WO2022145289A1 - Tracking apparatus for optical communication, and optical communication apparatus - Google Patents

Tracking apparatus for optical communication, and optical communication apparatus Download PDF

Info

Publication number
WO2022145289A1
WO2022145289A1 PCT/JP2021/047315 JP2021047315W WO2022145289A1 WO 2022145289 A1 WO2022145289 A1 WO 2022145289A1 JP 2021047315 W JP2021047315 W JP 2021047315W WO 2022145289 A1 WO2022145289 A1 WO 2022145289A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical communication
light
communication
optical
tracking device
Prior art date
Application number
PCT/JP2021/047315
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 春山
日出生 藤田
アブデルモウラ ベッカリ
倫和 服部
Original Assignee
合同会社クラフトブレイン
東洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同会社クラフトブレイン, 東洋電機株式会社 filed Critical 合同会社クラフトブレイン
Priority to CN202180076513.9A priority Critical patent/CN116547551A/en
Priority to KR1020237012727A priority patent/KR20230078702A/en
Publication of WO2022145289A1 publication Critical patent/WO2022145289A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum

Definitions

  • the present invention includes an optical communication tracking device capable of aligning an optical axis with an optical communication tracking device having the same configuration provided on the other party's optical communication device, and an optical communication tracking device. It is about communication equipment.
  • Optical communication technology exists as one of the non-contact communication means between two points.
  • Optical communication is a technology that enables high-speed, large-capacity transfer because it is optical data communication. In order to reliably communicate between two points separated by a distance, it is necessary to use an optical signal with high directivity, and it is necessary to accurately align the optical axis.
  • Patent Document 1 describes a tracking device that tracks (captures and tracks) the other party's device using beacon light emitted from the other party's device, regarding an optical axis alignment technique for performing optical communication with the other party's device. It has been disclosed.
  • the tracking device described in Patent Document 1 enables optical communication between one's own side and the other's communication device by using a beacon light irradiation unit and a photographing camera, but both tracking devices are constant. I had to keep my posture.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical communication tracking device capable of aligning the optical axis even when the other party's optical communication tracking device has various postures. ..
  • the optical communication tracking device is provided in the optical communication device on the other side in optical communication in which communication light is transmitted and received coaxially between the optical communication device on the own side and the optical communication device on the other side. It is an optical communication tracking device for aligning the optical axis with an optical communication tracking device (hereinafter referred to as a counterpart tracking device) having the same configuration, and is communication light from the optical communication device on its own side. Is provided approximately symmetrically with respect to the passage axis of the opening for taking in the communication light from the optical communication device on the other side and the opening of the communication light emitted from the optical communication device on the own side.
  • a plurality of LEDs that irradiate the other-side tracking device with beacon light, a beam splitter that divides the light taken in by the opening into transmitted light and reflected light, and reflected light divided by the beam splitter.
  • a photographing camera for taking a picture, a movable mirror for adjusting the direction of the communication light emitted from the optical communication device on its own side, and a control unit for controlling the direction of the movable mirror are provided, and the control unit is the control unit.
  • the captured image captured by the photographing camera is acquired, the center positions of a plurality of LEDs included in the other-side tracking device are specified based on the beacon light captured in the captured image, and the center position of the plurality of LEDs included in the other-side tracking device is specified from the optical communication device on the own side. It is characterized in that the orientation of the movable mirror is controlled so that the emitted communication light is incident on the specified center position.
  • the plurality of LEDs are two LEDs provided substantially symmetrically with respect to the passing axis of the opening of the communication light
  • the control unit is the control unit.
  • the intermediate position of the two LEDs included in the other side tracking device is specified based on the beacon light captured in the acquired captured image, and the communication light emitted from the optical communication device on the own side is incident on the intermediate position. It may be characterized by controlling the orientation of the movable mirror.
  • the control unit is movable to emit communication light from the reference point on the captured image and the optical communication device on its own side with respect to the reference point.
  • the storage means in which the control amount data associated with the information indicating the control amount of the formula mirror is stored, and the control amount data associated with the plurality of reference points in the vicinity of the center position is used as the basis for the control amount data.
  • the control amount of the movable mirror for emitting communication light from the optical communication device on the own side with respect to the center position is calculated, and the optical communication on the own side is calculated based on the calculated control amount of the movable mirror. It may be characterized in that the orientation of the movable mirror is controlled so that the communication light emitted from the device is incident on the center position.
  • optical communication device may be characterized by including a tracking device for optical communication.
  • the optical communication tracking device is an optical communication device on the other side in optical communication in which communication light is transmitted and received coaxially between the optical communication device on the own side and the optical communication device on the other side. It is an optical communication tracking device for aligning an optical axis with an optical communication tracking device (hereinafter referred to as a counterpart tracking device) having the same configuration provided, and is from the optical communication device on its own side. Approximately symmetric with respect to the passage axis of the opening for passing the communication light and taking in the communication light from the optical communication device on the other side and the passage axis of the communication light emitted from the optical communication device on the own side.
  • a plurality of LEDs that irradiate the other-side tracking device with beacon light, a beam splitter that divides the light taken in by the opening into transmitted light and reflected light, and reflection divided by the beam splitter. It includes a photographing camera that captures light and a movable mirror that adjusts the direction of the communication light emitted from the optical communication device on its own side, and the movable mirror is the other side of the image captured by the photographing camera. It is characterized in that the direction is controlled by the control means so that the communication light emitted from the optical communication device on its own side is incident on the center positions of the plurality of LEDs included in the tracking device.
  • an optical communication tracking device capable of aligning the optical axis even if the optical communication tracking device on the other side has various postures.
  • FIG. 1 is an explanatory diagram illustrating an example of the overall configuration of the tracking device integrated optical communication device 100 (hereinafter referred to as the integrated device 100) according to the present invention.
  • the tracking device integrated optical communication device 100A hereinafter referred to as an integrated device 100A
  • the tracking device integrated optical communication device 100B hereinafter referred to as an integrated device 100B
  • the explanation will be given assuming that optical communication is performed. Since the integrated device 100A and the integrated device 100B will be described by taking the case of two devices having the same performance as an example, those with the same reference numerals have the same function unless they are described separately. And.
  • the side provided by the integrated device 100 on the side having the configuration to be explained is referred to as "own side", and the communication partner with respect to the optical communication device 10 on the own side is referred to.
  • the configuration provided in the integrated device 100 may be referred to as "the other party”.
  • the integrated device 100 is a device for coaxially transmitting and receiving communication light between one's own side and the other side.
  • the integrated device 100 includes an optical communication device 10 and an optical communication tracking device 20.
  • the optical communication device 10 is a device for transmitting and receiving communication light between one's own side and the other side.
  • the optical communication device 10 includes a transmission optical fiber cable 11, a lens 12, an optical circulator 13, a movable lens 14, an optical antenna lens 15, a beam splitter 16, a lens 17, a position sensor 18, and reception. It is provided with an optical fiber cable 19.
  • the transmission optical fiber cable 11 is an example for propagating an optical signal for transmission.
  • the lens 12 is a lens for collecting an optical signal emitted from a transmission optical fiber cable 11.
  • the optical circulator 13 outputs the optical signal emitted from the transmission optical fiber cable 11 to the port on the movable lens 14 side, and outputs the optical signal input from the port on the movable lens 14 side to the port on the beam splitter 16 side. It is an optical device configured as such.
  • the movable lens 14 is a movable lens whose position can be adjusted in a plane substantially perpendicular to the optical axis of the optical signal, and is used for adjusting the light projection axis.
  • the optical antenna lens 15 is configured to first receive light from the other side.
  • the beam splitter 16 divides the optical signal emitted from the optical circulator 13 into transmitted light and reflected light.
  • the lens 17 is a lens for condensing the light reflected from the beam splitter 16.
  • the position sensor 18 is configured to detect the position of the optical axis using the light reflected from the beam splitter 16, and for example, a QPD (quadrant photodetector) or the like is used.
  • the receiving optical fiber cable 19 is for propagating a receiving optical signal.
  • the optical communication tracking device 20 is provided in the optical communication device 10 on the other side in optical communication in which communication light is transmitted and received coaxially between the optical communication device 10 on the own side and the optical communication device 10 on the other side. It is a device for aligning the optical axis with the optical communication tracking device 20 (the other party's optical communication tracking device 20) having the same configuration.
  • the optical communication tracking device 20 includes a correction laser device 21, a beam splitter 22, a movable mirror 23, an opening 24, a beam splitter 25, a photographing camera 26, an LED 27, and a control unit 28. ..
  • the correction laser device 21 is a device that emits correction laser light, and is a device for correcting the direction of communication light that is emitted from the optical communication device 10 on its own side and passes through the opening 24 described later.
  • the beam splitter 22 splits the correction laser light emitted from the correction laser device 21 into transmitted light and reflected light.
  • the movable mirror 23 adjusts the direction of the communication light emitted from the optical communication device 10 on its own side. Specifically, the movable mirror 23 adjusts the direction in which the transmitted portion of the communication light divided by the beam splitter 22 is reflected.
  • the movable mirror 23 is realized by a two-dimensional mirror and a mirror actuator.
  • the opening 24 is an entrance / exit of light provided for passing the communication light from the optical communication device 10 on the own side and taking in the communication light from the optical communication device 10 on the other side.
  • the size and shape of the opening 24 are not particularly limited as long as the communication light can pass through even if the emission angle of the communication light from the optical communication device 10 on its own side is adjusted by controlling the orientation of the movable mirror 23.
  • the beam splitter 25 divides the light taken in by the opening 24 into transmitted light and reflected light.
  • the photographing camera 26 is a device for photographing the reflected light divided by the beam splitter 25.
  • the LED 27 is provided at a position substantially symmetrical with respect to the passing axis of the opening 24 of the communication light emitted from the optical communication device 10 on the own side, and irradiates the optical communication tracking device 20 on the other side with the beacon light.
  • the beacon light is irradiated with a light intensity that can be photographed by the photographing camera 26 on the other side.
  • a plurality of LEDs 27 are provided for one optical communication device 10.
  • the communication light needs to be an optical signal with high directivity, but it is possible to increase the probability of being captured by the other party by irradiating the beacon light used only for adjusting the optical axis at a wide angle. It becomes.
  • the integrated device 100 is installed, but communication is possible as long as the positional relationship is such that a plurality of beacon lights irradiated at a wide angle can be captured.
  • the integrated device 100A and the integrated device 100B are installed so that the opening 24 and the LED 27 of the integrated device 100A and the opening 24 and the LED 27 of the integrated device 100B face each other. It is supposed to be.
  • the control unit 28 controls the operation of the entire optical communication tracking device 20.
  • the control target of the control unit 28 is a correction laser device 21, a movable mirror 23, a photographing camera 26, an LED 27, and the like.
  • the control unit 28 acquires a photographed image captured by the photographing camera 26, and based on the beacon light included in the photographed image, determines the center position of a plurality of LEDs 27 included in the optical communication tracking device 20 on the other side.
  • the direction of the movable mirror 23 is controlled so that the communication light emitted from the optical communication device 10 on the own side is incident on the specified center position.
  • the center position of the plurality of LEDs 27 means an intermediate position between the two LEDs 27 when there are two LEDs 27, and when there are three or more LEDs 27, the center of the polygon having each position of the plurality of LEDs 27 as the apex. Means position.
  • the control unit 28 may specify the center position of the plurality of beacon lights included in the captured image as the center position of the plurality of LEDs 27. Details of the orientation control of the movable mirror 23 by the control unit 28 will be described later.
  • FIG. 2 is an explanatory diagram illustrating the structure of the integrated device 100 according to the present invention.
  • the communication light emitted from the optical communication device 10 passes through the beam splitter 22 and is reflected by the movable mirror 23.
  • the communication light reflected by the movable mirror 23 passes through the beam splitter 25 and passes through the opening 24.
  • the communication light that has passed through the opening 24 advances to the integrated device 100 on the other side as shown in FIG.
  • the direction of the communication light passing through the opening 24 is determined according to the direction of the movable mirror 23.
  • the opening 24 takes in the communication light from the optical communication device 10 on the other side. Further, the plurality of LEDs 27 on the other side irradiate the optical communication tracking device 20 on the other side with a plurality of beacon lights. Therefore, the opening 24 takes in the beacon light in addition to the communication light. The light taken in by the opening 24 is split by the beam splitter 25. Therefore, the photographing camera 26 photographs the communication light from the optical communication device 10 on the other side and the beacon light from the plurality of LEDs 27 on the other side.
  • the opening 24 is not particularly limited as long as the communication light can pass within the range of the angle at which the communication light is emitted from the optical communication device 10 on the own side.
  • the range of the angle at which the communication light is emitted from the optical communication device 10 on the own side is determined by the control range of the orientation of the movable mirror 23. If the beacon light from the plurality of LEDs 27 on the other side can be photographed by the photographing camera 26, optical communication can be performed with the optical communication device 10 on the other side.
  • optical communication device 10 The overall configuration example of the optical communication device 10 and the optical communication tracking device 20 has been described above.
  • the communication light emitted from the optical communication device 10 on the own side is reflected by the movable mirror 23 and passes through the opening 24. That is, the traveling direction of the communication light changes according to the direction of the movable mirror 23.
  • the control unit 28 uses the optical communication device 10 on the own side for the purpose of aligning the optical axes.
  • the direction of the movable mirror 23 is controlled so that the communication light emitted from the mirror 23 is emitted toward the center position of the plurality of LEDs 27 on the other side.
  • a correction screen is installed at a position facing the opening 24 of the optical communication tracking device 20. That is, the correction screen is installed so that the surface of the correction screen is reflected in the shot image when the shooting is performed by the shooting camera 26.
  • the correction laser device 21 emits the correction laser light, and the shooting camera 26 takes a picture.
  • the correction laser light is light having a higher light intensity than the communication light from the optical communication device 10.
  • the control amount data can be corrected even if the communication light used in the optical communication device 10 has a light intensity that is difficult to be captured in the image captured by the photographing camera 26.
  • each of the plurality of predetermined positions in the captured image generated by the imaging of the photographing camera 26 is set as the reference point SP.
  • the reference point SP means a point set on the captured image which is a reference for calculating the control amount in the orientation control of the movable mirror 23.
  • the plurality of reference points SP may be fixedly set in the captured image, or may be set by the control unit 28. In this example, the plurality of reference points SP are set at intervals of 400 pixels in the vertical and horizontal directions in the captured image.
  • FIG. 3 is an explanatory diagram for explaining a correction example of the direction of the communication light from the optical communication device 10 on the own side using the correction laser device 21 according to the present invention.
  • FIG. 3 shows a photographed image PI1 photographed by the photographing camera 26.
  • the captured image PI1 includes a correction laser light spot CP. Since the plurality of reference points SP in FIG. 3 mean positions on the captured image as described above, they are not actually captured in the captured image PI1.
  • the correction laser light spot CP is obtained by emitting the correction laser light with the reference point TSP to be corrected as a target, hitting the correction screen, and taking a picture by the photographing camera 26.
  • the control unit 28 calculates the control amount of the movable mirror 23 capable of shining the correction laser beam on the reference point TSP to be corrected in the captured image PI1.
  • control unit 28 calculates the control amount of the movable mirror 23 for shining the correction laser light on the reference point TSP to be corrected based on the control amount of the movable mirror 23 at the position of the correction laser light point CP. Then, the orientation of the movable mirror 23 is controlled based on the controlled amount. Next, the control unit 28 again emits the correction laser beam to the correction laser device 21, and determines whether or not the deviation between the reference point TSP to be corrected and the correction laser light point CP has been eliminated. .. For example, when the deviation between the reference point TSP to be corrected and the laser light spot CP for correction is equal to or less than a predetermined distance, the control unit 28 determines that the deviation has been eliminated.
  • the control unit 28 stores information indicating the control amount of the movable mirror 23 when it is determined that the misalignment has been resolved as control amount data in association with the reference point TSP to be corrected (not shown).
  • the control unit 28 corrects the control amount data for all the uncorrected reference points SP.
  • the control unit 28 selects one of the uncorrected reference point SPs and the next reference point TSP to be modified.
  • the storage means may be provided by the optical communication tracking device 20, the optical communication device 10, or may be realized by another device.
  • the method for correcting the control amount data is not limited to the above-mentioned method as long as the communication light from the optical communication device 10 on the own side can be emitted to the target position based on the corrected control amount data.
  • FIG. 4 is an explanatory diagram for explaining an example of controlling the emission direction of communication light by the integrated device 100 according to the present invention.
  • FIG. 4 shows a part of the photographed image PI2 photographed by the photographing camera 26.
  • the captured image PI2 shows the beacon light LEDa and LEDb and the center position TP. Since the reference points SPA, SPB, SPC, and SPD are points set on the captured image, they are not actually included in the captured image PI2.
  • the communication light needs to be an optical signal with high directivity, but it is possible to increase the probability of being captured by the other party by emitting the beacon light used only for optical axis adjustment at a wide angle. It becomes.
  • the control unit 28 specifies the position of the beacon light as the position of the LED 27 irradiating the beacon light.
  • the beacon light LEDsa and LEDb are emitted by two LEDs 27 provided in the optical signal tracking device 20 on the other side.
  • the center position TP is an intermediate position between the position of the beacon light LEDa and the position of the beacon light LEDb.
  • the method of specifying the position of the beacon light is not particularly limited, but a method of specifying the portion having the strongest light intensity of the light having a spread can be considered as the position of the beacon light.
  • the control unit 28 of the movable mirror 23 so as to emit the communication light from the optical communication device 10 on its own side toward the intermediate position of the two LEDs 27 based on the captured image PI2 when transmitting the communication light. It is necessary to control the orientation. This is because if the communication light is emitted toward an intermediate position between the position of the beacon light LEDa and the position of the beacon light LEDb, the communication light can be received by the optical communication device 10 on the other side.
  • control unit 28 corresponds to the reference point on the captured image and the information indicating the control amount of the movable mirror 23 for emitting the communication light from the optical communication device 10 on the own side with respect to the reference point.
  • the control unit 28 is a movable mirror for emitting communication light from the optical communication device 10 on its own side with respect to the center position based on the control amount data associated with the plurality of reference points near the center position.
  • the control amount of 23 is calculated.
  • the control unit 28 controls the direction of the movable mirror 23 so that the communication light emitted from the optical communication device 10 on its own side is incident on the center position based on the calculated control amount of the movable mirror 23. ..
  • the control unit 28 controls the movable mirror 23 in which the communication light is incident on the intermediate position TP based on the information indicating the control amount corresponding to the plurality of reference points SP in the vicinity of the intermediate position TP. Is calculated. That is, the control unit 28 calculates the control amount that the communication light is incident on the intermediate position TP by using the control amount data of the reference point SP that has already been calculated. In this example, in the calculation of the controlled variable of the movable mirror 23, the controlled variable data of the four reference points SPA, SPB, SPC and SPD near the intermediate position TP are used.
  • the control unit 28 is a movable type in which the communication light is incident on the intermediate position TP based on the information indicating the control amount corresponding to the plurality of reference points SP in the vicinity of the intermediate position TP.
  • the control amount of the mirror 23 is calculated by the interpolation method.
  • the control unit 28 calculates the reference point SPA or SPC by the weighted average of e / f and the reference point SPB or SPD by the weighted average of (ef) / f in the left-right direction. Further, in this example, the control unit 28 calculates the reference point SPA or SPB by the weighted average of (g—h) / h and the reference point SPC or SPD by the weighted average of h / g in the vertical direction.
  • FIG. 5 is a flowchart showing an example of a flow of correction control of control amount data using the correction laser device 21 by the control unit 28 according to the present invention.
  • the control unit 28 controls the entire configuration including the optical communication tracking device 20.
  • the correction control of the control amount data is a state in which the correction screen is installed at a position facing the opening 24, and the control unit 28 sets a plurality of reference points in the captured image. (Step S101). When a plurality of reference points are set, the control unit 28 selects any one of the reference points whose control amount data is uncorrected (step S102). When the uncorrected reference point is selected, the control unit 28 controls the direction of the movable mirror 23 so that the correction laser beam is emitted toward the selected reference point (step S103).
  • the control unit 28 controls the orientation of the movable mirror 23, the correction laser device 21 emits the correction laser light onto the correction screen (step S104).
  • the control unit 28 causes the photographing camera 26 to take a picture of the correction screen (step S105).
  • the control unit 28 controls the orientation of the movable mirror 23 so as to eliminate the misalignment between the selected reference point and the correction laser beam in the shot image (step). S106). In this example, the control unit 28 causes the photographing camera 26 to continuously photograph in step S106.
  • step S107-N If the deviation is not less than or equal to a predetermined distance (step S107-N Meeting) while controlling the orientation of the movable mirror 23, the control unit 28 returns to step S106 and continues to control the orientation of the movable mirror 23.
  • step S107-Yes the control unit 28 when the deviation from the selected reference point becomes less than or equal to a predetermined distance.
  • the control amount data associated with the control amount of the movable mirror 23 is stored in the storage means as the modified control amount data (step S108).
  • control unit 28 If the control unit 28 stores the corrected control amount data but does not store the corrected control amount data at all the reference points in the storage means (step S109-N vinegar), the control unit 28 goes to step S102. return.
  • the control unit 28 stores the corrected control amount data and stores the corrected control amount data at all the reference points in the storage means (step S109-Yes)
  • the control unit 28 controls the control unit 28. The modification control of the quantity data ends.
  • FIG. 6 is a flowchart showing an example of the flow of control of the emission direction of the communication light from the integrated device 100 on the own side by the control unit 28 according to the present invention.
  • the control unit 28 controls the entire configuration including the optical communication tracking device 20.
  • the control of the emission direction of the communication light is started by specifying the center positions of the plurality of LEDs 27 in the captured image in the control unit 28 (step S201).
  • the control unit 28 specifies the center position
  • the control unit 28 extracts the control amount data associated with the plurality of reference points in the vicinity of the center position (step S202).
  • the control unit 28 calculates the control amount of the movable mirror 23 corresponding to the center position based on the extracted control amount data (step S203).
  • the control unit 28 controls the direction of the movable mirror 23 based on the calculated control amount (step S204), returns to step S201, and repeatedly executes control of the emission direction of the communication light from the beginning. To do.
  • the optical communication tracking device 20 in the example of the optical communication tracking device 20 described above, two LEDs 27 are provided. However, the number of LEDs 27 included in the optical communication tracking device 20 may be three or more. Hereinafter, a case where the optical communication tracking device 20 includes four LEDs 27 will be described with reference to FIG. 7.
  • FIG. 7 is an explanatory diagram illustrating the structure of the tracking device integrated optical communication device 200 according to the present invention.
  • the tracking device integrated optical communication device 200 includes four LEDs 27 unlike the integrated device 100 shown in FIG.
  • the four LEDs 27 are provided substantially symmetrically with respect to the passing axis of the opening 24 of the communication light emitted from the optical communication device 10 on the own side.
  • the central position of the four LEDs 27 is the position through which the communication light from the optical communication device 10 on the own side passes.
  • the center position of the four LEDs 27 here is the position of the center of gravity of the quadrangle whose apex is the position of the four LEDs 27 in the two-dimensional plane substantially perpendicular to the passing axis.
  • the center position when there are four LEDs 27 does not necessarily have to be the center of gravity position, and other methods such as setting the intersection of the diagonal lines as the center position may be used.
  • the communication light from the optical communication device 10 on the own side is passed through and the optical communication device on the other side is passed.
  • Tracking for optical communication on the other side is provided approximately symmetrically with respect to the passing axis of the opening 24 for taking in the communication light from 10 and the opening 24 of the communication light emitted from the optical communication device 10 on the own side.
  • a plurality of LEDs 27 that irradiate the device 20 with beacon light, a beam splitter 25 that divides the light taken in by the opening 24 into transmitted light and reflected light, and a photographing camera that captures the reflected light divided by the beam splitter 25.
  • a movable mirror 23 that adjusts the direction of the communication light emitted from the optical communication device 10 on its own side, and a control unit 28 that controls the direction of the movable mirror 23, and the control unit 28 is a photographing camera.
  • the captured image captured by 26 is acquired, the center positions of a plurality of LEDs 27 included in the optical communication tracking device 20 on the other side are specified based on the beacon light captured on the captured image, and the optical communication on the own side is specified.
  • the plurality of LEDs 27 are two LEDs 27 provided substantially symmetrically with respect to the passing axis of the opening of the communication light, and the control unit 28 refers to the acquired captured image.
  • the intermediate position of the two LEDs 27 included in the optical communication tracking device 20 on the other side is specified based on the captured beacon light, and the communication light emitted from the optical communication device 10 on the own side is incident on the specified intermediate position. If the orientation of the movable mirror 23 is controlled, the optical axis can be aligned with the LED 27 having the minimum configuration.
  • the control unit 28 further controls a reference point on the captured image and a movable mirror 23 for emitting communication light from the optical communication device 10 on its own side with respect to the reference point.
  • the storage means in which the control amount data associated with the information indicating the control amount of is stored, and the self with respect to the center position based on the control amount data associated with a plurality of reference points near the center position.
  • the control amount of the movable mirror 23 for emitting the communication light from the optical communication device 10 on the side is calculated, and the communication emitted from the optical communication device 10 on the own side is based on the calculated control amount of the movable mirror 23. If the orientation of the movable mirror 23 is controlled so that the light is incident on the center position, the optical axis alignment can be performed more accurately as compared with the case where the control amount data of the reference point is not used.
  • control unit 28 included in the optical communication tracking device 20 executes various control processes, but the optical communication tracking device 20 is controlled by an external control means instead of the control unit 28.
  • the process may be executed.
  • the optical communication tracking device 20 does not include the control unit 28, and an external control means may execute the control process corresponding to the control unit 28.
  • various controls by the control unit 28 may be executed according to various control programs stored in the storage means.
  • the control program stored in the storage means realizes each of the above-mentioned functions in the optical communication tracking device 20.
  • the optical communication device 10 may include an optical communication tracking device 20.
  • the optical communication tracking device 20 is provided with the correction laser device 21, but the optical communication device 10 may be provided with the correction laser device 21. Further, in this example, it has been described that the optical communication device 10 performs spatial optical transmission using an optical fiber cable, but the optical communication device 10 is not limited to this as long as it can perform optical communication.
  • Optical communication device 100, 100A, 100B Tracking device integrated optical communication device (integrated device) 10 Optical communication device 11 Optical fiber cable for transmission 12 Lens 13 Optical circulator 14 Movable lens 15 Optical antenna lens 16 Beam splitter 17 Lens 18 Position sensor 19 Optical fiber cable for reception 20 Optical communication tracking device 21 Correction laser device 22 Beam splitter 23 Movable Mirror 24 Opening 25 Beam Splitter 26 Shooting Camera 27 LED 28 Control unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Communication System (AREA)

Abstract

In order to enable optical axis alignment even when a tracking apparatus for optical communication on the other side is in various attitudes, the center position of a plurality of LEDs provided in the tracking apparatus for optical communication on the other side is identified on the basis of beacon light in a captured image captured by means of a capturing camera, and the orientation of a movable mirror for adjusting the orientation of communication light emitted from an optical communication apparatus on one's own side is controlled to allow the communication light emitted from the optical communication apparatus on one's own side to fall on the identified center position. Further, a control amount for the movable mirror for emitting the communication light toward the center position may be calculated on the basis of data associating a reference point on the captured image with information indicating movable mirror control amounts.

Description

光通信用トラッキング装置及び光通信装置Optical communication tracking device and optical communication device
 本発明は、相手側の光通信装置に設けられた同様構成の光通信用トラッキング装置との間で光軸合わせを行うことが可能な光通信用トラッキング装置、及び光通信用トラッキング装置を備える光通信装置に関するものである。 The present invention includes an optical communication tracking device capable of aligning an optical axis with an optical communication tracking device having the same configuration provided on the other party's optical communication device, and an optical communication tracking device. It is about communication equipment.
 2点間の非接触の通信手段の1つとして光通信の技術が存在する。光通信は、光によるデータ通信であるため高速で大容量の転送が可能な技術である。距離の離れた2点間で確実に通信を行うためには指向性の高い光信号を用いる必要があり、光軸合わせを正確に行う必要がある。 Optical communication technology exists as one of the non-contact communication means between two points. Optical communication is a technology that enables high-speed, large-capacity transfer because it is optical data communication. In order to reliably communicate between two points separated by a distance, it is necessary to use an optical signal with high directivity, and it is necessary to accurately align the optical axis.
 例えば、特許文献1には、相手側装置と光通信を行うための光軸合わせの技術について、相手側装置から射出されたビーコン光を用いて相手側装置をトラッキング(捕捉追尾)するトラッキング装置が開示されている。 For example, Patent Document 1 describes a tracking device that tracks (captures and tracks) the other party's device using beacon light emitted from the other party's device, regarding an optical axis alignment technique for performing optical communication with the other party's device. It has been disclosed.
特許第6005377号Patent No. 6005377
 特許文献1に記載のトラッキング装置は、ビーコン光照射部と撮影カメラとを用いて自分側と相手側の通信装置の間で光通信できるようにするものであるが、双方のトラッキング装置が一定の姿勢を保っている必要があった。 The tracking device described in Patent Document 1 enables optical communication between one's own side and the other's communication device by using a beacon light irradiation unit and a photographing camera, but both tracking devices are constant. I had to keep my posture.
 本発明は、上記問題点に鑑みなされたものであり、相手側の光通信用トラッキング装置が多様な姿勢であっても光軸合わせが可能な光通信用トラッキング装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical communication tracking device capable of aligning the optical axis even when the other party's optical communication tracking device has various postures. ..
 本発明に係る光通信用トラッキング装置は、自分側の光通信装置と相手側の光通信装置との間で通信光の送受信を同軸にて行う光通信における、相手側の光通信装置に設けられた同様構成の光通信用トラッキング装置(以下、相手側トラッキング装置という。)との間で光軸合わせを行うための光通信用トラッキング装置であって、前記自分側の光通信装置からの通信光を通過させ、前記相手側の光通信装置からの通信光を取り入れるための開口部と、前記自分側の光通信装置から射出された通信光の前記開口部の通過軸に対して概略対称に設けられ、前記相手側トラッキング装置にビーコン光を照射する複数のLEDと、前記開口部により取り入れられた光を透過光と反射光とに分割するビームスプリッタと、前記ビームスプリッタにより分割された反射光を撮影する撮影カメラと、前記自分側の光通信装置から射出された通信光の向きを調整する可動式ミラーと、前記可動式ミラーの向きを制御する制御部とを備え、前記制御部は、前記撮影カメラにより撮影された撮影画像を取得して、当該撮影画像に撮影されたビーコン光に基づいて前記相手側トラッキング装置が備える複数のLEDの中心位置を特定し、前記自分側の光通信装置から射出された通信光が特定した前記中心位置に入射するよう前記可動式ミラーの向きを制御することを特徴とする。 The optical communication tracking device according to the present invention is provided in the optical communication device on the other side in optical communication in which communication light is transmitted and received coaxially between the optical communication device on the own side and the optical communication device on the other side. It is an optical communication tracking device for aligning the optical axis with an optical communication tracking device (hereinafter referred to as a counterpart tracking device) having the same configuration, and is communication light from the optical communication device on its own side. Is provided approximately symmetrically with respect to the passage axis of the opening for taking in the communication light from the optical communication device on the other side and the opening of the communication light emitted from the optical communication device on the own side. A plurality of LEDs that irradiate the other-side tracking device with beacon light, a beam splitter that divides the light taken in by the opening into transmitted light and reflected light, and reflected light divided by the beam splitter. A photographing camera for taking a picture, a movable mirror for adjusting the direction of the communication light emitted from the optical communication device on its own side, and a control unit for controlling the direction of the movable mirror are provided, and the control unit is the control unit. The captured image captured by the photographing camera is acquired, the center positions of a plurality of LEDs included in the other-side tracking device are specified based on the beacon light captured in the captured image, and the center position of the plurality of LEDs included in the other-side tracking device is specified from the optical communication device on the own side. It is characterized in that the orientation of the movable mirror is controlled so that the emitted communication light is incident on the specified center position.
 また、本発明に係る光通信用トラッキング装置は、前記複数のLEDは、前記通信光の前記開口部の通過軸に対して概略対称に設けられた2つのLEDであり、前記制御部は、前記取得した撮影画像に撮影されたビーコン光に基づいて前記相手側トラッキング装置が備える2つのLEDの中間位置を特定し、前記自分側の光通信装置から射出された通信光が前記中間位置に入射するよう前記可動式ミラーの向きを制御することを特徴としてもよい。 Further, in the optical communication tracking device according to the present invention, the plurality of LEDs are two LEDs provided substantially symmetrically with respect to the passing axis of the opening of the communication light, and the control unit is the control unit. The intermediate position of the two LEDs included in the other side tracking device is specified based on the beacon light captured in the acquired captured image, and the communication light emitted from the optical communication device on the own side is incident on the intermediate position. It may be characterized by controlling the orientation of the movable mirror.
 また、本発明に係る光通信用トラッキング装置は、前記制御部は、前記撮影画像上の基準点と、当該基準点に対して前記自分側の光通信装置から通信光を射出するための前記可動式ミラーの制御量を示す情報とが対応付けされた制御量データが記憶された記憶手段を参照し、前記中心位置近傍の複数の前記基準点に対応付けされた前記制御量データに基づいて前記中心位置に対して前記自分側の光通信装置から通信光を射出するための前記可動式ミラーの制御量を算出し、算出した前記可動式ミラーの制御量に基づいて、前記自分側の光通信装置から射出された通信光が前記中心位置に入射するよう前記可動式ミラーの向きを制御することを特徴としてもよい。 Further, in the optical communication tracking device according to the present invention, the control unit is movable to emit communication light from the reference point on the captured image and the optical communication device on its own side with respect to the reference point. Referencing the storage means in which the control amount data associated with the information indicating the control amount of the formula mirror is stored, and the control amount data associated with the plurality of reference points in the vicinity of the center position is used as the basis for the control amount data. The control amount of the movable mirror for emitting communication light from the optical communication device on the own side with respect to the center position is calculated, and the optical communication on the own side is calculated based on the calculated control amount of the movable mirror. It may be characterized in that the orientation of the movable mirror is controlled so that the communication light emitted from the device is incident on the center position.
 また、本発明に係る光通信装置は、光通信用トラッキング装置を備えることを特徴としてもよい。 Further, the optical communication device according to the present invention may be characterized by including a tracking device for optical communication.
 また、本発明に係る光通信用トラッキング装置は、自分側の光通信装置と相手側の光通信装置との間で通信光の送受信を同軸にて行う光通信における、相手側の光通信装置に設けられた同様構成の光通信用トラッキング装置(以下、相手側トラッキング装置という。)との間で光軸合わせを行うための光通信用トラッキング装置であって、前記自分側の光通信装置からの通信光を通過させ、前記相手側の光通信装置からの通信光を取り入れるための開口部と、前記自分側の光通信装置から射出された通信光の前記開口部の通過軸に対して概略対称に設けられ、前記相手側トラッキング装置にビーコン光を照射する複数のLEDと、前記開口部により取り入れられた光を透過光と反射光とに分割するビームスプリッタと、前記ビームスプリッタにより分割された反射光を撮影する撮影カメラと、前記自分側の光通信装置から射出された通信光の向きを調整する可動式ミラーとを備え、前記可動式ミラーは、前記撮影カメラによる撮影画像に写る前記相手側トラッキング装置が備える複数のLEDの中心位置に対して、前記自分側の光通信装置から射出された通信光が入射するように制御手段により向きが制御されるものであることを特徴とする。 Further, the optical communication tracking device according to the present invention is an optical communication device on the other side in optical communication in which communication light is transmitted and received coaxially between the optical communication device on the own side and the optical communication device on the other side. It is an optical communication tracking device for aligning an optical axis with an optical communication tracking device (hereinafter referred to as a counterpart tracking device) having the same configuration provided, and is from the optical communication device on its own side. Approximately symmetric with respect to the passage axis of the opening for passing the communication light and taking in the communication light from the optical communication device on the other side and the passage axis of the communication light emitted from the optical communication device on the own side. A plurality of LEDs that irradiate the other-side tracking device with beacon light, a beam splitter that divides the light taken in by the opening into transmitted light and reflected light, and reflection divided by the beam splitter. It includes a photographing camera that captures light and a movable mirror that adjusts the direction of the communication light emitted from the optical communication device on its own side, and the movable mirror is the other side of the image captured by the photographing camera. It is characterized in that the direction is controlled by the control means so that the communication light emitted from the optical communication device on its own side is incident on the center positions of the plurality of LEDs included in the tracking device.
 本発明によれば、相手側の光通信用トラッキング装置が多様な姿勢であっても光軸合わせが可能な光通信用トラッキング装置を提供することが可能となる。 According to the present invention, it is possible to provide an optical communication tracking device capable of aligning the optical axis even if the optical communication tracking device on the other side has various postures.
本発明に係るトラッキング装置一体型光通信装置100の全体構成の例を説明した説明図である。It is explanatory drawing explaining the example of the whole structure of the tracking device integrated optical communication device 100 which concerns on this invention. 本発明に係るトラッキング装置一体型光通信装置100の構造を説明する説明図である。It is explanatory drawing explaining the structure of the tracking device integrated optical communication apparatus 100 which concerns on this invention. 本発明に係る修正用レーザ装置21を用いた自分側の光通信装置10からの通信光の向きの修正例を説明するための説明図である。It is explanatory drawing for demonstrating the correction example of the direction of the communication light from the optical communication device 10 on the own side using the correction laser device 21 which concerns on this invention. 本発明に係るトラッキング装置一体型光通信装置100による通信光の射出方向の制御例を説明するための説明図である。It is explanatory drawing for demonstrating the control example of the emission direction of the communication light by the tracking device integrated optical communication apparatus 100 which concerns on this invention. 本発明に係る制御部28による修正用レーザ装置21を用いた制御量データの修正制御の流れの一例を表したフローチャート図である。It is a flowchart which showed an example of the flow of the correction control of the control amount data using the correction laser apparatus 21 by the control unit 28 which concerns on this invention. 本発明に係る制御部28による自分側のトラッキング装置一体型光通信装置100からの通信光の射出方向の制御の流れの一例を表したフローチャート図である。It is a flowchart showing an example of the flow of control of the emission direction of the communication light from the optical communication device 100 integrated with the tracking device on the own side by the control unit 28 which concerns on this invention. 本発明に係るトラッキング装置一体型光通信装置200の構造を説明する説明図である。It is explanatory drawing explaining the structure of the optical communication apparatus 200 with integrated tracking apparatus which concerns on this invention.
 以下、図面を参照しながら、光通信用トラッキング装置の例について説明する。まずは、光通信装置及び光通信用トラッキング装置の構成例について説明する。 Hereinafter, an example of an optical communication tracking device will be described with reference to the drawings. First, a configuration example of an optical communication device and an optical communication tracking device will be described.
 図1は、本発明に係るトラッキング装置一体型光通信装置100(以下、一体型装置100と称する)の全体構成の例を説明した説明図である。この図1においては、トラッキング装置一体型光通信装置100A(以下、一体型装置100Aと称する)とトラッキング装置一体型光通信装置100B(以下、一体型装置100Bと称する)との間で双方向の光通信が行われるものとして説明を行う。一体型装置100A及び一体型装置100Bは、同じ性能の2台の装置の場合を例に説明を行うため、特に区別して説明する場合を除いて、同じ符号を付したものは同じ機能であるものとする。また、以下、一体型装置100が備える構成の説明において説明対象の構成を備える側の一体型装置100が備える側を「自分側」と称し、自分側の光通信装置10に対して通信相手の一体型装置100が備える構成に対しては「相手側」と称する場合がある。 FIG. 1 is an explanatory diagram illustrating an example of the overall configuration of the tracking device integrated optical communication device 100 (hereinafter referred to as the integrated device 100) according to the present invention. In FIG. 1, the tracking device integrated optical communication device 100A (hereinafter referred to as an integrated device 100A) and the tracking device integrated optical communication device 100B (hereinafter referred to as an integrated device 100B) are bidirectional. The explanation will be given assuming that optical communication is performed. Since the integrated device 100A and the integrated device 100B will be described by taking the case of two devices having the same performance as an example, those with the same reference numerals have the same function unless they are described separately. And. Further, hereinafter, in the description of the configuration included in the integrated device 100, the side provided by the integrated device 100 on the side having the configuration to be explained is referred to as "own side", and the communication partner with respect to the optical communication device 10 on the own side is referred to. The configuration provided in the integrated device 100 may be referred to as "the other party".
