WO2022145743A1 - Method for producing three-dimensional blood-brain barrier structure of blood-brain barrier organ-on-a-chip using reverse rapid liquid printing, and blood-brain barrier organ-on-a-chip comprising same - Google Patents

Method for producing three-dimensional blood-brain barrier structure of blood-brain barrier organ-on-a-chip using reverse rapid liquid printing, and blood-brain barrier organ-on-a-chip comprising same Download PDF

Info

Publication number
WO2022145743A1
WO2022145743A1 PCT/KR2021/017785 KR2021017785W WO2022145743A1 WO 2022145743 A1 WO2022145743 A1 WO 2022145743A1 KR 2021017785 W KR2021017785 W KR 2021017785W WO 2022145743 A1 WO2022145743 A1 WO 2022145743A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
brain barrier
dimensional
chip
brain
Prior art date
Application number
PCT/KR2021/017785
Other languages
French (fr)
Korean (ko)
Inventor
오현직
조진희
이민영
최낙원
강민진
아이브이존 폴 프랜턴
Original Assignee
(주) 마이크로핏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210045869A external-priority patent/KR102527639B1/en
Application filed by (주) 마이크로핏 filed Critical (주) 마이크로핏
Publication of WO2022145743A1 publication Critical patent/WO2022145743A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional blood-brain barrier organ-on-a-chip using reverse liquid rapid printing, and to a blood-brain barrier organ-on-a-chip comprising the structure manufactured therefrom.
  • the blood-brain barrier is a strong biological barrier that selectively permeates only blood substances essential for maintaining brain function to maintain normal brain function and protect the brain from external substances.
  • the central nervous system drugs cannot be delivered to target cells due to the blood-brain barrier (BBB), so the focus has been on the strategy of passing drugs or drug carriers through the blood-brain barrier (BBB).
  • a model that can accurately predict the interaction of (BBB) is essential.
  • the currently used hydrogel interface technology is a method of realizing a three-dimensional co-culture environment by forming a two-dimensional surface using a hydrogel and attaching cerebrovascular cells to the hydrogel surface.
  • the function of the blood-brain barrier can be verified by monitoring mass transfer in the cell wall formed by the attachment of cells.
  • the existing two-dimensional blood-brain barrier (BBB) chip is only partially exposed to the culture medium after drug injection due to the limitation of two-dimensional cross-sectional contact, and changes in cells are concentrated around the contact surface.
  • BBB blood-brain barrier
  • it has limitations as a research platform because it is difficult to simulate the complex functions and structures of the blood-brain barrier (BBB), such as directional blood flow and three-dimensional interactions between cells.
  • a 3D blood-brain barrier (BBB) chip that implements a 3D blood vessel shape in a chip is being developed.
  • Such a 3D blood-brain barrier (BBB) chip implements an environment similar to the human body through blood vessels implemented in three dimensions and can similarly simulate the tissue characteristics of cells.
  • BBB blood-brain barrier
  • physical stimuli in vivo can be simulated, and various cells constituting the blood-brain barrier (BBB) are simultaneously cultured to enable intercellular interactions.
  • BBB biological blood-brain barrier
  • 3D printing is a technology that builds three-dimensional objects by stacking materials in a layer-by-layer manner based on three-dimensional design data. 3D printing does not require a separate mold for product production, As products can be produced as-is, customized small-volume production, which was difficult with the existing manufacturing method, is possible.
  • the current 3D printing technology has a slower production speed compared to existing additive manufacturing technologies such as injection molding, casting, and milling, so it is suitable for small component production, but has a limitation in that it is difficult to manufacture large-sized products.
  • the available materials are limited and the quality of the finished product is lower than that of industrial materials, making it difficult to apply in practice.
  • FDM method is a method of manufacturing by laminating after melting filaments. It can print products with strong durability and strength, but the output speed is slow and the quality of the finished product is low because the surface is not smooth.
  • Poly Jet method is a method of manufacturing by jetting a photocurable liquid material and curing the material with a UV lamp. Although it is possible to produce a smooth and detailed product, the material is limited and the durability is low.
  • the Stereo Lithography Apparatus (SLA) method is a method of curing a liquid material using a laser, and it is very good to realize the shape of a sharp edge, but it is expensive to maintain and it is difficult to remove the support required in the printing process.
  • the Selective Laser Sintering (SLS) method is a method of manufacturing powder material by scanning a Co2 laser, and various materials can be used, but it is difficult to use because the laser irradiation direction must be carefully set depending on the material.
  • the Digital Light Processing (DLP) method directly projects the output image from the beam projector and outputs it. It has excellent precision, but the usable materials and output size are limited. Furthermore, since the 3D printing method can output polymer only through a nozzle in the air, and the photocurable UV irradiation method can output only layer by layer, it is difficult to implement a three-dimensional 3D structure.
  • the present invention has been devised to solve the problems of the prior art as described above, and an object of the present invention is to fabricate a three-dimensional blood-brain barrier structure of a blood-brain barrier organ-on-a-chip based on reverse rapid liquid printing (RRLP) technology.
  • RRLP reverse rapid liquid printing
  • Another object of the present invention is to provide a novel blood-brain barrier organ-on-a-chip capable of accurately realizing a 3D blood-brain barrier existing in a living body without animal testing.
  • the present invention provides a method for manufacturing a three-dimensional blood-brain barrier structure of a blood-brain barrier organ-on-a-chip using reverse liquid rapid printing, comprising the following steps.
  • step (c) storing the microchannel-formed bath prepared in step (b) at a low temperature of 1 to 10° C. and solidifying it to prepare a three-dimensional structure having microchannels;
  • the biocompatible polymer is collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, Matrigel, polyethylene glycol (PEG), polyethylene oxide (PEO), polycaprolactone (PCL) , polylactic acid (PLA), polyglycolic acid (PGA), poly[(lactic-co-(glycolic acid))(PLGA), poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate) (PHBV), polydioxanone (PDO), poly[(L-lactide)-co-(caprolactone)], poly(ester urethane) (PEUU), poly[(L-lactide)-co-(D -lactide)], poly[ethylene-co-(vinyl alcohol)](PVOH), polyacrylic acid (PAA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polystyrene (PS), polyaniline ( PAN)
  • the anionic polymer may be any one or more selected from the group consisting of hyaluronic acid, alginate, pectin, carrageenan, chondroitin sulfate and dextran sulfate.
  • the second gel solution may further include a natural polymer forming a hydrogel.
  • the natural polymer may be any one selected from the group consisting of collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, MatrIgel, and mixtures thereof.
  • the second gel solution is any one or more human-derived brain selected from the group consisting of neurons, neural stem cells, microglia, astrocytes, and pericytes. It may further include tissue cells.
  • the diameter size of the microchannel may be controlled by adjusting the flow rate of the first gel solution and the discharge speed of the nozzle in step (b).
  • the ejection speed of the nozzle may be 0.3 to 0.5 mm/s.
  • the crosslinking agent may be any one or more selected from the group consisting of calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and calcium carbonate (CaCO 3 ).
  • step (f) injecting cerebrovascular endothelial cells through the microchannel of the three-dimensional blood-brain barrier structure to form a cerebrovascular endothelial cell membrane on the inner wall of the microchannel; may further include.
  • step (f) injecting Matrigel through the microchannel of the three-dimensional blood-brain barrier structure, attaching the Matrigel to the inner wall of the microchannel of the three-dimensional blood-brain barrier structure; It may further include.
  • the present invention includes: a body including a first plate and a second plate joined to the first plate, wherein a recessed groove is formed on an inner surface of the first plate and an inner surface of the second plate; a chamber formed in the body by the recessed groove by bonding the first plate and the second plate; a three-dimensional blood-brain barrier structure existing inside the chamber and including at least one microchannel in the hydrogel;
  • the first plate includes a plurality of through-holes for supplying or discharging fluid, and the second plate has guide channels recessed to a predetermined depth so that each of the through-holes and the microchannel of the blood-brain barrier structure communicate with each other. It provides a brain-vascular barrier organ-on-a-chip, characterized in that it is configured.
  • the hydrogel of the three-dimensional blood-brain barrier structure may include brain tissue cells, and a cerebrovascular endothelial cell membrane may be formed on the inner wall of the microchannel to mimic the human brain blood vessel barrier (BBB).
  • BBB human brain blood vessel barrier
  • the three-dimensional blood-brain barrier structure manufacturing method of the blood-brain barrier organ on a chip using reverse liquid rapid printing according to the present invention can not only simulate the actual three-dimensional blood-brain barrier, but also a test method that can replace the current animal experiment can be used as
  • the manufactured blood-brain barrier organ-on-a-chip can delicately fabricate the blood-brain barrier (BBB) into a three-dimensional structure using a small amount of material. Therefore, the present invention is expected to be usefully used for three-dimensional culture of cells.
  • BBB blood-brain barrier
  • FIG. 1 is an exemplary view showing a manufacturing process of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention (the symbols in FIG. 1 are as follows. 1: first gel solution, 2: second gel) Solution, 3: Nozzle of the printing device and the direction of movement of the nozzle, 4: Bath, 5: Temperature control device).
  • FIG. 2 is a diagram illustrating phase separation between a first gel solution and a second gel solution.
  • 3 is an apparatus for printing microfluidic channels using a reverse rapid liquid printing method.
  • FIG. 5 is a perspective view and assembly diagram of a blood-brain barrier organ-on-a-chip according to an embodiment of the present invention.
  • Vascular barrier structure, 111,112,113,114 micro channel, 200: body, 210: first plate, 211,212: first and second inlet, 213,214: first, second outlet, 215: depression, 220: second plate, 221,222,223,224: Guide channel, 225: recessed groove, 230: chamber).
  • FIG. 6 is a plan view of the main body 200 of the blood-brain barrier organ-on-a-chip according to an embodiment of the present invention.
  • 210 first plate, 211,212: first, second inlet, 213,214: first, second outlet, 215: recessed groove, 220: second plate, 221,222,223,224: guide channel, 225: recessed groove, 226: fastening ring, 230: chamber).
  • FIG. 8 is a perspective view of a three-dimensional blood-brain barrier structure 100 according to an embodiment of the present invention
  • the bottom view of FIG. 8 is a three-dimensional blood-brain barrier structure 100' according to another embodiment of the present invention.
  • a perspective view (the symbols in Fig. 8 indicate the following: 100, 100': three-dimensional blood-brain barrier structure, 110, 110': hydrogel, 111,111', 112, 112', 113, 113', 114, 114':micro channel).
  • FIG. 9 is a cross-sectional view of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention (the symbols in FIG. 9 are as follows.
  • 111a cerebrovascular endothelial cell membrane
  • 111b brain tissue cells
  • FIG. 10 is a photograph taken with an optical microscope after a colored liquid is injected into the three-dimensional blood-brain barrier structure prepared in Example 1.
  • FIG. 10 is a photograph taken with an optical microscope after a colored liquid is injected into the three-dimensional blood-brain barrier structure prepared in Example 1.
  • FIG. 11 is a photograph of fluorescence images of living cells and dead cells in a three-dimensional blood-brain barrier structure.
  • Figure 11a is a photograph taken of a fluorescence image of green living cells labeled with calcein AM
  • Figure 11b is a photograph taken of a fluorescence image of a red dead cell labeled with PI
  • Figure 11c is a photograph of living cells and dead cells It is a photograph taken together with a fluorescence image of
  • FIG. 12 is an image showing the cell viability in a three-dimensional blood-brain barrier structure.
  • 13A is a photograph of a three-dimensional blood-brain barrier structure immediately after injection of a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel.
  • hCMEC/D3 cerebrovascular endothelial cell
  • 13B is a photograph of a three-dimensional blood-brain barrier structure after injecting a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel and culturing for 30 minutes.
  • hCMEC/D3 cerebrovascular endothelial cell
  • FIG. 13c is a photograph of a three-dimensional blood-brain barrier structure after cerebrovascular endothelial cell (hCMEC/D3) suspension was injected into a microchannel, cultured for 30 minutes, and removed.
  • hCMEC/D3 cerebrovascular endothelial cell
  • One aspect of the present invention relates to a method for manufacturing a three-dimensional blood-brain barrier structure of a blood-brain barrier organ-on-a-chip using reverse liquid rapid printing, comprising the following steps.
  • step (c) forming a three-dimensional structure in which microchannels are formed by impacting the solution discharged in step (b) at a low temperature of 4°C;
  • step (d) curing the three-dimensional structure having microchannels formed in step (c) by reacting it with a CaCl2 solution
  • step (e) comprising the step of processing the cured three-dimensional structure of step (d).
  • FIG. 1 is an exemplary view showing a manufacturing process of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention (the symbols in FIG. 1 are as follows. 1: first gel solution, 2: second gel) Solution, 3: Nozzle of the printing device and the direction of movement of the nozzle, 4: Bath, 5: Temperature control device).
  • a first gel solution containing a water-soluble polymer is prepared (step (a)).
  • the first gel solution may include a biocompatible polymer, and the biocompatible polymer is not particularly limited as long as it is not crosslinked by a divalent cation crosslinking agent, and preferably, the biocompatible polymer is collagen or gelatin. , chitosan, fibrin, cellulose, dextran, agar, pullulan, Matrigel, polyethylene glycol (PEG), polyethylene oxide (PEO), polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid ( PGA), poly[(lactic-co-(glycolic acid)) (PLGA), poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate) (PHBV), polydioxanone (PDO), Poly[(L-lactide)-co-(caprolactone)], poly(ester urethane) (PEUU), poly[(L-lactide)-co-(D-lactide)], poly[ethylene-co -(vinyl alcohol)] (P
  • the biocompatible polymer may be any one selected from the group consisting of polyethylene glycol (PEG), polyethylene oxide (PEO), and mixtures thereof, and most preferably, the biocompatible polymer is polyethylene glycol (PEG), PEO (polyethylene oxide) is preferably a mixture.
  • the first gel solution contains 1 to 2% by weight of PEG and 10 to 20% by weight of PEO.
  • the content range of the water-soluble polymer included in the first gel solution is less than or exceeding the above range, the density may be greatly changed, so that phase separation of the first gel solution and the second gel solution does not occur.
  • the first gel solution may further include a solvent, and the solvent is not particularly limited as long as it is a solvent capable of dissolving the water-soluble polymer and ensuring biostability, and preferably distilled water or PBS buffer.
  • the second gel solution includes an anionic polymer, and preferably, the anionic polymer may be any one or more selected from the group consisting of hyaluronic acid, alginate, pectin, carrageenan, chondroitin sulfate and dextran sulfate, , most preferably alginate.
  • the second gel solution may further include a natural polymer forming a hydrogel in addition to the anionic polymer, wherein the natural polymer is collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, mart It may be any one selected from the group consisting of Ligel (Matrigel) and mixtures thereof.
  • the second gel solution acts as a granule gel serving as a support.
  • the second gel solution is preferably a mixture of gelatin and alginate, and the second gel solution contains 5 to 10 wt% of gelatin and 1 to 5 wt% of alginate Most preferred.
  • the gelatin is less than the ratio, a problem occurs in that mechanical strength is lowered, and when the alginate is used in less than the ratio, the crosslinking rate of the formed hydrogel is lowered, thereby causing a problem in that it is difficult to maintain the shape at room temperature.
  • the second gel solution may further include a solvent, and the solvent is not particularly limited as long as it is a solvent capable of dissolving the water-soluble polymer and ensuring biostability, and preferably distilled water or PBS buffer, and most Preferably, the same solvent as that of the second gel solution may be used.
  • the solvent is not particularly limited as long as it is a solvent capable of dissolving the water-soluble polymer and ensuring biostability, and preferably distilled water or PBS buffer, and most Preferably, the same solvent as that of the second gel solution may be used.
  • the second gel solution is any one or more human-derived brain selected from the group consisting of neurons, neural stem cells, microglia, astrocytes, and pericytes. It may further include tissue cells. The cells can be obtained and used from human brain tissue.
  • the cells may be used alone or a mixture of two or more cells may be used, and a spheroid form or an organoid form may be used, and the microchannel after being sufficiently cultured in a culture medium before being mixed with the second gel solution or encapsulated in a hydrogel structure It can be cultured by perfusion of the medium.
  • the neuron refers to a nerve cell as a unit constituting the nervous system
  • the neural stem cell is a cell having the ability to differentiate into a nervous system cell capable of self-renewal
  • the microglia are glial cells of the central nervous system derived from the mesoderm, microglia As a cell, it acts as a phagocyte responsible for transport, destruction, and removal of substances in tissues, and has the function of supporting the tissues of the central nervous system as well as supplying substances necessary for nerve cells and creating a suitable environment.
  • the astrocytes are one of the cells constituting the glial supporting the nervous tissue, also called astrocytes or astrocytes, have small cell bodies and protrusions that split in various directions, and serve to help structure and metabolism of neurons.
  • the capillary wall consists only of flat endothelial cells, and there is no clear smooth muscle layer or connective tissue layer surrounding the perivascular cells, and connective tissue cells appear sporadically in the basement membrane layer of the endothelial cells, which are called perivascular cells, It is known to be edible.
  • the second gel is placed so that these brain tissue cells are placed on the outer wall of the microchannel of the three-dimensional structure so that the present invention can imitate it. mixed into the solution. Since the second gel solution contains an anionic polymer or natural polymer that can be implemented similarly to the extracellular matrix, human brain tissue cells can survive well and maintain their intrinsic activity.
  • a nozzle for discharging is positioned so that the first gel solution is printed inside the second gel solution, and the first gel solution is reversed rapid liquid printing in a bath filled with the second gel solution. ) to form a microchannel by discharging it (step (b)).
  • the first gel solution and the second gel solution are separated from each other without mixing due to the density difference, and through this characteristic, a hydrogel complex composed of two different layers can be obtained ( FIG. 2 ).
  • the temperature condition of step (b) is not particularly limited as long as the second gel solution maintains a liquid state in a temperature range, but may be preferably 20 to 50 °C, more preferably 20 to 40 °C, more More preferably, it may be 30 to 40 °C.
  • 3 is an apparatus for printing microfluidic channels using a reverse rapid liquid printing method.
  • a 3-axis micro stage capable of implementing 3D printing, a driving motor, a motor controller, a micro nozzle, a syringe pump, and a temperature control means may be included.
  • the micro-nozzle preferably has a diameter capable of making a channel of 10 to 1500 ⁇ m.
  • the syringe pump may move the gel solution to the nozzle.
  • a temperature control means is provided, and a hot plate may be used as the temperature control means. Preferred conditions of the three-axis microstage, the driving motor, and the motor controller are shown in FIG. 4 .
  • a microchannel having a desired structure is printed by discharging the first gel solution into the second gel solution using a reverse rapid liquid printing method. Specifically, by positioning the nozzle for discharging so that the first gel solution is printed inside the second gel solution, the first gel solution is reversed rapid liquid in a bath filled with the second gel solution.
  • printing by printing the microchannel with a pattern designed by moving it by the desired shape and length of the microchannel, it is possible to form a three-dimensional three-dimensional structure.
  • the thickness of the microchannel may be adjusted by adjusting the flow rate and velocity of the first gel solution supplied during the printing.
  • the discharge speed may also be referred to as a printing speed.
  • Table 1 shows the flow rate (flow rate) of the supplied first gel solution, the ejection speed (velocity) of the nozzle, and the width ( ⁇ m) of the microchannel manufactured through the flow rate (velocity).
  • a flow rate of the first gel solution supplied during the printing may be appropriately selected according to a desired thickness of the microchannel.
  • the flow rate of the first gel solution may be 0.05 to 0.1 ml/min.
  • the nozzle velocity (Velocity) may also be appropriately selected according to the desired thickness of the microchannel.
  • it may be preferably 0.1 to 0.5 mm/s, and more preferably 0.3 to 0.5 mm/s.
  • the width of the microchannel is 100 to 500 ⁇ m. It is most preferable to satisfy 0.5 mm/s.
  • the second gel solution in the bath may be filled to a height of 2 to 10 mm, but is not limited thereto.
  • the microchannel-formed bath prepared in step (b) is stored at a low temperature of 1 to 10° C. and solidified to prepare a microchannel-formed three-dimensional structure (step (c)). Since the hydrogel formed from the first gel solution is solidified under the conditions of 1 to 10 ° C, it is stored at 1 to 10 ° C. low temperature in order to fix the three-dimensional micro channel structure in the microchannel formed bath prepared in step (b). to solidify.
  • the low temperature may be in a temperature range of 1 to 10 °C, but is not limited thereto, preferably 1 to 5 °C, and most preferably 4 °C.
  • the three-dimensional structure in which the microchannel formed in step (c) is formed may be a blood-brain barrier (BBB, blood-brain barrier) structure.
  • BBB blood-brain barrier
  • the microchannels in the form of three-dimensional three-dimensional fibrous structures are formed by rapidly diffusing while phase-separating without being mixed with each other.
  • step (c) the three-dimensional structure having microchannels formed in step (c) is cured by reacting it with a crosslinking agent (step (d)).
  • the crosslinking agent may be a divalent cation aqueous solution, and the divalent cation aqueous solution may be at least one selected from the group consisting of calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and calcium carbonate (CaCO 3 ), limited thereto. it's not going to be
  • step (d) only the three-dimensional structure excluding the microchannel may be cured.
  • physical cross-linking as well as chemical cross-linking can be used, but for stable curing, a cross-linking method using a cross-linking agent is practical.
  • the crosslinking time and degree of crosslinking can be controlled by adjusting the ratio of the crosslinking agent.
  • Step (d) may be performed at 20 to 30 °C.
  • the first gel solution is removed from the cured three-dimensional structure of step (d) (step (e)). Since the first gel solution printed with the microchannel exists in a liquid state at room temperature, it can be removed by perfusing a phosphate buffer solution (PBS) through the three-dimensional structure.
  • PBS phosphate buffer solution
  • the first gel solution was removed by connecting a silicone tube to both ends of the three-dimensional structure and perfusion with phosphate buffer solution (PBS) at room temperature.
  • PBS phosphate buffer solution
  • a microchannel of an empty space through which a fluid can flow is formed in the three-dimensional structure, and the fluid can be injected into the microchannel through both end portions of the three-dimensional structure.
  • the cured three-dimensional structure may be processed into a desired shape to make a block of a required size.
  • the processing method can be used without particular limitation as long as it is a method widely known in the art.
  • washing with tertiary distilled water may be further included. This is to remove phosphate buffer solution (PBS) and other unreacted residual substances as solids after drying.
  • PBS phosphate buffer solution
  • (f) injecting cerebrovascular endothelial cells through the microchannel of the three-dimensional blood-brain barrier structure may further include the step of forming a cerebrovascular endothelial cell membrane on the inner wall of the microchannel.
  • vascular endothelial cells isolated from human brain microvascular endothelial cells may be used.
  • Matrigel is injected through the microchannel of the three-dimensional blood-brain barrier structure so that the cerebrovascular endothelial cells can be well attached and stabilized on the inner wall of the microchannel, It may further include the step of attaching the matrigel to the microchannel inner wall of the three-dimensional blood-brain barrier structure.
  • a complex blood-brain barrier structure and a blood-brain barrier model can be manufactured using the different hydrogel solutions through a reverse rapid liquid printing method.
  • a three-dimensional blood-brain barrier structure can be implemented by including brain tissue cells and cerebrovascular endothelial cells, respectively, on the outside and inner walls of the microchannel of the blood-brain barrier structure.
  • the present invention provides a blood-brain barrier organ-on-a-chip.
  • FIG. 5 is a perspective view and an assembly view of a blood-brain barrier organ-on-a-chip according to an embodiment of the present invention.
  • 6 is a plan view of the blood-brain barrier organ-on-a-chip according to an embodiment of the present invention.
  • 7 is a perspective view and a cross-sectional view of a body of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention.
  • 8 is a perspective view of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention, and the bottom view of FIG. 8 is a perspective view of a three-dimensional blood-brain barrier structure according to another embodiment of the present invention.
  • 9 is a cross-sectional view of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention.
  • the present inventors have tried to develop an artificial tissue model having a microchannel network similar to the structure of the blood-brain barrier, and thus have completed the present invention.
  • the brain-vascular barrier organ-on-a-chip of the present invention is a three-dimensional microstructure that mimics brain tissue, and is configured to observe the interaction between brain tissue cells and vascular endothelial cells in the blood-brain barrier (BBB). is implemented.
  • the blood-brain barrier (BBB) is a capillary structure of the brain, and unlike general capillaries, endothelial cells are tightly coupled, so small molecules can be delivered to the brain through active transport, but large molecules have low permeability. For this reason, in order to develop brain-related and central nervous system-related drugs, the ability to penetrate the blood-brain barrier is required first.
  • the blood-brain barrier organ-on-a-chip of the present invention is an organ chip that mimics the capillary structure of the brain, and the interaction between cells in the blood-brain barrier (BBB) can be observed.
  • the blood-brain barrier organ-on-a-chip 10 of the present invention is a three-dimensional structure 100 formed while forming a capillary structure like the blood-brain barrier without brain endothelial cells and brain tissue cells mixed with each other, artificial tissue It is maintained in a stable and fixed state within the chip.
  • the blood-brain barrier organ-on-a-chip 10 of the present invention can be used for drug efficacy tests and other harmful substances tests in addition to cell mechanism studies by simulating a living tissue that is a multi-structured blood-brain barrier structure.
  • the form of the blood-brain barrier organ-on-a-chip 10 is not limited as long as it has a three-dimensional shape simulating a living tissue, for example, a blood-brain tissue.
  • the blood-brain barrier organ-on-a-chip 10 includes a first plate 210 and a second plate 220 bonded to the first plate 210, the first a body 200 in which recessed grooves 215 and 225 are formed on the inner surface of the plate 210 and the inner surface of the second plate 220; a chamber 230 formed in the body 200 by the recessed grooves 215 and 225 by bonding the first plate 210 and the second plate 220 to each other;
  • the three-dimensional blood-brain barrier structure 100 is present in the chamber 230 and includes at least one microchannel (111, 112, 113, 114) in the hydrogel 110;
  • the first plate 210 includes a plurality of through-holes 211, 212, 213, and 214 for supplying or discharging fluid, and the second plate 220 has each of the through-holes and micro-organisms of the blood-brain barrier structure.
  • Each of the guide channels 221 , 222 , 223 and 224 formed by being recessed to a
  • a channel extending to the recessed grooves 215 and 225 is formed in combination with the guide channel of the second plate 220 .
  • a recessed channel recessed by the can be additionally formed.
  • the shape of the blood-brain barrier organ-on-a-chip 10 of the present invention is not limited as long as it has a three-dimensional structure, and may specifically be a rectangular parallelepiped shape.
  • the size of the blood-brain barrier organ-on-a-chip 10 is not particularly limited as long as it can be manufactured according to the manufacturing method of the present invention, but preferably has a width of 10-500 mm, 10-450 mm, 10-400 mm, 10-350 mm, 10-300 mm, 10-250 mm, 10-200 mm, 10-150 mm, 10-100 mm, 15-100 mm, 20-100 mm, 25-100 mm, 30-100 mm, 40 to 100 mm, 45 to 100 mm, 50 to 100 mm, 55 to 100 mm, 60 to 100 mm, 65 to 100 mm or 65 to 80 mm.
  • the length of the blood-brain barrier organ on a chip 10 is 10-500 mm, 10-450 mm, 10-400 mm, 10-350 mm, 10-300 mm, 10-250 mm, 10-200 mm, 10- 150 mm, 10-100 mm, 10-50 mm, 20-50 mm, 25-50 mm, 30-50 mm, 35-50 mm or 35-45 mm
  • the blood-brain barrier organ-on-a-chip 10 of the present invention comprises a first plate 210 , a second plate 220 , a chamber 230 formed by the first and second plates, and a three-dimensional brain provided in the chamber. It may include a blood vessel barrier structure 100 .
  • the first plate 210 and the second plate 220 are not particularly limited as long as they are transparent materials, and transparent ceramics including glass, polydimethylsiloxane (PDMS: PolyDiMethylSiloxane), ecoflex, polystyrene ( polystyrene, general purpose polystyrene, polymethylmethacrylate, polyethylene terephthalate, polyester methacrylate, polypropylene, polycarbonate, Polyurethane, High impact polystyrene, Acrylonitnle butadiene styrene, Polyester, Polyamides, Polyethylene, Polytetrafluoroethylene ), polyethylene tereketone (Polyetheretherketone), acrylics (acrylics), amorphous polymers (amorphous polymers) and may be any one selected from the group consisting of polyethylene terephthalate (polyethylene terephthalate), preferably polydimethylsiloxane (PDMS) : PolyDiMethylSiloxan
  • the first plate 210 and the second plate 220 may be manufactured through mold injection molding.
  • the first plate 210 and the second plate 220 are bonded to each other to form the body 200 .
  • a recessed groove 215 into which a three-dimensional blood-brain barrier structure can be inserted is provided on the inner surface of the first plate 210 , and the recessed groove 215 of the first plate 210 is provided in the second plate 220 .
  • the three-dimensional blood-brain barrier structure 100 may be inserted and coupled to the inside of the chamber 230, and the shape and size of the chamber 230 is the three-dimensional blood-brain barrier structure 100 to prevent fluid leakage. ), which is exactly the same as
  • the first plate 210 includes a plurality of through-holes 211, 212, 213, and 214 for supplying or discharging the fluid.
  • the through hole is provided to correspond to the microchannels 111 , 112 , 113 and 114 of the three-dimensional blood-brain barrier structure 100 .
  • the first plate 210 is provided with at least two inlet (211, 212) and at least two outlet (213, 214), for convenience of description, at least two inlet and outlet is divided into “first inlet 211", “second inlet 212", “first outlet 213”, and “second outlet 214".
  • the guide channels 221 , 222 , 223 , and 224 are provided on the same plane of the second plate 220 , and for convenience of description, “first guide channel 221” and “second guide channel 222” , “third guide channel 223” and “fourth guide channel 224" will be divided and described.
  • the first and second inlets 211 and 212 and the first and second outlets 213 and 214 are interconnected by microchannels 111, 112, 113, and 114 of the three-dimensional blood-brain barrier structure, and the The first and second injection holes 211 and 212 and the microchannels 111, 112, 113 and 114 are connected by the first and second guide channels 221 and 222 provided in the second plate 220, The microchannels 111 , 112 , 113 and 114 and the first and second outlets 213 and 214 are connected by third and fourth guide channels 223 and 224 .
  • the guide channels 221 , 222 , 223 and 224 inject the fluid introduced from the first and second inlets 211 , 212 into the microchannel, or the fluid discharged from the microchannel 111 , 112 , 113 , and 114 . It is a passage connected to move to the first and second outlets 213 and 214 .
  • the three-dimensional blood-brain barrier is passed through the first guide channel 221 and the second guide channel 222 .
  • the fluid is supplied to the microchannels 111, 112, 113, and 114 of the structure, respectively, and the fluid that has passed through the microchannels 111, 112, 113, 114 passes through the third and fourth guide channels 223 and 224. It is emitted to the first and second outlets 213 and 214 and can simulate the microvascular structure flowing between brain tissues of the human body.
  • the present invention is a morphological/genetic change model that mimics the flow of blood flow due to the fluid supplied to the three-dimensional blood-brain barrier structure, and the molecular biological changes that may appear in each cell are closer to the human body. can be formed and observed.
  • a channel extending to the recessed grooves 215 and 225 is formed in combination with the guide channel of the second plate 220 .
  • a recessed channel recessed by the can be additionally formed.
  • a fastening ring ( 226) may be further included.
  • the fastening ring 226 has a structure in which the entrance is gradually narrowed in the direction of the microchannels 111, 112, 113, and 114, and is inserted into the microchannel and fastened to minimize leakage at the connection part.
  • the three-dimensional blood-brain barrier structure 100 is inserted and seated inside the chamber 230, and may include at least one or more microchannels 111, 112, 113, and 114 in the hydrogel 110. have.
  • the size of the three-dimensional blood-brain barrier structure 100 is not particularly limited as long as it can mimic the blood-brain barrier structure, and specifically, the size of the cross-section may be 10 to 100 mm ⁇ 10 to 50 mm, preferably It may be 50 mm ⁇ 30 mm.
  • the three-dimensional blood-brain barrier structure 100 is not particularly limited as long as it has a three-dimensional shape that mimics the structure of the blood-brain barrier, but specifically may be a rectangular parallelepiped shape.
  • the three-dimensional blood-brain barrier structure 100 has a plurality of micro-channels 111, 112, 113, and 114 penetrating the three-dimensional blood-brain barrier structure 100, and the micro-channels 111, 112, 113 , 114) is not limited as long as it has a three-dimensional structure, and specifically, each of the microchannels 111, 112, 113, and 114 may be the same as or different from each other.
  • microchannels 111 , 112 , 113 , and 114 may have a cylindrical shape having an empty space so that a fluid can flow therein.
  • there may be a membrane formed by attaching cerebrovascular endothelial tissue to the inner wall of the microchannels 111 , 112 , 113 and 114 .
  • 'attachment' means injecting a formulation containing cerebrovascular endothelial cells into the blood-brain barrier organ-on-a-chip 10, and the microchannels 111, 112, 113, 114) means attaching the cerebrovascular endothelial cells to the inner wall, the attachment may be culturing the cerebrovascular endothelial cells, and the culture may be performed for 5 to 60 minutes, specifically 5 to 50 minutes, 5 It may be carried out for 40 minutes, 10 to 40 minutes, 15 to 40 minutes, 20 to 40 minutes or 25 to 35 minutes, and the temperature conditions of the incubation are 10 to 45 ° C, 20 to 45 ° C, 25 to 45 ° C, 30 to 45 °C, 30 to 40 °C, or 32 to 35 °C.
  • the hydrogel 110 mimics the surrounding tissue of the blood-brain barrier, and may be composed of a hydrogel including brain tissue cells, and preferably the hydrogel is an anionic that can be cross-linked by a divalent cation material. It may be composed of a composite material including a polymer. Specifically, it may include any one or more selected from the group consisting of hyaluronic acid, alginate, pectin, carrageenan, chondroitin sulfate and dextran sulfate, but is not particularly limited thereto.
  • the hydrogel may further include a natural polymer capable of forming a hydrogel in addition to the anionic polymer, and the natural polymer is collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, mart It may be any one selected from the group consisting of Ligel (MatrIgel) and mixtures thereof.
  • the hydrogel 110 includes brain tissue cells 111b to be similar to the surrounding tissue of the blood-brain barrier, and the brain tissue cells include neurons, neural stem cells, and microscopic It may be any one or more selected from the group consisting of glial cells (microglia), astrocytes (astrocyte) and peripheral cells (pericyte).
  • microglia glial cells
  • astrocyte astrocyte
  • pericyte peripheral cells
  • the diameters of the microchannels 111, 112, 113, and 114 may be the same as or different from each other, and preferably, the diameter of each microchannel may be formed in a channel structure having a diameter of 1 to 1500 ⁇ m, more preferably 10 to 1500 ⁇ m, 10 to 1000 ⁇ m, 10 to 600 ⁇ m, and 10 to 500 ⁇ m.
  • the microchannels 111, 112, 113, and 114 are formed to penetrate the three-dimensional blood-brain barrier structure, and a membrane including cerebrovascular endothelial cells is formed on the inner wall of the microchannel.
  • the microchannels 111 , 112 , 113 , and 114 according to the present invention may have a three-dimensional network structure similar to that of a brain microvessel penetrating the three-dimensional blood-brain barrier structure 100 .
  • the microchannels 111', 112', 113', and 114' according to the present invention have a cylindrical shape penetrating the three-dimensional blood-brain barrier structure 100'. can be a structure of
  • the blood-brain barrier organ-on-a-chip of the present invention can be applied to drug delivery experiments.
  • the drug delivery test apparatus may include an organ-on-a-chip of the blood-brain barrier of the present invention, a microfluidic valve, a screening apparatus, and the like.
  • the microfluidic valve is a valve that can selectively control the flow of fluid in a chamber of a three-dimensional environment, and can control the inflow and discharge of fluid to and from the blood-brain barrier organ-on-a-chip of the present invention.
  • the fluid may be a candidate material for treating cerebrovascular barrier disorders and central nervous system diseases.
  • the screening device can monitor the effect of a drug solution in real time using electrochemical measurement and liquid chromatography mass spectrometry (LC-MS).
  • LC-MS liquid chromatography mass spectrometry
  • a drug delivery experiment using such a drug delivery test device may be performed as follows. First, a candidate substance is injected into the brain-vascular barrier organ-on-a-chip using a microfluidic valve, the discharged solution is collected, and the concentration of the candidate substance can be analyzed using a screening device.
  • a drug delivery experiment is performed using the blood-brain barrier organ-on-a-chip of the present invention, it is possible to solve the ethical problem of animal experiments and conduct drug delivery experiments at low cost through the blood-brain barrier (BBB) having the same biological environment as the animal model. have.
  • BBB blood-brain barrier
  • the blood-brain barrier disorder is due to a central nervous system disease, but is not limited thereto.
  • the central nervous system disease is any one disease selected from the group consisting of spinal cord injury, stroke, cerebral infarction, cerebral ischemia, Alzheimer's disease, and multiple sclerosis, but is not limited thereto.
  • the present invention is a new artificial organ model that can relatively accurately predict the interaction of cells related to brain-vascular barrier-related disorders and central nervous system diseases in vivo without performing animal tests, and can replace existing animal experiments.
  • the following process was performed to manufacture the blood-brain barrier organ-on-a-chip.
  • poly-L-lysinen at a concentration of 2 ⁇ g/cm 2 was coated on a 75T Flask, the coated vessel was washed with sterile distilled water, 15 ml complete culture solution and 1 ⁇ 10 6 cells were dispensed (seeding), Incubated at 37 °C.
  • the culture medium was changed every 2-3 days, and the astrocyte layer was washed twice with DPBS after 12-14 days. Then, 5 ml of 0.05% trypsin-EDTA and 5 ml of DPBS were added to the flask and reacted in a 37 °C CO 2 incubator. .
  • the second gel solution was poured into a bath equipped with a temperature control chamber, and a device capable of printing microfluidic channels using the reverse liquid rapid printing method of FIG. 5 was installed.
  • the nozzle of the printing device was inserted so that the first gel solution was printed inside the second gel solution.
  • the first gel solution was discharged from the nozzle (flow rate 0.07 ml/min, discharge rate 0.3 mm/s) to print microchannels having a diameter of 400 ⁇ m.
  • the temperature of the bath was maintained at 37 °C, and the first gel solution was maintained at 25 °C.
  • the microchannel formed bath was stored at 4 °C to solidify.
  • an aqueous solution of CaCl 2 was added to harden it.
  • the microchannel of the second gel solution was not cured.
  • distilled water or PBS was perfused into the microchannel to remove the first gel solution to prepare a three-dimensional blood-brain barrier structure.
  • the three-dimensional blood-brain barrier structure was processed into a size of 50 mm ⁇ 30 mm (width ⁇ length) to prepare a three-dimensional blood-brain barrier structure in the form of a cuboid.
  • a colored liquid (rhodamine, Trypan blue) was injected into the three-dimensional blood-brain barrier structure and photographed with an optical microscope.
  • 10 is a photograph taken with an optical microscope after a colored liquid is injected into the three-dimensional blood-brain barrier structure prepared in Example 1.
  • the prepared three-dimensional blood-brain barrier structure was stained with calcein AM and photographed using a confocal microscope (LSM 700, ZEISS). Through this, when astrocytes (human astrocytes) and human brain vascular pericytes were co-cultured inside a three-dimensional blood-brain barrier structure, it was attempted to obtain fluorescence images of living and dead cells.
  • FIG. 11 is a photograph of fluorescence images of living and dead cells in a three-dimensional blood-brain barrier structure
  • FIG. 11a is a photograph of fluorescence images of green living cells labeled with calcein AM
  • FIG. 11b is a PI It is a photograph taken of the fluorescence image of the red dead cells marked with
  • FIG. 11c is a photograph taken together of the fluorescence images of the living cells and the dead cells.
  • FIG. 12 is a photograph of a three-dimensional blood-brain barrier structure taken simultaneously in the x, y, and z-axis directions using a confocal microscope and reconstructed into a three-dimensional image. According to this, it can be confirmed that the cell viability is very high throughout the three-dimensional blood-brain barrier structure.
  • a three-dimensional blood-brain barrier structure was prepared in the same manner as in Example 1.
  • a 3 mg/mL solution of Matrigel was injected instead of a culture solution to coat the inner wall of the microchannel with Matrigel, and the brain at a concentration of 1 ⁇ 10 6 cell/ml
  • a vascular endothelial cell (hCMEC/D3) suspension was injected.
  • both ends of the microchannel were blocked and incubated for 30 minutes.
  • each of the three-dimensional blood-brain barrier structures that had undergone the process of incubation for 30 minutes were photographed using a microscope, and the photographed photographs are shown in FIGS. 13A to 13C .
  • FIG. 13A is a photograph of a three-dimensional blood-brain barrier structure immediately after injecting a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel.
  • the cerebrovascular endothelial cells do not adhere to the inner wall of the microchannel and maintain a circular state. it can be seen that
  • 13b is a photograph of a three-dimensional blood-brain barrier structure after injecting a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel and culturing for 30 minutes. was confirmed.
  • hCMEC/D3 cerebrovascular endothelial cell
  • 13c is a photograph of a three-dimensional blood-brain barrier structure after injecting a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel, culturing for 30 minutes, and removing it. It was confirmed that it was growing and forming a single film.
  • hCMEC/D3 cerebrovascular endothelial cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to a blood-brain barrier organ-on-a-chip using reverse rapid liquid printing. A method for producing a blood-brain barrier organ-on-a-chip using reverse rapid liquid printing, according to the present invention, enables the mimicking of an actual three-dimensional blood-brain barrier, and a blood-brain barrier organ-on-a-chip produced thereby can be used as an artificial organ model which can be an alternative to animal testing.

