WO2022145441A1 - Polyvinyl alcohol film, polarizing film using same, and polarizing plate - Google Patents

Polyvinyl alcohol film, polarizing film using same, and polarizing plate Download PDF

Info

Publication number
WO2022145441A1
WO2022145441A1 PCT/JP2021/048716 JP2021048716W WO2022145441A1 WO 2022145441 A1 WO2022145441 A1 WO 2022145441A1 JP 2021048716 W JP2021048716 W JP 2021048716W WO 2022145441 A1 WO2022145441 A1 WO 2022145441A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pva
polyvinyl alcohol
pva film
stretching
Prior art date
Application number
PCT/JP2021/048716
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 鷹取
稔 岡本
修 風藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2022573096A priority Critical patent/JPWO2022145441A1/ja
Priority to CN202180088169.5A priority patent/CN116685628A/en
Priority to KR1020237023583A priority patent/KR20230121805A/en
Publication of WO2022145441A1 publication Critical patent/WO2022145441A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polyvinyl alcohol film, a polarizing film using the same, and a polarizing plate.
  • a polarizing plate having a light transmitting and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal having a light switching function.
  • LCD liquid crystal display
  • the fields of application of this LCD are also used from small devices such as calculators and wristwatches in the early stages of development to notebook computers, LCD monitors, LCD color projectors, LCD TVs, in-vehicle navigation systems, mobile phones and indoors and outdoors in recent years. It is expanding to various fields such as measuring instruments.
  • the polarizing plate is manufactured by laminating a protective film such as a cellulose triacetate (TAC) film or a cellulose acetate / butyrate (CAB) film on the surface of a polarizing film. Then, the polarizing film is uniaxially stretched or dyed after dyeing a polyvinyl alcohol film (hereinafter, "polyvinyl alcohol” may be referred to as “PVA” and “polyvinyl alcohol film” may be referred to as "PVA film”). However, it is generally produced by uniaxially stretching or uniaxially stretching and then dyeing to produce a dyed uniaxially stretched film, and then immobilizing the uniaxially stretched film with a boron compound.
  • a protective film such as a cellulose triacetate (TAC) film or a cellulose acetate / butyrate (CAB) film
  • TAC cellulose triacetate
  • CAB cellulose acetate / butyrate
  • uniaxial stretching is generally controlled by adjusting the rotation speed of a set of nip rolls with a drive function (material is NBR rubber).
  • the immobilization treatment with this boron compound may be performed at the same time as the uniaxial stretching or dyeing treatment.
  • the polarizing film is also required to have higher performance, and specifically, it is required to increase the degree of polarization of the polarizing film.
  • it is necessary to increase the draw ratio when the PVA film is uniaxially stretched.
  • the draw ratio is increased, the stretch breakage of the PVA film is likely to occur. As a result, the productivity and yield of the polarizing film are lowered, and the cost tends to be high.
  • a PVA layer is formed on a plastic film by a coating method, and the laminate is subjected to stretching treatment, dyeing treatment, or the like. Therefore, a method of processing the PVA layer into a polarizing film is known.
  • the method of using a laminate obtained by forming a PVA layer on a plastic film by a coating method has the following problems.
  • an object of the present invention is to provide a PVA film in which stretch fracture is unlikely to occur in uniaxial stretching when manufacturing an optical film such as a polarizing film, a polarizing film using the same, and a polarizing plate.
  • the present inventors have obtained the detection intensity of silicon fragment ions obtained by positive ion analysis by time-of-flight secondary ion mass spectrometry on at least one surface of the PVA film. It was found that the above problem can be solved by adjusting the average value of. Although the detailed reason is not clear, the moderate presence of silicon ions on the surface of the PVA film causes the friction between the PVA film and the nip roll to be moderate in uniaxial stretching when manufacturing an optical film such as a polarizing film. Therefore, it is presumed that the stretch breakage of the PVA film is suppressed. Based on these findings, the present inventors further studied and completed the present invention.
  • the present invention [1] On at least one surface of the polyvinyl alcohol film, the average value of the detection intensities of positive silicon fragment ions obtained by positive ion analysis by time-of-flight secondary ion mass spectrometry is 0.001 to 0.01. , Polyvinyl alcohol film, which is a raw film for manufacturing optical films. [The average value of the detection intensity of positive silicon fragment ions is on an arbitrary straight line parallel to the TD direction of the polyvinyl alcohol film, and the flight time type secondary at 5 points that divide the polyvinyl alcohol film into 6 equal parts in the TD direction. It is the average value of the detection intensity of the positive silicon fragment ion obtained by the positive ion analysis by the ion mass analyzer.
  • a PVA film in which stretch breakage is unlikely to occur in uniaxial stretching when manufacturing an optical film such as a polarizing film, a polarizing film using the same, and a polarizing plate.
  • Time-of-flight secondary ion mass spectrometry (hereinafter, may be referred to as TOF-SIMS) is known as a method for analyzing components existing on the film surface and their distribution state.
  • TOF-SIMS Time-of-flight secondary ion mass spectrometry
  • fragment ions when PVA film is measured by TOF-SIMS, a wide variety of fragment ions are detected. Among these fragment ions, by analyzing the signals of the fragment ions derived from the plasticizer and the surfactant contained in the PVA film and comparing the signal intensities, the distribution state and the segregation state on the surface of these films can be determined. It is possible to know.
  • a silicon-derived positive fragment ion (hereinafter, may be referred to as a positive silicon fragment ion) detected by performing positive ion analysis by TOF-SIMS on a PVA film.
  • a positive silicon fragment ion detected by performing positive ion analysis by TOF-SIMS on a PVA film.
  • one axis for manufacturing an optical film such as a polarizing film is set in a specific range by setting the average value of the detection intensities of positive silicon fragment ions on at least one surface of the PVA film as a specific range. It is possible to obtain a PVA film in which stretching breakage is unlikely to occur during stretching.
  • the detection intensity of positive silicon fragment ions is the count number of all fragment ions (T.c .: total count intensity) detected by the positive ion analysis by TOF-SIMS, which is the count number of positive silicon fragment ions. The divided value was used.
  • the average value of the detection intensities of positive silicon fragment ions obtained by positive ion analysis by TOF-SIMS is 0.001 to 0.01 on at least one surface of the PVA film.
  • FIG. 1 shows the measurement points for obtaining the average value of the detection intensities of positive silicon fragment ions.
  • the average value of the detected intensities is on an arbitrary straight line A parallel to the TD direction of the PVA film, and the PVA film is divided into 6 equal parts in the TD direction at 5 points (points P 1 , P 2 , P 3 , P 4 and P). It is the average value of the detection intensity of the positive silicon fragment ion in 5 ).
  • the average value of the detection intensities of positive silicon fragment ions at the five measurement points is 0.001 to 0.01.
  • the average value of the detection intensities of silicon fragment ions on at least one surface of the PVA film may be 0.001 to 0.01, but the detection intensities of silicon fragment ions on both sides of the PVA film may be 0.001 to 0.01.
  • the average value may be 0.001 to 0.01. If the average value of the detected intensities is less than 0.001, excessive tension may be applied to the PVA film in uniaxial stretching when manufacturing an optical film such as a polarizing film, and stretching fracture may occur. It is presumed that this is because if the amount of silicon fragment ions present on the surface of the PVA film is too small, the friction between the PVA film and the nip roll becomes strong.
  • the average value of the detected strength exceeds 0.01, the PVA film is not stretched in the uniaxial stretching when manufacturing an optical film such as a polarizing film, but is completely melted in the stretching treatment liquid and stretched and fractured. There is a risk. It is presumed that this is because if the amount of silicon fragment ions present on the surface of the PVA film is too large, slippage occurs between the nip roll and the film.
  • the average value of the detected intensities is preferably 0.002 or more, more preferably 0.003 or more, and even more preferably 0.004 or more.
  • the average value of the detected intensities is preferably 0.01 or less, more preferably 0.009 or less, further preferably 0.008 or less, and most preferably 0.007 or less.
  • the method for setting the average value of the detected intensities to 0.001 to 0.01 is not particularly limited, and examples thereof include a method in which a silicon-containing compound is contained in a PVA film.
  • a silicon-containing compound a silicone-type surfactant is preferable.
  • the content of the silicone-type surfactant, the volatile content of the PVA water-containing chip or the film-forming stock solution, the number of rotations of the screw of the extruder when melt-kneading the PVA, and the surface of the support for flowing the film-forming stock solution are examples thereof include a method in which a silicon-containing compound is contained in a PVA film.
  • a silicone-type surfactant is preferable.
  • the content of the silicone-type surfactant, the volatile content of the PVA water-containing chip or the film-forming stock solution, the number of rotations of the screw of the extruder when melt-kneading the PVA, and the surface of the support for flowing the film-forming stock solution are examples thereof include
  • the average value of the detected intensity is 0.001 to 0.01. Can be.
  • the detection intensity of positive silicon fragment ions at five points ( points P1 to P5) that are on an arbitrary straight line A parallel to the TD direction of the PVA film and divide the PVA film into six equal parts in the TD direction.
  • the difference between the maximum value and the minimum value of is preferably 0.0005 or more, more preferably 0.0007 or more, and further preferably 0.0008 or more.
  • the difference between the maximum value and the minimum value of the detection intensity of the positive silicon fragment ion is preferably 0.002 or less, more preferably 0.0018 or less, and further preferably 0.0016 or less.
  • the method for setting the difference between the maximum value and the minimum value of the detection intensity to 0.0005 to 0.002 is not particularly limited, but for example, a method of incorporating a silicon-containing compound such as a silicone-type surfactant into a PVA film is used. can give.
  • a silicon-containing compound such as a silicone-type surfactant
  • the content of the silicone-type surfactant, the volatile content of the PVA water-containing chip or the film-forming stock solution, the number of rotations of the screw of the extruder when melt-kneading the PVA, and the surface of the support for flowing the film-forming stock solution is not particularly limited, but for example, a method of incorporating a silicon-containing compound such as a silicone-type surfactant into a PVA film is used. can give.
  • the difference between the maximum value and the minimum value of the detected intensity is set to 0. It can be 0005 to 0.002.
  • the average value of the coefficient of variation of the thickness of the PVA film is preferably 0.01 to 0.03.
  • FIG. 2 shows the measurement points when determining the coefficient of variation of the thickness of the PVA film.
  • a length of 1.2 m parallel to the MD direction of the PVA film passes through each of the five points (points P1 to P5) that divide the PVA film into six equal parts in the TD direction.
  • the thickness of the PVA film is measured at points on the straight lines B 1 to B 5 , and the fluctuation coefficient of the thickness of the PVA film is calculated.
  • Each of the 1.2 m long straight lines B 1 to B 5 may be, for example, a straight line such that the five points (P 1 to P 5 ) that divide the PVA film into six equal parts in the TD direction are at the center. can.
  • the measurement interval can be appropriately set, and for example, the measurement can be performed at intervals of 0.5 mm.
  • the average value of the coefficient of variation is preferably 0.01 or more, more preferably 0.011 or more, further preferably 0.012 or more, and most preferably 0.013 or more.
  • the average value of the coefficient of variation is preferably 0.03 or less, more preferably 0.025 or less, further preferably 0.022 or less, and most preferably 0.018 or less.
  • the method for setting the average value of the coefficient of variation to 0.01 to 0.03 is not particularly limited, but for example, the temperature of the hot air blown onto the PVA film, which increases the volatile content of the PVA water-containing chip or the film-forming stock solution, and , A method of lowering the temperature of the drying roll or the drying furnace.
  • the content of the silicone-type surfactant, the volatile content of the PVA water-containing chip or the film-forming stock solution, the number of rotations of the screw of the extruder when melt-kneading the PVA, and the surface of the support for flowing the film-forming stock solution is not particularly limited, but for example, the temperature of the hot air blown onto the PVA film, which increases the volatile content of the PVA water-containing chip or the film-forming stock solution, and , A method of lowering the temperature of the drying roll or the drying furnace.
  • the difference between the maximum value and the minimum value of the detected intensity is set to 0. It can be 0005 to 0.002.
  • the degree of swelling when the PVA film is immersed in water at 30 ° C. for 30 minutes is preferably 180% or more, more preferably 190% or more, and further preferably 195% or more. preferable.
  • the degree of swelling when the PVA film is immersed in water at 30 ° C. for 30 minutes is preferably 240% or less, more preferably 210% or less, still more preferably 205% or less.
  • the degree of swelling is 180 to 240%, the PVA film becomes moderately soft when immersed in water such as swelling treatment when manufacturing an optical film such as a polarizing film, and the tension becomes excessive when the PVA film is uniaxially stretched. As a result, it is possible to suppress the occurrence of stretch breakage.
  • the MD direction of the PVA film means the length direction of the PVA film, which coincides with the mechanical flow direction when the PVA film is manufactured.
  • the TD direction of the PVA film means the width direction of the PVA film, and is a direction orthogonal to the machine flow direction when manufacturing the PVA film.
  • whether one direction is the MD direction or the TD direction can be determined ex post facto even after the production of the PVA film by measuring the phase difference spots of the PVA film. That is, since it is usually difficult to make the thickness unevenness of the film completely uniform during the production of the PVA film, it can be determined that the direction in which the phase difference unevenness of the PVA film is large is the TD direction. On the other hand, it can be determined that the direction in which the phase difference unevenness of the PVA film is small is the MD direction.
  • PVA a polymer produced by saponifying a vinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer
  • examples of the vinyl ester-based monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like.
  • vinyl acetate is preferable as the vinyl ester-based monomer.
  • the vinyl ester-based polymer is preferably a polymer obtained by using only one kind or two or more kinds of vinyl ester-based monomers as a monomer, and is obtained by using only one kind of vinyl ester-based monomer as a monomer.
  • the obtained polymer is more preferable.
  • the vinyl ester-based polymer may be a copolymer of one or more kinds of vinyl ester-based monomers and another monomer copolymerizable therewith.
  • Other monomers include, for example, ethylene; olefins having 3 to 30 carbon atoms such as propylene, 1-butene, and isobutene; acrylic acid or a salt thereof; methylacrylic acid, ethylacrylic acid, n-propyl acrylate, i-acrylic acid.
  • -Acrylic acid esters such as propyl, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid or salts thereof; methacrylic acid.
  • an acrylamide derivative such as a derivative thereof; methacrylicamide, N-methylmethacrylicamide, N-ethylmethacrylicamide, methacrylicamide propanesulfonic acid or a salt thereof, methacrylicamidepropyldimethylamine or a salt thereof, N-methylolmethacrylicamide or a derivative thereof, etc.
  • N-vinylamide such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone
  • methylvinyl ether ethylvinyl ether
  • n-propylvinyl ether i-propylvinyl ether
  • n-butylvinyl ether i-butylvinyl ether.
  • Vinyl ethers such as t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; vinyl cyanide such as acrylonitrile and methacrylic nitrile; vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; allyl acetate and allyl chloride. Allyl compounds such as; maleic acid or salts thereof, esters or acid anhydrides; itaconic acid or salts thereof, esters or acid anhydrides; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like.
  • the vinyl ester-based polymer can have a structural unit derived from one or more of these other monomers.
  • the proportion of structural units derived from other monomers in the vinyl ester polymer is not necessarily limited as long as it does not interfere with the effects of the present invention, but is based on the number of moles of all structural units constituting the vinyl ester polymer. It is preferably mol% or less, more preferably 5 mol% or less, further preferably 1 mol% or less, and particularly preferably 0.1 mol% or less.
  • the degree of polymerization of PVA is not particularly limited.
  • the degree of polymerization of PVA is preferably 1,000 or more, and preferably 8,000 or less.
  • the lower limit of the degree of polymerization of PVA is more preferably 1,500 or more, and further preferably 2,000 or more, from the viewpoint of enhancing the optical performance and the heat resistance to moisture of the obtained optical film.
  • the upper limit of the degree of polymerization of PVA is more preferably 5,000 or less, and further preferably 4,000 or less, from the viewpoint of increasing the productivity of PVA.
  • the degree of polymerization means the average degree of polymerization measured according to the description of JIS K 6726-1994. That is, in the present invention, the degree of polymerization (Po) is determined by the following formula from the ultimate viscosity [ ⁇ ] (deciliter / g) measured in water at 30 ° C. after remineralizing and purifying the residual acetic acid group of PVA. Be done.
  • the lower limit of the saponification degree of PVA is 98.7 mol%, preferably 99.0 mol%, more preferably 99.5 mol%, further preferably 99.8 mol%, and 99.9 mol%. % Is particularly preferable.
  • the saponification degree is at least the above lower limit, an optical film having excellent optical performance and moisture heat resistance tends to be obtained.
  • the upper limit of the saponification degree is not particularly limited, but is preferably 99.99 mol% or less from the viewpoint of PVA productivity.
  • the degree of saponification of PVA is the number of moles of vinyl alcohol units with respect to the total number of moles of structural units (typically vinyl ester monomer units) that can be converted into vinyl alcohol units by saponification. It refers to the proportion (mol%).
  • the degree of saponification of PVA can be measured according to the description of JIS K 6726-1994.
  • the PVA film of the present invention may contain one type of PVA alone, or may contain two or more types of PVA having different degrees of polymerization, saponification, modification, and the like.
  • the upper limit of the ratio of the PVA content in the PVA film is not particularly limited.
  • the lower limit of the content ratio of PVA is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 85% by mass or more.
  • the PVA film of the present invention preferably contains a plasticizer. Since the PVA film contains a plasticizer, the stretchability of the PVA film can be enhanced in the stretching step when producing the optical film.
  • a polyhydric alcohol is preferable as the plasticizer. Examples of the polyhydric alcohol include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like. Among these, glycerin is preferable from the viewpoint of improving the stretchability.
  • the plasticizer may be used alone or in combination of two or more.
  • the content of the plasticizer in the PVA film of the present invention is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of PVA. preferable.
  • the content of the plasticizer is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less with respect to 100 parts by mass of PVA.
  • the PVA film of the present invention preferably contains a silicon-containing compound.
  • a silicon-containing compound it is more preferable to contain a silicone-type surfactant.
  • a silicone-type surfactant By containing a silicone-type surfactant, it becomes easy to adjust the average value of the detection intensities of positive silicon fragment ions within the above range.
  • Specific examples of the silicone-type surfactant include a silicone-type surfactant having a polyether structure at one end of the silicone (“SN Wet 125” and “SN Wet 126” manufactured by Sannopco), and both ends of the silicone are polyether.
  • Silicone type surfactant with structure (“X-22-4952”, “X-22-4272” and “X-22-6266” manufactured by Shin-Etsu Chemical Co., Ltd.), Silicone with a polyether structure on the side chain of silicone Type Surface Activator ("KF-351A”, “KF-352A”, “KF-353”, “KF-354L”, “KF-355A”, “KF-615A”, “KF-945" manufactured by Shin-Etsu Chemical Co., Ltd.
  • the content of the silicone-type surfactant is preferably 0.02 part by mass or more, more preferably 0.04 part by mass or more, and 0.06 by mass with respect to 100 parts by mass of PVA. It is more preferably more than parts by mass.
  • the content of the silicone-type surfactant is preferably 0.14 parts by mass or less, more preferably 0.12 parts by mass or less, and further preferably 0.10 parts by mass or less. ..
  • the PVA film of the present invention preferably contains a surfactant other than the silicone-type surfactant.
  • a surfactant other than the silicone-type surfactant is not particularly limited, and for example, an anionic surfactant and a nonionic surfactant are preferably used.
  • anionic surfactant examples include a carboxylic acid type surfactant such as potassium laurate; a sulfate ester type surfactant such as octyl sulfate; and a sulfonic acid type surfactant such as dodecylbenzene sulfonate.
  • nonionic surfactant examples include an alkyl ether type surfactant such as polyoxyethylene lauryl ether and polyoxyethylene oleyl ether; an alkylphenyl ether type surfactant such as polyoxyethylene octylphenyl ether; and polyoxyethylene lau.
  • Alkyl ester-type surfactants such as rates; Alkylamine-type surfactants such as polyoxyethylene laurylamino ether; Alkylamide-type surfactants such as polyoxyethylene lauric acid amide; Polypropylene such as polyoxyethylene polyoxypropylene ethers Glycol ether type surfactants; alkanolamide type surfactants such as lauric acid diethanolamide and oleic acid diethanolamide; allylphenyl ether type surfactants such as polyoxyalkylene allylphenyl ether and the like can be mentioned.
  • the surfactant other than the silicone type surfactant one type may be used alone or two or more types may be used in combination.
  • a nonionic surfactant is preferable, an alkanolamide type surfactant is more preferable, and a fat Dialkanolamides (eg, diethanolamides, etc.) of group carboxylic acids (eg, saturated or unsaturated aliphatic carboxylic acids having 8 to 30 carbon atoms) are more preferable.
  • the content of the surfactant other than the silicone-type surfactant in the PVA film of the present invention is preferably 0.01 part by mass or more, and preferably 0.02 part by mass or more with respect to 100 parts by mass of PVA. More preferably, it is more preferably 0.05 parts by mass or more.
  • the content of the surfactant other than the silicone type surfactant is preferably 10 parts by mass or less, more preferably 1 part by mass or less, and 0.5 part by mass with respect to 100 parts by mass of PVA. It is more preferably 0 parts by mass or less, and particularly preferably 0.3 parts by mass or less.
  • the content of the surfactant other than the silicone-type surfactant is in the above range, the peelability of the PVA film from the film forming apparatus at the time of manufacturing is improved, and the PVA film is stuck between the PVA films (hereinafter referred to as "blocking"). It can be prevented from occurring. Further, it is possible to prevent a surfactant other than the silicone-type surfactant from bleeding out to the surface of the PVA film and to prevent the appearance of the PVA film from being deteriorated due to the aggregation of the surfactant.
  • the PVA film of the present invention includes water-soluble polymers, moisture, antioxidants, ultraviolet absorbers, lubricants, cross-linking agents, colorants, fillers, preservatives, fungicides, other polymer compounds, etc. Ingredients may be contained within a range that does not interfere with the effects of the present invention.
  • the ratio of the total mass of PVA, the surfactant, the plasticizer, and other components other than PVA to the total mass of the PVA film is preferably 60 to 100% by mass, preferably 80 to 100% by mass. Is more preferable, and 90 to 100% by mass is further preferable.
  • the PVA film of the present invention is water-insoluble. Since the PVA film is water-insoluble, when uniaxial stretching for producing an optical film such as a polarizing film is performed in an aqueous solution, the PVA film is broken during uniaxial stretching even if the maximum stretching speed is high. It can be stretched without causing it.
  • water-insoluble in the present invention means that the PVA film is not completely dissolved when the PVA film is immersed in water (deionized water) at 30 ° C. according to the following procedures ⁇ 1> to ⁇ 4>. It means that it remains undissolved even in the part.
  • ⁇ 1> The PVA film is placed in a constant temperature and humidity chamber adjusted to 20 ° C.-65% RH for 16 hours or more to adjust the humidity.
  • ⁇ 2> After cutting out a rectangular sample of 40 mm in length ⁇ 35 mm in width from the humidity-controlled PVA film, two 50 mm ⁇ 50 mm plastic plates having a rectangular window (hole) of 35 mm in length ⁇ 23 mm in width opened. The sample is sandwiched and fixed so that the length direction of the sample is parallel to the length direction of the window and the sample is located substantially in the center of the width direction of the window.
  • ⁇ 3> Put 300 mL of deionized water in a 500 mL beaker, and adjust the water temperature to 30 ° C.
  • the thickness of the PVA film is preferably 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 18 ⁇ m or more, still more preferably 20 ⁇ m or more.
  • the thickness of the PVA film is preferably 40 ⁇ m or less, more preferably 38 ⁇ m or less, further preferably 36 ⁇ m or less, particularly preferably 34 ⁇ m or less, and even more preferably 32 ⁇ m or less. preferable.
  • the thickness means the average value of the thickness measured at any five points.
  • the length of the PVA film in the TD direction is preferably 1.5 m or more, and more preferably 3 m or more.
  • the screen size of liquid crystal televisions and liquid crystal monitors has been increasing, so if the length of the PVA film in the TD direction is set to 1.5 m or more, it is suitable for applications in which these are final products.
  • the length of the PVA film in the TD direction is preferably 7 m or less, more preferably 6 m or less. By setting the length in the TD direction to 7 m or less, it is possible to efficiently perform the uniaxial stretching process when manufacturing an optical film with a practical device.
  • the shape of the PVA film of the present invention is not particularly limited, but it is long because it can continuously and smoothly produce a more uniform PVA film and it is continuously used when producing an optical film or the like. It is preferably a long film.
  • the length of the long film (length in the flow direction) is not particularly limited and can be set as appropriate.
  • the length of the film is preferably 3,000 m or more, and more preferably 5,000 m or more.
  • the length of the film is preferably 30,000 m or less. It is preferable that a long film is wound around a core to form a film roll.
  • the PVA film of the present invention is used as a raw film for producing an optical film.
  • the optical film of the present invention include a polarizing film, a viewing angle improving film, a retardation film, and a brightness improving film, and they can be suitably used for a polarizing film.
  • the method for producing the PVA film of the present invention is not particularly limited, and for example, any method as follows can be adopted.
  • a cast film forming method a wet film forming method (a method of discharging into a poor solvent), a dry-wet film forming method, etc.
  • a gel film-forming method (a method in which a film-forming stock solution is once cooled and gelled and then the solvent is extracted and removed), a method of forming a film by a combination of these methods, or a film-forming stock solution obtained by using an extruder or the like is used as T.
  • Examples thereof include a melt extrusion film forming method and an inflation forming method in which a film is formed by extruding from a die or the like.
  • a method for producing a PVA film a casting film forming method and a melt extrusion film forming method are preferable. By using these methods, a homogeneous PVA film can be obtained with high productivity.
  • the PVA film is manufactured by the casting film forming method or the melt extrusion film forming method will be described.
  • the PVA film of the present invention is produced by the casting film forming method or the melt extrusion film forming method, first, a film forming stock solution containing PVA, a solvent, and if necessary, an additive such as a plasticizer is prepared. prepare. Next, this film-forming stock solution is salivated (supplied) in the form of a film onto a rotating support such as a metal roll or a metal belt. As a result, a liquid film of the film-forming stock solution is formed on the support. The liquid film is solidified and formed into a film by being heated on the support to remove the solvent.
  • Examples of the method of heating the liquid film include a method of heating the support itself to a high temperature with a heat medium and the like, and a method of blowing hot air on the opposite surface of the surface in contact with the support of the liquid film.
  • the solidified long film (PVA film) is peeled off from the support, dried by a drying roll, a drying furnace or the like as necessary, further heat-treated as needed, and wound into a roll.
  • the drying of the PVA film proceeds by volatilizing the volatile matter from the released film surface that is not in contact with the support, the drying roll, or the like. Since the silicone-type surfactant moves to the surface together with the volatile water, the temperature and draw conditions at that time affect the detection intensity of positive silicon fragment ions in the process during drying.
  • the detection intensity of this positive silicon fragment ion is the content of the silicone-type surfactant, the volatile content of the PVA water-containing chip or the film-forming stock solution, the number of rotations of the screw of the extruder when melt-kneading the PVA, and the film-forming stock solution. It can be adjusted by adjusting the surface temperature of the support that causes the PVA film to flow, the contact time between the PVA film and the support, the temperature of the hot air blown onto the PVA film, the temperature of the drying roll or the drying furnace, and the like.
  • the volatile fraction of the film-forming stock solution (concentration of volatile components such as a solvent removed by volatilization or evaporation during film-forming) is preferably in the range of 50 to 80% by mass.
  • the viscosity of the film-forming stock solution can be adjusted to a suitable range, so that the film-forming property of the liquid film flowed on the support is improved and the film-forming property has a uniform thickness. It becomes easier to obtain a PVA film.
  • the film-forming stock solution may contain a dichroic dye, if necessary.
  • the volatile fraction of the film-forming stock solution is a value calculated by the following formula.
  • Wa represents the mass (g) of the film-forming stock solution
  • Wb represents the mass (g) of the film-forming stock solution of Wa (g) after being dried in an electric heat dryer at 105 ° C. for 16 hours. ..
  • the method for preparing the undiluted film-forming solution is not particularly limited, and for example, a method of dissolving PVA and additives such as a plasticizer and a surfactant in a solvent in a dissolution tank or the like, a uniaxial extruder or a twin-screw extruder or a biaxial extrusion is performed. Examples thereof include a method of melt-kneading water-containing PVA together with additives such as a plasticizer and a surfactant using a machine.
  • the undiluted film-forming solution generally passes through the die lip of a die such as a T-die and is spilled into a film on a support such as a metal roll or a metal belt.
  • a free surface the surface of the flowed film-like stock solution that is not in contact with the support
  • the distribution is such that the solvent concentration on the free surface side is low and the solvent concentration on the touch surface side is high with respect to the thickness direction of the film. Occurs. Therefore, the solidification of PVA also proceeds from the free side first.
  • PVA crystallization progresses in parallel with PVA solidification. Crystallization of PVA is difficult to proceed even if the solvent concentration is too high or too low, and although it depends on the primary structure of the PVA molecule, the volatile fraction of the flowed film-forming stock solution is in the range of 20 to 60% by mass. It is easy to progress at one time. Further, the rate of crystallization of PVA increases as the temperature increases, but the rate of volatilization of the solvent increases as the temperature increases.
  • the PVA film of the present invention can be used as a raw film for producing an optical film.
  • the optical film include a polarizing film, a viewing angle improving film, a retardation film, and a brightness improving film, but a polarizing film is preferable.
  • a method for manufacturing an optical film a method for manufacturing a polarizing film will be specifically described.
  • the polarizing film of the present invention can be produced from the PVA film of the present invention.
  • stretch breakage is less likely to occur in uniaxial stretching when producing a polarizing film, and as a result, a polarizing film can be produced in high yield.
  • the polarizing film can usually be produced by using a PVA film as a raw film and undergoing treatment steps such as a swelling step, a dyeing step, a cross-linking step, a stretching step, and a fixing treatment step.
  • the treatment liquid used in each step include a swelling treatment liquid used for swelling treatment, a dyeing treatment liquid (staining liquid) used for dyeing treatment, a cross-linking treatment liquid used for cross-linking treatment, and a stretching treatment liquid.
  • a stretching treatment liquid examples include a stretching treatment liquid, a fixing treatment liquid used for the fixing treatment, and a cleaning treatment liquid (cleaning liquid) used for the cleaning treatment.
  • the cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film.
  • water can be used as the cleaning treatment liquid.
  • the temperature of the cleaning treatment liquid is preferably 20 ° C. or higher. When the temperature of the cleaning treatment liquid is 20 ° C.
  • the temperature of the cleaning treatment liquid is preferably 40 ° C. or lower.
  • the temperature of the cleaning treatment liquid is 40 ° C. or lower, it is possible to prevent a part of the surface of the PVA film from melting and the films from sticking to each other to deteriorate the handleability.
  • the swelling treatment can be performed by immersing the PVA film in a swelling treatment liquid such as water.
  • the temperature of the swelling treatment liquid is preferably 20 ° C. or higher, and preferably 40 ° C. or lower.
  • the water used as the swelling treatment liquid is not limited to pure water, and may be an aqueous solution in which various components such as a boron-containing compound are dissolved, or may be a mixture of water and an aqueous medium.
  • the type of the boron-containing compound is not particularly limited, but boric acid or borax is preferable from the viewpoint of handleability.
  • the swelling treatment liquid contains a boron-containing compound, the concentration thereof is preferably 6% by mass or less from the viewpoint of improving the stretchability of the PVA film.
  • the dyeing treatment is preferably carried out using an iodine-based dye as the dichroic dye, and the dyeing time may be any stage before the stretching treatment, during the stretching treatment, or after the stretching treatment.
  • the dyeing treatment is preferably carried out by using a solution containing iodine-potassium iodide (preferably an aqueous solution) as the dyeing treatment liquid and immersing the PVA film in the dyeing treatment liquid.
  • concentration of iodine in the dyeing solution is preferably in the range of 0.005 to 0.2% by mass, and potassium iodide / iodine (mass) is preferably in the range of 20 to 100.
  • the temperature of the dyeing treatment liquid is preferably 20 ° C.
  • the dyeing solution may contain a boron-containing compound such as boric acid as a cross-linking agent. If the PVA film used as the raw film contains a dichroic dye in advance, the dyeing process can be omitted. Further, it is also possible to preliminarily contain a boron-containing compound such as boric acid or borax in the PVA film used as the raw film.
  • Cross-linking In the production of the polarizing film, it is preferable to carry out a cross-linking treatment after the dyeing treatment for the purpose of strengthening the adsorption of the dichroic dye on the PVA film.
  • the cross-linking treatment can be performed by using a solution containing a cross-linking agent (preferably an aqueous solution) as the cross-linking treatment liquid and immersing the PVA film in the cross-linking treatment liquid.
  • a cross-linking agent preferably an aqueous solution
  • the cross-linking agent one or more boron-containing compounds such as boric acid and borax can be used.
  • the concentration of the cross-linking agent in the cross-linking treatment liquid is preferably 1% by mass or more, more preferably 1.5% by mass or more, and preferably 6% by mass or less.
  • the cross-linking treatment liquid may contain an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the cross-linking treatment liquid is too high, the reason is unknown, but the heat resistance of the obtained polarizing film tends to decrease. Further, if the concentration of the iodine-containing compound in the cross-linking treatment liquid is too low, the effect of suppressing the elution of the dichroic dye tends to be reduced.
  • the concentration of the iodine-containing compound in the cross-linking treatment liquid is preferably 1% by mass or more, and preferably 6% by mass or less.
  • the temperature of the cross-linking treatment liquid is preferably 20 ° C. or higher, and preferably 45 ° C. or lower.
  • the PVA film may be stretched during or between the above-mentioned treatments. By performing such stretching (pre-stretching), it is possible to prevent wrinkles from being generated on the surface of the PVA film.
  • the total stretching ratio of the pre-stretching (magnification obtained by multiplying the stretching ratio in each treatment) is 4 times or less based on the original length of the PVA film of the original fabric before stretching from the viewpoint of the polarization performance of the obtained polarizing film. Is preferable.
  • the total draw ratio of the pre-stretching is more preferably 1.5 times or more based on the original length of the PVA film of the original fabric before stretching from the viewpoint of the polarization performance of the obtained polarizing film.
  • the draw ratio in the swelling treatment is preferably 1.1 times or more based on the original length of the PVA film.
  • the draw ratio in the swelling treatment is preferably 3 times or less based on the original length of the PVA film.
  • the draw ratio in the dyeing treatment is preferably 2 times or less based on the original length of the PVA film.
  • the draw ratio in the dyeing treatment is more preferably 1.1 times or more based on the original length of the PVA film.
  • the draw ratio in the crosslinking treatment is preferably 2 times or less based on the original length of the PVA film.
  • the draw ratio in the crosslinking treatment is more preferably 1.05 times or more based on the original length of the PVA film.
  • the stretching treatment may be performed by either a wet stretching method or a dry stretching method.
  • a solution containing a boron-containing compound such as boric acid preferably an aqueous solution
  • the stretching treatment liquid can be used. It can also be performed in the treatment liquid.
  • the dry stretching method it can be carried out in the air using a PVA film after water absorption.
  • the wet stretching method is preferable, and uniaxial stretching is more preferable in an aqueous solution containing boric acid.
  • the concentration of the boron-containing compound in the stretching treatment liquid is preferably 1.5% by mass or more because the stretchability of the PVA film can be improved.
  • the concentration of the boron-containing compound in the stretching treatment liquid is preferably 7% by mass or less because the stretchability of the PVA film can be improved.
  • the stretching treatment liquid contains an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the stretching solution is too high, the hue of the obtained polarizing film tends to be bluish, and the concentration of the iodine-containing compound in the stretching solution is too low. Although it is unknown, the heat resistance of the obtained polarizing film tends to decrease.
  • the concentration of the iodine-containing compound in the stretching treatment liquid is preferably 2% by mass or more.
  • the concentration of the iodine-containing compound in the stretching treatment liquid is preferably 8% by mass or less.
  • the temperature of the stretching treatment liquid is preferably 50 ° C. or higher, and preferably 67.5 ° C. or lower.
  • the preferred range of the stretching temperature when the stretching treatment is performed by the dry stretching method is also as described above.
  • the stretching ratio in the stretching treatment is preferably 1.2 times or more, more preferably 1.5 times or more, and more preferably 1.5 times or more, because a polarizing film having better polarizing performance can be obtained when the stretching ratio is high. It is more preferable that the amount is double or more.
  • the total draw ratio (magnification multiplied by the draw ratio in each step) including the draw ratio of the pre-stretch described above is the polarization performance of the obtained polarizing film based on the original length of the raw material PVA film before stretch. From this point of view, it is preferably 5.5 times or more, more preferably 5.7 times or more, and further preferably 5.9 times or more.
  • the upper limit of the draw ratio is not particularly limited, but if it is too high, stretch breakage is likely to occur, so it is preferably 8 times or less.
  • uniaxial stretching in the long direction can be performed by using a stretching device including a plurality of rolls parallel to each other and changing the peripheral speed between the rolls.
  • the maximum stretching speed (% / min) when the stretching treatment is performed by uniaxial stretching is not particularly limited, but is preferably 200% / min or more, more preferably 300% / min or more, and 400% / min. More than min is more preferable.
  • the maximum stretching speed is the fastest stretching speed among the three or more rolls having different peripheral speeds when the PVA film is stretched in two or more stages. Say that.
  • the stretching speed at that step becomes the maximum stretching rate.
  • the stretching speed means an increase in the length of the PVA film increased by stretching with respect to the length of the PVA film before stretching per unit time.
  • the stretching speed of 100% / min is the speed at which the PVA film is deformed from the length before stretching to twice the length in one minute.
  • the higher the maximum stretching speed the higher the stretching treatment (uniaxial stretching) of the PVA film can be performed, and as a result, the productivity of the polarizing film is improved, which is preferable.
  • the maximum stretching speed becomes too high, excessive tension may be locally applied to the PVA film in the stretching treatment (uniaxial stretching) of the PVA film, and stretching fracture is likely to occur. From this point of view, it is preferable that the maximum stretching speed does not exceed 900% / min.
  • the fixing treatment liquid a solution containing one or more boron-containing compounds such as boric acid and borax (preferably an aqueous solution) is used as the fixing treatment liquid, and a PVA film (preferably after stretching treatment) is used as the fixing treatment liquid. This can be done by immersing the PVA film).
  • the fixing treatment liquid may contain an iodine-containing compound or a metal compound.
  • the concentration of the boron-containing compound in the fixing treatment liquid is preferably 2% by mass or more.
  • the concentration of the boron-containing compound in the fixing treatment liquid is preferably 15% by mass or less.
  • the temperature of the fixing treatment liquid is preferably 15 ° C. or higher.
  • the temperature of the fixing treatment liquid is preferably 60 ° C. or lower.
  • the cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film.
  • water can be used as the cleaning treatment liquid.
  • the water is not limited to pure water, and may contain an iodine-containing compound such as potassium iodide.
  • the cleaning treatment liquid may contain a boron-containing compound, but in that case, the concentration of the boron-containing compound is preferably 2.0% by mass or less.
  • the temperature of the cleaning treatment liquid is preferably in the range of 5 to 40 ° C. When the temperature is 5 ° C. or higher, it is possible to suppress the breakage of the PVA film due to freezing of water. Further, when the temperature is 40 ° C. or lower, the optical characteristics of the obtained polarizing film are improved.
  • the temperature of the cleaning treatment liquid is preferably 5 ° C. or higher. Further, the temperature of the cleaning treatment liquid is preferably 40 ° C. or lower.
  • Specific methods for producing the polarizing film include a method of subjecting the PVA film to a dyeing treatment, a stretching treatment, a crosslinking treatment and / or a fixing treatment.
  • the stretching treatment may be performed in any of the treatment steps prior to the above, or may be performed in multiple stages of two or more stages.
  • a polarizing film can be obtained by subjecting the PVA film after each of the above treatments to a drying treatment.
  • the drying treatment method is not particularly limited, and examples thereof include a contact type method in which the film is brought into contact with a heating roll, a method in which the film is dried in a hot air dryer, and a floating type method in which the film is dried by hot air while floating. ..
  • the polarizing film of the present invention is manufactured by attaching a protective film to at least one side in order to supplement the mechanical strength.
  • the polarizing film of the present invention is usually preferably used as a polarizing plate by laminating a protective film that is optically transparent and has mechanical strength on both sides or one side thereof.
  • a protective film a cellulose triacetate (TAC) film, a cycloolefin polymer (COP) film, a cellulose acetate / butyrate cellulose (CAB) film, an acrylic film, a polyester film and the like are used.
  • TAC cellulose triacetate
  • COP cycloolefin polymer
  • CAB cellulose acetate / butyrate cellulose
  • acrylic film a polyester film and the like
  • examples of the adhesive for bonding include PVA-based adhesives and urethane-based adhesives, but PVA-based adhesives are preferable.
  • the polarizing plate obtained as described above can be used as an LCD component by laminating an acrylic adhesive or the like and then bonding it to a glass substrate. At the same time, it may be bonded to a retardation film, a viewing angle improving film, a brightness improving film, or the like.
  • Measuring device TOF-SIMS 5 (manufactured by ION-TOF) Analysis software: Surface Lab 6 (manufactured by ION-TOF) Primary ion source: Bi 3 ++ Measurement current: 0.2pA at 25keV (10kHz) Measurement range: 200 ⁇ m x 200 ⁇ m Number of measured pixels: 128Pix x 128Pix Charge neutralization condition: Neutralization electron gun Not used Count count: Number of fragments captured by the detector (detector strength)
  • the PVA film roll obtained in the following Example or Comparative Example was fed out, and a PVA film having a thickness of 30 ⁇ m, a width (length in the TD direction) of 1.65 m, and a length (length in the MD direction) of 1.5 m was cut out. ..
  • the thickness of the PVA film is about a point on a straight line parallel to the width direction (TD direction) of the PVA film, passing through five points on the straight line parallel to the MD direction, passing through five points that divide the PVA film into six equal parts in the TD direction.
  • the fluctuation coefficient of was calculated. Specifically, as shown in FIG.
  • a straight line B with a length of 1.2 m parallel to the MD direction (straight line B 1 respectively) so as to pass through the positions of 1.1 m and 1.375 m (points P 1 , P 2 , P 3 , P 4 and P 5 ). , B 2 , B 3 , B 4 and B 5 ) were provided, and the thickness of the PVA film was measured at a plurality of points on each straight line B.
  • the thickness of the PVA film was measured at intervals of 0.5 mm, and a contact-type thickness meter "Continuous Thickness Measuring Instrument Film Tester S2246" (manufactured by Fujiwork Co., Ltd.) was used as the measuring device. Further, as shown in FIG. 4, a straight line having a length of 1.2 m parallel to the MD direction coincides with five points whose midpoints divide the PVA film into six equal parts in the width direction (TD direction). Provided.
  • the thickness of the PVA film is measured in each of the straight lines having a length of 1.2 m parallel to the MD direction, and the fluctuation coefficient (standard deviation) of the PVA film thickness is obtained from the average value and standard deviation of the obtained PVA film thickness. / Average value) was calculated. Then, the coefficient of variation of the thickness of the PVA film was obtained for each of the straight lines having a length of 1.2 m parallel to the MD direction, and the average value of these coefficients of variation was calculated.
  • the PVA film was kept in its original length. It was uniaxially stretched (second step stretched) in the length direction up to 2.7 times the amount of potassium iodide.
  • second step stretched in the length direction up to 2.7 times the amount of potassium iodide.
  • crosslinking treatment solution at a temperature of 30 ° C. for 2 minutes, the PVA film was brought to its original length. It was uniaxially stretched (third step stretched) in the length direction up to 3 times.
  • a polarizing film having a thickness of 13 ⁇ m was continuously produced.
  • the uniaxial stretching was controlled by adjusting the rotation speeds of a set of nip rolls with a drive function (material is NBR rubber).
  • material is NBR rubber.
  • Example 1> ⁇ Manufacturing and evaluation of PVA film> After immersing 100 parts by mass of PVA (polymerization degree 2400, saponification degree 99.9 mol%) in 2500 parts by mass of distilled water at 70 ° C. for 24 hours, centrifugal dehydration is performed, and PVA water content with a volatile content of 70% by mass is performed. I got a chip. It is a surfactant having a polyether structure at both ends of glycerin as a plasticizer and polydimethylsiloxane as a silicone-type surfactant with respect to 333 parts by mass of the PVA-containing chip (100 parts by mass of dried PVA).
  • the contact time between the PVA film and the support was 100 seconds, and the PVA film was peeled off from the support.
  • a PVA film having a thickness of 30 ⁇ m, a width (length in the TD direction) of 1.65 m, and a swelling degree of 200% was continuously produced.
  • 4000 m in length (length in the MD direction) was wound around a cylindrical core to form a PVA film roll.
  • the detection intensities of positive silicon fragment ions were obtained by the above method, and the average value and the difference between the maximum value and the minimum value of these detection intensities were calculated.
  • the average value of the coefficient of variation of the thickness of the PVA film was obtained by the above method, and the stretch breakability was further evaluated. The results are shown in Table 1.
  • Examples 2 to 4 Comparative Examples 1 to 4> The production and evaluation of the PVA film were carried out in the same manner as in Example 1 except that the production conditions of the PVA film were changed as shown in Table 1. The results are shown in Table 1.
  • Table 1 shows the evaluation results of the average value of the detection intensity of positive silicon fragment ions, the difference between the maximum value and the minimum value, and the average value of the coefficient of variation of the thickness on the contact surface side of the PVA film with the support. As described, the same evaluation result was obtained for the non-contact surface side of the PVA film with the support.

