WO2022145001A1 - Optical receptacle and optical module - Google Patents

Optical receptacle and optical module Download PDF

Info

Publication number
WO2022145001A1
WO2022145001A1 PCT/JP2020/049191 JP2020049191W WO2022145001A1 WO 2022145001 A1 WO2022145001 A1 WO 2022145001A1 JP 2020049191 W JP2020049191 W JP 2020049191W WO 2022145001 A1 WO2022145001 A1 WO 2022145001A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
light emitting
incident
emitting element
Prior art date
Application number
PCT/JP2020/049191
Other languages
French (fr)
Japanese (ja)
Inventor
裕善 可兒
ほの香 佐藤
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to PCT/JP2020/049191 priority Critical patent/WO2022145001A1/en
Publication of WO2022145001A1 publication Critical patent/WO2022145001A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • the present invention relates to an optical receptacle and an optical module.
  • optical module For optical communication using an optical transmitter such as an optical fiber or an optical waveguide, light equipped with a light emitting element such as a surface emitting laser (for example, a vertical cavity surface emitting laser (VCSEL)) or the like is provided.
  • the module is being used.
  • the optical module has one or more photoelectric conversion elements (light emitting elements or light receiving elements) and optical receptacles for transmission, reception, or transmission / reception (see, for example, Patent Document 1).
  • Patent Document 1 describes an optical member (optical receptacle) for transmission and reception.
  • the optical member described in Patent Document 1 includes a transmitting lens array, a filter mounting surface, a fiber lens array, a reflecting surface, and a receiving lens array.
  • An optical filter for transmitting light having a predetermined wavelength and transmitting light having another predetermined wavelength is arranged on the filter mounting surface.
  • the transmitting optical element is arranged facing the transmitting lens array
  • the receiving optical element is arranged facing the receiving lens array
  • the optical fiber is arranged facing the fiber lens array.
  • the light emitted from the transmission optical element is incident on the optical member by the transmission lens array.
  • the light incident on the optical member only the light having a predetermined wavelength is reflected toward the fiber lens array by the optical filter, and the light having some other wavelengths is transmitted through the optical filter.
  • the light reflected by the optical filter is emitted from the fiber lens array toward the optical fiber.
  • the light emitted from the optical fiber is incident on the optical member by the fiber lens array.
  • the light incident on the optical member passes through the optical filter and is reflected by the reflecting surface toward the receiving lens array.
  • the light reflected by the reflecting surface is emitted from the receiving lens array toward the light receiving optical element.
  • An optical filter having a reflective coating and a transmissive coating on the surface of a glass substrate is known.
  • an optical filter is mounted on the optical member described in Patent Document 1, there is a problem that the manufacturing cost is high because it is necessary to fix the optical filter to the optical member by adhesion or the like.
  • two types of light with different wavelengths may be used.
  • the light emitted from each of the two light emitting elements travels through two different optical paths and reaches the optical fiber.
  • an optical filter coated with a transmissive coating is required, the manufacturing cost of the optical member is high. Therefore, in order to transmit two types of light having different wavelengths without increasing the manufacturing cost, it is conceivable to arrange two light emitting elements side by side and travel two non-overlapping optical paths to reach the optical fiber.
  • the optical receptacle of the present invention is arranged between the first light emitting element and the second light emitting element and the optical transmitter, and optically connects the first light emitting element, the second light emitting element, and the optical transmitter. It is an optical receptacle for coupling, and is for incident a first incident surface for incidenting the first light emitted from the first light emitting element and a second light emitted from the second light emitting element. The second light incident on the second incident surface, the first light incident on the first incident surface and traveling inside the optical receptacle, and the second light incident on the second incident surface and traveling inside the optical receptacle.
  • the emission surface having an emission surface for emitting toward the optical transmitter and parallel to a first surface including the first optical axis of the first light and the second optical axis of the second light.
  • the curvature of the emission surface in the first cross section of the above is parallel to the first optical axis intersecting with the emission surface or the second optical axis, and is orthogonal to the first surface. It is smaller than the curvature of the emission surface.
  • the optical module of the present invention includes a photoelectric conversion device having a first light emitting element and a second light emitting element, and first light emitted from the first light emitting element and second light emitted from the second light emitting element. It has an optical receptacle of the present invention for optically coupling the light to an optical transmitter.
  • the optical receptacle of the present invention can transmit light emitted from a plurality of light emitting elements to an optical transmitter while maintaining manufacturing cost and optical coupling efficiency.
  • FIG. 1 is a cross-sectional view of the optical module according to the first embodiment.
  • 2A to 2D are views showing the configuration of an optical receptacle.
  • 3A and 3B are diagrams showing the configuration of an optical receptacle.
  • FIG. 4 is an optical path diagram of the optical module.
  • 5A and 5B are diagrams for explaining the simulation.
  • FIG. 1 is a cross-sectional view of the optical module 100 according to the first embodiment of the present invention.
  • the optical module 100 includes a substrate-mounted photoelectric conversion device 120 including a first light emitting element 122 and a second light emitting element 123, and an optical receptacle 140.
  • the optical module 100 according to the present embodiment is an optical module for transmission for transmitting the light emitted from the first light emitting element 122 and the second light emitting element 123 to one optical transmitter 160, and is an optical receptacle.
  • An optical transmitter 160 is coupled (hereinafter, also referred to as a connection) to 140 for use.
  • the photoelectric conversion device 120 includes a substrate 121, a first light emitting element 122, and a second light emitting element 123.
  • the substrate 121 supports the first light emitting element 122 and the second light emitting element 123, and is fixed to the optical receptacle 140.
  • the substrate 121 is, for example, a glass composite substrate, a glass epoxy substrate, a flexible sill substrate, or the like.
  • a first light emitting element 122 and a second light emitting element 123 are arranged on the substrate 121. In the present embodiment, the first light emitting element 122 and the second light emitting element 123 are arranged in the left-right direction in FIG.
  • first light emitting element 122 and the second light emitting element 123 are the first central axis CA1 of the first incident surface 141, the second central axis CA2 of the second incident surface, and the third central axis of the exit surface 144. It is arranged on a cross section containing CA3.
  • the first light emitting element 122 and the second light emitting element 123 are, for example, a vertical cavity surface emitting laser (VCSEL).
  • the wavelength of the emitted light is different between the first light emitting element 122 and the second light emitting element 123.
  • the wavelength of the first light L1 emitted from the first light emitting element 122 is 810 nm
  • the wavelength of the second light L2 emitted from the second light emitting element 123 is 910 nm.
  • the distance between the first optical axis OA1 of the first light L1 and the second optical axis OA2 of the second light L2 is not particularly limited, but the first light emitting element 122 and the second light emitting element 123 are appropriately arranged.
  • the number of the first light emitting element 122 and the number of the second light emitting element 123 are not particularly limited. In the present embodiment, the number of the first light emitting elements 122 and the number of the second light emitting elements 123 are the same. Specifically, the number of the first light emitting element 122 and the number of the second light emitting elements 123 are 12, respectively.
  • the optical receptacle 140 is arranged on the substrate 121 of the photoelectric conversion device 120.
  • the optical receptacle 140 is arranged between the photoelectric conversion device 120 and the optical transmitter 160, and has the first light emitting surface 122a of the first light emitting element 122, the second light emitting surface 123a of the second light emitting element 123, and the light. Optically coupled to the end face 163 of the transmitter 160.
  • the configuration of the optical receptacle 140 will be described in detail separately.
  • the type of the optical transmitter 160 is not particularly limited. Examples of the types of optical transmitters 160 include optical fibers and optical waveguides. In this embodiment, the optical transmitter 160 is an optical fiber having a core 161 and a cladding 162. The number of optical transmitters 160 is not particularly limited and is selected according to the configuration of the optical receptacle 140. The number of the optical transmitters 160 may be one or a plurality. In this embodiment, the number of optical transmitters 160 is twelve.
  • FIGS. 3A and 3B are diagrams showing the configuration of the optical receptacle 140.
  • 2A is a plan view of the optical receptacle 140
  • FIG. 2B is a bottom view
  • FIG. 2C is a front view
  • FIG. 2D is a left side view
  • 3A is a cross-sectional view taken along the line AA shown in FIG. 2A
  • FIG. 3B is a diagram for explaining an exit surface 144.
  • the direction in which the first cross section CS1 extends is the Y direction
  • the direction in which the second cross section CS2 extends is the X direction.
  • the optical receptacle 140 has translucency, and the first light L1 emitted from the first light emitting surface 122a of the first light emitting element 122 and the second light emitted from the second light emitting surface 123a of the second light emitting element 123. L2 is emitted toward the end face 163 of the optical transmitter 160.
  • the optical receptacle 140 has a first incident surface 141, a second incident surface 142, a reflecting surface 143, and an emitting surface 144.
  • the positioning unit 145 for positioning the optical transmission body 160 is further provided.
  • the optical receptacle 140 is formed by using a material having translucency with respect to light having a wavelength used for optical communication. Examples of such materials include transparent resins such as polyetherimide (PEI) and cyclic olefin resins. Further, the optical receptacle 140 is manufactured, for example, by injection molding.
  • PEI polyetherimide
  • cyclic olefin resins examples include transparent resins such as polyetherimide (PEI) and cyclic olefin resins.
  • the optical receptacle 140 is manufactured, for example, by injection molding.
  • the first incident surface 141 is an optical surface that allows light emitted from the first light emitting surface 122a of the first light emitting element 122 to be incident on the inside of the optical receptacle 140.
  • the first incident surface 141 is formed on the bottom surface of the optical receptacle 140.
  • the shape of the first incident surface 141 is not particularly limited as long as it can be incident on the optical receptacle 140 while making the first light L1 emitted from the first light emitting element 122 a predetermined light flux.
  • the shape of the first incident surface 141 may be a convex lens surface that is convex toward the first light emitting element 122, a concave lens surface that is concave with respect to the first light emitting element 122, or a flat surface.
  • the first incident surface 141 is a convex lens surface that is convex toward the first light emitting element 122.
  • the plan view shape of the first incident surface 141 is not particularly limited.
  • the plan view shape of the first incident surface 141 may be a circular shape or a polygonal shape. In the present embodiment, the plan view shape of the first incident surface 141 is a circular shape.
  • the size of the first incident surface 141 is not particularly limited, but is preferably larger than the first light emitting surface 122a of the first light emitting element 122.
  • the first central axis CA1 of the first incident surface 141 may or may not be perpendicular to the first light emitting surface 122a of the first light emitting element 122.
  • the first central axis CA1 of the first incident surface 141 is perpendicular to the first light emitting surface 122a of the first light emitting element 122.
  • the first central axis CA1 of the first incident surface 141 may or may not coincide with the first optical axis OA1 of the first light L1 emitted from the first light emitting surface 122a of the first light emitting element 122.
  • the first central axis CA1 of the first incident surface 141 coincides with the first optical axis OA1 of the first light L1.
  • the number of the first incident surface 141 is not particularly limited as long as it is the same as the number of the first light emitting elements 122. In the present embodiment, the number of the first incident surfaces 141 is twelve.
  • the first incident surface 141 may control the light emitted from the first light emitting element 122 so as to be parallel light, may be controlled to be convergent light, or may be diffused light. It may be controlled to. In the present embodiment, the first incident surface 141 controls the light emitted from the first light emitting element 122 so as to be parallel light.
  • the second incident surface 142 is an optical surface for incident the light emitted from the second light emitting surface 123a of the second light emitting element 123 into the inside of the optical receptacle 140.
  • the second incident surface 142 is formed on the bottom surface of the optical receptacle 140.
  • the shape of the second incident surface 142 is not particularly limited.
  • the second incident surface 142 is not particularly limited as long as it can be incident on the optical receptacle 140 while making the light emitted from the second light emitting element 123 a predetermined luminous flux.
  • the second incident surface 142 may be a convex convex lens surface toward the second light emitting element 123, a concave concave lens surface toward the first light emitting element 122, or a flat surface.
  • the second incident surface 142 is a convex convex lens surface toward the second light emitting element 123.
  • the plan view shape of the second incident surface 142 is not particularly limited.
  • the plan view shape of the second incident surface 142 may be a circular shape or a polygonal shape. In the present embodiment, the plan view shape of the second incident surface 142 is a circular shape.
  • the size of the second incident surface 142 is not particularly limited, but is preferably larger than the second light emitting surface 123a of the second light emitting element 123.
  • the second central axis CA2 of the second incident surface 142 may or may not be perpendicular to the second light emitting surface 123a of the second light emitting element 123.
  • the second central axis CA2 of the second incident surface 142 is perpendicular to the second light emitting surface 123a of the second light emitting element 123.
  • the second central axis CA2 of the second incident surface 142 may or may not coincide with the second optical axis OA2 of the second light L2 emitted from the second light emitting surface 123a of the second light emitting element 123.
  • the second central axis CA2 of the second incident surface 142 coincides with the second optical axis OA2 of the second light L2 emitted from the second light emitting surface 123a of the second light emitting element 123. ..
  • the number of the second incident surfaces 142 is not particularly limited as long as it is the same as the number of the second light emitting elements 123 and the optical transmitter 160. In the present embodiment, the number of the second incident surfaces 142 is twelve.
  • the second incident surface 142 may control the light emitted from the second light emitting element 123 so as to be parallel light, may be controlled to be convergent light, or may be diffused light. It may be controlled to. In the present embodiment, the second incident surface 142 controls the light emitted from the second light emitting element 123 so as to be parallel light.
  • first central axis CA1 of the first incident surface 141 and the second central axis CA2 of the second incident surface may or may not be parallel.
  • first central axis CA1 and the second central axis CA2 are parallel.
  • the distance between the first central axis CA1 and the second central axis CA2 depends on the distance between the first optical axis OA1 of the first light emitting element 122 and the second optical axis OA2 of the second light emitting element 123, but is 0.25. The range of about 0.75 mm is preferable.
  • the reflecting surface 143 internally reflects the first light L1 incident on the first incident surface 141 and the second light incident on the second incident surface 142 toward the exit surface 144.
  • the reflective surface 143 is arranged on the top surface of the optical receptacle 140.
  • the reflective surface 143 is inclined so as to approach the optical transmitter 160 from the bottom surface of the optical receptacle 140 toward the top surface.
  • the inclination angle of the reflecting surface 142 is such that the first optical axis OA1 of the first light L1 incident on the first incident surface 141 and the second optical axis of the second light L2 incident on the second incident surface 142. It is 45 ° with respect to OA2.
  • the reflecting surface 143 is inclined so that the first light L1 incident on the first incident surface 141 and the second light L2 incident on the second incident surface 142 are internally reflected toward the exit surface 144.
  • the shape of the reflective surface 143 is not particularly limited as long as it can exhibit the above functions.
  • the shape of the reflective surface 143 may be a surface having a ridge toward the inside of the optical receptacle 140, a surface convex toward the outside of the optical receptacle 140, or a flat surface. In the present embodiment, the shape of the reflective surface 143 is a flat surface.
  • the exit surface 144 emits the first light L1 incident on the first incident surface 141 and the second light L2 incident on the second incident surface 142 toward the exit surface 144.
  • the emission surface 144 is arranged in front of the left side surface of the optical receptacle 140 so as to face the end surface 163 of the optical transmission body 160.
  • the size of the emission surface 144 is not particularly limited as long as the first light L1 and the second light L2 can be appropriately controlled.
  • the size of the emission surface 144 depends on the first optical axis OA1 of the first light emitting element 122 and the second optical axis OA2 of the second light emitting element.
  • the plan view shape of the exit surface 144 is not particularly limited.
  • the plan view shape of the exit surface 144 may be rectangular or elliptical. Since the optical receptacle 140 is generally standardized, it is not possible to control the first light L1 and the second light L2 by simply increasing the diameter of the exit surface 144. In the present embodiment, the plan view shape of the exit surface 144 is elliptical.
  • the number of exit surfaces 144 is 12.
  • the third central axis CA3 of the emission surface 144 may or may not be perpendicular to the end surface 163 of the optical transmitter 160. In the present embodiment, the third central axis CA3 of the emission surface 144 is perpendicular to the end surface 163 of the optical transmitter 160.
  • the emission surface 144 is the curvature of the emission surface 144 in the first cross section CS1 of the emission surface 144, which is parallel to the first surface including the first optical axis OA1 of the first light L1 and the second optical axis OA2 of the second light L2.
  • the curvature (first curvature) of the emission surface 144 in the second cross section CS2 of the emission surface 144 whose first optical axis is parallel to the first optical axis OA1 or the second optical axis OA2 intersecting the emission surface 144 and is orthogonal to the first surface. It is configured to be smaller than 2 curvatures).
  • the direction in which the first cross section CS1 extends is the Y direction
  • the direction in which the second cross section CS2 extends is the X direction.
  • the first curvature and the second curvature are determined by the distance between the first optical axis OA1 of the first light L1 and the second optical axis OA2 of the second light L2, and the distance between the exit surface 144 and the end surface 163 of the optical transmitter 160. Will be done.
  • the first curvature is preferably in the range of 4.2 to 4.4. If the first curvature is not within a predetermined range, the first light L1 and the second light L2 do not reach the end face 163 of the optical transmitter 160.
  • the second curvature is preferably in the range of 4.22 to 4.37. Since the optical receptacle 140 is generally standardized, the size of the emission surface 144 in the X direction is determined. Therefore, the second curvature is also determined to some extent.
  • the difference between the first curvature and the second curvature is preferably in the range of 0.02 to 0.03.
  • the relationship between the length of the exit surface 144 in the first cross section CS1 and the length of the exit surface 144 in the second cross section CS2 is not particularly limited as long as the first light L1 and the second light L2 can be appropriately controlled.
  • the first light emitting element 122 and the second light emitting element 123 are arranged in the left-right direction on the paper surface. Therefore, the first light L1 and the second light L2 that reach the emission surface 144 arrive so as to be arranged in the vertical direction of the paper surface as shown in FIG. 3B. Therefore, in the present embodiment, it is preferable that the length of the exit surface 144 in the first cross section CS1 is longer than the length of the exit surface 144 in the second cross section CS2.
  • the positioning unit 145 positions the end face 163 of the optical transmitter 160 with respect to the optical receptacle 140.
  • the configuration of the positioning unit 145 is not particularly limited as long as the above functions can be exhibited.
  • the positioning portion 145 has a cylindrical shape.
  • the positioning unit 145 is arranged outside the exit surfaces 144 at both ends so as to sandwich the plurality of emission surfaces 144 in the arrangement direction of the emission surfaces 144.
  • the optical transmission body 160 is positioned with respect to the optical receptacle 140 by inserting the optical transmission body 160 into a ferrule in which the optical transmission body 160 is arranged in the positioning unit 145.
  • FIG. 4 is an optical path diagram of the optical module 100. Note that in FIG. 4, hatching is omitted in order to show the optical path of light.
  • the first light L1 emitted from the first light emitting surface 122a of the first light emitting element 122 is incident on the inside of the optical receptacle 140 on the first incident surface 141.
  • the second light L2 emitted from the second light emitting surface 123a of the second light emitting element 123 is incident on the inside of the optical receptacle 140 at the second incident surface 142.
  • the first incident surface 141 is controlled so that the first light L1 is parallel light
  • the second incident surface 142 is controlled so that the second light L2 is parallel light.
  • the light incident on the first incident surface 141 or the second incident surface 142 travels inside the optical receptacle 140 in the state of parallel light.
  • the first light L1 and the second light L2 that have traveled through the optical receptacle 140 are internally reflected by the reflection surface 143 toward the emission surface 144.
  • the first light L1 and the second light L2 internally reflected by the reflection surface 143 reach the emission surface 144.
  • the first light L1 reaches the region substantially central of the upper half
  • the second light L2 reaches the region substantially central of the lower half.
  • the curvature of the emission surface 144 in the first cross section CS1 of the emission surface 144 parallel to the first surface including the first optical axis OA1 of the first light L1 and the second optical axis OA2 of the second light L2 is , Parallel to the first optical axis OA1 or the second optical axis OA2, and perpendicular to the first plane, smaller than the curvature of the exit surface 144 in the second cross section CS2 of the exit surface 144. Therefore, since the first light L1 reaches the upper portion of the emission surface 144 away from the center, it is emitted from the emission surface 144 while being refracted more in the Y direction than in the X direction.
  • the emitted first light L1 travels toward the end face 163 of the optical transmission body 160.
  • the second light L2 reaches the lower portion of the emission surface 144 away from the center, it is emitted from the emission surface 144 while being refracted more in the Y direction than in the X direction.
  • the emitted second light L2 travels toward the end face 163 of the optical transmission body 160.
  • FIG. 5A and 5B are diagrams for explaining this simulation.
  • 5A is a cross-sectional view of the optical module 100
  • FIG. 5B is a view of the exit surface 144 as viewed from the direction along the third central axis CA3.
  • hatching is omitted in order to show the optical path of light.
  • the emission surface 144 has a variable distance Z between optical axes while the curvature in the X direction (second curvature) and the curvature in the Y direction (first curvature) of the emission surface 144 are constant.
  • the allowable amount of length in the Y direction was simulated.
  • the size of the optical receptacle 140 generally used for optical communication is standardized. That is, since the distance Z between the optical axes of the two adjacent emission surfaces 144 is fixed, the maximum length of the emission surface 144 in the X direction in FIG. 5B is 25 mm. Therefore, in this simulation, the length R2 of the exit surface 144 in the X direction is 25 mm.
  • the radius of curvature of the emission surface 144 in the X direction is 4.3000 mm, and the conic constant is -26,000.
  • the radius of curvature of the exit surface 144 in the Y direction is 4.3107 mm, and the conic constant is -2.6920.
  • the distance Z between the optical axes is 0.25 to 0.75 mm, the length R1 of the exit surface 144 in the Y direction and the optical coupling efficiency can be maintained high.
  • the distance Z between the optical axes is less than 0.25 mm, the first light emitting element 122 and the second light emitting element 123 cannot be arranged close to each other. Further, when the distance Z between the optical axes exceeds 0.75 mm, the distance between the first light emitting element 122 and the second light emitting element 123 cannot be widened from the viewpoint of the size of the substrate 121.
  • an exit surface 144 having a radius of curvature in the X direction of 4.3000 and a radius of curvature in the Y direction of 4.3107 is shown as an example.
  • the allowable amount of the radius of curvature in the X direction or the radius of curvature in the Y direction can be grasped.
  • the curvature (first curvature) of the exit surface 143 in the first cross section CS1 of the exit surface 143 is the curvature (first curvature) of the exit surface 143 in the second cross section CS2 of the exit surface 143. Since it is smaller than the curvature (second curvature), the first light L1 emitted from the first light emitting element 122 and the second light L2 emitted from the second light emitting element 123 can be transmitted to the optical transmitter 160.
  • optical receptacle and the optical module according to the present invention are useful for optical communication using, for example, an optical transmitter.
  • Optical module 120 Photoelectric converter 121 Substrate 122 First light emitting element 122a First light emitting surface 123 Second light emitting element 123a Second light emitting surface 140 Optical receptacle 141 First incident surface 142 Second incident surface 143 Reflection surface 144 Emission surface 145 Positioning Part 160 Optical transmitter 161 Core 162 Clad 163 End face CA1 1st central axis CA2 2nd central axis CA3 3rd central axis CS1 1st section CS2 2nd section L1 1st optical L2 2nd optical OA1 1st optical axis OA2 2nd Optical axis Z Distance between optical axes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical receptacle (140) has a first incidence surface (141) for causing first light emitted from a first light emitting element to be incident thereon, a second incidence surface (142) for causing second light emitted from a second light emitting element to be incident thereon, and an emission surface (144) for causing the first light incident on the first incidence surface and traveling through the optical receptacle and the second light incident on the second incidence surface and traveling through the optical receptacle to be emitted toward an optical transmitter. The curvature of the emission surface in a first cross section (CS1) of the emission surface is smaller than the curvature of the emission surface in a second cross section (CS2) of the emission surface, the first cross section being parallel to a first surface including a first optical axis of the first light and a second optical axis of the second light, and the second cross section being parallel to the first optical axis or the second optical axis crossing the emission surface and being orthogonal to the first surface.