 一体型装置100は、自分側と相手側との間で通信光の送受信を同軸にて光通信を行うための装置である。一体型装置100は、光通信装置10と、光通信用トラッキング装置20とを備える。 The integrated device 100 is a device for coaxially transmitting and receiving communication light between one's own side and the other side. The integrated device 100 includes an optical communication device 10 and an optical communication tracking device 20.
 光通信装置10は、自分側と相手側との間で通信光の送受信を行うための装置である。光通信装置10は、送信用光ファイバケーブル11と、レンズ12と、光サーキュレータ13と、可動レンズ14と、光アンテナレンズ15と、ビームスプリッタ16と、レンズ17と、位置センサ18と、受信用光ファイバケーブル19とを備える。 The optical communication device 10 is a device for transmitting and receiving communication light between one's own side and the other side. The optical communication device 10 includes a transmission optical fiber cable 11, a lens 12, an optical circulator 13, a movable lens 14, an optical antenna lens 15, a beam splitter 16, a lens 17, a position sensor 18, and reception. It is provided with an optical fiber cable 19.
 送信用光ファイバケーブル11は、送信用の光信号を伝搬させるためのものの一例である。レンズ12は、送信用光ファイバケーブル11から射出された光信号を集光するためのレンズである。光サーキュレータ13は、送信用光ファイバケーブル11から射出された光信号を可動レンズ14側のポートに出力し、可動レンズ14側のポートから入力された光信号をビームスプリッタ16側のポートに出力するように構成された光学装置である。可動レンズ14は、光信号の光軸に略垂直な平面内で位置調整可能な可動レンズであり、投光光軸の調整に使用される。光アンテナレンズ15は、相手側からの光を最初に受けるための構成である。 The transmission optical fiber cable 11 is an example for propagating an optical signal for transmission. The lens 12 is a lens for collecting an optical signal emitted from a transmission optical fiber cable 11. The optical circulator 13 outputs the optical signal emitted from the transmission optical fiber cable 11 to the port on the movable lens 14 side, and outputs the optical signal input from the port on the movable lens 14 side to the port on the beam splitter 16 side. It is an optical device configured as such. The movable lens 14 is a movable lens whose position can be adjusted in a plane substantially perpendicular to the optical axis of the optical signal, and is used for adjusting the light projection axis. The optical antenna lens 15 is configured to first receive light from the other side.
 ビームスプリッタ16は、光サーキュレータ13から射出された光信号について透過光と反射光とに分割する。レンズ17は、ビームスプリッタ16からの反射光を集光するためのレンズである。位置センサ18は、ビームスプリッタ16からの反射光を用いて光軸の位置検出を行うための構成であり、例えば、QPD(quadrant photodetector:四分割光検出器)などが用いられる。受信用光ファイバケーブル19は、受信用の光信号を伝搬させるためのものである。 The beam splitter 16 divides the optical signal emitted from the optical circulator 13 into transmitted light and reflected light. The lens 17 is a lens for condensing the light reflected from the beam splitter 16. The position sensor 18 is configured to detect the position of the optical axis using the light reflected from the beam splitter 16, and for example, a QPD (quadrant photodetector) or the like is used. The receiving optical fiber cable 19 is for propagating a receiving optical signal.
 光通信用トラッキング装置20は、自分側の光通信装置10と相手側の光通信装置10との間で通信光の送受信を同軸にて行う光通信における、相手側の光通信装置10に設けられた同様構成の光通信用トラッキング装置20(相手側の光通信用トラッキング装置20)との間で光軸合わせを行うための装置である。光通信用トラッキング装置20は、修正用レーザ装置21と、ビームスプリッタ22と、可動式ミラー23と、開口部24と、ビームスプリッタ25と、撮影カメラ26と、LED27と、制御部28とを備える。 The optical communication tracking device 20 is provided in the optical communication device 10 on the other side in optical communication in which communication light is transmitted and received coaxially between the optical communication device 10 on the own side and the optical communication device 10 on the other side. It is a device for aligning the optical axis with the optical communication tracking device 20 (the other party's optical communication tracking device 20) having the same configuration. The optical communication tracking device 20 includes a correction laser device 21, a beam splitter 22, a movable mirror 23, an opening 24, a beam splitter 25, a photographing camera 26, an LED 27, and a control unit 28. ..
 修正用レーザ装置21は、修正用レーザ光を射出する装置であって、自分側の光通信装置10から射出され後述する開口部24を通過する通信光の向きを修正するための装置である。 The correction laser device 21 is a device that emits correction laser light, and is a device for correcting the direction of communication light that is emitted from the optical communication device 10 on its own side and passes through the opening 24 described later.
 ビームスプリッタ22は、修正用レーザ装置21から射出された修正用レーザ光を透過光と反射光とに分割する。 The beam splitter 22 splits the correction laser light emitted from the correction laser device 21 into transmitted light and reflected light.
 可動式ミラー23は、自分側の光通信装置10から射出された通信光の向きを調整する。具体的には、可動式ミラー23は、ビームスプリッタ22で分割された通信光のうちの透過部分を反射させる向きを調整する。例えば、可動式ミラー23は、二次元ミラーとミラーアクチュエータにより実現される。 The movable mirror 23 adjusts the direction of the communication light emitted from the optical communication device 10 on its own side. Specifically, the movable mirror 23 adjusts the direction in which the transmitted portion of the communication light divided by the beam splitter 22 is reflected. For example, the movable mirror 23 is realized by a two-dimensional mirror and a mirror actuator.
 開口部24は、自分側の光通信装置10からの通信光を通過させ、相手側の光通信装置10からの通信光を取り入れるために設けられた光の出入口である。開口部24は、可動式ミラー23の向き制御により自分側の光通信装置10からの通信光の射出角度が調整されても当該通信光が通過可能であれば大きさや形状等は特に限定されない。 The opening 24 is an entrance / exit of light provided for passing the communication light from the optical communication device 10 on the own side and taking in the communication light from the optical communication device 10 on the other side. The size and shape of the opening 24 are not particularly limited as long as the communication light can pass through even if the emission angle of the communication light from the optical communication device 10 on its own side is adjusted by controlling the orientation of the movable mirror 23.
 ビームスプリッタ25は、開口部24が取り入れた光を透過光と反射光とに分割する。 The beam splitter 25 divides the light taken in by the opening 24 into transmitted light and reflected light.
 撮影カメラ26は、ビームスプリッタ25により分割された反射光を撮影する装置である。 The photographing camera 26 is a device for photographing the reflected light divided by the beam splitter 25.
 LED27は、自分側の光通信装置10から射出された通信光の開口部24の通過軸に対して概略対称の位置に設けられ、相手側の光通信用トラッキング装置20にビーコン光を照射する。ビーコン光は、相手側の撮影カメラ26によって撮影可能な光強度で照射される。LED27は、1つの光通信装置10につき複数設けられる。ここで、通信光は指向性の高い光信号である必要があるが、光軸調整のみに用いるビーコン光を広角に照射するようにすることで、相手側において捕捉される確率を高めることが可能となる。 The LED 27 is provided at a position substantially symmetrical with respect to the passing axis of the opening 24 of the communication light emitted from the optical communication device 10 on the own side, and irradiates the optical communication tracking device 20 on the other side with the beacon light. The beacon light is irradiated with a light intensity that can be photographed by the photographing camera 26 on the other side. A plurality of LEDs 27 are provided for one optical communication device 10. Here, the communication light needs to be an optical signal with high directivity, but it is possible to increase the probability of being captured by the other party by irradiating the beacon light used only for adjusting the optical axis at a wide angle. It becomes.
 ここで、双方向光通信において、自分側の光通信用トラッキング装置20の開口部24及びLED27と、相手側の光通信用トラッキング装置20の開口部24及びLED27とが互いに正対する位置に2つの一体型装置100が設置されることが理想であるが、広角に照射された複数のビーコン光を捕捉できる位置関係であれば通信可能である。図1に示される例では、一体型装置100A及び一体型装置100Bは、一体型装置100Aの開口部24及びLED27と、一体型装置100Bの開口部24及びLED27とが互いに正対するように設置されるものとしている。 Here, in bidirectional optical communication, there are two positions where the opening 24 and the LED 27 of the optical communication tracking device 20 on the own side and the opening 24 and the LED 27 of the optical communication tracking device 20 on the other side face each other. Ideally, the integrated device 100 is installed, but communication is possible as long as the positional relationship is such that a plurality of beacon lights irradiated at a wide angle can be captured. In the example shown in FIG. 1, the integrated device 100A and the integrated device 100B are installed so that the opening 24 and the LED 27 of the integrated device 100A and the opening 24 and the LED 27 of the integrated device 100B face each other. It is supposed to be.
 制御部28は、光通信用トラッキング装置20全体の動作を制御する。例えば、制御部28の制御対象は、修正用レーザ装置21や可動式ミラー23、撮影カメラ26、LED27等である。 The control unit 28 controls the operation of the entire optical communication tracking device 20. For example, the control target of the control unit 28 is a correction laser device 21, a movable mirror 23, a photographing camera 26, an LED 27, and the like.
 例えば、制御部28は、撮影カメラ26により撮影された撮影画像を取得して、当該撮影画像に含まれるビーコン光に基づいて相手側の光通信用トラッキング装置20が備える複数のLED27の中心位置を特定し、自分側の光通信装置10から射出された通信光が当該特定した中心位置に入射するよう可動式ミラー23の向きを制御する。ここでの複数のLED27の中心位置とは、LED27が2つの場合、2つのLED27の中間位置を意味し、LED27が3つ以上の場合、複数のLED27の各位置を頂点とした多角形の中心位置を意味する。複数のLED27の中心位置の例には、複数のLED27の重心位置がある。制御部28は、撮影画像に含まれる複数のビーコン光の中心位置を、複数のLED27の中心位置として特定してよい。制御部28による可動式ミラー23の向き制御の詳細は後述する。 For example, the control unit 28 acquires a photographed image captured by the photographing camera 26, and based on the beacon light included in the photographed image, determines the center position of a plurality of LEDs 27 included in the optical communication tracking device 20 on the other side. The direction of the movable mirror 23 is controlled so that the communication light emitted from the optical communication device 10 on the own side is incident on the specified center position. Here, the center position of the plurality of LEDs 27 means an intermediate position between the two LEDs 27 when there are two LEDs 27, and when there are three or more LEDs 27, the center of the polygon having each position of the plurality of LEDs 27 as the apex. Means position. An example of the center position of the plurality of LEDs 27 is the position of the center of gravity of the plurality of LEDs 27. The control unit 28 may specify the center position of the plurality of beacon lights included in the captured image as the center position of the plurality of LEDs 27. Details of the orientation control of the movable mirror 23 by the control unit 28 will be described later.
 図2は、本発明に係る一体型装置100の構造を説明する説明図である。光通信装置10から射出された通信光は、ビームスプリッタ22を透過し可動式ミラー23で反射する。次に、可動式ミラー23で反射した通信光は、ビームスプリッタ25を通過し開口部24を通過する。開口部24を通過した通信光は、図1に示すように相手側の一体型装置100に進む。ここで、可動式ミラー23の向きに応じて開口部24を通過する通信光の向きが決定される。 FIG. 2 is an explanatory diagram illustrating the structure of the integrated device 100 according to the present invention. The communication light emitted from the optical communication device 10 passes through the beam splitter 22 and is reflected by the movable mirror 23. Next, the communication light reflected by the movable mirror 23 passes through the beam splitter 25 and passes through the opening 24. The communication light that has passed through the opening 24 advances to the integrated device 100 on the other side as shown in FIG. Here, the direction of the communication light passing through the opening 24 is determined according to the direction of the movable mirror 23.
 一方で、開口部24は、相手側の光通信装置10からの通信光を取り入れる。また、相手側の複数のLED27が自分側の光通信用トラッキング装置20に複数のビーコン光を照射する。そのため、開口部24は、通信光に加えてビーコン光も取り入れることになる。開口部24で取り入れられた光は、ビームスプリッタ25で分割される。そのため、撮影カメラ26によって、相手側の光通信装置10からの通信光や相手側の複数のLED27からのビーコン光が撮影されることになる。 On the other hand, the opening 24 takes in the communication light from the optical communication device 10 on the other side. Further, the plurality of LEDs 27 on the other side irradiate the optical communication tracking device 20 on the other side with a plurality of beacon lights. Therefore, the opening 24 takes in the beacon light in addition to the communication light. The light taken in by the opening 24 is split by the beam splitter 25. Therefore, the photographing camera 26 photographs the communication light from the optical communication device 10 on the other side and the beacon light from the plurality of LEDs 27 on the other side.
 開口部24は、自分側の光通信装置10から通信光が射出される角度の範囲で当該通信光が通過できれば特に限定されない。自分側の光通信装置10から通信光が射出される角度の範囲は、可動式ミラー23の向きの制御範囲により決まる。相手側の複数のLED27からのビーコン光を撮影カメラ26によって撮影できれば相手側の光通信装置10と光通信ができる。 The opening 24 is not particularly limited as long as the communication light can pass within the range of the angle at which the communication light is emitted from the optical communication device 10 on the own side. The range of the angle at which the communication light is emitted from the optical communication device 10 on the own side is determined by the control range of the orientation of the movable mirror 23. If the beacon light from the plurality of LEDs 27 on the other side can be photographed by the photographing camera 26, optical communication can be performed with the optical communication device 10 on the other side.
 以上、光通信装置10及び光通信用トラッキング装置20の全体構成例について説明した。 The overall configuration example of the optical communication device 10 and the optical communication tracking device 20 has been described above.
 ところで、自分側の光通信装置10から射出された通信光は、可動式ミラー23で反射されて開口部24を通過する。すなわち、当該通信光の進行方向は、可動式ミラー23の向きに応じて変化する。上述したように、自分側の光通信装置10と相手側の光通信装置10との間で双方向通信を行う場合、制御部28は、光軸合わせを目的として、自分側の光通信装置10から射出された通信光が相手側の複数のLED27の中心位置に向けて通信光が射出されるよう可動式ミラー23の向きを制御する。 By the way, the communication light emitted from the optical communication device 10 on the own side is reflected by the movable mirror 23 and passes through the opening 24. That is, the traveling direction of the communication light changes according to the direction of the movable mirror 23. As described above, when bidirectional communication is performed between the optical communication device 10 on the own side and the optical communication device 10 on the other side, the control unit 28 uses the optical communication device 10 on the own side for the purpose of aligning the optical axes. The direction of the movable mirror 23 is controlled so that the communication light emitted from the mirror 23 is emitted toward the center position of the plurality of LEDs 27 on the other side.
 しかしながら、複数のLED27の中心位置に向けて通信光が射出されるよう可動式ミラー23の向きを制御したつもりが、実際の通信光が目的の位置に射出できていないと正確な光軸合わせができない。そのため、目標とする位置に通信光が正確に射出されるようにするために、可動式ミラー23の向きの制御量データを修正する必要がある。すなわち、光通信装置10の通信光の射出方向をキャリブレーションする必要がある。 However, although the orientation of the movable mirror 23 is controlled so that the communication light is emitted toward the center positions of the plurality of LEDs 27, accurate optical axis alignment cannot be achieved if the actual communication light cannot be emitted at the target position. Can not. Therefore, it is necessary to modify the control amount data of the orientation of the movable mirror 23 so that the communication light is accurately emitted to the target position. That is, it is necessary to calibrate the emission direction of the communication light of the optical communication device 10.
 以下、図3を参照して、光通信用トラッキング装置20による可動式ミラー23の向きの制御量データを修正する方法の一例について説明する。 Hereinafter, with reference to FIG. 3, an example of a method of correcting the control amount data of the orientation of the movable mirror 23 by the optical communication tracking device 20 will be described.
 制御量データの修正に際し、まず、光通信用トラッキング装置20の開口部24に正対する位置に修正用スクリーンが設置される。すなわち、撮影カメラ26により撮影が行われた場合に撮影画像に修正用スクリーンの面が写るように修正用スクリーンが設置される。 When correcting the control amount data, first, a correction screen is installed at a position facing the opening 24 of the optical communication tracking device 20. That is, the correction screen is installed so that the surface of the correction screen is reflected in the shot image when the shooting is performed by the shooting camera 26.
 次に、修正用レーザ装置21は修正用レーザ光を射出し、撮影カメラ26によって撮影を行う。ここで、修正用レーザ光は、光通信装置10からの通信光より高い光強度の光である。修正用レーザ光を用いることで、光通信装置10で用いる通信光が撮影カメラ26による撮影画像に写りにくい光強度であっても制御量データの修正を行うことができるようになる。 Next, the correction laser device 21 emits the correction laser light, and the shooting camera 26 takes a picture. Here, the correction laser light is light having a higher light intensity than the communication light from the optical communication device 10. By using the correction laser beam, the control amount data can be corrected even if the communication light used in the optical communication device 10 has a light intensity that is difficult to be captured in the image captured by the photographing camera 26.
 また、撮影カメラ26の撮影により生成される撮影画像における複数の所定位置それぞれが基準点SPとして設定されている。ここで、基準点SPとは、可動式ミラー23の向き制御において制御量算出の基準となる撮影画像上で設定された点を意味する。複数の基準点SPは、撮影画像において固定的に設定されているものでもよいし、制御部28により設定されてもよい。本例では、複数の基準点SPは、撮影画像における上下左右方向に400ピクセル間隔で設定されている。 Further, each of the plurality of predetermined positions in the captured image generated by the imaging of the photographing camera 26 is set as the reference point SP. Here, the reference point SP means a point set on the captured image which is a reference for calculating the control amount in the orientation control of the movable mirror 23. The plurality of reference points SP may be fixedly set in the captured image, or may be set by the control unit 28. In this example, the plurality of reference points SP are set at intervals of 400 pixels in the vertical and horizontal directions in the captured image.
 図3は、本発明に係る修正用レーザ装置21を用いた自分側の光通信装置10からの通信光の向きの修正例を説明するための説明図である。図3には、撮影カメラ26により撮影された撮影画像PI1が示されている。撮影画像PI1は、修正用レーザ光点CPが含まれている。図3における複数の基準点SPは、上述したように撮影画像上の位置を意味するため実際には撮影画像PI1に写らない。修正用レーザ光点CPは、修正対象の基準点TSPを目標として修正用レーザ光が射出され修正用スクリーンに当たって撮影カメラ26により撮影されたものである。 FIG. 3 is an explanatory diagram for explaining a correction example of the direction of the communication light from the optical communication device 10 on the own side using the correction laser device 21 according to the present invention. FIG. 3 shows a photographed image PI1 photographed by the photographing camera 26. The captured image PI1 includes a correction laser light spot CP. Since the plurality of reference points SP in FIG. 3 mean positions on the captured image as described above, they are not actually captured in the captured image PI1. The correction laser light spot CP is obtained by emitting the correction laser light with the reference point TSP to be corrected as a target, hitting the correction screen, and taking a picture by the photographing camera 26.
 ここで、図3に示される例では、修正対象の基準点TSPと修正用レーザ光点CPとの位置にずれが発生している。そのため、制御部28は、撮影画像PI1において修正対象の基準点TSPに修正用レーザ光を当てることができる可動式ミラー23の制御量を算出する。 Here, in the example shown in FIG. 3, the position of the reference point TSP to be corrected and the laser light point CP for correction is displaced. Therefore, the control unit 28 calculates the control amount of the movable mirror 23 capable of shining the correction laser beam on the reference point TSP to be corrected in the captured image PI1.
 例えば、制御部28は、修正用レーザ光点CPの位置における可動式ミラー23の制御量に基づいて修正対象の基準点TSPに修正用レーザ光を当てるための可動式ミラー23の制御量を算出し、当該制御量に基づいて可動式ミラー23の向きを制御する。次に、制御部28は、再び修正用レーザ装置21に修正用レーザ光を射出させ、修正対象の基準点TSPと修正用レーザ光点CPとの位置にずれが解消したか否かを判定する。例えば、制御部28は、修正対象の基準点TSPと修正用レーザ光点CPとの位置のずれが所定の距離以下である場合、当該ずれが解消したと判定する。 For example, the control unit 28 calculates the control amount of the movable mirror 23 for shining the correction laser light on the reference point TSP to be corrected based on the control amount of the movable mirror 23 at the position of the correction laser light point CP. Then, the orientation of the movable mirror 23 is controlled based on the controlled amount. Next, the control unit 28 again emits the correction laser beam to the correction laser device 21, and determines whether or not the deviation between the reference point TSP to be corrected and the correction laser light point CP has been eliminated. .. For example, when the deviation between the reference point TSP to be corrected and the laser light spot CP for correction is equal to or less than a predetermined distance, the control unit 28 determines that the deviation has been eliminated.
 制御部28は、位置のずれが解消したと判定したときの可動式ミラー23の制御量を示す情報を、修正対象の基準点TSPと対応付けて制御量データとして記憶手段(図示せず)に記憶させる。本例では、制御部28は、未修正の基準点SP全てについて制御量データを修正する。制御部28は、1つの修正対象の基準点TSPについて制御量データを修正し記憶手段に記憶させた場合、未修正の基準点SPのうち何れかを選択し、次の修正対象の基準点TSPとする。なお、記憶手段は、光通信用トラッキング装置20が備えていてもよいし、光通信装置10が備えてもよいし、他の装置により実現されるものでもよい。 The control unit 28 stores information indicating the control amount of the movable mirror 23 when it is determined that the misalignment has been resolved as control amount data in association with the reference point TSP to be corrected (not shown). Remember. In this example, the control unit 28 corrects the control amount data for all the uncorrected reference points SP. When the control amount data is modified and stored in the storage means for one reference point TSP to be modified, the control unit 28 selects one of the uncorrected reference point SPs and the next reference point TSP to be modified. And. The storage means may be provided by the optical communication tracking device 20, the optical communication device 10, or may be realized by another device.
 以上、制御量データの修正方法について説明した。なお、制御量データの修正方法は、修正した制御量データに基づいて目的の位置に自分側の光通信装置10からの通信光を射出できれば、上述した方法に限らない。 Above, the method of correcting the control amount data has been explained. The method for correcting the control amount data is not limited to the above-mentioned method as long as the communication light from the optical communication device 10 on the own side can be emitted to the target position based on the corrected control amount data.
 続いて、図4を参照して、一体型装置100による通信光の射出方向の制御例について説明する。 Subsequently, with reference to FIG. 4, an example of controlling the emission direction of the communication light by the integrated device 100 will be described.
 図4は、本発明に係る一体型装置100による通信光の射出方向の制御例を説明するための説明図である。図4には、撮影カメラ26により撮影された撮影画像PI2の一部が示されている。撮影画像PI2には、ビーコン光LEDa及びLEDbと、中心位置TPが示されている。基準点SPA、SPB、SPC及びSPDは、撮影画像上に設定される点であるため撮影画像PI2に実際に含まれるものではない。ここで、通信光は指向性の高い光信号である必要があるが、光軸調整のみに用いるビーコン光を広角に出射するようにすることで、相手側において捕捉される確率を高めることが可能となる。 FIG. 4 is an explanatory diagram for explaining an example of controlling the emission direction of communication light by the integrated device 100 according to the present invention. FIG. 4 shows a part of the photographed image PI2 photographed by the photographing camera 26. The captured image PI2 shows the beacon light LEDa and LEDb and the center position TP. Since the reference points SPA, SPB, SPC, and SPD are points set on the captured image, they are not actually included in the captured image PI2. Here, the communication light needs to be an optical signal with high directivity, but it is possible to increase the probability of being captured by the other party by emitting the beacon light used only for optical axis adjustment at a wide angle. It becomes.
 ここで、制御部28は、ビーコン光の位置を、当該ビーコン光を照射しているLED27の位置として特定する。ビーコン光LEDa及びLEDbは、相手側の光信号用トラッキング装置20に設けられた2つのLED27が射出したものである。中心位置TPは、ビーコン光LEDaの位置とビーコン光LEDbの位置との中間位置である。ここで、ビーコン光の位置の特定方法は特に限定されないが、広がりを持っている光の光強度が一番強い箇所をビーコン光の位置として特定する方法が考えられる。 Here, the control unit 28 specifies the position of the beacon light as the position of the LED 27 irradiating the beacon light. The beacon light LEDsa and LEDb are emitted by two LEDs 27 provided in the optical signal tracking device 20 on the other side. The center position TP is an intermediate position between the position of the beacon light LEDa and the position of the beacon light LEDb. Here, the method of specifying the position of the beacon light is not particularly limited, but a method of specifying the portion having the strongest light intensity of the light having a spread can be considered as the position of the beacon light.
 上述したように、制御部28は、通信光の送信に際し撮影画像PI2に基づいて2つのLED27の中間位置に向けて自分側の光通信装置10からの通信光を射出するよう可動式ミラー23の向きを制御する必要がある。ビーコン光LEDaの位置とビーコン光LEDbの位置との中間位置に向けて通信光を射出すれば相手側の光通信装置10において当該通信光を受光できるからである。 As described above, the control unit 28 of the movable mirror 23 so as to emit the communication light from the optical communication device 10 on its own side toward the intermediate position of the two LEDs 27 based on the captured image PI2 when transmitting the communication light. It is necessary to control the orientation. This is because if the communication light is emitted toward an intermediate position between the position of the beacon light LEDa and the position of the beacon light LEDb, the communication light can be received by the optical communication device 10 on the other side.
 ここで、制御部28は、撮影画像上の基準点と、当該基準点に対して自分側の光通信装置10から通信光を射出するための可動式ミラー23の制御量を示す情報とが対応付けされた制御量データが記憶された記憶手段を参照する。次に、制御部28は、中心位置近傍の複数の基準点に対応付けされた制御量データに基づいて中心位置に対して自分側の光通信装置10から通信光を射出するための可動式ミラー23の制御量を算出する。次に、制御部28は、算出した可動式ミラー23の制御量に基づいて、自分側の光通信装置10から射出された通信光が中心位置に入射するよう可動式ミラー23の向きを制御する。 Here, the control unit 28 corresponds to the reference point on the captured image and the information indicating the control amount of the movable mirror 23 for emitting the communication light from the optical communication device 10 on the own side with respect to the reference point. Refer to the storage means in which the attached control amount data is stored. Next, the control unit 28 is a movable mirror for emitting communication light from the optical communication device 10 on its own side with respect to the center position based on the control amount data associated with the plurality of reference points near the center position. The control amount of 23 is calculated. Next, the control unit 28 controls the direction of the movable mirror 23 so that the communication light emitted from the optical communication device 10 on its own side is incident on the center position based on the calculated control amount of the movable mirror 23. ..
 図4に示す一例では、制御部28は、中間位置TP近傍の複数の基準点SPに対応する制御量を示す情報に基づいて、中間位置TPに通信光が入射する可動式ミラー23の制御量を算出する。すなわち、制御部28は、既に算出されている基準点SPの制御量データを利用して、中間位置TPに通信光が入射する制御量を算出する。本例では、可動式ミラー23の制御量の算出において、中間位置TP近傍の4つの基準点SPA、SPB、SPC及びSPDの制御量データが用いられる。 In the example shown in FIG. 4, the control unit 28 controls the movable mirror 23 in which the communication light is incident on the intermediate position TP based on the information indicating the control amount corresponding to the plurality of reference points SP in the vicinity of the intermediate position TP. Is calculated. That is, the control unit 28 calculates the control amount that the communication light is incident on the intermediate position TP by using the control amount data of the reference point SP that has already been calculated. In this example, in the calculation of the controlled variable of the movable mirror 23, the controlled variable data of the four reference points SPA, SPB, SPC and SPD near the intermediate position TP are used.
 図4に示す一例において、具体的には、制御部28は、中間位置TP近傍の複数の基準点SPに対応する制御量を示す情報に基づいて、中間位置TPに通信光が入射する可動式ミラー23の制御量を内挿法で算出する。本例において、制御部28は、左右方向については、基準点SPA又はSPCをe/fの加重平均で、基準点SPB又はSPDを(e-f)/fの加重平均で算出する。また本例において、制御部28は、上下方向については、基準点SPA又はSPBを(g-h)/hの加重平均で、基準点SPC又はSPDをh/gの加重平均で算出する。 In the example shown in FIG. 4, specifically, the control unit 28 is a movable type in which the communication light is incident on the intermediate position TP based on the information indicating the control amount corresponding to the plurality of reference points SP in the vicinity of the intermediate position TP. The control amount of the mirror 23 is calculated by the interpolation method. In this example, the control unit 28 calculates the reference point SPA or SPC by the weighted average of e / f and the reference point SPB or SPD by the weighted average of (ef) / f in the left-right direction. Further, in this example, the control unit 28 calculates the reference point SPA or SPB by the weighted average of (g—h) / h and the reference point SPC or SPD by the weighted average of h / g in the vertical direction.
 以上、通信光の射出方向の制御例について説明した。 The control example of the emission direction of the communication light has been described above.
 図5は、本発明に係る制御部28による修正用レーザ装置21を用いた制御量データの修正制御の流れの一例を表したフローチャート図である。図5で示す一例では、光通信用トラッキング装置20が含む構成全体を制御部28が制御するものとして説明される。 FIG. 5 is a flowchart showing an example of a flow of correction control of control amount data using the correction laser device 21 by the control unit 28 according to the present invention. In the example shown in FIG. 5, the control unit 28 controls the entire configuration including the optical communication tracking device 20.
 図5に示すように、制御量データの修正制御は、修正用スクリーンを開口部24に正対する位置に設置されている状態であり、制御部28において撮影画像における複数の基準点を設定することで開始される(ステップS101)。制御部28は、複数の基準点を設定すると、制御量データが未修正の基準点のうち何れか1つを選択する(ステップS102)。制御部28は、未修正の基準点を選択すると、選択した基準点に向かって修正用レーザ光が射出するよう可動式ミラー23の向きを制御する(ステップS103)。 As shown in FIG. 5, the correction control of the control amount data is a state in which the correction screen is installed at a position facing the opening 24, and the control unit 28 sets a plurality of reference points in the captured image. (Step S101). When a plurality of reference points are set, the control unit 28 selects any one of the reference points whose control amount data is uncorrected (step S102). When the uncorrected reference point is selected, the control unit 28 controls the direction of the movable mirror 23 so that the correction laser beam is emitted toward the selected reference point (step S103).