Abstract

The purpose of the present invention is to provide: a PVA film that is less likely to be broken through stretching when stretched uniaxially during production of an optical film such as a polarizing film; a polarizing film using the PVA film; and a polarizing plate. This polyvinyl alcohol film is a source material film which is for producing an optical film and in which the average value of the intensities of detection of positive silicon fragment ions as determined by positive ion analysis using time-of-flight secondary ion mass spectrometry, on at least one surface of the polyvinyl alcohol film is 0.001-0.01. [The average value of the intensities of detection of positive silicon fragment ions refers to the average value of the intensities of detection of positive silicon fragment ions as determined by positive ion analysis using time-of-flight secondary ion mass spectrometry at five points that are on an arbitrarily-defined straight line parallel to the TD direction of the polyvinyl alcohol film and that equally divide the polyvinyl alcohol film into six parts in the TD direction.]

Description

ポリビニルアルコールフィルム及びそれを用いた偏光フィルム並びに偏光板Polyvinyl alcohol film, polarizing film using it, and polarizing plate
 本発明は、ポリビニルアルコールフィルム及びそれを用いた偏光フィルム並びに偏光板に関する。 The present invention relates to a polyvinyl alcohol film, a polarizing film using the same, and a polarizing plate.
 光の透過及び遮蔽機能を有する偏光板は、光のスイッチング機能を有する液晶とともに、液晶ディスプレイ(LCD)の基本的な構成要素である。このLCDの適用分野も、開発初期のころの電卓及び腕時計などの小型機器から、近年では、ノートパソコン、液晶モニター、液晶カラープロジェクタ、液晶テレビ、車載用ナビゲーションシステム、携帯電話及び屋内外で用いられる計測機器などの種々の分野に拡大している。 A polarizing plate having a light transmitting and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal having a light switching function. The fields of application of this LCD are also used from small devices such as calculators and wristwatches in the early stages of development to notebook computers, LCD monitors, LCD color projectors, LCD TVs, in-vehicle navigation systems, mobile phones and indoors and outdoors in recent years. It is expanding to various fields such as measuring instruments.
 偏光板は、偏光フィルムの表面に三酢酸セルロース(TAC)フィルム又は酢酸・酪酸セルロース(CAB)フィルムなどの保護フィルムを貼り合わせることによって製造される。そして、偏光フィルムは、ポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」、「ポリビニルアルコールフィルム」を「PVAフィルム」と称する場合がある)を染色処理した後に一軸延伸するか、染色処理しながら一軸延伸するか、又は一軸延伸した後に染色処理して、染色された一軸延伸フィルムを製造し、この一軸延伸フィルムをホウ素化合物で固定化処理することにより製造されるのが一般的である。また、一軸延伸は1組の駆動機能付きニップロール(材質はNBRゴム)の回転速度をそれぞれ調整することで制御することが一般的である。なお、このホウ素化合物での固定化処理は、一軸延伸又は染色処理と同時に行われることもある。 The polarizing plate is manufactured by laminating a protective film such as a cellulose triacetate (TAC) film or a cellulose acetate / butyrate (CAB) film on the surface of a polarizing film. Then, the polarizing film is uniaxially stretched or dyed after dyeing a polyvinyl alcohol film (hereinafter, "polyvinyl alcohol" may be referred to as "PVA" and "polyvinyl alcohol film" may be referred to as "PVA film"). However, it is generally produced by uniaxially stretching or uniaxially stretching and then dyeing to produce a dyed uniaxially stretched film, and then immobilizing the uniaxially stretched film with a boron compound. In addition, uniaxial stretching is generally controlled by adjusting the rotation speed of a set of nip rolls with a drive function (material is NBR rubber). The immobilization treatment with this boron compound may be performed at the same time as the uniaxial stretching or dyeing treatment.
 液晶モニターや液晶テレビなどの大型のLCDを有する製品においては、高コントラストで鮮明な画像が要求される。これに伴って、偏光フィルムについても高性能化が求められており、具体的には、偏光フィルムの偏光度を高めることが求められている。偏光フィルムの偏光度を高めるために、PVAフィルムを一軸延伸する際の延伸倍率を高くする必要があるが、延伸倍率を高くすると、PVAフィルムの延伸破断が生じやすくなる。その結果、偏光フィルムの生産性や収率が低下し、コスト高となりやすい。 High-contrast and clear images are required for products with large LCDs such as LCD monitors and LCD TVs. Along with this, the polarizing film is also required to have higher performance, and specifically, it is required to increase the degree of polarization of the polarizing film. In order to increase the degree of polarization of the polarizing film, it is necessary to increase the draw ratio when the PVA film is uniaxially stretched. However, when the draw ratio is increased, the stretch breakage of the PVA film is likely to occur. As a result, the productivity and yield of the polarizing film are lowered, and the cost tends to be high.
 PVAフィルムの一軸延伸時の延伸破断を低減させる方法として、例えば、特許文献1及び2には、プラスチックフィルム上にコート法によってPVA層を形成し、その積層体に延伸処理や染色処理等を施すことにより、PVA層を偏光フィルムに加工する方法が知られている。 As a method for reducing stretch breakage during uniaxial stretching of a PVA film, for example, in Patent Documents 1 and 2, a PVA layer is formed on a plastic film by a coating method, and the laminate is subjected to stretching treatment, dyeing treatment, or the like. Therefore, a method of processing the PVA layer into a polarizing film is known.
特開2012-133303号公報Japanese Unexamined Patent Publication No. 2012-133303 特開2012-073570号公報Japanese Unexamined Patent Publication No. 2012-073570
 しかしながら、プラスチックフィルム上にコート法によってPVA層を形成してなる積層体を用いる方法には、以下のような問題がある。
(i)コート作業やその後の乾燥作業が煩雑である。
(ii)PVA層の不溶化処理のための熱処理を積層体の状態で行う必要があるため、使用されるプラスチックフィルムが熱処理後も延伸可能なものに限定され、コスト高になる。
 したがって、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において延伸破断が発生しにくく、偏光フィルムなどの光学フィルムのコストダウンに寄与できるPVAフィルムが求められていた。
However, the method of using a laminate obtained by forming a PVA layer on a plastic film by a coating method has the following problems.
(I) The coating work and the subsequent drying work are complicated.
(Ii) Since the heat treatment for the insolubilization treatment of the PVA layer needs to be performed in the state of the laminated body, the plastic film used is limited to the one that can be stretched even after the heat treatment, resulting in high cost.
Therefore, there has been a demand for a PVA film that is less likely to cause stretch breakage in uniaxial stretching when manufacturing an optical film such as a polarizing film and can contribute to cost reduction of the optical film such as a polarizing film.
 そこで、本発明は、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において延伸破断が発生しにくいPVAフィルム及びそれを用いた偏光フィルム並びに偏光板を提供することを目的とする。 Therefore, an object of the present invention is to provide a PVA film in which stretch fracture is unlikely to occur in uniaxial stretching when manufacturing an optical film such as a polarizing film, a polarizing film using the same, and a polarizing plate.
 本発明者らは上記の目的を達成すべく鋭意検討を重ねた結果、PVAフィルムの少なくとも一方の面において、飛行時間型二次イオン質量分析による正イオン分析で得られる、ケイ素フラグメントイオンの検出強度の平均値を特定の範囲に調整することで、上記課題が解決されることを見出した。その詳細な理由は明らかではないが、PVAフィルムの表面にケイ素イオンが適度に存在することで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸においてPVAフィルムとニップロール間の摩擦が適度なものとなり、PVAフィルムの延伸破断が抑制されるものと推定される。本発明者らはこれらの知見に基づいて更に検討を重ね、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventors have obtained the detection intensity of silicon fragment ions obtained by positive ion analysis by time-of-flight secondary ion mass spectrometry on at least one surface of the PVA film. It was found that the above problem can be solved by adjusting the average value of. Although the detailed reason is not clear, the moderate presence of silicon ions on the surface of the PVA film causes the friction between the PVA film and the nip roll to be moderate in uniaxial stretching when manufacturing an optical film such as a polarizing film. Therefore, it is presumed that the stretch breakage of the PVA film is suppressed. Based on these findings, the present inventors further studied and completed the present invention.
 すなわち、本発明は、
[1]ポリビニルアルコールフィルムの少なくとも一方の面において、飛行時間型二次イオン質量分析による正イオン分析で得られる、正のケイ素フラグメントイオンの検出強度の平均値が0.001~0.01であり、光学フィルム製造用の原反フィルムであるポリビニルアルコールフィルム。
[正のケイ素フラグメントイオンの検出強度の平均値は、ポリビニルアルコールフィルムのTD方向と平行な任意の直線上にあり、TD方向においてポリビニルアルコールフィルムを6等分する5点における、飛行時間型二次イオン質量分析計による正イオン分析で得られる正のケイ素フラグメントイオンの検出強度の平均値である。];
[2]前記TD方向においてポリビニルアルコールフィルムを6等分する5点における正のケイ素フラグメントイオンの検出強度の最大値と最小値の差が0.0005~0.002である、前記[1]に記載のポリビニルアルコールフィルム。;
[3]ポリビニルアルコールフィルムの厚みの変動係数の平均値が0.01~0.03である、前記[1]又は[2]に記載のポリビニルアルコールフィルム。
[厚みの変動係数の平均値は、前記TD方向においてポリビニルアルコールフィルムを6等分する5点をそれぞれ通り、ポリビニルアルコールフィルムのMD方向と平行な長さ1.2mの直線における、ポリビニルアルコールフィルムの厚みの変動係数の平均値である。];
[4]30℃の水に30分間浸漬させた際の膨潤度が180~240%である、前記[1]~[3]のいずれか1項に記載のポリビニルアルコールフィルム;
[5]前記TD方向の長さが1.5m以上である、前記[1]~[4]のいずれか1項に記載のポリビニルアルコールフィルム;
[6]前記MD方向の長さが3,000m以上である、前記[1]~[5]のいずれか1項に記載のポリビニルアルコールフィルム;
[7]厚みが10~40μmである、前記[1]~[6]のいずれか1項に記載のポリビニルアルコールフィルム;
[8]前記[1]~[7]のいずれかに記載のポリビニルアルコールフィルムから製造される偏光フィルム;
[9]前記[8]に記載の偏光フィルムの少なくとも一方の面に保護フィルムを貼り合わせた偏光板;
に関する。
That is, the present invention
[1] On at least one surface of the polyvinyl alcohol film, the average value of the detection intensities of positive silicon fragment ions obtained by positive ion analysis by time-of-flight secondary ion mass spectrometry is 0.001 to 0.01. , Polyvinyl alcohol film, which is a raw film for manufacturing optical films.
[The average value of the detection intensity of positive silicon fragment ions is on an arbitrary straight line parallel to the TD direction of the polyvinyl alcohol film, and the flight time type secondary at 5 points that divide the polyvinyl alcohol film into 6 equal parts in the TD direction. It is the average value of the detection intensity of the positive silicon fragment ion obtained by the positive ion analysis by the ion mass analyzer. ];
[2] In the above [1], the difference between the maximum value and the minimum value of the detection intensity of positive silicon fragment ions at five points that divide the polyvinyl alcohol film into six equal parts in the TD direction is 0.0005 to 0.002. The polyvinyl alcohol film described. ;
[3] The polyvinyl alcohol film according to the above [1] or [2], wherein the average value of the coefficient of variation of the thickness of the polyvinyl alcohol film is 0.01 to 0.03.
[The average value of the coefficient of variation of the thickness passes through each of the five points that divide the polyvinyl alcohol film into six equal parts in the TD direction, and is a straight line having a length of 1.2 m parallel to the MD direction of the polyvinyl alcohol film. It is the average value of the coefficient of variation of the thickness. ];
[4] The polyvinyl alcohol film according to any one of [1] to [3] above, wherein the degree of swelling when immersed in water at 30 ° C. for 30 minutes is 180 to 240%;
[5] The polyvinyl alcohol film according to any one of [1] to [4], wherein the length in the TD direction is 1.5 m or more.
[6] The polyvinyl alcohol film according to any one of [1] to [5], wherein the length in the MD direction is 3,000 m or more.
[7] The polyvinyl alcohol film according to any one of the above [1] to [6], which has a thickness of 10 to 40 μm;
[8] A polarizing film produced from the polyvinyl alcohol film according to any one of [1] to [7] above;
[9] A polarizing plate having a protective film bonded to at least one surface of the polarizing film according to the above [8];
Regarding.
 本発明によれば、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において延伸破断が発生しにくいPVAフィルム及びそれを用いた偏光フィルム並びに偏光板が提供される。 According to the present invention, there is provided a PVA film in which stretch breakage is unlikely to occur in uniaxial stretching when manufacturing an optical film such as a polarizing film, a polarizing film using the same, and a polarizing plate.
飛行時間型二次イオン質量分析による正イオン分析により、PVAフィルムの正のケイ素フラグメントイオンの検出強度の平均値を求める際の測定箇所を示した図である。It is a figure which showed the measurement point at the time of obtaining the average value of the detection intensity of the positive silicon fragment ion of a PVA film by the positive ion analysis by the time-of-flight type secondary ion mass spectrometry. PVAフィルムの厚みの変動係数を求める際の測定箇所を示した図である。It is a figure which showed the measurement point at the time of obtaining the coefficient of variation of the thickness of a PVA film. 実施例又は比較例において、飛行時間型二次イオン質量分析による正イオン分析により、PVAフィルムの正のケイ素フラグメントイオンの検出強度の平均値を求める際の測定箇所を示した図である。In the Example or Comparative Example, it is a figure which showed the measurement point at the time of obtaining the average value of the detection intensity of the positive silicon fragment ion of a PVA film by the positive ion analysis by the time-of-flight type secondary ion mass spectrometry. 実施例又は比較例において、PVAフィルムの厚みの変動係数を求める際の測定箇所を示した図である。It is a figure which showed the measurement point at the time of obtaining the coefficient of variation of the thickness of a PVA film in an Example or a comparative example.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
<飛行時間型二次イオン質量分析>
 フィルム表面に存在する成分や、その分布状態を分析する方法として、飛行時間型二次イオン質量分析(以下、TOF-SIMSと称することがある。)が知られている。当該分析法では、フィルムに含まれる各種添加剤由来のフラグメントイオンを特定することで、それらのフラグメントに由来する各種添加剤などの成分がフィルム表面にどの程度、どのように分布しているかを把握することが可能である。
<Time-of-flight secondary ion mass spectrometry>
Time-of-flight secondary ion mass spectrometry (hereinafter, may be referred to as TOF-SIMS) is known as a method for analyzing components existing on the film surface and their distribution state. In this analysis method, by identifying fragment ions derived from various additives contained in the film, it is possible to understand how and to what extent the components such as various additives derived from those fragments are distributed on the film surface. It is possible to do.
 例えば、PVAフィルムをTOF-SIMSで測定すると、多種多様のフラグメントイオンが検出される。これらのフラグメントイオンのうち、PVAフィルムに含まれる可塑剤や界面活性剤に由来するフラグメントイオンのシグナルを分析し、シグナル強度を比較することで、これらのフィルム表面部での分布状態や偏析状態を知ることが可能である。 For example, when PVA film is measured by TOF-SIMS, a wide variety of fragment ions are detected. Among these fragment ions, by analyzing the signals of the fragment ions derived from the plasticizer and the surfactant contained in the PVA film and comparing the signal intensities, the distribution state and the segregation state on the surface of these films can be determined. It is possible to know.
 本発明においては、PVAフィルムに対してTOF-SIMSによる正イオン分析を行って検出されるケイ素由来の正フラグメントイオン(以下、正のケイ素フラグメントイオンと称することがある。)に着目した。本発明者らが鋭意検討したところ、PVAフィルムの少なくとも一方の面において、正のケイ素フラグメントイオンの検出強度の平均値を特定範囲とすることで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において、延伸破断が発生しにくいPVAフィルムを得ることができる。ここで、正のケイ素フラグメントイオンの検出強度は、TOF-SIMSによる正イオン分析で検出される全フラグメントイオンのカウント数(T.c.:トータルカウント強度)で正のケイ素フラグメントイオンのカウント数を除した値を用いた。 In the present invention, attention was paid to a silicon-derived positive fragment ion (hereinafter, may be referred to as a positive silicon fragment ion) detected by performing positive ion analysis by TOF-SIMS on a PVA film. As a result of diligent studies by the present inventors, one axis for manufacturing an optical film such as a polarizing film is set in a specific range by setting the average value of the detection intensities of positive silicon fragment ions on at least one surface of the PVA film as a specific range. It is possible to obtain a PVA film in which stretching breakage is unlikely to occur during stretching. Here, the detection intensity of positive silicon fragment ions is the count number of all fragment ions (T.c .: total count intensity) detected by the positive ion analysis by TOF-SIMS, which is the count number of positive silicon fragment ions. The divided value was used.
<PVAフィルム>
 本発明のPVAフィルムは、PVAフィルムの少なくとも一方の面において、TOF-SIMSによる正イオン分析で得られる、正のケイ素フラグメントイオンの検出強度の平均値が0.001~0.01である。図1に、正のケイ素フラグメントイオンの検出強度の平均値を求める際の測定箇所を示す。検出強度の平均値は、PVAフィルムのTD方向と平行な任意の直線A上にあり、TD方向においてPVAフィルムを6等分する5点(点P、P、P、P及びP)における正のケイ素フラグメントイオンの検出強度の平均値である。本発明においては、この測定箇所5点における正のケイ素フラグメントイオンの検出強度の平均値が0.001~0.01である。
<PVA film>
In the PVA film of the present invention, the average value of the detection intensities of positive silicon fragment ions obtained by positive ion analysis by TOF-SIMS is 0.001 to 0.01 on at least one surface of the PVA film. FIG. 1 shows the measurement points for obtaining the average value of the detection intensities of positive silicon fragment ions. The average value of the detected intensities is on an arbitrary straight line A parallel to the TD direction of the PVA film, and the PVA film is divided into 6 equal parts in the TD direction at 5 points (points P 1 , P 2 , P 3 , P 4 and P). It is the average value of the detection intensity of the positive silicon fragment ion in 5 ). In the present invention, the average value of the detection intensities of positive silicon fragment ions at the five measurement points is 0.001 to 0.01.
 本発明においては、PVAフィルムの少なくとも一方の面において、ケイ素フラグメントイオンの検出強度の平均値が0.001~0.01であればよいが、PVAフィルムの両面において、ケイ素フラグメントイオンの検出強度の平均値が0.001~0.01であってもよい。前記検出強度の平均値が0.001未満であると、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において、PVAフィルムに過度な張力がかかり、延伸破断が発生するおそれがある。これは、PVAフィルムの表面に存在するケイ素フラグメントイオンの量が少なすぎると、PVAフィルムとニップロール間との摩擦が強くなることによるものと推定される。一方、前記検出強度の平均値が0.01を超えると、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において、PVAフィルムが延伸されずに、延伸処理液中で溶け切れて延伸破断するおそれがある。これは、PVAフィルムの表面に存在するケイ素フラグメントイオンの量が多すぎると、ニップロールとフィルムの間ですべりが発生してしまうことによるものと推定される。前記検出強度の平均値は0.002以上であることが好ましく、0.003以上であることがより好ましく、0.004以上であることがさらに好ましい。前記検出強度の平均値は0.01以下であることが好ましく、0.009以下であることがより好ましく、0.008以下であることがさらに好ましく、0.007以下であることが最も好ましい。 In the present invention, the average value of the detection intensities of silicon fragment ions on at least one surface of the PVA film may be 0.001 to 0.01, but the detection intensities of silicon fragment ions on both sides of the PVA film may be 0.001 to 0.01. The average value may be 0.001 to 0.01. If the average value of the detected intensities is less than 0.001, excessive tension may be applied to the PVA film in uniaxial stretching when manufacturing an optical film such as a polarizing film, and stretching fracture may occur. It is presumed that this is because if the amount of silicon fragment ions present on the surface of the PVA film is too small, the friction between the PVA film and the nip roll becomes strong. On the other hand, when the average value of the detected strength exceeds 0.01, the PVA film is not stretched in the uniaxial stretching when manufacturing an optical film such as a polarizing film, but is completely melted in the stretching treatment liquid and stretched and fractured. There is a risk. It is presumed that this is because if the amount of silicon fragment ions present on the surface of the PVA film is too large, slippage occurs between the nip roll and the film. The average value of the detected intensities is preferably 0.002 or more, more preferably 0.003 or more, and even more preferably 0.004 or more. The average value of the detected intensities is preferably 0.01 or less, more preferably 0.009 or less, further preferably 0.008 or less, and most preferably 0.007 or less.
 前記検出強度の平均値を0.001~0.01とする方法としては、特に限定されないが、例えば、PVAフィルムにケイ素含有化合物を含有させる方法があげられる。ケイ素含有化合物の中でもシリコーン型界面活性剤であることが好ましい。この場合に、シリコーン型界面活性剤の含有量、PVA含水チップ又は製膜原液の揮発分率、PVAを溶融混練する際の押出機のスクリューの回転数、製膜原液を流涎させる支持体の表面温度、PVAフィルムと支持体との接触時間、PVAフィルムに吹き付ける熱風の温度、及び、乾燥ロール又は乾燥炉の温度等を適宜調整することにより、検出強度の平均値を0.001~0.01とすることができる。 The method for setting the average value of the detected intensities to 0.001 to 0.01 is not particularly limited, and examples thereof include a method in which a silicon-containing compound is contained in a PVA film. Among the silicon-containing compounds, a silicone-type surfactant is preferable. In this case, the content of the silicone-type surfactant, the volatile content of the PVA water-containing chip or the film-forming stock solution, the number of rotations of the screw of the extruder when melt-kneading the PVA, and the surface of the support for flowing the film-forming stock solution. By appropriately adjusting the temperature, the contact time between the PVA film and the support, the temperature of the hot air blown on the PVA film, the temperature of the drying roll or the drying furnace, etc., the average value of the detected intensity is 0.001 to 0.01. Can be.