Description

역방향 액체 급속 프린팅을 이용한 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법 및 이를 포함하는 뇌혈관장벽 오간온어칩Method for manufacturing a three-dimensional blood-brain barrier structure using reverse liquid rapid printing and blood-brain barrier organ-on-a-chip comprising the same
본 발명은 역방향 액체 급속 프린팅을 이용한 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체를 제조하는 방법과 이로부터 제조된 구조체를 포함하는 뇌혈관장벽 오간온어칩에 관한 것이다.The present invention relates to a method for manufacturing a three-dimensional blood-brain barrier organ-on-a-chip using reverse liquid rapid printing, and to a blood-brain barrier organ-on-a-chip comprising the structure manufactured therefrom.
뇌혈관장벽(Blood-brain barrier; BBB)은 뇌 기능 유지에 필수적인 혈중 물질만을 선택적으로 투과시켜 뇌의 기능을 정상적으로 유지하고 외부 물질로부터 뇌를 보호하는 기능을 하는 강력한 생체장벽이다. 신약 개발 과정에서 뇌혈관장벽(BBB)으로 인해 중추신경계 약물들이 표적세포까지 전달되지 못하기 때문에 약물 혹은 약물 전달체의 뇌혈관장벽(BBB) 통과 전략에 초점이 맞춰져 왔으며, 이를 위해 약물과 뇌혈관장벽(BBB)의 상호작용을 정확히 예측할 수 있는 모델이 필수적이다. 생체 뇌혈관장벽(BBB)의 정확한 모델링을 위해 오간온어칩(organ-on-a-chip) 기술을 접목하여, 마이크로단위의 구조물을 인공적으로 제작하여 조직의 미세환경을 더욱 정확히 구현할 수 있는 기술에 대한 연구 개발이 진행되고 있었다.The blood-brain barrier (BBB) is a strong biological barrier that selectively permeates only blood substances essential for maintaining brain function to maintain normal brain function and protect the brain from external substances. In the process of developing new drugs, the central nervous system drugs cannot be delivered to target cells due to the blood-brain barrier (BBB), so the focus has been on the strategy of passing drugs or drug carriers through the blood-brain barrier (BBB). A model that can accurately predict the interaction of (BBB) is essential. By grafting organ-on-a-chip technology for accurate modeling of the biological blood-brain barrier (BBB), it is possible to artificially fabricate micro-scale structures to create a more accurate tissue microenvironment. R&D was in progress.
현재 주로 활용되는 hydrogel interface 기술은 하이드로젤을 이용하여 2차원 면을 형성하고 하이드로젤 면에 뇌혈관 세포를 부착하여 3차원 공배양 환경을 구현하는 방식이다. 세포가 부착되어 형성된 세포벽에서의 물질전달을 모니터링하여 뇌혈관장벽의 기능을 검증할 수 있다. 그러나 기존의 2차원 뇌혈관장벽(BBB) 칩은 2차원적 단면 접촉의 한계로 약물 주입 후 배양액 채널에 일부분만이 노출되며 접촉면 중심으로 세포의 변화가 집중된다. 또한 방향성 혈류 및 세포 간 3차원 상호작용 등 복잡한 뇌혈관장벽(BBB)의 기능과 구조를 모사하기 어려워 연구 플랫폼으로서 한계를 갖는다.The currently used hydrogel interface technology is a method of realizing a three-dimensional co-culture environment by forming a two-dimensional surface using a hydrogel and attaching cerebrovascular cells to the hydrogel surface. The function of the blood-brain barrier can be verified by monitoring mass transfer in the cell wall formed by the attachment of cells. However, the existing two-dimensional blood-brain barrier (BBB) chip is only partially exposed to the culture medium after drug injection due to the limitation of two-dimensional cross-sectional contact, and changes in cells are concentrated around the contact surface. In addition, it has limitations as a research platform because it is difficult to simulate the complex functions and structures of the blood-brain barrier (BBB), such as directional blood flow and three-dimensional interactions between cells.
이에, 종래 2차원 뇌혈관장벽(BBB) 칩 모델의 문제점을 극복하기 위해 칩 내에서 3D 혈관 형태를 구현하는 3D 뇌혈관장벽(BBB) 칩 개발이 이루어지고 있다. 이러한 3D 뇌혈관장벽(BBB) 칩은 3차원으로 구현된 혈관을 통해 인체와 유사한 환경을 구현하며 세포의 조직 특성을 유사하게 모사할 수 있다. 또한 뇌혈관장벽(BBB)이 받는 전단응력(shear stress)을 구현함으로써 생체 내 물리적 자극을 모사할 수 있으며, 뇌혈관장벽(BBB)을 구성하는 다양한 세포를 동시에 배양하여 세포간 상호작용을 가능하게 하여 생체 뇌혈관장벽(BBB)과 유사한 기능을 재현할 수 있다는 장점을 갖는다. Accordingly, in order to overcome the problems of the conventional two-dimensional blood-brain barrier (BBB) chip model, a 3D blood-brain barrier (BBB) chip that implements a 3D blood vessel shape in a chip is being developed. Such a 3D blood-brain barrier (BBB) chip implements an environment similar to the human body through blood vessels implemented in three dimensions and can similarly simulate the tissue characteristics of cells. In addition, by implementing the shear stress applied to the blood-brain barrier (BBB), physical stimuli in vivo can be simulated, and various cells constituting the blood-brain barrier (BBB) are simultaneously cultured to enable intercellular interactions. Thus, it has the advantage of being able to reproduce a function similar to the biological blood-brain barrier (BBB).
최근 3D 프린팅 기술을 접목하여 입체적인 환경의 3D 뇌혈관장벽(BBB) 칩을 구현하는 기술 개발이 활발하게 이루어지고 있다. 3D 프린팅은 3차원 설계 데이터를 바탕으로 물질을 적층 방식(layer-by-layer) 으로 쌓아 올려 3차원 입체물을 제작하는 기술로, 3D프린팅은 제품 생산을 위해 별도의 금형이 필요하지 않고, 설계 도면대로 제품을 생산할 수 있어 기존의 제조 방식으로는 어려웠던 맞춤형 소량생산이 가능하다. Recently, technology development for realizing a 3D blood-brain barrier (BBB) chip in a three-dimensional environment by grafting 3D printing technology is being actively developed. 3D printing is a technology that builds three-dimensional objects by stacking materials in a layer-by-layer manner based on three-dimensional design data. 3D printing does not require a separate mold for product production, As products can be produced as-is, customized small-volume production, which was difficult with the existing manufacturing method, is possible.
하지만 현재 3D 프린팅 기술은 injection molding, casting, milling 등의 기존 적층 제조 기술에 비해 제작 속도가 느리고, 그로 인해 작은 구성품 제작에는 적합하지만 크기가 큰 제품 제작이 어려운 한계점이 있다. 또한 사용할 수 있는 재료가 제한적이며 industrial material에 비해 완성품의 품질이 떨어져 실제 적용이 어렵다는 단점이 있다. However, the current 3D printing technology has a slower production speed compared to existing additive manufacturing technologies such as injection molding, casting, and milling, so it is suitable for small component production, but has a limitation in that it is difficult to manufacture large-sized products. In addition, the available materials are limited and the quality of the finished product is lower than that of industrial materials, making it difficult to apply in practice.
상술한 문제를 해결하기 위하여 다양한 3D 프린팅 방법이 개발되었다. Fused Deposition Modeling(FDM) 방법은, 필라멘트를 녹인 후 적층시켜 제작하는 방식으로, 내구성과 강도가 강한 제품을 출력할 수 있으나 출력 속도가 느리고 표면이 매끄럽지 못해 완성품의 품질이 낮다. Poly Jet 방법은 광경화성 액상 재료를 분출하고 UV 램프로 재료를 경화시켜 제작하는 방식으로, 매끄럽고 디테일한 제품 제작이 가능하지만 소재가 제한적이며 내구성이 낮다. Stereo Lithography Apparatus(SLA) 방법은 액상 재료를 레이저를 사용해서 경화시키는 방식으로, sharp edge의 형상 구현이 매우 좋으나 유지비용이 비싸며 출력과정에서 필요한 지지대 제거가 어렵다. Selective Laser Sintering(SLS) 방법은 분말 재료에 Co2 레이저를 주사하여 제작하는 방식으로 다양한 재료 사용이 가능하지만 재료에 따라 레이저 조사 방향 등을 면밀히 설정해야 해서 사용이 어렵다. Digital Light Processing(DLP) 방법은 빔프로젝터에서 출력물 이미지를 직접 투사해 출력하는 방식으로 정밀도가 우수하나 사용 가능한 재료 및 출력 크기가 제한적이다. 나아가 상기 3D 프린팅 방식은 공기 중 노즐을 통해서만 폴리머 출력이 가능하며, 광경화성 UV 조사 방식은 layer by layer 형태로만 출력이 가능하기 때문에 입체적인 3D 구조체 구현이 어렵다.In order to solve the above problems, various 3D printing methods have been developed. Fused Deposition Modeling (FDM) method is a method of manufacturing by laminating after melting filaments. It can print products with strong durability and strength, but the output speed is slow and the quality of the finished product is low because the surface is not smooth. Poly Jet method is a method of manufacturing by jetting a photocurable liquid material and curing the material with a UV lamp. Although it is possible to produce a smooth and detailed product, the material is limited and the durability is low. The Stereo Lithography Apparatus (SLA) method is a method of curing a liquid material using a laser, and it is very good to realize the shape of a sharp edge, but it is expensive to maintain and it is difficult to remove the support required in the printing process. The Selective Laser Sintering (SLS) method is a method of manufacturing powder material by scanning a Co2 laser, and various materials can be used, but it is difficult to use because the laser irradiation direction must be carefully set depending on the material. The Digital Light Processing (DLP) method directly projects the output image from the beam projector and outputs it. It has excellent precision, but the usable materials and output size are limited. Furthermore, since the 3D printing method can output polymer only through a nozzle in the air, and the photocurable UV irradiation method can output only layer by layer, it is difficult to implement a three-dimensional 3D structure.
따라서 3 차원 형태의 마이크로 채널을 구현할 수 있는 새로운 미세유체 소자 제조기술에 대한 필요성이 절실히 요구되고 있는 실정이다.Therefore, there is an urgent need for a new microfluidic device manufacturing technology capable of realizing a three-dimensional microchannel.
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 RRLP(reverse rapid liquid printing) 기술을 기반으로 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체를 제작하는 방법을 제공하고자 하는 것이다.The present invention has been devised to solve the problems of the prior art as described above, and an object of the present invention is to fabricate a three-dimensional blood-brain barrier structure of a blood-brain barrier organ-on-a-chip based on reverse rapid liquid printing (RRLP) technology. We want to provide a way to do it.
본 발명의 또 다른 목적은 동물시험을 하지 않으면서도 생체 내에 존재하는 3D 뇌혈관장벽을 정확히 구현할 수 있는 새로운 뇌혈관장벽 오간온어칩을 제공하고자 하는 것이다. Another object of the present invention is to provide a novel blood-brain barrier organ-on-a-chip capable of accurately realizing a 3D blood-brain barrier existing in a living body without animal testing.
본 발명은 하기 단계를 포함하는 역방향 액체 급속 프린팅을 이용한 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법을 제공한다.The present invention provides a method for manufacturing a three-dimensional blood-brain barrier structure of a blood-brain barrier organ-on-a-chip using reverse liquid rapid printing, comprising the following steps.
(a) 생체적합성 고분자를 포함하는 제1 젤 용액과 음이온성 고분자를 포함하는 제2 젤 용액을 준비하는 단계;(a) preparing a first gel solution containing a biocompatible polymer and a second gel solution containing an anionic polymer;
(b) 상기 제2 젤 용액 내부에 상기 제1 젤 용액이 프린팅되도록 토출용 노즐을 위치시켜, 제1 젤 용액을 상기 제2 젤 용액으로 채워진 배스(bath) 내에 역방향 액체 급속 프린팅(reverse rapid liquid printing) 방식을 이용하여 토출하여 마이크로 채널을 형성하는 단계;(b) positioning a nozzle for discharging so that the first gel solution is printed inside the second gel solution, and reverse rapid liquid printing of the first gel solution into a bath filled with the second gel solution printing) to form a microchannel by discharging;
(c) 상기 (b) 단계에서 제조된 마이크로 채널이 형성된 배스를 1 내지 10 ℃ 저온에 보관하여 응고시켜 마이크로 채널이 형성된 3차원 구조체를 제조하는 단계;(c) storing the microchannel-formed bath prepared in step (b) at a low temperature of 1 to 10° C. and solidifying it to prepare a three-dimensional structure having microchannels;
(d) 상기 3차원 구조체를 가교제와 반응시켜 경화시키는 단계; 및(d) curing the three-dimensional structure by reacting it with a crosslinking agent; and
(e) 상기 경화된 3차원 구조체로부터 제1 젤 용액을 제거하는 단계를 포함한다.(e) removing the first gel solution from the cured three-dimensional structure.
상기 생체적합성 고분자는 콜라겐, 젤라틴(Gelatin), 키토산, 피브린, 셀룰로오스, 덱스트란, 한천, 풀루란, 마트리젤(Matrigel), 폴리에틸렌글리콜(PEG), 폴리에틸렌옥사이드(PEO), 폴리카프로락톤(PCL), 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리[(락틱-co-(글리콜산))(PLGA), 폴리[(3-하이드록시부티레이트)-co-(3-하이드록시발러레이트)(PHBV), 폴리다이옥산온(PDO), 폴리[(L-락타이드)-co-(카프로락톤)], 폴리(에스테르우레탄)(PEUU), 폴리[(L-락타이드)-co-(D-락타이드)], 폴리[에틸렌-co-(비닐 알코올)](PVOH), 폴리아크릴산(PAA), 폴리비닐알코올(PVA), 폴리비닐피롤리돈(PVP), 폴리스티렌(PS), 폴리아닐린(PAN) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.The biocompatible polymer is collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, Matrigel, polyethylene glycol (PEG), polyethylene oxide (PEO), polycaprolactone (PCL) , polylactic acid (PLA), polyglycolic acid (PGA), poly[(lactic-co-(glycolic acid))(PLGA), poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate) (PHBV), polydioxanone (PDO), poly[(L-lactide)-co-(caprolactone)], poly(ester urethane) (PEUU), poly[(L-lactide)-co-(D -lactide)], poly[ethylene-co-(vinyl alcohol)](PVOH), polyacrylic acid (PAA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polystyrene (PS), polyaniline ( PAN) and mixtures thereof may be any one selected from the group consisting of.
상기 음이온성 고분자는 하이아루론산, 알지네이트(Alginate), 펙틴, 카라기난, 황산콘드로이틴 및 황산덱스트란로 이루어진 군으로부터 선택되는 어느 하나이상일 수 있다.The anionic polymer may be any one or more selected from the group consisting of hyaluronic acid, alginate, pectin, carrageenan, chondroitin sulfate and dextran sulfate.
상기 제2 젤 용액은 하이드로겔을 형성하는 천연 고분자를 더 포함할 수 있다.The second gel solution may further include a natural polymer forming a hydrogel.
상기 천연 고분자는 콜라겐, 젤라틴(Gelatin), 키토산, 피브린, 셀룰로오스, 덱스트란, 한천, 풀루란, 마트리젤(MatrIgel) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.The natural polymer may be any one selected from the group consisting of collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, MatrIgel, and mixtures thereof.
상기 제2 젤 용액은 뉴런(neuron), 신경줄기세포(neural stem cell), 미세아교세포(microglia), 별아교세포(astrocyte) 및 혈관주위세포(pericyte)로 이루어진 군으로부터 선택되는 어느 하나 이상의 인간유래 뇌조직세포를 더 포함할 수 있다.The second gel solution is any one or more human-derived brain selected from the group consisting of neurons, neural stem cells, microglia, astrocytes, and pericytes. It may further include tissue cells.
상기 (b) 단계에서 상기 제1 젤 용액의 유량과 노즐의 토출속도를 조절하여 마이크로 채널의 직경 크기를 제어하는 것일 수 있다.The diameter size of the microchannel may be controlled by adjusting the flow rate of the first gel solution and the discharge speed of the nozzle in step (b).
상기 (b) 단계에서 상기 제1 젤 용액의 유량이 0.05 내지 0.1 ml/min일 때, 노즐의 토출속도는 0.3 내지 0.5 mm/s일 수 있다.When the flow rate of the first gel solution in step (b) is 0.05 to 0.1 ml/min, the ejection speed of the nozzle may be 0.3 to 0.5 mm/s.
상기 (c) 단계에서 가교제는 염화칼슘(CaCl2), 황산칼슘(CaSO4), 및 탄산칼슘(CaCO3)으로 이루어진 군에서 선택된 어느 하나 이상일 수 있다.In step (c), the crosslinking agent may be any one or more selected from the group consisting of calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and calcium carbonate (CaCO 3 ).
상기 (e) 단계 이후, (f) 3차원 뇌혈관장벽 구조체의 마이크로 채널을 통해 뇌혈관내피세포를 주입하여, 상기 마이크로 채널 내벽에 뇌혈관내피세포 막을 형성하는 단계;를 더 포함할 수 있다.After step (e), (f) injecting cerebrovascular endothelial cells through the microchannel of the three-dimensional blood-brain barrier structure to form a cerebrovascular endothelial cell membrane on the inner wall of the microchannel; may further include.
상기 (f) 단계 전에, (f') 3차원 뇌혈관장벽 구조체의 마이크로 채널을 통해 마트리겔(matrigel)을 주입하여, 상기 3차원 뇌혈관장벽 구조체의 마이크로 채널 내벽에 마트리겔을 부착하는 단계;를 더 포함하는 것일 수 있다.Before the step (f), (f') injecting Matrigel through the microchannel of the three-dimensional blood-brain barrier structure, attaching the Matrigel to the inner wall of the microchannel of the three-dimensional blood-brain barrier structure; It may further include.
본 발명은 제1 플레이트와, 상기 제1 플레이트와 접합되는 제2 플레이트를 포함하며, 상기 제1 플레이트의 내측면과 상기 제2 플레이트의 내측면에는 함몰홈이 형성되어 있는 본체; 상기 제1 플레이트와 상기 제2 플레이트가 접합됨으로써 상기 함몰홈에 의하여 상기 본체 내에 형성되는 챔버; 상기 챔버 내부에 존재하고, 하이드로젤 내부에 적어도 하나 이상의 마이크로 채널을 포함하는 3차원 뇌혈관장벽 구조체; 상기 제1 플레이트에는 유체를 공급하거나 배출시키는 복수의 관통구를 포함하며, 상기 제2 플레이트에는 상기 각각의 관통구와 뇌혈관장벽 구조체의 마이크로 채널이 연통되도록 소정 깊이로 함몰되어 형성된 각각의 가이드 채널이 구성되는 것을 특징으로 하는 뇌혈관장벽 오간온어칩을 제공한다.The present invention includes: a body including a first plate and a second plate joined to the first plate, wherein a recessed groove is formed on an inner surface of the first plate and an inner surface of the second plate; a chamber formed in the body by the recessed groove by bonding the first plate and the second plate; a three-dimensional blood-brain barrier structure existing inside the chamber and including at least one microchannel in the hydrogel; The first plate includes a plurality of through-holes for supplying or discharging fluid, and the second plate has guide channels recessed to a predetermined depth so that each of the through-holes and the microchannel of the blood-brain barrier structure communicate with each other. It provides a brain-vascular barrier organ-on-a-chip, characterized in that it is configured.
상기 3차원 뇌혈관장벽 구조체의 하이드로젤은 뇌조직세포들을 포함하고, 상기 마이크로 채널의 내벽에는 뇌혈관내피세포막이 형성되어, 인간 뇌 혈관장벽(BBB)을 모사하는 것일 수 있다.The hydrogel of the three-dimensional blood-brain barrier structure may include brain tissue cells, and a cerebrovascular endothelial cell membrane may be formed on the inner wall of the microchannel to mimic the human brain blood vessel barrier (BBB).
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고, 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다. The features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings. Prior to this, the terms or words used in the present specification and claims are conventional and should not be interpreted in a dictionary meaning, and the concept of the term is appropriately defined in order for the inventor to best describe his invention. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be done.
본 발명에 따른 역방향 액체 급속 프린팅을 이용한 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법은 실제 3차원 뇌혈관장벽을 모사할 수 있을 뿐만 아니라, 현재 동물실험을 대체할 수 있는 시험법으로 사용될 수 있다.The three-dimensional blood-brain barrier structure manufacturing method of the blood-brain barrier organ on a chip using reverse liquid rapid printing according to the present invention can not only simulate the actual three-dimensional blood-brain barrier, but also a test method that can replace the current animal experiment can be used as
