WO2022145645A1 - Matériau actif revêtu d'électrolyte solide, électrode, et batterie tout à l'état solide utilisant ceux-ci - Google Patents

Matériau actif revêtu d'électrolyte solide, électrode, et batterie tout à l'état solide utilisant ceux-ci Download PDF

Info

Publication number
WO2022145645A1
WO2022145645A1 PCT/KR2021/013791 KR2021013791W WO2022145645A1 WO 2022145645 A1 WO2022145645 A1 WO 2022145645A1 KR 2021013791 W KR2021013791 W KR 2021013791W WO 2022145645 A1 WO2022145645 A1 WO 2022145645A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
solid electrolyte
solid
state battery
chloride
Prior art date
Application number
PCT/KR2021/013791
Other languages
English (en)
Korean (ko)
Inventor
박건호
조우석
김경수
유지상
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022145645A1 publication Critical patent/WO2022145645A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic

Definitions

  • the present invention relates to an all-solid-state battery, and more particularly, to an active material coated with a solid electrolyte that can improve the performance of an all-solid-state battery by expanding the ionic contact area between the active material and the solid electrolyte, an electrode, and an all-solid-state battery using the same it's about
  • Lithium secondary batteries have been widely commercialized because of their excellent energy density and output characteristics among various secondary batteries.
  • a lithium secondary battery (hereinafter referred to as a 'liquid-type secondary battery') including a liquid-type electrolyte containing an organic solvent is mainly used.
  • liquid type secondary battery the liquid electrolyte is decomposed by the electrode reaction, causing the battery to expand, and the risk of ignition due to leakage of the liquid electrolyte is pointed out.
  • a lithium secondary battery hereinafter referred to as an 'all-solid-state battery' to which a solid electrolyte having excellent stability is applied is attracting attention.
  • Sulfide-based solid electrolytes have a high ionic conductivity similar to that of conventional organic liquid electrolytes, and have excellent mechanical ductility, which is why they are attracting attention as solid electrolytes for bulk-type all-solid-state batteries.
  • an active material coated with a solid electrolyte In order to construct an all-solid-state battery having such excellent performance, it is preferable to use an active material coated with a solid electrolyte uniformly.
  • the sulfide-based solid electrolyte is easily oxidized on the surface of the active material, making it unsuitable for use as a coating layer.
  • An object of the present invention is to provide an active material coated with a solid electrolyte, an electrode, and an all-solid-state battery using the same, which can improve the performance of an all-solid-state battery by increasing the ionic contact area between the active material and the solid electrolyte.
  • the present invention provides a raw material active material; and a coating layer formed by coating the surface of the raw material with a chloride-based solid electrolyte.
  • the chloride-based solid electrolyte is Li 2-2x M 2 1+x X 4 (0 ⁇ x ⁇ 0.5, M 2 is at least among Be, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu and Zn one, and X may be at least one of F, Cl, and Br).
  • the chloride-based solid electrolyte is Li 3-x M 3 1-x M 4 x X 6 (0 ⁇ x ⁇ 1, M 3 is one of Sc, Y, Er, Yb, Cr, Fe and Co, M 4 is One of Ti, Zr, and Hf, and X may be at least one of F, Cl, and Br).
  • the coating layer may be formed by physically mixing the raw material active material and the chloride-based solid electrolyte.
  • the present invention also provides a raw material active material, an active material having a coating layer formed by coating the surface of the raw material active material with a chloride-based solid electrolyte; and a sulfide-based solid electrolyte; provides an electrode for an all-solid-state battery comprising.
  • the present invention provides an all-solid-state battery including the electrode.
  • the coating layer with the chloride-based solid electrolyte on the surface of the raw material active material as described above, the ionic contact area between the raw material active material and the solid electrolyte can be enlarged, thereby improving the performance of the all-solid-state battery.
  • an all-solid-state battery having an active material coated with a chloride-based solid electrolyte can provide improved atmospheric stability and high voltage stability.
  • FIG. 1 is a view showing an electrode for an all-solid-state battery including an active material coated with a chloride-based solid electrolyte on the surface of a raw active material according to the present invention.
  • FIG. 2 is a view showing an electrode for an all-solid-state battery in which a raw material active material and a solid electrolyte are mixed according to Comparative Example 1.
  • FIG. 3 is a graph showing the results of X-ray diffraction analysis of active materials according to Examples and Comparative Examples.
  • FIG. 1 is a view showing an electrode for an all-solid-state battery including an active material coated with a chloride-based solid electrolyte on the surface of a raw active material according to the present invention.
  • the electrode 100 for an all-solid-state battery according to the present invention includes an active material 40 .
  • the active material 40 includes a raw active material 10 and a coating layer 30 coated with a chloride-based solid electrolyte on the surface of the raw active material 10 . That is, the active material 40 according to the present invention has a structure in which the chloride-based solid electrolyte 30 is coated on the surface of the raw active material 10 .
  • a mechanical (physical) coating method using a mechanical (physical) mixer such as a corotatory mixer may be used as a method of forming the coating layer 30 on the raw material 10 .
  • the active material 40 on which the coating layer 30 is formed can be obtained by mixing the raw material 10 and the chloride-based solid electrolyte into a corotatory mixer.
  • the active material 40 for an all-solid-state battery according to the present invention will be described in detail as follows.
  • the raw material active material 10 an oxide-based active material having excellent mechanical strength may be used. And the chloride-based solid electrolyte has excellent mechanical ductility.
  • the coating layer 30 may be formed by coating the surface of the raw material active material 10 with the chloride-based solid electrolyte. That is, since the chloride-based solid electrolyte has higher electrochemical and oxidation stability than the sulfide-based solid electrolyte, it is suitable as the coating layer 30 for expanding the ionic contact area. And since the chloride-based solid electrolyte has excellent mechanical ductility as described above compared to the oxide-based or sulfide-based solid electrolyte, it is easy to apply the coating layer 30 on the surface of the raw material 10 even with a simple mechanical coating process. can be formed
  • Li 2-2x M 2 1+x X 4 (0 ⁇ x ⁇ 0.5, M 2 is at least among Be, Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu and Zn) one, and X may be at least one of F, Cl, and Br).
  • Li 3-x M 3 1-x M 4 x X 6 (0 ⁇ x ⁇ 1, M 3 is one of Sc, Y, Er, Yb, Cr, Fe and Co, M 4 is one of Ti, Zr, and Hf, and X is at least one of F, Cl, and Br) may be used.
  • the electrode 100 may include the active material 40 according to the present invention and a sulfide-based solid electrolyte.
  • a sulfide-based solid electrolyte Li 10 GeP 2 S 12 , Li 3 PS 4 or Li 6 PS 5 Cl may be used, but is not limited thereto.
  • the electrode 100 may be manufactured so that the mass ratio of the raw material 10, the chloride-based solid electrolyte, and the sulfide-based solid electrolyte is 75: 3 to 20: 5 to 22.