 本発明において、PVAフィルムのTD方向と平行な任意の直線A上にあり、TD方向においてPVAフィルムを6等分する5点(点P~P)における、正のケイ素フラグメントイオンの検出強度の最大値と最小値の差は0.0005以上であることが好ましく、0.0007以上であることがより好ましく、0.0008以上であることがさらに好ましい。正のケイ素フラグメントイオンの検出強度の最大値と最小値の差は0.002以下であることが好ましく、0.0018以下であることがより好ましく、0.0016以下であることがさらに好ましい。前記最大値と最小値の差が0.0005~0.002であることで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において、延伸がPVAフィルムの面内で均一に行われ、延伸破断が発生するのを抑制することができる。 In the present invention, the detection intensity of positive silicon fragment ions at five points ( points P1 to P5) that are on an arbitrary straight line A parallel to the TD direction of the PVA film and divide the PVA film into six equal parts in the TD direction. The difference between the maximum value and the minimum value of is preferably 0.0005 or more, more preferably 0.0007 or more, and further preferably 0.0008 or more. The difference between the maximum value and the minimum value of the detection intensity of the positive silicon fragment ion is preferably 0.002 or less, more preferably 0.0018 or less, and further preferably 0.0016 or less. Since the difference between the maximum value and the minimum value is 0.0005 to 0.002, in uniaxial stretching when manufacturing an optical film such as a polarizing film, stretching is uniformly performed in the plane of the PVA film, and stretching is performed. It is possible to suppress the occurrence of breakage.
 前記検出強度の最大値と最小値の差を0.0005~0.002とする方法としては、特に限定されないが、例えば、PVAフィルムにシリコーン型界面活性剤などのケイ素含有化合物を含有させる方法があげられる。この場合に、シリコーン型界面活性剤の含有量、PVA含水チップ又は製膜原液の揮発分率、PVAを溶融混練する際の押出機のスクリューの回転数、製膜原液を流涎させる支持体の表面温度、PVAフィルムと支持体との接触時間、PVAフィルムに吹き付ける熱風の温度、及び、乾燥ロール又は乾燥炉の温度等を適宜調整することにより、前記検出強度の最大値と最小値の差を0.0005~0.002とすることができる。 The method for setting the difference between the maximum value and the minimum value of the detection intensity to 0.0005 to 0.002 is not particularly limited, but for example, a method of incorporating a silicon-containing compound such as a silicone-type surfactant into a PVA film is used. can give. In this case, the content of the silicone-type surfactant, the volatile content of the PVA water-containing chip or the film-forming stock solution, the number of rotations of the screw of the extruder when melt-kneading the PVA, and the surface of the support for flowing the film-forming stock solution. By appropriately adjusting the temperature, the contact time between the PVA film and the support, the temperature of the hot air blown on the PVA film, the temperature of the drying roll or the drying furnace, etc., the difference between the maximum value and the minimum value of the detected intensity is set to 0. It can be 0005 to 0.002.
 本発明において、PVAフィルムの厚みの変動係数の平均値は0.01~0.03であることが好ましい。図2に、PVAフィルムの厚みの変動係数を求める際の測定箇所を示す。本発明においては、図2に示すように、TD方向においてPVAフィルムを6等分する5点(点P~P)をそれぞれ通り、PVAフィルムのMD方向と平行な長さ1.2mの直線B~B上の点において、PVAフィルムの厚みを測定し、PVAフィルムの厚みの変動係数を算出する。前記長さ1.2mの直線B~Bのそれぞれは、例えば、前記TD方向においてPVAフィルムを6等分する5点(P~P)が中央となるような直線とすることができる。直線B~B上の複数の点の厚みを測定する場合において、測定間隔は適宜設定することができるが、例えば、0.5mm間隔で測定することができる。 In the present invention, the average value of the coefficient of variation of the thickness of the PVA film is preferably 0.01 to 0.03. FIG. 2 shows the measurement points when determining the coefficient of variation of the thickness of the PVA film. In the present invention, as shown in FIG. 2, a length of 1.2 m parallel to the MD direction of the PVA film passes through each of the five points (points P1 to P5) that divide the PVA film into six equal parts in the TD direction. The thickness of the PVA film is measured at points on the straight lines B 1 to B 5 , and the fluctuation coefficient of the thickness of the PVA film is calculated. Each of the 1.2 m long straight lines B 1 to B 5 may be, for example, a straight line such that the five points (P 1 to P 5 ) that divide the PVA film into six equal parts in the TD direction are at the center. can. When measuring the thickness of a plurality of points on the straight lines B 1 to B 5 , the measurement interval can be appropriately set, and for example, the measurement can be performed at intervals of 0.5 mm.
 前記変動係数の平均値は0.01以上であることが好ましく、0.011以上であることがより好ましく、0.012以上であることがさらに好ましく、0.013以上であることが最も好ましい。前記変動係数の平均値は0.03以下であることが好ましく、0.025以下であることがより好ましく、0.022以下であることがさらに好ましく、0.018以下であることが最も好ましい。変動係数の平均値が0.01~0.03であることで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸において、延伸がPVAフィルムの面内で均一に行われ、延伸破断が発生するのを抑制することができる。 The average value of the coefficient of variation is preferably 0.01 or more, more preferably 0.011 or more, further preferably 0.012 or more, and most preferably 0.013 or more. The average value of the coefficient of variation is preferably 0.03 or less, more preferably 0.025 or less, further preferably 0.022 or less, and most preferably 0.018 or less. When the average value of the coefficient of variation is 0.01 to 0.03, in uniaxial stretching when manufacturing an optical film such as a polarizing film, stretching is uniformly performed in the plane of the PVA film, and stretching breakage occurs. Can be suppressed.
 前記変動係数の平均値を0.01~0.03とする方法としては、特に限定されないが、例えば、PVA含水チップ又は製膜原液の揮発分率を上げる、PVAフィルムに吹き付ける熱風の温度、及び、乾燥ロール又は乾燥炉の温度を下げる方法があげられる。この場合に、シリコーン型界面活性剤の含有量、PVA含水チップ又は製膜原液の揮発分率、PVAを溶融混練する際の押出機のスクリューの回転数、製膜原液を流涎させる支持体の表面温度、PVAフィルムと支持体との接触時間、PVAフィルムに吹き付ける熱風の温度、及び、乾燥ロール又は乾燥炉の温度等を適宜調整することにより、前記検出強度の最大値と最小値の差を0.0005~0.002とすることができる。 The method for setting the average value of the coefficient of variation to 0.01 to 0.03 is not particularly limited, but for example, the temperature of the hot air blown onto the PVA film, which increases the volatile content of the PVA water-containing chip or the film-forming stock solution, and , A method of lowering the temperature of the drying roll or the drying furnace. In this case, the content of the silicone-type surfactant, the volatile content of the PVA water-containing chip or the film-forming stock solution, the number of rotations of the screw of the extruder when melt-kneading the PVA, and the surface of the support for flowing the film-forming stock solution. By appropriately adjusting the temperature, the contact time between the PVA film and the support, the temperature of the hot air blown on the PVA film, the temperature of the drying roll or the drying furnace, etc., the difference between the maximum value and the minimum value of the detected intensity is set to 0. It can be 0005 to 0.002.
 本発明において、PVAフィルムを30℃の水に30分間浸漬させた際の膨潤度は、180%以上であることが好ましく、190%以上であることがより好ましく、195%以上であることが更に好ましい。PVAフィルムを30℃の水中に30分間浸漬させた際の膨潤度は、240%以下であることが好ましく、210%以下であることがより好ましく、205%以下であることが更に好ましい。膨潤度が180~240%であることで、偏光フィルムなどの光学フィルムを製造する際に、PVAフィルムが膨潤処理等の水中浸漬時に適度に柔らかくなり、PVAフィルムを一軸延伸した際に張力が過度にかかりにくくなる結果、延伸破断の発生を抑制することができる。 In the present invention, the degree of swelling when the PVA film is immersed in water at 30 ° C. for 30 minutes is preferably 180% or more, more preferably 190% or more, and further preferably 195% or more. preferable. The degree of swelling when the PVA film is immersed in water at 30 ° C. for 30 minutes is preferably 240% or less, more preferably 210% or less, still more preferably 205% or less. When the degree of swelling is 180 to 240%, the PVA film becomes moderately soft when immersed in water such as swelling treatment when manufacturing an optical film such as a polarizing film, and the tension becomes excessive when the PVA film is uniaxially stretched. As a result, it is possible to suppress the occurrence of stretch breakage.
 本発明において、PVAフィルムのMD方向はPVAフィルムの長さ方向を意味し、PVAフィルムを製造する際の機械流れ方向と一致する。一方、PVAフィルムのTD方向はPVAフィルムの幅方向を意味し、PVAフィルムを製造する際の機械流れ方向と直行する方向である。本発明のPVAフィルムにおいて、ある一つの方向がMD方向であるかTD方向であるかは、PVAフィルムの位相差斑を測定することでPVAフィルムの製造後においても事後的に判別可能である。すなわち、通常PVAフィルムの製造時においてフィルムの厚み斑を完全に均一にすることは困難なため、PVAフィルムの位相差斑の大きい方向がTD方向であると判断できる。一方、PVAフィルムの位相差斑の小さい方向がMD方向であると判断できる。 In the present invention, the MD direction of the PVA film means the length direction of the PVA film, which coincides with the mechanical flow direction when the PVA film is manufactured. On the other hand, the TD direction of the PVA film means the width direction of the PVA film, and is a direction orthogonal to the machine flow direction when manufacturing the PVA film. In the PVA film of the present invention, whether one direction is the MD direction or the TD direction can be determined ex post facto even after the production of the PVA film by measuring the phase difference spots of the PVA film. That is, since it is usually difficult to make the thickness unevenness of the film completely uniform during the production of the PVA film, it can be determined that the direction in which the phase difference unevenness of the PVA film is large is the TD direction. On the other hand, it can be determined that the direction in which the phase difference unevenness of the PVA film is small is the MD direction.
(PVA)
 本発明のPVAフィルムにおいて、PVAとしては、ビニルエステル系モノマーを重合して得られるビニルエステル系重合体をけん化することにより製造された重合体を使用することができる。ビニルエステル系モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等を挙げることができる。これらの中でも、ビニルエステル系モノマーとしては、酢酸ビニルが好ましい。
(PVA)
In the PVA film of the present invention, as PVA, a polymer produced by saponifying a vinyl ester-based polymer obtained by polymerizing a vinyl ester-based monomer can be used. Examples of the vinyl ester-based monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. Among these, vinyl acetate is preferable as the vinyl ester-based monomer.
 ビニルエステル系重合体は、単量体として1種又は2種以上のビニルエステル系モノマーのみを用いて得られた重合体が好ましく、単量体として1種のビニルエステル系モノマーのみを用いて得られた重合体がより好ましい。なお、ビニルエステル系重合体は、1種又は2種以上のビニルエステル系モノマーと、これと共重合可能な他のモノマーとの共重合体であってもよい。 The vinyl ester-based polymer is preferably a polymer obtained by using only one kind or two or more kinds of vinyl ester-based monomers as a monomer, and is obtained by using only one kind of vinyl ester-based monomer as a monomer. The obtained polymer is more preferable. The vinyl ester-based polymer may be a copolymer of one or more kinds of vinyl ester-based monomers and another monomer copolymerizable therewith.
 他のモノマーとしては、例えば、エチレン;プロピレン、1-ブテン、イソブテン等の炭素数3~30のオレフィン;アクリル酸又はその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルへキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル;メタクリル酸又はその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸又はその塩、アクリルアミドプロピルジメチルアミン又はその塩、N-メチロールアクリルアミド又はその誘導体等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸又はその塩、メタクリルアミドプロピルジメチルアミン又はその塩、N-メチロールメタクリルアミド又はその誘導体等のメタクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸又はその塩、エステルもしくは酸無水物;イタコン酸又はその塩、エステルもしくは酸無水物;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等が挙げられる。なお、ビニルエステル系重合体は、これらの他のモノマーのうちの1種又は2種以上に由来する構造単位を有することができる。 Other monomers include, for example, ethylene; olefins having 3 to 30 carbon atoms such as propylene, 1-butene, and isobutene; acrylic acid or a salt thereof; methylacrylic acid, ethylacrylic acid, n-propyl acrylate, i-acrylic acid. -Acrylic acid esters such as propyl, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid or salts thereof; methacrylic acid. Methyl, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacrylic acid Methacrylic acid esters such as octadecyl; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamide propanesulfonic acid or its salts, acrylamidepropyldimethylamine or its salts, N-methylolacrylamide. Or an acrylamide derivative such as a derivative thereof; methacrylicamide, N-methylmethacrylicamide, N-ethylmethacrylicamide, methacrylicamide propanesulfonic acid or a salt thereof, methacrylicamidepropyldimethylamine or a salt thereof, N-methylolmethacrylicamide or a derivative thereof, etc. Methacrylic acid derivative; N-vinylamide such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone; methylvinyl ether, ethylvinyl ether, n-propylvinyl ether, i-propylvinyl ether, n-butylvinyl ether, i-butylvinyl ether. Vinyl ethers such as t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; vinyl cyanide such as acrylonitrile and methacrylic nitrile; vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; allyl acetate and allyl chloride. Allyl compounds such as; maleic acid or salts thereof, esters or acid anhydrides; itaconic acid or salts thereof, esters or acid anhydrides; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like. The vinyl ester-based polymer can have a structural unit derived from one or more of these other monomers.
 ビニルエステル系重合体に占める他のモノマーに由来する構造単位の割合は、本発明の効果を妨げない限り必ずしも制限されないが、ビニルエステル重合体を構成する全構造単位のモル数に基づいて、15モル%以下であることが好ましく、5モル%以下であることがより好ましく、1モル%以下であることがさらに好ましく、0.1モル%以下であることが特に好ましい場合もある。 The proportion of structural units derived from other monomers in the vinyl ester polymer is not necessarily limited as long as it does not interfere with the effects of the present invention, but is based on the number of moles of all structural units constituting the vinyl ester polymer. It is preferably mol% or less, more preferably 5 mol% or less, further preferably 1 mol% or less, and particularly preferably 0.1 mol% or less.
 PVAの重合度は、特に制限されない。PVAの重合度は1,000以上であることが好ましく、8,000以下であることが好ましい。PVAの重合度の下限は、得られる光学フィルムの光学性能及び耐湿熱性を高める観点から、1,500以上であることがより好ましく、2,000以上であることがさらに好ましい。一方、PVAの重合度の上限は、PVAの生産性を高める観点から、5,000以下であることがより好ましく、4,000以下であることがさらに好ましい。 The degree of polymerization of PVA is not particularly limited. The degree of polymerization of PVA is preferably 1,000 or more, and preferably 8,000 or less. The lower limit of the degree of polymerization of PVA is more preferably 1,500 or more, and further preferably 2,000 or more, from the viewpoint of enhancing the optical performance and the heat resistance to moisture of the obtained optical film. On the other hand, the upper limit of the degree of polymerization of PVA is more preferably 5,000 or less, and further preferably 4,000 or less, from the viewpoint of increasing the productivity of PVA.
 ここで、重合度とは、JIS K 6726-1994の記載に準じて測定される平均重合度を意味する。すなわち、本発明において、重合度(Po)は、PVAの残存酢酸基を再けん化し、精製した後、30℃の水中で測定した極限粘度[η](デシリットル/g)から、次式により求められる。 Here, the degree of polymerization means the average degree of polymerization measured according to the description of JIS K 6726-1994. That is, in the present invention, the degree of polymerization (Po) is determined by the following formula from the ultimate viscosity [η] (deciliter / g) measured in water at 30 ° C. after remineralizing and purifying the residual acetic acid group of PVA. Be done.
 重合度Po = ([η]×10/8.29)(1/0.62) Degree of polymerization Po = ([η] × 10 4 / 8.29) (1 / 0.62)
 本発明において、PVAのけん化度の下限は、98.7モル%であり、99.0モル%が好ましく、99.5モル%がより好ましく、99.8モル%がさらに好ましく、99.9モル%が特に好ましい。けん化度が上記下限以上であることにより、光学性能及び耐湿熱性に優れた光学フィルムが得られる傾向にある。一方、けん化度の上限に特に制限はないが、PVAの生産性の観点から、99.99モル%以下が好ましい。 In the present invention, the lower limit of the saponification degree of PVA is 98.7 mol%, preferably 99.0 mol%, more preferably 99.5 mol%, further preferably 99.8 mol%, and 99.9 mol%. % Is particularly preferable. When the saponification degree is at least the above lower limit, an optical film having excellent optical performance and moisture heat resistance tends to be obtained. On the other hand, the upper limit of the saponification degree is not particularly limited, but is preferably 99.99 mol% or less from the viewpoint of PVA productivity.
 ここで、PVAのけん化度は、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステルモノマー単位)とビニルアルコール単位との合計モル数に対して、ビニルアルコール単位のモル数が占める割合(モル%)をいう。PVAのけん化度は、JIS K 6726-1994の記載に準じて測定することができる。 Here, the degree of saponification of PVA is the number of moles of vinyl alcohol units with respect to the total number of moles of structural units (typically vinyl ester monomer units) that can be converted into vinyl alcohol units by saponification. It refers to the proportion (mol%). The degree of saponification of PVA can be measured according to the description of JIS K 6726-1994.
 本発明のPVAフィルムは、1種類のPVAを単独で含有してもよいし、重合度、けん化度及び変性度等が互いに異なる2種以上のPVAを含有してもよい。 The PVA film of the present invention may contain one type of PVA alone, or may contain two or more types of PVA having different degrees of polymerization, saponification, modification, and the like.
 PVAフィルムにおけるPVAの含有量の割合の上限は、特に制限されない。一方、PVAの含有量の割合の下限は、50質量%以上が好ましく、80質量%以上がより好ましく、85質量%以上がさらに好ましい。 The upper limit of the ratio of the PVA content in the PVA film is not particularly limited. On the other hand, the lower limit of the content ratio of PVA is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 85% by mass or more.
(可塑剤)
 本発明のPVAフィルムは、可塑剤を含むことが好ましい。PVAフィルムが可塑剤を含むことにより、光学フィルムを製造する際の延伸工程において、PVAフィルムの延伸性を高めることができる。可塑剤としては多価アルコールが好ましい。多価アルコールとしては、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、ジグリセリン、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパンなどが挙げられる。これらの中でも、延伸性の向上効果の点からグリセリンが好ましい。可塑剤は、1種を単独で又は2種以上を組み合わせて使用することができる。
(Plasticizer)
The PVA film of the present invention preferably contains a plasticizer. Since the PVA film contains a plasticizer, the stretchability of the PVA film can be enhanced in the stretching step when producing the optical film. A polyhydric alcohol is preferable as the plasticizer. Examples of the polyhydric alcohol include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like. Among these, glycerin is preferable from the viewpoint of improving the stretchability. The plasticizer may be used alone or in combination of two or more.
 本発明のPVAフィルムにおける可塑剤の含有量は、PVA100質量部に対して、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。一方、可塑剤の含有量は、PVA100質量部に対して、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であることがさらに好ましい。可塑剤の含有量が上記範囲内にあると、PVAフィルムが柔軟になり過ぎて取り扱い性が低下したり、PVAフィルムの表面に可塑剤がブリードアウトしたりするのを防止することができる。 The content of the plasticizer in the PVA film of the present invention is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of PVA. preferable. On the other hand, the content of the plasticizer is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less with respect to 100 parts by mass of PVA. When the content of the plasticizer is within the above range, the PVA film becomes too flexible and the handleability is deteriorated, and it is possible to prevent the plasticizer from bleeding out to the surface of the PVA film.
(シリコーン型界面活性剤)
 本発明のPVAフィルムは、ケイ素含有化合物を含有することが好ましい。ケイ素含有化合物の中でも、シリコーン型界面活性剤を含有することがより好ましい。シリコーン型界面活性剤を含有することで、正のケイ素フラグメントイオンの検出強度の平均値を前記範囲に調整しやすくなる。シリコーン型界面活性剤の具体例としては、シリコーンの片末端がポリエーテル構造を有するシリコーン型界面活性剤(サンノプコ社製「SNウェット125」、「SNウェット126」)、シリコーンの両末端がポリエーテル構造を有するシリコーン型界面活性剤(信越化学工業社製「X-22-4952」、「X-22-4272」及び「X-22-6266」)、シリコーンの側鎖にポリエーテル構造を有するシリコーン型界面活性剤(信越化学工業社製「KF-351A」、「KF-352A」、「KF-353」、「KF-354L」、「KF-355A」、「KF-615A」、「KF-945」、「KF-640」、「KF-642」、「KF-643」、「KF-6020」、「KS-604」、「X-50-1039A」、「X-50-1105G」、「X-22-6191」、「X-22-4515」、「KF-6011」、「KF-6012」、「KF-6015」及び「KF-6017」)、並びにシリコーンの両末端にポリエーテル構造を有する界面活性剤(信越化学工業社製「KF-6004」、「KF-889」、「X-22-4741」、「KF-1002」、「X-22-4952」、「X-22-4272」及び「X-22-6266」)等が挙げられる。
(Silicone type surfactant)
The PVA film of the present invention preferably contains a silicon-containing compound. Among the silicon-containing compounds, it is more preferable to contain a silicone-type surfactant. By containing a silicone-type surfactant, it becomes easy to adjust the average value of the detection intensities of positive silicon fragment ions within the above range. Specific examples of the silicone-type surfactant include a silicone-type surfactant having a polyether structure at one end of the silicone (“SN Wet 125” and “SN Wet 126” manufactured by Sannopco), and both ends of the silicone are polyether. Silicone type surfactant with structure ("X-22-4952", "X-22-4272" and "X-22-6266" manufactured by Shin-Etsu Chemical Co., Ltd.), Silicone with a polyether structure on the side chain of silicone Type Surface Activator ("KF-351A", "KF-352A", "KF-353", "KF-354L", "KF-355A", "KF-615A", "KF-945" manufactured by Shin-Etsu Chemical Co., Ltd. , "KF-640", "KF-642", "KF-643", "KF-6020", "KS-604", "X-50-1039A", "X-50-1105G", "X" -22-6191 ”,“ X-22-4515 ”,“ KF-6011 ”,“ KF-6012 ”,“ KF-6015 ”and“ KF-6017 ”), and having a polyether structure at both ends of the silicone. Surface active agents ("KF-6004", "KF-889", "X-22-4471", "KF-1002", "X-22-4952", "X-22-4272" manufactured by Shin-Etsu Chemical Co., Ltd. And "X-22-6266") and the like.
 本発明のPVAフィルムにおいて、シリコーン型界面活性剤の含有量はPVA100質量部に対して0.02質量部以上であることが好ましく、0.04質量部以上であることがより好ましく、0.06質量部以上であることがさらに好ましい。一方、上記シリコーン型界面活性剤の含有量は、0.14質量部以下であることが好ましく、0.12質量部以下であることがより好ましく、0.10質量部以下であることがさらに好ましい。シリコーン型界面活性剤の含有量が上記範囲であることで、正のケイ素フラグメントイオンの検出強度の平均値を前記範囲に調整しやすくなる。 In the PVA film of the present invention, the content of the silicone-type surfactant is preferably 0.02 part by mass or more, more preferably 0.04 part by mass or more, and 0.06 by mass with respect to 100 parts by mass of PVA. It is more preferably more than parts by mass. On the other hand, the content of the silicone-type surfactant is preferably 0.14 parts by mass or less, more preferably 0.12 parts by mass or less, and further preferably 0.10 parts by mass or less. .. When the content of the silicone-type surfactant is in the above range, it becomes easy to adjust the average value of the detection intensities of positive silicon fragment ions to the above range.
(その他の界面活性剤)
 本発明のPVAフィルムは、シリコーン型界面活性剤以外の界面活性剤を含有することが好ましい。このような界面活性剤を含むことにより、PVAフィルムの取り扱い性や、製造時におけるPVAフィルムの製膜装置からの剥離性を向上させることができる。シリコーン型界面活性剤以外の界面活性剤としては、特に制限されず、例えば、アニオン系界面活性剤、ノニオン系界面活性剤が好ましく用いられる。
(Other surfactants)
The PVA film of the present invention preferably contains a surfactant other than the silicone-type surfactant. By including such a surfactant, it is possible to improve the handleability of the PVA film and the peelability of the PVA film from the film forming apparatus at the time of production. The surfactant other than the silicone-type surfactant is not particularly limited, and for example, an anionic surfactant and a nonionic surfactant are preferably used.
 アニオン系界面活性剤としては、例えば、ラウリン酸カリウム等のカルボン酸型界面活性剤;オクチルサルフェート等の硫酸エステル型界面活性剤;ドデシルベンゼンスルホネート等のスルホン酸型界面活性剤等が挙げられる。 Examples of the anionic surfactant include a carboxylic acid type surfactant such as potassium laurate; a sulfate ester type surfactant such as octyl sulfate; and a sulfonic acid type surfactant such as dodecylbenzene sulfonate.
 ノニオン系界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテル等のアルキルエーテル型界面活性剤;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型界面活性剤;ポリオキシエチレンラウレート等のアルキルエステル型界面活性剤;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型界面活性剤;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型界面活性剤;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型界面活性剤;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型界面活性剤;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型界面活性剤等が挙げられる。 Examples of the nonionic surfactant include an alkyl ether type surfactant such as polyoxyethylene lauryl ether and polyoxyethylene oleyl ether; an alkylphenyl ether type surfactant such as polyoxyethylene octylphenyl ether; and polyoxyethylene lau. Alkyl ester-type surfactants such as rates; Alkylamine-type surfactants such as polyoxyethylene laurylamino ether; Alkylamide-type surfactants such as polyoxyethylene lauric acid amide; Polypropylene such as polyoxyethylene polyoxypropylene ethers Glycol ether type surfactants; alkanolamide type surfactants such as lauric acid diethanolamide and oleic acid diethanolamide; allylphenyl ether type surfactants such as polyoxyalkylene allylphenyl ether and the like can be mentioned.
 シリコーン型界面活性剤以外の界面活性剤は、1種を単独で使用しても、2種以上を併用してもよい。シリコーン型界面活性剤以外の界面活性剤としては、PVAフィルムの製膜時における表面異常の低減効果に優れること等から、ノニオン系界面活性剤が好ましく、アルカノールアミド型界面活性剤がより好ましく、脂肪族カルボン酸(例えば、炭素数8~30の飽和又は不飽和脂肪族カルボン酸等)のジアルカノールアミド(例えば、ジエタノールアミド等)がさらに好ましい。 As the surfactant other than the silicone type surfactant, one type may be used alone or two or more types may be used in combination. As the surfactant other than the silicone type surfactant, a nonionic surfactant is preferable, an alkanolamide type surfactant is more preferable, and a fat Dialkanolamides (eg, diethanolamides, etc.) of group carboxylic acids (eg, saturated or unsaturated aliphatic carboxylic acids having 8 to 30 carbon atoms) are more preferable.
 本発明のPVAフィルムにおけるシリコーン型界面活性剤以外の界面活性剤の含有量は、PVA100質量部に対して、0.01質量部以上であることが好ましく、0.02質量部以上であることがより好ましく、0.05質量部以上であることがさらに好ましい。一方、シリコーン型界面活性剤以外の界面活性剤の含有量は、PVA100質量部に対して、10質量部以下であることが好ましく、1質量部以下であることがより好ましく、0.5質量部以下であることがさらに好ましく、0.3質量部以下であることが特に好ましい。シリコーン型界面活性剤以外の界面活性剤の含有量が上記範囲であると、製造時におけるPVAフィルムの製膜装置からの剥離性が良好になるとともに、PVAフィルム間での膠着(以下「ブロッキング」と称することもある)が発生するのを防ぐことができる。また、シリコーン型界面活性剤以外の界面活性剤がPVAフィルムの表面にブリードアウトしたり、界面活性剤の凝集によってPVAフィルムの外観が悪化するのを防ぐことができる。 The content of the surfactant other than the silicone-type surfactant in the PVA film of the present invention is preferably 0.01 part by mass or more, and preferably 0.02 part by mass or more with respect to 100 parts by mass of PVA. More preferably, it is more preferably 0.05 parts by mass or more. On the other hand, the content of the surfactant other than the silicone type surfactant is preferably 10 parts by mass or less, more preferably 1 part by mass or less, and 0.5 part by mass with respect to 100 parts by mass of PVA. It is more preferably 0 parts by mass or less, and particularly preferably 0.3 parts by mass or less. When the content of the surfactant other than the silicone-type surfactant is in the above range, the peelability of the PVA film from the film forming apparatus at the time of manufacturing is improved, and the PVA film is stuck between the PVA films (hereinafter referred to as "blocking"). It can be prevented from occurring. Further, it is possible to prevent a surfactant other than the silicone-type surfactant from bleeding out to the surface of the PVA film and to prevent the appearance of the PVA film from being deteriorated due to the aggregation of the surfactant.
(その他の成分)
 本発明のPVAフィルムは、PVA以外に、水溶性高分子、水分、酸化防止剤、紫外線吸収剤、滑剤、架橋剤、着色剤、充填剤、防腐剤、防黴剤、他の高分子化合物等の成分を、本発明の効果を妨げない範囲で含有してもよい。PVA、界面活性剤、可塑剤、PVA以外のその他の成分の質量の合計値がPVAフィルムの全質量に占める割合は、60~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることがさらに好ましい。
(Other ingredients)
In addition to PVA, the PVA film of the present invention includes water-soluble polymers, moisture, antioxidants, ultraviolet absorbers, lubricants, cross-linking agents, colorants, fillers, preservatives, fungicides, other polymer compounds, etc. Ingredients may be contained within a range that does not interfere with the effects of the present invention. The ratio of the total mass of PVA, the surfactant, the plasticizer, and other components other than PVA to the total mass of the PVA film is preferably 60 to 100% by mass, preferably 80 to 100% by mass. Is more preferable, and 90 to 100% by mass is further preferable.
(物性)
 本発明のPVAフィルムは非水溶性である。PVAフィルムが非水溶性であることで、偏光フィルムなどの光学フィルムを製造する際の一軸延伸を水溶液中で行った場合に、最大延伸速度が高速であっても、一軸延伸時にPVAフィルムを破断させずに延伸することができる。ここで、本発明において非水溶性とは、以下の<1>~<4>の手順でPVAフィルムを30℃の水(脱イオン水)に浸漬した場合に、PVAフィルムが完溶せず一部でも溶け残ることをいう。
(Physical characteristics)
The PVA film of the present invention is water-insoluble. Since the PVA film is water-insoluble, when uniaxial stretching for producing an optical film such as a polarizing film is performed in an aqueous solution, the PVA film is broken during uniaxial stretching even if the maximum stretching speed is high. It can be stretched without causing it. Here, the term "water-insoluble" in the present invention means that the PVA film is not completely dissolved when the PVA film is immersed in water (deionized water) at 30 ° C. according to the following procedures <1> to <4>. It means that it remains undissolved even in the part.
<1>PVAフィルムを20℃-65%RHに調整した恒温恒湿器内に、16時間以上置いて調湿する。
<2>調湿したPVAフィルムから、長さ40mm×幅35mmの長方形のサンプルを切り出した後、長さ35mm×幅23mmの長方形の窓(穴)が開口した50mm×50mmのプラスチック板2枚の間に、サンプルの長さ方向が窓の長さ方向に平行でかつサンプルが窓の幅方向のほぼ中央に位置するように挟み込んで固定する。
<3>500mLのビーカーに300mLの脱イオン水を入れ、回転数280rpmで3cm長のバーを備えたマグネティックスターラーで攪拌しつつ、水温を30℃に調整する。
<4>上記<2>においてプラスチック板に固定したサンプルを、回転するマグネティックスターラーのバーに接触させないように注意しながら、ビーカー内の脱イオン水に1000秒間浸漬する。
<1> The PVA film is placed in a constant temperature and humidity chamber adjusted to 20 ° C.-65% RH for 16 hours or more to adjust the humidity.
<2> After cutting out a rectangular sample of 40 mm in length × 35 mm in width from the humidity-controlled PVA film, two 50 mm × 50 mm plastic plates having a rectangular window (hole) of 35 mm in length × 23 mm in width opened. The sample is sandwiched and fixed so that the length direction of the sample is parallel to the length direction of the window and the sample is located substantially in the center of the width direction of the window.
<3> Put 300 mL of deionized water in a 500 mL beaker, and adjust the water temperature to 30 ° C. while stirring with a magnetic stirrer equipped with a 3 cm long bar at a rotation speed of 280 rpm.
<4> The sample fixed to the plastic plate in <2> above is immersed in deionized water in a beaker for 1000 seconds, being careful not to contact the bar of the rotating magnetic stirrer.
(形状)
 本発明において、PVAフィルムの厚みは10μm以上であることが好ましく、15μm以上であることが好ましく、18μm以上であることがより好ましく、20μm以上であることがさらに好ましい。また、PVAフィルムの厚みは40μm以下であることが好ましく、38μm以下であることがより好ましく、36μm以下であることがさらに好ましく、34μm以下であることが特に好ましく、32μm以下であることがよりさらに好ましい。厚みが上記範囲内であることで偏光フィルムなどの光学フィルムを製造する際の一軸延伸において、延伸破断の発生を抑制することができる。なお、「厚み」とは、任意の5点で測定した厚さの平均値をいう。
(shape)
In the present invention, the thickness of the PVA film is preferably 10 μm or more, preferably 15 μm or more, more preferably 18 μm or more, still more preferably 20 μm or more. The thickness of the PVA film is preferably 40 μm or less, more preferably 38 μm or less, further preferably 36 μm or less, particularly preferably 34 μm or less, and even more preferably 32 μm or less. preferable. When the thickness is within the above range, it is possible to suppress the occurrence of stretch fracture in uniaxial stretching when manufacturing an optical film such as a polarizing film. The "thickness" means the average value of the thickness measured at any five points.
 本発明において、PVAフィルムのTD方向の長さは1.5m以上であることが好ましく、3m以上であることがより好ましい。近年、液晶テレビや液晶モニターの大画面化が進行している点から、PVAフィルムのTD方向の長さを1.5m以上にしておくと、これらを最終製品とする用途に好適である。一方、PVAフィルムのTD方向の長さは7m以下であることが好ましく、6m以下であることがより好ましい。TD方向の長さを7m以下とすることで、実用化されている装置で光学フィルムを製造する場合に、効率的に一軸延伸処理を行うことなどができる。 In the present invention, the length of the PVA film in the TD direction is preferably 1.5 m or more, and more preferably 3 m or more. In recent years, the screen size of liquid crystal televisions and liquid crystal monitors has been increasing, so if the length of the PVA film in the TD direction is set to 1.5 m or more, it is suitable for applications in which these are final products. On the other hand, the length of the PVA film in the TD direction is preferably 7 m or less, more preferably 6 m or less. By setting the length in the TD direction to 7 m or less, it is possible to efficiently perform the uniaxial stretching process when manufacturing an optical film with a practical device.
 本発明のPVAフィルムの形状は特に制限されないが、より均一なPVAフィルムを連続して円滑に製造することができる点や、光学フィルム等を製造する際に連続して使用する点などから、長尺のフィルムであることが好ましい。長尺のフィルムの長さ(流れ方向の長さ)は特に制限されず、適宜設定することができる。フィルムの長さは、3,000m以上であることが好ましく、5,000m以上であることがより好ましい。一方、フィルムの長さは、30,000m以下であることが好ましい。長尺のフィルムはコアに巻き取るなどしてフィルムロールとすることが好ましい。 The shape of the PVA film of the present invention is not particularly limited, but it is long because it can continuously and smoothly produce a more uniform PVA film and it is continuously used when producing an optical film or the like. It is preferably a long film. The length of the long film (length in the flow direction) is not particularly limited and can be set as appropriate. The length of the film is preferably 3,000 m or more, and more preferably 5,000 m or more. On the other hand, the length of the film is preferably 30,000 m or less. It is preferable that a long film is wound around a core to form a film roll.
(用途)
 本発明のPVAフィルムは、光学フィルムを製造する際の原反フィルムとして用いられる。本発明の光学フィルムとしては、偏光フィルム、視野角向上フィルム、位相差フィルム、輝度向上フィルムなどが例示されるが、偏光フィルムに好適に用いることができる。
(Use)
The PVA film of the present invention is used as a raw film for producing an optical film. Examples of the optical film of the present invention include a polarizing film, a viewing angle improving film, a retardation film, and a brightness improving film, and they can be suitably used for a polarizing film.
<PVAフィルムの製造方法>
 本発明のPVAフィルムの製造方法は、特に制限されず、例えば、次のような任意の方法を採用することができる。かかる方法としては、PVAに溶媒、添加剤等を加えて均一化させた製膜原液を、流延製膜法、湿式製膜法(貧溶媒中に吐出する方法)、乾湿式製膜法、ゲル製膜法(製膜原液を一旦冷却ゲル化した後、溶媒を抽出除去する方法)、あるいはこれらの組み合わせにより製膜する方法や、押出機等を使用して得られた製膜原液をTダイ等から押出すことにより製膜する溶融押出製膜法やインフレーション成形法等が挙げられる。これらの中でも、PVAフィルムの製造方法としては、流延製膜法及び溶融押出製膜法が好ましい。これらの方法を用いれば、均質なPVAフィルムを生産性よく得ることができる。以下、PVAフィルムを流延製膜法又は溶融押出製膜法を用いて製造する場合について説明する。
<Manufacturing method of PVA film>
The method for producing the PVA film of the present invention is not particularly limited, and for example, any method as follows can be adopted. As such a method, a cast film forming method, a wet film forming method (a method of discharging into a poor solvent), a dry-wet film forming method, etc. A gel film-forming method (a method in which a film-forming stock solution is once cooled and gelled and then the solvent is extracted and removed), a method of forming a film by a combination of these methods, or a film-forming stock solution obtained by using an extruder or the like is used as T. Examples thereof include a melt extrusion film forming method and an inflation forming method in which a film is formed by extruding from a die or the like. Among these, as a method for producing a PVA film, a casting film forming method and a melt extrusion film forming method are preferable. By using these methods, a homogeneous PVA film can be obtained with high productivity. Hereinafter, a case where the PVA film is manufactured by the casting film forming method or the melt extrusion film forming method will be described.
 本発明のPVAフィルムを流延製膜法又は溶融押出製膜法を用いて製造する場合、まず、PVAと、溶媒と、必要に応じて可塑剤等の添加剤とを含有する製膜原液を準備する。次に、この製膜原液を、金属ロールや金属ベルト等の回転する支持体上へ膜状に流涎(供給)する。これにより、支持体上に製膜原液の液状被膜を形成する。液状被膜は、支持体上で加熱されて溶媒が除去されることにより、固化してフィルム化する。液状被膜を加熱する方法は、支持体そのものを熱媒等で高温化する方法や、液状被膜の支持体に接触している面の反対面に熱風を吹き付ける方法などが例示される。固化した長尺のフィルム(PVAフィルム)は、支持体より剥離されて、必要に応じて乾燥ロール、乾燥炉等により乾燥されて、さらに必要に応じて熱処理されて、ロール状に巻き取られる。 When the PVA film of the present invention is produced by the casting film forming method or the melt extrusion film forming method, first, a film forming stock solution containing PVA, a solvent, and if necessary, an additive such as a plasticizer is prepared. prepare. Next, this film-forming stock solution is salivated (supplied) in the form of a film onto a rotating support such as a metal roll or a metal belt. As a result, a liquid film of the film-forming stock solution is formed on the support. The liquid film is solidified and formed into a film by being heated on the support to remove the solvent. Examples of the method of heating the liquid film include a method of heating the support itself to a high temperature with a heat medium and the like, and a method of blowing hot air on the opposite surface of the surface in contact with the support of the liquid film. The solidified long film (PVA film) is peeled off from the support, dried by a drying roll, a drying furnace or the like as necessary, further heat-treated as needed, and wound into a roll.
 通常、PVAフィルムの乾燥は、支持体や乾燥ロール等に接触していない、解放されたフィルム表面から揮発分が揮発していくことにより進行する。シリコーン型界面活性剤は揮発する水と共に表面に移動することから、乾燥途中の工程では、その時々の温度、ドローの条件が正のケイ素フラグメントイオンの検出強度に影響を与える。この正のケイ素フラグメントイオンの検出強度は、シリコーン型界面活性剤の含有量、PVA含水チップ又は製膜原液の揮発分率、PVAを溶融混練する際の押出機のスクリューの回転数、製膜原液を流涎させる支持体の表面温度、PVAフィルムと支持体との接触時間、PVAフィルムに吹き付ける熱風の温度、及び、乾燥ロール又は乾燥炉の温度等を調整することにより調整することができる。 Normally, the drying of the PVA film proceeds by volatilizing the volatile matter from the released film surface that is not in contact with the support, the drying roll, or the like. Since the silicone-type surfactant moves to the surface together with the volatile water, the temperature and draw conditions at that time affect the detection intensity of positive silicon fragment ions in the process during drying. The detection intensity of this positive silicon fragment ion is the content of the silicone-type surfactant, the volatile content of the PVA water-containing chip or the film-forming stock solution, the number of rotations of the screw of the extruder when melt-kneading the PVA, and the film-forming stock solution. It can be adjusted by adjusting the surface temperature of the support that causes the PVA film to flow, the contact time between the PVA film and the support, the temperature of the hot air blown onto the PVA film, the temperature of the drying roll or the drying furnace, and the like.
 製膜原液の揮発分率(製膜時等に揮発や蒸発によって除去される溶媒等の揮発性成分の濃度)は、50~80質量%の範囲にあることが好ましい。揮発分率が上記範囲であると、製膜原液の粘度を好適な範囲に調整することができるので、支持体上に流涎された液状被膜の製膜性が向上するとともに、均一な厚みを有するPVAフィルムを得やすくなる。製膜原液は、必要に応じて二色性染料を含有していてもよい。また、製膜原液の揮発分率は、下記式により求めた値をいう。 The volatile fraction of the film-forming stock solution (concentration of volatile components such as a solvent removed by volatilization or evaporation during film-forming) is preferably in the range of 50 to 80% by mass. When the volatile fraction is in the above range, the viscosity of the film-forming stock solution can be adjusted to a suitable range, so that the film-forming property of the liquid film flowed on the support is improved and the film-forming property has a uniform thickness. It becomes easier to obtain a PVA film. The film-forming stock solution may contain a dichroic dye, if necessary. The volatile fraction of the film-forming stock solution is a value calculated by the following formula.
 製膜原液の揮発分率(質量%)={(Wa-Wb)/Wa}×100 Volatile fraction of membrane-forming stock solution (mass%) = {(Wa-Wb) / Wa} x 100
 上記式中、Waは、製膜原液の質量(g)を表し、Wbは、Wa(g)の製膜原液を105℃の電熱乾燥機中で16時間乾燥した後の質量(g)を表す。 In the above formula, Wa represents the mass (g) of the film-forming stock solution, and Wb represents the mass (g) of the film-forming stock solution of Wa (g) after being dried in an electric heat dryer at 105 ° C. for 16 hours. ..
 製膜原液の調整方法としては、特に制限されず、例えば、PVAと、可塑剤、界面活性剤等の添加剤とを溶解タンク等で溶媒中に溶解させる方法や、一軸押出機又は二軸押出機を使用して含水状態のPVAを、可塑剤、界面活性剤等の添加剤と共に溶融混錬する方法等が挙げられる。 The method for preparing the undiluted film-forming solution is not particularly limited, and for example, a method of dissolving PVA and additives such as a plasticizer and a surfactant in a solvent in a dissolution tank or the like, a uniaxial extruder or a twin-screw extruder or a biaxial extrusion is performed. Examples thereof include a method of melt-kneading water-containing PVA together with additives such as a plasticizer and a surfactant using a machine.
 製膜原液は、一般にTダイなどのダイのダイリップを通過して、金属ロールや金属ベルトなどの支持体の上へ膜状に流涎される。支持体の上では、流涎されたフィルム状の原液の支持体に接触していない面(以下、フリー面と称することがある。)から溶媒が揮発していき、一方、支持体に接触している面(以下、タッチ面と称することがある。)からは実質的に揮発しないため、フィルムの厚み方向に対し、フリー面側の溶媒濃度が低く、タッチ面側の溶媒濃度が高いという分布を生じる。よって、PVAの固化もフリー面から先に進行する。 The undiluted film-forming solution generally passes through the die lip of a die such as a T-die and is spilled into a film on a support such as a metal roll or a metal belt. On the support, the solvent volatilizes from the surface of the flowed film-like stock solution that is not in contact with the support (hereinafter, may be referred to as a free surface), while in contact with the support. Since it does not substantially volatilize from the existing surface (hereinafter, may be referred to as a touch surface), the distribution is such that the solvent concentration on the free surface side is low and the solvent concentration on the touch surface side is high with respect to the thickness direction of the film. Occurs. Therefore, the solidification of PVA also proceeds from the free side first.
 PVAの固化と並行してPVAの結晶化も進行する。PVAの結晶化は、溶媒濃度が高すぎても低すぎても進行しにくく、PVA分子の一次構造にもよるが、流涎された製膜原液の揮発分率が20~60質量%の範囲にあるときに進行しやすい。また、PVAの結晶化の速度は温度が高いほど速くなるが、温度が高いほど溶媒の揮発速度も速くなる。 PVA crystallization progresses in parallel with PVA solidification. Crystallization of PVA is difficult to proceed even if the solvent concentration is too high or too low, and although it depends on the primary structure of the PVA molecule, the volatile fraction of the flowed film-forming stock solution is in the range of 20 to 60% by mass. It is easy to progress at one time. Further, the rate of crystallization of PVA increases as the temperature increases, but the rate of volatilization of the solvent increases as the temperature increases.
<光学フィルムの製造方法>
 本発明のPVAフィルムは、光学フィルムを製造する際の原反フィルムとして用いることができる。光学フィルムとしては、偏光フィルム、視野角向上フィルム、位相差フィルム、輝度向上フィルムなどが例示されるが、偏光フィルムであることが好ましい。以下では、光学フィルムの製造方法の一例として、偏光フィルムの製造方法を挙げて具体的に説明する。
<Manufacturing method of optical film>
The PVA film of the present invention can be used as a raw film for producing an optical film. Examples of the optical film include a polarizing film, a viewing angle improving film, a retardation film, and a brightness improving film, but a polarizing film is preferable. Hereinafter, as an example of the method for manufacturing an optical film, a method for manufacturing a polarizing film will be specifically described.
 本発明の偏光フィルムは、本発明のPVAフィルムから製造することができる。本発明のPVAフィルムを用いることにより、偏光フィルムを製造する際の一軸延伸において延伸破断が発生しにくくなるため、結果、収率よく偏光フィルムを製造することができる。偏光フィルムは、通常、PVAフィルムを原反フィルムとして用いて、膨潤工程、染色工程、架橋工程、延伸工程、固定処理工程などの処理工程を経て製造することができる。各工程に用いる処理液の具体例としては、膨潤処理に使用される膨潤処理液、染色処理に使用される染色処理液(染色液)、架橋処理に使用される架橋処理液、延伸処理に使用される延伸処理液、固定処理に使用される固定処理液及び洗浄処理に使用される洗浄処理液(洗浄液)などが挙げられる。 The polarizing film of the present invention can be produced from the PVA film of the present invention. By using the PVA film of the present invention, stretch breakage is less likely to occur in uniaxial stretching when producing a polarizing film, and as a result, a polarizing film can be produced in high yield. The polarizing film can usually be produced by using a PVA film as a raw film and undergoing treatment steps such as a swelling step, a dyeing step, a cross-linking step, a stretching step, and a fixing treatment step. Specific examples of the treatment liquid used in each step include a swelling treatment liquid used for swelling treatment, a dyeing treatment liquid (staining liquid) used for dyeing treatment, a cross-linking treatment liquid used for cross-linking treatment, and a stretching treatment liquid. Examples thereof include a stretching treatment liquid, a fixing treatment liquid used for the fixing treatment, and a cleaning treatment liquid (cleaning liquid) used for the cleaning treatment.
 偏光フィルムを製造するための製造方法において採用することのできる各処理工程について、以下に詳細に説明する。なお、偏光フィルムの製造方法において、以下の各処理の1つ又は2つ以上を省略してもよいし、同じ処理を複数回行ってもよいし、別の処理を同時に行ってもよい。 Each processing step that can be adopted in the manufacturing method for manufacturing the polarizing film will be described in detail below. In the method for producing a polarizing film, one or two or more of the following processes may be omitted, the same process may be performed a plurality of times, or another process may be performed at the same time.
(膨潤処理前の洗浄処理)
 PVAフィルムに膨潤処理を行う前に、PVAフィルムに洗浄処理を行うことが好ましい。このような膨潤処理前の洗浄処理によりPVAフィルムに付着しているブロッキング防止剤などを除去することができ、偏光フィルムの製造工程における各処理液がブロッキング防止剤などにより汚染されることを防止することができる。洗浄処理は、PVAフィルムを洗浄処理液に浸漬させることにより行うことが好ましいが、洗浄処理液をPVAフィルムに対して吹き付けることにより行うこともできる。洗浄処理液としては、例えば水を用いることができる。洗浄処理液の温度は20℃以上であることが好ましい。洗浄処理液の温度が20℃以上であることにより、PVAフィルムに付着しているブロッキング防止剤などの除去が行いやすくなる。また、洗浄処理液の温度は40℃以下であることが好ましい。洗浄処理液の温度が40℃以下であることにより、PVAフィルムの表面の一部が溶解してフィルム同士が膠着して取り扱い性が低下することを防止することができる。
(Washing treatment before swelling treatment)
It is preferable to perform a cleaning treatment on the PVA film before performing the swelling treatment on the PVA film. By such a cleaning treatment before the swelling treatment, the blocking inhibitor or the like adhering to the PVA film can be removed, and it is possible to prevent each treatment liquid in the polarizing film manufacturing process from being contaminated by the blocking inhibitor or the like. be able to. The cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film. For example, water can be used as the cleaning treatment liquid. The temperature of the cleaning treatment liquid is preferably 20 ° C. or higher. When the temperature of the cleaning treatment liquid is 20 ° C. or higher, it becomes easy to remove the blocking inhibitor and the like adhering to the PVA film. Further, the temperature of the cleaning treatment liquid is preferably 40 ° C. or lower. When the temperature of the cleaning treatment liquid is 40 ° C. or lower, it is possible to prevent a part of the surface of the PVA film from melting and the films from sticking to each other to deteriorate the handleability.
(膨潤処理)
 膨潤処理は、PVAフィルムを水等の膨潤処理液に浸漬させることにより行うことができる。膨潤処理液の温度は、20℃以上であることが好ましく、40℃以下であることが好ましい。なお、膨潤処理液として使用される水は純水に限定されず、ホウ素含有化合物等の各種成分が溶解した水溶液であってもよいし、水と水性媒体との混合物であってもよい。ホウ素含有化合物の種類は特に限定されないが、取り扱い性の観点からホウ酸又はホウ砂が好ましい。膨潤処理液がホウ素含有化合物を含む場合、PVAフィルムの延伸性を向上させる観点から、その濃度は6質量%以下であることが好ましい。
(Swelling treatment)
The swelling treatment can be performed by immersing the PVA film in a swelling treatment liquid such as water. The temperature of the swelling treatment liquid is preferably 20 ° C. or higher, and preferably 40 ° C. or lower. The water used as the swelling treatment liquid is not limited to pure water, and may be an aqueous solution in which various components such as a boron-containing compound are dissolved, or may be a mixture of water and an aqueous medium. The type of the boron-containing compound is not particularly limited, but boric acid or borax is preferable from the viewpoint of handleability. When the swelling treatment liquid contains a boron-containing compound, the concentration thereof is preferably 6% by mass or less from the viewpoint of improving the stretchability of the PVA film.
(染色処理)
 染色処理は、二色性色素としてヨウ素系色素を用いて行うのがよく、染色の時期としては、延伸処理前、延伸処理時、延伸処理後のいずれの段階であってもよい。染色処理は、染色処理液としてヨウ素-ヨウ化カリウムを含有する溶液(好適には水溶液)を用い、染色処理液にPVAフィルムを浸漬させることにより行うことが好ましい。染色処理液におけるヨウ素の濃度は0.005~0.2質量%の範囲内であることが好ましく、ヨウ化カリウム/ヨウ素(質量)は20~100の範囲内であることが好ましい。染色処理液の温度は20℃以上であることが好ましく、50℃以下であることが好ましい。染色処理液には、ホウ酸等のホウ素含有化合物が架橋剤として含有されていてもよい。なお、原反フィルムとして使用するPVAフィルムに予め二色性色素を含有させておけば、染色処理を省略することができる。また、原反フィルムとして使用するPVAフィルムに予めホウ酸、ホウ砂等のホウ素含有化合物を含有させておくこともできる。
(Dyeing process)
The dyeing treatment is preferably carried out using an iodine-based dye as the dichroic dye, and the dyeing time may be any stage before the stretching treatment, during the stretching treatment, or after the stretching treatment. The dyeing treatment is preferably carried out by using a solution containing iodine-potassium iodide (preferably an aqueous solution) as the dyeing treatment liquid and immersing the PVA film in the dyeing treatment liquid. The concentration of iodine in the dyeing solution is preferably in the range of 0.005 to 0.2% by mass, and potassium iodide / iodine (mass) is preferably in the range of 20 to 100. The temperature of the dyeing treatment liquid is preferably 20 ° C. or higher, and preferably 50 ° C. or lower. The dyeing solution may contain a boron-containing compound such as boric acid as a cross-linking agent. If the PVA film used as the raw film contains a dichroic dye in advance, the dyeing process can be omitted. Further, it is also possible to preliminarily contain a boron-containing compound such as boric acid or borax in the PVA film used as the raw film.
(架橋処理)
 偏光フィルムの製造にあたって、PVAフィルムへの二色性色素の吸着を強固にするなどの目的のために、染色処理後に架橋処理を行うことが好ましい。架橋処理は、架橋処理液として架橋剤を含有する溶液(好適には水溶液)を用い、架橋処理液にPVAフィルムを浸漬させることにより行うことができる。架橋剤としては、ホウ酸、ホウ砂等のホウ素含有化合物の1種又は2種以上を使用することができる。架橋処理液における架橋剤の濃度は、あまりに高すぎると架橋反応が進みすぎてその後に行う延伸処理で十分な延伸を行うのが困難になる傾向があり、また、あまりに少なすぎると架橋処理の効果が低減する傾向にある。架橋処理液における架橋剤の濃度は、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、6質量%以下であることが好ましい。
(Crosslinking)
In the production of the polarizing film, it is preferable to carry out a cross-linking treatment after the dyeing treatment for the purpose of strengthening the adsorption of the dichroic dye on the PVA film. The cross-linking treatment can be performed by using a solution containing a cross-linking agent (preferably an aqueous solution) as the cross-linking treatment liquid and immersing the PVA film in the cross-linking treatment liquid. As the cross-linking agent, one or more boron-containing compounds such as boric acid and borax can be used. If the concentration of the cross-linking agent in the cross-linking treatment liquid is too high, the cross-linking reaction tends to proceed too much and it tends to be difficult to carry out sufficient stretching in the subsequent stretching treatment, and if it is too low, the effect of the cross-linking treatment tends to be difficult. Tends to decrease. The concentration of the cross-linking agent in the cross-linking treatment liquid is preferably 1% by mass or more, more preferably 1.5% by mass or more, and preferably 6% by mass or less.
 染色処理後のPVAフィルムから二色性色素が溶出するのを抑制するため、架橋処理液には、ヨウ化カリウム等のヨウ素含有化合物を含有させてもよい。架橋処理液におけるヨウ素含有化合物の濃度は、あまりに高すぎると理由は不明であるが得られる偏光フィルムの耐熱性が低下する傾向がある。また、架橋処理液におけるヨウ素含有化合物の濃度が、あまりに低すぎると、二色性色素の溶出を抑制する効果が低減する傾向にある。架橋処理液におけるヨウ素含有化合物の濃度は、1質量%以上であることが好ましく、6質量%以下であることが好ましい。 In order to suppress the elution of the dichroic dye from the PVA film after the dyeing treatment, the cross-linking treatment liquid may contain an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the cross-linking treatment liquid is too high, the reason is unknown, but the heat resistance of the obtained polarizing film tends to decrease. Further, if the concentration of the iodine-containing compound in the cross-linking treatment liquid is too low, the effect of suppressing the elution of the dichroic dye tends to be reduced. The concentration of the iodine-containing compound in the cross-linking treatment liquid is preferably 1% by mass or more, and preferably 6% by mass or less.
 架橋処理液の温度は、あまりに高すぎると二色性色素が溶出して得られる偏光フィルムに染色むらが生じやすくなる傾向があり、また、あまりに低すぎると架橋処理の効果が低減することがある。架橋処理液の温度は、20℃以上であることが好ましく、45℃以下であることが好ましい。 If the temperature of the cross-linking treatment liquid is too high, the dichroic dye elutes and the obtained polarizing film tends to have uneven dyeing, and if it is too low, the effect of the cross-linking treatment may be reduced. .. The temperature of the cross-linking treatment liquid is preferably 20 ° C. or higher, and preferably 45 ° C. or lower.
 後述する延伸処理とは別に、上述した各処理中や処理間において、PVAフィルムを延伸してもよい。このような延伸(前延伸)をすることにより、PVAフィルムの表面に皺が発生するのを防止することができる。前延伸の総延伸倍率(各処理における延伸倍率を掛け合わせた倍率)は、得られる偏光フィルムの偏光性能などの観点から、延伸前の原反のPVAフィルムの元長に基づいて、4倍以下であることが好ましい。前延伸の総延伸倍率は、得られる偏光フィルムの偏光性能などの観点から、延伸前の原反のPVAフィルムの元長に基づいて、1.5倍以上であることがより好ましい。膨潤処理における延伸倍率は、PVAフィルムの元長に基づいて、1.1倍以上であることが好ましい。膨潤処理における延伸倍率は、PVAフィルムの元長に基づいて、3倍以下であることが好ましい。染色処理における延伸倍率は、PVAフィルムの元長に基づいて、2倍以下であることが好ましい。染色処理における延伸倍率は、PVAフィルムの元長に基づいて、1.1倍以上であることが更に好ましい。架橋処理における延伸倍率は、PVAフィルムの元長に基づいて、2倍以下であることが好ましい。架橋処理における延伸倍率は、PVAフィルムの元長に基づいて、1.05倍以上であることが更に好ましい。 Apart from the stretching treatment described later, the PVA film may be stretched during or between the above-mentioned treatments. By performing such stretching (pre-stretching), it is possible to prevent wrinkles from being generated on the surface of the PVA film. The total stretching ratio of the pre-stretching (magnification obtained by multiplying the stretching ratio in each treatment) is 4 times or less based on the original length of the PVA film of the original fabric before stretching from the viewpoint of the polarization performance of the obtained polarizing film. Is preferable. The total draw ratio of the pre-stretching is more preferably 1.5 times or more based on the original length of the PVA film of the original fabric before stretching from the viewpoint of the polarization performance of the obtained polarizing film. The draw ratio in the swelling treatment is preferably 1.1 times or more based on the original length of the PVA film. The draw ratio in the swelling treatment is preferably 3 times or less based on the original length of the PVA film. The draw ratio in the dyeing treatment is preferably 2 times or less based on the original length of the PVA film. The draw ratio in the dyeing treatment is more preferably 1.1 times or more based on the original length of the PVA film. The draw ratio in the crosslinking treatment is preferably 2 times or less based on the original length of the PVA film. The draw ratio in the crosslinking treatment is more preferably 1.05 times or more based on the original length of the PVA film.
(延伸処理)
 延伸処理は、湿式延伸法又は乾式延伸法のいずれで行ってもよい。湿式延伸法の場合は、延伸処理液としてホウ酸等のホウ素含有化合物を含有する溶液(好適には水溶液)を用い、延伸処理液中で行うこともできるし、染色処理液中や後述する固定処理液中で行うこともできる。また乾式延伸法の場合は、吸水後のPVAフィルムを用いて空気中で行うことができる。これらの中でも、湿式延伸法が好ましく、ホウ酸を含む水溶液中で一軸延伸するのがより好ましい。延伸処理液がホウ素含有化合物を含有する場合、延伸処理液におけるホウ素含有化合物の濃度は、PVAフィルムの延伸性を向上させることができることから、1.5質量%以上であることが好ましい。延伸処理液におけるホウ素含有化合物の濃度は、PVAフィルムの延伸性を向上させることができることから、7質量%以下であることが好ましい。
(Stretching treatment)
The stretching treatment may be performed by either a wet stretching method or a dry stretching method. In the case of the wet stretching method, a solution containing a boron-containing compound such as boric acid (preferably an aqueous solution) can be used as the stretching treatment liquid, and the stretching treatment liquid can be used. It can also be performed in the treatment liquid. Further, in the case of the dry stretching method, it can be carried out in the air using a PVA film after water absorption. Among these, the wet stretching method is preferable, and uniaxial stretching is more preferable in an aqueous solution containing boric acid. When the stretching treatment liquid contains a boron-containing compound, the concentration of the boron-containing compound in the stretching treatment liquid is preferably 1.5% by mass or more because the stretchability of the PVA film can be improved. The concentration of the boron-containing compound in the stretching treatment liquid is preferably 7% by mass or less because the stretchability of the PVA film can be improved.
 延伸処理液には、ヨウ化カリウム等のヨウ素含有化合物を含有させることが好ましい。延伸処理液におけるヨウ素含有化合物の濃度があまりに高すぎると、得られる偏光フィルムの色相が青みの強いものとなる傾向があり、また、延伸処理液におけるヨウ素含有化合物の濃度があまりに低すぎると、理由は不明であるが得られる偏光フィルムの耐熱性が低下する傾向がある。延伸処理液におけるヨウ素含有化合物の濃度は、2質量%以上であることが好ましい。延伸処理液におけるヨウ素含有化合物の濃度は、8質量%以下であることが好ましい。 It is preferable that the stretching treatment liquid contains an iodine-containing compound such as potassium iodide. If the concentration of the iodine-containing compound in the stretching solution is too high, the hue of the obtained polarizing film tends to be bluish, and the concentration of the iodine-containing compound in the stretching solution is too low. Although it is unknown, the heat resistance of the obtained polarizing film tends to decrease. The concentration of the iodine-containing compound in the stretching treatment liquid is preferably 2% by mass or more. The concentration of the iodine-containing compound in the stretching treatment liquid is preferably 8% by mass or less.
 延伸処理液の温度は、あまりに高すぎるとPVAフィルムが溶けかけて柔らくなり破断しやすくなる傾向があり、また、あまりに低すぎると延伸性が低下する傾向がある。延伸処理液の温度は、50℃以上であることが好ましく、67.5℃以下であることが好ましい。なお、延伸処理を乾式延伸法で行う場合の延伸温度の好ましい範囲も前記の通りである。 If the temperature of the stretching treatment liquid is too high, the PVA film tends to melt and become soft and easily break, and if it is too low, the stretchability tends to decrease. The temperature of the stretching treatment liquid is preferably 50 ° C. or higher, and preferably 67.5 ° C. or lower. The preferred range of the stretching temperature when the stretching treatment is performed by the dry stretching method is also as described above.
 延伸処理における延伸倍率は、高い方がより優れた偏光性能を有する偏光フィルムが得られることなどから、1.2倍以上であることが好ましく、1.5倍以上であることがより好ましく、2倍以上であることが更に好ましい。また、上記した前延伸の延伸倍率も含めた総延伸倍率(各工程における延伸倍率を掛け合わせた倍率)は、延伸前の原料のPVAフィルムの元長に基づいて、得られる偏光フィルムの偏光性能の点から、5.5倍以上であることが好ましく、5.7倍以上であることがより好ましく、5.9倍以上であることが更に好ましい。延伸倍率の上限は特に制限されないが、高すぎると延伸破断が発生しやすくなることから8倍以下であることが好ましい。 The stretching ratio in the stretching treatment is preferably 1.2 times or more, more preferably 1.5 times or more, and more preferably 1.5 times or more, because a polarizing film having better polarizing performance can be obtained when the stretching ratio is high. It is more preferable that the amount is double or more. Further, the total draw ratio (magnification multiplied by the draw ratio in each step) including the draw ratio of the pre-stretch described above is the polarization performance of the obtained polarizing film based on the original length of the raw material PVA film before stretch. From this point of view, it is preferably 5.5 times or more, more preferably 5.7 times or more, and further preferably 5.9 times or more. The upper limit of the draw ratio is not particularly limited, but if it is too high, stretch breakage is likely to occur, so it is preferably 8 times or less.
 延伸処理を一軸延伸で行う方法に特に制限はなく、長尺方向への一軸延伸や幅方向への横一軸延伸を採用することができる。偏光フィルムを製造する場合に、偏光性能に優れたものが得られる点からは、長尺方向への一軸延伸が好ましい。長尺方向への一軸延伸は、互いに平行な複数のロールを備える延伸装置を使用して、各ロール間の周速を変えることにより行うことができる。 There is no particular limitation on the method of performing the stretching process by uniaxial stretching, and uniaxial stretching in the long direction and lateral uniaxial stretching in the width direction can be adopted. In the case of producing a polarizing film, uniaxial stretching in the long direction is preferable from the viewpoint of obtaining an excellent polarizing film. Uniaxial stretching in the long direction can be performed by using a stretching device including a plurality of rolls parallel to each other and changing the peripheral speed between the rolls.
 延伸処理を一軸延伸で行う際の最大延伸速度(%/min)に特に制限はないが、200%/min以上であることが好ましく、300%/min以上であることがより好ましく、400%/min以上が更に好ましい。ここで、最大延伸速度とは、3本以上の周速が異なるロールを使用して2段階以上の段階に分けてPVAフィルムの延伸処理を行う場合において、その段階の中で最も速い延伸速度のことをいう。なお、PVAフィルムの延伸処理を2段階以上に分けず1段階で行う場合には、その段階における延伸速度が最大延伸速度となる。また、延伸速度とは、単位時間当たりの、延伸前のPVAフィルムの長さに対して延伸により増加したPVAフィルムの長さの増加分のことをいう。例えば、延伸速度100%/minとは、延伸前の長さから1分間に2倍の長さにPVAフィルムを変形させるときの速度である。最大延伸速度が大きくなるほど、PVAフィルムの延伸処理(一軸延伸)を高速で行うことができ、その結果、偏光フィルムの生産性が向上することから好ましい。一方で、最大延伸速度が大きくなりすぎると、PVAフィルムの延伸処理(一軸延伸)においてPVAフィルムに局所的に過大な張力がかかることがあり、延伸破断が発生しやすくなる。このような観点から、最大延伸速度は900%/minを超えないことが好ましい。 The maximum stretching speed (% / min) when the stretching treatment is performed by uniaxial stretching is not particularly limited, but is preferably 200% / min or more, more preferably 300% / min or more, and 400% / min. More than min is more preferable. Here, the maximum stretching speed is the fastest stretching speed among the three or more rolls having different peripheral speeds when the PVA film is stretched in two or more stages. Say that. When the stretching treatment of the PVA film is performed in one step without dividing into two or more steps, the stretching speed at that step becomes the maximum stretching rate. Further, the stretching speed means an increase in the length of the PVA film increased by stretching with respect to the length of the PVA film before stretching per unit time. For example, the stretching speed of 100% / min is the speed at which the PVA film is deformed from the length before stretching to twice the length in one minute. The higher the maximum stretching speed, the higher the stretching treatment (uniaxial stretching) of the PVA film can be performed, and as a result, the productivity of the polarizing film is improved, which is preferable. On the other hand, if the maximum stretching speed becomes too high, excessive tension may be locally applied to the PVA film in the stretching treatment (uniaxial stretching) of the PVA film, and stretching fracture is likely to occur. From this point of view, it is preferable that the maximum stretching speed does not exceed 900% / min.
(固定処理)
 偏光フィルムの製造に当たっては、PVAフィルムへの二色性色素の吸着を強固にするために固定処理を行うことが好ましい。固定処理は、固定処理液としてホウ酸、ホウ砂等のホウ素含有化合物の1種又は2種以上を含む溶液(好適には水溶液)を用い、固定処理液にPVAフィルム(好適には延伸処理後のPVAフィルム)を浸漬させることにより行うことができる。また必要に応じて、固定処理液にはヨウ素含有化合物や金属化合物を含有させてもよい。固定処理液におけるホウ素含有化合物の濃度は、2質量%以上であることが好ましい。固定処理液におけるホウ素含有化合物の濃度は、15質量%以下であることが好ましい。固定処理液の温度は、15℃以上であることが好ましい。固定処理液の温度は、60℃以下であることが好ましい。
(Fixed processing)
In the production of the polarizing film, it is preferable to carry out a fixing treatment in order to strengthen the adsorption of the dichroic dye on the PVA film. For the fixing treatment, a solution containing one or more boron-containing compounds such as boric acid and borax (preferably an aqueous solution) is used as the fixing treatment liquid, and a PVA film (preferably after stretching treatment) is used as the fixing treatment liquid. This can be done by immersing the PVA film). Further, if necessary, the fixing treatment liquid may contain an iodine-containing compound or a metal compound. The concentration of the boron-containing compound in the fixing treatment liquid is preferably 2% by mass or more. The concentration of the boron-containing compound in the fixing treatment liquid is preferably 15% by mass or less. The temperature of the fixing treatment liquid is preferably 15 ° C. or higher. The temperature of the fixing treatment liquid is preferably 60 ° C. or lower.
(染色処理後の洗浄処理)
 染色処理後、好ましくは延伸処理後のPVAフィルムに対して洗浄処理を行うことが好ましい。洗浄処理は、PVAフィルムを洗浄処理液に浸漬させることにより行うことが好ましいが、洗浄処理液をPVAフィルムに対して吹き付けることにより行うこともできる。洗浄処理液としては、例えば水を用いることができる。水は純水に限定されず、例えばヨウ化カリウム等のヨウ素含有化合物を含有していてもよい。なお、洗浄処理液はホウ素含有化合物を含有していてもよいが、その場合、ホウ素含有化合物の濃度は2.0質量%以下であることが好ましい。
(Washing treatment after dyeing treatment)
After the dyeing treatment, it is preferable to perform a washing treatment on the PVA film after the stretching treatment. The cleaning treatment is preferably performed by immersing the PVA film in the cleaning treatment liquid, but it can also be performed by spraying the cleaning treatment liquid on the PVA film. For example, water can be used as the cleaning treatment liquid. The water is not limited to pure water, and may contain an iodine-containing compound such as potassium iodide. The cleaning treatment liquid may contain a boron-containing compound, but in that case, the concentration of the boron-containing compound is preferably 2.0% by mass or less.
 洗浄処理液の温度は5~40℃の範囲内であることが好ましい。温度が5℃以上であることにより水分の凍結によるPVAフィルムの破断を抑制することができる。また、温度が40℃以下であることにより、得られる偏光フィルムの光学特性が向上する。洗浄処理液の温度は、5℃以上であることが好ましい。また、洗浄処理液の温度は、40℃以下であることが好ましい。 The temperature of the cleaning treatment liquid is preferably in the range of 5 to 40 ° C. When the temperature is 5 ° C. or higher, it is possible to suppress the breakage of the PVA film due to freezing of water. Further, when the temperature is 40 ° C. or lower, the optical characteristics of the obtained polarizing film are improved. The temperature of the cleaning treatment liquid is preferably 5 ° C. or higher. Further, the temperature of the cleaning treatment liquid is preferably 40 ° C. or lower.
 偏光フィルムを製造する際の具体的な方法としては、PVAフィルムに対して染色処理、延伸処理、ならびに、架橋処理及び/又は固定処理を施す方法が挙げられる。好ましい一例としては、PVAフィルムに対して、膨潤処理、染色処理、架橋処理、延伸処理(特に一軸延伸処理)、洗浄処理をこの順番で施す方法が挙げられる。また、延伸処理は、上記よりも前のいずれかの処理工程で行ってもよいし、2段以上の多段で行ってもよい。 Specific methods for producing the polarizing film include a method of subjecting the PVA film to a dyeing treatment, a stretching treatment, a crosslinking treatment and / or a fixing treatment. As a preferable example, there is a method in which the PVA film is subjected to a swelling treatment, a dyeing treatment, a crosslinking treatment, a stretching treatment (particularly a uniaxial stretching treatment), and a washing treatment in this order. Further, the stretching treatment may be performed in any of the treatment steps prior to the above, or may be performed in multiple stages of two or more stages.
 上記のような各処理を経た後のPVAフィルムに乾燥処理を行うことにより、偏光フィルムを得ることができる。乾燥処理の方法に特に制限はなく、例えば、フィルムを加熱ロールに接触させる接触式の方法、熱風乾燥機中で乾燥させる方法、フィルムを浮遊させながら熱風により乾燥させるフローティング式の方法などが挙げられる。 A polarizing film can be obtained by subjecting the PVA film after each of the above treatments to a drying treatment. The drying treatment method is not particularly limited, and examples thereof include a contact type method in which the film is brought into contact with a heating roll, a method in which the film is dried in a hot air dryer, and a floating type method in which the film is dried by hot air while floating. ..
<偏光板>
 本発明の偏光フィルムは、機械的強度を補うため、少なくとも片面に保護フィルムを貼り付けて製造される。本発明の偏光フィルムは、通常は、その両面又は片面に、光学的に透明で且つ機械的強度を有する保護フィルムを貼り合わせて偏光板にして使用されることが好ましい。保護フィルムとしては、三酢酸セルロース(TAC)フィルム、シクロオレフィンポリマー(COP)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどが使用される。また、貼り合わせのための接着剤としては、PVA系接着剤やウレタン系接着剤などが挙げられるが、PVA系接着剤が好ましい。
<Polarizer>
The polarizing film of the present invention is manufactured by attaching a protective film to at least one side in order to supplement the mechanical strength. The polarizing film of the present invention is usually preferably used as a polarizing plate by laminating a protective film that is optically transparent and has mechanical strength on both sides or one side thereof. As the protective film, a cellulose triacetate (TAC) film, a cycloolefin polymer (COP) film, a cellulose acetate / butyrate cellulose (CAB) film, an acrylic film, a polyester film and the like are used. Further, examples of the adhesive for bonding include PVA-based adhesives and urethane-based adhesives, but PVA-based adhesives are preferable.
 上記のようにして得られた偏光板は、アクリル系等の粘着剤を積層した後、ガラス基板に貼り合わせてLCDの部品として使用することができる。同時に位相差フィルムや視野角向上フィルム、輝度向上フィルム等と貼り合わせてもよい。 The polarizing plate obtained as described above can be used as an LCD component by laminating an acrylic adhesive or the like and then bonding it to a glass substrate. At the same time, it may be bonded to a retardation film, a viewing angle improving film, a brightness improving film, or the like.
 以下に本発明を実施例などにより具体的に説明するが、本発明は、以下の実施例により何ら限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
<TOF-SIMSによる正イオン分析>
 以下の実施例又は比較例で得られたPVAフィルムロールを繰り出し、厚み30μm、幅(TD方向の長さ)1.65m、長さ(MD方向の長さ)1mのPVAフィルムを切り出した。このPVAフィルムの幅方向(TD方向)と平行な直線上の点であり、TD方向においてPVAフィルムを6等分する5点について、TOF-SIMSによる正イオン分析を行った。具体的には、図3に示すように、PVAフィルムのMD方向の中央を通りTD方向と平行な直線において、PVAフィルムの一方の端部から0.275m、0.55m、0.825m、1.1m、1.375mの位置(点P、P、P、P及びP)のそれぞれにおいてPVAフィルムを5mm×5mmのサイズに裁断し、測定試料とした。この測定試料をそれぞれ、導電性の両面テープを介してTOF-SIMS測定装置の台座にセットし、下記の測定条件にてTOF-SIMSによる正イオン分析を行った。
<Positive ion analysis by TOF-SIMS>
The PVA film rolls obtained in the following Examples or Comparative Examples were fed out, and a PVA film having a thickness of 30 μm, a width (length in the TD direction) of 1.65 m, and a length (length in the MD direction) of 1 m was cut out. Positive ion analysis by TOF-SIMS was performed on five points on a straight line parallel to the width direction (TD direction) of the PVA film and dividing the PVA film into six equal parts in the TD direction. Specifically, as shown in FIG. 3, in a straight line passing through the center of the PVA film in the MD direction and parallel to the TD direction, 0.275 m, 0.55 m, 0.825 m, 1 from one end of the PVA film. The PVA film was cut into a size of 5 mm × 5 mm at positions of 1 m and 1.375 m (points P 1 , P 2 , P 3 , P 4 and P 5 ), respectively, and used as a measurement sample. Each of these measurement samples was set on the pedestal of the TOF-SIMS measuring device via a conductive double-sided tape, and positive ion analysis by TOF-SIMS was performed under the following measurement conditions.
<測定条件>
測定装置:TOF-SIMS 5 (ION-TOF社製)
解析ソフト:Surface Lab 6 (ION-TOF社製)
一次イオン源:Bi ++
測定電流:0.2pA at 25keV(10kHz)
測定範囲:200μm×200μm
測定ピクセル数:128Pix×128Pix
帯電中和条件:中和電子銃 使用無し
カウント数の計測:検出器により補足されるフラグメント数(検出器強度)
<Measurement conditions>
Measuring device: TOF-SIMS 5 (manufactured by ION-TOF)
Analysis software: Surface Lab 6 (manufactured by ION-TOF)
Primary ion source: Bi 3 ++
Measurement current: 0.2pA at 25keV (10kHz)
Measurement range: 200 μm x 200 μm
Number of measured pixels: 128Pix x 128Pix
Charge neutralization condition: Neutralization electron gun Not used Count count: Number of fragments captured by the detector (detector strength)
<正のケイ素フラグメントイオンの検出強度の測定方法>
 上記の5つの測定試料のそれぞれについて、TOF-SIMSによる正イオン分析を行い、検出される全フラグメントイオンのカウント数で正のケイ素フラグメントイオンのカウント数を除すことで、正のケイ素フラグメントイオンの検出強度を求め、これらの検出強度の平均値を算出した。また、これらの検出強度の最大値と最小値の差を算出した。
<Measurement method of detection intensity of positive silicon fragment ion>
Positive ion analysis by TOF-SIMS was performed on each of the above five measurement samples, and the positive silicon fragment ion count was divided by the total detected fragment ion count to obtain positive silicon fragment ion. The detection intensities were obtained, and the average value of these detection intensities was calculated. In addition, the difference between the maximum value and the minimum value of these detection intensities was calculated.
<PVAフィルムの厚み測定>
 以下の実施例又は比較例で得られたPVAフィルムロールを繰り出し、厚み30μm、幅(TD方向の長さ)1.65m、長さ(MD方向の長さ)1.5mのPVAフィルムを切り出した。このPVAフィルムの幅方向(TD方向)と平行な直線上の点であり、TD方向においてPVAフィルムを6等分する5点を通る、MD方向に平行な直線上の点について、PVAフィルムの厚みの変動係数を求めた。具体的には、図4に示すように、PVAフィルムのMD方向の中央を通りTD方向と平行な直線Aにおいて、PVAフィルムの一方の端部から0.275m、0.55m、0.825m、1.1m、1.375mの位置(点P、P、P、P及びP)を通るように、MD方向と平行な長さ1.2mの直線B(それぞれ、直線B、B、B、B及びB)を設け、各直線B上の複数の点においてPVAフィルムの厚みを測定した。このとき、PVAフィルムの厚みは0.5mm間隔で測定し、測定装置としては接触式厚み計「連続厚み測定器フィルムテスターS2246」(株式会社フジワーク社製)を用いた。また、図4に示すように、MD方向と平行な長さ1.2mの直線は、その各中点が、幅方向(TD方向)においてPVAフィルムを6等分する5点と一致するように設けた。このようにして、MD方向と平行な長さ1.2mの直線それぞれにおいてPVAフィルムの厚みを測定し、得られたPVAフィルム厚みの平均値及び標準偏差から、PVAフィルム厚みの変動係数(標準偏差/平均値)を求めた。そして、MD方向と平行な長さ1.2mの直線それぞれについて、PVAフィルムの厚みの変動係数を求め、これらの変動係数の平均値を算出した。
<Measurement of PVA film thickness>
The PVA film roll obtained in the following Example or Comparative Example was fed out, and a PVA film having a thickness of 30 μm, a width (length in the TD direction) of 1.65 m, and a length (length in the MD direction) of 1.5 m was cut out. .. The thickness of the PVA film is about a point on a straight line parallel to the width direction (TD direction) of the PVA film, passing through five points on the straight line parallel to the MD direction, passing through five points that divide the PVA film into six equal parts in the TD direction. The fluctuation coefficient of was calculated. Specifically, as shown in FIG. 4, in a straight line A passing through the center of the PVA film in the MD direction and parallel to the TD direction, 0.275 m, 0.55 m, 0.825 m from one end of the PVA film. A straight line B with a length of 1.2 m parallel to the MD direction (straight line B 1 respectively) so as to pass through the positions of 1.1 m and 1.375 m (points P 1 , P 2 , P 3 , P 4 and P 5 ). , B 2 , B 3 , B 4 and B 5 ) were provided, and the thickness of the PVA film was measured at a plurality of points on each straight line B. At this time, the thickness of the PVA film was measured at intervals of 0.5 mm, and a contact-type thickness meter "Continuous Thickness Measuring Instrument Film Tester S2246" (manufactured by Fujiwork Co., Ltd.) was used as the measuring device. Further, as shown in FIG. 4, a straight line having a length of 1.2 m parallel to the MD direction coincides with five points whose midpoints divide the PVA film into six equal parts in the width direction (TD direction). Provided. In this way, the thickness of the PVA film is measured in each of the straight lines having a length of 1.2 m parallel to the MD direction, and the fluctuation coefficient (standard deviation) of the PVA film thickness is obtained from the average value and standard deviation of the obtained PVA film thickness. / Average value) was calculated. Then, the coefficient of variation of the thickness of the PVA film was obtained for each of the straight lines having a length of 1.2 m parallel to the MD direction, and the average value of these coefficients of variation was calculated.
<PVAフィルムの膨潤度測定>
 以下の実施例又は比較例で得られたPVAフィルムロールを繰り出し、厚み30μm、幅(TD方向の長さ)1.65m、長さ(MD方向の長さ)1mのPVAフィルムを切り出した。このPVAフィルムから約1.5gの試験片を切り出し、30℃の蒸留水1000g中に浸漬した。30分間浸漬後に試験片を取り出し、濾紙で表面の水を吸い取った後、その質量(We)を測定した。続いて試験片を、熱風乾燥機に入れて、105℃で16時間乾燥した後、その質量(Wf)を測定した。得られた質量We及びWfから、以下の式によって、PVAフィルムの膨潤度を求めた。
 膨潤度(%)=(We/Wf)×100
<Measurement of swelling degree of PVA film>
The PVA film rolls obtained in the following Examples or Comparative Examples were fed out, and a PVA film having a thickness of 30 μm, a width (length in the TD direction) of 1.65 m, and a length (length in the MD direction) of 1 m was cut out. About 1.5 g of a test piece was cut out from this PVA film and immersed in 1000 g of distilled water at 30 ° C. After soaking for 30 minutes, the test piece was taken out, the water on the surface was absorbed with a filter paper, and then the mass (We) was measured. Subsequently, the test piece was placed in a hot air dryer and dried at 105 ° C. for 16 hours, and then its mass (Wf) was measured. From the obtained masses We and Wf, the degree of swelling of the PVA film was determined by the following formula.
Swelling degree (%) = (We / Wf) × 100
<PVAフィルムの延伸破断性評価>
 以下の実施例又は比較例で得られたPVAフィルムロールからPVAフィルムを繰り出し、以下の工程にてPVAフィルムの延伸破断性を評価した。まず、PVAフィルムを温度30℃の水(膨潤処理液)中に1分間浸漬しながら、PVAフィルムを元の長さの1.6倍まで長さ方向に一軸延伸した。次いで、PVAフィルムを温度30℃のヨウ素/ヨウ化カリウム水溶液(染色処理液)(ヨウ素0.053質量%、ヨウ化カリウム5.3質量%)に1分間浸漬しながら、PVAフィルムを元の長さの2.7倍まで長さ方向に一軸延伸(2段目延伸)した。次いで、PVAフィルムを温度30℃のホウ酸/ヨウ化カリウム水溶液(ホウ酸3質量%、ヨウ化カリウム3質量%)(架橋処理液)に2分間浸漬しながら、PVAフィルムを元の長さの3倍まで長さ方向に一軸延伸(3段目延伸)した。次いで、PVAフィルムを温度62℃のホウ酸/ヨウ化カリウム水溶液(架橋処理液)(ホウ酸4.5質量%、ヨウ化カリウム6質量%)に浸漬しながら、PVAフィルムを元の長さの6倍まで長さ方向に一軸延伸(4段目延伸)した。そして、PVAフィルムを温度30℃のホウ酸/ヨウ化カリウム水溶液(洗浄処理液)(ホウ酸1.5質量%、ヨウ化カリウムを3質量%)に5秒間浸漬した後、60℃の乾燥機で240秒間乾燥することにより、厚み13μmの偏光フィルムを連続的に製造した。ここで、一軸延伸は1組の駆動機能付きニップロール(材質はNBRゴム)の回転速度をそれぞれ調整することで制御した。本試験において、PVAフィルムの破断回数が60分につき0回であった場合はA、1回であった場合はB、2回あった場合はC、3回以上あった場合はDと評価した。
<Evaluation of stretch fracture of PVA film>
A PVA film was unwound from the PVA film rolls obtained in the following Examples or Comparative Examples, and the stretch fracture property of the PVA film was evaluated in the following steps. First, the PVA film was uniaxially stretched in the length direction to 1.6 times the original length while immersing the PVA film in water (swelling treatment liquid) having a temperature of 30 ° C. for 1 minute. Next, while immersing the PVA film in an iodine / potassium iodide aqueous solution (dyeing solution) (iodine 0.053% by mass, potassium iodide 5.3% by mass) at a temperature of 30 ° C. for 1 minute, the PVA film was kept in its original length. It was uniaxially stretched (second step stretched) in the length direction up to 2.7 times the amount of potassium iodide. Next, while immersing the PVA film in a boric acid / potassium iodide aqueous solution (boric acid 3% by mass, potassium iodide 3% by mass) (crosslinking treatment solution) at a temperature of 30 ° C. for 2 minutes, the PVA film was brought to its original length. It was uniaxially stretched (third step stretched) in the length direction up to 3 times. Next, while immersing the PVA film in a boric acid / potassium iodide aqueous solution (crosslinking treatment liquid) (boric acid 4.5% by mass, potassium iodide 6% by mass) at a temperature of 62 ° C., the PVA film was brought to its original length. Uniaxial stretching (fourth step stretching) was performed in the length direction up to 6 times. Then, the PVA film is immersed in a boric acid / potassium iodide aqueous solution (washing solution) (boric acid 1.5% by mass, potassium iodide 3% by mass) at a temperature of 30 ° C. for 5 seconds, and then a dryer at 60 ° C. By drying for 240 seconds in, a polarizing film having a thickness of 13 μm was continuously produced. Here, the uniaxial stretching was controlled by adjusting the rotation speeds of a set of nip rolls with a drive function (material is NBR rubber). In this test, when the number of breaks of the PVA film was 0 times per 60 minutes, it was evaluated as A, when it was 1 time, it was evaluated as B, when it was 2 times, it was evaluated as C, and when it was 3 times or more, it was evaluated as D. ..
<実施例1>
<PVAフィルムの製造及び評価>
 PVA(重合度2400、けん化度99.9モル%)のチップ100質量部を70℃の蒸留水2500質量部に24時間浸漬させた後、遠心脱水を行い、揮発分率70質量%のPVA含水チップを得た。当該PVA含水チップ333質量部(乾燥PVAは100質量部)に対して、可塑剤としてグリセリン10質量部、シリコーン型界面活性剤としてポリジメチルシロキサンの両末端にポリエーテル構造を有する界面活性剤である「SN-wet126」(サンノプコ社製)0.08質量部を混合した後、得られた混合物をベント付き二軸押出機(最高温度130℃、押出機のスクリュー回転速度は20rpm)で加熱溶融して製膜原液とした。この製膜原液を熱交換器で100℃に冷却した後、180cm幅のコートハンガーダイから表面温度が90℃の支持体上に押出製膜して、さらに熱風乾燥装置を用いてPVAフィルムの支持体との非接触面側に114℃の熱風を吹き付けて乾燥させた。PVAフィルムと支持体との接触時間は100秒とし、PVAフィルムを支持体から剥離させた。次いで、製膜時のネックインにより厚くなったフィルムの両端部を切り取ることにより、厚み30μm、幅(TD方向の長さ)1.65m、膨潤度200%のPVAフィルムを連続的に製造した。当該PVAフィルムのうち、長さ(MD方向の長さ)4000m分を円筒状のコアに巻き取ってPVAフィルムロールとした。得られたPVAフィルムロールを用いて、上記の方法にて、正のケイ素フラグメントイオンの検出強度を求め、これらの検出強度の平均値及び最大値と最小値の差を算出した。また、得られたPVAフィルムロールを用いて、上記の方法にて、PVAフィルムの厚みの変動係数の平均値を求め、さらに延伸破断性を評価した。結果を表1に示す。
<Example 1>
<Manufacturing and evaluation of PVA film>
After immersing 100 parts by mass of PVA (polymerization degree 2400, saponification degree 99.9 mol%) in 2500 parts by mass of distilled water at 70 ° C. for 24 hours, centrifugal dehydration is performed, and PVA water content with a volatile content of 70% by mass is performed. I got a chip. It is a surfactant having a polyether structure at both ends of glycerin as a plasticizer and polydimethylsiloxane as a silicone-type surfactant with respect to 333 parts by mass of the PVA-containing chip (100 parts by mass of dried PVA). After mixing 0.08 parts by mass of "SN-wet126" (manufactured by Sannopco), the obtained mixture is heated and melted by a twin-screw extruder with a vent (maximum temperature 130 ° C., screw rotation speed of the extruder is 20 rpm). It was used as a film-forming stock solution. After cooling this film-forming stock solution to 100 ° C. with a heat exchanger, the film is extruded from a 180 cm wide coat hanger die onto a support having a surface temperature of 90 ° C., and the PVA film is further supported using a hot air drying device. Hot air at 114 ° C. was blown on the non-contact surface side with the body to dry it. The contact time between the PVA film and the support was 100 seconds, and the PVA film was peeled off from the support. Next, by cutting off both ends of the film thickened by the neck-in during film formation, a PVA film having a thickness of 30 μm, a width (length in the TD direction) of 1.65 m, and a swelling degree of 200% was continuously produced. Of the PVA film, 4000 m in length (length in the MD direction) was wound around a cylindrical core to form a PVA film roll. Using the obtained PVA film roll, the detection intensities of positive silicon fragment ions were obtained by the above method, and the average value and the difference between the maximum value and the minimum value of these detection intensities were calculated. Further, using the obtained PVA film roll, the average value of the coefficient of variation of the thickness of the PVA film was obtained by the above method, and the stretch breakability was further evaluated. The results are shown in Table 1.
<実施例2~4、比較例1~4>
 PVAフィルムの製造条件を表1に示されるとおりに変更したこと以外は実施例1と同様にして、PVAフィルムの製造及び評価を行った。結果を表1に示す。
<Examples 2 to 4, Comparative Examples 1 to 4>
The production and evaluation of the PVA film were carried out in the same manner as in Example 1 except that the production conditions of the PVA film were changed as shown in Table 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、実施例1~4のPVAフィルムを用いて偏光フィルムを製造した場合には、フィルムの破断は60分につき0~2回であった。よって、実施例1~4のPVAフィルムは、延伸時(一軸延伸時)の破断が抑制されたものであるといえる。一方、比較例1~4のPVAフィルムを用いて偏光フィルムを製造した場合は、フィルムの破断が60分につき3回以上あった。なお、表1には、PVAフィルムの支持体との接触面側について、正のケイ素フラグメントイオンの検出強度の平均値及び最大値と最小値の差、厚みの変動係数の平均値の評価結果を記載しているが、PVAフィルムの支持体との非接触面側についても同様の評価結果となった。 As shown in Table 1, when the polarizing film was produced using the PVA films of Examples 1 to 4, the film was broken 0 to 2 times per 60 minutes. Therefore, it can be said that the PVA films of Examples 1 to 4 are suppressed from breaking during stretching (at the time of uniaxial stretching). On the other hand, when the polarizing film was produced using the PVA films of Comparative Examples 1 to 4, the film was broken three times or more per 60 minutes. Table 1 shows the evaluation results of the average value of the detection intensity of positive silicon fragment ions, the difference between the maximum value and the minimum value, and the average value of the coefficient of variation of the thickness on the contact surface side of the PVA film with the support. As described, the same evaluation result was obtained for the non-contact surface side of the PVA film with the support.