Description

光レセプタクルおよび光モジュールOptical Receptacles and Optical Modules
 本発明は、光レセプタクルおよび光モジュールに関する。 The present invention relates to an optical receptacle and an optical module.
 以前から、光ファイバーや光導波路などの光伝送体を用いた光通信には、面発光レーザ(例えば、垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser))などの発光素子を備えた光モジュールが使用されている。光モジュールは、1または2以上の光電変換素子(発光素子または受光素子)と、送信用、受信用または送受信用の光レセプタクルを有する(例えば、特許文献1参照)。 For optical communication using an optical transmitter such as an optical fiber or an optical waveguide, light equipped with a light emitting element such as a surface emitting laser (for example, a vertical cavity surface emitting laser (VCSEL)) or the like is provided. The module is being used. The optical module has one or more photoelectric conversion elements (light emitting elements or light receiving elements) and optical receptacles for transmission, reception, or transmission / reception (see, for example, Patent Document 1).
 特許文献1には、送受信用の光学部材(光レセプタクル)が記載されている。特許文献1に記載の光学部材は、送信用レンズアレイと、フィルター搭載面と、ファイバーレンズアレイと、反射面と、受信用レンズアレイと、を有する。フィルター搭載面には、所定の波長の光を透過させ、かつ他の所定の波長の光を透過させるための光フィルターが配置されている。送信用レンズアレイに対向して送信用光素子が配置され、受信用レンズアレイに対向して受信用光素子が配置され、ファイバーレンズアレイに対向して光ファイバーが配置される。 Patent Document 1 describes an optical member (optical receptacle) for transmission and reception. The optical member described in Patent Document 1 includes a transmitting lens array, a filter mounting surface, a fiber lens array, a reflecting surface, and a receiving lens array. An optical filter for transmitting light having a predetermined wavelength and transmitting light having another predetermined wavelength is arranged on the filter mounting surface. The transmitting optical element is arranged facing the transmitting lens array, the receiving optical element is arranged facing the receiving lens array, and the optical fiber is arranged facing the fiber lens array.
 特許文献1に記載の光学部材では、送信用光素子から出射された光は、送信用レンズアレイで光学部材に入射する。光学部材に入射した光は、光フィルターで所定の波長の光だけがファイバーレンズアレイに向けて反射され、他の一部の波長の光は光フィルターを透過する。光フィルターで反射した光は、ファイバーレンズアレイから光ファイバーに向けて出射される。一方、光ファイバーから出射された光は、ファイバーレンズアレイで光学部材に入射する。光学部材に入射した光は、光フィルターを透過し、反射面で受信用レンズアレイに向けて反射される。反射面で反射した光は、受信用レンズアレイから受光用光素子に向けて出射される。 In the optical member described in Patent Document 1, the light emitted from the transmission optical element is incident on the optical member by the transmission lens array. As for the light incident on the optical member, only the light having a predetermined wavelength is reflected toward the fiber lens array by the optical filter, and the light having some other wavelengths is transmitted through the optical filter. The light reflected by the optical filter is emitted from the fiber lens array toward the optical fiber. On the other hand, the light emitted from the optical fiber is incident on the optical member by the fiber lens array. The light incident on the optical member passes through the optical filter and is reflected by the reflecting surface toward the receiving lens array. The light reflected by the reflecting surface is emitted from the receiving lens array toward the light receiving optical element.
特開2008-225339号公報Japanese Unexamined Patent Publication No. 2008-225339
 ガラス基板の表面に反射コートおよび透過コートを施した光フィルターが知られている。このような光フィルターを特許文献1に記載の光学部材に搭載する場合、光学部材に対して接着などで固定する必要があるため、製造コストが高くなるという問題がある。 An optical filter having a reflective coating and a transmissive coating on the surface of a glass substrate is known. When such an optical filter is mounted on the optical member described in Patent Document 1, there is a problem that the manufacturing cost is high because it is necessary to fix the optical filter to the optical member by adhesion or the like.
 また、光通信では、波長の異なる2種類の光を用いることがある。特許文献1に記載の光学部材を用いて波長の異なる2種類の光を送信する場合、2つの発光素子からそれぞれ出射された光は、異なる2つの光路を進行して光ファイバーに到達する。この場合も、透過コートを施した光フィルターが必要なため、光学部材の製造コストが高くなる。そこで、製造コストを高くすることなく、波長の異なる2種類の光を送信するには、2つの発光素子を並べて配置し、重複しない2つの光路を進行して光ファイバーに到達させることが考えられる。しかしながら、複数の発光素子から出射された波長の異なる光を1つの光ファイバーに入射させようとすると、発光素子から出射された光の全てをファイバーレンズアレイに入射させることができないため、光の結合効率が低くなるという問題がある。 Also, in optical communication, two types of light with different wavelengths may be used. When two types of light having different wavelengths are transmitted using the optical member described in Patent Document 1, the light emitted from each of the two light emitting elements travels through two different optical paths and reaches the optical fiber. In this case as well, since an optical filter coated with a transmissive coating is required, the manufacturing cost of the optical member is high. Therefore, in order to transmit two types of light having different wavelengths without increasing the manufacturing cost, it is conceivable to arrange two light emitting elements side by side and travel two non-overlapping optical paths to reach the optical fiber. However, if light emitted from a plurality of light emitting elements having different wavelengths is incident on one optical fiber, all the light emitted from the light emitting elements cannot be incident on the fiber lens array, so that the light coupling efficiency There is a problem that becomes low.
 そこで、本発明の目的は、製造コストおよび光結合効率を維持しつつ、複数の発光素子から出射された光を光伝送体に伝達できる光レセプタクルを提供することである。また、本発明の別の目的は、この光レセプタクルを有する光モジュールを提供することである。 Therefore, an object of the present invention is to provide an optical receptacle capable of transmitting light emitted from a plurality of light emitting elements to an optical transmitter while maintaining manufacturing cost and optical coupling efficiency. Another object of the present invention is to provide an optical module having this optical receptacle.
 本発明の光レセプタクルは、第1発光素子および第2発光素子と、光伝送体との間に配置され、前記第1発光素子および前記第2発光素子と、前記光伝送体とを光学的に結合するための光レセプタクルであって、前記第1発光素子から出射された第1光を入射させるための第1入射面と、前記第2発光素子から出射された第2光を入射させるための第2入射面と、前記第1入射面で入射し、前記光レセプタクルの内部を進行した前記第1光および前記第2入射面で入射し、前記光レセプタクルの内部を進行した前記第2光を前記光伝送体に向けて出射させるための出射面と、を有し、前記第1光の第1光軸および前記第2光の第2光軸を含む第1面に平行な、前記出射面の第1断面における前記出射面の曲率は、前記出射面と交わる前記第1光軸または前記第2光軸に平行であり、かつ前記第1面に直交する前記出射面の第2断面における前記出射面の曲率よりも小さい。 The optical receptacle of the present invention is arranged between the first light emitting element and the second light emitting element and the optical transmitter, and optically connects the first light emitting element, the second light emitting element, and the optical transmitter. It is an optical receptacle for coupling, and is for incident a first incident surface for incidenting the first light emitted from the first light emitting element and a second light emitted from the second light emitting element. The second light incident on the second incident surface, the first light incident on the first incident surface and traveling inside the optical receptacle, and the second light incident on the second incident surface and traveling inside the optical receptacle. The emission surface having an emission surface for emitting toward the optical transmitter and parallel to a first surface including the first optical axis of the first light and the second optical axis of the second light. The curvature of the emission surface in the first cross section of the above is parallel to the first optical axis intersecting with the emission surface or the second optical axis, and is orthogonal to the first surface. It is smaller than the curvature of the emission surface.
 また、本発明の光モジュールは、第1発光素子および第2発光素子を有する光電変換装置と、前記第1発光素子から出射された第1光および前記第2発光素子から出射された第2光を光伝送体に光学的に結合させるための、本発明の光レセプタクルと、を有する。 Further, the optical module of the present invention includes a photoelectric conversion device having a first light emitting element and a second light emitting element, and first light emitted from the first light emitting element and second light emitted from the second light emitting element. It has an optical receptacle of the present invention for optically coupling the light to an optical transmitter.
 本発明の光レセプタクルは、製造コストおよび光結合効率を維持しつつ、複数の発光素子から出射された光を光伝送体に伝達できる。 The optical receptacle of the present invention can transmit light emitted from a plurality of light emitting elements to an optical transmitter while maintaining manufacturing cost and optical coupling efficiency.
図1は、実施の形態1に係る光モジュールの断面図である。FIG. 1 is a cross-sectional view of the optical module according to the first embodiment. 図2A~Dは、光レセプタクルの構成を示す図である。2A to 2D are views showing the configuration of an optical receptacle. 図3A、Bは、光レセプタクルの構成を示す図である。3A and 3B are diagrams showing the configuration of an optical receptacle. 図4は、光モジュールにおける光路図である。FIG. 4 is an optical path diagram of the optical module. 図5A、Bは、シミュレーションを説明するための図である。5A and 5B are diagrams for explaining the simulation.