  • the electrode 100 may further include a binder and a conductive material. Since the binder and the conductive material may be materials generally used for manufacturing the electrode 100 , a description thereof will be omitted.
  • the active material according to the present invention forms a coating layer with a chloride-based solid electrolyte on the surface of the raw material active material, thereby increasing the ionic contact area between the raw material active material and the solid electrolyte, thereby improving the performance of the all-solid-state battery.
  • an all-solid-state battery having an active material coated with a chloride-based solid electrolyte can provide improved atmospheric stability and high voltage stability.
  • active materials according to Examples and Comparative Examples were prepared.
  • the room temperature ionic conductivity of the Li 3 YCl 6 solid electrolyte synthesized through the AC-impedance method was confirmed to be 0.45 mS/cm.
  • An electrode according to Comparative Example 1 was prepared by mixing a raw material active material not coated with a chloride-based solid electrolyte and a Li 6 PS 5 Cl solid electrolyte in a mass ratio of 75 to 25.
  • the electrode 200 according to Comparative Example 1 may be displayed as shown in FIG. 2 .
  • 2 is a view showing an electrode 200 for an all-solid-state battery in which the raw material active material 10 and the solid electrolyte 20 according to Comparative Example 1 are mixed. That is, the electrode 200 according to Comparative Example 1 has a structure in which the solid electrolyte 20 particles are disposed between the raw material active material 10 particles.
  • an all-solid-state battery was manufactured by sequentially stacking a positive electrode, a solid electrolyte layer, and a negative electrode.
  • an all-solid-state battery was manufactured by sequentially stacking a positive electrode, a solid electrolyte layer, and a negative electrode.
  • An electrode was prepared by coating a chloride-based solid electrolyte and a raw material active material in a mass ratio of 75 to 8.33, and mixing it with a 16.67% Li 6 PS 5 Cl solid electrolyte.
  • the electrode was prepared by mixing with 11.76% Li 6 PS 5 Cl solid electrolyte.
  • an all-solid-state battery was manufactured by sequentially stacking a positive electrode, a solid electrolyte layer, and a negative electrode.
  • the chloride-based solid electrolyte and the raw material were coated in a mass ratio of 75 to 18.75, and then mixed with 6.25% Li 6 PS 5 Cl solid electrolyte to prepare an electrode.
  • an all-solid-state battery was manufactured by sequentially stacking a positive electrode, a solid electrolyte layer, and a negative electrode.
  • Table 1 summarizes the performance evaluation results of the all-solid-state batteries according to Comparative Example 1 and Examples 1-4.
  • the all-solid-state battery according to Examples 1 to 4 has an improved discharge capacity compared to the all-solid-state battery according to Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente invention concerne un matériau actif revêtu d'un électrolyte solide, une électrode, et une batterie tout à l'état solide utilisant ceux-ci, et le but de la présente invention est d'améliorer les performances de la batterie tout à l'état solide en agrandissant la surface de contact ionique entre le matériau actif et l'électrolyte solide. Le matériau actif pour batterie tout à l'état solide selon la présente invention comprend un matériau actif source et une couche de revêtement formée par revêtement d'un électrolyte solide à base de chlorure sur la surface du matériau actif source.
PCT/KR2021/013791 2020-12-30 2021-10-07 Matériau actif revêtu d'électrolyte solide, électrode, et batterie tout à l'état solide utilisant ceux-ci WO2022145645A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200186937A KR20220097560A (ko) 2020-12-30 2020-12-30 고체전해질이 코팅된 활물질, 전극 및 그를 이용한 전고체전지
KR10-2020-0186937 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022145645A1 true WO2022145645A1 (fr) 2022-07-07

Family

ID=82259332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013791 WO2022145645A1 (fr) 2020-12-30 2021-10-07 Matériau actif revêtu d'électrolyte solide, électrode, et batterie tout à l'état solide utilisant ceux-ci

Country Status (2)

Country Link
KR (1) KR20220097560A (fr)
WO (1) WO2022145645A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160128670A (ko) * 2015-04-29 2016-11-08 현대자동차주식회사 고체 전해질 및 이를 포함하는 전고체 전지
WO2019135323A1 (fr) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 Batterie
WO2019146236A1 (fr) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Matériau d'électrode positive et batterie
KR20200021731A (ko) * 2018-08-21 2020-03-02 전자부품연구원 전고체 이차전지용 양극 나노복합체 및 이의 제조 방법
JP2020109047A (ja) * 2018-12-28 2020-07-16 パナソニックIpマネジメント株式会社 固体電解質材料、およびそれを用いた電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102452005B1 (ko) 2017-12-27 2022-10-06 현대자동차주식회사 질소가 첨가된 전고체 전지용 황화물계 고체전해질

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160128670A (ko) * 2015-04-29 2016-11-08 현대자동차주식회사 고체 전해질 및 이를 포함하는 전고체 전지
WO2019135323A1 (fr) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 Batterie
WO2019146236A1 (fr) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Matériau d'électrode positive et batterie
KR20200021731A (ko) * 2018-08-21 2020-03-02 전자부품연구원 전고체 이차전지용 양극 나노복합체 및 이의 제조 방법
JP2020109047A (ja) * 2018-12-28 2020-07-16 パナソニックIpマネジメント株式会社 固体電解質材料、およびそれを用いた電池

Also Published As

Publication number Publication date
KR20220097560A (ko) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2019107879A1 (fr) Électrolyte solide, son procédé de préparation, et batterie à électrolyte solide comprenant celui-ci
WO2019107878A1 (fr) Électrolyte solide, son procédé de préparation, et batterie à l'état solide le comprenant
WO2010053328A2 (fr) Matériau actif positif doté de caractéristiques de tension élevée améliorées
WO2013002457A1 (fr) Matière active d'électrode positive, électrode incluant la matière active d'électrode positive et batterie électrochimique au lithium
WO2015133692A1 (fr) Matériau actif de cathode, batterie secondaire au lithium le comprenant et son procédé de préparation
WO2018182216A9 (fr) Électrolyte composite à structure multicouche et batterie secondaire utilisant celui-ci
WO2020013667A1 (fr) Batterie secondaire au lithium comprenant une solution d'électrolyte inorganique
WO2019078690A2 (fr) Matériau actif négatif, électrode négative renfermant un matériau actif négatif, et batterie secondaire comprenant une électrode négative
WO2015099243A1 (fr) Matériau actif d'électrode contenant un composé de bore et dispositif électrochimique l'utilisant
WO2021025370A1 (fr) Materiau actif cathodique pour batterie de secours au lithium
WO2019103311A1 (fr) Électrode positive d'une batterie secondaire au lithium-polymère entièrement solide, son procédé de fabrication, et batterie secondaire la comprenant
WO2015012473A1 (fr) Oxyde à base de lithium et de manganèse et substance active d'électrode positive comprenant celui-ci
WO2017142295A1 (fr) Procédé de préparation d'électrolyte solide à base de sulfure, électrolyte solide à base de sulfure ainsi préparé, et accumulateur au lithium tout solide le comprenant
WO2015026121A1 (fr) Oxyde complexe à base de lithium-cobalt ayant de bonnes propriétés de durée de vie, et matériau actif d'anode de batterie secondaire le comprenant
WO2018101765A1 (fr) Anode pour batterie rechargeable, et batterie rechargeable au comprenant celle-ci
WO2009134047A1 (fr) Matière active d'électrode négative pour batterie lithium secondaire et batterie lithium secondaire contenant ladite matière
WO2010143805A1 (fr) Matériau cathodique pour une batterie secondaire au lithium, son procédé de fabrication et batterie secondaire au lithium le comprenant
WO2023229121A1 (fr) Méthode de production de sulfure de lithium de haute pureté par des procédés humides et secs
WO2022108118A1 (fr) Procédé de production d'électrolyte solide à base de sulfure en utilisant un solvant organique à base d'ester, et électrolyte solide à base de sulfure et batterie entièrement solide fabriqués par ledit procédé de fabrication
WO2017039149A1 (fr) Liant pour batterie secondaire comprenant un matériau magnétique
WO2017061807A1 (fr) Élément de batterie comprenant un composant d'électrolyte gélifié dans un pore d'air de film de séparation constituant un ensemble électrode
WO2022085984A1 (fr) Électrode de batterie secondaire et procédé de fabrication d'une électrode de batterie secondaire
WO2023182612A1 (fr) Matériau actif d'anode pour batterie rechargeable, son procédé de préparation, et batterie rechargeable le comprenant
WO2022145645A1 (fr) Matériau actif revêtu d'électrolyte solide, électrode, et batterie tout à l'état solide utilisant ceux-ci
WO2023080366A1 (fr) Composition de suspension pour électrode positive de batterie secondaire au lithium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915443

Country of ref document: EP

Kind code of ref document: A1