Claims (9)

  1.  ポリビニルアルコールフィルムの少なくとも一方の面において、飛行時間型二次イオン質量分析による正イオン分析で得られる、正のケイ素フラグメントイオンの検出強度の平均値が0.001~0.01であり、光学フィルム製造用の原反フィルムであるポリビニルアルコールフィルム。
    [正のケイ素フラグメントイオンの検出強度の平均値は、ポリビニルアルコールフィルムのTD方向と平行な任意の直線上にあり、TD方向においてポリビニルアルコールフィルムを6等分する5点における、飛行時間型二次イオン質量分析計による正イオン分析で得られる正のケイ素フラグメントイオンの検出強度の平均値である。]
    On at least one surface of the polyvinyl alcohol film, the average value of the detection intensities of positive silicon fragment ions obtained by positive ion analysis by time-of-flight secondary ion mass spectrometry is 0.001 to 0.01, and the optical film. Polyvinyl alcohol film, which is a raw fabric film for manufacturing.
    [The average value of the detection intensity of positive silicon fragment ions is on an arbitrary straight line parallel to the TD direction of the polyvinyl alcohol film, and the flight time type secondary at 5 points that divide the polyvinyl alcohol film into 6 equal parts in the TD direction. It is the average value of the detection intensity of the positive silicon fragment ion obtained by the positive ion analysis by the ion mass analyzer. ]
  2.  前記TD方向においてポリビニルアルコールフィルムを6等分する5点における正のケイ素フラグメントイオンの検出強度の最大値と最小値の差が0.0005~0.002である、請求項1に記載のポリビニルアルコールフィルム。 The polyvinyl alcohol according to claim 1, wherein the difference between the maximum value and the minimum value of the detection intensity of positive silicon fragment ions at five points that divide the polyvinyl alcohol film into six equal parts in the TD direction is 0.0005 to 0.002. the film.
  3.  ポリビニルアルコールフィルムの厚みの変動係数の平均値が0.01~0.03である、請求項1又は2に記載のポリビニルアルコールフィルム。
    [厚みの変動係数の平均値は、前記TD方向においてポリビニルアルコールフィルムを6等分する5点をそれぞれ通り、ポリビニルアルコールフィルムのMD方向と平行な長さ1.2mの直線における、ポリビニルアルコールフィルムの厚みの変動係数の平均値である。]
    The polyvinyl alcohol film according to claim 1 or 2, wherein the average value of the coefficient of variation of the thickness of the polyvinyl alcohol film is 0.01 to 0.03.
    [The average value of the coefficient of variation of the thickness passes through each of the five points that divide the polyvinyl alcohol film into six equal parts in the TD direction, and is a straight line having a length of 1.2 m parallel to the MD direction of the polyvinyl alcohol film. It is the average value of the coefficient of variation of the thickness. ]
  4.  30℃の水に30分間浸漬させた際の膨潤度が180~240%である、請求項1~3のいずれか1項に記載のポリビニルアルコールフィルム。 The polyvinyl alcohol film according to any one of claims 1 to 3, wherein the degree of swelling when immersed in water at 30 ° C. for 30 minutes is 180 to 240%.
  5.  前記TD方向の長さが1.5m以上である、請求項1~4のいずれか1項に記載のポリビニルアルコールフィルム。 The polyvinyl alcohol film according to any one of claims 1 to 4, wherein the length in the TD direction is 1.5 m or more.
  6.  前記MD方向の長さが3,000m以上である、請求項1~5のいずれか1項に記載のポリビニルアルコールフィルム。 The polyvinyl alcohol film according to any one of claims 1 to 5, wherein the length in the MD direction is 3,000 m or more.
  7.  厚みが10~40μmである、請求項1~6のいずれか1項に記載のポリビニルアルコールフィルム。 The polyvinyl alcohol film according to any one of claims 1 to 6, which has a thickness of 10 to 40 μm.
  8.  請求項1~7のいずれかに記載のポリビニルアルコールフィルムから製造される偏光フィルム。 A polarizing film produced from the polyvinyl alcohol film according to any one of claims 1 to 7.
  9.  請求項8に記載の偏光フィルムの少なくとも一方の面に保護フィルムを貼り合わせた偏光板。 A polarizing plate in which a protective film is bonded to at least one surface of the polarizing film according to claim 8.
PCT/JP2021/048716 2020-12-28 2021-12-27 Polyvinyl alcohol film, polarizing film using same, and polarizing plate WO2022145441A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022573096A JPWO2022145441A1 (en) 2020-12-28 2021-12-27
CN202180088169.5A CN116685628A (en) 2020-12-28 2021-12-27 Polyvinyl alcohol film, and polarizing film and polarizing plate using same
KR1020237023583A KR20230121805A (en) 2020-12-28 2021-12-27 Polyvinyl alcohol film and polarizing film and polarizing plate using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020219434 2020-12-28
JP2020-219434 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145441A1 true WO2022145441A1 (en) 2022-07-07

Family

ID=82260762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048716 WO2022145441A1 (en) 2020-12-28 2021-12-27 Polyvinyl alcohol film, polarizing film using same, and polarizing plate

Country Status (5)

Country Link
JP (1) JPWO2022145441A1 (en)
KR (1) KR20230121805A (en)
CN (1) CN116685628A (en)
TW (1) TW202233739A (en)
WO (1) WO2022145441A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139418A (en) * 2003-01-24 2005-06-02 Shin Etsu Chem Co Ltd Water-dispersed type water repellent and oil repellent composition and water repellent and oil repellent paper obtained by treating with them
JP2007009056A (en) * 2005-06-30 2007-01-18 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film for optical film, its manufacturing method and polarizing film and polarizing plate obtained using the same
JP2011053234A (en) * 2008-01-11 2011-03-17 Nippon Kayaku Co Ltd Dye-based polarizer, polarizing plate, and method for producing them
US20150225592A1 (en) * 2011-08-16 2015-08-13 Shenzhen China Star Optoelectronics Technology Co. Ltd. Base Film of Modified Polyvinyl Alcohol and Its Preparation Method and Polarizer
JP2019094431A (en) * 2017-11-22 2019-06-20 日本酢ビ・ポバール株式会社 Polyvinyl alcohol resin and method for producing the same
CN111205577A (en) * 2020-02-28 2020-05-29 北京一撕得物流技术有限公司 Medium-temperature water-soluble PVA composition for melt tape casting film formation, particles thereof and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691205B1 (en) 2010-09-03 2011-06-01 日東電工株式会社 Method for producing optical film laminate including thin high-performance polarizing film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139418A (en) * 2003-01-24 2005-06-02 Shin Etsu Chem Co Ltd Water-dispersed type water repellent and oil repellent composition and water repellent and oil repellent paper obtained by treating with them
JP2007009056A (en) * 2005-06-30 2007-01-18 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol film for optical film, its manufacturing method and polarizing film and polarizing plate obtained using the same
JP2011053234A (en) * 2008-01-11 2011-03-17 Nippon Kayaku Co Ltd Dye-based polarizer, polarizing plate, and method for producing them
US20150225592A1 (en) * 2011-08-16 2015-08-13 Shenzhen China Star Optoelectronics Technology Co. Ltd. Base Film of Modified Polyvinyl Alcohol and Its Preparation Method and Polarizer
JP2019094431A (en) * 2017-11-22 2019-06-20 日本酢ビ・ポバール株式会社 Polyvinyl alcohol resin and method for producing the same
CN111205577A (en) * 2020-02-28 2020-05-29 北京一撕得物流技术有限公司 Medium-temperature water-soluble PVA composition for melt tape casting film formation, particles thereof and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022145441A1 (en) 2022-07-07
KR20230121805A (en) 2023-08-21
CN116685628A (en) 2023-09-01
TW202233739A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
KR102163144B1 (en) Polyvinyl alcohol-based polymer film and manufacturing process therefor
JP2022008895A (en) Method for manufacturing polarization film
WO2022004537A1 (en) Polyvinyl alcohol film and polarizing film in which same is used
JP3473839B2 (en) Method for producing polyvinyl alcohol film for polarizing film
JP2014167654A (en) Production method of polarizing film
JP7165724B2 (en) Polyvinyl alcohol film and method for producing polarizing film using the same
WO2022145441A1 (en) Polyvinyl alcohol film, polarizing film using same, and polarizing plate
WO2019146677A1 (en) Polarizing film and method for manufacturing same
KR20160126987A (en) Polyvinyl alcohol film and method for manufacturing same
CN107406605B (en) Polyvinyl alcohol film
JP6858499B2 (en) Optical film manufacturing method
JP7328992B2 (en) Polyvinyl alcohol film and method for producing polarizing film using the same
WO2022004536A1 (en) Polyvinyl alcohol film and method for manufacturing optical film in which same is used
US20040089960A1 (en) Process for producing polarizing film
JP7282100B2 (en) Polyvinyl alcohol film and method for producing polarizing film using the same
WO2022145488A1 (en) Polyvinyl alcohol film and polarizing film obtained therefrom
WO2022092038A1 (en) Poly(vinyl alcohol) film and polarizing film obtained therefrom
TWI682957B (en) Raw material film, method for manufacturing stretched optical film, and stretched optical film
WO2021132435A1 (en) Polyvinyl alcohol film and polarizing film
JP3473838B2 (en) Method for producing polyvinyl alcohol film
JP6534305B2 (en) Evaluation method of optical spots of polyvinyl alcohol film
WO2022004535A1 (en) Polyvinyl alcohol film and method for producing optical film using same
WO2020262516A1 (en) Polarizing film and method for manufacturing same
WO2020226153A1 (en) Polarising film and method for producing same
TWI837448B (en) Polyvinyl alcohol film and method for producing polarizing film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573096

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180088169.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237023583

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915299

Country of ref document: EP

Kind code of ref document: A1