 以下、本発明の実施の形態に係る光レセプタクルおよび光モジュールについて、図面を参照して詳細に説明する。 Hereinafter, the optical receptacle and the optical module according to the embodiment of the present invention will be described in detail with reference to the drawings.
 [実施の形態1]
 (光モジュールの構成)
 図1は、本発明の実施の形態1に係る光モジュール100の断面図である。
[Embodiment 1]
(Optical module configuration)
FIG. 1 is a cross-sectional view of the optical module 100 according to the first embodiment of the present invention.
 図1に示されるように、光モジュール100は、第1発光素子122および第2発光素子123を含む基板実装型の光電変換装置120と、光レセプタクル140とを有する。本実施の形態に係る光モジュール100は、第1発光素子122および第2発光素子123から出射された光を1本の光伝送体160に伝達するための送信用の光モジュールであり、光レセプタクル140に光伝送体160が結合(以下、接続ともいう)されて使用される。 As shown in FIG. 1, the optical module 100 includes a substrate-mounted photoelectric conversion device 120 including a first light emitting element 122 and a second light emitting element 123, and an optical receptacle 140. The optical module 100 according to the present embodiment is an optical module for transmission for transmitting the light emitted from the first light emitting element 122 and the second light emitting element 123 to one optical transmitter 160, and is an optical receptacle. An optical transmitter 160 is coupled (hereinafter, also referred to as a connection) to 140 for use.
 光電変換装置120は、基板121と、第1発光素子122と、第2発光素子123とを有する。 The photoelectric conversion device 120 includes a substrate 121, a first light emitting element 122, and a second light emitting element 123.
 基板121は、第1発光素子122および第2発光素子123を支持するとともに、光レセプタクル140に対して固定される。基板121は、例えば、ガラスコンポジット基板やガラスエポキシ基板、フレキブシル基板などである。基板121上には、第1発光素子122および第2発光素子123が配置されている。本実施の形態では、第1発光素子122および第2発光素子123は、図1において左右方向に配置されている。より具体的には、第1発光素子122および第2発光素子123は、第1入射面141の第1中心軸CA1、第2入射面の第2中心軸CA2および出射面144の第3中心軸CA3を含む断面上に配置されている。 The substrate 121 supports the first light emitting element 122 and the second light emitting element 123, and is fixed to the optical receptacle 140. The substrate 121 is, for example, a glass composite substrate, a glass epoxy substrate, a flexible sill substrate, or the like. A first light emitting element 122 and a second light emitting element 123 are arranged on the substrate 121. In the present embodiment, the first light emitting element 122 and the second light emitting element 123 are arranged in the left-right direction in FIG. More specifically, the first light emitting element 122 and the second light emitting element 123 are the first central axis CA1 of the first incident surface 141, the second central axis CA2 of the second incident surface, and the third central axis of the exit surface 144. It is arranged on a cross section containing CA3.
 第1発光素子122および第2発光素子123は、例えば垂直共振器面発光レーザ(VCSEL)である。第1発光素子122と、第2発光素子123とは、出射する光の波長が異なる。例えば、第1発光素子122から出射される第1光L1の波長は810nmであり、第2発光素子123から出射される第2光L2の波長は910nmである。また、第1光L1の第1光軸OA1と、第2光L2の第2光軸OA2との距離は、特に限定されないが、第1発光素子122および第2発光素子123を適切に配置する観点から、0.25~0.75mmの範囲内が好ましい。第1発光素子122の数および第2発光素子123の数は特に限定されない。本実施の形態では、第1発光素子122の数および第2発光素子123の数は、同じである。具体的には、第1発光素子122の数および第2発光素子123の数は、それぞれ12個である。 The first light emitting element 122 and the second light emitting element 123 are, for example, a vertical cavity surface emitting laser (VCSEL). The wavelength of the emitted light is different between the first light emitting element 122 and the second light emitting element 123. For example, the wavelength of the first light L1 emitted from the first light emitting element 122 is 810 nm, and the wavelength of the second light L2 emitted from the second light emitting element 123 is 910 nm. The distance between the first optical axis OA1 of the first light L1 and the second optical axis OA2 of the second light L2 is not particularly limited, but the first light emitting element 122 and the second light emitting element 123 are appropriately arranged. From the viewpoint, the range of 0.25 to 0.75 mm is preferable. The number of the first light emitting element 122 and the number of the second light emitting element 123 are not particularly limited. In the present embodiment, the number of the first light emitting elements 122 and the number of the second light emitting elements 123 are the same. Specifically, the number of the first light emitting element 122 and the number of the second light emitting elements 123 are 12, respectively.
 光レセプタクル140は、光電変換装置120の基板121上に配置されている。光レセプタクル140は、光電変換装置120と光伝送体160との間に配置された状態で、第1発光素子122の第1発光面122aおよび第2発光素子123の第2発光面123aと、光伝送体160の端面163とを光学的に結合させる。光レセプタクル140の構成については、別途詳細に説明する。 The optical receptacle 140 is arranged on the substrate 121 of the photoelectric conversion device 120. The optical receptacle 140 is arranged between the photoelectric conversion device 120 and the optical transmitter 160, and has the first light emitting surface 122a of the first light emitting element 122, the second light emitting surface 123a of the second light emitting element 123, and the light. Optically coupled to the end face 163 of the transmitter 160. The configuration of the optical receptacle 140 will be described in detail separately.
 光伝送体160の種類は、特に限定されない。光伝送体160の種類の例には、光ファイバー、光導波路が含まれる。本実施の形態では、光伝送体160は、コア161およびクラッド162を有する光ファイバーである。光伝送体160の数は、特に限定されず、光レセプタクル140の構成に合わせて選択される。光伝送体160の数は、1本でもよいし、複数でもよい。本実施の形態では、光伝送体160の数は、12本である。 The type of the optical transmitter 160 is not particularly limited. Examples of the types of optical transmitters 160 include optical fibers and optical waveguides. In this embodiment, the optical transmitter 160 is an optical fiber having a core 161 and a cladding 162. The number of optical transmitters 160 is not particularly limited and is selected according to the configuration of the optical receptacle 140. The number of the optical transmitters 160 may be one or a plurality. In this embodiment, the number of optical transmitters 160 is twelve.
 (光レセプタクルの構成)
 図2A~Dおよび図3A、Bは、光レセプタクル140の構成を示す図である。図2Aは、光レセプタクル140の平面図であり、図2Bは、底面図であり、図2Cは、正面図であり、図2Dは、左側面図である。図3Aは、図2Aに示されるA-A線の断面図であり、図3Bは、出射面144を説明するための図である。なお、図3Bにおける第1断面CS1が延在する方向をY方向とし、第2断面CS2が延在する方向をX方向とする。
(Structure of optical receptacle)
2A to 2D and FIGS. 3A and 3B are diagrams showing the configuration of the optical receptacle 140. 2A is a plan view of the optical receptacle 140, FIG. 2B is a bottom view, FIG. 2C is a front view, and FIG. 2D is a left side view. 3A is a cross-sectional view taken along the line AA shown in FIG. 2A, and FIG. 3B is a diagram for explaining an exit surface 144. In FIG. 3B, the direction in which the first cross section CS1 extends is the Y direction, and the direction in which the second cross section CS2 extends is the X direction.
 光レセプタクル140は、透光性を有し、第1発光素子122の第1発光面122aから出射された第1光L1および第2発光素子123の第2発光面123aから出射された第2光L2を光伝送体160の端面163に向けて出射させる。図2A~Dおよび図3A、Bに示されるように、光レセプタクル140は、第1入射面141と、第2入射面142と、反射面143と、出射面144とを有する。本実施の形態では、光伝送体160を位置決めするための位置決め部145をさらに有する。 The optical receptacle 140 has translucency, and the first light L1 emitted from the first light emitting surface 122a of the first light emitting element 122 and the second light emitted from the second light emitting surface 123a of the second light emitting element 123. L2 is emitted toward the end face 163 of the optical transmitter 160. As shown in FIGS. 2A-D and 3A, B, the optical receptacle 140 has a first incident surface 141, a second incident surface 142, a reflecting surface 143, and an emitting surface 144. In the present embodiment, the positioning unit 145 for positioning the optical transmission body 160 is further provided.
 光レセプタクル140は、光通信に用いられる波長の光に対して透光性を有する材料を用いて形成される。このような材料の例には、ポリエーテルイミド(PEI)や環状オレフィン樹脂などの透明な樹脂が含まれる。また、光レセプタクル140は、例えば、射出成形により製造される。 The optical receptacle 140 is formed by using a material having translucency with respect to light having a wavelength used for optical communication. Examples of such materials include transparent resins such as polyetherimide (PEI) and cyclic olefin resins. Further, the optical receptacle 140 is manufactured, for example, by injection molding.
