraction angle (2θ) located in the range of 25.00 ≤ 2θ ≤ 27.00.
    형광체 조성물.Phosphor composition.
  6. 제1 항에 있어서,According to claim 1,
    상기 화학식은 AB(1-y)C(1-x)DO6: xCr3+,yYb3+ 로 표시되며,The formula is represented by AB(1-y)C(1-x)DO6: xCr3+, yYb3+,
    상기 x가 0.03 ≤ x ≤ 0.10의 범위를 가지고, wherein x has the range of 0.03 ≤ x ≤ 0.10,
    상기 y가 0.01 ≤ y ≤ 0.20의 범위를 가지는wherein y is in the range of 0.01 ≤ y ≤ 0.20
    형광체 조성물.Phosphor composition.
  7. 제1 항에 있어서,According to claim 1,
    상기 형광체는 300~600nm 파장 범위의 여기원에 의해 여기되어 900~1100nm 범위의 파장 범위 내에서 발광 피크 파장을 가지는The phosphor is excited by an excitation source in a wavelength range of 300 to 600 nm and has an emission peak wavelength in a wavelength range in the range of 900 to 1100 nm.
    형광체 조성물.Phosphor composition.
  8. Li, Na, K 및 Rb 중에서 선택된 1종 이상의 금속의 산화물, Gd, La 및 Y 중에서 선택된 1종 이상의 금속의 산화물, W 및 Mo 중에서 선택된 1종 이상의 금속의 산화물, Mg의 산화물, 혼합물에 Cr의 산화물 및 Yb의 산화물을 혼합하는 단계;Oxides of one or more metals selected from Li, Na, K and Rb, oxides of one or more metals selected from Gd, La and Y, oxides of one or more metals selected from W and Mo, oxides of Mg, Cr in the mixture mixing the oxide and the oxide of Yb;
    상기 혼합물을 800 내지 1400℃에서 10시간 이상 열처리하는 단계; heat-treating the mixture at 800 to 1400° C. for at least 10 hours;
    상기 열처리한 혼합물을 900 내지 1300℃에서 10시간 이상 열처리하는 단계; 및heat-treating the heat-treated mixture at 900 to 1300° C. for at least 10 hours; and
    상기 열처리한 결과물을 분쇄하는 단계; 를 포함하는pulverizing the heat-treated product; containing
    형광체 조성물의 제조 방법.A method for producing a phosphor composition.
PCT/KR2021/017941 2020-12-29 2021-12-01 Phosphor composition and preparation method therefor WO2022145750A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200185971A KR102528656B1 (en) 2020-12-29 2020-12-29 Phosphor compositions and method of manufacturing the same
KR10-2020-0185971 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022145750A1 true WO2022145750A1 (en) 2022-07-07

Family

ID=82260496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017941 WO2022145750A1 (en) 2020-12-29 2021-12-01 Phosphor composition and preparation method therefor

Country Status (2)

Country Link
KR (1) KR102528656B1 (en)
WO (1) WO2022145750A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056639A (en) * 2012-10-30 2014-05-12 전남대학교산학협력단 Organic solar cell including phosphors and method for manufacturing the same
KR20190090051A (en) * 2012-01-24 2019-07-31 에피스타 코포레이션 Light-emitting dies incorporating wavelength-conversion materials and related methods
KR20190114133A (en) * 2018-03-29 2019-10-10 세종대학교산학협력단 Garnet structure oxide phosphor, preparing method of the same, and its luminescent property

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634340B (en) 2012-03-19 2013-12-25 南京工业大学 Red double-perovskite fluorescent powder for white-light LEDs and preparation method of red double-perovskite fluorescent powder
CN104830333B (en) 2015-03-06 2017-01-25 江苏师范大学 Li/Mg-codoped bi-perovskite red fluorescent powder and preparation method of same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190090051A (en) * 2012-01-24 2019-07-31 에피스타 코포레이션 Light-emitting dies incorporating wavelength-conversion materials and related methods
KR20140056639A (en) * 2012-10-30 2014-05-12 전남대학교산학협력단 Organic solar cell including phosphors and method for manufacturing the same
KR20190114133A (en) * 2018-03-29 2019-10-10 세종대학교산학협력단 Garnet structure oxide phosphor, preparing method of the same, and its luminescent property

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG YUAN, SUN KANGNING, GE PINGHUI: "Yb3+ and Er3+ co-doped ZnGa2O4:Cr3+ powder phosphors: Combining green up-conversion emission and red persistent luminescence", OPTICAL MATERIALS, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM., NL, vol. 83, 1 September 2018 (2018-09-01), NL , pages 13 - 18, XP055948408, ISSN: 0925-3467, DOI: 10.1016/j.optmat.2018.05.048 *
KUMAR K. NAVEEN, VIJAYALAKSHMI L., CHOI JUNGWOOK: "Investigation of Upconversion Photoluminescence of Yb 3+ /Er 3+ :NaLaMgWO 6 Noncytotoxic Double-Perovskite Nanophosphors", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 58, no. 3, 4 February 2019 (2019-02-04), Easton , US , pages 2001 - 2011, XP055948407, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.8b02990 *

Also Published As

Publication number Publication date
KR102528656B1 (en) 2023-05-03
KR20220094597A (en) 2022-07-06

Similar Documents

Publication Publication Date Title
Cao et al. Synthesis and luminescence properties of Li2SnO3: Mn4+ red-emitting phosphor for solid-state lighting
Liu et al. A white light emitting luminescent material Ba3Y (PO4) 3: Dy3+
Cao et al. Emission enhancement of LiLaMo2O8: Eu3+ phosphor by co-doping with Bi3+ and Sm3+ ions
Ayvacıklı et al. Radioluminescence of SrAl2O4: Ln3+ (Ln= Eu, Sm, Dy) phosphor ceramic
Kaur et al. Color tunable photoluminescence properties in Eu3+ doped calcium bismuth vanadate phosphors for luminescent devices
Tong et al. Luminescent properties of Na2GdMg2 (VO4) 3: Eu3+ red phosphors for NUV excited pc-WLEDs
Yin et al. Novel red phosphor of double perovskite compound La2MgTiO6: xEu3+
Sahu et al. Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs
Devi et al. Crystal chemistry and optical analysis of a novel perovskite type SrLa2Al2O7: Sm3+ nanophosphor for white LEDs
Cao et al. Study on the luminescence properties and energy transfer of Na4CaSi3O9: Ce3+, Sm3+ phosphor
Lee et al. Luminescent properties of Eu 3+-activated Gd 2 ZnTiO 6 double perovskite red-emitting phosphors for white light-emitting diodes and field emission displays
WO2012134043A2 (en) Oxynitride-based phosphor
Kanmani et al. Development of novel Na2Mg3Zn2Si12O30: Eu3+ red phosphor for white light emitting diodes
Rajkumar et al. A new perovskite type Ba2YZrO6: Eu3+ red phosphor with cubical morphology for WLEDs applications
CN109592978A (en) High-capacity LED/LD illumination refers to fluorescence ceramics and the preparation method and application thereof with warm white height is aobvious
Xu et al. Highly efficient green-emitting phosphors with high color rendering for WLEDs
Li et al. Co-substitution strategy to achieve a novel efficient deep-red-emitting SrKYTeO6: Mn4+ phosphor for plant cultivation lighting
Raman et al. Concentration dependent Dy3+ activated LiPbB5O9 phosphor: structure and luminescence studies for white LED applications
Li et al. Luminescence properties and thermal stability of Dy3+/Eu3+ co-doped single-component BaZn2 (PO4) 2 glass-ceramic phosphors
Jiao et al. Crystal structure refinement, photoluminescence properties and energy transfer of multicolor tunable Ca2Al2SiO7: Tm3+, Dy3+ for NUV white-light-emitting diodes
CN113481001B (en) Copper ion doped gallate-based red long-afterglow material and preparation method thereof
WO2022145750A1 (en) Phosphor composition and preparation method therefor
Zheng et al. Deep-red to NIR emission of Mn4+ and Cr3+ doped La2MgTiO6 phosphor with multifunctional applications
Liu et al. The synthesis and luminescent properties of Eu3+ doped Li5La3Ta2O12 garnet phosphor with enhanced red emission and thermally stable
Liu et al. Realizing multicolor tunable photoluminescence in La2MgTiO6: Tb3+, Eu3+ phosphors via energy transfer and application for white light-emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915548

Country of ref document: EP

Kind code of ref document: A1