또한, 제작된 뇌혈관장벽 오간온어칩은 소량의 재료를 사용하여 섬세하게 뇌혈관장벽(BBB)을 3차원 구조로 제작할 수 있다. 따라서 본 발명은 세포의 3차원 배양에 유용하게 이용될 수 있을 것으로 기대된다.In addition, the manufactured blood-brain barrier organ-on-a-chip can delicately fabricate the blood-brain barrier (BBB) into a three-dimensional structure using a small amount of material. Therefore, the present invention is expected to be usefully used for three-dimensional culture of cells.
도 1은 본 발명의 일 실시예 따른 3차원 뇌혈관장벽 구조체의 제조과정을 예시적으로 나타낸 것이다(도 1의 부호가 나타내는 바는 다음과 같다. 1:제1 젤 용액, 2:제2 젤 용액, 3:프린팅 장치의 노즐과 노즐의 이동방향, 4:배스, 5:온도조절장치).1 is an exemplary view showing a manufacturing process of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention (the symbols in FIG. 1 are as follows. 1: first gel solution, 2: second gel) Solution, 3: Nozzle of the printing device and the direction of movement of the nozzle, 4: Bath, 5: Temperature control device).
도 2는 제1 젤 용액과 제2 젤 용액의 상분리가 일어난 모습이다.2 is a diagram illustrating phase separation between a first gel solution and a second gel solution.
도 3은 역방향 액체 급속 프린팅(reverse rapid liquid printing) 방식을 이용해서 미세 유체 채널을 프린팅 장치이다. 3 is an apparatus for printing microfluidic channels using a reverse rapid liquid printing method.
도 4는 역방향 액체 급속 프린팅(reverse rapid liquid printing)에서 상기 3축 마이크로 스테이지, 구동 모터, 모터 컨트롤러의 바람직한 조건을 도시한 것이다.4 shows preferred conditions of the 3-axis micro stage, drive motor, and motor controller in reverse rapid liquid printing.
도 5는 본 발명의 일 실시예에 따른 뇌혈관장벽 오간온어칩의 사시도와 조립도이다(도 5의 부호가 나타내는 바는 다음과 같다. 10:뇌혈관장벽 오간온어칩, 100:3차원 뇌혈관장벽 구조체, 111,112,113,114:마이크로 채널, 200:본체, 210:제1 플레이트, 211,212:제1,제2 주입구, 213,214:제1,제2 배출구, 215:함몰홈, 220:제2 플레이트, 221,222,223,224:가이드 채널, 225:함몰홈, 230:챔버).5 is a perspective view and assembly diagram of a blood-brain barrier organ-on-a-chip according to an embodiment of the present invention. Vascular barrier structure, 111,112,113,114: micro channel, 200: body, 210: first plate, 211,212: first and second inlet, 213,214: first, second outlet, 215: depression, 220: second plate, 221,222,223,224: Guide channel, 225: recessed groove, 230: chamber).
도 6은 본 발명의 일 실시예에 따른 뇌혈관장벽 오간온어칩의 본체(200)에 대한 평면도이다(도 6의 부호가 나타내는 바는 다음과 같다. 200:뇌혈관장벽 오간온어칩의 본체, 210:제1 플레이트, 211,212:제1,제2 주입구, 213,214:제1,제2 배출구, 215:함몰홈, 220:제2 플레이트, 221,222,223,224:가이드 채널, 225:함몰홈, 226:체결링, 230:챔버).6 is a plan view of the main body 200 of the blood-brain barrier organ-on-a-chip according to an embodiment of the present invention. 210: first plate, 211,212: first, second inlet, 213,214: first, second outlet, 215: recessed groove, 220: second plate, 221,222,223,224: guide channel, 225: recessed groove, 226: fastening ring, 230: chamber).
도 7은 본 발명의 일 실시예에 따른 3차원 뇌혈관장벽 구조체의 본체에 대한 사시도와 단면도이다(도 7의 부호가 나타내는 바는 다음과 같다. 200:뇌혈관장벽 오간온어칩의 본체, 210:제1 플레이트, 211:제1 주입구, 214:제1 배출구, 220:제2 플레이트, 221,224:가이드 채널, 230:챔버).7 is a perspective view and a cross-sectional view of a body of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention. : first plate, 211: first inlet, 214: first outlet, 220: second plate, 221,224: guide channel, 230: chamber).
도 8은 본 발명의 일 실시예에 따른 3차원 뇌혈관장벽 구조(100)체의 사시도이고, 도 8의 하단 도면은 본 발명의 다른 실시예에 따른 3차원 뇌혈관장벽 구조체(100')의 사시도이다(도 8의 부호가 나타내는 바는 다음과 같다. 100, 100':3차원 뇌혈관장벽 구조체, 110, 110':하이드로젤, 111,111', 112, 112', 113, 113', 114, 114':마이크로 채널).8 is a perspective view of a three-dimensional blood-brain barrier structure 100 according to an embodiment of the present invention, and the bottom view of FIG. 8 is a three-dimensional blood-brain barrier structure 100' according to another embodiment of the present invention. A perspective view (the symbols in Fig. 8 indicate the following: 100, 100': three-dimensional blood-brain barrier structure, 110, 110': hydrogel, 111,111', 112, 112', 113, 113', 114, 114':micro channel).
도 9는 본 발명의 일 실시예 따른 3차원 뇌혈관장벽 구조체의 사시도의 단면도이다(도 9의 부호가 나타내는 바는 다음과 같다. 100:3차원 뇌혈관장벽 구조체, 110:하이드로젤, 111:마이크로 채널, 111a:뇌혈관내피세포 막, 111b:뇌조직세포).9 is a cross-sectional view of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention (the symbols in FIG. 9 are as follows. 100: 3-dimensional blood-brain barrier structure, 110: hydrogel, 111: microchannel, 111a: cerebrovascular endothelial cell membrane, 111b: brain tissue cells).
도 10은 실시예 1을 통해 제조된 3차원 뇌혈관장벽 구조체 내에 유색 액체를 주입한 후 광학현미경으로 촬영한 사진이다.10 is a photograph taken with an optical microscope after a colored liquid is injected into the three-dimensional blood-brain barrier structure prepared in Example 1. FIG.
도 11은 3차원 뇌혈관장벽 구조체에서 살아있는 세포와 사멸한 세포의 형광 이미지를 촬영한 사진이다. 도 11a는 calcein AM으로 표지된 녹색의 살아있는 세포의 형광 이미지를 촬영한 사진이며, 도 11b는 PI로 표시된 적색의 사멸한 세포의 형광 이미지를 촬영한 사진이며, 도 11c는 살아있는 세포와 사멸한 세포의 형광이미지를 함께 촬영한 사진이다.11 is a photograph of fluorescence images of living cells and dead cells in a three-dimensional blood-brain barrier structure. Figure 11a is a photograph taken of a fluorescence image of green living cells labeled with calcein AM, Figure 11b is a photograph taken of a fluorescence image of a red dead cell labeled with PI, Figure 11c is a photograph of living cells and dead cells It is a photograph taken together with a fluorescence image of
도 12는 3차원 뇌혈관장벽 구조체에서 세포 생존율을 표시한 이미지이다.12 is an image showing the cell viability in a three-dimensional blood-brain barrier structure.
도 13a는 뇌혈관내피세포(hCMEC/D3) 현탁액을 마이크로 채널에 주입한 직후의 3차원 뇌혈관장벽 구조체를 촬영한 사진이다.13A is a photograph of a three-dimensional blood-brain barrier structure immediately after injection of a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel.
도 13b는 뇌혈관내피세포(hCMEC/D3) 현탁액을 마이크로 채널에 주입하고 30분 동안 배양한 후의 3차원 뇌혈관장벽 구조체를 촬영한 사진이다.13B is a photograph of a three-dimensional blood-brain barrier structure after injecting a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel and culturing for 30 minutes.
도 13c는 뇌혈관내피세포(hCMEC/D3) 현탁액을 마이크로 채널에 주입하고 30분 동안 배양하고 제거한 뒤의 3차원 뇌혈관장벽 구조체를 촬영한 것이다.FIG. 13c is a photograph of a three-dimensional blood-brain barrier structure after cerebrovascular endothelial cell (hCMEC/D3) suspension was injected into a microchannel, cultured for 30 minutes, and removed.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments taken in conjunction with the accompanying drawings. In the present specification, in adding reference numbers to the components of each drawing, it should be noted that only the same components are given the same number as possible even though they are indicated on different drawings. Also, terms such as first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. In addition, in describing the present invention, if it is determined that a detailed description of a related known technology may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명의 일 측면은 하기 단계를 포함하는 역방향 액체 급속 프린팅을 이용한 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법에 관한 것이다.One aspect of the present invention relates to a method for manufacturing a three-dimensional blood-brain barrier structure of a blood-brain barrier organ-on-a-chip using reverse liquid rapid printing, comprising the following steps.
(a) 생체적합성 고분자를 포함하는 제1 젤 용액과 음이온성 고분자를 포함하는 제2 젤 용액을 준비하는 단계;(a) preparing a first gel solution containing a biocompatible polymer and a second gel solution containing an anionic polymer;
(b) 상기 제2 젤 용액 내부에 상기 제1 젤 용액이 프린팅되도록 토출용 노즐을 위치시켜, 제1 젤 용액을 상기 제2 젤 용액으로 채워진 배스(bath) 내에 역방향 액체 급속 프린팅(reverse rapid liquid printing) 방식을 이용하여 토출하는 단계;(b) positioning a nozzle for discharging so that the first gel solution is printed inside the second gel solution, and reverse rapid liquid printing of the first gel solution into a bath filled with the second gel solution printing) using the method of discharging;
(c) 상기 (b) 단계에서 토출된 용액을 4 ℃ 저온에 착탄시켜 마이크로 채널이 형성된 3차원 구조체를 형성하는 단계;(c) forming a three-dimensional structure in which microchannels are formed by impacting the solution discharged in step (b) at a low temperature of 4°C;
(d) 상기 (c) 단계에서 형성된 마이크로 채널이 형성된 3차원 구조체를 CaCl2 용액과 반응시켜 경화시키는 단계; 및(d) curing the three-dimensional structure having microchannels formed in step (c) by reacting it with a CaCl2 solution; and
(e) 상기 (d) 단계의 경화된 3차원 구조체를 가공하는 단계를 포함하는 단계.(e) comprising the step of processing the cured three-dimensional structure of step (d).
도 1은 본 발명의 일 실시예 따른 3차원 뇌혈관장벽 구조체의 제조과정을 예시적으로 나타낸 것이다(도 1의 부호가 나타내는 바는 다음과 같다. 1:제1 젤 용액, 2:제2 젤 용액, 3:프린팅 장치의 노즐과 노즐의 이동방향, 4:배스, 5:온도조절장치).1 is an exemplary view showing a manufacturing process of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention (the symbols in FIG. 1 are as follows. 1: first gel solution, 2: second gel) Solution, 3: Nozzle of the printing device and the direction of movement of the nozzle, 4: Bath, 5: Temperature control device).
먼저, 수용성 고분자를 포함하는 제1 젤 용액을 준비한다((a) 단계).First, a first gel solution containing a water-soluble polymer is prepared (step (a)).
상기 제1 젤 용액은 생체적합성 고분자를 포함하는 것일 수 있고, 상기 생체적합성 고분자는 2가 양이온 가교제에 의해 가교되지 않는 것이라면 특별히 이에 제한되지 않으며, 바람직하게 상기 생체적합성 고분자는 콜라겐, 젤라틴(Gelatin), 키토산, 피브린, 셀룰로오스, 덱스트란, 한천, 풀루란, 마트리젤(Matrigel), 폴리에틸렌글리콜(PEG), 폴리에틸렌옥사이드(PEO), 폴리카프로락톤(PCL), 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리[(락틱-co-(글리콜산))(PLGA), 폴리[(3-하이드록시부티레이트)-co-(3-하이드록시발러레이트)(PHBV), 폴리다이옥산온(PDO), 폴리[(L-락타이드)-co-(카프로락톤)], 폴리(에스테르우레탄)(PEUU), 폴리[(L-락타이드)-co-(D-락타이드)], 폴리[에틸렌-co-(비닐 알코올)](PVOH), 폴리아크릴산(PAA), 폴리비닐알코올(PVA), 폴리비닐피롤리돈(PVP), 폴리스티렌(PS), 폴리아닐린(PAN) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나이거나, 상기 둘 이상의 생체적합성 고분자들의 공중합체 또는 이의 혼합물일 수 있다.The first gel solution may include a biocompatible polymer, and the biocompatible polymer is not particularly limited as long as it is not crosslinked by a divalent cation crosslinking agent, and preferably, the biocompatible polymer is collagen or gelatin. , chitosan, fibrin, cellulose, dextran, agar, pullulan, Matrigel, polyethylene glycol (PEG), polyethylene oxide (PEO), polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid ( PGA), poly[(lactic-co-(glycolic acid)) (PLGA), poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate) (PHBV), polydioxanone (PDO), Poly[(L-lactide)-co-(caprolactone)], poly(ester urethane) (PEUU), poly[(L-lactide)-co-(D-lactide)], poly[ethylene-co -(vinyl alcohol)] (PVOH), polyacrylic acid (PAA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polystyrene (PS), polyaniline (PAN) and mixtures thereof It may be any one, a copolymer of the two or more biocompatible polymers, or a mixture thereof.
보다 바람직하게 상기 생체적합성 고분자는 PEG(Polyethylene glycol), PEO(polyethylene oxide) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나일 수 있으며, 가장 바람직하게 상기 생체적합성 고분자는 PEG(Polyethylene glycol), PEO(polyethylene oxide)의 혼합물인 것이 바람직하다. 상기 제1 젤 용액은 1 내지 2 중량%의 PEG와 10 내지 20 중량%의 PEO를 포함하는 것이 가장 바람직하다.More preferably, the biocompatible polymer may be any one selected from the group consisting of polyethylene glycol (PEG), polyethylene oxide (PEO), and mixtures thereof, and most preferably, the biocompatible polymer is polyethylene glycol (PEG), PEO (polyethylene oxide) is preferably a mixture. Most preferably, the first gel solution contains 1 to 2% by weight of PEG and 10 to 20% by weight of PEO.
상기 제1 젤 용액에 포함되는 수용성 고분자의 함량범위가 상기 범위 미만이거나, 초과할 경우 밀도가 크게 달라져 제1 젤 용액과 제2 젤 용액의 상분리가 일어나지 않는 문제가 발생할 수 있다.If the content range of the water-soluble polymer included in the first gel solution is less than or exceeding the above range, the density may be greatly changed, so that phase separation of the first gel solution and the second gel solution does not occur.
상기 제1 젤 용액은 용매를 더 포함할 수 있고, 상기 용매는 상기 수용성 고분자를 용해할 수 있고 생체 안정성이 확보된 용매라면 특별히 이에 제한되지 않으며, 바람직하게는 증류수 또는 PBS 완충액일 수 있다.The first gel solution may further include a solvent, and the solvent is not particularly limited as long as it is a solvent capable of dissolving the water-soluble polymer and ensuring biostability, and preferably distilled water or PBS buffer.
상기 제2 젤 용액은 음이온성 고분자를 포함하며, 바람직하게 상기 음이온성 고분자는 하이아루론산, 알지네이트(Alginate), 펙틴, 카라기난, 황산콘드로이틴 및 황산덱스트란로 이루어진 군으로부터 선택되는 어느 하나이상일 수 있고, 가장 바람직하게는 알지네이트(Alginate)일 수 있다.The second gel solution includes an anionic polymer, and preferably, the anionic polymer may be any one or more selected from the group consisting of hyaluronic acid, alginate, pectin, carrageenan, chondroitin sulfate and dextran sulfate, , most preferably alginate.
상기 제2 젤 용액은 음이온성 고분자 외에 하이드로겔을 형성하는 천연 고분자를 더 포함할 수 있으며, 상기 천연 고분자는 콜라겐, 젤라틴(Gelatin), 키토산, 피브린, 셀룰로오스, 덱스트란, 한천, 풀루란, 마트리젤(Matrigel) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. 상기 제2 젤 용액은 지지체 역할을 하는 Granule gel로 작용한다.The second gel solution may further include a natural polymer forming a hydrogel in addition to the anionic polymer, wherein the natural polymer is collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, mart It may be any one selected from the group consisting of Ligel (Matrigel) and mixtures thereof. The second gel solution acts as a granule gel serving as a support.
상기 제2 젤 용액은 젤라틴(Gelatin)과 알지네이트(Alginate)의 혼합물인 것이 바람직하고, 상기 제2 젤 용액은 젤라틴(Gelatin) 5 내지 10 중량%, 알지네이트(Alginate) 1 내지 5 중량% 포함하는 것이 가장 바람직하다. 상기 젤라틴이 상기 비율 미만이면 기계적 강도가 낮아지는 문제점이 발생하며, 상기 알지네이트를 상기 비율 미만으로 사용하면 형성된 하이드로겔의 가교율이 저하되어 실온에서 형상을 유지하기 어려운 문제점이 발생한다.The second gel solution is preferably a mixture of gelatin and alginate, and the second gel solution contains 5 to 10 wt% of gelatin and 1 to 5 wt% of alginate Most preferred. When the gelatin is less than the ratio, a problem occurs in that mechanical strength is lowered, and when the alginate is used in less than the ratio, the crosslinking rate of the formed hydrogel is lowered, thereby causing a problem in that it is difficult to maintain the shape at room temperature.
상기 제2 젤 용액은 용매를 더 포함할 수 있고, 상기 용매는 상기 수용성 고분자를 용해할 수 있고 생체 안정성이 확보된 용매라면 특별히 이에 제한되지 않으며, 바람직하게는 증류수 또는 PBS 완충액일 수 있고, 가장 바람직하게는 제2 젤 용액의 용매와 동일한 것을 사용하는 것일 수 있다.The second gel solution may further include a solvent, and the solvent is not particularly limited as long as it is a solvent capable of dissolving the water-soluble polymer and ensuring biostability, and preferably distilled water or PBS buffer, and most Preferably, the same solvent as that of the second gel solution may be used.
상기 제2 젤 용액은 뉴런(neuron), 신경줄기세포(neural stem cell), 미세아교세포(microglia), 별아교세포(astrocyte) 및 혈관주위세포(pericyte)로 이루어진 군으로부터 선택되는 어느 하나 이상의 인간유래 뇌조직 세포를 더 포함할 수 있다. 상기 세포들은 인간유래의 뇌조직으로부터 수득하여 사용할 수 있다.The second gel solution is any one or more human-derived brain selected from the group consisting of neurons, neural stem cells, microglia, astrocytes, and pericytes. It may further include tissue cells. The cells can be obtained and used from human brain tissue.
상기 세포는 단독 또는 둘 이상의 세포가 혼합되어 사용될 수 있고, 스페로이드 형태 또는 오가노이드 형태를 사용할 수 있으며, 제2 젤 용액에 혼합되기 전에 배양배지에서 충분히 배양되거나 하이드로겔 구조체에 봉입된 후 마이크로 채널에 배지를 관류시킴으로써 배양될 수 있다.The cells may be used alone or a mixture of two or more cells may be used, and a spheroid form or an organoid form may be used, and the microchannel after being sufficiently cultured in a culture medium before being mixed with the second gel solution or encapsulated in a hydrogel structure It can be cultured by perfusion of the medium.
상기 뉴런은 신경계를 이루는 단위로 신경세포를 의미하며, 상기 신경줄기세포는 자기 재생산이 가능한 신경계통 세포로의 분화능을 가진 세포이며, 상기 미세아교세포는 중배엽에서 유래한 중추신경계의 신경아교세포, 소교세포로, 조직 안에서 물질의 운반, 파괴, 제거를 담당하는 식세포 작용을 하며, 중추 신경계의 조직을 지지하는 역할뿐만 아니라 신경세포에 필요한 물질을 공급하고 적합한 환경을 조성하는 기능을 갖는 세포이다. 상기 별아교세포는 신경조직을 지지하는 신경아교를 구성하는 세포 중 하나로, 아스트로사이트 또는 성상교세포라고도 하며, 세포체가 작고 여러 방향으로 갈라져 나가는 돌기를 가지고 있으며, 뉴런의 구조와 대사를 돕는 역할을 한다. 상기 혈관주위세포는 모세혈관벽은 편평한 내피세포만으로 이루어지고 그 주위를 감싸는 명료한 평활근층이나 결합조직층이 없으며 내피세포의 기저막층에는 산재적으로 결합조직성 세포가 나타나는데, 이를 혈관주위세포라고 하며, 식작용을 하는 것으로 알려져 있다.The neuron refers to a nerve cell as a unit constituting the nervous system, the neural stem cell is a cell having the ability to differentiate into a nervous system cell capable of self-renewal, and the microglia are glial cells of the central nervous system derived from the mesoderm, microglia As a cell, it acts as a phagocyte responsible for transport, destruction, and removal of substances in tissues, and has the function of supporting the tissues of the central nervous system as well as supplying substances necessary for nerve cells and creating a suitable environment. The astrocytes are one of the cells constituting the glial supporting the nervous tissue, also called astrocytes or astrocytes, have small cell bodies and protrusions that split in various directions, and serve to help structure and metabolism of neurons. In the perivascular cells, the capillary wall consists only of flat endothelial cells, and there is no clear smooth muscle layer or connective tissue layer surrounding the perivascular cells, and connective tissue cells appear sporadically in the basement membrane layer of the endothelial cells, which are called perivascular cells, It is known to be edible.