 第1入射面141は、第1発光素子122の第1発光面122aから出射された光を光レセプタクル140の内部に入射させる光学面である。第1入射面141は、光レセプタクル140の底面に形成されている。第1入射面141の形状は、第1発光素子122から出射された第1光L1を所定の光束にしつつ、光レセプタクル140に入射させることができれば特に限定されない。第1入射面141の形状は、第1発光素子122に向けて凸状の凸レンズ面でもよいし、第1発光素子122に対して凹状の凹レンズ面でもよいし、平面でもよい。本実施の形態では、第1入射面141は、第1発光素子122に向けて凸状の凸レンズ面である。第1入射面141の平面視形状は、特に限定されない。第1入射面141の平面視形状は、円形状でもよいし、多角形状でもよい。本実施の形態では、第1入射面141の平面視形状は、円形状である。 The first incident surface 141 is an optical surface that allows light emitted from the first light emitting surface 122a of the first light emitting element 122 to be incident on the inside of the optical receptacle 140. The first incident surface 141 is formed on the bottom surface of the optical receptacle 140. The shape of the first incident surface 141 is not particularly limited as long as it can be incident on the optical receptacle 140 while making the first light L1 emitted from the first light emitting element 122 a predetermined light flux. The shape of the first incident surface 141 may be a convex lens surface that is convex toward the first light emitting element 122, a concave lens surface that is concave with respect to the first light emitting element 122, or a flat surface. In the present embodiment, the first incident surface 141 is a convex lens surface that is convex toward the first light emitting element 122. The plan view shape of the first incident surface 141 is not particularly limited. The plan view shape of the first incident surface 141 may be a circular shape or a polygonal shape. In the present embodiment, the plan view shape of the first incident surface 141 is a circular shape.
 第1入射面141の大きさは、特に限定されないが、第1発光素子122の第1発光面122aよりも大きいことが好ましい。第1入射面141の第1中心軸CA1は、第1発光素子122の第1発光面122aに対して垂直でもよいし、垂直でなくてもよい。本実施の形態では、第1入射面141の第1中心軸CA1は、第1発光素子122の第1発光面122aに対して垂直である。第1入射面141の第1中心軸CA1は、第1発光素子122の第1発光面122aから出射された第1光L1の第1光軸OA1と一致していてもよいし、一致していなくてもよい。本実施の形態では、第1入射面141の第1中心軸CA1は、第1光L1の第1光軸OA1と一致している。第1入射面141の数は、第1発光素子122の数と同じ数であれば、特に限定されない。本実施の形態では、第1入射面141の数は、12個である。 The size of the first incident surface 141 is not particularly limited, but is preferably larger than the first light emitting surface 122a of the first light emitting element 122. The first central axis CA1 of the first incident surface 141 may or may not be perpendicular to the first light emitting surface 122a of the first light emitting element 122. In the present embodiment, the first central axis CA1 of the first incident surface 141 is perpendicular to the first light emitting surface 122a of the first light emitting element 122. The first central axis CA1 of the first incident surface 141 may or may not coincide with the first optical axis OA1 of the first light L1 emitted from the first light emitting surface 122a of the first light emitting element 122. It does not have to be. In the present embodiment, the first central axis CA1 of the first incident surface 141 coincides with the first optical axis OA1 of the first light L1. The number of the first incident surface 141 is not particularly limited as long as it is the same as the number of the first light emitting elements 122. In the present embodiment, the number of the first incident surfaces 141 is twelve.
 第1入射面141は、第1発光素子122から出射された光を、平行光となるように制御してもよいし、収束光となるように制御してもよいし、拡散光となるように制御してもよい。本実施の形態では、第1入射面141は、第1発光素子122から出射された光を平行光となるように制御する。 The first incident surface 141 may control the light emitted from the first light emitting element 122 so as to be parallel light, may be controlled to be convergent light, or may be diffused light. It may be controlled to. In the present embodiment, the first incident surface 141 controls the light emitted from the first light emitting element 122 so as to be parallel light.
 第2入射面142は、第2発光素子123の第2発光面123aから出射された光を光レセプタクル140の内部に入射させる光学面である。第2入射面142は、光レセプタクル140の底面に形成されている。第2入射面142の形状は、特に限定されない。第2入射面142は、第2発光素子123から出射された光を所定の光束にしつつ、光レセプタクル140に入射させることができれば特に限定されない。第2入射面142は、第2発光素子123に向けた凸状の凸レンズ面でもよいし、第1発光素子122に向けた凹状の凹レンズ面でもよいし、平面でもよい。本実施の形態では、第2入射面142は、第2発光素子123に向かう凸状の凸レンズ面である。第2入射面142の平面視形状は、特に限定されない。第2入射面142の平面視形状は、円形状でもよいし、多角形状でもよい。本実施の形態では、第2入射面142の平面視形状は、円形状である。 The second incident surface 142 is an optical surface for incident the light emitted from the second light emitting surface 123a of the second light emitting element 123 into the inside of the optical receptacle 140. The second incident surface 142 is formed on the bottom surface of the optical receptacle 140. The shape of the second incident surface 142 is not particularly limited. The second incident surface 142 is not particularly limited as long as it can be incident on the optical receptacle 140 while making the light emitted from the second light emitting element 123 a predetermined luminous flux. The second incident surface 142 may be a convex convex lens surface toward the second light emitting element 123, a concave concave lens surface toward the first light emitting element 122, or a flat surface. In the present embodiment, the second incident surface 142 is a convex convex lens surface toward the second light emitting element 123. The plan view shape of the second incident surface 142 is not particularly limited. The plan view shape of the second incident surface 142 may be a circular shape or a polygonal shape. In the present embodiment, the plan view shape of the second incident surface 142 is a circular shape.
 第2入射面142の大きさは、特に限定されないが、第2発光素子123の第2発光面123aよりも大きいことが好ましい。第2入射面142の第2中心軸CA2は、第2発光素子123の第2発光面123aに対して垂直でもよいし、垂直でなくてもよい。本実施の形態では、第2入射面142の第2中心軸CA2は、第2発光素子123の第2発光面123aに対して垂直である。第2入射面142の第2中心軸CA2は、第2発光素子123の第2発光面123aから出射された第2光L2の第2光軸OA2と一致していてもよいし、一致していなくてもよい。本実施の形態では、第2入射面142の第2中心軸CA2は、第2発光素子123の第2発光面123aから出射された第2光L2の第2光軸OA2と一致していている。第2入射面142の数は、第2発光素子123の数および光伝送体160と同じ数であれば、特に限定されない。本実施の形態では、第2入射面142の数は、12個である。 The size of the second incident surface 142 is not particularly limited, but is preferably larger than the second light emitting surface 123a of the second light emitting element 123. The second central axis CA2 of the second incident surface 142 may or may not be perpendicular to the second light emitting surface 123a of the second light emitting element 123. In the present embodiment, the second central axis CA2 of the second incident surface 142 is perpendicular to the second light emitting surface 123a of the second light emitting element 123. The second central axis CA2 of the second incident surface 142 may or may not coincide with the second optical axis OA2 of the second light L2 emitted from the second light emitting surface 123a of the second light emitting element 123. It does not have to be. In the present embodiment, the second central axis CA2 of the second incident surface 142 coincides with the second optical axis OA2 of the second light L2 emitted from the second light emitting surface 123a of the second light emitting element 123. .. The number of the second incident surfaces 142 is not particularly limited as long as it is the same as the number of the second light emitting elements 123 and the optical transmitter 160. In the present embodiment, the number of the second incident surfaces 142 is twelve.
 第2入射面142は、第2発光素子123から出射された光を、平行光となるように制御してもよいし、収束光となるように制御してもよいし、拡散光となるように制御してもよい。本実施の形態では、第2入射面142は、第2発光素子123から出射された光を平行光となるように制御する。 The second incident surface 142 may control the light emitted from the second light emitting element 123 so as to be parallel light, may be controlled to be convergent light, or may be diffused light. It may be controlled to. In the present embodiment, the second incident surface 142 controls the light emitted from the second light emitting element 123 so as to be parallel light.
 また、第1入射面141の第1中心軸CA1と、第2入射面の第2中心軸CA2とは、平行でもよいし、平行でなくてもよい。本実施の形態では、第1中心軸CA1および第2中心軸CA2は、平行である。また、第1中心軸CA1と第2中心軸CA2との間隔は、第1発光素子122の第1光軸OA1および第2発光素子123の第2光軸OA2間距離依存するが、0.25~0.75mmの範囲内が好ましい。 Further, the first central axis CA1 of the first incident surface 141 and the second central axis CA2 of the second incident surface may or may not be parallel. In this embodiment, the first central axis CA1 and the second central axis CA2 are parallel. The distance between the first central axis CA1 and the second central axis CA2 depends on the distance between the first optical axis OA1 of the first light emitting element 122 and the second optical axis OA2 of the second light emitting element 123, but is 0.25. The range of about 0.75 mm is preferable.