 制御部28は、可動式ミラー23の向きを制御すると、修正用レーザ装置21に修正用レーザ光を修正用スクリーンに対し射出させる(ステップS104)。制御部28は、修正用スクリーンに対し射出させると、修正用スクリーンを撮影カメラ26に撮影させる(ステップS105)。制御部28は、修正用スクリーンを撮影カメラ26に撮影させると、撮影画像における選択した基準点と修正用レーザ光との位置のずれを解消するように可動式ミラー23の向きを制御する(ステップS106)。本例では、制御部28は、ステップS106において、撮影カメラ26に連続撮影を行わせている。 When the control unit 28 controls the orientation of the movable mirror 23, the correction laser device 21 emits the correction laser light onto the correction screen (step S104). When the control unit 28 ejects the correction screen to the correction screen, the control unit 28 causes the photographing camera 26 to take a picture of the correction screen (step S105). When the shooting camera 26 shoots the correction screen, the control unit 28 controls the orientation of the movable mirror 23 so as to eliminate the misalignment between the selected reference point and the correction laser beam in the shot image (step). S106). In this example, the control unit 28 causes the photographing camera 26 to continuously photograph in step S106.
 制御部28は、可動式ミラー23の向きの制御中に、ずれが所定の距離以下になっていない場合(ステップS107-Nо)、ステップS106に戻り可動式ミラー23の向きの制御を継続する。制御部28は、可動式ミラー23の向きの制御中に、ずれが所定の距離以下になった場合(ステップS107-Yes)、選択した基準点と、ずれが所定の距離以下になったときの可動式ミラー23の制御量とが対応付けした制御量データを、修正された制御量データとして記憶手段に記憶させる(ステップS108)。 If the deviation is not less than or equal to a predetermined distance (step S107-Nо) while controlling the orientation of the movable mirror 23, the control unit 28 returns to step S106 and continues to control the orientation of the movable mirror 23. When the deviation becomes less than or equal to a predetermined distance (step S107-Yes) while controlling the orientation of the movable mirror 23, the control unit 28 when the deviation from the selected reference point becomes less than or equal to a predetermined distance. The control amount data associated with the control amount of the movable mirror 23 is stored in the storage means as the modified control amount data (step S108).
 制御部28は、修正された制御量データを記憶させても全ての基準点で修正された制御量データを記憶手段に記憶させた状態になっていない場合(ステップS109-Nо)、ステップS102に戻る。制御部28は、修正された制御量データを記憶させて全ての基準点で修正された制御量データを記憶手段に記憶させた状態になった場合(ステップS109-Yes)、制御部28による制御量データの修正制御は終了する。 If the control unit 28 stores the corrected control amount data but does not store the corrected control amount data at all the reference points in the storage means (step S109-Nо), the control unit 28 goes to step S102. return. When the control unit 28 stores the corrected control amount data and stores the corrected control amount data at all the reference points in the storage means (step S109-Yes), the control unit 28 controls the control unit 28. The modification control of the quantity data ends.
 図6は、本発明に係る制御部28による自分側の一体型装置100からの通信光の射出方向の制御の流れの一例を表したフローチャート図である。図6で示す一例では、光通信用トラッキング装置20が含む構成全体を制御部28が制御するものとして説明される。 FIG. 6 is a flowchart showing an example of the flow of control of the emission direction of the communication light from the integrated device 100 on the own side by the control unit 28 according to the present invention. In the example shown in FIG. 6, the control unit 28 controls the entire configuration including the optical communication tracking device 20.
 図6に示すように、通信光の射出方向の制御は、制御部28において撮影画像における複数のLED27の中心位置を特定することで開始される(ステップS201)。制御部28は、中心位置を特定すると、中心位置近傍の複数の基準点に対応付けされた制御量データを抽出する(ステップS202)。制御部28は、制御量データを抽出すると、抽出した制御量データに基づいて中心位置に対応する可動式ミラー23の制御量を算出する(ステップS203)。制御部28は、制御量を算出すると、算出した制御量に基づいて可動式ミラー23の向きを制御し(ステップS204)、ステップS201に戻って、最初から通信光の射出方向の制御を繰り返し実行するようにする。 As shown in FIG. 6, the control of the emission direction of the communication light is started by specifying the center positions of the plurality of LEDs 27 in the captured image in the control unit 28 (step S201). When the control unit 28 specifies the center position, the control unit 28 extracts the control amount data associated with the plurality of reference points in the vicinity of the center position (step S202). When the control amount data is extracted, the control unit 28 calculates the control amount of the movable mirror 23 corresponding to the center position based on the extracted control amount data (step S203). When the control amount is calculated, the control unit 28 controls the direction of the movable mirror 23 based on the calculated control amount (step S204), returns to step S201, and repeatedly executes control of the emission direction of the communication light from the beginning. To do.
 ところで、以上説明した光通信用トラッキング装置20の例では、LED27が2つ設けられていた。しかし、光通信用トラッキング装置20が備えるLED27は、3つ以上でもよい。以下、図7を参照し、一例として光通信用トラッキング装置20がLED27を4つ備える場合について説明する。 By the way, in the example of the optical communication tracking device 20 described above, two LEDs 27 are provided. However, the number of LEDs 27 included in the optical communication tracking device 20 may be three or more. Hereinafter, a case where the optical communication tracking device 20 includes four LEDs 27 will be described with reference to FIG. 7.
 図7は、本発明に係るトラッキング装置一体型光通信装置200の構造を説明する説明図である。図7に示すように、トラッキング装置一体型光通信装置200(一体型装置200)は、図2に示された一体型装置100と異なり4つのLED27を備えている。4つのLED27は、自分側の光通信装置10から射出された通信光の開口部24の通過軸に対して概略対称に設けられる。言い換えれば、4つのLED27の中心位置が自分側の光通信装置10からの通信光が通過する位置である。ここでの4つのLED27の中心位置は、通過軸に概略垂直な二次元平面における4つのLED27の位置を頂点とする四角形の重心位置である。このような構成とすることで、自分側の光通信用トラッキング装置20及び相手側の光通信用トラッキング装置20の双方が一定の姿勢を保っていなければいけない制約が無くなるという利点がある。なお、LED27が4つの場合の中心位置は、必ずしも重心位置である必要はなく、対角線の交点を中心位置とするなど他の方法であってもよい。 FIG. 7 is an explanatory diagram illustrating the structure of the tracking device integrated optical communication device 200 according to the present invention. As shown in FIG. 7, the tracking device integrated optical communication device 200 (integrated device 200) includes four LEDs 27 unlike the integrated device 100 shown in FIG. The four LEDs 27 are provided substantially symmetrically with respect to the passing axis of the opening 24 of the communication light emitted from the optical communication device 10 on the own side. In other words, the central position of the four LEDs 27 is the position through which the communication light from the optical communication device 10 on the own side passes. The center position of the four LEDs 27 here is the position of the center of gravity of the quadrangle whose apex is the position of the four LEDs 27 in the two-dimensional plane substantially perpendicular to the passing axis. With such a configuration, there is an advantage that there is no restriction that both the optical communication tracking device 20 on the own side and the optical communication tracking device 20 on the other side must maintain a constant posture. The center position when there are four LEDs 27 does not necessarily have to be the center of gravity position, and other methods such as setting the intersection of the diagonal lines as the center position may be used.
 以上のように、本発明に係る光通信用トラッキング装置20によれば、自分側の光通信装置と相手側の光通信装置との間で通信光の送受信を同軸にて行う光通信における、相手側の光通信装置に設けられた同様構成の光通信用トラッキング装置20との間で光軸合わせを行うため、自分側の光通信装置10からの通信光を通過させ、相手側の光通信装置10からの通信光を取り入れるための開口部24と、自分側の光通信装置10から射出された通信光の開口部24の通過軸に対して概略対称に設けられ、相手側の光通信用トラッキング装置20にビーコン光を照射する複数のLED27と、開口部24により取り入れられた光を透過光と反射光とに分割するビームスプリッタ25と、ビームスプリッタ25により分割された反射光を撮影する撮影カメラ26と、自分側の光通信装置10から射出された通信光の向きを調整する可動式ミラー23と、可動式ミラー23の向きを制御する制御部28とを備え、制御部28は、撮影カメラ26により撮影された撮影画像を取得して、当該撮影画像に撮影されたビーコン光に基づいて相手側の光通信用トラッキング装置20が備える複数のLED27の中心位置を特定し、自分側の光通信装置10から射出された通信光が当該中心位置に入射するよう可動式ミラー23の向きを制御することで、相手側の光通信用トラッキング装置20が多様な姿勢であっても光軸合わせが可能となる。 As described above, according to the optical communication tracking device 20 according to the present invention, the other party in optical communication in which communication light is transmitted and received coaxially between the optical communication device on the own side and the optical communication device on the other side. In order to align the optical axis with the optical communication tracking device 20 having the same configuration provided in the optical communication device on the side, the communication light from the optical communication device 10 on the own side is passed through and the optical communication device on the other side is passed. Tracking for optical communication on the other side is provided approximately symmetrically with respect to the passing axis of the opening 24 for taking in the communication light from 10 and the opening 24 of the communication light emitted from the optical communication device 10 on the own side. A plurality of LEDs 27 that irradiate the device 20 with beacon light, a beam splitter 25 that divides the light taken in by the opening 24 into transmitted light and reflected light, and a photographing camera that captures the reflected light divided by the beam splitter 25. 26, a movable mirror 23 that adjusts the direction of the communication light emitted from the optical communication device 10 on its own side, and a control unit 28 that controls the direction of the movable mirror 23, and the control unit 28 is a photographing camera. The captured image captured by 26 is acquired, the center positions of a plurality of LEDs 27 included in the optical communication tracking device 20 on the other side are specified based on the beacon light captured on the captured image, and the optical communication on the own side is specified. By controlling the direction of the movable mirror 23 so that the communication light emitted from the device 10 is incident on the center position, the optical axis can be aligned even if the optical communication tracking device 20 on the other side has various postures. It becomes.
 また、光通信用トラッキング装置20において、さらに、複数のLED27は、通信光の開口部の通過軸に対して概略対称に設けられた2つのLED27であり、制御部28は、取得した撮影画像に撮影されたビーコン光に基づいて相手側の光通信用トラッキング装置20が備える2つのLED27の中間位置を特定し、自分側の光通信装置10から射出された通信光が特定した中間位置に入射するよう可動式ミラー23の向きを制御する構成をとれば、最小構成のLED27で光軸合わせを行うことが可能となる。 Further, in the optical communication tracking device 20, the plurality of LEDs 27 are two LEDs 27 provided substantially symmetrically with respect to the passing axis of the opening of the communication light, and the control unit 28 refers to the acquired captured image. The intermediate position of the two LEDs 27 included in the optical communication tracking device 20 on the other side is specified based on the captured beacon light, and the communication light emitted from the optical communication device 10 on the own side is incident on the specified intermediate position. If the orientation of the movable mirror 23 is controlled, the optical axis can be aligned with the LED 27 having the minimum configuration.
 また、光通信用トラッキング装置20において、さらに、制御部28は、撮影画像上の基準点と、当該基準点に対して自分側の光通信装置10から通信光を射出するための可動式ミラー23の制御量を示す情報とが対応付けされた制御量データが記憶された記憶手段を参照し、中心位置近傍の複数の基準点に対応付けされた制御量データに基づいて中心位置に対して自分側の光通信装置10から通信光を射出するための可動式ミラー23の制御量を算出し、算出した可動式ミラー23の制御量に基づいて、自分側の光通信装置10から射出された通信光が中心位置に入射するよう可動式ミラー23の向きを制御する構成をとれば、基準点の制御量データを用いない場合と比較して光軸合わせをより正確に行うことが可能となる。 Further, in the optical communication tracking device 20, the control unit 28 further controls a reference point on the captured image and a movable mirror 23 for emitting communication light from the optical communication device 10 on its own side with respect to the reference point. Refers to the storage means in which the control amount data associated with the information indicating the control amount of is stored, and the self with respect to the center position based on the control amount data associated with a plurality of reference points near the center position. The control amount of the movable mirror 23 for emitting the communication light from the optical communication device 10 on the side is calculated, and the communication emitted from the optical communication device 10 on the own side is based on the calculated control amount of the movable mirror 23. If the orientation of the movable mirror 23 is controlled so that the light is incident on the center position, the optical axis alignment can be performed more accurately as compared with the case where the control amount data of the reference point is not used.
 なお、上述した例では、光通信用トラッキング装置20が備える制御部28が各種制御処理を実行していたが、光通信用トラッキング装置20は、制御部28の代わりに外部の制御手段により各種制御処理が実行されてもよい。例えば、光通信用トラッキング装置20は制御部28を備えず、制御部28に相当する制御処理を外部の制御手段が実行してもよい。また、制御部28による各種制御は、記憶手段に記憶されている各種制御プログラムに従って実行されてよい。記憶手段に記憶されている制御プログラムが、光通信用トラッキング装置20に上述した各機能を実現させる。また、光通信装置10は、光通信用トラッキング装置20を備えてもよい。 In the above example, the control unit 28 included in the optical communication tracking device 20 executes various control processes, but the optical communication tracking device 20 is controlled by an external control means instead of the control unit 28. The process may be executed. For example, the optical communication tracking device 20 does not include the control unit 28, and an external control means may execute the control process corresponding to the control unit 28. Further, various controls by the control unit 28 may be executed according to various control programs stored in the storage means. The control program stored in the storage means realizes each of the above-mentioned functions in the optical communication tracking device 20. Further, the optical communication device 10 may include an optical communication tracking device 20.
 また、上述した例では、光通信用トラッキング装置20が修正用レーザ装置21を備えていたが、光通信装置10が修正用レーザ装置21を備えていてもよい。また、本例では、光通信装置10が光ファイバケーブルを用いた空間光伝送を行うことについて説明したが、光通信装置10は光通信を行うことができればこれに限らない。 Further, in the above-mentioned example, the optical communication tracking device 20 is provided with the correction laser device 21, but the optical communication device 10 may be provided with the correction laser device 21. Further, in this example, it has been described that the optical communication device 10 performs spatial optical transmission using an optical fiber cable, but the optical communication device 10 is not limited to this as long as it can perform optical communication.
 100、100A、100B   トラッキング装置一体型光通信装置(一体型装置)
 10      光通信装置
 11      送信用光ファイバケーブル
 12      レンズ
 13      光サーキュレータ
 14      可動レンズ
 15      光アンテナレンズ
 16      ビームスプリッタ
 17      レンズ
 18      位置センサ
 19      受信用光ファイバケーブル
 20      光通信用トラッキング装置
 21      修正用レーザ装置
 22      ビームスプリッタ
 23      可動式ミラー
 24      開口部
 25      ビームスプリッタ
 26      撮影カメラ
 27      LED
 28      制御部
100, 100A, 100B Tracking device integrated optical communication device (integrated device)
10 Optical communication device 11 Optical fiber cable for transmission 12 Lens 13 Optical circulator 14 Movable lens 15 Optical antenna lens 16 Beam splitter 17 Lens 18 Position sensor 19 Optical fiber cable for reception 20 Optical communication tracking device 21 Correction laser device 22 Beam splitter 23 Movable Mirror 24 Opening 25 Beam Splitter 26 Shooting Camera 27 LED
28 Control unit

Claims (5)

  1.  自分側の光通信装置と相手側の光通信装置との間で通信光の送受信を同軸にて行う光通信における、相手側の光通信装置に設けられた同様構成の光通信用トラッキング装置(以下、相手側トラッキング装置という。)との間で光軸合わせを行うための光通信用トラッキング装置であって、
     前記自分側の光通信装置からの通信光を通過させ、前記相手側の光通信装置からの通信光を取り入れるための開口部と、
     前記自分側の光通信装置から射出された通信光の前記開口部の通過軸に対して概略対称に設けられ、前記相手側トラッキング装置にビーコン光を照射する複数のLEDと、
     前記開口部により取り入れられた光を透過光と反射光とに分割するビームスプリッタと、
     前記ビームスプリッタにより分割された反射光を撮影する撮影カメラと、
     前記自分側の光通信装置から射出された通信光の向きを調整する可動式ミラーと、
     前記可動式ミラーの向きを制御する制御部とを備え、
     前記制御部は、
     前記撮影カメラにより撮影された撮影画像を取得して、当該撮影画像に撮影されたビーコン光に基づいて前記相手側トラッキング装置が備える複数のLEDの中心位置を特定し、
     前記自分側の光通信装置から射出された通信光が前記中心位置に入射するよう前記可動式ミラーの向きを制御する
     ことを特徴とする光通信用トラッキング装置。
    In optical communication in which communication light is transmitted and received coaxially between one's own optical communication device and the other's optical communication device, an optical communication tracking device with the same configuration provided in the other's optical communication device (hereinafter referred to as , A tracking device for optical communication for aligning the optical axis with the tracking device on the other side.
    An opening for passing the communication light from the optical communication device on the own side and taking in the communication light from the optical communication device on the other side.
    A plurality of LEDs provided substantially symmetrically with respect to the passing axis of the opening of the communication light emitted from the optical communication device on the own side and irradiating the tracking device on the other side with beacon light.
    A beam splitter that splits the light taken in by the opening into transmitted light and reflected light.
    A shooting camera that shoots the reflected light divided by the beam splitter, and
    A movable mirror that adjusts the direction of the communication light emitted from the optical communication device on its own side,
    A control unit that controls the orientation of the movable mirror is provided.
    The control unit
    The captured image captured by the capture camera is acquired, and the center positions of a plurality of LEDs included in the other-side tracking device are specified based on the beacon light captured in the captured image.
    An optical communication tracking device characterized in that the direction of the movable mirror is controlled so that the communication light emitted from the optical communication device on its own side is incident on the center position.
  2.  前記複数のLEDは、前記通信光の前記開口部の通過軸に対して概略対称に設けられた2つのLEDであり、
     前記制御部は、
     前記取得した撮影画像に撮影されたビーコン光に基づいて前記相手側トラッキング装置が備える2つのLEDの中間位置を特定し、
     前記自分側の光通信装置から射出された通信光が前記中間位置に入射するよう前記可動式ミラーの向きを制御する
     ことを特徴とする請求項1記載の光通信用トラッキング装置。
    The plurality of LEDs are two LEDs provided substantially symmetrically with respect to the passing axis of the opening of the communication light.
    The control unit
    Based on the beacon light captured in the acquired captured image, the intermediate position of the two LEDs included in the other-side tracking device is specified.
    The tracking device for optical communication according to claim 1, wherein the direction of the movable mirror is controlled so that the communication light emitted from the optical communication device on its own side is incident on the intermediate position.
  3.  前記制御部は、
     前記撮影画像上の基準点と、当該基準点に対して前記自分側の光通信装置から通信光を射出するための前記可動式ミラーの制御量を示す情報とが対応付けされた制御量データが記憶された記憶手段を参照し、前記中心位置近傍の複数の前記基準点に対応付けされた前記制御量データに基づいて前記中心位置に対して前記自分側の光通信装置から通信光を射出するための前記可動式ミラーの制御量を算出し、
     算出した前記可動式ミラーの制御量に基づいて、前記自分側の光通信装置から射出された通信光が前記中心位置に入射するよう前記可動式ミラーの向きを制御する
     ことを特徴とする請求項1又は請求項2記載の光通信用トラッキング装置。
    The control unit
    The control amount data in which the reference point on the captured image and the information indicating the control amount of the movable mirror for emitting the communication light from the optical communication device on the own side with respect to the reference point are associated with each other. With reference to the stored storage means, communication light is emitted from the optical communication device on its own side to the center position based on the control amount data associated with the plurality of reference points in the vicinity of the center position. Calculate the control amount of the movable mirror for
    The claim is characterized in that the orientation of the movable mirror is controlled so that the communication light emitted from the optical communication device on its own side is incident on the center position based on the calculated control amount of the movable mirror. 1 or the optical communication tracking device according to claim 2.
  4.  請求項1から請求項3の何れかに記載の光通信用トラッキング装置を備える
     ことを特徴とする光通信装置。
    An optical communication device comprising the optical communication tracking device according to any one of claims 1 to 3.
  5.  自分側の光通信装置と相手側の光通信装置との間で通信光の送受信を同軸にて行う光通信における、相手側の光通信装置に設けられた同様構成の光通信用トラッキング装置(以下、相手側トラッキング装置という。)との間で光軸合わせを行うための光通信用トラッキング装置であって、
     前記自分側の光通信装置からの通信光を通過させ、前記相手側の光通信装置からの通信光を取り入れるための開口部と、
     前記自分側の光通信装置から射出された通信光の前記開口部の通過軸に対して概略対称に設けられ、前記相手側トラッキング装置にビーコン光を照射する複数のLEDと、
     前記開口部により取り入れられた光を透過光と反射光とに分割するビームスプリッタと、
     前記ビームスプリッタにより分割された反射光を撮影する撮影カメラと、
     前記自分側の光通信装置から射出された通信光の向きを調整する可動式ミラーとを備え、
     前記可動式ミラーは、
     前記撮影カメラによる撮影画像に写る前記相手側トラッキング装置が備える複数のLEDの中心位置に対して、前記自分側の光通信装置から射出された通信光が入射するように制御手段により向きが制御されるものである
     ことを特徴とする光通信用トラッキング装置。
    In optical communication in which communication light is transmitted and received coaxially between one's own optical communication device and the other's optical communication device, an optical communication tracking device with the same configuration provided in the other's optical communication device (hereinafter referred to as , A tracking device for optical communication for aligning the optical axis with the tracking device on the other side.
    An opening for passing the communication light from the optical communication device on the own side and taking in the communication light from the optical communication device on the other side.
    A plurality of LEDs provided substantially symmetrically with respect to the passing axis of the opening of the communication light emitted from the optical communication device on the own side and irradiating the tracking device on the other side with beacon light.
    A beam splitter that splits the light taken in by the opening into transmitted light and reflected light.
    A shooting camera that shoots the reflected light divided by the beam splitter, and
    It is equipped with a movable mirror that adjusts the direction of the communication light emitted from the optical communication device on its own side.
    The movable mirror is
    The direction is controlled by the control means so that the communication light emitted from the optical communication device on the own side is incident on the center positions of the plurality of LEDs included in the other side tracking device captured in the image captured by the shooting camera. A tracking device for optical communication characterized by being a thing.
PCT/JP2021/047315 2020-12-28 2021-12-21 Tracking apparatus for optical communication, and optical communication apparatus WO2022145289A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180076513.9A CN116547551A (en) 2020-12-28 2021-12-21 Tracking device for optical communication and optical communication device
KR1020237012727A KR20230078702A (en) 2020-12-28 2021-12-21 Optical communication tracking device and optical communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020218947A JP7398710B2 (en) 2020-12-28 2020-12-28 Optical communication tracking device and optical communication device
JP2020-218947 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145289A1 true WO2022145289A1 (en) 2022-07-07

Family

ID=82259319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047315 WO2022145289A1 (en) 2020-12-28 2021-12-21 Tracking apparatus for optical communication, and optical communication apparatus

Country Status (4)

Country Link
JP (1) JP7398710B2 (en)
KR (1) KR20230078702A (en)
CN (1) CN116547551A (en)
WO (1) WO2022145289A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092192A1 (en) * 2002-04-26 2003-11-06 Allied Telesis K.K. Optical wireless communication device and method for adjusting the position of optical wireless communication device
JP2006229734A (en) * 2005-02-18 2006-08-31 Victor Co Of Japan Ltd Optical axis adjusting method of optical wireless transmitting device, optical wireless transmitting device and optical wireless transmission system
JP2010151448A (en) * 2008-12-24 2010-07-08 Toshiba Corp Visible light communication device and method for adjusting optical axis
JP2017143377A (en) * 2016-02-09 2017-08-17 Necエンジニアリング株式会社 Information derivation system, optical transmission and reception system, and communication system
JP2018170647A (en) * 2017-03-30 2018-11-01 東洋電機株式会社 Spatial optical transmission device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605377Y2 (en) 1979-02-27 1985-02-19 オムロン株式会社 Runaway prevention circuit for control devices including memory circuits

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003092192A1 (en) * 2002-04-26 2003-11-06 Allied Telesis K.K. Optical wireless communication device and method for adjusting the position of optical wireless communication device
JP2006229734A (en) * 2005-02-18 2006-08-31 Victor Co Of Japan Ltd Optical axis adjusting method of optical wireless transmitting device, optical wireless transmitting device and optical wireless transmission system
JP2010151448A (en) * 2008-12-24 2010-07-08 Toshiba Corp Visible light communication device and method for adjusting optical axis
JP2017143377A (en) * 2016-02-09 2017-08-17 Necエンジニアリング株式会社 Information derivation system, optical transmission and reception system, and communication system
JP2018170647A (en) * 2017-03-30 2018-11-01 東洋電機株式会社 Spatial optical transmission device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAYMAK YAGIZ; ROJAS-CESSA ROBERTO; FENG JIANGHUA; ANSARI NIRWAN; ZHOU MENGCHU; ZHANG TAIRAN: "A Survey on Acquisition, Tracking, and Pointing Mechanisms for Mobile Free-Space Optical Communications", IEEE COMMUNICATIONS SURVEYS & TUTORIALS, vol. 20, no. 2, 1 January 1900 (1900-01-01), USA , pages 1104 - 1123, XP011684306, DOI: 10.1109/COMST.2018.2804323 *

Also Published As

Publication number Publication date
JP7398710B2 (en) 2023-12-15
CN116547551A (en) 2023-08-04
KR20230078702A (en) 2023-06-02
JP2022103994A (en) 2022-07-08

Similar Documents

Publication Publication Date Title
US8651100B2 (en) Method for controlling the alignment of a heliostat with respect to a receiver, heliostat device and solar power plant
US11029398B2 (en) Lidar system and method of operating the same
CN106612390B (en) Camera module with double imaging modules and optical axis parallelism adjusting method thereof
US9900565B2 (en) Projector capable of adjusting a light exit angle
CN105607395A (en) Projection device and correction method thereof
CN108919480A (en) A kind of automatic alignment apparatus for the same band combination of multi-path laser beam
US10928619B2 (en) Microscope
KR20160150283A (en) Optical system and image compensating method of optical apparatus
JP2005229253A (en) Spatial light transmission apparatus
US20150268346A1 (en) Optical axis directing apparatus
WO2022145289A1 (en) Tracking apparatus for optical communication, and optical communication apparatus
CN112584053A (en) Binocular vision laser emission system and method
JPH04233511A (en) Aiming mark displaying device
US10928618B2 (en) Microscope
JP5540664B2 (en) Optical axis adjustment system, optical axis adjustment device, optical axis adjustment method, and program
US8393900B2 (en) System for aligning a firing simulator and an aligning unit for the same
KR20220156123A (en) Distance Measuring Device for Correcting Lens Distortion and Method for Controlling the same
CN110505407B (en) Lens focusing method, device and equipment of infrared imaging equipment
CN214756613U (en) Binocular vision laser emission system
WO2023181375A1 (en) Light emitting device and optical wireless communication system
CN114967285B (en) Light supplementing system, image pickup device and image pickup method
CN115016201B (en) Light supplementing system for zoom camera
JP2016114924A (en) Optical system
CN106033147A (en) Center alignment system for optical target simulator and spherical radome
US10877258B2 (en) Microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237012727

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180076513.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915149

Country of ref document: EP

Kind code of ref document: A1