상기 인간유래 뇌조직 세포는 뇌조직 내에 존재하는 세포들로 뇌안에서 3차원적으로 존재하므로, 본 발명에서도 이를 모방할 수 있도록 이들 뇌조직 세포를 3차원 구조의 마이크로 채널 외벽에 위치하도록 제2 젤 용액에 혼합하였다. 상기 제2 젤 용액은 세포외 기질과 유사하게 구현될 수 있는 음이온성 고분자 또는 천연 고분자를 포함하고 있으므로, 인간유래 뇌조직 세포들이 잘 생존하면서 고유의 활성을 그대로 유지할 수 있다.Since the human-derived brain tissue cells are cells existing in the brain tissue and exist three-dimensionally in the brain, the second gel is placed so that these brain tissue cells are placed on the outer wall of the microchannel of the three-dimensional structure so that the present invention can imitate it. mixed into the solution. Since the second gel solution contains an anionic polymer or natural polymer that can be implemented similarly to the extracellular matrix, human brain tissue cells can survive well and maintain their intrinsic activity.
다음, 상기 제2 젤 용액 내부에 상기 제1 젤 용액이 프린팅되도록 토출용 노즐을 위치시켜, 제1 젤 용액을 상기 제2 젤 용액으로 채워진 배스(bath) 내에 역방향 액체 급속 프린팅(reverse rapid liquid printing) 방식을 이용하여 토출하여 마이크로 채널을 형성한다((b) 단계). Next, a nozzle for discharging is positioned so that the first gel solution is printed inside the second gel solution, and the first gel solution is reversed rapid liquid printing in a bath filled with the second gel solution. ) to form a microchannel by discharging it (step (b)).
제1 젤 용액과 제2 젤 용액은 밀도 차로 인해 혼합되지 않고 서로 분리되는데, 이러한 특성을 통해 서로 다른 두 층으로 구성된 하이드로겔(Hydrogel) 복합체를 얻을 수 있다(도 2).The first gel solution and the second gel solution are separated from each other without mixing due to the density difference, and through this characteristic, a hydrogel complex composed of two different layers can be obtained ( FIG. 2 ).
상기 (b) 단계의 온도 조건은 제2 젤 용액이 액체 상태를 유지하는 온도범위라면 특별히 이에 제한되지 않으나, 바람직하게는 20 내지 50 ℃인 것일 수 있고, 더욱 바람직하게는 20 내지 40 ℃, 보다 더욱 바람직하게는 30 내지 40 ℃일 수 있다.The temperature condition of step (b) is not particularly limited as long as the second gel solution maintains a liquid state in a temperature range, but may be preferably 20 to 50 °C, more preferably 20 to 40 °C, more More preferably, it may be 30 to 40 °C.
도 3은 역방향 액체 급속 프린팅(reverse rapid liquid printing) 방식을 이용해서 미세 유체 채널을 프린팅 장치이다. 3 is an apparatus for printing microfluidic channels using a reverse rapid liquid printing method.
역방향 액체 급속 프린팅(reverse rapid liquid printing)을 위해 3차원 프린팅을 구현할 수 있는 3축 마이크로 스테이지, 구동 모터, 모터 컨트롤러, 마이크로 노즐, 실린지 펌프, 온도조절수단을 포함할 수 있다. 상기 마이크로 노즐은 10 내지 1500 ㎛ 채널을 만들 수 있는 구경을 갖는 것이 바람직하다. 상기 실린지 펌프는 노즐까지 젤 용액을 이동시킬 수 있다. 상기 제1, 제2 젤 용액의 경화를 방지하고 액체 상태로 유지하기 위해, 온도조절수단이 구비되는데, 상기 온도조절수단으로 핫플레이트를 사용할 수 있다. 상기 3축 마이크로 스테이지, 구동 모터, 모터 컨트롤러의 바람직한 조건은 도 4에 나타내었다.For reverse rapid liquid printing, a 3-axis micro stage capable of implementing 3D printing, a driving motor, a motor controller, a micro nozzle, a syringe pump, and a temperature control means may be included. The micro-nozzle preferably has a diameter capable of making a channel of 10 to 1500 μm. The syringe pump may move the gel solution to the nozzle. In order to prevent curing of the first and second gel solutions and maintain them in a liquid state, a temperature control means is provided, and a hot plate may be used as the temperature control means. Preferred conditions of the three-axis microstage, the driving motor, and the motor controller are shown in FIG. 4 .
상술한 특성을 이용하여 역방향 액체 급속 프린팅(reverse rapid liquid printing) 방식을 이용해 제1 젤 용액을 제2 젤 용액 내에 토출시켜 원하는 구조의 마이크로 채널을 프린팅한다. 구체적으로 제2 젤 용액의 내부에 제1 젤 용액이 프린팅되도록 토출용 노즐의 위치를 위치시켜, 제1 젤 용액을 상기 제2 젤 용액으로 채워진 배스(bath) 내에 역방향 액체 급속 프린팅(reverse rapid liquid printing) 방식을 이용해 토출함으로써, 원하는 마이크로 채널의 형태 및 길이만큼 이동시켜 설계된 패턴으로 마이크로 채널을 프린팅함으로써, 입체적인 3차원 구조체를 형성하도록 할 수 있다.Using the above-described characteristics, a microchannel having a desired structure is printed by discharging the first gel solution into the second gel solution using a reverse rapid liquid printing method. Specifically, by positioning the nozzle for discharging so that the first gel solution is printed inside the second gel solution, the first gel solution is reversed rapid liquid in a bath filled with the second gel solution. printing) method, by printing the microchannel with a pattern designed by moving it by the desired shape and length of the microchannel, it is possible to form a three-dimensional three-dimensional structure.
이때 상기 프린팅시 공급되는 제1 젤 용액의 유량과 토출속도(velocity)를 조절하여 마이크로 채널의 폭(thickness)을 조절할 수 있다. 상기 토출속도는 프린팅 속도라고도 할 수 있다. 표 1은 공급되는 제1 젤 용액의 유량(flow rate)과 노즐의 토출속도(velocity) 및 이를 통해 제조된 마이크로 채널의 폭(㎛)을 나타낸 것이다. 공급되는 제1 젤 용액의 유량이 증가될수록 마이크로채널의 두께가 증가하며, 노즐의 토출속도가 증가함에 따라 마이크로채널의 두께가 감소하는 것을 확인할 수 있다. 상기 프린팅시 공급되는 제1 젤 용액의 유량(flow rate)은 원하는 마이크로 채널의 두께에 따라 적절히 선택될 수 있다. 구체적으로 100 내지 1500 ㎛의 폭을 갖는 마이크로 채널을 얻기 위해서 바람직하게 제1 젤 용액의 유량은 0.05 내지 0.1 ml/min일 수 있다. 노즐의 토출속도(Velocity)도 원하는 마이크로 채널의 두께에 따라 적절히 선택될 수 있다. 구체적으로 100 내지 1500 ㎛의 폭을 갖는 마이크로 채널을 얻기 위해서 바람직하게 0.1 내지 0.5 mm/s일 수 있으며, 더욱 바람직하게는 0.3 내지 0.5 mm/s일 수 있다. 다만, 뇌혈관장벽의 폭을 고려하면, 마이크로 채널의 폭은 100 내지 500 ㎛인 것이 바람직하므로, 이를 위해 제1 젤 용액의 유량이 0.05 내지 0.1 ml/min일 때, 노즐의 토출속도는 0.3 내지 0.5 mm/s를 만족하는 것이 가장 바람직하다.In this case, the thickness of the microchannel may be adjusted by adjusting the flow rate and velocity of the first gel solution supplied during the printing. The discharge speed may also be referred to as a printing speed. Table 1 shows the flow rate (flow rate) of the supplied first gel solution, the ejection speed (velocity) of the nozzle, and the width (㎛) of the microchannel manufactured through the flow rate (velocity). As the flow rate of the supplied first gel solution increases, the thickness of the microchannel increases, and it can be seen that the thickness of the microchannel decreases as the discharge speed of the nozzle increases. A flow rate of the first gel solution supplied during the printing may be appropriately selected according to a desired thickness of the microchannel. Specifically, in order to obtain a microchannel having a width of 100 to 1500 μm, preferably, the flow rate of the first gel solution may be 0.05 to 0.1 ml/min. The nozzle velocity (Velocity) may also be appropriately selected according to the desired thickness of the microchannel. Specifically, in order to obtain a microchannel having a width of 100 to 1500 μm, it may be preferably 0.1 to 0.5 mm/s, and more preferably 0.3 to 0.5 mm/s. However, considering the width of the blood-brain barrier, it is preferable that the width of the microchannel is 100 to 500 μm. It is most preferable to satisfy 0.5 mm/s.
상기 배스 내의 제2 젤 용액은 2 내지 10 mm 높이로 채워질 수 있으나 이에 제한되는 것은 아니다.The second gel solution in the bath may be filled to a height of 2 to 10 mm, but is not limited thereto.
Flow rate(ml/min)Flow rate (ml/min) Velocity(mm/s)Velocity (mm/s) 마이크로 채널 폭 (㎛)Microchannel width (μm)
0.0050.005 0.10.1 00
0.030.03 0.30.3 00
0.40.4 00
0.50.5 00
0.050.05 0.10.1 900900
0.20.2 760760
0.30.3 250250
0.40.4 180180
0.50.5 100100
0.070.07 0.10.1 10001000
0.20.2 880880
0.30.3 400400
0.40.4 230230
0.50.5 150150
0.10.1 0.10.1 12001200
0.20.2 920920
0.30.3 500500
0.40.4 300300
0.50.5 210210
다음, 상기 (b) 단계에서 제조된 마이크로 채널이 형성된 배스를 1 내지 10 ℃ 저온에 보관하여 응고시켜 마이크로 채널이 형성된 3차원 구조체를 제조한다((c) 단계). 제1 젤 용액으로 형성된 하이드로겔은 1 내지 10 ℃ 조건하에서 응고되기 때문에, 상기 (b) 단계로부터 제조된 마이크로 채널이 형성된 배스에서 3차원의 마이크로 채널 구조를 고정하기 위하여 1 내지 10 ℃ 저온에 보관하여 응고시킨다. Next, the microchannel-formed bath prepared in step (b) is stored at a low temperature of 1 to 10° C. and solidified to prepare a microchannel-formed three-dimensional structure (step (c)). Since the hydrogel formed from the first gel solution is solidified under the conditions of 1 to 10 ° C, it is stored at 1 to 10 ° C. low temperature in order to fix the three-dimensional micro channel structure in the microchannel formed bath prepared in step (b). to solidify.
상기 저온은 1 내지 10 ℃의 온도범위일 수 있으나 이에 제한되지 않으며, 바람직하게는 1 내지 5 ℃일 수 있으며, 가장 바람직하게는 4 ℃일 수 있다.The low temperature may be in a temperature range of 1 to 10 °C, but is not limited thereto, preferably 1 to 5 °C, and most preferably 4 °C.
상기 (c) 단계에서 형성된 마이크로 채널이 형성된 3차원 구조체는 Blood-brain barrier(BBB, 뇌혈관장벽) 구조일 수 있다. 상기 토출된 제1 젤 용액이 제2 젤 용액에 침투되면서, 서로 혼합되지 않고 상분리되면서 빠르게 확산되어 입체적인 3차원 섬유구조체 형태의 마이크로 채널이 형성된다.The three-dimensional structure in which the microchannel formed in step (c) is formed may be a blood-brain barrier (BBB, blood-brain barrier) structure. As the discharged first gel solution permeates into the second gel solution, the microchannels in the form of three-dimensional three-dimensional fibrous structures are formed by rapidly diffusing while phase-separating without being mixed with each other.
다음으로 상기 (c) 단계에서 형성된 마이크로 채널이 형성된 3차원 구조체를 가교제와 반응시켜 경화시킨다((d) 단계).Next, the three-dimensional structure having microchannels formed in step (c) is cured by reacting it with a crosslinking agent (step (d)).
상기 가교제는 2가 양이온 수용액일 수 있고, 상기 2가 양이온 수용액은 염화칼슘(CaCl2), 황산칼슘(CaSO4), 및 탄산칼슘(CaCO3)으로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 이에 제한되는 것은 아니다. The crosslinking agent may be a divalent cation aqueous solution, and the divalent cation aqueous solution may be at least one selected from the group consisting of calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and calcium carbonate (CaCO 3 ), limited thereto. it's not going to be
상기 (d) 단계에서 상기 마이크로 채널을 제외한 3차원 구조체만을 경화시킬 수 있다. 상기 경화는 화학적 가교뿐만 아니라 물리적 가교도 사용할 수 있으나, 안정적인 경화를 위해 가교제를 사용한 가교방법이 실용적이다. 또한 가교제의 비율을 조정하여 가교 시간 및 가교 정도를 제어할 수 있다. 상기 (d) 단계는 20 내지 30 ℃에서 수행되는 것일 수 있다.In step (d), only the three-dimensional structure excluding the microchannel may be cured. For the curing, physical cross-linking as well as chemical cross-linking can be used, but for stable curing, a cross-linking method using a cross-linking agent is practical. In addition, the crosslinking time and degree of crosslinking can be controlled by adjusting the ratio of the crosslinking agent. Step (d) may be performed at 20 to 30 °C.
최종적으로 상기 (d) 단계의 경화된 3차원 구조체로부터 제1 젤 용액을 제거한다((e) 단계). 상기 마이크로 채널을 프린팅한 제1 젤 용액은 실온에서 액체 상태로 존재하므로 인산염완충용액(PBS)을 3차원 구조체에 관류시켜 제거할 수 있다.Finally, the first gel solution is removed from the cured three-dimensional structure of step (d) (step (e)). Since the first gel solution printed with the microchannel exists in a liquid state at room temperature, it can be removed by perfusing a phosphate buffer solution (PBS) through the three-dimensional structure.
구체적으로 상기 3차원 구조체의 양 끝에 실리콘 튜브를 연결하고 상온의 인산염완충용액(PBS)을 관류시켜 제1 젤 용액을 제거하였다. 상기 3차원 구조체에서 제1 젤 용액이 제거하였다.Specifically, the first gel solution was removed by connecting a silicone tube to both ends of the three-dimensional structure and perfusion with phosphate buffer solution (PBS) at room temperature. The first gel solution was removed from the three-dimensional structure.
상술한 과정을 통해 상기 3차원 구조체의 내부에 유체가 관류할 수 있는 빈 공간의 마이크로 채널이 형성되어, 3차원 구조체의 양 말단부분을 통해 마이크로 채널로 유체의 주입이 가능하다.Through the above-described process, a microchannel of an empty space through which a fluid can flow is formed in the three-dimensional structure, and the fluid can be injected into the microchannel through both end portions of the three-dimensional structure.
상기 (e) 단계 이전에 상기 경화된 3차원 구조체를 가공하는 단계를 더 포함할 수 있다. 상기 경화된 3차원 구조체를 원하는 모양으로 가공하여 필요한 크기의 블록으로 만들 수 있다. 상기 가공방법은 당업계에 널리 알려진 방법이라면 특별히 제한하지 않고 사용가능하다. It may further include processing the cured three-dimensional structure before the step (e). The cured three-dimensional structure may be processed into a desired shape to make a block of a required size. The processing method can be used without particular limitation as long as it is a method widely known in the art.
상기 (e) 단계 후에, 3차 증류수로 세척하는 단계를 더 포함할 수 있다. 이는 건조 후 인산염완충용액(PBS)나 다른 미반응 잔존 물질들이 고형으로 남는 것을 제거하기 위한 것이다.After step (e), washing with tertiary distilled water may be further included. This is to remove phosphate buffer solution (PBS) and other unreacted residual substances as solids after drying.
상기 (e) 단계 이후, (f) 3차원 뇌혈관장벽 구조체의 마이크로 채널을 통해 뇌혈관내피세포를 주입하여, 상기 마이크로 채널 내벽에 뇌혈관내피세포 막을 형성하는 단계를 더 포함할 수 있다. After the step (e), (f) injecting cerebrovascular endothelial cells through the microchannel of the three-dimensional blood-brain barrier structure may further include the step of forming a cerebrovascular endothelial cell membrane on the inner wall of the microchannel.
본 발명에서 뇌혈관내피세포(brain endothelial cell)는 인간뇌미세혈관내피세포(human brain microvascular endothelial cell)로부터 분리된 혈관내피세포가 사용될 수 있다.In the present invention, as the brain endothelial cells, vascular endothelial cells isolated from human brain microvascular endothelial cells may be used.
상기 (f) 단계 전에, 상기 뇌혈관내피세포가 마이크로 채널의 내벽에 잘 부착되고 안정화될 수 있도록 (f') 3차원 뇌혈관장벽 구조체의 마이크로 채널을 통해 마트리겔(matrigel)을 주입하여, 상기 3차원 뇌혈관장벽 구조체의 마이크로 채널 내벽에 마트리겔을 부착하는 단계를 더 포함할 수 있다.Before the step (f), Matrigel is injected through the microchannel of the three-dimensional blood-brain barrier structure so that the cerebrovascular endothelial cells can be well attached and stabilized on the inner wall of the microchannel, It may further include the step of attaching the matrigel to the microchannel inner wall of the three-dimensional blood-brain barrier structure.
즉, 본 발명자들은 상기 서로 다른 하이드로젤 용액을 사용하여, 역방향 액체 급속 프린팅(reverse rapid liquid printing) 방식을 통해 복잡한 뇌혈관장벽 구조체, 뇌혈관장벽 모델을 제조할 수 있음을 확인하였다. 또한 상기 뇌혈관장벽 구조체의 마이크로 채널 외부와 내벽에 각각 뇌조직 세포와 뇌혈관내피세포를 포함시키면 입체적인 뇌혈관장벽 구조를 구현할 수 있음을 확인하였다.That is, the present inventors have confirmed that a complex blood-brain barrier structure and a blood-brain barrier model can be manufactured using the different hydrogel solutions through a reverse rapid liquid printing method. In addition, it was confirmed that a three-dimensional blood-brain barrier structure can be implemented by including brain tissue cells and cerebrovascular endothelial cells, respectively, on the outside and inner walls of the microchannel of the blood-brain barrier structure.
본 발명의 다른 양태로서, 본 발명은 뇌혈관장벽 오간온어칩을 제공한다.As another aspect of the present invention, the present invention provides a blood-brain barrier organ-on-a-chip.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 일 실시예를 상세히 설명하기로 한다. 도 5는 본 발명의 일 실시예에 따른 뇌혈관장벽 오간온어칩의 사시도와 조립도이다. 도 6은 본 발명의 일 실시예에 따른 뇌혈관장벽 오간온어칩에 대한 평면도이다. 도 7은 본 발명의 일 실시예에 따른 3차원 뇌혈관장벽 구조체의 본체에 대한 사시도와 단면도이다. 도 8은 본 발명의 일 실시예에 따른 3차원 뇌혈관장벽 구조체의 사시도이고, 도 8의 하단 도면은 본 발명의 다른 실시예에 따른 3차원 뇌혈관장벽 구조체의 사시도이다. 도 9는 본 발명의 일 실시예 따른 3차원 뇌혈관장벽 구조체의 사시도의 단면도이다.Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. 5 is a perspective view and an assembly view of a blood-brain barrier organ-on-a-chip according to an embodiment of the present invention. 6 is a plan view of the blood-brain barrier organ-on-a-chip according to an embodiment of the present invention. 7 is a perspective view and a cross-sectional view of a body of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention. 8 is a perspective view of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention, and the bottom view of FIG. 8 is a perspective view of a three-dimensional blood-brain barrier structure according to another embodiment of the present invention. 9 is a cross-sectional view of a three-dimensional blood-brain barrier structure according to an embodiment of the present invention.
본 발명자들은 뇌혈관장벽 구조와 유사한 마이크로 채널 네트워크를 갖는 인공 조직 모델을 개발하고자 노력한 바, 본 발명을 완성하기에 이르렀다. 본 발명의 뇌혈관장벽 오간온어칩은 뇌조직을 모사한 3차원 마이크로 구조물로, 뇌혈관장벽(BBB)에서 뇌조직세포와 혈관내피세포 간의 상호작용을 관찰할 수 있도록 구성되어 뇌혈관장벽의 기능을 구현한 것이다.The present inventors have tried to develop an artificial tissue model having a microchannel network similar to the structure of the blood-brain barrier, and thus have completed the present invention. The brain-vascular barrier organ-on-a-chip of the present invention is a three-dimensional microstructure that mimics brain tissue, and is configured to observe the interaction between brain tissue cells and vascular endothelial cells in the blood-brain barrier (BBB). is implemented.
상기 뇌혈관장벽(BBB)은 뇌의 모세혈관 구조로, 일반 모세혈관과 달리 내피세포들이 타이트하게 결합되어 있어 작은 분자들은 능동수송을 통해 뇌로 전달할 수 있지만 큰 분자들은 낮은 투과성을 갖는다. 이로 인해 뇌 관련, 중추신경계 관련 약물을 개발하기 위해서는 가장 먼저 뇌혈관장벽을 투과하는 기능이 요구된다. 본 발명의 뇌혈관장벽 오간온어칩은 뇌의 모세혈관 구조를 모사한 장기 칩으로, 뇌혈관장벽(BBB)에서 세포 간의 상호작용을 관찰할 수 있다.The blood-brain barrier (BBB) is a capillary structure of the brain, and unlike general capillaries, endothelial cells are tightly coupled, so small molecules can be delivered to the brain through active transport, but large molecules have low permeability. For this reason, in order to develop brain-related and central nervous system-related drugs, the ability to penetrate the blood-brain barrier is required first. The blood-brain barrier organ-on-a-chip of the present invention is an organ chip that mimics the capillary structure of the brain, and the interaction between cells in the blood-brain barrier (BBB) can be observed.
구체적으로, 본 발명의 뇌혈관장벽 오간온어칩(10)은 뇌혈관내피세포와 뇌조직세포가 서로 섞이지 않고 뇌혈관장벽과 같이 모세혈관 구조를 이룬 채로 형성된 3차원 구조체(100)가, 인공 조직 칩 내에 안정하게 고정된 상태로 유지된 것이다. 본 발명의 뇌혈관장벽 오간온어칩(10)은 다중 구조의 뇌혈관장벽 구조인 생체 조직을 모사함으로써 세포 메커니즘 연구 외에도 약물 효능 테스트 및 기타 유해 물질 테스트에 활용가능하다. 상기 뇌혈관장벽 오간온어칩(10)은 생체 조직, 예를 들어 뇌혈관조직을 모사하는 3차원 형태라면 그 형태는 제한되지 않는다.Specifically, the blood-brain barrier organ-on-a-chip 10 of the present invention is a three-dimensional structure 100 formed while forming a capillary structure like the blood-brain barrier without brain endothelial cells and brain tissue cells mixed with each other, artificial tissue It is maintained in a stable and fixed state within the chip. The blood-brain barrier organ-on-a-chip 10 of the present invention can be used for drug efficacy tests and other harmful substances tests in addition to cell mechanism studies by simulating a living tissue that is a multi-structured blood-brain barrier structure. The form of the blood-brain barrier organ-on-a-chip 10 is not limited as long as it has a three-dimensional shape simulating a living tissue, for example, a blood-brain tissue.
본 발명의 일실시예에 따른 뇌혈관장벽 오간온어칩(10)은, 제1 플레이트(210)와, 상기 제1 플레이트(210)와 접합되는 제2 플레이트(220)를 포함하며, 상기 제1 플레이트(210)의 내측면과 상기 제2 플레이트(220)의 내측면에는 함몰홈(215, 225)이 형성되어 있는 본체(200); 상기 제1 플레이트(210)와 상기 제2 플레이트(220)가 접합됨으로써 상기 함몰홈(215, 225)에 의하여 상기 본체(200) 내에 형성되는 챔버(230); 상기 챔버(230) 내부에 존재하고, 하이드로젤(110) 내부에 적어도 하나 이상의 마이크로 채널(111, 112, 113, 114)을 포함하는 3차원 뇌혈관장벽 구조체(100); 상기 제1 플레이트(210)에는 유체를 공급하거나 배출시키는 복수의 관통구(211, 212, 213, 214)를 포함하며, 상기 제2 플레이트(220)에는 상기 각각의 관통구와 뇌혈관장벽 구조체의 마이크로 채널이 연통되도록 소정 깊이로 함몰되어 형성된 각각의 가이드 채널(221, 222, 223, 224)이 구성된다.The blood-brain barrier organ-on-a-chip 10 according to an embodiment of the present invention includes a first plate 210 and a second plate 220 bonded to the first plate 210, the first a body 200 in which recessed grooves 215 and 225 are formed on the inner surface of the plate 210 and the inner surface of the second plate 220; a chamber 230 formed in the body 200 by the recessed grooves 215 and 225 by bonding the first plate 210 and the second plate 220 to each other; The three-dimensional blood-brain barrier structure 100 is present in the chamber 230 and includes at least one microchannel (111, 112, 113, 114) in the hydrogel 110; The first plate 210 includes a plurality of through- holes 211, 212, 213, and 214 for supplying or discharging fluid, and the second plate 220 has each of the through-holes and micro-organisms of the blood-brain barrier structure. Each of the guide channels 221 , 222 , 223 and 224 formed by being recessed to a predetermined depth so that the channels communicate with each other are configured.
상기 제1 플레이트(210)의 관통구(211, 212, 213, 214) 하단에는 제2 플레이트(220)의 가이드 채널과 결합하여 함몰홈(215, 225)까지 연장된 채널이 형성되도록 하는 소정 깊이로 함몰된 함몰채널이 추가로 형성될 수 있다.At the lower end of the through holes 211 , 212 , 213 , and 214 of the first plate 210 , a channel extending to the recessed grooves 215 and 225 is formed in combination with the guide channel of the second plate 220 . A recessed channel recessed by the can be additionally formed.
본 발명의 뇌혈관장벽 오간온어칩(10)의 형태는 3차원 구조라면 제한되지 않으며, 구체적으로 직육면체 형태일 수 있다. 상기 뇌혈관장벽 오간온어칩(10)의 크기는 본 발명의 제조방법에 따라 제조될 수 있는 것이라면 특별히 제한되지 않으나, 바람직하게는 가로는 10 내지 500 mm, 10 내지 450 mm, 10 내지 400 mm, 10 내지 350 mm, 10 내지 300 mm, 10 내지 250 mm, 10 내지 200 mm, 10 내지 150 mm, 10 내지 100 mm, 15 내지 100 mm, 20 내지 100 mm, 25 내지 100 mm, 30 내지 100 mm, 40 내지 100 mm, 45 내지 100 mm, 50 내지 100 mm, 55 내지 100 mm, 60 내지 100 mm, 65 내지 100 mm 또는 65 내지 80 mm일 수 있다. 또한 뇌혈관장벽 오간온어칩(10)의 세로는 10 내지 500 mm, 10 내지 450 mm, 10 내지 400 mm, 10 내지 350 mm, 10 내지 300 mm, 10 내지 250 mm, 10 내지 200 mm, 10 내지 150 mm, 10 내지 100 mm, 10 내지 50 mm, 20 내지 50 mm, 25 내지 50 mm, 30 내지 50 mm, 35 내지 50 mm 또는 35 내지 45 mm일 수 있다The shape of the blood-brain barrier organ-on-a-chip 10 of the present invention is not limited as long as it has a three-dimensional structure, and may specifically be a rectangular parallelepiped shape. The size of the blood-brain barrier organ-on-a-chip 10 is not particularly limited as long as it can be manufactured according to the manufacturing method of the present invention, but preferably has a width of 10-500 mm, 10-450 mm, 10-400 mm, 10-350 mm, 10-300 mm, 10-250 mm, 10-200 mm, 10-150 mm, 10-100 mm, 15-100 mm, 20-100 mm, 25-100 mm, 30-100 mm, 40 to 100 mm, 45 to 100 mm, 50 to 100 mm, 55 to 100 mm, 60 to 100 mm, 65 to 100 mm or 65 to 80 mm. In addition, the length of the blood-brain barrier organ on a chip 10 is 10-500 mm, 10-450 mm, 10-400 mm, 10-350 mm, 10-300 mm, 10-250 mm, 10-200 mm, 10- 150 mm, 10-100 mm, 10-50 mm, 20-50 mm, 25-50 mm, 30-50 mm, 35-50 mm or 35-45 mm
본 발명의 뇌혈관장벽 오간온어칩(10)은 제1 플레이트(210), 제2 플레이트(220), 제1, 제2 플레이트에 의해 형성되는 챔버(230), 상기 챔버에 구비되는 3차원 뇌혈관장벽 구조체(100)를 포함할 수 있다.The blood-brain barrier organ-on-a-chip 10 of the present invention comprises a first plate 210 , a second plate 220 , a chamber 230 formed by the first and second plates, and a three-dimensional brain provided in the chamber. It may include a blood vessel barrier structure 100 .
제1 플레이트(210)과 제2 플레이트(220)는 투명한 재질이라면 특별히 제한되지 않으며 유리(glass)를 포함하는 투명 세라믹류, 폴리디메틸실록세인(PDMS: PolyDiMethylSiloxane), 에코플렉스(ecoflex), 폴리스티렌(polystyrene), 범용 폴리스티렌(general purpose polystyrene), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리에틸렌 텔레프탈레이트(polyethylene terephthalate), 폴리에스터메타크릴레이트(polyester methacrylate), 폴리프로필렌(polypropylene), 폴리카보네이트(polycarbonate), 폴리우레탄(polyurethane), 내충력 폴리스틸렌(High impact polystyrene), 아크릴로니트닐 부타디엔 스틸렌(Acrylonitnle butadiene styrene), 폴리에스테르(Polyester), 폴리아미드(Polyamides), 폴리에틸렌(Polyethylene), 폴리테트라플루오르에틸렌(Polytetrafluoroethylene), 폴리에틸렌테르케톤(Polyetheretherketone), 아크릭스(acrylics), 아몰퍼스 폴리머(amorphous polymers) 및 폴리에틸렌 텔레프탈레이트(polyethylene terephthalate)으로 이루어진 군으로부터 선택되는 어느 하나일 수 있고, 바람직하게는 폴리디메틸실록세인(PDMS: PolyDiMethylSiloxane), 폴리스티렌(polystyrene), 폴리우레탄(polyurethane), 폴리카보네이트(polycarbonate), 아크릴로니트닐 부타디엔 스틸렌(Acrylonitnle butadiene styrene), 폴리에틸렌테르케톤(Polyetheretherketone) 및 폴리에틸렌(Polyethylene)으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.The first plate 210 and the second plate 220 are not particularly limited as long as they are transparent materials, and transparent ceramics including glass, polydimethylsiloxane (PDMS: PolyDiMethylSiloxane), ecoflex, polystyrene ( polystyrene, general purpose polystyrene, polymethylmethacrylate, polyethylene terephthalate, polyester methacrylate, polypropylene, polycarbonate, Polyurethane, High impact polystyrene, Acrylonitnle butadiene styrene, Polyester, Polyamides, Polyethylene, Polytetrafluoroethylene ), polyethylene tereketone (Polyetheretherketone), acrylics (acrylics), amorphous polymers (amorphous polymers) and may be any one selected from the group consisting of polyethylene terephthalate (polyethylene terephthalate), preferably polydimethylsiloxane (PDMS) : PolyDiMethylSiloxane), polystyrene, polyurethane, polycarbonate, acrylonitrile butadiene styrene, polyethylene terketone (Polyetheretherketone) and polyethylene (Polyethylene) selected from the group consisting of It can be any one.
상기 제1 플레이트(210)와 제2 플레이트(220)는 금형 사출 성형을 통해 제조된 것일 수 있다.The first plate 210 and the second plate 220 may be manufactured through mold injection molding.
도 5, 도 6 및 도 7에 도시된 바와 같이, 제1 플레이트(210)와 제2 플레이트(220)는 서로 접합되어 본체(200)를 형성한다.5 , 6 and 7 , the first plate 210 and the second plate 220 are bonded to each other to form the body 200 .
상기 제1 플레이트(210)의 내측면에는 3차원 뇌혈관장벽 구조체가 삽입될 수 있는 함몰홈(215)이 구비되고, 상기 제2 플레이트(220)에는 제1 플레이트(210)의 함몰홈(215)과 대응하는 동일한 크기의 함몰홈(225)이 구비되므로, 상기 제1 플레이트(210)와 제2 플레이트(220)가 접합됨에 따라, 상기 제1 플레이트(210)의 함몰홈(215)과 제2 플레이트(220)의 함몰홈(225)이 서로 맞물려 연결되어 빈 공간을 갖는 챔버(230)를 형성할 수 있다.A recessed groove 215 into which a three-dimensional blood-brain barrier structure can be inserted is provided on the inner surface of the first plate 210 , and the recessed groove 215 of the first plate 210 is provided in the second plate 220 . ) and a recessed groove 225 of the same size corresponding to that, as the first plate 210 and the second plate 220 are joined, the recessed groove 215 of the first plate 210 and the second The recessed grooves 225 of the two plates 220 are engaged with each other to form a chamber 230 having an empty space.
상기 챔버(230)의 내부에는 3차원 뇌혈관장벽 구조체(100)가 삽입되어 결합될 수 있고, 유체의 누수를 방지하기 위해 상기 챔버(230)의 형태와 크기는 3차원 뇌혈관장벽 구조체(100)와 정확하게 일치되는 것이 바람직하다.The three-dimensional blood-brain barrier structure 100 may be inserted and coupled to the inside of the chamber 230, and the shape and size of the chamber 230 is the three-dimensional blood-brain barrier structure 100 to prevent fluid leakage. ), which is exactly the same as
도 5, 6 및 도 7에 도시된 바와 같이 제1 플레이트(210)에는 유체를 공급하거나 배출시키는 복수의 관통구(211, 212, 213, 214)를 포함한다. 상기 관통구는 3차원 뇌혈관장벽 구조체(100)의 마이크로 채널(111, 112, 113, 114)에 대응되어 마련된다.5, 6 and 7, the first plate 210 includes a plurality of through- holes 211, 212, 213, and 214 for supplying or discharging the fluid. The through hole is provided to correspond to the microchannels 111 , 112 , 113 and 114 of the three-dimensional blood-brain barrier structure 100 .
본 발명의 일 구현예에 따르면, 제1 플레이트(210)에는 적어도 두 개의 주입구(211, 212)와 적어도 두 개의 배출구(213, 214)가 마련되며, 설명의 편의를 위해 적어도 두 개의 주입구와 배출구는 "제1 주입구(211)", "제2 주입구(212)", "제1 배출구(213)"및 "제2 배출구(214)"로 구분지어 설명하기로 한다. According to one embodiment of the present invention, the first plate 210 is provided with at least two inlet (211, 212) and at least two outlet (213, 214), for convenience of description, at least two inlet and outlet is divided into "first inlet 211", "second inlet 212", "first outlet 213", and "second outlet 214".
가이드 채널(221, 222, 223, 224)은 제2 플레이트(220)의 동일평면상에 마련되며, 설명의 편의를 위해 "제1 가이드 채널(221)", "제2 가이드 채널(222)", "제3 가이드 채널(223)"및 "제4 가이드 채널(224)"로 구분지어 설명하기로 한다. The guide channels 221 , 222 , 223 , and 224 are provided on the same plane of the second plate 220 , and for convenience of description, “first guide channel 221” and “second guide channel 222” , "third guide channel 223" and "fourth guide channel 224" will be divided and described.
상기 제1, 제2 주입구(211, 212)와 제1, 2 배출구(213, 214)는 3차원 뇌혈관장벽 구조체의 마이크로 채널(111, 112, 113, 114)에 의해 상호 간에 연결되며, 상기 제1, 제2 주입구(211, 212)와 마이크로 채널(111, 112, 113, 114)은 제2 플레이트(220)에 구비된 제1, 제2 가이드 채널(221, 222)에 의해 연결되고, 마이크로 채널(111, 112, 113, 114)과 제1, 제2 배출구(213, 214)는 제3, 제4 가이드 채널(223, 224)에 의해 연결된다.The first and second inlets 211 and 212 and the first and second outlets 213 and 214 are interconnected by microchannels 111, 112, 113, and 114 of the three-dimensional blood-brain barrier structure, and the The first and second injection holes 211 and 212 and the microchannels 111, 112, 113 and 114 are connected by the first and second guide channels 221 and 222 provided in the second plate 220, The microchannels 111 , 112 , 113 and 114 and the first and second outlets 213 and 214 are connected by third and fourth guide channels 223 and 224 .
상기 가이드 채널(221, 222, 223, 224)은 제1, 2 주입구(211, 212)로부터 유입된 유체를 마이크로 채널로 주입하거나, 마이크로 채널(111, 112, 113, 114)로부터 배출되는 유체를 제1, 2 배출구(213, 214)로 이동시킬 수 있도록 연결된 통로이다.The guide channels 221 , 222 , 223 and 224 inject the fluid introduced from the first and second inlets 211 , 212 into the microchannel, or the fluid discharged from the microchannel 111 , 112 , 113 , and 114 . It is a passage connected to move to the first and second outlets 213 and 214 .
본 발명의 뇌혈관장벽 오간온어칩에 유체를 제1 주입구(211) 및 제2 주입구(212)로 주입하면 제1 가이드 채널(221)과 제2 가이드 채널(222)을 통해 3차원 뇌혈관장벽 구조체의 마이크로 채널(111, 112, 113, 114)로 각각 공급되고, 상기 마이크로 채널(111, 112, 113, 114)을 통과한 유체는 제3, 제4 가이드 채널(223, 224)을 통해 제1, 제2 배출구(213, 214)로 방출되어 인체의 뇌조직 사이로 흐르는 미세혈관구조를 모사할 수 있다. 이로 인해 본 발명은 3차원 뇌혈관장벽 구조체로 공급되는 유체로 인해 혈류의 흐름이 모사되면서 세포가 배양되어, 각 세포에서 나타날 수 있는 분자생물학적 변화가 좀 더 인체에 가까운 형태적/유전적 변화모델을 형성 및 관찰할 수 있다.When the fluid is injected into the blood-brain barrier organ-on-a-chip of the present invention through the first inlet 211 and the second inlet 212 , the three-dimensional blood-brain barrier is passed through the first guide channel 221 and the second guide channel 222 . The fluid is supplied to the microchannels 111, 112, 113, and 114 of the structure, respectively, and the fluid that has passed through the microchannels 111, 112, 113, 114 passes through the third and fourth guide channels 223 and 224. It is emitted to the first and second outlets 213 and 214 and can simulate the microvascular structure flowing between brain tissues of the human body. For this reason, the present invention is a morphological/genetic change model that mimics the flow of blood flow due to the fluid supplied to the three-dimensional blood-brain barrier structure, and the molecular biological changes that may appear in each cell are closer to the human body. can be formed and observed.
상기 제1 플레이트(210)의 관통구(211, 212, 213, 214) 하단에는 제2 플레이트(220)의 가이드 채널과 결합하여 함몰홈(215, 225)까지 연장된 채널이 형성되도록 하는 소정 깊이로 함몰된 함몰채널이 추가로 형성될 수 있다.At the lower end of the through holes 211 , 212 , 213 , and 214 of the first plate 210 , a channel extending to the recessed grooves 215 and 225 is formed in combination with the guide channel of the second plate 220 . A recessed channel recessed by the can be additionally formed.
본 발명의 제1, 2, 3, 4 가이드 채널(221, 222, 223, 224)과 3차원 뇌혈관장벽 구조체(100) 마이크로 채널(111, 112, 113, 114)의 연결부위에는 체결링(226)을 더 포함할 수 있다.A fastening ring ( 226) may be further included.
상기 체결링(226)은 마이크로 채널(111, 112, 113, 114) 방향으로 점차 입구가 좁아지는 구조로, 마이크로 채널 내부로 삽입되어 체결됨으로써 연결부위에서의 누수를 최소화할 수 있다.The fastening ring 226 has a structure in which the entrance is gradually narrowed in the direction of the microchannels 111, 112, 113, and 114, and is inserted into the microchannel and fastened to minimize leakage at the connection part.
상기 3차원 뇌혈관장벽 구조체(100)는 상기 챔버(230) 내부에 삽입 및 안착되어 존재하고, 하이드로젤(110) 내부에 적어도 하나 이상의 마이크로 채널(111, 112, 113, 114)을 포함할 수 있다.The three-dimensional blood-brain barrier structure 100 is inserted and seated inside the chamber 230, and may include at least one or more microchannels 111, 112, 113, and 114 in the hydrogel 110. have.
상기 3차원 뇌혈관장벽 구조체(100)의 크기는 뇌혈관장벽 구조를 모사할 수 있는 것이라면 특별히 이에 제한되지 않고, 구체적으로 그 단면의 크기가 10 내지 100 mm × 10 내지 50 mm일 수 있고, 바람직하게는 50 mm × 30 mm일 수 있다.The size of the three-dimensional blood-brain barrier structure 100 is not particularly limited as long as it can mimic the blood-brain barrier structure, and specifically, the size of the cross-section may be 10 to 100 mm × 10 to 50 mm, preferably It may be 50 mm × 30 mm.
또한 3차원 뇌혈관장벽 구조체(100)는 뇌혈관장벽 구조를 모사하는 3차원 형태라면 그 형태는 특별히 제한되지 않으나, 구체적으로는 직육면체 형태일 수 있다. 상기 3차원 뇌혈관장벽 구조체(100) 내부에는 상기 3차원 뇌혈관장벽 구조체(100)를 관통하는 복수개의 마이크로 채널(111, 112, 113, 114)을 가지며, 상기 마이크로 채널(111, 112, 113, 114)의 형태는 3차원 구조라면 제한되지 않으며, 구체적으로 상기 각각의 마이크로 채널(111, 112, 113, 114)은 서로 같거나 상이할 수 있다. 또한 상기 마이크로 채널(111, 112, 113, 114)은 내부에 유체가 관류할 수 있도록 빈 공간을 갖는 원통형일 수 있다. 또한 상기 마이크로 채널(111, 112, 113, 114)의 내벽에는 뇌혈관내피조직이 부착되어 형성된 막이 있을 수 있다.In addition, the three-dimensional blood-brain barrier structure 100 is not particularly limited as long as it has a three-dimensional shape that mimics the structure of the blood-brain barrier, but specifically may be a rectangular parallelepiped shape. The three-dimensional blood-brain barrier structure 100 has a plurality of micro-channels 111, 112, 113, and 114 penetrating the three-dimensional blood-brain barrier structure 100, and the micro-channels 111, 112, 113 , 114) is not limited as long as it has a three-dimensional structure, and specifically, each of the microchannels 111, 112, 113, and 114 may be the same as or different from each other. In addition, the microchannels 111 , 112 , 113 , and 114 may have a cylindrical shape having an empty space so that a fluid can flow therein. In addition, there may be a membrane formed by attaching cerebrovascular endothelial tissue to the inner wall of the microchannels 111 , 112 , 113 and 114 .
본 발명에서 '부착'은 뇌혈관내피세포를 포함하는 제제를 상기 뇌혈관장벽 오간온어칩(10)에 주입하여, 상기 3차원 뇌혈관장벽 구조체(100)의 마이크로 채널(111, 112, 113, 114)의 내벽에 뇌혈관내피세포를 부착시키는 것을 의미하고, 상기 부착은 뇌혈관내피세포를 배양하는 것일 수 있으며, 배양은 5 내지 60분 동안 수행될 수 있고, 구체적으로 5 내지 50분, 5 내지 40분, 10 내지 40분, 15 내지 40분, 20 내지 40분 또는 25 내지 35분 수행될 수 있고, 또한 상기 배양의 온도 조건은 10 내지 45 ℃, 20 내지 45 ℃, 25 내지 45 ℃, 30 내지 45 ℃, 30 내지 40 ℃, 또는 32 내지 35 ℃일 수 있다.In the present invention, 'attachment' means injecting a formulation containing cerebrovascular endothelial cells into the blood-brain barrier organ-on-a-chip 10, and the microchannels 111, 112, 113, 114) means attaching the cerebrovascular endothelial cells to the inner wall, the attachment may be culturing the cerebrovascular endothelial cells, and the culture may be performed for 5 to 60 minutes, specifically 5 to 50 minutes, 5 It may be carried out for 40 minutes, 10 to 40 minutes, 15 to 40 minutes, 20 to 40 minutes or 25 to 35 minutes, and the temperature conditions of the incubation are 10 to 45 ° C, 20 to 45 ° C, 25 to 45 ° C, 30 to 45 °C, 30 to 40 °C, or 32 to 35 °C.
상기 하이드로젤(110)은 뇌혈관장벽의 주변조직을 모사한 것으로, 뇌조직세포를 포함하는 하이드로젤로 구성될 수 있고, 바람직하게 상기 하이드로젤은 2가 양이온 물질에 의해 가교될 수 있는 음이온성 고분자를 포함하는 복합재료로 구성될 수 있다. 구체적으로 하이아루론산, 알지네이트(Alginate), 펙틴, 카라기난, 황산콘드로이틴 및 황산덱스트란로 이루어진 군으로부터 선택되는 어느 하나이상을 포함할 수 있으며, 특별히 이에 한정되지 않는다.The hydrogel 110 mimics the surrounding tissue of the blood-brain barrier, and may be composed of a hydrogel including brain tissue cells, and preferably the hydrogel is an anionic that can be cross-linked by a divalent cation material. It may be composed of a composite material including a polymer. Specifically, it may include any one or more selected from the group consisting of hyaluronic acid, alginate, pectin, carrageenan, chondroitin sulfate and dextran sulfate, but is not particularly limited thereto.
상기 하이드로젤은 음이온성 고분자 외에 하이드로겔을 형성할 수 있는 천연 고분자를 더 포함할 수 있고, 상기 천연 고분자는 콜라겐, 젤라틴(Gelatin), 키토산, 피브린, 셀룰로오스, 덱스트란, 한천, 풀루란, 마트리젤(MatrIgel) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나일 수 있다.The hydrogel may further include a natural polymer capable of forming a hydrogel in addition to the anionic polymer, and the natural polymer is collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, mart It may be any one selected from the group consisting of Ligel (MatrIgel) and mixtures thereof.
도 9를 참고하면 상기 하이드로젤(110)은 뇌혈관장벽의 주변조직과 유사하도록 뇌조직세포(111b)를 포함하는데, 상기 뇌조직세포는 뉴런(neuron), 신경줄기세포(neural stem cell), 미세아교세포(microglia), 별아교세포(astrocyte) 및 혈관주위세포(pericyte)로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.Referring to FIG. 9 , the hydrogel 110 includes brain tissue cells 111b to be similar to the surrounding tissue of the blood-brain barrier, and the brain tissue cells include neurons, neural stem cells, and microscopic It may be any one or more selected from the group consisting of glial cells (microglia), astrocytes (astrocyte) and peripheral cells (pericyte).
상기 마이크로 채널(111, 112, 113, 114)의 직경은 서로 동일하거나 서로 상이할 수 있고, 바람직하게 각 마이크로 채널의 직경은 1 내지 1500 ㎛을 갖는 채널 구조로 형성될 수 있고, 보다 바람직하게는 10 내지 1500 ㎛, 10 내지 1000 ㎛, 10 내지 600 ㎛, 10 내지 500 ㎛일 수 있다.The diameters of the microchannels 111, 112, 113, and 114 may be the same as or different from each other, and preferably, the diameter of each microchannel may be formed in a channel structure having a diameter of 1 to 1500 μm, more preferably 10 to 1500 μm, 10 to 1000 μm, 10 to 600 μm, and 10 to 500 μm.
상기 마이크로 채널(111, 112, 113, 114)은 상기 3차원 뇌혈관장벽 구조체를 관통하도록 형성되며, 마이크로 채널의 내벽에는 뇌혈관내피세포를 포함하는 막이 형성된다.The microchannels 111, 112, 113, and 114 are formed to penetrate the three-dimensional blood-brain barrier structure, and a membrane including cerebrovascular endothelial cells is formed on the inner wall of the microchannel.
도 8은 3차원 뇌혈관장벽 구조체(100)의 마이크로 채널 배치를 설명하기 위한 도면이다. 도 8의 상단 도면을 참조하면, 본 발명에 따른 마이크로 채널(111, 112, 113, 114)은 3차원 뇌혈관장벽 구조체(100)를 관통하는 뇌 미세혈관과 유사한 3차원 네트워크 구조일 수 있다. 본 발명의 다른 실시예 따르면 도 8의 하단 도면을 참조하면, 본 발명에 따른 마이크로 채널(111', 112', 113', 114')은 3차원 뇌혈관장벽 구조체(100')를 관통하는 원통형의 구조일 수 있다.8 is a view for explaining the micro-channel arrangement of the three-dimensional blood-brain barrier structure 100. Referring to the upper drawing of FIG. 8 , the microchannels 111 , 112 , 113 , and 114 according to the present invention may have a three-dimensional network structure similar to that of a brain microvessel penetrating the three-dimensional blood-brain barrier structure 100 . Referring to the lower drawing of FIG. 8 according to another embodiment of the present invention, the microchannels 111', 112', 113', and 114' according to the present invention have a cylindrical shape penetrating the three-dimensional blood-brain barrier structure 100'. can be a structure of
본 발명의 뇌혈관장벽 오간온어칩은 약물 전달 실험에 적용될 수 있다. 예를 들어 약물 전달 실험 장치는 본 발명의 뇌혈관장벽의 오간온어칩, 미세유체 밸브 및 스크리닝 장치 등을 포함할 수 있다.The blood-brain barrier organ-on-a-chip of the present invention can be applied to drug delivery experiments. For example, the drug delivery test apparatus may include an organ-on-a-chip of the blood-brain barrier of the present invention, a microfluidic valve, a screening apparatus, and the like.
미세유체 밸브는 3차원 환경의 챔버에서 유체의 흐름을 선택적으로 조절할 수 있는 밸브로, 본 발명의 뇌혈관장벽 오간온어칩으로의 유체 유입 및 배출을 조절할 수 있다. 여기서 유체는 뇌혈관장벽 장애, 중추신경계 질환을 치료하기 위한 후보물질일 수 있다.The microfluidic valve is a valve that can selectively control the flow of fluid in a chamber of a three-dimensional environment, and can control the inflow and discharge of fluid to and from the blood-brain barrier organ-on-a-chip of the present invention. Here, the fluid may be a candidate material for treating cerebrovascular barrier disorders and central nervous system diseases.
스크리닝 장치는 전기화학측정법과 액체 크로마토그래피 질량분광법(LC-MS)를 이용하여 약물 용액의 효과를 실시간 모니터링할 수 있다.The screening device can monitor the effect of a drug solution in real time using electrochemical measurement and liquid chromatography mass spectrometry (LC-MS).
이러한 약물 전달 실험장치를 이용한 약물 전달 실험은, 다음과 같이 수행될 수 있다. 우선 미세유체 밸브를 이용하여 뇌혈관장벽 오간온어칩으로 후보물질을 주입하고, 배출되는 용액을 채취하여 스크리닝 장치를 이용하여 후보물질의 농도를 분석할 수 있다. 본 발명의 뇌혈관장벽 오간온어칩을 이용해 약물 전달 실험을 수행할 경우 동물 모델과 동일한 생체 환경을 갖는 뇌혈관장벽(BBB)을 통해 동물 실험의 윤리적 문제를 해소하고 저비용으로 약물 전달 실험을 진행할 수 있다.A drug delivery experiment using such a drug delivery test device may be performed as follows. First, a candidate substance is injected into the brain-vascular barrier organ-on-a-chip using a microfluidic valve, the discharged solution is collected, and the concentration of the candidate substance can be analyzed using a screening device. When a drug delivery experiment is performed using the blood-brain barrier organ-on-a-chip of the present invention, it is possible to solve the ethical problem of animal experiments and conduct drug delivery experiments at low cost through the blood-brain barrier (BBB) having the same biological environment as the animal model. have.
상기 뇌혈관장벽 장애는 중추신경계 질환으로 인한 것이나 이에 한정되지 않는다. 상기 중추신경계 질환은 척수손상, 뇌졸중, 뇌경색, 뇌허혈, 알츠하이머병, 및 다발성 경화증으로 이루어진 군으로부터 선택되는 어느 하나의 질환인 것이나 이에 한정되지 않는다.The blood-brain barrier disorder is due to a central nervous system disease, but is not limited thereto. The central nervous system disease is any one disease selected from the group consisting of spinal cord injury, stroke, cerebral infarction, cerebral ischemia, Alzheimer's disease, and multiple sclerosis, but is not limited thereto.
본 발명은 동물시험을 하지 않으면서도 생체 내 뇌혈관장벽 관련 장애, 중추신경계 질환과 관련된 세포들의 상호작용을 비교적 정확히 예측할 수 있도록 하는 새로운 인공 장기 모델로, 기존 동물실험을 대체할 수 있다.The present invention is a new artificial organ model that can relatively accurately predict the interaction of cells related to brain-vascular barrier-related disorders and central nervous system diseases in vivo without performing animal tests, and can replace existing animal experiments.
본 발명의 기술사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 전술한 실시예들은 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위 내에서 다양한 실시가 가능함을 이해할 수 있을 것이다. Although the technical idea of the present invention has been specifically described according to the above preferred embodiments, it should be noted that the above-described embodiments are for the purpose of explanation and not for the limitation thereof. In addition, those skilled in the art will understand that various implementations are possible within the scope of the technical idea of the present invention.
실시예 1. 뇌혈관장벽 오간온어칩 제조Example 1. Preparation of an organ-on-a-chip for the blood-brain barrier
본 발명의 일 실시예로서, 뇌혈관장벽 오간온어칩을 제조하기 위해 다음과 같은 과정을 수행하였다.As an embodiment of the present invention, the following process was performed to manufacture the blood-brain barrier organ-on-a-chip.
1) 뇌조직세포(인간 별아교세포(human astrocytes), 인간 뇌 혈관주위세포(human brain vascular pericytes)) 배양1) Culture of brain tissue cells (human astrocytes, human brain vascular pericytes)
배양 전날 2 ㎍/㎠ 농도의 poly-L-lysinen을 75T Flask에 코팅하고, 멸균된 증류수로 코팅된 용기를 세적한 후, 15 ml complete 배양액과 1 × 106 개의 세포를 분주(seeding)하고, 37 ℃에서 배양하였다. 2~3일 간격으로 배양액을 교체하고, 12~14 일 후에 DPBS로 astrocyte layer를 2번 세척한 후, 0.05% trypsin-EDTA 5 ml와 DPBS 5 ml를 플라스크에 넣고 37 ℃ CO2 배양기에서 반응시켰다. 이후 세포가 플라스크에서 떨어지면, TNS 용액을 넣어 떨어진 세포를 50 ml 튜브로 옮긴다. 상기 튜브에 세포와 함께 5 ml의 배양액을 넣고, 5분간 180 xg로 원심분리하였다. 상층액을 제거하고 10 ml의 신선한 배양액을 넣어 1 × 106 cell/ml 의 농도를 갖는 세포현탁액을 준비하였다.The day before incubation, poly-L-lysinen at a concentration of 2 μg/cm 2 was coated on a 75T Flask, the coated vessel was washed with sterile distilled water, 15 ml complete culture solution and 1 × 10 6 cells were dispensed (seeding), Incubated at 37 °C. The culture medium was changed every 2-3 days, and the astrocyte layer was washed twice with DPBS after 12-14 days. Then, 5 ml of 0.05% trypsin-EDTA and 5 ml of DPBS were added to the flask and reacted in a 37 ℃ CO 2 incubator. . Then, when the cells fall out of the flask, add TNS solution and transfer the detached cells to a 50 ml tube. Into the tube, 5 ml of a culture solution together with the cells was centrifuged at 180 x g for 5 minutes. After removing the supernatant, 10 ml of fresh culture solution was added to prepare a cell suspension having a concentration of 1 × 10 6 cell/ml.
2) 뇌혈관장벽 오간온어칩 제조2) Manufacture of blood-brain barrier organ-on-a-chip
먼저, 10 중량%의 젤라틴(Gelatin), 2 중량%의 알지네이트(Alginate), 인간 별아교세포(human astrocytes) 현탁액(1 × 106 cell/ml), 인간 뇌 혈관주위세포(human brain vascular pericytes) 현탁액(1 × 106 cell/ml) 및 잔량의 증류수를 혼합하여 제2 젤 용액을 제조하고, 17.5 중량%의 폴리에틸렌글리콜(Polyethylene glycol), 1.095 중량%의 폴리에틸렌옥사이드(Polyethylene oxide) 및 잔량의 증류수를 혼합하여 제1 젤 용액을 제조하였다.First, 10% by weight of gelatin, 2% by weight of alginate, human astrocytes suspension (1 × 10 6 cell/ml), human brain vascular pericytes suspension (1 × 10 6 cell/ml) and the remaining amount of distilled water to prepare a second gel solution, 17.5 wt% of polyethylene glycol, 1.095 wt% of polyethylene oxide and the remaining amount of distilled water A first gel solution was prepared by mixing.
온도 조절 챔버가 구비된 배스에 상기 제2 젤 용액을 부어 채우고, 도 5의 역방향 액체 급속 프린팅 방식으로 미세 유체 채널을 프린팅할 수 있는 장치를 설치하였다. 상기 제2 젤 용액 내부에 제1 젤 용액이 프린팅되도록, 상기 프린팅장치의 노즐을 삽입하였다. 그런 다음 상기 노즐에서 제1 젤 용액을 토출하여(유량 0.07 ml/min, 토출속도 0.3 mm/s) 400 ㎛ 직경을 갖는 마이크로 채널을 프린팅하였다. 이때 배스의 온도는 37 ℃로 유지하고, 제1 젤 용액은 25 ℃로 유지하였다. 그런 다음 상기 마이크로 채널이 형성된 배스를 4 ℃에 보관하여 응고시켰다. 상기 응고된 블록을 실온으로 꺼낸 후, CaCl2 수용액을 첨가하여 경화시켰다. 상기 경화단계에서 제2 젤 용액의 마이크로 채널은 경화되지 않았다. 그런 다음 마이크로 채널에 증류수 또는 PBS를 관류시켜 제1 젤 용액을 제거하여 3차원 뇌혈관장벽 구조체를 제조하였다. 3차원 뇌혈관장벽 구조체를 50 mm × 30 mm(가로×세로)의 크기로 가공하여 직육면체 형태의 3차원 뇌혈관장벽 구조체를 제조하였다.The second gel solution was poured into a bath equipped with a temperature control chamber, and a device capable of printing microfluidic channels using the reverse liquid rapid printing method of FIG. 5 was installed. The nozzle of the printing device was inserted so that the first gel solution was printed inside the second gel solution. Then, the first gel solution was discharged from the nozzle (flow rate 0.07 ml/min, discharge rate 0.3 mm/s) to print microchannels having a diameter of 400 μm. At this time, the temperature of the bath was maintained at 37 °C, and the first gel solution was maintained at 25 °C. Then, the microchannel formed bath was stored at 4 °C to solidify. After the solidified block was brought out to room temperature, an aqueous solution of CaCl 2 was added to harden it. In the curing step, the microchannel of the second gel solution was not cured. Then, distilled water or PBS was perfused into the microchannel to remove the first gel solution to prepare a three-dimensional blood-brain barrier structure. The three-dimensional blood-brain barrier structure was processed into a size of 50 mm × 30 mm (width × length) to prepare a three-dimensional blood-brain barrier structure in the form of a cuboid.
상기 제조된 3차원 뇌혈관장벽 구조체에서 마이크로 채널의 형성 유무를 확인하기 위하여, 3차원 뇌혈관장벽 구조체에 유색의 액체(로다민, Trypan blue)를 주입하여 광학 현미경으로 촬영하였다. 도 10은 실시예 1을 통해 제조된 3차원 뇌혈관장벽 구조체 내에 유색 액체를 주입한 후 광학현미경으로 촬영한 사진이다.In order to confirm the formation of microchannels in the three-dimensional blood-brain barrier structure prepared above, a colored liquid (rhodamine, Trypan blue) was injected into the three-dimensional blood-brain barrier structure and photographed with an optical microscope. 10 is a photograph taken with an optical microscope after a colored liquid is injected into the three-dimensional blood-brain barrier structure prepared in Example 1. FIG.
도 10에 나타난 바와 같이, 3차원 뇌혈관장벽 구조체 내에 유색의 액체가 마이크로 채널 내에 성공적으로 관류되는 것을 확인하였고, 마이크로 채널은 단절, 막힘 또는 누수없이 원하는 형태로 잘 형성되어 있다는 것을 확인할 수 있다.As shown in FIG. 10 , it was confirmed that the colored liquid in the three-dimensional blood-brain barrier structure was successfully perfused into the microchannel, and it was confirmed that the microchannel was well formed in a desired shape without breaking, clogging, or leaking.
상기 제조된 3차원 뇌혈관장벽 구조체를 calcein AM으로 염색하고, 공초점 현미경(Confocal microscope)(LSM 700, ZEISS 사)을 이용하여 촬영하였다. 이를 통해 3차원 뇌혈관장벽 구조체 내부에 별아교 세포(human astrocytes)와 혈관주위세포(human brain vascular pericytes)를 공배양하였을 때, 살아있는 세포와 사멸한 세포의 형광이미지를 얻고자 하였다.The prepared three-dimensional blood-brain barrier structure was stained with calcein AM and photographed using a confocal microscope (LSM 700, ZEISS). Through this, when astrocytes (human astrocytes) and human brain vascular pericytes were co-cultured inside a three-dimensional blood-brain barrier structure, it was attempted to obtain fluorescence images of living and dead cells.
도 11은 3차원 뇌혈관장벽 구조체에서 살아있는 세포와 사멸한 세포의 형광 이미지를 촬영한 사진이고, 도 11a는 calcein AM으로 표지된 녹색의 살아있는 세포의 형광 이미지를 촬영한 사진이며, 도 11b는 PI로 표시된 적색의 사멸한 세포의 형광 이미지를 촬영한 사진이며, 도 11c는 살아있는 세포와 사멸한 세포의 형광이미지를 함께 촬영한 사진이다.11 is a photograph of fluorescence images of living and dead cells in a three-dimensional blood-brain barrier structure, FIG. 11a is a photograph of fluorescence images of green living cells labeled with calcein AM, and FIG. 11b is a PI It is a photograph taken of the fluorescence image of the red dead cells marked with , and FIG. 11c is a photograph taken together of the fluorescence images of the living cells and the dead cells.
도 12는 3차원 뇌혈관장벽 구조체를 공초점 현미경을 이용하여 x, y, z 축 방향으로 동시에 촬영하고 3차원 이미지로 재구성한 사진이다. 이에 따르면 3차원 뇌혈관장벽 구조체 전체에 걸쳐 세포의 생존율이 매우 높음을 확인할 수 있다.12 is a photograph of a three-dimensional blood-brain barrier structure taken simultaneously in the x, y, and z-axis directions using a confocal microscope and reconstructed into a three-dimensional image. According to this, it can be confirmed that the cell viability is very high throughout the three-dimensional blood-brain barrier structure.
실시예 2. 뇌혈관장벽 오간온어칩Example 2. Blood-brain barrier organ on a chip
상기 실시예 1과 동일한 방법으로 3차원 뇌혈관장벽 구조체를 제조하였다. 상기 3차원 뇌혈관장벽 구조체의 마이크로 채널에, 배양액 대신 3 mg/mL 농도의 마트리겔(matrigel) 용액을 주입하여 마이크로 채널의 내벽을 마트리겔로 코팅하고, 1 × 106 cell/ml 농도의 뇌혈관내피세포(hCMEC/D3) 현탁액을 주입하였다. 세포가 마이크로 채널 내벽에 잘 부착될 수 있도록, 마이크로 채널의 양끝을 막은 후 30분동안 배양하였다. 이때 상기 세포 현탁액을 주입한 직후, 30분동안 배양하는 과정을 거친 3차원 뇌혈관장벽 구조체 각각을 현미경을 사용하여 촬영하였으며, 촬영된 사진은 도 13a 내지 도 13c에 도시하였다.A three-dimensional blood-brain barrier structure was prepared in the same manner as in Example 1. In the microchannel of the three-dimensional blood-brain barrier structure, a 3 mg/mL solution of Matrigel was injected instead of a culture solution to coat the inner wall of the microchannel with Matrigel, and the brain at a concentration of 1 × 10 6 cell/ml A vascular endothelial cell (hCMEC/D3) suspension was injected. In order for the cells to adhere well to the inner wall of the microchannel, both ends of the microchannel were blocked and incubated for 30 minutes. At this time, immediately after the injection of the cell suspension, each of the three-dimensional blood-brain barrier structures that had undergone the process of incubation for 30 minutes were photographed using a microscope, and the photographed photographs are shown in FIGS. 13A to 13C .
도 13a는 뇌혈관내피세포(hCMEC/D3) 현탁액을 마이크로 채널에 주입한 직후의 3차원 뇌혈관장벽 구조체를 촬영한 것으로, 뇌혈관내피세포가 마이크로 채널 내벽에 부착되지 않고, 원형의 상태를 유지하고 있음을 알 수 있다.13A is a photograph of a three-dimensional blood-brain barrier structure immediately after injecting a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel. The cerebrovascular endothelial cells do not adhere to the inner wall of the microchannel and maintain a circular state. it can be seen that
도 13b는 뇌혈관내피세포(hCMEC/D3) 현탁액을 마이크로 채널에 주입하고 30분 동안 배양한 후의 3차원 뇌혈관장벽 구조체를 촬영한 것으로, 뇌혈관내피세포가 마이크로 채널 내벽으로 이동하여 부착되기 시작함을 확인하였다.13b is a photograph of a three-dimensional blood-brain barrier structure after injecting a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel and culturing for 30 minutes. was confirmed.
도 13c는 뇌혈관내피세포(hCMEC/D3) 현탁액을 마이크로 채널에 주입하고 30분 동안 배양하고 제거한 뒤의 3차원 뇌혈관장벽 구조체를 촬영한 것으로, 뇌혈관내피세포가 마이크로 채널 내벽에서 길쭉한 모양으로 성장하고 있으며, 하나의 막을 형성하고 있음을 확인하였다.13c is a photograph of a three-dimensional blood-brain barrier structure after injecting a cerebrovascular endothelial cell (hCMEC/D3) suspension into a microchannel, culturing for 30 minutes, and removing it. It was confirmed that it was growing and forming a single film.

Claims (13)

  1. (a) 생체적합성 고분자를 포함하는 제1 젤 용액과 음이온성 고분자를 포함하는 제2 젤 용액을 준비하는 단계;(a) preparing a first gel solution containing a biocompatible polymer and a second gel solution containing an anionic polymer;
    (b) 상기 제2 젤 용액 내부에 상기 제1 젤 용액이 프린팅되도록 토출용 노즐을 위치시켜, 제1 젤 용액을 상기 제2 젤 용액으로 채워진 배스(bath) 내에 역방향 액체 급속 프린팅(reverse rapid liquid printing) 방식을 이용하여 토출하여 마이크로 채널을 형성하는 단계;(b) positioning a nozzle for discharging so that the first gel solution is printed inside the second gel solution, and reverse rapid liquid printing of the first gel solution into a bath filled with the second gel solution printing) to form a microchannel by discharging;
    (c) 상기 (b) 단계에서 제조된 마이크로 채널이 형성된 배스를 1 내지 10 ℃ 저온에 보관하여 응고시켜 마이크로 채널이 형성된 3차원 구조체를 제조하는 단계;(c) storing the microchannel-formed bath prepared in step (b) at a low temperature of 1 to 10° C. and solidifying it to prepare a three-dimensional structure having microchannels;
    (d) 상기 3차원 구조체를 가교제와 반응시켜 경화시키는 단계; 및(d) curing the three-dimensional structure by reacting it with a crosslinking agent; and
    (e) 상기 경화된 3차원 구조체로부터 제1 젤 용액을 제거하는 단계;를 포함하는 역방향 액체 급속 프린팅을 이용한 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.(e) removing the first gel solution from the cured three-dimensional structure; a method for manufacturing a three-dimensional blood-brain barrier structure of the brain blood barrier organ on a chip using reverse liquid rapid printing comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 생체적합성 고분자는 콜라겐, 젤라틴(Gelatin), 키토산, 피브린, 셀룰로오스, 덱스트란, 한천, 풀루란, 마트리젤(Matrigel), 폴리에틸렌글리콜(PEG), 폴리에틸렌옥사이드(PEO), 폴리카프로락톤(PCL), 폴리락트산(PLA), 폴리글리콜산(PGA), 폴리[(락틱-co-(글리콜산))(PLGA), 폴리[(3-하이드록시부티레이트)-co-(3-하이드록시발러레이트)(PHBV), 폴리다이옥산온(PDO), 폴리[(L-락타이드)-co-(카프로락톤)], 폴리(에스테르우레탄)(PEUU), 폴리[(L-락타이드)-co-(D-락타이드)], 폴리[에틸렌-co-(비닐 알코올)](PVOH), 폴리아크릴산(PAA), 폴리비닐알코올(PVA), 폴리비닐피롤리돈(PVP), 폴리스티렌(PS), 폴리아닐린(PAN) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.The biocompatible polymer is collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, Matrigel, polyethylene glycol (PEG), polyethylene oxide (PEO), polycaprolactone (PCL) , polylactic acid (PLA), polyglycolic acid (PGA), poly[(lactic-co-(glycolic acid))(PLGA), poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate) (PHBV), polydioxanone (PDO), poly[(L-lactide)-co-(caprolactone)], poly(ester urethane) (PEUU), poly[(L-lactide)-co-(D -lactide)], poly[ethylene-co-(vinyl alcohol)](PVOH), polyacrylic acid (PAA), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polystyrene (PS), polyaniline ( PAN) and a mixture thereof.
  3. 제1항에 있어서,According to claim 1,
    상기 음이온성 고분자는 하이아루론산, 알지네이트(Alginate), 펙틴, 카라기난, 황산콘드로이틴 및 황산덱스트란로 이루어진 군으로부터 선택되는 어느 하나이상인 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.The anionic polymer is hyaluronic acid, alginate (Alginate), pectin, carrageenan, chondroitin sulfate, and a three-dimensional blood-brain barrier structure of the brain blood vessel barrier organ on a chip, characterized in that any one or more selected from the group consisting of dextran sulfate manufacturing method.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2 젤 용액은 하이드로겔을 형성하는 천연 고분자를 더 포함하는 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.The second gel solution further comprises a natural polymer that forms a hydrogel.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 천연 고분자는 콜라겐, 젤라틴(Gelatin), 키토산, 피브린, 셀룰로오스, 덱스트란, 한천, 풀루란, 마트리젤(MatrIgel) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.The natural polymer is any one selected from the group consisting of collagen, gelatin, chitosan, fibrin, cellulose, dextran, agar, pullulan, MatrIgel, and mixtures thereof. A method for manufacturing a three-dimensional blood-brain barrier structure of an organ on a chip.
  6. 제1항에 있어서,The method of claim 1,
    상기 제2 젤 용액은 뉴런(neuron), 신경줄기세포(neural stem cell), 미세아교세포(microglia), 별아교세포(astrocyte) 및 혈관주위세포(pericyte)로 이루어진 군으로부터 선택되는 어느 하나 이상의 인간유래 뇌조직 세포를 더 포함하는 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.The second gel solution is any one or more human-derived brain selected from the group consisting of neurons, neural stem cells, microglia, astrocytes, and pericytes. A three-dimensional blood-brain barrier structure manufacturing method of the blood-brain barrier organ on a chip, characterized in that it further comprises tissue cells.
  7. 제1항에 있어서,According to claim 1,
    상기 (b) 단계에서 상기 제1 젤 용액의 유량과 노즐의 토출속도를 조절하여 마이크로 채널의 직경 크기를 제어하는 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.In the step (b), the three-dimensional blood-brain barrier structure manufacturing method of the blood-brain barrier organ on a chip, characterized in that the diameter size of the microchannel is controlled by adjusting the flow rate of the first gel solution and the ejection speed of the nozzle.
  8. 제1항에 있어서,According to claim 1,
    상기 (b) 단계에서 상기 제1 젤 용액의 유량이 0.05 내지 0.1 ml/min일 때, 노즐의 토출속도는 0.3 내지 0.5 mm/s인 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.When the flow rate of the first gel solution in step (b) is 0.05 to 0.1 ml/min, the ejection speed of the nozzle is 0.3 to 0.5 mm/s A method for manufacturing a barrier structure.
  9. 제1항에 있어서,According to claim 1,
    상기 (c) 단계에서 가교제는 염화칼슘(CaCl2), 황산칼슘(CaSO4), 및 탄산칼슘(CaCO3)으로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.In step (c), the crosslinking agent is calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), and calcium carbonate (CaCO 3 ) The three-dimensional brain of the blood-brain barrier organ on a chip, characterized in that at least one selected from the group consisting of A method for manufacturing a blood vessel barrier structure.
  10. 제1항에 있어서,According to claim 1,
    상기 (e) 단계 이후, (f) 3차원 뇌혈관장벽 구조체의 마이크로 채널을 통해 뇌혈관내피세포를 주입하여, 상기 마이크로 채널 내벽에 뇌혈관내피세포 막을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.After step (e), (f) injecting cerebrovascular endothelial cells through the microchannel of the three-dimensional blood-brain barrier structure to form a cerebrovascular endothelial cell membrane on the inner wall of the microchannel; characterized by further comprising A method for manufacturing a three-dimensional blood-brain barrier structure of an organ-on-a-chip.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 (f) 단계 전에, Before step (f),
    (f') 3차원 뇌혈관장벽 구조체의 마이크로 채널을 통해 마트리겔(matrigel)을 주입하여, 상기 3차원 뇌혈관장벽 구조체의 마이크로 채널 내벽에 마트리겔을 부착하는 단계;를 더 포함하는 것을 특징으로 하는 뇌혈관장벽 오간온어칩의 3차원 뇌혈관장벽 구조체 제조방법.(f') injecting matrigel through the microchannel of the three-dimensional blood-brain barrier structure, and attaching the matrigel to the inner wall of the microchannel of the three-dimensional blood-brain barrier structure; characterized by further comprising A method for manufacturing a three-dimensional blood-brain barrier structure of an organ-on-a-chip.
  12. 제1 플레이트와, 상기 제1 플레이트와 접합되는 제2 플레이트를 포함하며, 상기 제1 플레이트의 내측면과 상기 제2 플레이트의 내측면에는 함몰홈이 형성되어 있는 본체;a body including a first plate and a second plate joined to the first plate, wherein a recessed groove is formed on an inner surface of the first plate and an inner surface of the second plate;
    상기 제1 플레이트와 상기 제2 플레이트가 접합됨으로써 상기 함몰홈에 의하여 상기 본체 내에 형성되는 챔버;a chamber formed in the body by the recessed groove by bonding the first plate and the second plate;
    상기 챔버 내부에 존재하고, 하이드로젤 내부에 적어도 하나 이상의 마이크로 채널을 포함하는 3차원 뇌혈관장벽 구조체;a three-dimensional blood-brain barrier structure existing inside the chamber and including at least one microchannel in the hydrogel;
    상기 제1 플레이트에는 유체를 공급하거나 배출시키는 복수의 관통구를 포함하며, 상기 제2 플레이트에는 상기 각각의 관통구와 뇌혈관장벽 구조체의 마이크로 채널이 연통되도록 소정 깊이로 함몰되어 형성된 각각의 가이드 채널이 구성되는 것을 특징으로 하는 뇌혈관장벽 오간온어칩.The first plate includes a plurality of through-holes for supplying or discharging fluid, and the second plate has guide channels recessed to a predetermined depth so that each of the through-holes and the microchannel of the blood-brain barrier structure communicate with each other. Blood-brain barrier organ-on-a-chip, characterized in that it consists of.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 3차원 뇌혈관장벽 구조체의 하이드로젤은 뇌조직세포들을 포함하고, 상기 마이크로 채널의 내벽에는 뇌혈관내피세포막이 형성되어, 인간 뇌 혈관장벽(BBB)을 모사하는 것을 특징으로 하는 뇌혈관장벽 오간온어칩.The hydrogel of the three-dimensional blood-brain barrier structure includes brain tissue cells, and a cerebrovascular endothelial cell membrane is formed on the inner wall of the micro-channel to mimic the human brain blood-vessel barrier (BBB). on a chip.
PCT/KR2021/017785 2020-12-29 2021-11-29 Method for producing three-dimensional blood-brain barrier structure of blood-brain barrier organ-on-a-chip using reverse rapid liquid printing, and blood-brain barrier organ-on-a-chip comprising same WO2022145743A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0185788 2020-12-29
KR20200185788 2020-12-29
KR1020210045869A KR102527639B1 (en) 2020-12-29 2021-04-08 manufacturing method of 3D brain blood barrier structure of 3D brain blood barrier organ-on-a-chip using reverse rapid liquid printing and 3D brain blood barrier organ-on-a-chip comprising the same
KR10-2021-0045869 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022145743A1 true WO2022145743A1 (en) 2022-07-07

Family

ID=82260565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017785 WO2022145743A1 (en) 2020-12-29 2021-11-29 Method for producing three-dimensional blood-brain barrier structure of blood-brain barrier organ-on-a-chip using reverse rapid liquid printing, and blood-brain barrier organ-on-a-chip comprising same

Country Status (1)

Country Link
WO (1) WO2022145743A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140142370A1 (en) * 2012-11-16 2014-05-22 The Johns Hopkins University Platform for Creating an Artificial Blood Brain Barrier
KR101410294B1 (en) * 2014-04-09 2014-06-20 한국산업기술대학교산학협력단 Assay chip for simulating human tissue and cell reaction measurement method using the same
JP2015116149A (en) * 2013-12-18 2015-06-25 国立大学法人 東京大学 Three-dimentional gel chip for observing interaction between microvasculature and tissue
KR20170087837A (en) * 2016-01-21 2017-07-31 충북대학교 산학협력단 NeuroVascular Unit(NVU)-On-a-Chip And Method Of Fabricating The Same
KR20190044630A (en) * 2016-08-04 2019-04-30 웨이크 포리스트 유니버시티 헬스 사이언시즈 Blood-brain barrier model and its manufacturing and use method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140142370A1 (en) * 2012-11-16 2014-05-22 The Johns Hopkins University Platform for Creating an Artificial Blood Brain Barrier
JP2015116149A (en) * 2013-12-18 2015-06-25 国立大学法人 東京大学 Three-dimentional gel chip for observing interaction between microvasculature and tissue
KR101410294B1 (en) * 2014-04-09 2014-06-20 한국산업기술대학교산학협력단 Assay chip for simulating human tissue and cell reaction measurement method using the same
KR20170087837A (en) * 2016-01-21 2017-07-31 충북대학교 산학협력단 NeuroVascular Unit(NVU)-On-a-Chip And Method Of Fabricating The Same
KR20190044630A (en) * 2016-08-04 2019-04-30 웨이크 포리스트 유니버시티 헬스 사이언시즈 Blood-brain barrier model and its manufacturing and use method

Similar Documents

Publication Publication Date Title
Khademhosseini et al. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment
Pasman et al. Flat and microstructured polymeric membranes in organs-on-chips
Terrell et al. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics
Yanagawa et al. Hydrogel microfabrication technology toward three dimensional tissue engineering
Zorlutuna et al. Microfabricated biomaterials for engineering 3D tissues
CA2789761C (en) Array of micromolded structures for sorting adherent cells
Dixon et al. Bioinspired three-dimensional human neuromuscular junction development in suspended hydrogel arrays
Kajtez et al. 3D‐Printed soft lithography for complex compartmentalized microfluidic neural devices
US20070281353A1 (en) Microfabricated Compositions and Processes for Engineering Tissues Containing Multiple Cell Types
US20230107666A1 (en) Engineered 3D-Printed Artificial Axons
US20120058174A1 (en) Fabrication of interconnected model vasculature
WO2004046337A2 (en) Multilayered microcultures
WO2020231191A1 (en) Double-crosslinkable two-liquid-type bioink composition and method for manufacturing tissue-like structure using same
US20230203448A1 (en) Method of manufacturing microdevices for lab-on-chip applications
Bakirci et al. Melt electrowritten in vitro radial device to study cell growth and migration
Nadine et al. Advances in microfabrication technologies in tissue engineering and regenerative medicine
WO2022145743A1 (en) Method for producing three-dimensional blood-brain barrier structure of blood-brain barrier organ-on-a-chip using reverse rapid liquid printing, and blood-brain barrier organ-on-a-chip comprising same
WO2021040169A1 (en) Bio-ink composition comprising methacrylated low-molecular weight collagen and method of preparing tissue analog structure using same
WO2020111503A1 (en) Core-shell structure for establishing normal and cancer organoid microenvironment and fabrication method therefor
WO2018079866A1 (en) Microfluidic chip for co-culturing cells
KR102527639B1 (en) manufacturing method of 3D brain blood barrier structure of 3D brain blood barrier organ-on-a-chip using reverse rapid liquid printing and 3D brain blood barrier organ-on-a-chip comprising the same
CN113717925B (en) Artificial liver organoid and preparation method and application thereof
WO2021112562A1 (en) Melanoma model and manufacturing method therefor
Dixit et al. Bioprinting in Pharmaceuticals
De Vitis et al. The Evolution of Technology‐Driven In Vitro Models for Neurodegenerative Diseases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915541

Country of ref document: EP

Kind code of ref document: A1