 反射面143は、第1入射面141で入射した第1光L1と、第2入射面142で入射した第2光とを出射面144に向けて内部反射させる。反射面143は、光レセプタクル140の天面に配置されている。反射面143は、光レセプタクル140の底面から天面に向かうにつれて、光伝送体160に近づくように傾斜している。本実施の形態では、反射面142の傾斜角度は、第1入射面141で入射した第1光L1の第1光軸OA1および第2入射面142で入射した第2光L2の第2光軸OA2に対して45°である。反射面143は、第1入射面141で入射した第1光L1および第2入射面142で入射した第2光L2が出射面144に向かって内部反射されるように傾斜している。反射面143の形状は、上記の機能を発揮できれば特に限定されない。反射面143の形状は、光レセプタクル140の内部に向かって凸条の面でもよいし、光レセプタクル140の外部に向かって凸状の面でもよいし、平面もよい。本実施の形態では、反射面143の形状は、平面である。 The reflecting surface 143 internally reflects the first light L1 incident on the first incident surface 141 and the second light incident on the second incident surface 142 toward the exit surface 144. The reflective surface 143 is arranged on the top surface of the optical receptacle 140. The reflective surface 143 is inclined so as to approach the optical transmitter 160 from the bottom surface of the optical receptacle 140 toward the top surface. In the present embodiment, the inclination angle of the reflecting surface 142 is such that the first optical axis OA1 of the first light L1 incident on the first incident surface 141 and the second optical axis of the second light L2 incident on the second incident surface 142. It is 45 ° with respect to OA2. The reflecting surface 143 is inclined so that the first light L1 incident on the first incident surface 141 and the second light L2 incident on the second incident surface 142 are internally reflected toward the exit surface 144. The shape of the reflective surface 143 is not particularly limited as long as it can exhibit the above functions. The shape of the reflective surface 143 may be a surface having a ridge toward the inside of the optical receptacle 140, a surface convex toward the outside of the optical receptacle 140, or a flat surface. In the present embodiment, the shape of the reflective surface 143 is a flat surface.
 出射面144は、第1入射面141で入射した第1光L1と、第2入射面142で入射した第2光L2とを出射面144に向けて出射させる。出射面144は、光伝送体160の端面163と対向するように、光レセプタクル140の左側面正面に配置されている。 The exit surface 144 emits the first light L1 incident on the first incident surface 141 and the second light L2 incident on the second incident surface 142 toward the exit surface 144. The emission surface 144 is arranged in front of the left side surface of the optical receptacle 140 so as to face the end surface 163 of the optical transmission body 160.
 図3Bに示されるように、出射面144の大きさは、第1光L1および第2光L2を適切に制御できれば特に限定されない。出射面144の大きさは、第1発光素子122の第1光軸OA1および第2発光素子の第2光軸OA2に依存する。出射面144の平面視形状は、特に限定されない。出射面144の平面視形状は、矩形でもよいし、楕円形でもよい。なお、一般に光レセプタクル140は、規格化されているため、単純に出射面144の直径を大きくして、第1光L1および第2光L2を制御できない。本実施の形態では、出射面144の平面視形状は、楕円形である。また、出射面144の数は、12個である。出射面144の第3中心軸CA3は、光伝送体160の端面163に対して垂直でもよいし、垂直でなくてもよい。本実施の形態では、出射面144の第3中心軸CA3は、光伝送体160の端面163に対して垂直である。 As shown in FIG. 3B, the size of the emission surface 144 is not particularly limited as long as the first light L1 and the second light L2 can be appropriately controlled. The size of the emission surface 144 depends on the first optical axis OA1 of the first light emitting element 122 and the second optical axis OA2 of the second light emitting element. The plan view shape of the exit surface 144 is not particularly limited. The plan view shape of the exit surface 144 may be rectangular or elliptical. Since the optical receptacle 140 is generally standardized, it is not possible to control the first light L1 and the second light L2 by simply increasing the diameter of the exit surface 144. In the present embodiment, the plan view shape of the exit surface 144 is elliptical. The number of exit surfaces 144 is 12. The third central axis CA3 of the emission surface 144 may or may not be perpendicular to the end surface 163 of the optical transmitter 160. In the present embodiment, the third central axis CA3 of the emission surface 144 is perpendicular to the end surface 163 of the optical transmitter 160.
 出射面144は、第1光L1の第1光軸OA1および第2光L2の第2光軸OA2を含む第1面に平行な、出射面144の第1断面CS1における出射面144の曲率(第1曲率)が、出射面144と交わる第1光軸OA1または第2光軸OA2に平行であり、かつ第1面に直交する出射面144の第2断面CS2における出射面144の曲率(第2曲率)よりも小さくなるように構成されている。なお、図3Bにおける第1断面CS1が延在する方向をY方向とし、第2断面CS2が延在する方向をX方向とする。 The emission surface 144 is the curvature of the emission surface 144 in the first cross section CS1 of the emission surface 144, which is parallel to the first surface including the first optical axis OA1 of the first light L1 and the second optical axis OA2 of the second light L2. The curvature (first curvature) of the emission surface 144 in the second cross section CS2 of the emission surface 144 whose first optical axis is parallel to the first optical axis OA1 or the second optical axis OA2 intersecting the emission surface 144 and is orthogonal to the first surface. It is configured to be smaller than 2 curvatures). In FIG. 3B, the direction in which the first cross section CS1 extends is the Y direction, and the direction in which the second cross section CS2 extends is the X direction.
 第1曲率および第2曲率は、第1光L1の第1光軸OA1および第2光L2の第2光軸OA2の間隔と、出射面144と光伝送体160の端面163との間隔によって決定される。第1曲率は、4.2~4.4の範囲内が好ましい。第1曲率が所定の範囲内にないと、第1光L1および第2光L2が光伝送体160の端面163に到達しない。第2曲率は、4.22~4.37の範囲内が好ましい。一般に光レセプタクル140は、規格化されているため、X方向における出射面144の大きさが決まっている。よって、第2曲率もある程度決まっている。第1曲率と、第2曲率との差は、0.02~0.03の範囲内が好ましい。 The first curvature and the second curvature are determined by the distance between the first optical axis OA1 of the first light L1 and the second optical axis OA2 of the second light L2, and the distance between the exit surface 144 and the end surface 163 of the optical transmitter 160. Will be done. The first curvature is preferably in the range of 4.2 to 4.4. If the first curvature is not within a predetermined range, the first light L1 and the second light L2 do not reach the end face 163 of the optical transmitter 160. The second curvature is preferably in the range of 4.22 to 4.37. Since the optical receptacle 140 is generally standardized, the size of the emission surface 144 in the X direction is determined. Therefore, the second curvature is also determined to some extent. The difference between the first curvature and the second curvature is preferably in the range of 0.02 to 0.03.
 第1断面CS1における出射面144の長さと、第2断面CS2における出射面144の長さとの関係は、第1光L1および第2光L2を適切に制御できれば特に限定されない。本実施の形態では、図3Aにおいて第1発光素子122および第2発光素子123は、紙面左右方向に配置されている。よって、出射面144に到達する第1光L1および第2光L2は、図3Bに示されるように、紙面上下方向に配列するように到達する。よって、本実施の形態では、第1断面CS1における出射面144の長さは、第2断面CS2における出射面144の長さよりも長いことが好ましい。 The relationship between the length of the exit surface 144 in the first cross section CS1 and the length of the exit surface 144 in the second cross section CS2 is not particularly limited as long as the first light L1 and the second light L2 can be appropriately controlled. In the present embodiment, in FIG. 3A, the first light emitting element 122 and the second light emitting element 123 are arranged in the left-right direction on the paper surface. Therefore, the first light L1 and the second light L2 that reach the emission surface 144 arrive so as to be arranged in the vertical direction of the paper surface as shown in FIG. 3B. Therefore, in the present embodiment, it is preferable that the length of the exit surface 144 in the first cross section CS1 is longer than the length of the exit surface 144 in the second cross section CS2.
 位置決め部145は、光レセプタクル140に対して、光伝送体160の端面163を位置決めする。位置決め部145の構成は、上記の機能を発揮できれば特に限定されない。本実施の形態では、位置決め部145は、円柱形状である。また、位置決め部145は、出射面144の配列方向において、複数の出射面144を挟み込むように、両端の出射面144の外側にそれぞれ配置されている。位置決め部145に光伝送体160が配置されたフェルールに挿入することで、光レセプタクル140に対して光伝送体160を位置決めする。 The positioning unit 145 positions the end face 163 of the optical transmitter 160 with respect to the optical receptacle 140. The configuration of the positioning unit 145 is not particularly limited as long as the above functions can be exhibited. In the present embodiment, the positioning portion 145 has a cylindrical shape. Further, the positioning unit 145 is arranged outside the exit surfaces 144 at both ends so as to sandwich the plurality of emission surfaces 144 in the arrangement direction of the emission surfaces 144. The optical transmission body 160 is positioned with respect to the optical receptacle 140 by inserting the optical transmission body 160 into a ferrule in which the optical transmission body 160 is arranged in the positioning unit 145.
 (光路)
 図4は、光モジュール100における光路図である。なお、図4では、光の光路を示すため、ハッチングを省略している。
(Optical path)
FIG. 4 is an optical path diagram of the optical module 100. Note that in FIG. 4, hatching is omitted in order to show the optical path of light.
 図4に示されるように、第1発光素子122の第1発光面122aから出射された第1光L1は、第1入射面141で光レセプタクル140の内部に入射する。同様に、第2発光素子123の第2発光面123aから出射された第2光L2は、第2入射面142で光レセプタクル140の内部に入射する。第1入射面141は第1光L1が平行光となるように制御するとともに、第2入射面142は第2光L2が平行光となるように制御する。第1入射面141または第2入射面142で入射した光は、平行光の状態で光レセプタクル140の内部を進行する。 As shown in FIG. 4, the first light L1 emitted from the first light emitting surface 122a of the first light emitting element 122 is incident on the inside of the optical receptacle 140 on the first incident surface 141. Similarly, the second light L2 emitted from the second light emitting surface 123a of the second light emitting element 123 is incident on the inside of the optical receptacle 140 at the second incident surface 142. The first incident surface 141 is controlled so that the first light L1 is parallel light, and the second incident surface 142 is controlled so that the second light L2 is parallel light. The light incident on the first incident surface 141 or the second incident surface 142 travels inside the optical receptacle 140 in the state of parallel light.
 光レセプタクル140を進行した第1光L1および第2光L2は、反射面143で出射面144に向けて内部反射される。反射面143内部反射された第1光L1および第2光L2は、出射面144に到達する。本実施の形態では、縦長の楕円形の出射面144において、第1光L1は上側半分の略中央の領域に到達し、第2光L2は下側半分の略中央の領域に到達する。 The first light L1 and the second light L2 that have traveled through the optical receptacle 140 are internally reflected by the reflection surface 143 toward the emission surface 144. The first light L1 and the second light L2 internally reflected by the reflection surface 143 reach the emission surface 144. In the present embodiment, in the vertically long elliptical emission surface 144, the first light L1 reaches the region substantially central of the upper half, and the second light L2 reaches the region substantially central of the lower half.
 前述したように、第1光L1の第1光軸OA1および第2光L2の第2光軸OA2を含む第1面に平行な、出射面144の第1断面CS1における出射面144の曲率は、第1光軸OA1または第2光軸OA2に平行であり、かつ第1面に垂直な、出射面144の第2断面CS2における出射面144の曲率よりも小さい。よって、第1光L1は、出射面144の中央から離れた上側部分に到達するため、X方向よりもY方向において大きく屈折しつつ出射面144から出射される。出射された第1光L1は、光伝送体160の端面163に向けて進行する。同様に、第2光L2は、出射面144の中央から離れた下側部分に到達するため、X方向よりもY方向において大きく屈折しつつ出射面144から出射される。出射された第2光L2は、光伝送体160の端面163に向けて進行する。 As described above, the curvature of the emission surface 144 in the first cross section CS1 of the emission surface 144 parallel to the first surface including the first optical axis OA1 of the first light L1 and the second optical axis OA2 of the second light L2 is , Parallel to the first optical axis OA1 or the second optical axis OA2, and perpendicular to the first plane, smaller than the curvature of the exit surface 144 in the second cross section CS2 of the exit surface 144. Therefore, since the first light L1 reaches the upper portion of the emission surface 144 away from the center, it is emitted from the emission surface 144 while being refracted more in the Y direction than in the X direction. The emitted first light L1 travels toward the end face 163 of the optical transmission body 160. Similarly, since the second light L2 reaches the lower portion of the emission surface 144 away from the center, it is emitted from the emission surface 144 while being refracted more in the Y direction than in the X direction. The emitted second light L2 travels toward the end face 163 of the optical transmission body 160.
 (シミュレーション)
 図5A、Bは、本シミュレーションを説明するための図である。図5Aは、光モジュール100の断面図であり、図5Bは、出射面144を第3中心軸CA3に沿う方向からみた図である。図5Aでは、光の光路を示すために、ハッチングを省略している。
(simulation)
5A and 5B are diagrams for explaining this simulation. 5A is a cross-sectional view of the optical module 100, and FIG. 5B is a view of the exit surface 144 as viewed from the direction along the third central axis CA3. In FIG. 5A, hatching is omitted in order to show the optical path of light.
 本シミュレーションでは、出射面144のX方向の曲率(第2曲率)およびY方向の曲率(第1曲率)を一定にした状態で、光軸間距離Zを可変させた場合における、出射面144のY方向における長さの許容量についてシミュレーションした。一般に光通信に用いられる光レセプタクル140の大きさは、規格化されている。すなわち、隣接する2つの出射面144の光軸間距離Zが決まっているため、図5BのX方向における出射面144の最大長さは25mmである。よって、本シミュレーションでは、X方向における出射面144の長さR2は、25mmである。出射面144のX方向における曲率半径は4.3000mmであり、コーニック定数は-2.6000である。また、出射面144のY方向における曲率半径は4.3107mmであり、コーニック定数は-2.6920である。 In this simulation, the emission surface 144 has a variable distance Z between optical axes while the curvature in the X direction (second curvature) and the curvature in the Y direction (first curvature) of the emission surface 144 are constant. The allowable amount of length in the Y direction was simulated. The size of the optical receptacle 140 generally used for optical communication is standardized. That is, since the distance Z between the optical axes of the two adjacent emission surfaces 144 is fixed, the maximum length of the emission surface 144 in the X direction in FIG. 5B is 25 mm. Therefore, in this simulation, the length R2 of the exit surface 144 in the X direction is 25 mm. The radius of curvature of the emission surface 144 in the X direction is 4.3000 mm, and the conic constant is -26,000. The radius of curvature of the exit surface 144 in the Y direction is 4.3107 mm, and the conic constant is -2.6920.
 出射面144のX方向およびY方向における曲率を一定にした状態で、光軸間距離Zを変化させたときの出射面144のY方向の長さ(R1)の許容長さと、光結合効率との関係を表1に示す。 The allowable length (R1) of the emission surface 144 in the Y direction and the optical coupling efficiency when the distance Z between the optical axes is changed while the curvatures of the emission surface 144 in the X and Y directions are constant. The relationship between the above is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、光軸間距離Zが0.25~0.75mmであれば、出射面144のY方向の長さR1と、光結合効率と、を高く維持できる。光軸間距離Zが0.25mm未満の場合、第1発光素子122および第2発光素子123を近づけて配置できない。また、光軸間距離Zが0.75mm超の場合、基板121の大きさの観点から、第1発光素子122および第2発光素子123の間隔を広げることができない。 As shown in Table 1, when the distance Z between the optical axes is 0.25 to 0.75 mm, the length R1 of the exit surface 144 in the Y direction and the optical coupling efficiency can be maintained high. When the distance Z between the optical axes is less than 0.25 mm, the first light emitting element 122 and the second light emitting element 123 cannot be arranged close to each other. Further, when the distance Z between the optical axes exceeds 0.75 mm, the distance between the first light emitting element 122 and the second light emitting element 123 cannot be widened from the viewpoint of the size of the substrate 121.
 なお、ここでは、X方向の曲率半径が4.3000、Y方向の曲率半径が4.3107の出射面144を例に示したが、例えば光軸間距離Zを一定にして、X方向の曲率半径またはY方向の曲率半径を可変させることで、X方向の曲率半径またはY方向の曲率半径の許容量を把握できる。 Here, an exit surface 144 having a radius of curvature in the X direction of 4.3000 and a radius of curvature in the Y direction of 4.3107 is shown as an example. By varying the radius or the radius of curvature in the Y direction, the allowable amount of the radius of curvature in the X direction or the radius of curvature in the Y direction can be grasped.
 (効果)
 以上のように、本実施の形態に係る光モジュール100は、出射面143の第1断面CS1における出射面143の曲率(第1曲率)は、出射面143の第2断面CS2における出射面143の曲率(第2曲率)よりも小さいため、第1発光素子122から出射された第1光L1および第2発光素子123から出射された第2光L2を光伝送体160に伝達できる。
(effect)
As described above, in the optical module 100 according to the present embodiment, the curvature (first curvature) of the exit surface 143 in the first cross section CS1 of the exit surface 143 is the curvature (first curvature) of the exit surface 143 in the second cross section CS2 of the exit surface 143. Since it is smaller than the curvature (second curvature), the first light L1 emitted from the first light emitting element 122 and the second light L2 emitted from the second light emitting element 123 can be transmitted to the optical transmitter 160.
 本発明に係る光レセプタクルおよび光モジュールは、例えば光伝送体を用いた光通信に有用である。 The optical receptacle and the optical module according to the present invention are useful for optical communication using, for example, an optical transmitter.
 100 光モジュール
 120 光電変換装置
 121 基板
 122 第1発光素子
 122a 第1発光面
 123 第2発光素子
 123a 第2発光面
 140 光レセプタクル
 141 第1入射面
 142 第2入射面
 143 反射面
 144 出射面
 145 位置決め部
 160 光伝送体
 161 コア
 162 クラッド
 163 端面
 CA1 第1中心軸
 CA2 第2中心軸
 CA3 第3中心軸
 CS1 第1断面
 CS2 第2断面
 L1 第1光
 L2 第2光
 OA1 第1光軸
 OA2 第2光軸
 Z 光軸間距離
100 Optical module 120 Photoelectric converter 121 Substrate 122 First light emitting element 122a First light emitting surface 123 Second light emitting element 123a Second light emitting surface 140 Optical receptacle 141 First incident surface 142 Second incident surface 143 Reflection surface 144 Emission surface 145 Positioning Part 160 Optical transmitter 161 Core 162 Clad 163 End face CA1 1st central axis CA2 2nd central axis CA3 3rd central axis CS1 1st section CS2 2nd section L1 1st optical L2 2nd optical OA1 1st optical axis OA2 2nd Optical axis Z Distance between optical axes

Claims (5)

  1.  第1発光素子および第2発光素子と、光伝送体との間に配置され、前記第1発光素子および前記第2発光素子と、前記光伝送体とを光学的に結合するための光レセプタクルであって、
     前記第1発光素子から出射された第1光を入射させるための第1入射面と、
     前記第2発光素子から出射された第2光を入射させるための第2入射面と、
     前記第1入射面で入射し、前記光レセプタクルの内部を進行した前記第1光および前記第2入射面で入射し、前記光レセプタクルの内部を進行した前記第2光を前記光伝送体に向けて出射させるための出射面と、
     を有し、
     前記第1光の第1光軸および前記第2光の第2光軸を含む第1面に平行な、前記出射面の第1断面における前記出射面の曲率は、前記出射面と交わる前記第1光軸または前記第2光軸に平行であり、かつ前記第1面に直交する前記出射面の第2断面における前記出射面の曲率よりも小さい、
     光レセプタクル。
     
    An optical receptacle that is arranged between the first light emitting element and the second light emitting element and the optical transmitter and for optically coupling the first light emitting element, the second light emitting element, and the optical transmitter. There,
    A first incident surface for making the first light emitted from the first light emitting element incident, and
    A second incident surface for incident the second light emitted from the second light emitting element, and
    The first light incident on the first incident surface and traveling inside the optical receptacle and the second light incident on the second incident surface and traveling inside the optical receptacle are directed toward the optical transmitter. And the exit surface for emitting
    Have,
    The curvature of the emission surface in the first cross section of the emission surface, which is parallel to the first surface including the first optical axis of the first light and the second optical axis of the second light, is such that the curvature of the emission surface intersects the emission surface. It is smaller than the curvature of the emission surface in the second cross section of the emission surface that is parallel to one optical axis or the second optical axis and is orthogonal to the first surface.
    Optical receptacle.
  2.  前記第1断面における前記出射面の長さは、前記第2断面における前記出射面の長さよりも長い、請求項1に記載の光レセプタクル。
     
    The optical receptacle according to claim 1, wherein the length of the exit surface in the first cross section is longer than the length of the exit surface in the second cross section.
  3.  前記第1入射面は、複数配置されており、
     前記第2入射面は、複数配置されており、
     前記出射面の数は、前記第1入射面の数または前記第2入射面の数と同じ数である、
     請求項1または請求項2に記載の光レセプタクル。
     
    A plurality of the first incident surfaces are arranged, and the first incident surface is arranged.
    A plurality of the second incident surfaces are arranged, and the second incident surface is arranged.
    The number of the exit surfaces is the same as the number of the first incident surfaces or the number of the second incident surfaces.
    The optical receptacle according to claim 1 or 2.
  4.  前記第1入射面で入射した前記第1光および前記第2入射面で入射した前記第2光を前記出射面に向けて反射させるための反射面をさらに有する、請求項1~3のいずれか一項に記載の光レセプタクル。
     
    Any of claims 1 to 3, further comprising a reflecting surface for reflecting the first light incident on the first incident surface and the second light incident on the second incident surface toward the emitting surface. The optical receptacle according to paragraph 1.
  5.  第1発光素子および第2発光素子を有する光電変換装置と、
     前記第1発光素子から出射された第1光および前記第2発光素子から出射された第2光を光伝送体に光学的に結合させるための、請求項1~4のいずれか一項に記載の光レセプタクルと、
     を有する、光モジュール。
    A photoelectric conversion device having a first light emitting element and a second light emitting element,
    The invention according to any one of claims 1 to 4, wherein the first light emitted from the first light emitting element and the second light emitted from the second light emitting element are optically coupled to the optical transmitter. Light receptacle and
    Has an optical module.
PCT/JP2020/049191 2020-12-28 2020-12-28 Optical receptacle and optical module WO2022145001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049191 WO2022145001A1 (en) 2020-12-28 2020-12-28 Optical receptacle and optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049191 WO2022145001A1 (en) 2020-12-28 2020-12-28 Optical receptacle and optical module

Publications (1)

Publication Number Publication Date
WO2022145001A1 true WO2022145001A1 (en) 2022-07-07

Family

ID=82259141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049191 WO2022145001A1 (en) 2020-12-28 2020-12-28 Optical receptacle and optical module

Country Status (1)

Country Link
WO (1) WO2022145001A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158332A (en) * 2001-09-10 2003-05-30 Fuji Photo Film Co Ltd Laser diode array, laser apparatus, synthesized wave laser light source, and light exposure apparatus
JP2003344609A (en) * 2002-05-23 2003-12-03 Fuji Photo Film Co Ltd Condenser lens, multiplexing laser and exposure device
JP2008090232A (en) * 2006-10-05 2008-04-17 Hitachi Cable Ltd Optical transmitter/receiver
WO2014057666A1 (en) * 2012-10-10 2014-04-17 株式会社エンプラス Optical coupling element and optical module provided with same
US20160334588A1 (en) * 2015-05-15 2016-11-17 Nlight, Inc. Passively aligned crossed-cylinder objective assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158332A (en) * 2001-09-10 2003-05-30 Fuji Photo Film Co Ltd Laser diode array, laser apparatus, synthesized wave laser light source, and light exposure apparatus
JP2003344609A (en) * 2002-05-23 2003-12-03 Fuji Photo Film Co Ltd Condenser lens, multiplexing laser and exposure device
JP2008090232A (en) * 2006-10-05 2008-04-17 Hitachi Cable Ltd Optical transmitter/receiver
WO2014057666A1 (en) * 2012-10-10 2014-04-17 株式会社エンプラス Optical coupling element and optical module provided with same
US20160334588A1 (en) * 2015-05-15 2016-11-17 Nlight, Inc. Passively aligned crossed-cylinder objective assembly

Similar Documents

Publication Publication Date Title
US9971106B2 (en) Optical receptacle and optical module
WO2013118390A1 (en) Lens array and light module comprising same
WO2013140922A1 (en) Optical receptacle and optical module provided with same
US10261272B2 (en) Optical receptacle and optical module
WO2019013313A1 (en) Optical receptacle and optical module
JP7150449B2 (en) Optical receptacles and optical modules
TW201339682A (en) Optical receptacle and optical module provided with same
US20180017743A1 (en) Optical receptacle and optical module
JP7197435B2 (en) Optical receptacles and optical modules
JP7125309B2 (en) optical module
WO2022145001A1 (en) Optical receptacle and optical module
CN108700720B (en) Optical receptacle and optical module
WO2020196696A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
CN107209333B (en) Optical module
WO2017154542A1 (en) Optical receptacle and optical module
CN110832372B (en) Optical receptacle and optical module
TWI608263B (en) Optical socket and light module with it
WO2019087872A1 (en) Optical receptacle, optical module, and optical transmitter
WO2020153427A1 (en) Optical receptacle and optical module
JP6494711B2 (en) Optical module
JP2023084982A (en) Optical receptacle and optical module
JP2020030331A (en) Optical receptacle and optical module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20968012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20968012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP