WO2022144994A1 - Foreign matter detection device, power transmission device, power reception device, and power transmission system - Google Patents

Foreign matter detection device, power transmission device, power reception device, and power transmission system Download PDF

Info

Publication number
WO2022144994A1
WO2022144994A1 PCT/JP2020/049176 JP2020049176W WO2022144994A1 WO 2022144994 A1 WO2022144994 A1 WO 2022144994A1 JP 2020049176 W JP2020049176 W JP 2020049176W WO 2022144994 A1 WO2022144994 A1 WO 2022144994A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power
foreign matter
moving body
detection unit
Prior art date
Application number
PCT/JP2020/049176
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 近藤
明 後谷
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2020/049176 priority Critical patent/WO2022144994A1/en
Publication of WO2022144994A1 publication Critical patent/WO2022144994A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings

Definitions

  • This disclosure relates to a foreign matter detection device, a power transmission device, a power receiving device, and a power transmission system.
  • Wireless power transmission technology that transmits power wirelessly is attracting attention. Since wireless power transmission technology can transmit power wirelessly from a power transmission device to a power receiving device, it is expected to be applied to various products such as transportation equipment such as trains and electric vehicles, home appliances, wireless communication equipment, and toys.
  • a transmission coil and a power receiving coil coupled by magnetic flux are used for power transmission.
  • Patent Document 1 compares the voltage generated in a plurality of sensor coils with a reference voltage table, and determines whether or not a foreign substance exists in the vicinity of a search coil in which the plurality of sensor coils are arranged in a plane.
  • the non-contact power transmission device to be discriminated is described.
  • the non-contact power transmission device described in Patent Document 1 stores the voltage generated in a plurality of sensor coils as a reference voltage table when no foreign matter is present in the vicinity of the search coil.
  • Patent Document 2 describes a foreign substance detection method for determining the presence or absence of a foreign substance by comparing the measured quality factor value with the critical value determined based on the reference quality factor value.
  • a weighted value increased by a reference quality factor value is applied to determine a critical value.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to detect foreign matter with high accuracy in the detection of foreign matter in wireless power transmission.
  • the foreign matter detection device is With the sensor A detection unit for determining the presence or absence of a foreign substance based on the comparison result between the output value of the sensor and the threshold value is provided.
  • the detection unit executes a threshold value correction process for correcting the threshold value based on the output value and the parameter value which is the value of the correction parameter used for the correction of the threshold value.
  • a flowchart showing the change process for each installation height shown in FIG. A flowchart showing the second parameter change process shown in FIG.
  • a flowchart showing the third parameter change process shown in FIG. A flowchart showing the output value acquisition process shown in FIG.
  • the power transmission system according to the present embodiment can be used for charging secondary batteries of various devices such as EVs (Electric Vehicles), mobile devices such as smartphones, and industrial devices.
  • EVs Electric Vehicles
  • mobile devices such as smartphones
  • industrial devices such as a PC or Apple Macintosh
  • a case where the power transmission system executes charging of the storage battery of the EV will be illustrated.
  • FIG. 1 is a diagram showing a schematic configuration of a power transmission system 1000 used for charging a storage battery 500 provided in an electric vehicle 700.
  • the electric vehicle 700 runs on a motor driven by electric power charged in a storage battery 500 such as a lithium ion battery or a lead storage battery as a power source.
  • the electric vehicle 700 is an example of a moving body.
  • the power transmission system 1000 is a system that wirelessly transmits power from a power transmission device 200 to a power reception device 300 by magnetic coupling.
  • the power transmission system 1000 includes a power transmission device 200 that wirelessly transmits the power of an AC or DC commercial power source 400 to the electric vehicle 700, and a power receiving device 300 that receives the power transmitted by the power transmission device 200 and charges the storage battery 500.
  • the commercial power supply 400 is an AC power supply.
  • the power transmission device 200 is a device that wirelessly transmits power to the power receiving device 300 by magnetic coupling.
  • the power transmission device 200 includes a foreign matter detection device 100 for detecting foreign matter, a power transmission coil unit 210 for transmitting AC power to the electric vehicle 700, and a power supply device 220 for supplying AC power to the power transmission coil unit 210.
  • the foreign matter detecting device 100 is arranged on the power transmission coil unit 210.
  • the vertically upward axis is the Z axis
  • the axis orthogonal to the Z axis is the X axis
  • the axis orthogonal to the Z axis and the X axis is the Y axis.
  • a detailed description of the foreign matter detecting device 100 will be described later.
  • the power transmission coil unit 210 is supplied with AC power from the power supply device 220 and passes through the power transmission coil 211 that induces an alternating magnetic flux ⁇ and the magnetic force generated by the power transmission coil 211 to cause a loss of magnetic force.
  • a magnetic plate 212 for suppressing is provided.
  • the power transmission coil 211 is configured by winding a conducting wire spirally on a magnetic plate 212.
  • Capacitors provided at both ends of the power transmission coil 211 and the power transmission coil 211 form a resonance circuit, and an alternating magnetic field ⁇ is induced by an alternating current flowing with the application of an alternating voltage.
  • the magnetic plate 212 has a plate shape with a hole in the central portion and is composed of a magnetic material.
  • the magnetic plate 212 is, for example, a plate-shaped member made of ferrite, which is a composite oxide of iron oxide and a metal.
  • the magnetic plate 212 may be composed of an aggregate of a plurality of magnetic material pieces, and the plurality of magnetic material pieces are arranged in a frame shape and formed so as to have an opening in the central portion. You may.
  • the power supply device 220 includes a power factor improving circuit for improving the power factor of commercial AC power supplied by the commercial power supply 400, and an inverter circuit for generating AC power supplied to the power transmission coil 211.
  • the power factor improving circuit rectifies and boosts the AC power generated by the commercial power supply 400 and converts it into DC power having a predetermined voltage value.
  • the inverter circuit converts the DC power generated by the power factor improving circuit by the power conversion into AC power having a predetermined frequency.
  • the power transmission device 200 is fixed to the floor surface of the parking lot, for example.
  • the power receiving device 300 is a device that receives power from the power transmitting device 200 wirelessly by magnetic coupling.
  • the power receiving device 300 includes a power receiving coil unit 310 that receives AC power transmitted by the power transmitting device 200, and a rectifying circuit 320 that converts AC power supplied from the power receiving coil unit 310 into DC power and supplies it to the storage battery 500. Be prepared.
  • the power receiving coil unit 310 passes the power receiving coil 311 that induces an electromotive force in response to a change in the alternating magnetic flux ⁇ induced by the power transmitting coil 211 and the magnetic force generated by the power receiving coil 311 to obtain the magnetic force.
  • a magnetic plate 312 that suppresses loss is provided.
  • the power receiving coil 311 and the capacitors provided at both ends of the power receiving coil 311 form a resonance circuit.
  • the power receiving coil 311 faces the power transmission coil 211 in a state where the electric vehicle 700 is stopped at a preset position.
  • the transmission coil 211 induces an alternating magnetic flux ⁇ by receiving the power from the power supply device 220
  • the alternating magnetic flux ⁇ is interlinked with the power receiving coil 311 to induce an induced electromotive force in the power receiving coil 311.
  • the magnetic plate 312 is a plate-shaped member having a hole in the central portion, and is composed of a magnetic material.
  • the magnetic plate 312 is, for example, a plate-shaped member made of ferrite, which is a composite oxide of iron oxide and a metal.
  • the magnetic plate 312 may be composed of an aggregate of a plurality of magnetic material pieces, and the plurality of magnetic material pieces are arranged in a frame shape and formed so as to have an opening in the central portion. You may.
  • the rectifier circuit 320 rectifies the electromotive force induced in the power receiving coil 311 to generate DC power.
  • the DC power generated by the rectifier circuit 320 is supplied to the storage battery 500. Even if the power receiving device 300 includes a charging circuit between the rectifier circuit 320 and the storage battery 500, the DC power supplied from the rectifier circuit 320 is converted into an appropriate DC power for charging the storage battery 500. good.
  • the power receiving device 300 is fixed to, for example, the chassis of the electric vehicle 700.
  • the communication device 600 is a communication device mounted on the electric vehicle 700.
  • the communication device 600 communicates with each of the power transmission device 200 and the power receiving device 300. Further, the communication device 600 communicates with various servers connected to the communication network via the communication network.
  • the communication device 600 transmits the moving body state information and the height information, which will be described later, to the power transmission device 200.
  • the communication device 600 is, for example, an in-vehicle computer that controls the entire operation of the electric vehicle 700.
  • the terminal device 800 is a device that receives a notification from the foreign matter detecting device 100 that there is a foreign matter.
  • the terminal device 800 is, for example, a smartphone owned by a user of the electric vehicle 700.
  • the terminal device 800 Upon receiving the notification from the foreign matter detecting device 100 that the foreign matter is present, the terminal device 800 notifies the user of the presence of the foreign matter by displaying a screen, outputting voice, or the like.
  • the foreign matter detecting device 100 detects foreign matter existing in the detection target area.
  • the detection target area is a region for detecting foreign matter, and is a region where foreign matter can be detected.
  • the detection target region is a region near the power transmission coil unit 210 and the power reception coil unit 310, and is a region including a region between the power transmission coil unit 210 and the power reception coil unit 310.
  • Foreign matter is an object or living body that is not necessary for power transmission.
  • the foreign matter detecting device 100 detects the foreign matter existing in the detection target area and notifies the user that the foreign matter has been detected. Upon receiving this notification, the user can remove the foreign matter.
  • Various foreign substances such as metal pieces, humans, and animals are assumed.
  • the foreign matter detection device 100 is a device in which the detection unit 180 detects foreign matter based on a signal output by the detection coil unit 110 to which a voltage pulse is supplied from the pulse generation unit 140.
  • the foreign matter detection device 100 includes a detection coil unit 110, a pulse generation unit 140, a storage unit 150, a first communication unit 160, a second communication unit 170, a detection unit 180, and a pulse.
  • a temperature information acquisition unit 189 a temperature information acquisition unit 189.
  • the detection coil unit 110 is a unit that detects foreign matter. As shown in FIG. 4, the detection coil unit 110 is formed in a flat plate shape and is arranged on the power transmission coil unit 210 so as to overlap the power transmission coil 211 in a plan view.
  • the detection coil unit 110 includes a detection coil substrate 130 made of a permeable magnetic material typified by a resin.
  • At least one sensor coil 120 is mounted on the detection coil board 130.
  • the detection coil substrate 130 includes the sensor coil 120A, the sensor coil 120B, the sensor coil 120C, the sensor coil 120D, the sensor coil 120E, the sensor coil 120F, the sensor coil 120G, the sensor coil 120H, the sensor coil 120I, and the sensor. Twelve sensor coils 120 of the coil 120J, the sensor coil 120K, and the sensor coil 120L are mounted. Each sensor coil 120, the pulse generation unit 140, and the detection unit 180 are connected by wiring (not shown).
  • the sensor coil 120 is an example of a sensor.
  • this resonant circuit includes a sensor coil 120, a capacitor 131, a switch 132, and a switch 133.
  • the sensor coil 120 has a conductor pattern that is wound once or multiple times around an axis parallel to the Z axis.
  • One terminal of the sensor coil 120 is connected to one terminal of the switch 132, and is connected to one end of the pulse generating unit 140 via wiring.
  • the other terminal of the sensor coil 120 is connected to one terminal of the capacitor 131 and one terminal of the switch 133.
  • the other terminal of the switch 133 is connected to the other end of the pulse generating unit 140 via wiring.
  • the other terminal of the capacitor 131 is connected to the other terminal of the switch 132.
  • the switch 132 and the switch 133 are controlled to an on state or an off state according to the control from the switch control unit 182 via a control line (not shown).
  • the on state is a conducting state
  • the off state is a non-conducting state.
  • the switch 132 has a function of switching a state between the sensor coil 120 and the capacitor 131. When the switch 132 is turned on, the sensor coil 120 and the capacitor 131 form a resonant circuit.
  • the switch 133 has a function of switching the state between the resonance circuit and the pulse generating unit 140.
  • the sensor coil 120 and the capacitor 131 form a resonant circuit, and a pulsed voltage is applied to the resonant circuit from the pulse generating unit 140 via wiring. Will be done.
  • the voltage between both ends of the resonance circuit that is, the voltage between both ends of the sensor coil 120 is guided to the output value acquisition unit 183 via wiring.
  • the switch 132 is turned off, the sensor coil 120 and the capacitor 131 do not form a resonance circuit. Further, when the switch 133 is turned off, the resonance circuit is electrically disconnected from the pulse generation unit 140 and the output value acquisition unit 183.
  • FIG. 5 shows that the foreign matter 10 is present in the vicinity of the resonance circuit. It is assumed that the switch 132 is closed and the sensor coil 120 and the capacitor 131 form a resonance circuit, the switch 133 is closed, and a pulse voltage is applied from the pulse generating unit 140.
  • the voltage signal representing the voltage between both ends of the resonance circuit is a vibration signal whose peak value gradually attenuates with the passage of time after the pulse voltage drops, that is, after the current to the sensor coil 120 is cut off. ..
  • the detection unit 180 determines the presence or absence of the foreign matter 10 by detecting a change in the frequency of the vibration signal, a change in the degree of attenuation of the vibration signal, and the like.
  • the pulse generation unit 140 generates a pulse-shaped voltage for detecting foreign matter.
  • the pulse generation unit 140 applies the generated voltage to one sensor coil 120 selected by the switch control unit 182.
  • the storage unit 150 stores programs and data used by the foreign matter detection device 100 to execute various processes. For example, the storage unit 150 stores the first parameter table, the second parameter table, and the third parameter table. Further, the storage unit 150 stores data generated or acquired by the foreign matter detecting device 100 by executing various processes. For example, the storage unit 150 stores the output value acquired by the output value acquisition unit 183, the threshold value for discriminating the output value, and the initial value of the threshold value.
  • the storage unit 150 includes, for example, a non-volatile semiconductor memory such as a flash memory, an EPROM (ErasableProgrammableROM), and an EEPROM (ElectricallyErasableProgrammableROM).
  • a non-volatile semiconductor memory such as a flash memory, an EPROM (ErasableProgrammableROM), and an EEPROM (ElectricallyErasableProgrammableROM).
  • the first communication unit 160 communicates with the terminal device 800.
  • the first communication unit 160 conforms to well-known wireless communication standards such as Wi-Fi (registered trademark), Bluetooth (registered trademark), LTE (LongTermEvolution), 4G (4thGeneration), and 5G (5thGeneration). And communicates with the terminal device 800.
  • the first communication unit 160 includes a communication interface conforming to the above-mentioned wireless communication standard.
  • the second communication unit 170 communicates with the power transmission device 200.
  • the second communication unit 170 conforms to a well-known wired communication standard such as USB (Universal Serial Bus, registered trademark), Thunderbolt (registered trademark), or a well-known wireless communication standard such as Wi-Fi and Bluetooth. Communicate with the power transmission device 200.
  • the second communication unit 170 includes a communication interface conforming to the above-mentioned wired communication standard or the above-mentioned wireless communication standard.
  • the operating state acquisition unit 188 and the temperature information acquisition unit 189 are, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an RTC (Real Time Clock), and an A / D ( It is realized by a computer equipped with an Analog / Digital) converter or the like by executing an operation program stored in a ROM or a storage unit 150.
  • the detection unit 180 detects the foreign matter 10 existing in the foreign matter detection region based on the signal output from each sensor coil 120. Specifically, first, the detection unit 180 controls the switch control unit 182 to select any one of the 12 sensor coils 120. Then, the detection unit 180 controls the pulse control unit 181 to apply a voltage on the pulse to the selected sensor coil 120. The detection unit 180 compares the output value based on the signal output by the selected sensor coil 120 with the threshold value, and determines whether or not the foreign matter 10 is present in the detection target region. The detection unit 180 controls the notification unit 184 to notify the terminal device 800 of the detection result indicating the presence or absence of the foreign matter 10. The detection unit 180 repeats such a process while switching the sensor coil 120 to be selected.
  • the pulse control unit 181 generates a single pulse-like voltage in the pulse generation unit 140 according to the control by the detection unit 180. This pulsed voltage is applied to the resonant circuit formed in the selected sensor coil 120 via wiring. Further, the voltage between both ends of the resonance circuit is guided to the output value acquisition unit 183 via the wiring.
  • the switch control unit 182 turns on the switch 132 and the switch 133 of the sensor coil 120 selected by the detection unit 180 according to the control by the detection unit 180, and turns off the switch 132 and the switch 133 of the sensor coil 120 not selected. To.
  • the output value acquisition unit 183 acquires the output value of the selected sensor coil 120 from the vibration signal representing the voltage between both ends of the resonance circuit according to the control by the detection unit 180.
  • the value of the output value acquired by the output value acquisition unit 183 can be appropriately adjusted.
  • the output value can be the frequency of the vibration signal, the convergence time of the vibration signal, the magnitude of the amplitude of the vibration signal, or the like.
  • the convergence time of the vibration signal is, for example, the time from when the pulsed voltage is applied until the amplitude of the vibration signal falls below a predetermined amplitude.
  • the magnitude of the amplitude of the vibration signal is, for example, the magnitude of the amplitude of the vibration signal when a predetermined time has elapsed since the pulsed voltage was applied.
  • the notification unit 184 transmits the detection result by the detection unit 180 to the terminal device 800 according to the control by the detection unit 180. For example, when the detection unit 180 determines that the foreign matter 10 is present, the notification unit 184 transmits information indicating that the foreign matter 10 has been detected via the first communication unit 160. On the other hand, the terminal device 800 notifies the user that a foreign substance has been detected by displaying a screen, outputting a voice, or the like.
  • the power transmission control unit 185 controls the power transmission to the power receiving coil unit 310 by the power transmission coil unit 210 according to the control by the detection unit 180. For example, when the detection unit 180 determines that the foreign matter 10 is present, the power transmission control unit 185 transmits control information instructing the power supply device 220 to stop power transmission via the second communication unit 170.
  • the moving body state acquisition unit 186 acquires moving body state information indicating the state of the moving body including the position of the moving body and the moving state of the moving body.
  • the moving body is an electric vehicle 700.
  • the position of the moving body is represented by, for example, the relative position of the moving body with respect to the installation position of the power transmission device 200.
  • the moving state of the moving body is expressed by, for example, whether or not the moving body is moving, how fast the moving body is moving, and the like.
  • the mobile body state acquisition unit 186 acquires mobile body state information from the power transmission device 200 via the second communication unit 170.
  • the height information acquisition unit 187 acquires height information indicating the installation height of the power receiving coil 311.
  • the installation height of the power receiving coil 311 is the height of the position where the power receiving coil 311 is installed, and is expressed by, for example, the distance from the floor surface or the road surface to the installation position of the power receiving coil 311.
  • the height information acquisition unit 187 acquires height information from the power transmission device 200 via the second communication unit 170.
  • the operating state acquisition unit 188 acquires operating state information indicating the operating state of the power supply device 220.
  • the operating state of the power supply device 220 is expressed by, for example, whether or not power transmission is in progress, whether or not the power to be transmitted is constant, and how much the power to be transmitted is increased or decreased.
  • the operating state acquisition unit 188 acquires operating state information from the power transmission device 200 via the second communication unit 170.
  • the temperature information acquisition unit 189 acquires temperature information indicating the temperature of a specific part of the power transmission device 200. It is possible to appropriately adjust which part the specific part is to be.
  • the specific portion may be a part or a vicinity part of the power transmission coil unit 210, or a part or a vicinity part of the foreign matter detection device 100.
  • the temperature information acquisition unit 189 acquires temperature information from the power transmission device 200 via the second communication unit 170.
  • the power transmission device 200 includes a foreign matter detection device 100, a power transmission coil unit 210, a power supply device 220, a storage unit 230, a first communication unit 240, a second communication unit 250, and a temperature.
  • a temperature information acquisition unit 277 is provided.
  • the storage unit 230 stores programs and data used by the power transmission device 200 to execute various processes. Further, the storage unit 230 stores data generated or acquired by the power transmission device 200 by executing various processes. For example, the storage unit 230 has the operation state information acquired by the operation state acquisition unit 272, the moving body state information acquired by the moving body state acquisition unit 273, the height information acquired by the height information acquisition unit 274, and the temperature. The temperature information acquired by the information acquisition unit 277 is stored.
  • the storage unit 230 includes, for example, a non-volatile semiconductor memory such as a flash memory, EPROM, or EEPROM.
  • the first communication unit 240 communicates with the communication device 600.
  • the first communication unit 240 communicates with the terminal device 800 according to well-known wireless communication standards such as Wi-Fi, Bluetooth, LTE, 4G, and 5G.
  • the first communication unit 240 includes a communication interface conforming to the above-mentioned wireless communication standard.
  • the second communication unit 250 communicates with the foreign matter detection device 100.
  • the second communication unit 250 communicates with the foreign matter detection device 100 according to, for example, a well-known wired communication standard such as USB or Thunderbolt, or a well-known wireless communication standard such as Wi-Fi or Bluetooth.
  • the second communication unit 250 includes a communication interface compliant with a wired communication standard such as USB or Thunderbolt, or a wireless communication standard such as Wi-Fi or Bluetooth.
  • the temperature sensor 260 measures the temperature of a specific part of the power transmission device 200.
  • the temperature sensor 260 is attached to the power transmission coil unit 210, for example, and measures the temperature of a part or a vicinity of the power transmission coil unit 210.
  • Control unit 270 power transmission control unit 271, operating state acquisition unit 272, moving body state acquisition unit 273, height information acquisition unit 274, control information reception unit 275, information transfer unit 276, and temperature information acquisition.
  • the unit 277 is realized by, for example, a computer equipped with a CPU, ROM, RAM, RTC, A / D conversion device, etc., executing an operation program stored in the ROM or the storage unit 230.
  • the control unit 270 controls the operation of the entire power transmission device 200. For example, the control unit 270 controls the power supply device 220 to control the power transmission to the power receiving device 300. Further, the control unit 270 communicates with the communication device 600 via the first communication unit 240. Further, the control unit 270 communicates with the foreign matter detecting device 100 via the second communication unit 250.
  • the power transmission control unit 271 controls power transmission to the power receiving device 300 according to the control by the control unit 270. That is, the power transmission control unit 271 supplies AC power to the power transmission coil unit 210 and generates magnetic flux in the power transmission coil 211 according to the control by the power transmission unit 270.
  • the operating state acquisition unit 272 acquires the operating state information indicating the operating state of the power supply device 220. For example, the operating state acquisition unit 272 acquires the operating state information from the power supply device 220.
  • the moving body state acquisition unit 273 acquires moving body state information indicating the state of the moving body including the position of the moving body and the moving state of the moving body. For example, the moving body state acquisition unit 273 acquires operating state information from the communication device 600 mounted on the electric vehicle 700.
  • the communication device 600 can specify the position of the electric vehicle 700, for example, based on an image captured by an in-vehicle camera mounted on the electric vehicle 700. Further, the communication device 600 can specify the moving state of the electric vehicle 700 based on the vehicle speed information output by the speedometer mounted on the electric vehicle 700.
  • the height information acquisition unit 274 acquires height information indicating the installation height of the power receiving coil 311.
  • the height information acquisition unit 274 acquires height information from the communication device 600 mounted on the electric vehicle 700.
  • the mounting position of the power receiving device 300 in the electric vehicle 700 is basically the bottom surface corresponding to the lowest portion of the vehicle body of the electric vehicle 700.
  • the minimum ground clearance which is the distance from the lowest portion of the vehicle body of the electric vehicle 700 to the ground, is basically determined for each type of the electric vehicle 700 classified by the vehicle name.
  • the communication device 600 is connected to a server that stores the minimum ground clearance information indicating the minimum ground clearance for each type of the electric vehicle 700 via a communication network.
  • the communication device 600 specifies the minimum ground clearance according to the type of the electric vehicle 700 with reference to the minimum ground clearance information stored in this server, and the installation height of the power receiving coil 311 is specified from the specified minimum ground clearance. Can be identified.
  • the control information receiving unit 275 receives control information related to power transmission control from the foreign matter detecting device 100. For example, the control information receiving unit 275 receives the control information instructing the stop of power transmission from the foreign matter detecting device 100 via the second communication unit 250.
  • the information transfer unit 276 receives a transmission request for various information from the foreign matter detection device 100 via the second communication unit 250, acquires the information requested by the transmission request from the storage unit 230, and receives the information requested by the transmission request from the storage unit 230, and the second communication unit 250. Is transmitted to the foreign matter detecting device 100 via the above.
  • the information required by the transmission request is, for example, operating state information, moving body state information, height information, temperature information, and the like.
  • the temperature information acquisition unit 277 acquires temperature information indicating the temperature of a specific part of the power transmission device 200. For example, the temperature information acquisition unit 277 acquires temperature information indicating the measured temperature of a part or a vicinity portion of the power transmission coil unit 210 from the temperature sensor 260.
  • the detection unit 180 determines the presence or absence of the foreign matter 10 based on the comparison result between the output value of the sensor coil 120 and the threshold value.
  • the output value output by the sensor coil 120 when the foreign matter 10 is present is higher than the output value output by the sensor coil 120 when the foreign matter 10 is not present, and the threshold value is the upper limit of the output value.
  • the detection unit 180 determines that there is a foreign matter 10 when the output value of the sensor coil 120 exceeds the threshold value, and there is no foreign matter 10 when the output value of the sensor coil 120 is equal to or less than the threshold value. To determine.
  • the output value of the sensor coil 120 is affected by the environment surrounding the foreign matter detection device 100, for example, the state of the moving body on which the power receiving device 300 is mounted, the power transmission state of the power transmission device 200, and the like. That is, it is considered that the output value of the sensor coil 120 changes in response to these changes in the environment. Therefore, it is preferable to appropriately change the threshold value in accordance with these changes in the environment. Therefore, in the present embodiment, it is considered that these changes in the environment appear as changes in the output value of the sensor coil 120, and the threshold value is changed based on the output value of the sensor coil 120.
  • the detection unit 180 executes a threshold value correction process for correcting the threshold value based on the output value and the parameter value which is the value of the correction parameter.
  • the correction parameter is a parameter used for correcting the threshold value. How to set the correction parameters can be adjusted as appropriate.
  • the correction parameter is the number of output values used when obtaining the moving average of the output values. That is, in the threshold value correction process, the detection unit 180 corrects the threshold value by using the value of the moving average of the output values corresponding to the number indicated by the parameter value, which was acquired most recently.
  • the detection unit 180 adopts a value obtained by adding a predetermined offset value to the moving average value of the number of output values indicated by the parameter value as a new threshold value. For example, if the output value is 2 (V) and the offset value is 1 (V) 10 times in a row, the moving average value is 2 (V) and the new threshold is 3 (V). .. According to such a threshold value correction process, when the output value changes due to a change in the environment, erroneous detection based on the change in the output value not caused by the presence of the foreign matter 10 is reduced.
  • the output value of the sensor coil 120 increases while the electric vehicle 700 approaches the power transmission device 200 even if the foreign matter 10 does not exist.
  • the threshold value is unchanged, the output value increased by the approach of the electric vehicle 700 exceeds the threshold value, and there is a high possibility that it is erroneously determined that the foreign matter 10 is present.
  • the threshold value is changed by the threshold value correction process, the threshold value is increased in accordance with the increase in the output value, so that it is unlikely that the foreign matter 10 is erroneously determined.
  • the threshold value is changed by the threshold value correction process, if the foreign matter 10 invades the detection target of the foreign matter detection device 100 and the output value rises sharply, the output value exceeds the threshold value, so that the foreign matter 10 is present. It is judged appropriately.
  • the ease with which the output value of the sensor coil 120 changes varies depending on the environment surrounding the foreign matter detection device 100. For example, in the absence of the foreign matter 10, when the electric vehicle 700 is moving near the power receiving device 300, the output value of the sensor coil 120 tends to change rapidly. On the other hand, in the absence of the foreign matter 10, when the electric vehicle 700 is stopped far away from the power receiving device 300, the output value of the sensor coil 120 hardly changes. Therefore, the detection unit 180 changes the ease of change of the threshold value, that is, the speed at which the threshold value follows the output value, according to the ease of change of the output value.
  • FIG. 7 is a graph showing the correspondence between the number of measurements, the output value, and the threshold value set by the detection unit 180.
  • the output value is indicated by a black circle
  • the first threshold value is indicated by a white circle
  • the second threshold value is indicated by a white triangle.
  • the first threshold value is a threshold value when the parameter value, which is the number of output values when the moving average is obtained, is continuously 10.
  • the second threshold is the threshold when the parameter value changes from 10 to 3.
  • the stable period is a period during which the output value of the sensor coil 120 is stable.
  • the unstable period is a period in which the output value of the sensor coil 120 is not stable.
  • FIG. 7 shows how the stable period is switched to the unstable period when the number of measurements exceeds 15.
  • the output value stabilizes at a voltage value of about 2 (V) during the stable period, and the output value sharply rises from 2 (V) when the unstable period is entered.
  • a value of about 2 (V) is calculated as the value of the moving average of the latest 10 output values. Therefore, during the stable period, a threshold value of about 3 (V), which is obtained by adding an offset value of 1 (V) to a value of about 2 (V), is continuously calculated.
  • the moving average value of the 10 output values gradually increases from a value of about 2 (V), so that the threshold value is 3 (V). It gradually rises from the value of the degree. That is, if the parameter value is 10 even after the transition to the unstable period, the change in the threshold value cannot keep up with the change in the output value, and there is a high possibility that the output value exceeds the threshold value. Therefore, if the parameter value is 10 even after the transition to the unstable period, there is a high possibility that it is erroneously determined that the foreign matter 10 is present even though the foreign matter 10 is not present.
  • the parameter value in the unstable period, it is preferable to set the parameter value to a small value so that the threshold value quickly follows the output value. If the parameter value is set to a small value, the probability that the output value increased due to the presence of the foreign matter 10 does not exceed the threshold value increases. That is, if the parameter value is too small, there is a high possibility that it is determined that there is no foreign matter even though the foreign matter 10 is present, and there is a high possibility that the detection will be missed. Therefore, in the stable period, it is preferable to set the parameter value to a large value so that the threshold value gently follows the output value. As described above, it is preferable to adjust the followability of the threshold value with respect to the output value according to the ease of change of the output value of the sensor coil 120. According to such a configuration, erroneous detection and detection omission are suppressed, and highly accurate detection can be expected.
  • the detection unit 180 changes the parameter value according to the state of the moving body indicated by the moving body state information acquired by the moving body state acquisition unit 186. That is, the detection unit 180 changes the parameter value according to the easiness of fluctuation of the output value according to the position of the moving body and the moving state of the moving body. For example, the detection unit 180 changes the parameter value when the state of the moving body indicated by the moving body state information changes to the first state.
  • the first state is a state in which the position of the moving body is within the reference region and the moving state of the moving body is the moving state.
  • the reference area is an area close to the power transmission device 200.
  • the reference region is a region in which the distance from P0, which is the center point of the power transmission device 200, is L1 or less in a plan view.
  • P1 which is the center point of the moving body of the electric vehicle 700 is within the reference region, it is considered that the position of the moving body is within the reference region.
  • the period in which the state of the moving body is the first state is an unstable period in which the output value of the sensor coil 120 changes abruptly. Therefore, when the state of the moving body changes from the non-first state to the first state, the detection unit 180 changes the parameter value to a smaller value.
  • the detection unit 180 changes the parameter value according to the moving speed of the moving body.
  • the faster the moving speed of the moving body the faster the output value of the sensor coil 120 changes. Therefore, the detection unit 180 changes the parameter value to a smaller value as the moving speed of the moving body is faster.
  • the detection unit 180 responds to the installation height of the power receiving coil 311 indicated by the height information acquired by the height information acquisition unit 187. Change the parameter value.
  • the detection unit 180 changes the parameter value to a smaller value as the installation height of the power receiving coil 311 is lower.
  • the correspondence between the state of the moving body and the parameter value and the correspondence between the installation height of the power receiving coil 311 and the parameter value can be adjusted as appropriate.
  • the correspondence between the state of the moving body, the installation height of the power receiving coil 311 and the parameter value is defined by the first parameter table stored in the storage unit 150.
  • the parameter value when the position of the moving body is outside the reference region, the parameter value is 10 regardless of the moving state of the moving body and the installation height of the power receiving coil 311.
  • the parameter value When the position of the moving body is within the reference region, the moving body is moving at high speed, and the installation height of the power receiving coil 311 is low, the parameter value is 2.
  • the parameter value When the position of the moving body is within the reference region, the moving body is moving at high speed, and the installation height of the power receiving coil 311 is a medium height, the parameter value is 3.
  • the parameter value is 4.
  • the parameter value is 5 regardless of the installation height of the power receiving coil 311. Further, when the position of the moving body is within the reference region and the moving body is moving at a low speed, the parameter value is 7 regardless of the installation height of the power receiving coil 311. Further, when the position of the moving body is within the reference region and the moving body is stopped, the parameter value is 10 regardless of the installation height of the power receiving coil 311. As described above, when the position of the moving body is within the reference region, the detection unit 180 changes the parameter value to a smaller value as the moving speed of the moving body is faster and the installation height of the power receiving coil 311 is lower. do.
  • the detection unit 180 changes the parameter value according to the operation state of the power supply device 220 indicated by the operation state information acquired by the operation state acquisition unit 188. That is, the detection unit 180 changes the parameter value according to the easiness of fluctuation of the output value according to the operating state of the power supply device 220. For example, the detection unit 180 changes the parameter value according to the amount of change in the magnitude of the transmitted power per unit time.
  • the transmitted power is AC power supplied from the power supply device 220 to the power transmission coil 211.
  • the detection unit 180 changes the parameter value to a smaller value as the amount of change in the magnitude of the transmitted power per unit time increases.
  • the correspondence between the operating state of the power supply device 220 and the parameter value can be adjusted as appropriate.
  • the correspondence between the operating state of the power supply device 220 and the parameter value is defined by the second parameter table stored in the storage unit 150.
  • the parameter value is 10 when the power supply device 220 has stopped power transmission or when the power supply device 220 is transmitting power with a constant power. Further, when the power supply device 220 transmits power while significantly increasing the transmitted power, or when the power supply device 220 transmits power while significantly reducing the transmitted power, the parameter value is 3. The parameter value is 5 when the power supply device 220 is transmitting power while increasing the transmitted power to a moderate level, or when the power supply device 220 is transmitting power while decreasing the transmitted power to a moderate level. The parameter value is 7 when the power supply device 220 is transmitting power while slightly increasing the transmitted power, or when the power supply device 220 is transmitting power while slightly decreasing the transmitted power. In this way, the detection unit 180 changes the parameter value to a smaller value as the change in the transmitted power transmitted by the power supply device 220 increases.
  • the detection unit 180 changes the parameter value according to the temperature of the specific portion indicated by the temperature information acquired by the temperature information acquisition unit 189. That is, the detection unit 180 changes the parameter value according to the easiness of fluctuation of the output value according to the temperature of the specific portion of the power transmission device 200.
  • the correspondence between the temperature of the specific portion of the power transmission device 200 and the parameter value can be appropriately adjusted. In the present embodiment, as shown in FIG. 11, the correspondence between the temperature of the specific portion of the power transmission device 200 and the parameter value is defined by the third parameter table stored in the storage unit 150.
  • the parameter value when the temperature of a specific part is high, the parameter value is added by 3. That is, when the temperature of a specific part is high, the parameter value according to the moving state of the moving body and the installation height of the power receiving coil 311 or the parameter value according to the operating state of the power supply device 220 (hereinafter, "other elements"). A value obtained by adding 3 to the parameter value corresponding to the parameter value is set as the parameter value. Further, when the temperature of the specific part is a medium temperature, the parameter value is not changed. That is, when the temperature of a specific part is a medium temperature, parameter values corresponding to other factors are set.
  • the parameter value is added by 1. That is, when the temperature of the specific portion is low, the value obtained by adding 1 to the parameter value corresponding to the other element is set as the parameter value. If the parameter value exceeds the upper limit value, the parameter value is set to the upper limit value. If the parameter value exceeds the lower limit, the parameter value is set to the lower limit. In the present embodiment, the upper limit value of the parameter is 10, and the lower limit value of the parameter is 2.
  • the foreign matter detection process is started, for example, when the foreign matter detection device 100 receives a notification from the power supply device 220 to start power transmission.
  • the detection unit 180 included in the foreign matter detection device 100 executes the initial setting (step S101).
  • This initial setting is the initial setting related to the foreign matter detection process.
  • the switch 132 and the switch 133 included in the detection coil unit 110 are set to the off state.
  • an initial value of a predetermined threshold value is set as the threshold value.
  • the detection unit 180 acquires the moving body state information (step S201). For example, the detection unit 180 instructs the moving body state acquisition unit 186 to acquire the moving body state information. On the other hand, the moving body state acquisition unit 186 acquires the moving body state information from the power transmission device 200 according to the instruction from the detection unit 180, and supplies the acquired moving body state information to the detection unit 180.
  • the detection unit 180 determines whether or not the moving body is in the reference region (step S202). For example, the detection unit 180 determines whether or not the position of the moving body indicated by the moving body state information is within the reference region.
  • the detection unit 180 determines whether or not the moving body is moving (step S203). For example, the detection unit 180 determines whether or not the moving state of the moving body indicated by the moving body state information is moving. The detection unit 180 changes the parameter value to 10 when it is determined that the moving object is not within the reference region (step S202: NO) or when it is determined that the moving object is not moving (step S203: NO). (Step S204).
  • the detection unit 180 determines whether or not the moving body is moving at a low speed (step S205). For example, the detection unit 180 determines whether or not the moving speed of the moving body indicated by the moving body state information is equal to or less than the first speed threshold value.
  • the first speed threshold value is an upper limit value of the moving speed considered to be low speed.
  • the detection unit 180 determines whether or not the moving body is moving at a medium speed (step S207). For example, the detection unit 180 determines whether or not the moving speed of the moving body indicated by the moving body state information is equal to or less than the second speed threshold value.
  • the second speed threshold value is an upper limit value of the moving speed considered to be medium speed.
  • step S207: NO the detection unit 180 executes the installation height-based change process (step S209).
  • the change process for each installation height will be described in detail with reference to the flowchart shown in FIG.
  • the detection unit 180 acquires the installation height information (step S301). For example, the detection unit 180 instructs the height information acquisition unit 187 to acquire the height information. On the other hand, the height information acquisition unit 187 acquires height information from the power transmission device 200 according to the instruction from the detection unit 180, and supplies the acquired height information to the detection unit 180.
  • the detection unit 180 determines whether or not the installation height of the power receiving coil 311 is low (step S302). For example, the detection unit 180 determines whether or not the installation height of the power receiving coil 311 indicated by the height information is equal to or less than the first height threshold value.
  • the first height threshold is the upper limit of the installation height considered to be low.
  • the detection unit 180 determines whether or not the installation height of the power receiving coil 311 is medium (step S304). For example, the detection unit 180 determines whether or not the installation height of the power receiving coil 311 indicated by the height information is equal to or less than the second height threshold value.
  • the second height threshold is the upper limit of the installation height, which is considered to be a medium height.
  • step S304 NO
  • the parameter value is changed to 4 (step S307).
  • step S204 When the detection unit 180 completes the processing of step S204, step S206, step S208, or step S209, the first parameter change processing is completed.
  • step S102 the detection unit 180 executes the second parameter change process (step S103).
  • the second parameter change process will be described in detail with reference to the flowchart shown in FIG.
  • the detection unit 180 acquires the operation state information (step S401). For example, the detection unit 180 instructs the operation state acquisition unit 188 to acquire the operation state information. On the other hand, the operation state acquisition unit 188 acquires the operation state information from the power transmission device 200 according to the instruction from the detection unit 180, and supplies the acquired operation state information to the detection unit 180.
  • the detection unit 180 determines whether or not the power supply device 220 is in the power transmission stop (step S402). For example, the detection unit 180 determines whether or not the operating state of the power supply device 220 indicated by the operating state information is a state in which power transmission is stopped.
  • the detection unit 180 determines whether or not the power supply device 220 is transmitting power with a constant power (step S403). For example, the detection unit 180 determines whether or not the operating state of the power supply device 220 indicated by the operating state information is a state in which power is transmitted with a constant power.
  • the detection unit 180 determines that the power supply device 220 is in the process of stopping power transmission (step S402: YES), or when the power supply device 220 determines that the power supply device 220 is transmitting power with a constant power (step S403: YES).
  • the provisional value is changed to 10 (step S404). This provisional value is a provisional value of the parameter value.
  • the detection unit 180 determines whether or not the transmitted power is significantly increasing or decreasing (step S405). For example, the detection unit 180 determines whether or not the operating state of the power supply device 220 indicated by the operating state information is a state in which power is transmitted while the transmitted power is significantly increased or decreased.
  • the detection unit 180 changes the provisional value to 3 (step S406).
  • step S407 determines whether or not the transmitted power is moderately increasing or decreasing. For example, the detection unit 180 determines whether or not the operating state of the power supply device 220 indicated by the operating state information is a state in which power is transmitted while the transmitted power is moderately increased or decreased. When the detection unit 180 determines that the transmitted power is moderately increasing or decreasing (step S407: YES), the detection unit 180 changes the provisional value to 5 (step S408). When the detection unit 180 determines that the transmitted power is not increasing or decreasing moderately (step S407: NO), the detection unit 180 changes the provisional value to 7 (step S409).
  • step S410 determines whether or not the provisional value is less than the parameter value.
  • step S410: YES the detection unit 180 changes the parameter value to the provisional value.
  • the parameter value is a value set according to the state of the moving body and the installation height of the power receiving coil 311, and the provisional value is according to the operating state of the power supply device 220. It is a value set in. Therefore, the smaller of these two values is adopted as the parameter value. That is, the smaller value is adopted as the parameter value so that the threshold value follows the predicted change of the earliest output value.
  • the detection unit 180 determines that the provisional value is not less than the parameter value (step S410: NO), or when the process of step S411 is completed, the detection unit 180 completes the second parameter change process.
  • step S104 the detection unit 180 executes the third parameter change process (step S104).
  • the third parameter change process will be described in detail with reference to the flowchart shown in FIG.
  • the detection unit 180 acquires temperature information (step S501). For example, the detection unit 180 instructs the temperature information acquisition unit 189 to acquire the temperature information. On the other hand, the temperature information acquisition unit 189 acquires temperature information from the power transmission device 200 according to the instruction from the detection unit 180, and supplies the acquired temperature information to the detection unit 180.
  • the detection unit 180 determines whether or not the temperature of the specific portion is a moderate temperature (step S502). For example, the detection unit 180 determines whether or not the temperature of the specific portion indicated by the temperature information exceeds the first temperature threshold value and is equal to or lower than the second temperature threshold value.
  • the first temperature threshold is the upper limit of the temperature considered to be low.
  • the second temperature threshold is the upper limit of the temperature considered to be moderate.
  • step S503 determines whether or not the temperature of the specific portion is high. For example, the detection unit 180 determines whether or not the temperature of the specific portion indicated by the temperature information exceeds the second temperature threshold value.
  • step S504 determines that the temperature of the specific portion is high (step S503: YES)
  • step S504 sets a value obtained by adding 3 to the parameter value as a provisional value (step S504).
  • step S505 the detection unit 180 sets a value obtained by adding 1 to the parameter value as a provisional value (step S505).
  • step S506 determines whether or not the provisional value is equal to or less than the upper limit value.
  • This upper limit is the upper limit of the parameter value.
  • step S506: YES the detection unit 180 changes the parameter value to the provisional value (step S507).
  • step S506: NO the detection unit 180 changes the parameter value to the upper limit value (step S508).
  • step S502 determines that the temperature of the specific portion is a medium temperature (step S502: YES), or when the process of step S507 or step 508 is completed, the detection unit 180 completes the third parameter change process.
  • the detection unit 180 selects the sensor coil 120 (step S105). For example, the detection unit 180 selects one sensor coil 120 from the 12 sensor coils 120 according to a predetermined order.
  • the detection unit 180 executes the output value acquisition process (step S106). The output value acquisition process will be described in detail with reference to the flowchart shown in FIG.
  • the detection unit 180 controls the states of the switches 132 and 133 (step S601). That is, the detection unit 180 controls the switch control unit 182 to control the switch 132 and the switch 133 included in the selected sensor coil 120 to be in the ON state, and the switch 132 and the switch included in the sensor coil 120 not selected.
  • the 133 is controlled to the off state.
  • the detection unit 180 applies a pulsed voltage to the selected sensor coil 120 (step S602). That is, the detection unit 180 controls the pulse control unit 181 to generate a pulse-shaped voltage in the pulse generation unit 140.
  • the detection unit 180 acquires an output value from the selected sensor coil 120 (step S603).
  • the detection unit 180 acquires an output value from the selected sensor coil 120 via the output value acquisition unit 183.
  • the output value acquisition process is completed.
  • the detection unit 180 determines whether or not the output value exceeds the threshold value (step S107).
  • the detection unit 180 determines that the output value does not exceed the threshold value (step S107: NO)
  • the detection unit 180 calculates the value of the moving average of the output values (step S108). That is, the detection unit 180 calculates the moving average value of the number of output values corresponding to the parameter values selected in order from the newest output value acquired for the selected sensor coil 120.
  • the detection unit 180 corrects the threshold value based on the value of the moving average (step S109). That is, the detection unit 180 sets the value obtained by adding the offset value to the value of the moving average calculated for the selected sensor coil 120 as a new threshold value of the selected sensor coil 120.
  • the detection unit 180 determines whether or not all the sensor coils 120 have been selected (step S110).
  • step S110: NO the processing is returned to step S105, the unselected sensor coils 120 are selected, and the subsequent processing is executed.
  • step S110: YES the detection unit 180 returns the process to step S102.
  • the detection unit 180 determines that the output value exceeds the threshold value (step S107: YES)
  • the detection unit 180 notifies the user of foreign matter detection (step S111).
  • the detection unit 180 instructs the notification unit 184 to notify.
  • the notification unit 184 transmits information indicating that the foreign matter 10 has been detected to the terminal device 800 according to the instruction from the detection unit 180.
  • the terminal device 800 receives this information, the terminal device 800 notifies the user that the foreign matter 10 has been detected by displaying the screen, outputting voice, or the like.
  • the user removes the foreign matter 10.
  • the detection unit 180 instructs the power supply device 220 to stop power transmission (step S112).
  • the detection unit 180 instructs the power transmission control unit 185 to stop power transmission.
  • the power transmission control unit 185 transmits information instructing the power supply device 220 to stop power transmission according to the instruction from the detection unit 180.
  • the power supply device 220 receives this information, the power supply device 220 stops power transmission.
  • the detection unit 180 completes the foreign matter detection processing.
  • the threshold value is corrected based on the output value and the parameter value. That is, in the present embodiment, the threshold value is corrected according to the output value that changes according to the change in the environment surrounding the foreign matter detecting device 100. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy in the foreign matter detection of wireless power transmission.
  • the parameter value is changed according to the state of the moving body indicated by the moving body state information. Therefore, according to the present embodiment, when the output value changes at a speed corresponding to the state of the moving body, erroneous detection and omission of detection are suppressed, and the foreign matter 10 is detected with high accuracy.
  • the parameter value is changed. .. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the state of the moving body is the first state and the output value changes rapidly.
  • the parameter value is changed according to the moving speed of the moving body. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the moving speed of the moving body.
  • the parameter value is changed according to the installation height of the power receiving coil 311. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the installation height of the power receiving coil 311.
  • the parameter value is changed according to the operating state of the power supply device 220. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the operating state of the power supply device 220.
  • the parameter value is changed according to the amount of change in the magnitude of the AC power supplied from the power supply device 220 to the power transmission coil 211 per unit time. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the speed of change of the transmitted power.
  • the parameter value is changed according to the temperature of the specific part of the power transmission device 200. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the temperature of the specific portion of the power transmission device 200.
  • the value of the moving average of the number of output values indicated by the parameter values, which has been acquired most recently, is used to correct the threshold value. That is, in the present embodiment, the threshold value follows the output value at a speed appropriately adjusted by the parameter value. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes according to the change in the environment surrounding the foreign matter detecting device 100.
  • the detection unit 180 changes the threshold value based on the state of the moving body indicated by the moving body state information before executing the threshold value correction process. For example, the detection unit 180 changes the threshold value immediately after the foreign matter detection process is started, based on the state of the moving body indicated by the moving body state information.
  • the detection unit 180 changes the threshold value based on the operating state of the power supply device 220 indicated by the operating state information before executing the threshold value correction process. For example, the detection unit 180 changes the threshold value immediately after the foreign matter detection process is started, based on the operating state of the power supply device 220 indicated by the operating state information.
  • the threshold value change process executed by the foreign matter detection device 100 according to the present embodiment will be described with reference to FIG.
  • the threshold value change process is executed, for example, after the initial setting in step S101 is completed.
  • the detection unit 180 included in the foreign matter detection device 100 acquires the moving body state information (step S701). For example, the detection unit 180 instructs the moving body state acquisition unit 186 to acquire the moving body state information, and acquires the moving body state information from the moving body state acquisition unit 186.
  • the detection unit 180 acquires the operation state information (step S702). For example, the detection unit 180 instructs the operation state acquisition unit 188 to acquire the operation state information, and acquires the operation state information from the operation state acquisition unit 188.
  • the detection unit 180 selects the sensor coil 120 (step S703).
  • the detection unit 180 changes the threshold value of the selected sensor coil 120 based on the moving body state information and the operating state information for the selected sensor coil 120.
  • the output value acquired when there is no foreign matter 10 depends on the state of the moving body and the operating state of the power supply device 220. Further, it is considered that the output value acquired when there is no foreign matter 10 is different for each sensor coil 120. Therefore, the output value acquired when there is no foreign matter 10 is obtained in advance by experiments, simulations, etc. for each combination of the state of the moving body, the operating state of the power supply device 220, and the individual sensor coil 120. It is preferable to obtain the initial value of the threshold value based on the obtained output value. Then, the storage unit 150 stores the initial value information indicating the initial value of the threshold value for each of the above combinations. The detection unit 180 changes the threshold value of the selected sensor coil 120 to the initial value of the threshold value indicated by the initial value information.
  • step S705 determines whether or not all the sensor coils 120 have been selected.
  • step S705: NO the process returns to step S703 and selects the unselected sensor coils 120.
  • step S705: YES the detection unit 180 completes the threshold value change process and returns the process to step S102.
  • the threshold value is changed based on the state of the moving body before the threshold value correction process is executed. Therefore, according to the present embodiment, the threshold value to be compared with the output value can be quickly changed to the threshold value suitable for the state of the moving body.
  • the threshold value is changed based on the operating state of the power supply device 220 before the threshold value correction process is executed. Therefore, according to the present embodiment, the threshold value to be compared with the output value can be quickly changed to the threshold value suitable for the operating state of the power supply device 220.
  • the detection unit 180 corrects the threshold value in the threshold value correction process by using a value obtained by multiplying the most recently acquired output value by the weighting coefficient indicated by the parameter value. For example, the detection unit 180 uses a value obtained by adding the first value, the second value, and the offset value as a new threshold value.
  • the first value is a value obtained by multiplying the most recently acquired output value by the weight count indicated by the parameter value.
  • the second value is a value obtained by multiplying the value obtained by subtracting the offset value from the threshold value before correction by the value obtained by subtracting the weight count indicated by the parameter value from 1.
  • the most recently acquired output value is 4 (V)
  • the threshold value before correction is 3 (V)
  • the offset value is 1 (V).
  • the parameter value is 0.1
  • the first value is 0.4 (V)
  • the second value is 1.8 (V)
  • the new threshold value is 3.2 (V).
  • the parameter value is 0.5
  • the first value is 2 (V)
  • the second value is 1 (V)
  • the new threshold value is 4 (V).
  • the larger the parameter value the faster the threshold value follows the output value.
  • the threshold value is corrected by using the value obtained by multiplying the most recently acquired output value by the weighting coefficient indicated by the parameter value. That is, in the present embodiment, the threshold value follows the output value at a speed appropriately adjusted by the parameter value. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes according to the change in the environment surrounding the foreign matter detecting device 100.
  • the detection unit 180 changes the parameter value according to the amount of fluctuation in the temperature of the specific portion indicated by the temperature information acquired by the temperature information acquisition unit 189. That is, the detection unit 180 changes the parameter value according to the easiness of fluctuation of the output value according to the fluctuation amount of the temperature of the specific portion of the power transmission device 200.
  • a large fluctuation in the temperature of a specific part means that the temperature of the specific part fluctuates greatly in a short time.
  • the fact that the amount of fluctuation in the temperature of the specific part is small means that the temperature of the specific part does not fluctuate much.
  • the correspondence between the amount of temperature fluctuation of the specific portion of the power transmission device 200 and the parameter value can be appropriately adjusted.
  • the correspondence between the temperature fluctuation amount of the specific portion of the power transmission device 200 and the parameter value is defined by the fourth parameter table stored in the storage unit 150.
  • the parameter value is not changed when the amount of temperature fluctuation of a specific part is large. That is, when the amount of fluctuation in the temperature of a specific part is large, parameter values corresponding to other factors are set. Further, when the amount of fluctuation in the temperature of the specific portion is medium, the parameter value is added by 1. That is, when the amount of fluctuation in the temperature of the specific portion is medium, the value obtained by adding 1 to the parameter value corresponding to the other elements is set as the parameter value. Further, when the amount of fluctuation in the temperature of the specific portion is small, the parameter value is added by 3. That is, when the fluctuation amount of the temperature of the specific portion is small, the value obtained by adding 3 to the parameter value corresponding to other elements is set as the parameter value.
  • the parameter value is changed according to the amount of fluctuation in the temperature of the specific part of the power transmission device 200. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the fluctuation amount of the temperature of the specific portion in the power transmission device 200.
  • Embodiment 5 In Embodiment 1-4, an example in which the foreign matter detecting device 100 is provided in the power transmission device 200 has been described. In this embodiment, an example in which the power receiving device 300 is provided with the foreign matter detecting device 100 will be described. The description of the same configuration and processing as those of the first and fourth embodiments will be omitted or simplified.
  • the detection coil unit 110 is formed in a flat plate shape and is arranged on the power receiving coil unit 310 so as to overlap the power receiving coil 311 in a plan view.
  • the pulse generation unit 140 generates a pulse-shaped voltage for detecting foreign matter, and selects and applies the sensor coil 120.
  • the detection unit 180 determines the presence or absence of the foreign matter 10 based on the comparison result between the output value of the sensor coil 120 excited by the application of the pulsed voltage and the threshold value.
  • the detection unit 180 executes a threshold value correction process for correcting the threshold value based on the output value and the parameter value which is the value of the correction parameter used for the correction of the threshold value.
  • the power receiving device 300 is provided with the foreign matter detecting device 100, and the threshold value is corrected based on the output value and the parameter value. That is, in the present embodiment, even when the foreign matter detecting device 100 is provided in the power receiving device 300 from various viewpoints, the threshold value is set according to the output value that changes according to the change in the environment surrounding the foreign matter detecting device 100. It will be corrected. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy in the foreign matter detection of wireless power transmission.
  • an independent threshold value and an initial value of the independent threshold value are prepared for each of the plurality of sensor coils 120.
  • a common threshold value and an initial value of the common threshold value may be prepared for the plurality of sensor coils 120.
  • the moving average value may be obtained for the output value acquired for one sensor coil 120, or the moving average value may be obtained for the output value acquired for the plurality of sensor coils 120. May be done.
  • a plurality of sensor coils 120 are used as sensors used for detecting foreign matter.
  • One sensor coil 120 may be used as the sensor used for detecting foreign matter.
  • the sensor coil 120 is used as the sensor used for detecting foreign matter.
  • various sensors such as a temperature sensor and an ultrasonic sensor may be used.
  • the smaller of the parameter value based on the state of the moving body and the parameter value based on the operating state of the power supply device 220 is added to the parameter value based on the temperature of the specific part.
  • the method of determining the parameter value is not limited to this example.
  • a parameter value may be prepared for each combination of the state of the moving body and the like, the operating state of the power supply device 220, and the temperature of the specific portion. Further, even if the smallest parameter value among the parameter value based on the state of the moving body, the parameter value based on the operating state of the power supply device 220, and the parameter value based on the temperature of the specific part is determined as a new parameter value. good.
  • the parameter value is changed for each of the three elements of the state of the moving body, the operating state of the power supply device 220, and the temperature of the specific part.
  • the parameter value may be changed for two of these elements, or the parameter value may be changed for one of these elements.
  • the power transmission device 200 acquires various information such as moving body state information, height information, operating state information, temperature information, and the foreign matter detection device 100 acquires various information from the power transmission device 200.
  • the foreign matter detection device 100 may acquire various information from a device other than the power transmission device 200.
  • a temperature sensor 260 may be provided in the foreign matter detection device 100, and the foreign matter detection device 100 may acquire temperature information from the temperature sensor 260.
  • the foreign body detecting device 100 may acquire the moving body state information and the height information from the communication device 600.
  • the foreign body detection device 100 or the power transmission device 200 may acquire the moving body state information and the height information from a device other than the communication device 600.
  • the foreign matter detection device 100 or the power transmission device 200 may acquire the moving body state information from the image pickup device installed in the power supply equipment and the height information from the proximity sensor installed in the power supply equipment.
  • the installation height of the power receiving coil 311 when the moving speed of the moving body is medium speed or low speed, an example in which the installation height of the power receiving coil 311 is not taken into consideration has been described. Even when the moving speed of the moving body is medium or low, the installation height of the power receiving coil 311 may be taken into consideration as in the case where the moving speed of the moving body is high.
  • the acquisition cycle in which the output value of one sensor coil 120 is acquired and the change cycle in which the parameter value is changed are the same.
  • the change cycle may be longer than the acquisition cycle.
  • the parameter value may be changed when it is detected that the state of the moving body, the operating state of the power supply device 220, the temperature of the specific portion, or the like has changed.
  • the specific portion where the temperature is measured by the temperature information acquisition unit 189 is a part of the power transmission device 200 in which the foreign matter detection device 100 is incorporated has been described.
  • the specific portion may be a part of the power receiving device 300 in which the foreign matter detecting device 100 is incorporated. That is, it is preferable that the specific portion is a part of any one of the foreign matter detection device 100, the power transmission device 200, and the power receiving device 300.
  • the computer By applying an operation program that regulates the operation of the foreign matter detection device 100 according to the present disclosure to a computer such as an existing personal computer or an information terminal device, the computer can be made to function as the foreign matter detection device 100 according to the present disclosure. It is possible. Further, the distribution method of such a program is arbitrary, and for example, a computer-readable recording such as a CD-ROM (CompactDiskROM), a DVD (DigitalVersatileDisk), an MO (MagnetoOpticalDisk), or a memory card. It may be stored in a medium and distributed, or may be distributed via a communication network such as the Internet.
  • a computer-readable recording such as a CD-ROM (CompactDiskROM), a DVD (DigitalVersatileDisk), an MO (MagnetoOpticalDisk), or a memory card. It may be stored in a medium and distributed, or may be distributed via a communication network such as the Internet.

Abstract

In the present invention, a detection unit (180) assesses whether foreign matter is present on the basis of the result of comparison of the output value of a sensor and a threshold value. The detection unit (180) executes a threshold value correction process for correcting the threshold value on the basis of the output value and a parameter value, which is the value of a correction parameter used in correction of the threshold value.

Description

異物検出装置、送電装置、受電装置、及び、電力伝送システムForeign matter detection device, power transmission device, power receiving device, and power transmission system
 本開示は、異物検出装置、送電装置、受電装置、及び、電力伝送システムに関する。 This disclosure relates to a foreign matter detection device, a power transmission device, a power receiving device, and a power transmission system.
 ワイヤレスで電力を伝送するワイヤレス電力伝送技術が注目されている。ワイヤレス電力伝送技術は、送電装置から受電装置にワイヤレスで送電できるので、電車、電気自動車等の輸送機器、家電機器、無線通信機器、玩具等の様々な製品への応用が期待されている。ワイヤレス電力伝送技術では、電力の伝送のために、磁束により結合された送電コイルと受電コイルとが用いられる。 Wireless power transmission technology that transmits power wirelessly is attracting attention. Since wireless power transmission technology can transmit power wirelessly from a power transmission device to a power receiving device, it is expected to be applied to various products such as transportation equipment such as trains and electric vehicles, home appliances, wireless communication equipment, and toys. In wireless power transmission technology, a transmission coil and a power receiving coil coupled by magnetic flux are used for power transmission.
 ところで、送電コイルと受電コイルとの付近に、金属片をはじめとする異物が存在すると種々の問題が生じる可能性がある。例えば、このような異物は、送電コイルから受電コイルへの送電に悪影響を与えたり、渦電流により発熱したりする可能性がある。従って、送電コイルと受電コイルとの付近に存在する異物を適切に検出する異物検出装置が望まれている。 By the way, if foreign matter such as metal pieces is present in the vicinity of the power transmission coil and the power reception coil, various problems may occur. For example, such foreign matter may adversely affect the power transmission from the power transmission coil to the power reception coil, or may generate heat due to eddy currents. Therefore, there is a demand for a foreign matter detecting device that appropriately detects foreign matter existing in the vicinity of the power transmission coil and the power receiving coil.
 例えば、特許文献1には、複数のセンサコイルに生じた電圧と基準電圧テーブルとを比較して、複数のセンサコイルが平面的に配置されたサーチコイルの近傍に異物が存在するか否かを判別する非接触電力伝送装置が記載されている。特許文献1に記載された非接触電力伝送装置は、サーチコイルの近傍に異物が存在しないときに複数のセンサコイルに生じる電圧を基準電圧テーブルとして記憶する。 For example, Patent Document 1 compares the voltage generated in a plurality of sensor coils with a reference voltage table, and determines whether or not a foreign substance exists in the vicinity of a search coil in which the plurality of sensor coils are arranged in a plane. The non-contact power transmission device to be discriminated is described. The non-contact power transmission device described in Patent Document 1 stores the voltage generated in a plurality of sensor coils as a reference voltage table when no foreign matter is present in the vicinity of the search coil.
 また、特許文献2には、測定された品質因子値と基準品質因子値に基づいて決定された臨界値とを比較して、異物質の有無を判別する異物質検出方法が記載されている。特許文献2に記載された異物質検出方法では、基準品質因子値によって増加する加重値が適用されて臨界値が決定される。 Further, Patent Document 2 describes a foreign substance detection method for determining the presence or absence of a foreign substance by comparing the measured quality factor value with the critical value determined based on the reference quality factor value. In the foreign substance detection method described in Patent Document 2, a weighted value increased by a reference quality factor value is applied to determine a critical value.
国際公開第2014-156655号International Publication No. 2014-156655 特表2019-526220号公報Special Table 2019-526220 Gazette
 ところで、異物検出装置を取り巻く環境が変化すると、異物検出装置が備えるセンサが検出するセンサ値が変化することがある。ここで、センサ値が変化するにも拘わらず、閾値が不変であると、精度良く異物を検出することが困難である。このため、異物検出装置を取り巻く環境が変化した場合、センサ値と比較される閾値を環境に合わせて変更することが望ましい。しかしながら、特許文献1に記載された発明と特許文献2に記載された発明との何れも、環境の変化に追従して閾値を適切に変更していないため、精度良く異物を検出することが困難であると考えられる。このため、ワイヤレス電力伝送の異物検知において、精度良く異物を検出する技術が望まれている。 By the way, when the environment surrounding the foreign matter detection device changes, the sensor value detected by the sensor of the foreign matter detection device may change. Here, if the threshold value does not change even though the sensor value changes, it is difficult to accurately detect the foreign matter. Therefore, when the environment surrounding the foreign matter detection device changes, it is desirable to change the threshold value to be compared with the sensor value according to the environment. However, neither the invention described in Patent Document 1 nor the invention described in Patent Document 2 appropriately changes the threshold value in accordance with changes in the environment, so that it is difficult to detect foreign substances with high accuracy. Is considered to be. Therefore, in the detection of foreign matter in wireless power transmission, a technique for detecting foreign matter with high accuracy is desired.
 本開示は、上記課題に鑑みてなされたものであり、ワイヤレス電力伝送の異物検知において、精度良く異物を検出することを目的とする。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to detect foreign matter with high accuracy in the detection of foreign matter in wireless power transmission.
 上記課題を解決するため、本開示の一実施態様に係る異物検出装置は、
 センサと、
 前記センサの出力値と、閾値との比較結果に基づいて、異物の有無を判別する検出部と、を備え、
 前記検出部は、前記出力値と前記閾値の補正に用いる補正パラメータの値であるパラメータ値とに基づいて前記閾値を補正する閾値補正処理を実行する。
In order to solve the above problems, the foreign matter detection device according to one embodiment of the present disclosure is
With the sensor
A detection unit for determining the presence or absence of a foreign substance based on the comparison result between the output value of the sensor and the threshold value is provided.
The detection unit executes a threshold value correction process for correcting the threshold value based on the output value and the parameter value which is the value of the correction parameter used for the correction of the threshold value.
 上記構成の送電装置によれば、ワイヤレス電力伝送の異物検知において、精度良く異物を検出することができる。 According to the power transmission device having the above configuration, foreign matter can be detected with high accuracy in the foreign matter detection of wireless power transmission.
実施の形態1に係る電力伝送システムの概略構成図Schematic configuration diagram of the power transmission system according to the first embodiment 実施の形態1に係る異物検出装置の配置図Layout of the foreign matter detection device according to the first embodiment 実施の形態1に係る異物検出装置の構成図Configuration diagram of the foreign matter detection device according to the first embodiment 実施の形態1に係る検出コイルユニットの平面図Top view of the detection coil unit according to the first embodiment 実施の形態1に係る検出コイルユニットが備える共振回路の等価回路を示す図The figure which shows the equivalent circuit of the resonance circuit provided in the detection coil unit which concerns on Embodiment 1. 実施の形態1に係る送電装置の構成図Configuration diagram of the power transmission device according to the first embodiment 出力値と閾値と測定回数との対応関係の説明図Explanatory diagram of the correspondence between the output value, the threshold value, and the number of measurements 基準領域の説明図Explanatory drawing of the reference area 第1パラメータテーブルを示す図The figure which shows the 1st parameter table 第2パラメータテーブルを示す図The figure which shows the 2nd parameter table 第3パラメータテーブルを示す図The figure which shows the 3rd parameter table 実施の形態1に係る異物検出装置が実行する異物検出処理を示すフローチャートA flowchart showing a foreign matter detection process executed by the foreign matter detection device according to the first embodiment. 図12に示す第1パラメータ変更処理を示すフローチャートA flowchart showing the first parameter change process shown in FIG. 図13に示す設置高さ別変更処理を示すフローチャートA flowchart showing the change process for each installation height shown in FIG. 図12に示す第2パラメータ変更処理を示すフローチャートA flowchart showing the second parameter change process shown in FIG. 図12に示す第3パラメータ変更処理を示すフローチャートA flowchart showing the third parameter change process shown in FIG. 図12に示す出力値取得処理を示すフローチャートA flowchart showing the output value acquisition process shown in FIG. 実施の形態2に係る異物検出装置が実行する閾値変更処理を示すフローチャートA flowchart showing a threshold value change process executed by the foreign matter detection device according to the second embodiment. 第4パラメータテーブルを示す図The figure which shows the 4th parameter table 実施の形態5に係る異物検出装置の配置図Layout of the foreign matter detection device according to the fifth embodiment
 以下、本開示に係る技術の実施の形態に係る電力伝送システムを、図面を参照しつつ説明する。なお、以下の実施の形態において、同一の構成部分には同一の符号を付す。また、各図に示した構成要素の大きさの比率及び形状は、実施の際と必ずしも同じではない。 Hereinafter, the power transmission system according to the embodiment of the technique according to the present disclosure will be described with reference to the drawings. In the following embodiments, the same components are designated by the same reference numerals. In addition, the size ratio and shape of the components shown in each figure are not necessarily the same as those at the time of implementation.
(実施の形態1)
 本実施の形態に係る電力伝送システムは、EV(Electric Vehicle;電気自動車)、スマートフォン等のモバイル機器、産業機器等、様々な装置の2次電池の充電に利用できる。以下、電力伝送システムが、EVの蓄電池の充電を実行する場合を例示する。
(Embodiment 1)
The power transmission system according to the present embodiment can be used for charging secondary batteries of various devices such as EVs (Electric Vehicles), mobile devices such as smartphones, and industrial devices. Hereinafter, a case where the power transmission system executes charging of the storage battery of the EV will be illustrated.
 図1は、電気自動車700に備えられた蓄電池500の充電に用いられる電力伝送システム1000の概略構成を示す図である。電気自動車700は、リチウムイオン電池又は鉛蓄電池等の蓄電池500に充電された電力により駆動されるモータを動力源として走行する。電気自動車700は、移動体の一例である。 FIG. 1 is a diagram showing a schematic configuration of a power transmission system 1000 used for charging a storage battery 500 provided in an electric vehicle 700. The electric vehicle 700 runs on a motor driven by electric power charged in a storage battery 500 such as a lithium ion battery or a lead storage battery as a power source. The electric vehicle 700 is an example of a moving body.
 図1に示すように、電力伝送システム1000は、磁気結合によりワイヤレスで送電装置200から受電装置300に送電するシステムである。電力伝送システム1000は、交流又は直流の商用電源400の電力を電気自動車700にワイヤレスで送電する送電装置200と、送電装置200が送電した電力を受けて蓄電池500を充電する受電装置300とを備える。なお、以下の説明においては、商用電源400が交流電源である。 As shown in FIG. 1, the power transmission system 1000 is a system that wirelessly transmits power from a power transmission device 200 to a power reception device 300 by magnetic coupling. The power transmission system 1000 includes a power transmission device 200 that wirelessly transmits the power of an AC or DC commercial power source 400 to the electric vehicle 700, and a power receiving device 300 that receives the power transmitted by the power transmission device 200 and charges the storage battery 500. .. In the following description, the commercial power supply 400 is an AC power supply.
 送電装置200は、磁気結合によりワイヤレスで受電装置300に送電する装置である。送電装置200は、異物を検出する異物検出装置100と、交流電力を電気自動車700に送電する送電コイルユニット210と、送電コイルユニット210に交流電力を供給する電力供給装置220と、を備える。図2に示すように、異物検出装置100は、送電コイルユニット210上に配置される。図2において、鉛直方向上向きの軸がZ軸、Z軸と直交する軸がX軸、Z軸とX軸とに直交する軸がY軸である。異物検出装置100の詳細な説明については後述する。 The power transmission device 200 is a device that wirelessly transmits power to the power receiving device 300 by magnetic coupling. The power transmission device 200 includes a foreign matter detection device 100 for detecting foreign matter, a power transmission coil unit 210 for transmitting AC power to the electric vehicle 700, and a power supply device 220 for supplying AC power to the power transmission coil unit 210. As shown in FIG. 2, the foreign matter detecting device 100 is arranged on the power transmission coil unit 210. In FIG. 2, the vertically upward axis is the Z axis, the axis orthogonal to the Z axis is the X axis, and the axis orthogonal to the Z axis and the X axis is the Y axis. A detailed description of the foreign matter detecting device 100 will be described later.
 図2に示すように、送電コイルユニット210は、電力供給装置220から交流電力が供給され、交番磁束Φを誘起する送電コイル211と、送電コイル211が発生する磁力を通過させて磁力の損失を抑制する磁性体板212とを備える。送電コイル211は、磁性体板212上に導線が渦巻状に巻回されて構成される。送電コイル211と送電コイル211の両端のそれぞれに設けられたキャパシタとは、共振回路を構成し、交流電圧の印加に伴って交流電流が流れることで交番磁束Φを誘起する。 As shown in FIG. 2, the power transmission coil unit 210 is supplied with AC power from the power supply device 220 and passes through the power transmission coil 211 that induces an alternating magnetic flux Φ and the magnetic force generated by the power transmission coil 211 to cause a loss of magnetic force. A magnetic plate 212 for suppressing is provided. The power transmission coil 211 is configured by winding a conducting wire spirally on a magnetic plate 212. Capacitors provided at both ends of the power transmission coil 211 and the power transmission coil 211 form a resonance circuit, and an alternating magnetic field Φ is induced by an alternating current flowing with the application of an alternating voltage.
 磁性体板212は、中央部分に孔が空いた板状であり、磁性体で構成される。磁性体板212は、例えば、酸化鉄と金属との複合酸化物であるフェライトで構成される板状の部材である。なお、磁性体板212は、複数の磁性体個片の集合体により構成されていてもよく、この複数の磁性体個片が枠状に配置されて中央部分に開口部を有するように形成されてもよい。 The magnetic plate 212 has a plate shape with a hole in the central portion and is composed of a magnetic material. The magnetic plate 212 is, for example, a plate-shaped member made of ferrite, which is a composite oxide of iron oxide and a metal. The magnetic plate 212 may be composed of an aggregate of a plurality of magnetic material pieces, and the plurality of magnetic material pieces are arranged in a frame shape and formed so as to have an opening in the central portion. You may.
 電力供給装置220は、商用電源400が供給する商用交流電力の力率を改善する力率改善回路と、送電コイル211に供給する交流電力を発生するインバータ回路と、を備える。力率改善回路は、商用電源400が生成した交流電力を整流及び昇圧し、予め定められた電圧値を有する直流電力に変換する。インバータ回路は、力率改善回路が電力の変換により生成した直流電力を、予め定められた周波数の交流電力に変換する。送電装置200は、例えば、駐車場の床面に固定される。 The power supply device 220 includes a power factor improving circuit for improving the power factor of commercial AC power supplied by the commercial power supply 400, and an inverter circuit for generating AC power supplied to the power transmission coil 211. The power factor improving circuit rectifies and boosts the AC power generated by the commercial power supply 400 and converts it into DC power having a predetermined voltage value. The inverter circuit converts the DC power generated by the power factor improving circuit by the power conversion into AC power having a predetermined frequency. The power transmission device 200 is fixed to the floor surface of the parking lot, for example.
 受電装置300は、磁気結合によりワイヤレスで送電装置200から受電する装置である。受電装置300は、送電装置200が送電した交流電力を受電する受電コイルユニット310と、受電コイルユニット310から供給された交流電力を直流電力に変換して蓄電池500に供給する整流回路320と、を備える。 The power receiving device 300 is a device that receives power from the power transmitting device 200 wirelessly by magnetic coupling. The power receiving device 300 includes a power receiving coil unit 310 that receives AC power transmitted by the power transmitting device 200, and a rectifying circuit 320 that converts AC power supplied from the power receiving coil unit 310 into DC power and supplies it to the storage battery 500. Be prepared.
 図2に示すように、受電コイルユニット310は、送電コイル211が誘起した交番磁束Φの変化に応じて起電力を誘起する受電コイル311と、受電コイル311が発生する磁力を通過させて磁力の損失を抑制する磁性体板312とを備える。受電コイル311と受電コイル311の両端のそれぞれに設けられたキャパシタとは共振回路を構成する。受電コイル311は、電気自動車700が予め設定された位置に停止した状態で、送電コイル211と対向する。電力供給装置220からの電力を受けて送電コイル211が交番磁束Φを誘起すると、この交番磁束Φが受電コイル311に鎖交することにより、受電コイル311に誘導起電力が誘起される。 As shown in FIG. 2, the power receiving coil unit 310 passes the power receiving coil 311 that induces an electromotive force in response to a change in the alternating magnetic flux Φ induced by the power transmitting coil 211 and the magnetic force generated by the power receiving coil 311 to obtain the magnetic force. A magnetic plate 312 that suppresses loss is provided. The power receiving coil 311 and the capacitors provided at both ends of the power receiving coil 311 form a resonance circuit. The power receiving coil 311 faces the power transmission coil 211 in a state where the electric vehicle 700 is stopped at a preset position. When the transmission coil 211 induces an alternating magnetic flux Φ by receiving the power from the power supply device 220, the alternating magnetic flux Φ is interlinked with the power receiving coil 311 to induce an induced electromotive force in the power receiving coil 311.
 磁性体板312は、中央部分に孔が空いた板状の部材であり、磁性体で構成される。磁性体板312は、例えば、酸化鉄と金属との複合酸化物であるフェライトで構成される板状の部材である。なお、磁性体板312は、複数の磁性体個片の集合体により構成されていてもよく、この複数の磁性体個片が枠状に配置されて中央部分に開口部を有するように形成されてもよい。 The magnetic plate 312 is a plate-shaped member having a hole in the central portion, and is composed of a magnetic material. The magnetic plate 312 is, for example, a plate-shaped member made of ferrite, which is a composite oxide of iron oxide and a metal. The magnetic plate 312 may be composed of an aggregate of a plurality of magnetic material pieces, and the plurality of magnetic material pieces are arranged in a frame shape and formed so as to have an opening in the central portion. You may.
 整流回路320は、受電コイル311に誘起された起電力を整流し、直流電力を生成する。整流回路320が生成した直流電力は、蓄電池500に供給される。なお、受電装置300は、整流回路320と蓄電池500との間に、整流回路320から供給された直流電力を、蓄電池500を充電するための適切な直流電力に変換する充電回路を備えていてもよい。受電装置300は、例えば、電気自動車700のシャーシに固定される。 The rectifier circuit 320 rectifies the electromotive force induced in the power receiving coil 311 to generate DC power. The DC power generated by the rectifier circuit 320 is supplied to the storage battery 500. Even if the power receiving device 300 includes a charging circuit between the rectifier circuit 320 and the storage battery 500, the DC power supplied from the rectifier circuit 320 is converted into an appropriate DC power for charging the storage battery 500. good. The power receiving device 300 is fixed to, for example, the chassis of the electric vehicle 700.
 通信装置600は、電気自動車700に搭載された通信装置である。通信装置600は、送電装置200と受電装置300とのそれぞれと通信する。また、通信装置600は、通信ネットワークを介して、通信ネットワークに接続された各種のサーバと通信する。通信装置600は、後述する移動体状態情報と高さ情報とを送電装置200に送信する。通信装置600は、例えば、電気自動車700の全体の動作を制御する車載コンピュータである。 The communication device 600 is a communication device mounted on the electric vehicle 700. The communication device 600 communicates with each of the power transmission device 200 and the power receiving device 300. Further, the communication device 600 communicates with various servers connected to the communication network via the communication network. The communication device 600 transmits the moving body state information and the height information, which will be described later, to the power transmission device 200. The communication device 600 is, for example, an in-vehicle computer that controls the entire operation of the electric vehicle 700.
 端末装置800は、異物検出装置100から異物があることの通知を受ける装置である。端末装置800は、例えば、電気自動車700の利用者が所持するスマートフォンである。端末装置800は、異物検出装置100から異物があることの通知を受けると、画面表示、音声出力等により、ユーザに異物があることを報知する。 The terminal device 800 is a device that receives a notification from the foreign matter detecting device 100 that there is a foreign matter. The terminal device 800 is, for example, a smartphone owned by a user of the electric vehicle 700. Upon receiving the notification from the foreign matter detecting device 100 that the foreign matter is present, the terminal device 800 notifies the user of the presence of the foreign matter by displaying a screen, outputting voice, or the like.
 異物検出装置100は、検出対象領域に存在する異物を検出する。検出対象領域は、異物の検出の対象の領域であり、異物の検出が可能な領域である。検出対象領域は、送電コイルユニット210と受電コイルユニット310との付近の領域であり、送電コイルユニット210と受電コイルユニット310との間の領域を含む領域である。異物は、送電に必要がない物体又は生体である。 The foreign matter detecting device 100 detects foreign matter existing in the detection target area. The detection target area is a region for detecting foreign matter, and is a region where foreign matter can be detected. The detection target region is a region near the power transmission coil unit 210 and the power reception coil unit 310, and is a region including a region between the power transmission coil unit 210 and the power reception coil unit 310. Foreign matter is an object or living body that is not necessary for power transmission.
 異物は、送電時に検出対象領域に配置されていると、送電に悪影響を及ぼしたり、発熱したりする可能性がある。そこで、異物検出装置100は、検出対象領域に存在する異物を検出し、異物が検出されたことをユーザに通知する。ユーザは、この通知を受けて、異物を除去することができる。異物としては、金属片、人、動物等、種々のものが想定される。図2に示すように、異物検出装置100は、検出部180が、パルス発生部140から電圧パルスが供給された検出コイルユニット110が出力する信号に基づいて、異物を検出する装置である。 If foreign matter is placed in the detection target area during power transmission, it may adversely affect power transmission or generate heat. Therefore, the foreign matter detecting device 100 detects the foreign matter existing in the detection target area and notifies the user that the foreign matter has been detected. Upon receiving this notification, the user can remove the foreign matter. Various foreign substances such as metal pieces, humans, and animals are assumed. As shown in FIG. 2, the foreign matter detection device 100 is a device in which the detection unit 180 detects foreign matter based on a signal output by the detection coil unit 110 to which a voltage pulse is supplied from the pulse generation unit 140.
 以下、図3を参照して、異物検出装置100の構成について説明する。図3に示すように、異物検出装置100は、検出コイルユニット110と、パルス発生部140と、記憶部150と、第1通信部160と、第2通信部170と、検出部180と、パルス制御部181と、スイッチ制御部182と、出力値取得部183と、通知部184と、送電制御部185と、移動体状態取得部186と、高さ情報取得部187と、動作状態取得部188と、温度情報取得部189とを備える。 Hereinafter, the configuration of the foreign matter detecting device 100 will be described with reference to FIG. As shown in FIG. 3, the foreign matter detection device 100 includes a detection coil unit 110, a pulse generation unit 140, a storage unit 150, a first communication unit 160, a second communication unit 170, a detection unit 180, and a pulse. Control unit 181, switch control unit 182, output value acquisition unit 183, notification unit 184, power transmission control unit 185, moving body state acquisition unit 186, height information acquisition unit 187, and operation state acquisition unit 188. And a temperature information acquisition unit 189.
 検出コイルユニット110は、異物を検出するユニットである。図4に示すように、検出コイルユニット110は、平板状に形成され、平面視で送電コイル211と重なるように、送電コイルユニット210の上に配置される。検出コイルユニット110は、樹脂に代表される透磁性の材料から構成される検出コイル基板130を備える。 The detection coil unit 110 is a unit that detects foreign matter. As shown in FIG. 4, the detection coil unit 110 is formed in a flat plate shape and is arranged on the power transmission coil unit 210 so as to overlap the power transmission coil 211 in a plan view. The detection coil unit 110 includes a detection coil substrate 130 made of a permeable magnetic material typified by a resin.
 検出コイル基板130には、少なくとも1つのセンサコイル120が実装される。本実施の形態では、検出コイル基板130には、センサコイル120Aとセンサコイル120Bとセンサコイル120Cとセンサコイル120Dとセンサコイル120Eとセンサコイル120Fとセンサコイル120Gとセンサコイル120Hとセンサコイル120Iとセンサコイル120Jとセンサコイル120Kとセンサコイル120Lとの12のセンサコイル120が実装される。各センサコイル120とパルス発生部140と検出部180とは、図示しない配線により接続される。センサコイル120は、センサの一例である。 At least one sensor coil 120 is mounted on the detection coil board 130. In the present embodiment, the detection coil substrate 130 includes the sensor coil 120A, the sensor coil 120B, the sensor coil 120C, the sensor coil 120D, the sensor coil 120E, the sensor coil 120F, the sensor coil 120G, the sensor coil 120H, the sensor coil 120I, and the sensor. Twelve sensor coils 120 of the coil 120J, the sensor coil 120K, and the sensor coil 120L are mounted. Each sensor coil 120, the pulse generation unit 140, and the detection unit 180 are connected by wiring (not shown). The sensor coil 120 is an example of a sensor.
 図5を参照して、検出コイルユニット110が備える共振回路であって、センサコイル120を含む共振回路の等価回路について説明する。図5に示すように、この共振回路は、センサコイル120と、キャパシタ131と、スイッチ132と、スイッチ133とを備える。センサコイル120は、Z軸と平行な軸を中心にして1回又は複数回巻回された導体パターンを有する。 A resonance circuit included in the detection coil unit 110, which is an equivalent circuit of the resonance circuit including the sensor coil 120, will be described with reference to FIG. As shown in FIG. 5, this resonant circuit includes a sensor coil 120, a capacitor 131, a switch 132, and a switch 133. The sensor coil 120 has a conductor pattern that is wound once or multiple times around an axis parallel to the Z axis.
 センサコイル120の一方の端子は、スイッチ132の一方の端子に接続され、配線を介してパルス発生部140の一端に接続される。センサコイル120の他方の端子は、キャパシタ131の一方の端子とスイッチ133の一方の端子とに接続される。スイッチ133の他方の端子は、配線を介してパルス発生部140の他端に接続される。キャパシタ131の他方の端子は、スイッチ132の他方の端子に接続される。 One terminal of the sensor coil 120 is connected to one terminal of the switch 132, and is connected to one end of the pulse generating unit 140 via wiring. The other terminal of the sensor coil 120 is connected to one terminal of the capacitor 131 and one terminal of the switch 133. The other terminal of the switch 133 is connected to the other end of the pulse generating unit 140 via wiring. The other terminal of the capacitor 131 is connected to the other terminal of the switch 132.
 スイッチ132とスイッチ133とは、図示せぬ制御線を介したスイッチ制御部182からの制御に従って、オン状態又はオフ状態に制御される。オン状態は導通状態であり、オフ状態は非導通状態である。スイッチ132は、センサコイル120とキャパシタ131との間の状態を切り替える機能を有する。スイッチ132がオンになると、センサコイル120とキャパシタ131とは共振回路を形成する。スイッチ133は、この共振回路とパルス発生部140との間の状態を切り替える機能を有する。 The switch 132 and the switch 133 are controlled to an on state or an off state according to the control from the switch control unit 182 via a control line (not shown). The on state is a conducting state, and the off state is a non-conducting state. The switch 132 has a function of switching a state between the sensor coil 120 and the capacitor 131. When the switch 132 is turned on, the sensor coil 120 and the capacitor 131 form a resonant circuit. The switch 133 has a function of switching the state between the resonance circuit and the pulse generating unit 140.
 つまり、スイッチ132とスイッチ133との両方がオン状態になると、センサコイル120とキャパシタ131とは共振回路を形成し、この共振回路に、配線を介して、パルス発生部140からパルス状電圧が印加される。共振回路の両端間の電圧、すなわち、センサコイル120の両端間の電圧は、配線を介して出力値取得部183に導かれる。スイッチ132がオフ状態になると、センサコイル120とキャパシタ131とは共振回路を形成しない。また、スイッチ133がオフ状態になると、共振回路は、パルス発生部140と出力値取得部183とから電気的に切断される。 That is, when both the switch 132 and the switch 133 are turned on, the sensor coil 120 and the capacitor 131 form a resonant circuit, and a pulsed voltage is applied to the resonant circuit from the pulse generating unit 140 via wiring. Will be done. The voltage between both ends of the resonance circuit, that is, the voltage between both ends of the sensor coil 120 is guided to the output value acquisition unit 183 via wiring. When the switch 132 is turned off, the sensor coil 120 and the capacitor 131 do not form a resonance circuit. Further, when the switch 133 is turned off, the resonance circuit is electrically disconnected from the pulse generation unit 140 and the output value acquisition unit 183.
 図5は、共振回路の付近に異物10が存在していることを示している。スイッチ132が閉じてセンサコイル120とキャパシタ131とが共振回路を構成している状態で、スイッチ133が閉じてパルス発生部140からパルス状の電圧が印加されるとする。共振回路の両端間の電圧を表す電圧信号は、このパルス電圧が立ち下がった以降、すなわちセンサコイル120への電流が遮断された以降、時間の経過とともに波高値が徐々に減衰する振動信号である。 FIG. 5 shows that the foreign matter 10 is present in the vicinity of the resonance circuit. It is assumed that the switch 132 is closed and the sensor coil 120 and the capacitor 131 form a resonance circuit, the switch 133 is closed, and a pulse voltage is applied from the pulse generating unit 140. The voltage signal representing the voltage between both ends of the resonance circuit is a vibration signal whose peak value gradually attenuates with the passage of time after the pulse voltage drops, that is, after the current to the sensor coil 120 is cut off. ..
 センサコイル120の付近に異物10が存在すると、センサコイル120のインダクタンスに変化が生じる。このため、異物10が存在する場合、異物10が存在しない場合と比較すると、振動信号の周波数が変化したり、振動信号の減衰の程度が変化したりする。なお、検出部180は、振動信号の周波数の変化、振動信号の減衰の程度の変化等を検出することにより、異物10の有無を判別する。 If the foreign matter 10 is present in the vicinity of the sensor coil 120, the inductance of the sensor coil 120 changes. Therefore, when the foreign matter 10 is present, the frequency of the vibration signal changes and the degree of attenuation of the vibration signal changes as compared with the case where the foreign matter 10 does not exist. The detection unit 180 determines the presence or absence of the foreign matter 10 by detecting a change in the frequency of the vibration signal, a change in the degree of attenuation of the vibration signal, and the like.
 パルス発生部140は、異物検出のためのパルス状の電圧を発生する。パルス発生部140は、スイッチ制御部182により選択された1つのセンサコイル120に、発生した電圧を印加する。 The pulse generation unit 140 generates a pulse-shaped voltage for detecting foreign matter. The pulse generation unit 140 applies the generated voltage to one sensor coil 120 selected by the switch control unit 182.
 記憶部150は、異物検出装置100が各種処理を実行するために使用するプログラム及びデータを記憶する。例えば、記憶部150は、第1パラメータテーブルと、第2パラメータテーブルと、第3パラメータテーブルとを記憶する。また、記憶部150は、異物検出装置100が各種処理を実行することにより生成又は取得するデータを記憶する。例えば、記憶部150は、出力値取得部183により取得された出力値と、出力値を判別するための閾値と、閾値の初期値とを記憶する。 The storage unit 150 stores programs and data used by the foreign matter detection device 100 to execute various processes. For example, the storage unit 150 stores the first parameter table, the second parameter table, and the third parameter table. Further, the storage unit 150 stores data generated or acquired by the foreign matter detecting device 100 by executing various processes. For example, the storage unit 150 stores the output value acquired by the output value acquisition unit 183, the threshold value for discriminating the output value, and the initial value of the threshold value.
 本実施の形態では、12のセンサコイル120のそれぞれについて独立した閾値と閾値の初期値とが設けられる。閾値の初期値は、実験、シミュレーション等の結果に基づいて設定される。記憶部150は、例えば、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)等の不揮発性の半導体メモリを備える。 In the present embodiment, an independent threshold value and an initial value of the threshold value are provided for each of the 12 sensor coils 120. The initial value of the threshold value is set based on the results of experiments, simulations, and the like. The storage unit 150 includes, for example, a non-volatile semiconductor memory such as a flash memory, an EPROM (ErasableProgrammableROM), and an EEPROM (ElectricallyErasableProgrammableROM).
 第1通信部160は、端末装置800と通信する。第1通信部160は、例えば、Wi-Fi(登録商標)、Bluetooth(登録商標)、LTE(Long Term Evolution)、4G(4th Generation)、5G(5th Generation)等の周知の無線通信規格に則って、端末装置800と通信する。第1通信部160は、上述した無線通信規格に準拠した通信インターフェースを備える。 The first communication unit 160 communicates with the terminal device 800. The first communication unit 160 conforms to well-known wireless communication standards such as Wi-Fi (registered trademark), Bluetooth (registered trademark), LTE (LongTermEvolution), 4G (4thGeneration), and 5G (5thGeneration). And communicates with the terminal device 800. The first communication unit 160 includes a communication interface conforming to the above-mentioned wireless communication standard.
 第2通信部170は、送電装置200と通信する。第2通信部170は、例えば、USB(Universal Serial Bus、登録商標)、Thunderbolt(登録商標)等の周知の有線通信規格、又は、Wi-Fi、Bluetooth等の周知の無線通信規格に則って、送電装置200と通信する。第2通信部170は、上述した有線通信規格、又は、上述した無線通信規格に準拠した通信インターフェースを備える。 The second communication unit 170 communicates with the power transmission device 200. The second communication unit 170 conforms to a well-known wired communication standard such as USB (Universal Serial Bus, registered trademark), Thunderbolt (registered trademark), or a well-known wireless communication standard such as Wi-Fi and Bluetooth. Communicate with the power transmission device 200. The second communication unit 170 includes a communication interface conforming to the above-mentioned wired communication standard or the above-mentioned wireless communication standard.
 検出部180と、パルス制御部181と、スイッチ制御部182と、出力値取得部183と、通知部184と、送電制御部185と、移動体状態取得部186と、高さ情報取得部187と、動作状態取得部188と、温度情報取得部189とは、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、RTC(Real Time Clock)、A/D(Analog/Digital)変換装置等を備えたコンピュータが、ROM又は記憶部150に記憶された動作プログラムを実行することにより実現される。 The detection unit 180, the pulse control unit 181, the switch control unit 182, the output value acquisition unit 183, the notification unit 184, the transmission control unit 185, the moving object state acquisition unit 186, and the height information acquisition unit 187. The operating state acquisition unit 188 and the temperature information acquisition unit 189 are, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an RTC (Real Time Clock), and an A / D ( It is realized by a computer equipped with an Analog / Digital) converter or the like by executing an operation program stored in a ROM or a storage unit 150.
 検出部180は、各センサコイル120から出力される信号に基づいて、異物検出領域に存在する異物10を検出する。具体的には、まず、検出部180は、スイッチ制御部182を制御して、12のセンサコイル120の何れか1つを選択する。そして、検出部180は、パルス制御部181を制御して、選択したセンサコイル120にパルス上の電圧を印加する。検出部180は、選択したセンサコイル120が出力する信号に基づく出力値と閾値とを比較して、検出対象領域に異物10が存在するか否かを判別する。検出部180は、異物10の有無を示す検出結果を、通知部184を制御して端末装置800に通知する。検出部180は、選択するセンサコイル120を切り替えながら、このような処理を繰り返して実行する。 The detection unit 180 detects the foreign matter 10 existing in the foreign matter detection region based on the signal output from each sensor coil 120. Specifically, first, the detection unit 180 controls the switch control unit 182 to select any one of the 12 sensor coils 120. Then, the detection unit 180 controls the pulse control unit 181 to apply a voltage on the pulse to the selected sensor coil 120. The detection unit 180 compares the output value based on the signal output by the selected sensor coil 120 with the threshold value, and determines whether or not the foreign matter 10 is present in the detection target region. The detection unit 180 controls the notification unit 184 to notify the terminal device 800 of the detection result indicating the presence or absence of the foreign matter 10. The detection unit 180 repeats such a process while switching the sensor coil 120 to be selected.
 パルス制御部181は、検出部180による制御に従って、パルス発生部140に単発のパルス状の電圧を発生させる。このパルス状の電圧は、配線を介して、選択したセンサコイル120に形成された共振回路に印加される。また、共振回路の両端間の電圧は、配線を介して、出力値取得部183に導かれる。 The pulse control unit 181 generates a single pulse-like voltage in the pulse generation unit 140 according to the control by the detection unit 180. This pulsed voltage is applied to the resonant circuit formed in the selected sensor coil 120 via wiring. Further, the voltage between both ends of the resonance circuit is guided to the output value acquisition unit 183 via the wiring.
 スイッチ制御部182は、検出部180による制御に従って、検出部180により選択されたセンサコイル120のスイッチ132及びスイッチ133をオン状態にし、選択されなかったセンサコイル120のスイッチ132及びスイッチ133をオフ状態にする。 The switch control unit 182 turns on the switch 132 and the switch 133 of the sensor coil 120 selected by the detection unit 180 according to the control by the detection unit 180, and turns off the switch 132 and the switch 133 of the sensor coil 120 not selected. To.
 出力値取得部183は、検出部180による制御に従って、共振回路の両端間の電圧を表す振動信号から、選択されたセンサコイル120の出力値を取得する。出力値取得部183が取得する出力値をどのような値にするのかは、適宜、調整することができる。例えば、出力値は、振動信号の周波数、振動信号の収束時間、振動信号の振幅の大きさ等にすることができる。振動信号の収束時間は、例えば、パルス状の電圧が印加されてから振動信号の振幅が予め定められた振幅以下に収まるまでの時間である。振動信号の振幅の大きさは、例えば、パルス状の電圧が印加されてから予め定められた時間が経過したときの振動信号の振幅の大きさである。 The output value acquisition unit 183 acquires the output value of the selected sensor coil 120 from the vibration signal representing the voltage between both ends of the resonance circuit according to the control by the detection unit 180. The value of the output value acquired by the output value acquisition unit 183 can be appropriately adjusted. For example, the output value can be the frequency of the vibration signal, the convergence time of the vibration signal, the magnitude of the amplitude of the vibration signal, or the like. The convergence time of the vibration signal is, for example, the time from when the pulsed voltage is applied until the amplitude of the vibration signal falls below a predetermined amplitude. The magnitude of the amplitude of the vibration signal is, for example, the magnitude of the amplitude of the vibration signal when a predetermined time has elapsed since the pulsed voltage was applied.
 通知部184は、検出部180による制御に従って、検出部180による検出結果を端末装置800に送信する。例えば、検出部180により異物10があると判別された場合、通知部184は、第1通信部160を介して、異物10が検出されたことを示す情報を送信する。一方、端末装置800は、画面表示、音声出力等により、異物が検出されたことをユーザに知らせる。 The notification unit 184 transmits the detection result by the detection unit 180 to the terminal device 800 according to the control by the detection unit 180. For example, when the detection unit 180 determines that the foreign matter 10 is present, the notification unit 184 transmits information indicating that the foreign matter 10 has been detected via the first communication unit 160. On the other hand, the terminal device 800 notifies the user that a foreign substance has been detected by displaying a screen, outputting a voice, or the like.
 送電制御部185は、検出部180による制御に従って、送電コイルユニット210による受電コイルユニット310への送電を制御する。例えば、送電制御部185は、検出部180により異物10が存在すると判別された場合、第2通信部170を介して、電力供給装置220に送電の停止を指示する制御情報を送信する。 The power transmission control unit 185 controls the power transmission to the power receiving coil unit 310 by the power transmission coil unit 210 according to the control by the detection unit 180. For example, when the detection unit 180 determines that the foreign matter 10 is present, the power transmission control unit 185 transmits control information instructing the power supply device 220 to stop power transmission via the second communication unit 170.
 移動体状態取得部186は、移動体の位置と移動体の移動状態とを含む移動体の状態を示す移動体状態情報を取得する。本実施の形態では、移動体は電気自動車700である。移動体の位置は、例えば、送電装置200の設置位置を基準とした移動体の相対的な位置により表現される。移動体の移動状態は、例えば、移動体が移動中であるか否か、移動体がどの程度の移動速度で移動しているか等により表現される。移動体状態取得部186は、第2通信部170を介して、送電装置200から移動体状態情報を取得する。 The moving body state acquisition unit 186 acquires moving body state information indicating the state of the moving body including the position of the moving body and the moving state of the moving body. In this embodiment, the moving body is an electric vehicle 700. The position of the moving body is represented by, for example, the relative position of the moving body with respect to the installation position of the power transmission device 200. The moving state of the moving body is expressed by, for example, whether or not the moving body is moving, how fast the moving body is moving, and the like. The mobile body state acquisition unit 186 acquires mobile body state information from the power transmission device 200 via the second communication unit 170.
 高さ情報取得部187は、受電コイル311の設置高さを示す高さ情報を取得する。受電コイル311の設置高さは、受電コイル311が設置された位置の高さであり、例えば、床面又は路面から受電コイル311の設置位置までの距離により表現される。高さ情報取得部187は、第2通信部170を介して、送電装置200から高さ情報を取得する。 The height information acquisition unit 187 acquires height information indicating the installation height of the power receiving coil 311. The installation height of the power receiving coil 311 is the height of the position where the power receiving coil 311 is installed, and is expressed by, for example, the distance from the floor surface or the road surface to the installation position of the power receiving coil 311. The height information acquisition unit 187 acquires height information from the power transmission device 200 via the second communication unit 170.
 動作状態取得部188は、電力供給装置220の動作状態を示す動作状態情報を取得する。電力供給装置220の動作状態は、例えば、送電中であるか否か、送電する電力が一定であるか否か、送電する電力がどの程度増加又は減少しているか等により表現される。動作状態取得部188は、第2通信部170を介して、送電装置200から動作状態情報を取得する。 The operating state acquisition unit 188 acquires operating state information indicating the operating state of the power supply device 220. The operating state of the power supply device 220 is expressed by, for example, whether or not power transmission is in progress, whether or not the power to be transmitted is constant, and how much the power to be transmitted is increased or decreased. The operating state acquisition unit 188 acquires operating state information from the power transmission device 200 via the second communication unit 170.
 温度情報取得部189は、送電装置200における特定部位の温度を示す温度情報を取得する。特定部位をどの箇所にするのかは、適宜、調整することができる。例えば、特定部位は、送電コイルユニット210の一部又は近傍部分でもよいし、異物検出装置100の一部又は近傍部分でもよい。温度情報取得部189は、第2通信部170を介して、送電装置200から温度情報を取得する。 The temperature information acquisition unit 189 acquires temperature information indicating the temperature of a specific part of the power transmission device 200. It is possible to appropriately adjust which part the specific part is to be. For example, the specific portion may be a part or a vicinity part of the power transmission coil unit 210, or a part or a vicinity part of the foreign matter detection device 100. The temperature information acquisition unit 189 acquires temperature information from the power transmission device 200 via the second communication unit 170.
 次に、図6を参照して、送電装置200の構成について説明する。図6に示すように、送電装置200は、異物検出装置100と、送電コイルユニット210と、電力供給装置220と、記憶部230と、第1通信部240と、第2通信部250と、温度センサ260と、制御部270と、送電制御部271と、動作状態取得部272と、移動体状態取得部273と、高さ情報取得部274と、制御情報受信部275と、情報転送部276と、温度情報取得部277とを備える。 Next, the configuration of the power transmission device 200 will be described with reference to FIG. As shown in FIG. 6, the power transmission device 200 includes a foreign matter detection device 100, a power transmission coil unit 210, a power supply device 220, a storage unit 230, a first communication unit 240, a second communication unit 250, and a temperature. The sensor 260, the control unit 270, the power transmission control unit 271, the operation state acquisition unit 272, the moving body state acquisition unit 273, the height information acquisition unit 274, the control information reception unit 275, and the information transfer unit 276. , A temperature information acquisition unit 277 is provided.
 記憶部230は、送電装置200が各種処理を実行するために使用するプログラム及びデータを記憶する。また、記憶部230は、送電装置200が各種処理を実行することにより生成又は取得するデータを記憶する。例えば、記憶部230は、動作状態取得部272が取得した動作状態情報と、移動体状態取得部273が取得した移動体状態情報と、高さ情報取得部274が取得した高さ情報と、温度情報取得部277が取得した温度情報とを記憶する。記憶部230は、例えば、フラッシュメモリ、EPROM、EEPROM等の不揮発性の半導体メモリを備える。 The storage unit 230 stores programs and data used by the power transmission device 200 to execute various processes. Further, the storage unit 230 stores data generated or acquired by the power transmission device 200 by executing various processes. For example, the storage unit 230 has the operation state information acquired by the operation state acquisition unit 272, the moving body state information acquired by the moving body state acquisition unit 273, the height information acquired by the height information acquisition unit 274, and the temperature. The temperature information acquired by the information acquisition unit 277 is stored. The storage unit 230 includes, for example, a non-volatile semiconductor memory such as a flash memory, EPROM, or EEPROM.
 第1通信部240は、通信装置600と通信する。第1通信部240は、例えば、Wi-Fi、Bluetooth、LTE、4G、5G等の周知の無線通信規格に則って、端末装置800と通信する。第1通信部240は、上述した無線通信規格に準拠した通信インターフェースを備える。 The first communication unit 240 communicates with the communication device 600. The first communication unit 240 communicates with the terminal device 800 according to well-known wireless communication standards such as Wi-Fi, Bluetooth, LTE, 4G, and 5G. The first communication unit 240 includes a communication interface conforming to the above-mentioned wireless communication standard.
 第2通信部250は、異物検出装置100と通信する。第2通信部250は、例えば、USB、Thunderbolt等の周知の有線通信規格、又は、Wi-Fi、Bluetooth等の周知の無線通信規格に則って、異物検出装置100と通信する。第2通信部250は、USB、Thunderbolt等の有線通信規格、又は、Wi-Fi、Bluetooth等の無線通信規格に準拠した通信インターフェースを備える。 The second communication unit 250 communicates with the foreign matter detection device 100. The second communication unit 250 communicates with the foreign matter detection device 100 according to, for example, a well-known wired communication standard such as USB or Thunderbolt, or a well-known wireless communication standard such as Wi-Fi or Bluetooth. The second communication unit 250 includes a communication interface compliant with a wired communication standard such as USB or Thunderbolt, or a wireless communication standard such as Wi-Fi or Bluetooth.
 温度センサ260は、送電装置200における特定部位の温度を測定する。温度センサ260は、例えば、送電コイルユニット210に取り付けられ、送電コイルユニット210の一部又は近傍部分の温度を測定する。 The temperature sensor 260 measures the temperature of a specific part of the power transmission device 200. The temperature sensor 260 is attached to the power transmission coil unit 210, for example, and measures the temperature of a part or a vicinity of the power transmission coil unit 210.
 制御部270と、送電制御部271と、動作状態取得部272と、移動体状態取得部273と、高さ情報取得部274と、制御情報受信部275と、情報転送部276と、温度情報取得部277とは、例えば、CPU、ROM、RAM、RTC、A/D変換装置等を備えたコンピュータが、ROM又は記憶部230に記憶された動作プログラムを実行することにより実現される。 Control unit 270, power transmission control unit 271, operating state acquisition unit 272, moving body state acquisition unit 273, height information acquisition unit 274, control information reception unit 275, information transfer unit 276, and temperature information acquisition. The unit 277 is realized by, for example, a computer equipped with a CPU, ROM, RAM, RTC, A / D conversion device, etc., executing an operation program stored in the ROM or the storage unit 230.
 制御部270は、送電装置200全体の動作を制御する。例えば、制御部270は、電力供給装置220を制御して、受電装置300への送電を制御する。また、制御部270は、第1通信部240を介して、通信装置600と通信する。また、制御部270は、第2通信部250を介して、異物検出装置100と通信する。 The control unit 270 controls the operation of the entire power transmission device 200. For example, the control unit 270 controls the power supply device 220 to control the power transmission to the power receiving device 300. Further, the control unit 270 communicates with the communication device 600 via the first communication unit 240. Further, the control unit 270 communicates with the foreign matter detecting device 100 via the second communication unit 250.
 送電制御部271は、制御部270による制御に従って、受電装置300への送電を制御する。つまり、送電制御部271は、制御部270による制御に従って、送電コイルユニット210に交流電力を供給し、送電コイル211に磁束を発生させる。 The power transmission control unit 271 controls power transmission to the power receiving device 300 according to the control by the control unit 270. That is, the power transmission control unit 271 supplies AC power to the power transmission coil unit 210 and generates magnetic flux in the power transmission coil 211 according to the control by the power transmission unit 270.
 動作状態取得部272は、電力供給装置220の動作状態を示す動作状態情報を取得する。例えば、動作状態取得部272は、電力供給装置220から動作状態情報を取得する。 The operating state acquisition unit 272 acquires the operating state information indicating the operating state of the power supply device 220. For example, the operating state acquisition unit 272 acquires the operating state information from the power supply device 220.
 移動体状態取得部273は、移動体の位置と移動体の移動状態とを含む移動体の状態を示す移動体状態情報を取得する。例えば、移動体状態取得部273は、電気自動車700に搭載された通信装置600から動作状態情報を取得する。なお、通信装置600は、例えば、電気自動車700に搭載された車載カメラが撮像した画像に基づいて、電気自動車700の位置を特定することができる。また、通信装置600は、電気自動車700に搭載されたスピードメータが出力する車速情報に基づいて、電気自動車700の移動状態を特定することができる。 The moving body state acquisition unit 273 acquires moving body state information indicating the state of the moving body including the position of the moving body and the moving state of the moving body. For example, the moving body state acquisition unit 273 acquires operating state information from the communication device 600 mounted on the electric vehicle 700. The communication device 600 can specify the position of the electric vehicle 700, for example, based on an image captured by an in-vehicle camera mounted on the electric vehicle 700. Further, the communication device 600 can specify the moving state of the electric vehicle 700 based on the vehicle speed information output by the speedometer mounted on the electric vehicle 700.
 高さ情報取得部274は、受電コイル311の設置高さを示す高さ情報を取得する。例えば、高さ情報取得部274は、電気自動車700に搭載された通信装置600から高さ情報を取得する。なお、電気自動車700における受電装置300の取り付け位置は、基本的に、電気自動車700の車体の一番低い部分に相当する底面である。また、電気自動車700の車体の一番低い部分から地面までの距離である最低地上高は、基本的に、車名により分類される電気自動車700の種類毎に定められている。ここで、通信装置600は、通信ネットワークを介して、電気自動車700の種類毎に最低地上高を示す最低地上高情報を記憶するサーバに接続されているとする。この場合、通信装置600は、このサーバが記憶する最低地上高情報を参照して、電気自動車700の種類に応じた最低地上高を特定し、特定した最低地上高から受電コイル311の設置高さを特定することができる。 The height information acquisition unit 274 acquires height information indicating the installation height of the power receiving coil 311. For example, the height information acquisition unit 274 acquires height information from the communication device 600 mounted on the electric vehicle 700. The mounting position of the power receiving device 300 in the electric vehicle 700 is basically the bottom surface corresponding to the lowest portion of the vehicle body of the electric vehicle 700. Further, the minimum ground clearance, which is the distance from the lowest portion of the vehicle body of the electric vehicle 700 to the ground, is basically determined for each type of the electric vehicle 700 classified by the vehicle name. Here, it is assumed that the communication device 600 is connected to a server that stores the minimum ground clearance information indicating the minimum ground clearance for each type of the electric vehicle 700 via a communication network. In this case, the communication device 600 specifies the minimum ground clearance according to the type of the electric vehicle 700 with reference to the minimum ground clearance information stored in this server, and the installation height of the power receiving coil 311 is specified from the specified minimum ground clearance. Can be identified.
 制御情報受信部275は、異物検出装置100から送電制御に関する制御情報を受信する。例えば、制御情報受信部275は、第2通信部250を介して、異物検出装置100から送電の停止を指示する制御情報を受信する。 The control information receiving unit 275 receives control information related to power transmission control from the foreign matter detecting device 100. For example, the control information receiving unit 275 receives the control information instructing the stop of power transmission from the foreign matter detecting device 100 via the second communication unit 250.
 情報転送部276と、記憶部230が記憶する各種の情報を異物検出装置100に転送する。例えば、情報転送部276は、第2通信部250を介して異物検出装置100から各種の情報の送信要求を受け付け、送信要求により要求された情報を記憶部230から取得し、第2通信部250を介して、異物検出装置100に送信する。送信要求により要求される情報は、例えば、動作状態情報、移動体状態情報、高さ情報、温度情報等である。 Transfers various information stored in the information transfer unit 276 and the storage unit 230 to the foreign matter detection device 100. For example, the information transfer unit 276 receives a transmission request for various information from the foreign matter detection device 100 via the second communication unit 250, acquires the information requested by the transmission request from the storage unit 230, and receives the information requested by the transmission request from the storage unit 230, and the second communication unit 250. Is transmitted to the foreign matter detecting device 100 via the above. The information required by the transmission request is, for example, operating state information, moving body state information, height information, temperature information, and the like.
 温度情報取得部277は、送電装置200における特定部位の温度を示す温度情報を取得する。例えば、温度情報取得部277は、送電コイルユニット210の一部又は近傍部分の測定温度を示す温度情報を、温度センサ260から取得する。 The temperature information acquisition unit 277 acquires temperature information indicating the temperature of a specific part of the power transmission device 200. For example, the temperature information acquisition unit 277 acquires temperature information indicating the measured temperature of a part or a vicinity portion of the power transmission coil unit 210 from the temperature sensor 260.
 次に、異物検出装置100が備える各部の動作について詳細に説明する。 Next, the operation of each part included in the foreign matter detecting device 100 will be described in detail.
 まず、検出部180は、センサコイル120の出力値と、閾値との比較結果に基づいて、異物10の有無を判別する。本実施の形態では、異物10が存在するときにセンサコイル120が出力する出力値が、異物10が存在しないときにセンサコイル120が出力する出力値よりも高く、閾値が出力値の上限値である場合を想定する。つまり、本実施の形態では、検出部180は、センサコイル120の出力値が閾値を超える場合に異物10があると判別し、センサコイル120の出力値が閾値以下である場合に異物10がないと判別する。 First, the detection unit 180 determines the presence or absence of the foreign matter 10 based on the comparison result between the output value of the sensor coil 120 and the threshold value. In the present embodiment, the output value output by the sensor coil 120 when the foreign matter 10 is present is higher than the output value output by the sensor coil 120 when the foreign matter 10 is not present, and the threshold value is the upper limit of the output value. Imagine a case. That is, in the present embodiment, the detection unit 180 determines that there is a foreign matter 10 when the output value of the sensor coil 120 exceeds the threshold value, and there is no foreign matter 10 when the output value of the sensor coil 120 is equal to or less than the threshold value. To determine.
 ここで、センサコイル120の出力値は、異物検出装置100を取り巻く環境、例えば、受電装置300が搭載された移動体の状態、送電装置200の送電状態等の影響を受けると考えられる。つまり、センサコイル120の出力値は、これらの環境の変化に応じて変化すると考えられる。このため、これらの環境の変化に追従して、閾値を適切に変更することが好適である。そこで、本実施の形態では、これらの環境の変化がセンサコイル120の出力値の変化として現れるとみなし、センサコイル120の出力値に基づいて閾値を変更する。 Here, it is considered that the output value of the sensor coil 120 is affected by the environment surrounding the foreign matter detection device 100, for example, the state of the moving body on which the power receiving device 300 is mounted, the power transmission state of the power transmission device 200, and the like. That is, it is considered that the output value of the sensor coil 120 changes in response to these changes in the environment. Therefore, it is preferable to appropriately change the threshold value in accordance with these changes in the environment. Therefore, in the present embodiment, it is considered that these changes in the environment appear as changes in the output value of the sensor coil 120, and the threshold value is changed based on the output value of the sensor coil 120.
 具体的には、検出部180は、出力値と補正パラメータの値であるパラメータ値とに基づいて閾値を補正する閾値補正処理を実行する。補正パラメータは、閾値の補正に用いるパラメータである。補正パラメータをどのように設定するのかは、適宜、調整することができる。本実施の形態では、補正パラメータは、出力値の移動平均を求めるときに用いる出力値の個数である。つまり、検出部180は、閾値補正処理において、直近に取得した、パラメータ値が示す個数分の出力値の移動平均の値を用いて、閾値を補正する。 Specifically, the detection unit 180 executes a threshold value correction process for correcting the threshold value based on the output value and the parameter value which is the value of the correction parameter. The correction parameter is a parameter used for correcting the threshold value. How to set the correction parameters can be adjusted as appropriate. In the present embodiment, the correction parameter is the number of output values used when obtaining the moving average of the output values. That is, in the threshold value correction process, the detection unit 180 corrects the threshold value by using the value of the moving average of the output values corresponding to the number indicated by the parameter value, which was acquired most recently.
 例えば、検出部180は、パラメータ値が示す個数分の出力値の移動平均の値に、予め定められたオフセット値を加算した値を新たな閾値として採用する。例えば、10回連続して出力値が2(V)であり、オフセット値が1(V)である場合、移動平均の値は2(V)であり、新たな閾値は3(V)である。このような閾値補正処理によれば、環境の変化により出力値が変化した場合において、異物10の存在に起因しない出力値の変化に基づく誤検出が低減される。 For example, the detection unit 180 adopts a value obtained by adding a predetermined offset value to the moving average value of the number of output values indicated by the parameter value as a new threshold value. For example, if the output value is 2 (V) and the offset value is 1 (V) 10 times in a row, the moving average value is 2 (V) and the new threshold is 3 (V). .. According to such a threshold value correction process, when the output value changes due to a change in the environment, erroneous detection based on the change in the output value not caused by the presence of the foreign matter 10 is reduced.
 例えば、電気自動車700が送電装置200に近づく間、異物10が存在しなくても、センサコイル120の出力値が上昇する場合を想定する。この場合、閾値が不変であると、電気自動車700の接近によって上昇した出力値が閾値を超えて、異物10があると誤判定される可能性が高い。しかしながら、閾値補正処理により閾値が変化すると、出力値の上昇に追従して閾値が上昇するため、異物10があると誤判定される可能性が低い。一方、閾値補正処理により閾値が変化しても、異物検出装置100の検出対象内に異物10が侵入し、出力値が急激に上昇する場合、出力値が閾値を超えるため、異物10があると適切に判定される。 For example, it is assumed that the output value of the sensor coil 120 increases while the electric vehicle 700 approaches the power transmission device 200 even if the foreign matter 10 does not exist. In this case, if the threshold value is unchanged, the output value increased by the approach of the electric vehicle 700 exceeds the threshold value, and there is a high possibility that it is erroneously determined that the foreign matter 10 is present. However, when the threshold value is changed by the threshold value correction process, the threshold value is increased in accordance with the increase in the output value, so that it is unlikely that the foreign matter 10 is erroneously determined. On the other hand, even if the threshold value is changed by the threshold value correction process, if the foreign matter 10 invades the detection target of the foreign matter detection device 100 and the output value rises sharply, the output value exceeds the threshold value, so that the foreign matter 10 is present. It is judged appropriately.
 また、センサコイル120の出力値の変化のしやすさは、異物検出装置100を取り巻く環境毎に異なる。例えば、異物10が存在しない場合において、電気自動車700が受電装置300の近くで移動中である場合、センサコイル120の出力値が急激に変化しやすい。一方、異物10が存在しない場合において、電気自動車700が受電装置300の遠くで停止中である場合、センサコイル120の出力値は殆ど変化しない。そこで、検出部180は、出力値の変化のしやすさに応じて、閾値の変化のしやすさ、つまり、閾値が出力値に追従する速さを変化させる。 Further, the ease with which the output value of the sensor coil 120 changes varies depending on the environment surrounding the foreign matter detection device 100. For example, in the absence of the foreign matter 10, when the electric vehicle 700 is moving near the power receiving device 300, the output value of the sensor coil 120 tends to change rapidly. On the other hand, in the absence of the foreign matter 10, when the electric vehicle 700 is stopped far away from the power receiving device 300, the output value of the sensor coil 120 hardly changes. Therefore, the detection unit 180 changes the ease of change of the threshold value, that is, the speed at which the threshold value follows the output value, according to the ease of change of the output value.
 以下、図7を参照して、閾値が出力値に追従する速さについて説明する。図7は、測定回数と、出力値と、検出部180が設定する閾値との対応関係を示すグラフである。図7には、出力値を黒丸で示し、第1閾値を白抜きの丸で示し、第2閾値を白抜きの三角で示している。第1閾値は、移動平均を求めるときの出力値の個数であるパラメータ値が継続して10であるときの閾値である。第2閾値は、パラメータ値が10から3に変化したときの閾値である。安定期間は、センサコイル120の出力値が安定する期間である。非安定期間は、センサコイル120の出力値が安定しない期間である。図7には、測定回数が15回を超えたところで、安定期間から非安定期間に切り替わる様子を示している。 Hereinafter, with reference to FIG. 7, the speed at which the threshold value follows the output value will be described. FIG. 7 is a graph showing the correspondence between the number of measurements, the output value, and the threshold value set by the detection unit 180. In FIG. 7, the output value is indicated by a black circle, the first threshold value is indicated by a white circle, and the second threshold value is indicated by a white triangle. The first threshold value is a threshold value when the parameter value, which is the number of output values when the moving average is obtained, is continuously 10. The second threshold is the threshold when the parameter value changes from 10 to 3. The stable period is a period during which the output value of the sensor coil 120 is stable. The unstable period is a period in which the output value of the sensor coil 120 is not stable. FIG. 7 shows how the stable period is switched to the unstable period when the number of measurements exceeds 15.
 図7に示すように、安定期間中においては、出力値は2(V)程度の電圧値で安定し、非安定期間に移行すると、出力値は2(V)から急激に上昇する。ここで、安定期間中においては、パラメータ値は10であるため、直近の10個の出力値の移動平均の値として2(V)程度の値が算出される。このため、安定期間中においては、2(V)程度の値に1(V)のオフセット値が加算された3(V)程度の閾値が継続して算出される。 As shown in FIG. 7, the output value stabilizes at a voltage value of about 2 (V) during the stable period, and the output value sharply rises from 2 (V) when the unstable period is entered. Here, since the parameter value is 10 during the stable period, a value of about 2 (V) is calculated as the value of the moving average of the latest 10 output values. Therefore, during the stable period, a threshold value of about 3 (V), which is obtained by adding an offset value of 1 (V) to a value of about 2 (V), is continuously calculated.
 ここで、非安定期間に移行した後もパラメータ値が10である場合、10個の出力値の移動平均の値は2(V)程度の値から緩やかに上昇するため、閾値は3(V)程度の値から緩やかに上昇する。つまり、非安定期間に移行した後もパラメータ値が10である場合、閾値の変化が出力値の変化に追いつかず、出力値が閾値を超える可能性が高い。このため、非安定期間に移行した後もパラメータ値が10である場合、異物10がないのに異物10があると誤判定される可能性が高い。 Here, if the parameter value is 10 even after shifting to the unstable period, the moving average value of the 10 output values gradually increases from a value of about 2 (V), so that the threshold value is 3 (V). It gradually rises from the value of the degree. That is, if the parameter value is 10 even after the transition to the unstable period, the change in the threshold value cannot keep up with the change in the output value, and there is a high possibility that the output value exceeds the threshold value. Therefore, if the parameter value is 10 even after the transition to the unstable period, there is a high possibility that it is erroneously determined that the foreign matter 10 is present even though the foreign matter 10 is not present.
 これに対して、非安定期間に移行した後にパラメータ値が3になる場合、3個の出力値の移動平均の値は2(V)程度の値から速やかに上昇するため、閾値は3(V)程度の値から速やかに上昇する。つまり、非安定期間に移行した後にパラメータ値が3になる場合、閾値の変化が出力値の変化に追従するため、出力値が閾値を超える可能性が低い。このため、非安定期間に移行した後にパラメータ値が3になる場合、異物10がないのに異物10があると判定される可能性低く、誤検出が生じる可能性が低い。 On the other hand, when the parameter value becomes 3 after shifting to the unstable period, the value of the moving average of the three output values rises rapidly from the value of about 2 (V), so the threshold value is 3 (V). ) It rises rapidly from the value of about. That is, when the parameter value becomes 3 after shifting to the unstable period, the change in the threshold value follows the change in the output value, so that the possibility that the output value exceeds the threshold value is low. Therefore, when the parameter value becomes 3 after shifting to the unstable period, it is unlikely that the foreign matter 10 is determined to be present even though the foreign matter 10 is not present, and the possibility of erroneous detection is low.
 このように、非安定期間では、閾値が出力値に速やかに追従するように、パラメータ値を小さい値に設定することが好適である。なお、パラメータ値を小さい値に設定すると、異物10の存在により上昇した出力値が閾値を超えない確率が高まる。つまり、パラメータ値が小さすぎると、異物10があるのに異物がないと判定される可能性が高く、検出漏れの可能性が高い。このため、安定期間では、閾値が出力値に緩やかに追従するように、パラメータ値を大きい値に設定することが好適である。このように、センサコイル120の出力値の変化のしやすさに応じて、出力値に対する閾値の追従性を調整することが好適である。かかる構成によれば、誤検出と検出漏れとが抑制され、精度の高い検出が期待できる。 As described above, in the unstable period, it is preferable to set the parameter value to a small value so that the threshold value quickly follows the output value. If the parameter value is set to a small value, the probability that the output value increased due to the presence of the foreign matter 10 does not exceed the threshold value increases. That is, if the parameter value is too small, there is a high possibility that it is determined that there is no foreign matter even though the foreign matter 10 is present, and there is a high possibility that the detection will be missed. Therefore, in the stable period, it is preferable to set the parameter value to a large value so that the threshold value gently follows the output value. As described above, it is preferable to adjust the followability of the threshold value with respect to the output value according to the ease of change of the output value of the sensor coil 120. According to such a configuration, erroneous detection and detection omission are suppressed, and highly accurate detection can be expected.
 本実施の形態では、検出部180は、移動体状態取得部186が取得した移動体状態情報が示す移動体の状態に応じて、パラメータ値を変更する。つまり、検出部180は、移動体の位置と移動体の移動状態とに応じた出力値の変動のしやすさに応じて、パラメータ値を変更する。例えば、検出部180は、移動体状態情報が示す移動体の状態が第1状態に変化した場合、パラメータ値を変更する。第1状態は、移動体の位置が基準領域内であり、移動体の移動状態が移動中状態であるという状態である。 In the present embodiment, the detection unit 180 changes the parameter value according to the state of the moving body indicated by the moving body state information acquired by the moving body state acquisition unit 186. That is, the detection unit 180 changes the parameter value according to the easiness of fluctuation of the output value according to the position of the moving body and the moving state of the moving body. For example, the detection unit 180 changes the parameter value when the state of the moving body indicated by the moving body state information changes to the first state. The first state is a state in which the position of the moving body is within the reference region and the moving state of the moving body is the moving state.
 基準領域は、送電装置200から近い領域である。例えば、図8に示すように、基準領域は、平面視で、送電装置200の中心点であるP0からの距離がL1以下である領域である。また、電気自動車700である移動体の中心点であるP1が基準領域内である場合、移動体の位置が基準領域内であると見做す。移動体の状態が第1状態である期間は、センサコイル120の出力値が急激に変化する非安定期間である。そこで、検出部180は、移動体の状態が第1状態でない状態から第1状態に変化した場合、パラメータ値を小さい値に変更する。 The reference area is an area close to the power transmission device 200. For example, as shown in FIG. 8, the reference region is a region in which the distance from P0, which is the center point of the power transmission device 200, is L1 or less in a plan view. Further, when P1 which is the center point of the moving body of the electric vehicle 700 is within the reference region, it is considered that the position of the moving body is within the reference region. The period in which the state of the moving body is the first state is an unstable period in which the output value of the sensor coil 120 changes abruptly. Therefore, when the state of the moving body changes from the non-first state to the first state, the detection unit 180 changes the parameter value to a smaller value.
 ここで、検出部180は、移動体状態情報が示す移動体の状態が第1状態である場合、移動体の移動速度に応じて、パラメータ値を変更する。ここで、移動体の移動速度が早いほど、センサコイル120の出力値が速やかに変化すると考えられる。そこで、検出部180は、移動体の移動速度が速いほど、パラメータ値を小さい値に変更する。 Here, when the state of the moving body indicated by the moving body state information is the first state, the detection unit 180 changes the parameter value according to the moving speed of the moving body. Here, it is considered that the faster the moving speed of the moving body, the faster the output value of the sensor coil 120 changes. Therefore, the detection unit 180 changes the parameter value to a smaller value as the moving speed of the moving body is faster.
 また、検出部180は、移動体状態情報が示す移動体の状態が第1状態である場合、高さ情報取得部187が取得した高さ情報が示す受電コイル311の設置高さに応じて、パラメータ値を変更する。ここで、受電コイル311の設置高さが低いほど、センサコイル120の出力値が速やかに変化すると考えられる。そこで、検出部180は、受電コイル311の設置高さが低いほど、パラメータ値を小さい値に変更する。 Further, when the state of the moving body indicated by the moving body state information is the first state, the detection unit 180 responds to the installation height of the power receiving coil 311 indicated by the height information acquired by the height information acquisition unit 187. Change the parameter value. Here, it is considered that the lower the installation height of the power receiving coil 311 is, the faster the output value of the sensor coil 120 changes. Therefore, the detection unit 180 changes the parameter value to a smaller value as the installation height of the power receiving coil 311 is lower.
 移動体の状態とパラメータ値との対応関係と、受電コイル311の設置高さとパラメータ値との対応関係とは、適宜、調整することができる。本実施の形態では、図9に示すように、記憶部150に記憶された第1パラメータテーブルにより、移動体の状態と受電コイル311の設置高さとパラメータ値との対応関係が定義付けられる。 The correspondence between the state of the moving body and the parameter value and the correspondence between the installation height of the power receiving coil 311 and the parameter value can be adjusted as appropriate. In the present embodiment, as shown in FIG. 9, the correspondence between the state of the moving body, the installation height of the power receiving coil 311 and the parameter value is defined by the first parameter table stored in the storage unit 150.
 第1パラメータテーブルによれば、移動体の位置が基準領域外である場合、移動体の移動状態と受電コイル311の設置高さとに拘わらず、パラメータ値は10である。移動体の位置が基準領域内であり、移動体が高速で移動しており、受電コイル311の設置高さが低い場合、パラメータ値は2である。移動体の位置が基準領域内であり、移動体が高速で移動しており、受電コイル311の設置高さが中程度の高さである場合、パラメータ値は3である。移動体の位置が基準領域内であり、移動体が高速で移動しており、受電コイル311の設置高さが高い場合、パラメータ値は4である。 According to the first parameter table, when the position of the moving body is outside the reference region, the parameter value is 10 regardless of the moving state of the moving body and the installation height of the power receiving coil 311. When the position of the moving body is within the reference region, the moving body is moving at high speed, and the installation height of the power receiving coil 311 is low, the parameter value is 2. When the position of the moving body is within the reference region, the moving body is moving at high speed, and the installation height of the power receiving coil 311 is a medium height, the parameter value is 3. When the position of the moving body is within the reference region, the moving body is moving at high speed, and the installation height of the power receiving coil 311 is high, the parameter value is 4.
 移動体の位置が基準領域内であり、移動体が中程度の速度で移動している場合、受電コイル311の設置高さに拘わらず、パラメータ値は5である。また、移動体の位置が基準領域内であり、移動体が低速で移動している場合、受電コイル311の設置高さに拘わらず、パラメータ値は7である。また、移動体の位置が基準領域内であり、移動体が停止している場合、受電コイル311の設置高さに拘わらず、パラメータ値は10である。このように、検出部180は、移動体の位置が基準領域内である場合、移動体の移動速度が速いほど、また、受電コイル311の設置高さが低いほど、パラメータ値を小さい値に変更する。 When the position of the moving body is within the reference region and the moving body is moving at a medium speed, the parameter value is 5 regardless of the installation height of the power receiving coil 311. Further, when the position of the moving body is within the reference region and the moving body is moving at a low speed, the parameter value is 7 regardless of the installation height of the power receiving coil 311. Further, when the position of the moving body is within the reference region and the moving body is stopped, the parameter value is 10 regardless of the installation height of the power receiving coil 311. As described above, when the position of the moving body is within the reference region, the detection unit 180 changes the parameter value to a smaller value as the moving speed of the moving body is faster and the installation height of the power receiving coil 311 is lower. do.
 また、検出部180は、動作状態取得部188が取得した動作状態情報が示す電力供給装置220の動作状態に応じて、パラメータ値を変更する。つまり、検出部180は、電力供給装置220の動作状態に応じた出力値の変動のしやすさに応じて、パラメータ値を変更する。例えば、検出部180は、送電電力の大きさの単位時間あたりの変化量に応じて、パラメータ値を変更する。送電電力は、電力供給装置220から送電コイル211に供給される交流電力である。ここで、送電電力の大きさの単位時間あたりの変化量が大きいほど、センサコイル120の出力値が速やかに変化すると考えられる。そこで、検出部180は、送電電力の大きさの単位時間あたりの変化量が大きいほど、パラメータ値を小さい値に変更する。 Further, the detection unit 180 changes the parameter value according to the operation state of the power supply device 220 indicated by the operation state information acquired by the operation state acquisition unit 188. That is, the detection unit 180 changes the parameter value according to the easiness of fluctuation of the output value according to the operating state of the power supply device 220. For example, the detection unit 180 changes the parameter value according to the amount of change in the magnitude of the transmitted power per unit time. The transmitted power is AC power supplied from the power supply device 220 to the power transmission coil 211. Here, it is considered that the larger the amount of change in the magnitude of the transmitted power per unit time, the faster the output value of the sensor coil 120 changes. Therefore, the detection unit 180 changes the parameter value to a smaller value as the amount of change in the magnitude of the transmitted power per unit time increases.
 電力供給装置220の動作状態とパラメータ値との対応関係は、適宜、調整することができる。本実施の形態では、図10に示すように、記憶部150に記憶された第2パラメータテーブルにより、電力供給装置220の動作状態とパラメータ値との対応関係が定義付けられる。 The correspondence between the operating state of the power supply device 220 and the parameter value can be adjusted as appropriate. In the present embodiment, as shown in FIG. 10, the correspondence between the operating state of the power supply device 220 and the parameter value is defined by the second parameter table stored in the storage unit 150.
 第2パラメータテーブルによれば、電力供給装置220が送電を停止している場合、又は、電力供給装置220が一定の電力で送電している場合、パラメータ値は10である。また、電力供給装置220が送電電力を大幅に増加させながら送電している場合、又は、電力供給装置220が送電電力を大幅に減少させながら送電している場合、パラメータ値は3である。電力供給装置220が送電電力を中程度に増加させながら送電している場合、又は、電力供給装置220が送電電力を中程度に減少させながら送電している場合、パラメータ値は5である。電力供給装置220が送電電力を僅かに増加させながら送電している場合、又は、電力供給装置220が送電電力を僅かに減少させながら送電している場合、パラメータ値は7である。このように、検出部180は、電力供給装置220が送電する送電電力の変化が大きいほど、パラメータ値を小さい値に変更する。 According to the second parameter table, the parameter value is 10 when the power supply device 220 has stopped power transmission or when the power supply device 220 is transmitting power with a constant power. Further, when the power supply device 220 transmits power while significantly increasing the transmitted power, or when the power supply device 220 transmits power while significantly reducing the transmitted power, the parameter value is 3. The parameter value is 5 when the power supply device 220 is transmitting power while increasing the transmitted power to a moderate level, or when the power supply device 220 is transmitting power while decreasing the transmitted power to a moderate level. The parameter value is 7 when the power supply device 220 is transmitting power while slightly increasing the transmitted power, or when the power supply device 220 is transmitting power while slightly decreasing the transmitted power. In this way, the detection unit 180 changes the parameter value to a smaller value as the change in the transmitted power transmitted by the power supply device 220 increases.
 また、検出部180は、温度情報取得部189が取得した温度情報が示す特定部位の温度に応じて、パラメータ値を変更する。つまり、検出部180は、送電装置200の特定部位の温度に応じた出力値の変動のしやすさに応じて、パラメータ値を変更する。送電装置200の特定部位の温度とパラメータ値との対応関係は、適宜、調整することができる。本実施の形態では、図11に示すように、記憶部150に記憶された第3パラメータテーブルにより、送電装置200の特定部位の温度とパラメータ値との対応関係が定義付けられる。 Further, the detection unit 180 changes the parameter value according to the temperature of the specific portion indicated by the temperature information acquired by the temperature information acquisition unit 189. That is, the detection unit 180 changes the parameter value according to the easiness of fluctuation of the output value according to the temperature of the specific portion of the power transmission device 200. The correspondence between the temperature of the specific portion of the power transmission device 200 and the parameter value can be appropriately adjusted. In the present embodiment, as shown in FIG. 11, the correspondence between the temperature of the specific portion of the power transmission device 200 and the parameter value is defined by the third parameter table stored in the storage unit 150.
 第3パラメータテーブルによれば、特定部位の温度が高い場合、パラメータ値が3加算される。つまり、特定部位の温度が高い場合、移動体の移動状態と受電コイル311の設置高さとに応じたパラメータ値、又は、電力供給装置220の動作状態に応じたパラメータ値(以下、「他の要素に応じたパラメータ値」という。)に対して、3を加算した値がパラメータ値に設定される。また、特定部位の温度が中程度の温度である場合、パラメータ値が変更されない。つまり、特定部位の温度が中程度の温度である場合、他の要素に応じたパラメータ値が設定される。 According to the third parameter table, when the temperature of a specific part is high, the parameter value is added by 3. That is, when the temperature of a specific part is high, the parameter value according to the moving state of the moving body and the installation height of the power receiving coil 311 or the parameter value according to the operating state of the power supply device 220 (hereinafter, "other elements"). A value obtained by adding 3 to the parameter value corresponding to the parameter value is set as the parameter value. Further, when the temperature of the specific part is a medium temperature, the parameter value is not changed. That is, when the temperature of a specific part is a medium temperature, parameter values corresponding to other factors are set.
 また、特定部位の温度が低い場合、パラメータ値が1加算される。つまり、特定部位の温度が低い場合、他の要素に応じたパラメータ値に対して、1を加算した値がパラメータ値に設定される。なお、パラメータ値が上限値を超える場合、パラメータ値は上限値に設定される。また、パラメータ値が下限値を超える場合、パラメータ値は下限値に設定される。本実施の形態では、パラメータの上限値は10であり、パラメータの下限値は2である。 Also, if the temperature of a specific part is low, the parameter value is added by 1. That is, when the temperature of the specific portion is low, the value obtained by adding 1 to the parameter value corresponding to the other element is set as the parameter value. If the parameter value exceeds the upper limit value, the parameter value is set to the upper limit value. If the parameter value exceeds the lower limit, the parameter value is set to the lower limit. In the present embodiment, the upper limit value of the parameter is 10, and the lower limit value of the parameter is 2.
 次に、図12を参照して、異物検出装置100が実行する異物検出処理について説明する。なお、異物検出処理は、例えば、異物検出装置100が電力供給装置220から送電開始の通知を受けた場合に開始される。 Next, with reference to FIG. 12, the foreign matter detection process executed by the foreign matter detection device 100 will be described. The foreign matter detection process is started, for example, when the foreign matter detection device 100 receives a notification from the power supply device 220 to start power transmission.
 まず、異物検出装置100が備える検出部180は、初期設定を実行する(ステップS101)。この初期設定は、異物検出処理に関する初期設定である。初期設定では、例えば、検出コイルユニット110が備えるスイッチ132及びスイッチ133がオフ状態に設定される。また、初期設定では、閾値として、予め定められた閾値の初期値が設定される。検出部180は、ステップS101の処理を完了すると、第1パラメータ変更処理を実行する(ステップS102)。第1パラメータ変更処理については、図13に示すフローチャートを参照して詳細に説明する。 First, the detection unit 180 included in the foreign matter detection device 100 executes the initial setting (step S101). This initial setting is the initial setting related to the foreign matter detection process. In the initial setting, for example, the switch 132 and the switch 133 included in the detection coil unit 110 are set to the off state. Further, in the initial setting, an initial value of a predetermined threshold value is set as the threshold value. When the detection unit 180 completes the process of step S101, the detection unit 180 executes the first parameter change process (step S102). The first parameter change process will be described in detail with reference to the flowchart shown in FIG.
 まず、検出部180は、移動体状態情報を取得する(ステップS201)。例えば、検出部180は、移動体状態取得部186に移動体状態情報の取得を指示する。一方、移動体状態取得部186は、検出部180による指示に従って、送電装置200から移動体状態情報を取得し、取得した移動体状態情報を検出部180に供給する。検出部180は、ステップS201の処理を完了すると、移動体が基準領域内にあるか否かを判別する(ステップS202)。例えば、検出部180は、移動体状態情報が示す移動体の位置が基準領域内であるか否かを判別する。 First, the detection unit 180 acquires the moving body state information (step S201). For example, the detection unit 180 instructs the moving body state acquisition unit 186 to acquire the moving body state information. On the other hand, the moving body state acquisition unit 186 acquires the moving body state information from the power transmission device 200 according to the instruction from the detection unit 180, and supplies the acquired moving body state information to the detection unit 180. When the processing of step S201 is completed, the detection unit 180 determines whether or not the moving body is in the reference region (step S202). For example, the detection unit 180 determines whether or not the position of the moving body indicated by the moving body state information is within the reference region.
 検出部180は、移動体が基準領域内にあると判別すると(ステップS202:YES)、移動体が移動中であるか否かを判別する(ステップS203)。例えば、検出部180は、移動体状態情報が示す移動体の移動状態が移動中であるか否かを判別する。検出部180は、移動体が基準領域内にないと判別した場合(ステップS202:NO)、又は、移動体が移動中でないと判別した場合(ステップS203:NO)、パラメータ値を10に変更する(ステップS204)。 When the detection unit 180 determines that the moving body is within the reference region (step S202: YES), the detection unit 180 determines whether or not the moving body is moving (step S203). For example, the detection unit 180 determines whether or not the moving state of the moving body indicated by the moving body state information is moving. The detection unit 180 changes the parameter value to 10 when it is determined that the moving object is not within the reference region (step S202: NO) or when it is determined that the moving object is not moving (step S203: NO). (Step S204).
 検出部180は、移動体が移動中であると判別すると(ステップS203:YES)、移動体が低速で移動中であるか否かを判別する(ステップS205)。例えば、検出部180は、移動体状態情報が示す移動体の移動速度が第1速度閾値以下であるか否かを判別する。第1速度閾値は、低速と見做される移動速度の上限値である。検出部180は、移動体が低速で移動中であると判別すると(ステップS205:YES)、パラメータ値を7に変更する(ステップS206)。 When the detection unit 180 determines that the moving body is moving (step S203: YES), the detection unit 180 determines whether or not the moving body is moving at a low speed (step S205). For example, the detection unit 180 determines whether or not the moving speed of the moving body indicated by the moving body state information is equal to or less than the first speed threshold value. The first speed threshold value is an upper limit value of the moving speed considered to be low speed. When the detection unit 180 determines that the moving object is moving at a low speed (step S205: YES), the detection unit 180 changes the parameter value to 7 (step S206).
 検出部180は、移動体が低速で移動中でないと判別すると(ステップS205:NO)、移動体が中速で移動中であるか否かを判別する(ステップS207)。例えば、検出部180は、移動体状態情報が示す移動体の移動速度が第2速度閾値以下であるか否かを判別する。第2速度閾値は、中速と見做される移動速度の上限値である。検出部180は、移動体が中速で移動中であると判別すると(ステップS207:YES)、パラメータ値を5に変更する(ステップS208)。 When the detection unit 180 determines that the moving body is not moving at a low speed (step S205: NO), the detection unit 180 determines whether or not the moving body is moving at a medium speed (step S207). For example, the detection unit 180 determines whether or not the moving speed of the moving body indicated by the moving body state information is equal to or less than the second speed threshold value. The second speed threshold value is an upper limit value of the moving speed considered to be medium speed. When the detection unit 180 determines that the moving object is moving at a medium speed (step S207: YES), the detection unit 180 changes the parameter value to 5 (step S208).
 検出部180は、移動体が中速で移動中でないと判別すると(ステップS207:NO)、設置高さ別変更処理を実行する(ステップS209)。設置高さ別変更処理については、図14に示すフローチャートを参照して詳細に説明する。 When the detection unit 180 determines that the moving body is not moving at a medium speed (step S207: NO), the detection unit 180 executes the installation height-based change process (step S209). The change process for each installation height will be described in detail with reference to the flowchart shown in FIG.
 まず、検出部180は、設置高さ情報を取得する(ステップS301)。例えば、検出部180は、高さ情報取得部187に高さ情報の取得を指示する。一方、高さ情報取得部187は、検出部180による指示に従って、送電装置200から高さ情報を取得し、取得した高さ情報を検出部180に供給する。 First, the detection unit 180 acquires the installation height information (step S301). For example, the detection unit 180 instructs the height information acquisition unit 187 to acquire the height information. On the other hand, the height information acquisition unit 187 acquires height information from the power transmission device 200 according to the instruction from the detection unit 180, and supplies the acquired height information to the detection unit 180.
 検出部180は、ステップS301の処理を完了すると、受電コイル311の設置高さが低いか否かを判別する(ステップS302)。例えば、検出部180は、高さ情報が示す受電コイル311の設置高さが第1高さ閾値以下であるか否かを判別する。第1高さ閾値は、低いと見做される設置高さの上限値である。検出部180は、受電コイル311の設置高さが低いと判別すると(ステップS302:YES)、パラメータ値を2に変更する(ステップS303)。 When the processing of step S301 is completed, the detection unit 180 determines whether or not the installation height of the power receiving coil 311 is low (step S302). For example, the detection unit 180 determines whether or not the installation height of the power receiving coil 311 indicated by the height information is equal to or less than the first height threshold value. The first height threshold is the upper limit of the installation height considered to be low. When the detection unit 180 determines that the installation height of the power receiving coil 311 is low (step S302: YES), the detection unit 180 changes the parameter value to 2 (step S303).
 検出部180は、受電コイル311の設置高さが低くないと判別すると(ステップS302:NO)、受電コイル311の設置高さが中程度であるか否かを判別する(ステップS304)。例えば、検出部180は、高さ情報が示す受電コイル311の設置高さが第2高さ閾値以下であるか否かを判別する。第2高さ閾値は、中程度の高さと見做される設置高さの上限値である。検出部180は、受電コイル311の設置高さが中程度であると判別すると(ステップS304:YES)、パラメータ値を3に変更する(ステップS305)。 When the detection unit 180 determines that the installation height of the power receiving coil 311 is not low (step S302: NO), the detection unit 180 determines whether or not the installation height of the power receiving coil 311 is medium (step S304). For example, the detection unit 180 determines whether or not the installation height of the power receiving coil 311 indicated by the height information is equal to or less than the second height threshold value. The second height threshold is the upper limit of the installation height, which is considered to be a medium height. When the detection unit 180 determines that the installation height of the power receiving coil 311 is medium (step S304: YES), the detection unit 180 changes the parameter value to 3 (step S305).
 検出部180は、受電コイル311の設置高さが中程度でないと判別すると(ステップS304:NO)、パラメータ値を4に変更する(ステップS307)。検出部180は、ステップS303、ステップS305、又は、ステップS307の処理を完了すると、設置高さ別変更処理を完了する。 When the detection unit 180 determines that the installation height of the power receiving coil 311 is not medium (step S304: NO), the parameter value is changed to 4 (step S307). When the detection unit 180 completes the processing of step S303, step S305, or step S307, the installation height-based change processing is completed.
 検出部180は、ステップS204、ステップS206、ステップS208、又は、ステップS209の処理を完了すると、第1パラメータ変更処理を完了する。検出部180は、ステップS102の第1パラメータ変更処理を完了すると、第2パラメータ変更処理を実行する(ステップS103)。第2パラメータ変更処理については、図15に示すフローチャートを参照して詳細に説明する。 When the detection unit 180 completes the processing of step S204, step S206, step S208, or step S209, the first parameter change processing is completed. When the detection unit 180 completes the first parameter change process in step S102, the detection unit 180 executes the second parameter change process (step S103). The second parameter change process will be described in detail with reference to the flowchart shown in FIG.
 まず、検出部180は、動作状態情報を取得する(ステップS401)。例えば、検出部180は、動作状態取得部188に動作状態情報の取得を指示する。一方、動作状態取得部188は、検出部180による指示に従って、送電装置200から動作状態情報を取得し、取得した動作状態情報を検出部180に供給する。検出部180は、ステップS401の処理を完了すると、電力供給装置220が送電停止中であるか否かを判別する(ステップS402)。例えば、検出部180は、動作状態情報が示す電力供給装置220の動作状態が、送電を停止している状態であるか否かを判別する。 First, the detection unit 180 acquires the operation state information (step S401). For example, the detection unit 180 instructs the operation state acquisition unit 188 to acquire the operation state information. On the other hand, the operation state acquisition unit 188 acquires the operation state information from the power transmission device 200 according to the instruction from the detection unit 180, and supplies the acquired operation state information to the detection unit 180. When the processing of step S401 is completed, the detection unit 180 determines whether or not the power supply device 220 is in the power transmission stop (step S402). For example, the detection unit 180 determines whether or not the operating state of the power supply device 220 indicated by the operating state information is a state in which power transmission is stopped.
 検出部180は、電力供給装置220が送電停止中でないと判別すると(ステップS402:NO)、電力供給装置220が一定電力で送電中であるか否かを判別する(ステップS403)。例えば、検出部180は、動作状態情報が示す電力供給装置220の動作状態が、一定電力で送電している状態であるか否かを判別する。検出部180は、電力供給装置220が送電停止中であると判別した場合(ステップS402:YES)、又は、電力供給装置220が一定電力で送電中であると判別した場合(ステップS403:YES)、暫定値を10に変更する(ステップS404)。この暫定値は、パラメータ値の暫定値である。 When the detection unit 180 determines that the power supply device 220 is not stopping power transmission (step S402: NO), the detection unit 180 determines whether or not the power supply device 220 is transmitting power with a constant power (step S403). For example, the detection unit 180 determines whether or not the operating state of the power supply device 220 indicated by the operating state information is a state in which power is transmitted with a constant power. When the detection unit 180 determines that the power supply device 220 is in the process of stopping power transmission (step S402: YES), or when the power supply device 220 determines that the power supply device 220 is transmitting power with a constant power (step S403: YES). , The provisional value is changed to 10 (step S404). This provisional value is a provisional value of the parameter value.
 検出部180は、電力供給装置220が一定電力で送電中でないと判別すると(ステップS403:NO)、送電電力が大幅に増加又は減少中であるか否かを判別する(ステップS405)。例えば、検出部180は、動作状態情報が示す電力供給装置220の動作状態が、送電電力を大幅に増加又は減少させながら送電している状態であるか否かを判別する。検出部180は、送電電力が大幅に増加又は減少中であると判別すると(ステップS405:YES)、暫定値を3に変更する(ステップS406)。 When the detection unit 180 determines that the power supply device 220 is not transmitting power at a constant power (step S403: NO), the detection unit 180 determines whether or not the transmitted power is significantly increasing or decreasing (step S405). For example, the detection unit 180 determines whether or not the operating state of the power supply device 220 indicated by the operating state information is a state in which power is transmitted while the transmitted power is significantly increased or decreased. When the detection unit 180 determines that the transmitted power is significantly increasing or decreasing (step S405: YES), the detection unit 180 changes the provisional value to 3 (step S406).
 検出部180は、送電電力が大幅に増加又は減少中でないと判別すると(ステップS405:NO)、送電電力が中程度に増加又は減少中であるか否かを判別する(ステップS407)。例えば、検出部180は、動作状態情報が示す電力供給装置220の動作状態が、送電電力を中程度に増加又は減少させながら送電している状態であるか否かを判別する。検出部180は、送電電力が中程度に増加又は減少中であると判別すると(ステップS407:YES)、暫定値を5に変更する(ステップS408)。検出部180は、送電電力が中程度に増加又は減少中でないと判別すると(ステップS407:NO)、暫定値を7に変更する(ステップS409)。 When the detection unit 180 determines that the transmitted power is not significantly increasing or decreasing (step S405: NO), it determines whether or not the transmitted power is moderately increasing or decreasing (step S407). For example, the detection unit 180 determines whether or not the operating state of the power supply device 220 indicated by the operating state information is a state in which power is transmitted while the transmitted power is moderately increased or decreased. When the detection unit 180 determines that the transmitted power is moderately increasing or decreasing (step S407: YES), the detection unit 180 changes the provisional value to 5 (step S408). When the detection unit 180 determines that the transmitted power is not increasing or decreasing moderately (step S407: NO), the detection unit 180 changes the provisional value to 7 (step S409).
 検出部180は、ステップS404、ステップS406、ステップS408、又は、ステップS409の処理を完了すると、暫定値がパラメータ値未満であるか否かを判別する(ステップS410)。検出部180は、暫定値がパラメータ値未満であると判別すると(ステップS410:YES)、パラメータ値を暫定値に変更する(ステップS411)。 When the detection unit 180 completes the processing of step S404, step S406, step S408, or step S409, the detection unit 180 determines whether or not the provisional value is less than the parameter value (step S410). When the detection unit 180 determines that the provisional value is less than the parameter value (step S410: YES), the detection unit 180 changes the parameter value to the provisional value (step S411).
 なお、ステップS410が実行される時点において、パラメータ値は、移動体の状態と受電コイル311の設置高さとに応じて設定された値であり、暫定値は、電力供給装置220の動作状態に応じて設定された値である。そこで、これらの2つの値のうち小さい値がパラメータ値として採用される。つまり、予測される最も早い出力値の変化に閾値が追従するように、小さい方の値がパラメータ値として採用される。検出部180は、暫定値がパラメータ値未満でないと判別した場合(ステップS410:NO)、又は、ステップS411の処理を完了した場合、第2パラメータ変更処理を完了する。 At the time when step S410 is executed, the parameter value is a value set according to the state of the moving body and the installation height of the power receiving coil 311, and the provisional value is according to the operating state of the power supply device 220. It is a value set in. Therefore, the smaller of these two values is adopted as the parameter value. That is, the smaller value is adopted as the parameter value so that the threshold value follows the predicted change of the earliest output value. When the detection unit 180 determines that the provisional value is not less than the parameter value (step S410: NO), or when the process of step S411 is completed, the detection unit 180 completes the second parameter change process.
 検出部180は、ステップS103の第2パラメータ変更処理を完了すると、第3パラメータ変更処理を実行する(ステップS104)。第3パラメータ変更処理については、図16に示すフローチャートを参照して詳細に説明する。 When the detection unit 180 completes the second parameter change process in step S103, the detection unit 180 executes the third parameter change process (step S104). The third parameter change process will be described in detail with reference to the flowchart shown in FIG.
 まず、検出部180は、温度情報を取得する(ステップS501)。例えば、検出部180は、温度情報取得部189に温度情報の取得を指示する。一方、温度情報取得部189は、検出部180による指示に従って、送電装置200から温度情報を取得し、取得した温度情報を検出部180に供給する。検出部180は、ステップS501の処理を完了すると、特定部位の温度が中程度の温度であるか否かを判別する(ステップS502)。例えば、検出部180は、温度情報が示す特定部位の温度が、第1温度閾値を超え、且つ、第2温度閾値以下であるか否かを判別する。第1温度閾値は、低いと見做される温度の上限値である。第2温度閾値は、中程度と見做される温度の上限値である。 First, the detection unit 180 acquires temperature information (step S501). For example, the detection unit 180 instructs the temperature information acquisition unit 189 to acquire the temperature information. On the other hand, the temperature information acquisition unit 189 acquires temperature information from the power transmission device 200 according to the instruction from the detection unit 180, and supplies the acquired temperature information to the detection unit 180. When the processing of step S501 is completed, the detection unit 180 determines whether or not the temperature of the specific portion is a moderate temperature (step S502). For example, the detection unit 180 determines whether or not the temperature of the specific portion indicated by the temperature information exceeds the first temperature threshold value and is equal to or lower than the second temperature threshold value. The first temperature threshold is the upper limit of the temperature considered to be low. The second temperature threshold is the upper limit of the temperature considered to be moderate.
 検出部180は、特定部位の温度が中程度の温度でないと判別すると(ステップS502:NO)、特定部位の温度が高温であるか否かを判別する(ステップS503)。例えば、検出部180は、温度情報が示す特定部位の温度が、第2温度閾値を超えるか否かを判別する。検出部180は、特定部位の温度が高温であると判別すると(ステップS503:YES)、パラメータ値に3を加算した値を暫定値に設定する(ステップS504)。検出部180は、特定部位の温度が高温でないと判別すると(ステップS503:NO)、パラメータ値に1を加算した値を暫定値に設定する(ステップS505)。 When the detection unit 180 determines that the temperature of the specific portion is not a medium temperature (step S502: NO), the detection unit 180 determines whether or not the temperature of the specific portion is high (step S503). For example, the detection unit 180 determines whether or not the temperature of the specific portion indicated by the temperature information exceeds the second temperature threshold value. When the detection unit 180 determines that the temperature of the specific portion is high (step S503: YES), the detection unit 180 sets a value obtained by adding 3 to the parameter value as a provisional value (step S504). When the detection unit 180 determines that the temperature of the specific portion is not high (step S503: NO), the detection unit 180 sets a value obtained by adding 1 to the parameter value as a provisional value (step S505).
 検出部180は、ステップS504又はステップS505の処理を完了すると、暫定値が上限値以下であるか否かを判別する(ステップS506)。この上限値は、パラメータ値の上限値である。検出部180は、暫定値が上限値以下であると判別すると(ステップS506:YES)、パラメータ値を暫定値に変更する(ステップS507)。一方、検出部180は、暫定値が上限値以下でないと判別すると(ステップS506:NO)、パラメータ値を上限値に変更する(ステップS508)。 When the processing of step S504 or step S505 is completed, the detection unit 180 determines whether or not the provisional value is equal to or less than the upper limit value (step S506). This upper limit is the upper limit of the parameter value. When the detection unit 180 determines that the provisional value is equal to or less than the upper limit value (step S506: YES), the detection unit 180 changes the parameter value to the provisional value (step S507). On the other hand, when the detection unit 180 determines that the provisional value is not equal to or less than the upper limit value (step S506: NO), the detection unit 180 changes the parameter value to the upper limit value (step S508).
 検出部180は、特定部位の温度が中程度の温度であると判別した場合(ステップS502:YES)、又は、ステップS507又はステップ508の処理を完了した場合、第3パラメータ変更処理を完了する。検出部180は、ステップS104の第3パラメータ変更処理を完了すると、センサコイル120を選択する(ステップS105)。例えば、検出部180は、予め定められた順序に従って、12のセンサコイル120から1つのセンサコイル120を選択する。検出部180は、ステップS105の処理を完了すると、出力値取得処理を実行する(ステップS106)。出力値取得処理については、図17に示すフローチャートを参照して詳細に説明する。 When the detection unit 180 determines that the temperature of the specific portion is a medium temperature (step S502: YES), or when the process of step S507 or step 508 is completed, the detection unit 180 completes the third parameter change process. When the detection unit 180 completes the third parameter change process in step S104, the detection unit 180 selects the sensor coil 120 (step S105). For example, the detection unit 180 selects one sensor coil 120 from the 12 sensor coils 120 according to a predetermined order. When the detection unit 180 completes the process of step S105, the detection unit 180 executes the output value acquisition process (step S106). The output value acquisition process will be described in detail with reference to the flowchart shown in FIG.
 まず、検出部180は、検出部180は、スイッチ132,133の状態を制御する(ステップS601)。つまり、検出部180は、スイッチ制御部182を制御して、選択したセンサコイル120に含まれるスイッチ132及びスイッチ133をオン状態に制御し、選択していないセンサコイル120に含まれるスイッチ132及びスイッチ133をオフ状態に制御する。 First, the detection unit 180 controls the states of the switches 132 and 133 (step S601). That is, the detection unit 180 controls the switch control unit 182 to control the switch 132 and the switch 133 included in the selected sensor coil 120 to be in the ON state, and the switch 132 and the switch included in the sensor coil 120 not selected. The 133 is controlled to the off state.
 検出部180は、ステップS601の処理を完了すると、選択したセンサコイル120にパルス状の電圧を印加する(ステップS602)。つまり、検出部180は、パルス制御部181を制御して、パルス発生部140にパルス状の電圧を発生させる。検出部180は、ステップS602の処理を完了すると、選択したセンサコイル120から出力値を取得する(ステップS603)。検出部180は、出力値取得部183を介して、選択したセンサコイル120から出力値を取得する。検出部180は、ステップS603の処理を完了すると、出力値取得処理を完了する。 When the detection unit 180 completes the process of step S601, the detection unit 180 applies a pulsed voltage to the selected sensor coil 120 (step S602). That is, the detection unit 180 controls the pulse control unit 181 to generate a pulse-shaped voltage in the pulse generation unit 140. When the processing of step S602 is completed, the detection unit 180 acquires an output value from the selected sensor coil 120 (step S603). The detection unit 180 acquires an output value from the selected sensor coil 120 via the output value acquisition unit 183. When the detection unit 180 completes the process of step S603, the output value acquisition process is completed.
 検出部180は、ステップS106の出力値取得処理を完了すると、出力値が閾値を超過しているか否かを判別する(ステップS107)。検出部180は、出力値が閾値を超過していないと判別すると(ステップS107:NO)、出力値の移動平均の値を算出する(ステップS108)。つまり、検出部180は、選択したセンサコイル120について取得された出力値のうち、新しいものから順に選択した、パラメータ値に対応する個数分の出力値の移動平均の値を算出する。 When the detection unit 180 completes the output value acquisition process in step S106, the detection unit 180 determines whether or not the output value exceeds the threshold value (step S107). When the detection unit 180 determines that the output value does not exceed the threshold value (step S107: NO), the detection unit 180 calculates the value of the moving average of the output values (step S108). That is, the detection unit 180 calculates the moving average value of the number of output values corresponding to the parameter values selected in order from the newest output value acquired for the selected sensor coil 120.
 検出部180は、ステップS108の処理を完了すると、移動平均の値に基づいて閾値を補正する(ステップS109)。つまり、検出部180は、選択したセンサコイル120について算出した移動平均の値にオフセット値を加算した値を、この選択したセンサコイル120の新たな閾値にする。検出部180は、ステップS109の処理を完了すると、全てのセンサコイル120を選択済みであるか否かを判別する(ステップS110)。 When the detection unit 180 completes the process of step S108, the detection unit 180 corrects the threshold value based on the value of the moving average (step S109). That is, the detection unit 180 sets the value obtained by adding the offset value to the value of the moving average calculated for the selected sensor coil 120 as a new threshold value of the selected sensor coil 120. When the processing of step S109 is completed, the detection unit 180 determines whether or not all the sensor coils 120 have been selected (step S110).
 検出部180は、全てのセンサコイル120を選択済みでないと判別すると(ステップS110:NO)、ステップS105に処理を戻し、未選択のセンサコイル120を選択して、以降の処理を実行する。検出部180は、全てのセンサコイル120を選択済みであると判別すると(ステップS110:YES)、ステップS102に処理を戻す。 When the detection unit 180 determines that all the sensor coils 120 have not been selected (step S110: NO), the processing is returned to step S105, the unselected sensor coils 120 are selected, and the subsequent processing is executed. When the detection unit 180 determines that all the sensor coils 120 have been selected (step S110: YES), the detection unit 180 returns the process to step S102.
 検出部180は、出力値が閾値を超過していると判別すると(ステップS107:YES)、ユーザに異物検出を通知する(ステップS111)。例えば、検出部180は、通知部184に通知を指示する。通知部184は、検出部180による指示に従って、端末装置800に異物10が検出されたことを示す情報を送信する。一方、端末装置800は、この情報を受信すると、画面表示、音声出力等により、ユーザに、異物10が検知されたことを知らせる。ユーザは、端末装置800から異物10が存在することの報知を受けると、異物10を除去する。 When the detection unit 180 determines that the output value exceeds the threshold value (step S107: YES), the detection unit 180 notifies the user of foreign matter detection (step S111). For example, the detection unit 180 instructs the notification unit 184 to notify. The notification unit 184 transmits information indicating that the foreign matter 10 has been detected to the terminal device 800 according to the instruction from the detection unit 180. On the other hand, when the terminal device 800 receives this information, the terminal device 800 notifies the user that the foreign matter 10 has been detected by displaying the screen, outputting voice, or the like. When the user is notified by the terminal device 800 that the foreign matter 10 is present, the user removes the foreign matter 10.
 検出部180は、ステップS111の処理を完了すると、電力供給装置220に送電の停止を指示する(ステップS112)。例えば、検出部180は、送電制御部185に送電の停止を指示する。送電制御部185は、検出部180による指示に従って、電力供給装置220に送電を停止することを指示する情報を送信する。一方、電力供給装置220は、この情報を受信すると、送電を停止する。検出部180は、ステップS112の処理を完了すると、異物検出処理を完了する。 When the detection unit 180 completes the process of step S111, the detection unit 180 instructs the power supply device 220 to stop power transmission (step S112). For example, the detection unit 180 instructs the power transmission control unit 185 to stop power transmission. The power transmission control unit 185 transmits information instructing the power supply device 220 to stop power transmission according to the instruction from the detection unit 180. On the other hand, when the power supply device 220 receives this information, the power supply device 220 stops power transmission. When the processing of step S112 is completed, the detection unit 180 completes the foreign matter detection processing.
 本実施の形態では、出力値とパラメータ値とに基づいて閾値が補正される。つまり、本実施の形態では、異物検出装置100を取り巻く環境の変化に応じて変化する出力値に合わせて、閾値が補正される。従って、本実施の形態によれば、ワイヤレス電力伝送の異物検知において、精度良く異物10が検出される。 In this embodiment, the threshold value is corrected based on the output value and the parameter value. That is, in the present embodiment, the threshold value is corrected according to the output value that changes according to the change in the environment surrounding the foreign matter detecting device 100. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy in the foreign matter detection of wireless power transmission.
 また、本実施の形態では、移動体状態情報が示す移動体の状態に応じて、パラメータ値が変更される。従って、本実施の形態によれば、移動体の状態に応じた速さで出力値が変化する場合において、誤検出と検出漏れとが抑制され、精度良く異物10が検出される。 Further, in the present embodiment, the parameter value is changed according to the state of the moving body indicated by the moving body state information. Therefore, according to the present embodiment, when the output value changes at a speed corresponding to the state of the moving body, erroneous detection and omission of detection are suppressed, and the foreign matter 10 is detected with high accuracy.
 また、本実施の形態では、移動体の状態が、移動体の位置が基準領域内であり、移動体の移動状態が移動中状態である第1状態に変化した場合、パラメータ値が変更される。従って、本実施の形態によれば、移動体の状態が第1状態であり、出力値が速やかに変化する場合において、精度良く異物10が検出される。 Further, in the present embodiment, when the state of the moving body changes to the first state in which the position of the moving body is within the reference region and the moving state of the moving body is in the moving state, the parameter value is changed. .. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the state of the moving body is the first state and the output value changes rapidly.
 また、本実施の形態では、移動体の状態が第1状態である場合、移動体の移動速度に応じて、パラメータ値が変更される。従って、本実施の形態によれば、移動体の移動速度に応じた速さで出力値が変化する場合において、精度良く異物10が検出される。 Further, in the present embodiment, when the state of the moving body is the first state, the parameter value is changed according to the moving speed of the moving body. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the moving speed of the moving body.
 また、本実施の形態では、移動体の状態が第1状態である場合、受電コイル311の設置高さに応じて、パラメータ値が変更される。従って、本実施の形態によれば、受電コイル311の設置高さに応じた速さで出力値が変化する場合において、精度良く異物10が検出される。 Further, in the present embodiment, when the state of the moving body is the first state, the parameter value is changed according to the installation height of the power receiving coil 311. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the installation height of the power receiving coil 311.
 また、本実施の形態では、電力供給装置220の動作状態に応じて、パラメータ値が変更される。従って、本実施の形態によれば、電力供給装置220の動作状態に応じた速さで出力値が変化する場合において、精度良く異物10が検出される。 Further, in the present embodiment, the parameter value is changed according to the operating state of the power supply device 220. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the operating state of the power supply device 220.
 また、本実施の形態では、電力供給装置220から送電コイル211に供給される交流電力の大きさの単位時間あたりの変化量に応じてパラメータ値が変更される。従って、本実施の形態によれば、送電電力の変化の速さに応じた速さで出力値が変化する場合において、精度良く異物10が検出される。 Further, in the present embodiment, the parameter value is changed according to the amount of change in the magnitude of the AC power supplied from the power supply device 220 to the power transmission coil 211 per unit time. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the speed of change of the transmitted power.
 また、本実施の形態では、送電装置200における特定部位の温度に応じて、パラメータ値が変更される。従って、本実施の形態によれば、送電装置200における特定部位の温度に応じた速さで出力値が変化する場合において、精度良く異物10が検出される。 Further, in the present embodiment, the parameter value is changed according to the temperature of the specific part of the power transmission device 200. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the temperature of the specific portion of the power transmission device 200.
 また、本実施の形態では、直近に取得された、パラメータ値が示す個数分の出力値の移動平均の値が用いられて、閾値が補正される。つまり、本実施の形態では、パラメータ値により適切に調整された速さで閾値が出力値に追従する。従って、本実施の形態によれば、異物検出装置100を取り巻く環境の変化に応じて出力値が変化する場合において、精度良く異物10が検出される。 Further, in the present embodiment, the value of the moving average of the number of output values indicated by the parameter values, which has been acquired most recently, is used to correct the threshold value. That is, in the present embodiment, the threshold value follows the output value at a speed appropriately adjusted by the parameter value. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes according to the change in the environment surrounding the foreign matter detecting device 100.
(実施の形態2)
 実施の形態1では、出力値とパラメータ値とに基づいて閾値が変更される例について説明した。本実施の形態では、出力値とパラメータ値とに基づいて閾値が変更されるだけでなく、移動体の状態と電力供給装置220の動作状態とに基づいて、閾値が変更される例について説明する。なお、実施の形態1と同様の構成及び処理については、説明を省略又は簡略化する。
(Embodiment 2)
In the first embodiment, an example in which the threshold value is changed based on the output value and the parameter value has been described. In the present embodiment, an example will be described in which not only the threshold value is changed based on the output value and the parameter value, but also the threshold value is changed based on the state of the moving body and the operating state of the power supply device 220. .. The description of the same configuration and processing as in the first embodiment will be omitted or simplified.
 本実施の形態では、検出部180は、閾値補正処理を実行する前に、移動体状態情報が示す移動体の状態に基づいて、閾値を変更する。例えば、検出部180は、異物検出処理が開始された直後に、移動体状態情報が示す移動体の状態に基づいて、閾値を変更する。 In the present embodiment, the detection unit 180 changes the threshold value based on the state of the moving body indicated by the moving body state information before executing the threshold value correction process. For example, the detection unit 180 changes the threshold value immediately after the foreign matter detection process is started, based on the state of the moving body indicated by the moving body state information.
 また、検出部180は、閾値補正処理を実行する前に、動作状態情報が示す電力供給装置220の動作状態に基づいて、閾値を変更する。例えば、検出部180は、異物検出処理が開始された直後に、動作状態情報が示す電力供給装置220の動作状態に基づいて、閾値を変更する。 Further, the detection unit 180 changes the threshold value based on the operating state of the power supply device 220 indicated by the operating state information before executing the threshold value correction process. For example, the detection unit 180 changes the threshold value immediately after the foreign matter detection process is started, based on the operating state of the power supply device 220 indicated by the operating state information.
 以下、図18を参照して、本実施の形態に係る異物検出装置100が実行する閾値変更処理について説明する。閾値変更処理は、例えば、ステップS101の初期設定が終了した後に実行される。 Hereinafter, the threshold value change process executed by the foreign matter detection device 100 according to the present embodiment will be described with reference to FIG. The threshold value change process is executed, for example, after the initial setting in step S101 is completed.
 まず、異物検出装置100が備える検出部180は、移動体状態情報を取得する(ステップS701)。例えば、検出部180は、移動体状態取得部186に移動体状態情報の取得を指示し、移動体状態取得部186から移動体状態情報を取得する。検出部180は、ステップS702の処理を完了すると、動作状態情報を取得する(ステップS702)。例えば、検出部180は、動作状態取得部188に動作状態情報の取得を指示し、動作状態取得部188から動作状態情報を取得する。 First, the detection unit 180 included in the foreign matter detection device 100 acquires the moving body state information (step S701). For example, the detection unit 180 instructs the moving body state acquisition unit 186 to acquire the moving body state information, and acquires the moving body state information from the moving body state acquisition unit 186. When the detection unit 180 completes the process of step S702, the detection unit 180 acquires the operation state information (step S702). For example, the detection unit 180 instructs the operation state acquisition unit 188 to acquire the operation state information, and acquires the operation state information from the operation state acquisition unit 188.
 検出部180は、ステップS703の処理を完了すると、センサコイル120を選択する(ステップS703)。検出部180は、ステップS704の処理を完了すると、選択したセンサコイル120について、移動体状態情報と動作状態情報とに基づいて、選択したセンサコイル120の閾値を変更する。 When the detection unit 180 completes the process of step S703, the detection unit 180 selects the sensor coil 120 (step S703). When the process of step S704 is completed, the detection unit 180 changes the threshold value of the selected sensor coil 120 based on the moving body state information and the operating state information for the selected sensor coil 120.
 異物10がないときに取得される出力値は、移動体の状態と電力供給装置220の動作状態とに依存すると考えられる。また、異物10がないときに取得される出力値は、センサコイル120毎に異なると考えられる。そこで、予め、移動体の状態と、電力供給装置220の動作状態と、センサコイル120の個体との組み合わせ毎に、実験、シミュレーション等により、異物10がないときに取得される出力値を求め、求めた出力値に基づいて閾値の初期値を求めておくことが好適である。そして、記憶部150は、上記組み合わせ毎に閾値の初期値を示す初期値情報を記憶する。検出部180は、選択したセンサコイル120の閾値を、この初期値情報が示す閾値の初期値に変更する。 It is considered that the output value acquired when there is no foreign matter 10 depends on the state of the moving body and the operating state of the power supply device 220. Further, it is considered that the output value acquired when there is no foreign matter 10 is different for each sensor coil 120. Therefore, the output value acquired when there is no foreign matter 10 is obtained in advance by experiments, simulations, etc. for each combination of the state of the moving body, the operating state of the power supply device 220, and the individual sensor coil 120. It is preferable to obtain the initial value of the threshold value based on the obtained output value. Then, the storage unit 150 stores the initial value information indicating the initial value of the threshold value for each of the above combinations. The detection unit 180 changes the threshold value of the selected sensor coil 120 to the initial value of the threshold value indicated by the initial value information.
 検出部180は、ステップS704の処理を完了すると、全てのセンサコイル120を選択済みであるか否かを判別する(ステップS705)。検出部180は、全てのセンサコイル120を選択済みでないと判別すると(ステップS705:NO)、ステップS703に処理を戻し、未選択のセンサコイル120を選択する。一方、検出部180は、全てのセンサコイル120を選択済みであると判別すると(ステップS705:YES)、閾値変更処理を完了し、ステップS102に処理を戻す。 When the processing of step S704 is completed, the detection unit 180 determines whether or not all the sensor coils 120 have been selected (step S705). When the detection unit 180 determines that all the sensor coils 120 have not been selected (step S705: NO), the process returns to step S703 and selects the unselected sensor coils 120. On the other hand, when the detection unit 180 determines that all the sensor coils 120 have been selected (step S705: YES), the detection unit 180 completes the threshold value change process and returns the process to step S102.
 本実施の形態では、閾値補正処理が実行される前に、移動体の状態に基づいて、閾値が変更される。従って、本実施の形態によれば、出力値と比較される閾値を、移動体の状態に適した閾値に速やかに変更することができる。 In the present embodiment, the threshold value is changed based on the state of the moving body before the threshold value correction process is executed. Therefore, according to the present embodiment, the threshold value to be compared with the output value can be quickly changed to the threshold value suitable for the state of the moving body.
 また、本実施の形態では、閾値補正処理が実行される前に、電力供給装置220の動作状態に基づいて、閾値が変更される。従って、本実施の形態によれば、出力値と比較される閾値を、電力供給装置220の動作状態に適した閾値に速やかに変更することができる。 Further, in the present embodiment, the threshold value is changed based on the operating state of the power supply device 220 before the threshold value correction process is executed. Therefore, according to the present embodiment, the threshold value to be compared with the output value can be quickly changed to the threshold value suitable for the operating state of the power supply device 220.
(実施の形態3)
 実施の形態1では、補正パラメータが、出力値の移動平均を求めるときに用いる出力値の個数である例について説明した。本実施の形態では、補正パラメータが、出力値に対して重み付けをするときに用いる重み係数である例について説明する。
(Embodiment 3)
In the first embodiment, an example in which the correction parameter is the number of output values used when obtaining the moving average of the output values has been described. In this embodiment, an example in which the correction parameter is a weighting coefficient used when weighting the output value will be described.
 本実施の形態では、検出部180は、閾値補正処理において、直近に取得した出力値に対してパラメータ値が示す重み係数を乗算した値を用いて、閾値を補正する。例えば、検出部180は、第1の値と第2の値とオフセット値とを加算した値を新たな閾値とする。第1の値は、直近に取得した出力値にパラメータ値が示す重み計数を乗算した値である。第2の値は、補正前の閾値からオフセット値を減じた値に、1からパラメータ値が示す重み計数を減じた値を乗算した値である。 In the present embodiment, the detection unit 180 corrects the threshold value in the threshold value correction process by using a value obtained by multiplying the most recently acquired output value by the weighting coefficient indicated by the parameter value. For example, the detection unit 180 uses a value obtained by adding the first value, the second value, and the offset value as a new threshold value. The first value is a value obtained by multiplying the most recently acquired output value by the weight count indicated by the parameter value. The second value is a value obtained by multiplying the value obtained by subtracting the offset value from the threshold value before correction by the value obtained by subtracting the weight count indicated by the parameter value from 1.
 ここで、例えば、直近に取得した出力値が4(V)、補正前の閾値が3(V)、オフセット値が1(V)である場合を想定する。この場合において、パラメータ値が0.1である場合、第1の値が0.4(V)、第2の値が1.8(V)、新たな閾値が3.2(V)である。これに対して、パラメータ値が0.5である場合、第1の値が2(V)、第2の値が1(V)、新たな閾値が4(V)である。このように、本実施の形態では、パラメータ値が大きいほど、閾値が出力値に追従する速さが速い。 Here, for example, it is assumed that the most recently acquired output value is 4 (V), the threshold value before correction is 3 (V), and the offset value is 1 (V). In this case, when the parameter value is 0.1, the first value is 0.4 (V), the second value is 1.8 (V), and the new threshold value is 3.2 (V). .. On the other hand, when the parameter value is 0.5, the first value is 2 (V), the second value is 1 (V), and the new threshold value is 4 (V). As described above, in the present embodiment, the larger the parameter value, the faster the threshold value follows the output value.
 本実施の形態では、直近に取得された出力値に対してパラメータ値が示す重み係数が乗算された値を用いて、閾値が補正される。つまり、本実施の形態では、パラメータ値により適切に調整された速さで閾値が出力値に追従する。従って、本実施の形態によれば、異物検出装置100を取り巻く環境の変化に応じて出力値が変化する場合において、精度良く異物10が検出される。 In the present embodiment, the threshold value is corrected by using the value obtained by multiplying the most recently acquired output value by the weighting coefficient indicated by the parameter value. That is, in the present embodiment, the threshold value follows the output value at a speed appropriately adjusted by the parameter value. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes according to the change in the environment surrounding the foreign matter detecting device 100.
(実施の形態4)
 実施の形態1では、特定部位の温度に応じて、パラメータ値が変更される例について説明した。本実施の形態では、特定部位の温度の変動量に応じて、パラメータ値が変更される例について説明する。なお、実施の形態1-3と同様の構成及び処理については、説明を省略又は簡略化する。
(Embodiment 4)
In the first embodiment, an example in which the parameter value is changed according to the temperature of a specific part has been described. In this embodiment, an example in which the parameter value is changed according to the amount of fluctuation in the temperature of a specific part will be described. The description of the same configuration and processing as those of the first to third embodiments will be omitted or simplified.
 本実施の形態では、検出部180は、温度情報取得部189が取得した温度情報が示す特定部位の温度の変動量に応じて、パラメータ値を変更する。つまり、検出部180は、送電装置200の特定部位の温度の変動量に応じた、出力値の変動のしやすさに応じて、パラメータ値を変更する。特定部位の温度の変動量が大きいことは、特定部位の温度が短時間で大きく変動することを意味する。一方、特定部位の温度の変動量が小さいことは、特定部位の温度があまり変動しないことを意味する。送電装置200の特定部位の温度の変動量とパラメータ値との対応関係は、適宜、調整することができる。本実施の形態では、図19に示すように、記憶部150に記憶された第4パラメータテーブルにより、送電装置200の特定部位の温度の変動量とパラメータ値との対応関係が定義付けられる。 In the present embodiment, the detection unit 180 changes the parameter value according to the amount of fluctuation in the temperature of the specific portion indicated by the temperature information acquired by the temperature information acquisition unit 189. That is, the detection unit 180 changes the parameter value according to the easiness of fluctuation of the output value according to the fluctuation amount of the temperature of the specific portion of the power transmission device 200. A large fluctuation in the temperature of a specific part means that the temperature of the specific part fluctuates greatly in a short time. On the other hand, the fact that the amount of fluctuation in the temperature of the specific part is small means that the temperature of the specific part does not fluctuate much. The correspondence between the amount of temperature fluctuation of the specific portion of the power transmission device 200 and the parameter value can be appropriately adjusted. In the present embodiment, as shown in FIG. 19, the correspondence between the temperature fluctuation amount of the specific portion of the power transmission device 200 and the parameter value is defined by the fourth parameter table stored in the storage unit 150.
 第4パラメータテーブルによれば、特定部位の温度の変動量が大きい場合、パラメータ値が変更されない。つまり、特定部位の温度の変動量が大きい場合、他の要素に応じたパラメータ値が設定される。また、特定部位の温度の変動量が中程度である場合、パラメータ値が1加算される。つまり、特定部位の温度の変動量が中程度である場合、他の要素に応じたパラメータ値に対して、1を加算した値がパラメータ値に設定される。また、特定部位の温度の変動量が小さい場合、パラメータ値が3加算される。つまり、特定部位の温度の変動量が小さい場合、他の要素に応じたパラメータ値に対して、3を加算した値がパラメータ値に設定される。 According to the 4th parameter table, the parameter value is not changed when the amount of temperature fluctuation of a specific part is large. That is, when the amount of fluctuation in the temperature of a specific part is large, parameter values corresponding to other factors are set. Further, when the amount of fluctuation in the temperature of the specific portion is medium, the parameter value is added by 1. That is, when the amount of fluctuation in the temperature of the specific portion is medium, the value obtained by adding 1 to the parameter value corresponding to the other elements is set as the parameter value. Further, when the amount of fluctuation in the temperature of the specific portion is small, the parameter value is added by 3. That is, when the fluctuation amount of the temperature of the specific portion is small, the value obtained by adding 3 to the parameter value corresponding to other elements is set as the parameter value.
 本実施の形態では、送電装置200における特定部位の温度の変動量に応じて、パラメータ値が変更される。従って、本実施の形態によれば、送電装置200における特定部位の温度の変動量に応じた速さで出力値が変化する場合において、精度良く異物10が検出される。 In the present embodiment, the parameter value is changed according to the amount of fluctuation in the temperature of the specific part of the power transmission device 200. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy when the output value changes at a speed corresponding to the fluctuation amount of the temperature of the specific portion in the power transmission device 200.
(実施の形態5)
 実施の形態1-4では、送電装置200に異物検出装置100が設けられる例について説明した。本実施の形態では、受電装置300に異物検出装置100が設けられる例について説明する。なお、実施の形態1-4と同様の構成及び処理については、説明を省略又は簡略化する。
(Embodiment 5)
In Embodiment 1-4, an example in which the foreign matter detecting device 100 is provided in the power transmission device 200 has been described. In this embodiment, an example in which the power receiving device 300 is provided with the foreign matter detecting device 100 will be described. The description of the same configuration and processing as those of the first and fourth embodiments will be omitted or simplified.
 図20に示すように、検出コイルユニット110は、平板状に形成され、平面視で受電コイル311と重なるように、受電コイルユニット310上に配置される。パルス発生部140は、異物検出のためのパルス状の電圧を発生し、センサコイル120を選択して印加する。 As shown in FIG. 20, the detection coil unit 110 is formed in a flat plate shape and is arranged on the power receiving coil unit 310 so as to overlap the power receiving coil 311 in a plan view. The pulse generation unit 140 generates a pulse-shaped voltage for detecting foreign matter, and selects and applies the sensor coil 120.
 検出部180は、パルス状の電圧の印加により励磁されたセンサコイル120の出力値と、閾値との比較結果に基づいて、異物10の有無を判別する。検出部180は、出力値と閾値の補正に用いる補正パラメータの値であるパラメータ値とに基づいて閾値を補正する閾値補正処理を実行する。 The detection unit 180 determines the presence or absence of the foreign matter 10 based on the comparison result between the output value of the sensor coil 120 excited by the application of the pulsed voltage and the threshold value. The detection unit 180 executes a threshold value correction process for correcting the threshold value based on the output value and the parameter value which is the value of the correction parameter used for the correction of the threshold value.
 本実施の形態では、受電装置300に異物検出装置100が設けられ、出力値とパラメータ値とに基づいて閾値が補正される。つまり、本実施の形態では、種々の観点から受電装置300に異物検出装置100が設けられた場合においても、異物検出装置100を取り巻く環境の変化に応じて変化する出力値に合わせて、閾値が補正される。従って、本実施の形態によれば、ワイヤレス電力伝送の異物検知において、精度良く異物10が検出される。 In the present embodiment, the power receiving device 300 is provided with the foreign matter detecting device 100, and the threshold value is corrected based on the output value and the parameter value. That is, in the present embodiment, even when the foreign matter detecting device 100 is provided in the power receiving device 300 from various viewpoints, the threshold value is set according to the output value that changes according to the change in the environment surrounding the foreign matter detecting device 100. It will be corrected. Therefore, according to the present embodiment, the foreign matter 10 is detected with high accuracy in the foreign matter detection of wireless power transmission.
(変形例)
 以上、本開示の実施の形態を説明したが、本開示を実施するにあたっては、種々の形態による変形及び応用が可能である。本開示において、上記実施の形態において説明した構成、機能、動作のどの部分を採用するのかは任意である。また、本開示において、上述した構成、機能、動作のほか、更なる構成、機能、動作が採用されてもよい。また、上記実施の形態は、適宜、自由に組み合わせることができる。また、上記実施の形態で説明した構成要素の個数は、適宜、調整することができる。また、本開示において採用可能な素材、サイズ、電気的特性等が、上記実施の形態において示したものに限定されないことは勿論である。
(Modification example)
Although the embodiments of the present disclosure have been described above, various modifications and applications are possible in carrying out the present disclosure. In the present disclosure, it is arbitrary which part of the configuration, function, and operation described in the above embodiment is adopted. Further, in the present disclosure, in addition to the above-mentioned configurations, functions, and operations, further configurations, functions, and operations may be adopted. In addition, the above embodiments can be freely combined as appropriate. In addition, the number of components described in the above embodiment can be appropriately adjusted. Further, it goes without saying that the materials, sizes, electrical characteristics, and the like that can be adopted in the present disclosure are not limited to those shown in the above embodiments.
 実施の形態1では、複数のセンサコイル120のそれぞれについて、独立した閾値と独立した閾値の初期値とが用意される例について説明した。複数のセンサコイル120について、共通の閾値と共通の閾値の初期値とが用意されてもよい。この場合において、1つのセンサコイル120について取得された出力値に対して移動平均の値が求められてもよいし、複数のセンサコイル120について取得された出力値に対して移動平均の値が求められてもよい。 In the first embodiment, an example in which an independent threshold value and an initial value of the independent threshold value are prepared for each of the plurality of sensor coils 120 has been described. A common threshold value and an initial value of the common threshold value may be prepared for the plurality of sensor coils 120. In this case, the moving average value may be obtained for the output value acquired for one sensor coil 120, or the moving average value may be obtained for the output value acquired for the plurality of sensor coils 120. May be done.
 実施の形態1では、異物検出に用いるセンサとして、複数のセンサコイル120を用いる例について説明した。異物検出に用いるセンサとして、1つのセンサコイル120が用いられてもよい。実施の形態1では、異物検出に用いるセンサとして、センサコイル120が用いられる例について説明した。異物検出に用いるセンサとして、温度センサ、超音波センサ等の各種のセンサが用いられてもよい。 In the first embodiment, an example in which a plurality of sensor coils 120 are used as sensors used for detecting foreign matter has been described. One sensor coil 120 may be used as the sensor used for detecting foreign matter. In the first embodiment, an example in which the sensor coil 120 is used as the sensor used for detecting foreign matter has been described. As the sensor used for detecting foreign matter, various sensors such as a temperature sensor and an ultrasonic sensor may be used.
 実施の形態1では、移動体の状態等に基づくパラメータ値と電力供給装置220の動作状態に基づくパラメータ値とのうち小さい方のパラメータ値に、特定部位の温度に基づくパラメータ値が加算された値が、新たなパラメータ値として決定される例について説明した。パラメータ値の決定方法は、この例に限定されない。例えば、移動体の状態等と電力供給装置220の動作状態と特定部位の温度との組み合わせ毎にパラメータ値が用意されてもよい。また、移動体の状態等に基づくパラメータ値と電力供給装置220の動作状態に基づくパラメータ値と特定部位の温度に基づくパラメータ値とのうち最も小さいパラメータ値が、新たなパラメータ値として決定されてもよい。 In the first embodiment, the smaller of the parameter value based on the state of the moving body and the parameter value based on the operating state of the power supply device 220 is added to the parameter value based on the temperature of the specific part. Has described an example of being determined as a new parameter value. The method of determining the parameter value is not limited to this example. For example, a parameter value may be prepared for each combination of the state of the moving body and the like, the operating state of the power supply device 220, and the temperature of the specific portion. Further, even if the smallest parameter value among the parameter value based on the state of the moving body, the parameter value based on the operating state of the power supply device 220, and the parameter value based on the temperature of the specific part is determined as a new parameter value. good.
 また、実施の形態1では、移動体の状態等と、電力供給装置220の動作状態と、特定部位の温度との3つの要素のそれぞれについて、パラメータ値が変更される例について説明した。これらの要素のうち2つの要素についてパラメータ値が変更されてもよいし、これらの要素のうち1つの要素についてパラメータ値が変更されてもよい。 Further, in the first embodiment, an example in which the parameter value is changed for each of the three elements of the state of the moving body, the operating state of the power supply device 220, and the temperature of the specific part has been described. The parameter value may be changed for two of these elements, or the parameter value may be changed for one of these elements.
 実施の形態1では、送電装置200が、移動体状態情報、高さ情報、動作状態情報、温度情報等の各種の情報を取得し、異物検出装置100が送電装置200から各種の情報を取得する例について説明した。異物検出装置100が送電装置200以外の装置から各種の情報を取得してもよい。例えば、異物検出装置100内に温度センサ260が設けられ、異物検出装置100が温度センサ260から温度情報を取得してもよい。また、異物検出装置100が、通信装置600から移動体状態情報と高さ情報とを取得してもよい。また、異物検出装置100又は送電装置200が、通信装置600以外の装置から移動体状態情報と高さ情報とを取得してもよい。例えば、異物検出装置100又は送電装置200が、給電設備に設置された撮像装置から移動体状態情報を取得し、給電設備に設置された近接センサから高さ情報を取得してもよい。 In the first embodiment, the power transmission device 200 acquires various information such as moving body state information, height information, operating state information, temperature information, and the foreign matter detection device 100 acquires various information from the power transmission device 200. An example was explained. The foreign matter detection device 100 may acquire various information from a device other than the power transmission device 200. For example, a temperature sensor 260 may be provided in the foreign matter detection device 100, and the foreign matter detection device 100 may acquire temperature information from the temperature sensor 260. Further, the foreign body detecting device 100 may acquire the moving body state information and the height information from the communication device 600. Further, the foreign body detection device 100 or the power transmission device 200 may acquire the moving body state information and the height information from a device other than the communication device 600. For example, the foreign matter detection device 100 or the power transmission device 200 may acquire the moving body state information from the image pickup device installed in the power supply equipment and the height information from the proximity sensor installed in the power supply equipment.
 実施の形態1では、移動体の移動速度が中速又は低速である場合、受電コイル311の設置高さが考慮されない例について説明した。移動体の移動速度が中速又は低速である場合においても、移動体の移動速度が高速である場合と同様に、受電コイル311の設置高さが考慮されてもよい。 In the first embodiment, when the moving speed of the moving body is medium speed or low speed, an example in which the installation height of the power receiving coil 311 is not taken into consideration has been described. Even when the moving speed of the moving body is medium or low, the installation height of the power receiving coil 311 may be taken into consideration as in the case where the moving speed of the moving body is high.
 実施の形態1では、1つのセンサコイル120の出力値が取得される取得周期と、パラメータ値が変更される変更周期とが同じである例について説明した。変更周期は、取得周期よりも長くてもよい。また、移動体の状態、電力供給装置220の動作状態、特定部位の温度等が変化したことが検知されたときに、パラメータ値が変更されてもよい。 In the first embodiment, an example has been described in which the acquisition cycle in which the output value of one sensor coil 120 is acquired and the change cycle in which the parameter value is changed are the same. The change cycle may be longer than the acquisition cycle. Further, the parameter value may be changed when it is detected that the state of the moving body, the operating state of the power supply device 220, the temperature of the specific portion, or the like has changed.
 実施の形態1では、温度情報取得部189により温度が測定される特定部位が、異物検出装置100が組み込まれた送電装置200の一部である例について説明した。例えば、異物検出装置100が受電装置300に組み込まれている場合、特定部位が、異物検出装置100が組み込まれた受電装置300の一部であってもよい。つまり、特定部位は、異物検出装置100、送電装置200、受電装置300の何れかの一部であることが好適である。 In the first embodiment, an example in which the specific portion where the temperature is measured by the temperature information acquisition unit 189 is a part of the power transmission device 200 in which the foreign matter detection device 100 is incorporated has been described. For example, when the foreign matter detecting device 100 is incorporated in the power receiving device 300, the specific portion may be a part of the power receiving device 300 in which the foreign matter detecting device 100 is incorporated. That is, it is preferable that the specific portion is a part of any one of the foreign matter detection device 100, the power transmission device 200, and the power receiving device 300.
 本開示に係る異物検出装置100の動作を規定する動作プログラムを既存のパーソナルコンピュータ又は情報端末装置等のコンピュータに適用することで、当該コンピュータを、本開示に係る異物検出装置100として機能させることも可能である。また、このようなプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk ROM)、DVD(Digital Versatile Disk)、MO(Magneto Optical Disk)、又は、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネット等の通信ネットワークを介して配布してもよい。 By applying an operation program that regulates the operation of the foreign matter detection device 100 according to the present disclosure to a computer such as an existing personal computer or an information terminal device, the computer can be made to function as the foreign matter detection device 100 according to the present disclosure. It is possible. Further, the distribution method of such a program is arbitrary, and for example, a computer-readable recording such as a CD-ROM (CompactDiskROM), a DVD (DigitalVersatileDisk), an MO (MagnetoOpticalDisk), or a memory card. It may be stored in a medium and distributed, or may be distributed via a communication network such as the Internet.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして特許請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 The present disclosure allows for various embodiments and variations without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining the present disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is shown not by the embodiment but by the scope of claims. And various modifications made within the scope of the claims and within the scope of the equivalent disclosure are considered to be within the scope of the present disclosure.
10 異物
100 異物検出装置
110 検出コイルユニット
120,120A,120B,120C,120D,120E,120F,120G,120H,120I,120J,120K,120L センサコイル
130 検出コイル基板
131 キャパシタ
132,133 スイッチ
140 パルス発生部
150,230 記憶部
160,240 第1通信部
170,250 第2通信部
180 検出部
181 パルス制御部
182 スイッチ制御部
183 出力値取得部
184 通知部
185 送電制御部
186,273 移動体状態取得部
187,274 高さ情報取得部
188,272 動作状態取得部
189,277 温度情報取得部
200 送電装置
210 送電コイルユニット
211 送電コイル
220 電力供給装置
260 温度センサ
270 制御部
271 送電制御部
275 制御情報受信部
276 情報転送部
300 受電装置
310 受電コイルユニット
311 受電コイル
312 磁性体板
320 整流回路
400 商用電源
500 蓄電池
600 通信装置
700 電気自動車
800 端末装置
1000 電力伝送システム
10 Foreign matter 100 Foreign matter detection device 110 Detection coil unit 120, 120A, 120B, 120C, 120D, 120E, 120F, 120G, 120H, 120I, 120J, 120K, 120L Sensor coil 130 Detection coil board 131 Capsule 132, 133 Switch 140 Pulse generation Unit 150, 230 Storage unit 160, 240 1st communication unit 170, 250 2nd communication unit 180 Detection unit 181 Pulse control unit 182 Switch control unit 183 Output value acquisition unit 184 Notification unit 185 Transmission control unit 186, 273 Moving object status acquisition Unit 187,274 Height information acquisition unit 188,272 Operation status acquisition unit 189,277 Temperature information acquisition unit 200 Transmission coil unit 211 Transmission coil unit 211 Transmission coil 220 Power supply device 260 Temperature sensor 270 Control unit 271 Transmission control unit 275 Control information Receiver 276 Information transfer unit 300 Power receiving device 310 Power receiving coil unit 311 Power receiving coil 312 Magnetic plate 320 Rectifier circuit 400 Commercial power supply 500 Storage battery 600 Communication device 700 Electric vehicle 800 Terminal device 1000 Power transmission system

Claims (16)

  1.  センサと、
     前記センサの出力値と、閾値との比較結果に基づいて、異物の有無を判別する検出部と、を備え、
     前記検出部は、前記出力値と前記閾値の補正に用いる補正パラメータの値であるパラメータ値とに基づいて前記閾値を補正する閾値補正処理を実行する、
     異物検出装置。
    With the sensor
    A detection unit for determining the presence or absence of a foreign substance based on the comparison result between the output value of the sensor and the threshold value is provided.
    The detection unit executes a threshold value correction process for correcting the threshold value based on the output value and the parameter value which is the value of the correction parameter used for the correction of the threshold value.
    Foreign matter detector.
  2.  送電コイルを備える送電装置からワイヤレスで受電する受電装置を搭載する移動体の位置と前記移動体の移動状態とを含む前記移動体の状態を示す移動体状態情報を取得する移動体状態取得部を更に備え、
     前記検出部は、前記移動体状態取得部が取得した前記移動体状態情報が示す前記移動体の状態に応じて、前記パラメータ値を変更する、
     請求項1に記載の異物検出装置。
    A moving body state acquisition unit that acquires moving body state information indicating the state of the moving body including the position of the moving body equipped with the power receiving device that wirelessly receives power from the power transmitting device provided with the power transmission coil and the moving state of the moving body. Further preparation,
    The detection unit changes the parameter value according to the state of the moving body indicated by the moving body state information acquired by the moving body state acquisition unit.
    The foreign matter detection device according to claim 1.
  3.  前記検出部は、前記移動体状態情報が示す前記移動体の状態が、前記移動体の位置が基準領域内であり、前記移動体の移動状態が移動中状態である第1状態に変化した場合、前記パラメータ値を変更する、
     請求項2に記載の異物検出装置。
    The detection unit changes the state of the moving body indicated by the moving body state information to the first state in which the position of the moving body is within the reference region and the moving state of the moving body is in the moving state. , Change the parameter value,
    The foreign matter detection device according to claim 2.
  4.  前記検出部は、前記移動体状態情報が示す前記移動体の状態が前記第1状態である場合、前記移動体の移動速度に応じて、前記パラメータ値を変更する、
     請求項3に記載の異物検出装置。
    When the state of the moving body indicated by the moving body state information is the first state, the detection unit changes the parameter value according to the moving speed of the moving body.
    The foreign matter detection device according to claim 3.
  5.  前記受電装置が備える受電コイルの設置高さを示す高さ情報を取得する高さ情報取得部を更に備え、
     前記検出部は、前記移動体状態情報が示す前記移動体の状態が前記第1状態である場合、前記高さ情報取得部が取得した前記高さ情報が示す前記受電コイルの設置高さに応じて、前記パラメータ値を変更する、
     請求項3又は4に記載の異物検出装置。
    Further, a height information acquisition unit for acquiring height information indicating the installation height of the power receiving coil provided in the power receiving device is provided.
    When the state of the moving body indicated by the moving body state information is the first state, the detection unit responds to the installation height of the power receiving coil indicated by the height information acquired by the height information acquisition unit. To change the parameter value,
    The foreign matter detection device according to claim 3 or 4.
  6.  前記検出部は、前記閾値補正処理を実行する前に、前記移動体状態情報が示す前記移動体の状態に基づいて、前記閾値を変更する、
     請求項2から5の何れか1項に記載の異物検出装置。
    The detection unit changes the threshold value based on the state of the moving body indicated by the moving body state information before executing the threshold value correction process.
    The foreign matter detection device according to any one of claims 2 to 5.
  7.  受電コイルを備える受電装置にワイヤレスで送電する送電装置が備える送電コイルに交流電力を供給する電力供給装置の動作状態を示す動作状態情報を取得する動作状態取得部を更に備え、
     前記検出部は、前記動作状態取得部が取得した前記動作状態情報が示す前記電力供給装置の動作状態に応じて、前記パラメータ値を変更する、
     請求項1から6の何れか1項に記載の異物検出装置。
    It is further equipped with an operating state acquisition unit that acquires operating state information indicating the operating state of the power supply device that supplies AC power to the power transmitting coil of the power transmitting device that wirelessly transmits power to the power receiving device equipped with the power receiving coil.
    The detection unit changes the parameter value according to the operation state of the power supply device indicated by the operation state information acquired by the operation state acquisition unit.
    The foreign matter detection device according to any one of claims 1 to 6.
  8.  前記検出部は、前記電力供給装置から前記送電コイルに供給される前記交流電力の大きさの単位時間あたりの変化量に応じて、前記パラメータ値を変更する、
     請求項7に記載の異物検出装置。
    The detection unit changes the parameter value according to the amount of change in the magnitude of the AC power supplied from the power supply device to the power transmission coil per unit time.
    The foreign matter detection device according to claim 7.
  9.  前記検出部は、前記閾値補正処理を実行する前に、前記動作状態情報が示す前記電力供給装置の動作状態に基づいて、前記閾値を変更する、
     請求項7又は8に記載の異物検出装置。
    The detection unit changes the threshold value based on the operating state of the power supply device indicated by the operating state information before executing the threshold value correction process.
    The foreign matter detecting device according to claim 7 or 8.
  10.  特定部位の温度を示す温度情報を取得する温度情報取得部を更に備え、
     前記検出部は、前記温度情報取得部が取得した前記温度情報が示す前記特定部位の温度又は前記特定部位の温度の変動量に応じて、前記パラメータ値を変更する、
     請求項1から9の何れか1項に記載の異物検出装置。
    Further equipped with a temperature information acquisition unit that acquires temperature information indicating the temperature of a specific part,
    The detection unit changes the parameter value according to the temperature of the specific portion or the fluctuation amount of the temperature of the specific portion indicated by the temperature information acquired by the temperature information acquisition unit.
    The foreign matter detection device according to any one of claims 1 to 9.
  11.  前記補正パラメータは、前記出力値の移動平均を求めるときに用いる前記出力値の個数であり、
     前記検出部は、前記閾値補正処理において、直近に取得した、前記パラメータ値が示す個数分の前記出力値の移動平均の値を用いて、前記閾値を補正する、
     請求項1から10の何れか1項に記載の異物検出装置。
    The correction parameter is the number of the output values used when obtaining the moving average of the output values.
    The detection unit corrects the threshold value by using the moving average value of the output value corresponding to the number indicated by the parameter value, which was acquired most recently in the threshold value correction process.
    The foreign matter detection device according to any one of claims 1 to 10.
  12.  前記補正パラメータは、前記出力値に対して重み付けをするときに用いる重み係数であり、
     前記検出部は、前記閾値補正処理において、直近に取得した前記出力値に対して前記パラメータ値が示す重み係数を乗算した値を用いて、前記閾値を補正する、
     請求項1から11の何れか1項に記載の異物検出装置。
    The correction parameter is a weighting coefficient used when weighting the output value.
    In the threshold value correction process, the detection unit corrects the threshold value by using a value obtained by multiplying the most recently acquired output value by a weighting coefficient indicated by the parameter value.
    The foreign matter detection device according to any one of claims 1 to 11.
  13.  請求項1から12の何れか1項に記載の異物検出装置と、
     導線が巻回されて構成される送電コイルと、
     前記送電コイルに交流電力を供給する電力供給装置と、を備える、
     送電装置。
    The foreign matter detection device according to any one of claims 1 to 12, and the foreign matter detection device.
    A power transmission coil composed of wound conductors and
    A power supply device for supplying AC power to the power transmission coil is provided.
    Power transmission device.
  14.  請求項1から12の何れか1項に記載の異物検出装置と、
     導線が巻回されて構成される受電コイルと、
     前記受電コイルが受電した交流電力を整流する整流回路と、を備える、
     受電装置。
    The foreign matter detection device according to any one of claims 1 to 12, and the foreign matter detection device.
    A power receiving coil composed of wound conductors and
    A rectifier circuit for rectifying the AC power received by the power receiving coil is provided.
    Power receiving device.
  15.  請求項13に記載の送電装置と、
     前記送電装置から受電する受電装置と、を備える、
     電力伝送システム。
    The power transmission device according to claim 13 and
    A power receiving device that receives power from the power transmitting device, and the like.
    Power transmission system.
  16.  請求項14に記載の受電装置と、
     前記受電装置に送電する送電装置と、を備える、
     電力伝送システム。
    The power receiving device according to claim 14,
    A power transmission device for transmitting power to the power receiving device, and the like.
    Power transmission system.
PCT/JP2020/049176 2020-12-28 2020-12-28 Foreign matter detection device, power transmission device, power reception device, and power transmission system WO2022144994A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049176 WO2022144994A1 (en) 2020-12-28 2020-12-28 Foreign matter detection device, power transmission device, power reception device, and power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049176 WO2022144994A1 (en) 2020-12-28 2020-12-28 Foreign matter detection device, power transmission device, power reception device, and power transmission system

Publications (1)

Publication Number Publication Date
WO2022144994A1 true WO2022144994A1 (en) 2022-07-07

Family

ID=82259146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049176 WO2022144994A1 (en) 2020-12-28 2020-12-28 Foreign matter detection device, power transmission device, power reception device, and power transmission system

Country Status (1)

Country Link
WO (1) WO2022144994A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577788A (en) * 2023-07-12 2023-08-11 南方电网数字电网研究院有限公司 Power transmission line foreign matter intrusion monitoring method, device and computer equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059236A (en) * 2011-09-09 2013-03-28 Sony Corp Detection device, power reception device, power transmission device, non-contact power transmission system, and detection method
JP2015008549A (en) * 2011-10-28 2015-01-15 パナソニック株式会社 Non-contact power transmission device
JP2015164368A (en) * 2014-02-28 2015-09-10 株式会社東芝 Foreign substance detection device, power transmission device, power reception device and wireless power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059236A (en) * 2011-09-09 2013-03-28 Sony Corp Detection device, power reception device, power transmission device, non-contact power transmission system, and detection method
JP2015008549A (en) * 2011-10-28 2015-01-15 パナソニック株式会社 Non-contact power transmission device
JP2015164368A (en) * 2014-02-28 2015-09-10 株式会社東芝 Foreign substance detection device, power transmission device, power reception device and wireless power transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577788A (en) * 2023-07-12 2023-08-11 南方电网数字电网研究院有限公司 Power transmission line foreign matter intrusion monitoring method, device and computer equipment
CN116577788B (en) * 2023-07-12 2024-01-23 南方电网数字电网研究院有限公司 Power transmission line foreign matter intrusion monitoring method, device and computer equipment

Similar Documents

Publication Publication Date Title
US11618327B2 (en) Wireless power transmission device for vehicle and wireless charging method
US20070139000A1 (en) System, apparatus and method for supplying electric power, apparatus and method for receiving electric power, storage medium and program
JP2017034972A (en) Foreign matter detection device, radio power transmission device and radio power transmission system
CN109874361B (en) Wireless power receiver and method for controlling wireless power receiver
JP5405694B1 (en) Power transmission device, electronic device and wireless power transmission system
KR20160051502A (en) Wireless power transmission and charging system
KR101933461B1 (en) Wireless power transmitter and method for controlling thereof and method for compensating load of wireless power transmitter for temperature
KR20150107281A (en) Wireless apparatus and method for transmitting power
JP2014007863A (en) Power supply device, control method, and program
WO2022144994A1 (en) Foreign matter detection device, power transmission device, power reception device, and power transmission system
EP3512073A1 (en) Wireless electrical charging system with object detection circuitry and method of operating same
TW201729511A (en) Method for operating a monitoring apparatus for monitoring an inductive energy transmission apparatus
US20150372529A1 (en) Power loss detection for wireless charging
EP2902252B1 (en) Non-contact electric power transmission system and charging station
WO2022157835A1 (en) Power transmission device and power transmission system
WO2016067528A1 (en) Battery-embedded device
US20220037932A1 (en) Foreign substance detection device, electric power transmission device, electric power reception device, and electric power transmission system
US11616405B2 (en) Object detection apparatus, power transmission apparatus, and power transmission system
JP2019106850A (en) Non-contact power reception device and non-contact power transmission device
JP2022025654A (en) Foreign substance detection device, power transmission device, power reception device, and power transmission system
US10394198B2 (en) Transmitter and method for providing inductive wireless energy transmission
JP2016208602A (en) Non-contact power transmission device
JP2017127065A (en) Power transmission apparatus and power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20968007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20968007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP