WO2022143767A1 - Handheld gimbal control method and handheld gimbal - Google Patents

Handheld gimbal control method and handheld gimbal Download PDF

Info

Publication number
WO2022143767A1
WO2022143767A1 PCT/CN2021/142458 CN2021142458W WO2022143767A1 WO 2022143767 A1 WO2022143767 A1 WO 2022143767A1 CN 2021142458 W CN2021142458 W CN 2021142458W WO 2022143767 A1 WO2022143767 A1 WO 2022143767A1
Authority
WO
WIPO (PCT)
Prior art keywords
handheld gimbal
payload
axis
handle assembly
component
Prior art date
Application number
PCT/CN2021/142458
Other languages
French (fr)
Inventor
Xiang Xiao
Original Assignee
SZ DJI Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co., Ltd. filed Critical SZ DJI Technology Co., Ltd.
Publication of WO2022143767A1 publication Critical patent/WO2022143767A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • F16M11/105Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis the horizontal axis being the roll axis, e.g. for creating a landscape-portrait rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2064Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for tilting and panning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/563Camera grips, handles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • F16M2200/042Balancing means for balancing rotational movement of the head for panning movement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects

Definitions

  • the present disclosure relates to gimbal technologies and, more particularly, to a gimbal control method and a gimbal.
  • a handheld or portable gimbal can be small and easy to carry.
  • An imaging device such as a camcorder, a camera, or a smartphone can be mounted on the gimbal.
  • the gimbal can stably maintain the imaging device at an attitude, improving the imaging quality.
  • the handle of existing gimbals is generally designed as a fixed structure, which may cause difficulty for handling and storing the gimbals.
  • a handheld gimbal in one aspect of the disclosure, includes a body and a handle assembly coupled to the body.
  • the body includes one or more axis assemblies and a support platform configured to support a payload.
  • the one or more axis assemblies includes a rotary motor configured to move the support platform about an axis.
  • the rotary motor has an opening configured to accommodate at least one portion of a lens of the payload.
  • a method for moving a payload includes providing a gimbal assembly.
  • the gimbal assembly includes a rotary motor configured to move a support platform rigidly connected to the payload about an axis.
  • the rotary motor has an opening configured to accommodate at least one portion of a lens of the payload.
  • the method also includes controlling, by a processor of the gimbal assembly, the rotary motor to move the support platform to a particular position based on a control signal.
  • a non-transitory computer-readable medium store instructions that, when executed by at least one processor, cause a computing device to perform a process for controlling handheld gimbal.
  • the process includes determining a state of a handle assembly of the handheld gimbal.
  • the handheld gimbal includes one or more axis assemblies and a support platform configured to support a payload.
  • the one or more axis assemblies includes a rotary motor configured to move the support platform about an axis.
  • the rotary motor has an opening configured to accommodate at least one portion of a lens of the payload.
  • the process also includes controlling the one or more axis assemblies to move the support platform to a particular position based on the determined state of the handle assembly.
  • FIG. 1A is a schematic illustration of a front perspective view of an exemplary handheld gimbal, consistent with disclosed embodiments.
  • FIG. 1B is a schematic illustration of a back perspective view of an exemplary handheld gimbal, consistent with disclosed embodiments.
  • FIG. 2 is a schematic illustration of a side perspective view of an exemplary handheld gimbal, consistent with disclosed embodiments.
  • FIG. 3 is a schematic illustration of a front perspective view of an exemplary handheld gimbal in a portrait mode, consistent with disclosed embodiments.
  • FIG. 4 is a schematic illustration of a back perspective view of an exemplary handheld gimbal in an underslung mode, consistent with disclosed embodiments.
  • FIG. 5 is a schematic illustration of a back perspective view of an exemplary handheld gimbal having a handle assembly in an extended configuration, consistent with disclosed embodiments.
  • FIG. 6 is a schematic illustration of a back perspective view of an exemplary handheld gimbal having a handle assembly in an extended configuration, consistent with disclosed embodiments.
  • FIG. 7 is a block diagram illustrating an exemplary handheld gimbal, consistent with disclosed embodiments.
  • FIG. 8 is a flow chart of an exemplary process for controlling a handheld gimbal, consistent with disclosed embodiments.
  • FIG. 9 is a schematic diagram illustrating an exemplary imaging system, consistent with disclosed embodiments.
  • FIG. 10 is a schematic diagram illustrating an exemplary handheld gimbal shown in FIG. 9, consistent with disclosed embodiments.
  • FIG. 11 is a schematic diagram illustrating an exemplary stabilization mechanism shown in FIG. 10 detached from a transmission assembly, consistent with disclosed embodiments.
  • FIG. 12 is a schematic diagram illustrating the stabilization mechanism shown in FIG. 12, consistent with disclosed embodiments.
  • FIG. 13 is an exploded view of the stabilization mechanism shown in FIG. 10, consistent with disclosed embodiments.
  • FIG. 14 is a schematic diagram illustrating exemplary guiding component and first transmission component, consistent with disclosed embodiments.
  • FIG. 15 is a schematic diagram illustrating an alternative configuration of the exemplary guiding component and first transmission component, consistent with disclosed embodiments.
  • FIG. 16 is a schematic diagram further illustrating the exemplary stabilization mechanism, consistent with disclosed embodiments.
  • FIG. 17 is a schematic diagram further illustrating the exemplary stabilization mechanism, consistent with disclosed embodiments.
  • FIG. 18 is a partial schematic diagram illustrating the stabilization mechanism shown in FIG. 17, consistent with disclosed embodiments.
  • FIG. 19 is a schematic diagram illustrating transmission components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
  • FIG. 20 is a schematic diagram illustrating an alternative configuration of transmission components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
  • FIG. 21 is a schematic diagram illustrating an alternative configuration of transmission components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
  • FIG. 22 is a schematic diagram illustrating an alternative configuration of transmission components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
  • FIG. 23 is a schematic diagram illustrating components of the exemplary stabilization mechanism and a connecting structure shown in FIG. 10, consistent with disclosed embodiments.
  • FIG. 24 is a schematic diagram illustrating components of an exemplary stabilization mechanism, consistent with disclosed embodiments.
  • FIG. 25 is a schematic diagram illustrating the imaging system shown in FIG. 9 in a first mode, consistent with disclosed embodiments.
  • FIG. 26 is a schematic diagram illustrating another scenario of using the imaging system shown in FIG. 9 in the first mode, consistent with disclosed embodiments.
  • FIG. 27 is a schematic structural diagram illustrating the imaging system shown in FIG. 9 in a second mode, consistent with disclosed embodiments.
  • FIG. 28 is a schematic diagram illustrating components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
  • Pitch angle, yaw angle, and roll angle may be used to express the relationship between the coordinate system of a camera of a shooting device and the coordinate system of the ground, based on an attitude angle and/or the Euler Angle principle.
  • the relationship may reflect the attitude of the camera relative to the ground, and a three-axis coordinate system can be established, such as (the X-Y-Z axes coordinate system) .
  • a traditional stabilization device based on the above-mentioned principle can compensate for camera shake in three rotation axis directions of a pitch axis, a yaw axis and a roll axis, so as to achieve imaging stabilization.
  • the stabilization device may include a pitch axis stabilization mechanism, a yaw axis stabilization mechanism and a roll axis stabilization mechanism.
  • the pitch axis stabilization mechanism may be used to adjust the pitch angle of the camera, so that the camera can rotate around the X axis
  • the yaw axis stabilization mechanism is used to adjust the yaw angle of the camera, so that the camera can rotate around the Y axis
  • the roll axis stabilization mechanism is used to adjust the roll angle (Roll) of the camera, so that the camera can rotate around the Z axis.
  • Existing stabilization devices can only perform shake compensation for camera devices with small and plate-shaped lenses such as mobile phones and tablet computers to achieve stabilization, but it may be difficult to provide stabilization for cameras with larger lenses. Therefore, a new design may be desirable to achieve the stabilization of a camera with a larger lens size. Additionally, parts of existing stabilization devices may block the viewfinder and/or the display of the camera at certain angles, and under such circumstances, the user may not be able to view what the camera captures in real time. To solve this problem, a user may use an external monitor to view what the camera is capturing. This solution, however, not only increases the cost, but also causes more inconvenience.
  • This disclosure provides systems and methods for driving a camera to move along one or more axes.
  • one or more parts of the camera may have a small motion range when the camera moves (e.g., rolling) .
  • the stabilization device when used, the user can view the live image through the viewfinder or display of the camera.
  • this disclosure provides novel gimbal systems having a configurable handle assembly and methods for controlling the same.
  • the gimbal systems described herein improve a grip by a user, making shooting more natural and labor-saving
  • the disclosed gimbal systems have improved designs for connecting to and releasing a payload (e.g., a camera) from the gimbal systems, which makes the connection and disconnection faster and more convenient.
  • the disclosed gimbal systems have various configurations for a variety of shooting scenarios to allow quick switches between different shooting modes (e.g., switching from a landscape mode to a portrait mode) .
  • FIG. 1A is a schematic illustration of a front perspective view of an exemplary handheld gimbal 100
  • FIG. 1B is a schematic illustration of a back perspective view of handheld gimbal 100, consistent with disclosed embodiments.
  • handheld gimbal 100 includes a body 110 and a handle assembly 120.
  • Body 110 includes a support platform 119 (partially blocked in FIG. 1A, but shown in FIG. 1 B) configured to support a payload 130 (e.g., a photographic device) , which may be rigidly connected to support platform 119.
  • Body 110 may include one or more axis assemblies. For example, as illustrated in FIG.
  • body 110 includes a roll axis assembly 111, a yaw axis assembly 114, and a pitch axis assembly 117.
  • One or more axis assemblies may be configured to move support platform 119 (and payload 130) .
  • Support platform 119 may be rigidly connected to one of the axis assemblies or to a rigid structure that is connected to one of the axis assemblies.
  • support platform 119 is connected to roll axis assembly 111, which may include a rotary motor configured to rotate support platform 119 about a roll axis based on one or more control signals received from a processor of handheld gimbal100 (e.g., processor 701 illustrated in FIG. 7) .
  • Support platform 119 may be connected to the rotary motor or a rigid structure that is connected to the rotary motor.
  • Yaw axis assembly 1 14 may be configured to rotate support platform 119 (and payload 130) about a yaw axis
  • pitch axis assembly 117 may be configured to rotate support platform 119 (and payload 130) about a pitch axis.
  • roll axis assembly 111 is connected to yaw axis assembly 114, which is connected to pitch axis assembly 117.
  • yaw axis assembly 114 includes a yaw arm 114B and a yaw motor 114A configured to rotate yaw arm 114B about the yaw axis based on one or more control signals received from a processor of handheld gimbal 100 (e.g., processor 701 illustrated in FIG. 7) .
  • yaw motor 114A rotates to a target yaw angle based on a control signal received from the processor, thereby rotating yaw arm 114B to the target yaw angle.
  • yaw motor 114A indirectly drives yaw arm 114B via, for example, a gear coupling yaw motor 114A and yaw arm 114B.
  • Yaw arm 114B is connected to roll axis assembly 111 (e.g., via a non-moving part of roll axis assembly 111) .
  • Pitch axis assembly 117 includes a pitch arm 117B and a pitch motor 117A configured to rotate pitch arm 117B about the pitch axis based on one or more control signals received from a processor of handheld gimbal 100 (e.g., processor 701 illustrated in FIG. 7) .
  • pitch motor 117A rotates to a target pitch angle based on a control signal received from the processor, thereby rotating pitch arm 117B to the target pitch angle.
  • pitch motor 117A indirectly drives yaw arm 114B via, for example, a gear coupling pitch motor 117A and yaw arm 114B.
  • Yaw arm 114B is connected to roll axis assembly 111 (e.g., via a non-moving part of roll axis assembly 111 ) .
  • Pitch arm 117B is connected to yaw axis assembly 114 (e.g., via a non-moving part of yaw axis assembly 114) .
  • Pitch axis assembly 117 may also be connected to handle assembly 120 (via, for example, first part 121 of handle assembly 120 as illustrated in FIG. 1A) .
  • handle assembly 120 may include a plurality of parts, e.g., first part 121, second part 122, third part 123, and fourth part 124, which may form different configurations.
  • first part 121, second part 122, third part 123, and fourth part 124 may form a U shape illustrated in FIG. 1A, and the user may hold first part 121 using one hand and hold fourth part 124 using the other hand.
  • payload 130 can capture images in the landscape mode.
  • first part 121 and second part 122 may be one piece having an L shape, which may be connected to pitch axis assembly 117 at one end and be connected to third part 123 at the other end.
  • payload 130 includes a body 131 and a lens 132.
  • Roll axis assembly 111 includes an opening configured to accommodate at least one portion of lens 132.
  • roll axis assembly 111 includes a rotary motor having a ring-like opening, and lens 132 can be inserted in the opening.
  • lens 132 does not contact the opening.
  • support platform 119 may be connected to body 131 of payload 130 (via, e.g., a quick-release plate mounted on the bottom of payload 130) and provide full support to payload 130.
  • At least one portion of lens 132 is supported by a rigid structure connected to a movable component of the rotary motor (e.g., a motor rotor 212 illustrated in FIG. 2) and/or support platform 119, which provides at least some support to payload 130.
  • support platform 119 may be rigidly connected to at least a portion of lens 132 instead of being connected to body 131.
  • payload 130 in various figures is shown as a camera, one skilled in the art will now understand that payload 130 may include a camera, a camcorder, a mobile phone, a Light Detection and Ranging (LiDAR) scanner, a laser meter, or the like, or a combination thereof.
  • LiDAR Light Detection and Ranging
  • FIG. 2 is a schematic illustration of a side perspective view of handheld gimbal 100.
  • payload 130 may be connected to support platform 119.
  • support platform 119 includes a connector 230, one end of which is rigidly connected to the bottom of body 131 of payload 130.
  • connector 230 may include a 1/4 inch screw configured to be inserted into an internally threaded bore having 1/4 inches threads in the bottom of body 131.
  • connector 230 may include a rail configured to receive a plate (e.g., a quick-release plate) mounted to the bottom of body 131, and the user may slide the plate into the rail of connector 230.
  • a plate e.g., a quick-release plate
  • connector 230 may include a magnetic component configured to magnetically couple to a component (e.g., a plate or a disc) mounted to body 131, thereby firmly attaching payload 130 to support platform 119.
  • connector 230 also includes a locking mechanism for locking body 131 to support platform 119.
  • support platform 119 includes a leveling mechanism configured to adjust the balance of payload 130 on handheld gimbal 100 when payload 130 is mounted on support platform 119.
  • the center of gravity of payload 130 may not be aligned with the center of gravity of handheld gimbal 100, and payload 130 may be tilted.
  • the user and/or handheld gimbal 100 may adjust the balance of handheld gimbal 100 using the leveling mechanism.
  • support platform 119 includes a guide rail along the direction perpendicular to the pointing direction of lens 132.
  • Support platform 119 also includes a leveling block 240 (shown in FIG. 2) configured to slide along the guide rail. The user may slide leveling block 240 along with the rail to balance handheld gimbal 100.
  • handheld gimbal 100 includes roll axis assembly 111 configured to move support platform 119 about the roll axis.
  • roll axis assembly 111 includes a rotary motor 210 as illustrated in FIG. 2.
  • Rotary motor 210 includes a motor stator 211 and a motor rotor 212.
  • Motor stator 211 is not movable, while motor rotor 212 is rotatable with respect to motor stator 211 about the roll axis.
  • motor rotor 212 is rotatable in the range of 0 to 360 degrees (i.e., a full circle) .
  • motor rotor 212 is rotatable in a range less than a full circle (e.g., 0 to 270 degrees, 0 to 180 degrees, 0 to 90 degrees) .
  • support platform 119 is rigidly connected to motor rotor 212 (or a rigid structure connected to motor rotor 212) such that support platform 119 (and payload 130) rotates about the roll axis when motor rotor 212 rotates.
  • Lens 132 may also be rotatable about the roll axis with at least a portion thereof inside the opening of rotary motor 210.
  • Motor stator 211 is rigidly connected to yaw arm 114A, which is coupled to yaw axis motor 114B.
  • yaw axis motor 114B rotates about the yaw axis
  • yaw arm 114A rotates therewith, thereby moving roll axis assembly 111 (and support platform 119 and payload 130) about the yaw axis.
  • handheld gimbal 100 is configured to move payload 130 to a particular position (and/or a particular orientation) based on one or more control signals.
  • handheld gimbal 100 may be in the state illustrated in FIG. 1A, in which payload 130 is configured to capture images in the landscape mode.
  • Handle assembly 120 may receive user input (via, e.g., an input device 705 or a communications port 707 illustrated FIG. 7) to change to the portrait mode.
  • a processor of handle assembly 120 e.g., processor 701 illustrated in FIG. 7) is configured to generate a control signal for controlling roll axis assembly 111 to rotate 90 degrees about the roll axis.
  • payload 130 rotates 90 degrees about the roll axis to a state illustrated in FIG. 3 (which is a front perspective view of handheld gimbal 100 in a portrait mode) , in which payload 130 is configured to capture images in the portrait mode.
  • handle assembly 120 (and/or handheld gimbal 100) includes various states, and handle assembly 120 may detect a current state and move payload 130 to a particular position (and/or a particular orientation) based on the detected state.
  • a position of payload 130 refers to the position relative to a fixed component of handheld gimbal 100 (e.g., first part 121 of handle assembly 120) .
  • An orientation of payload 130 refers to the shooting direction of payload 130.
  • a state of handle assembly 120 (and/or handheld gimbal 100) may include a particular orientation and/or configuration thereof. For example, handle assembly 120 is in the state illustrated in FIG. 1A, in which payload 130 is configured to capture images in the landscape mode.
  • the user may rotate handle assembly 120 counterclockwise by 90 degrees to the state illustrated in FIG. 4 (which is a schematic illustration of a back perspective view of handheld gimbal 100 in an underslung mode) , which is referred to herein as the underslung mode.
  • the user may lift and hold fourth part 124 using one hand.
  • the underslung mode may be used for application scenarios such as low angle shots (e.g., for low to ground scenes) .
  • the highest point of payload 130 is below at least one part of the handle assembly (e.g., fourth part 124) .
  • Handheld gimbal 100 may be configured to detect the current state and move payload 130 to a particular position (and/or a particular orientation) .
  • handle assembly 120 may include a sensor (e.g., an accelerometer and/or a gyroscope) configured to monitor the orientation of handle assembly 120 (or at least one part thereof) .
  • handle assembly 120 includes processor 701 configured to receive data from the sensor and determine the orientation of handle assembly.
  • Processor 701 may also be configured to control roll axis assembly 111 to rotate payload 130 about the roll axis such that payload 130 is horizontally oriented (or at a particular orientation) when handle assembly 120 has rotated 90 degrees.
  • the senor continuously monitors the orientation of handle assembly 120 (or at least one part thereof) , and processor 701 controls roll axis assembly 111 to rotate payload 130 continuously based on the monitored orientation of handle assembly 120 (or at least one part thereof) such that payload 130 remains horizontally oriented (or at a particular orientation) .
  • Handle assembly 120 may include a plurality of configurations.
  • handle assembly 120 includes a plurality of parts forming a U shape, and the user may hold first part 121 and fourth part 124.
  • the parts of handle assembly 120 may be configured to form other shapes.
  • the parts may include at least one part that is movable relative to another part.
  • third part 123 and fourth part 124 may be configured to move relative to first part 121 and second part 122.
  • handle assembly 120 may include a rotating mechanism coupling second part 122 and third part 123 so that second part 122 is rotatable relative to third part 123 about an axle of the rotating mechanism.
  • the rotating mechanism coupling second part 122 and third part 123 includes a hinge.
  • the user may rotate third part 123 with respect to second part 122 about the axle of the rotating mechanism.
  • handle assembly 120 may include a rotating mechanism coupling third part 123 and fourth part 124 to allow rotation of fourth part 124 with respect to third part 123.
  • the rotating mechanism coupling fourth part 124 and third part 123 includes a hinge.
  • third part 123 and second part 122 form a right angle
  • fourth part 124 and third part 123 form a straight line.
  • first part 121 is coupled to pitch axis assembly 117.
  • third part 123 is perpendicular (or substantially perpendicular) to at least one portion of first part 121, while in the configuration illustrated in FIG. 5, third part 123 is parallel (or substantially parallel) to first part 121 or at least one portion of first part 121.
  • fourth part 124 includes a connector configured to connect handle assembly 120 to an extension rod, a monopod, or a tripod.
  • first part 121 may include a receiving part 124A including an internally threaded bore (e.g., 1/4 inch threads) for accommodating a mounting component (e.g., a 1/4 inch screw) of an extension rod (or a monopod or a tripod or the like) .
  • FIG. 6 illustrates another exemplary configuration of handheld gimbal 100, consistent with disclosed embodiments.
  • the user may hold first part 121 with one hand and hold fourth part 124 (or another part) with the other hand.
  • fourth part 124 is configured to rotate about an axle of a hinge coupling the fourth part 124 and third part 123 with respect to third part 123 in the range of 0 to 360 degrees.
  • first part 121 is at a position at which it forms a 45-degree angle with third part 123 (or second part 122 or first part 121) .
  • handle assembly 120 may include one or more locking mechanisms for locking one part with respect to another part.
  • handle assembly 120 may include a knob connected to the rotating mechanism coupling third part 123 and fourth part 124, configured so the user can tighten the knob to lock the position of fourth part 124 relative to third part 123.
  • handheld gimbal 100 illustrated in the figures has a pitch-yaw-roll configuration (in the order from the handle assembly to the payload)
  • a pitch-yaw-roll configuration in the order from the handle assembly to the payload
  • handheld gimbal 100 may have a yaw-pitch-roll configuration.
  • FIG. 7 is a block diagram illustrating handheld gimbal 100, consistent with some embodiments of the present disclosure.
  • handheld gimbal 100 includes at least one processor 701, a memory 702, one or more axis assemblies 703 (e.g., roll axis assembly 111, yaw axis assembly 114, pitch axis assembly 117) , one or more sensors 704, an input device 705, an output device 706, a communications port 707, and a power supply 708.
  • Processor 701 is configured to perform the functions of handheld gimbal 100 described herein.
  • processor 701 is configured to receive user input from, for example, input device 705 and control one or more axis assemblies to move payload 130 to a particular position (and/or a particular orientation) based on the user input.
  • processor 701 is configured to detect a state of handle assembly 120 based on data received from one or more of sensors 704 and control one or more axis assemblies to move payload 130 to a particular position (and/or a particular orientation) based on the detected state.
  • Memory 702 is configured to store data and/or instructions for other components of handheld gimbal 100.
  • memory 702 stores instructions for processor 701 to perform one or more functions described herein.
  • One or more axis assemblies 703 are configured to move payload 130 based on control signals received from processor 701.
  • roll axis assembly 111 e.g., including rotary motor 210) is configured to receive a control signal from processor 701 and, in response, rotate 90 degrees about the roll axis based on the control signal, thereby rotating payload 130 by 90 degrees about the roll axis.
  • payload 130 changes from the landscape mode (for capturing images in the landscape mode) to the portrait mode (for capturing images in the portrait mode) .
  • Sensors 704 comprise one or more sensors configured to monitor a state of handheld gimbal 100 and/or handle assembly 120.
  • a state may include an orientation and/or configuration.
  • handle assembly 120 may include a sensor provided as an accelerometer or a gyroscope configured to monitor the orientation of handle assembly 120.
  • a sensor provided as an accelerometer or a gyroscope may be disposed in first part 121 and configured to monitor the orientation of handle assembly 120.
  • the user may rotate handle assembly 120 to the state shown in FIG. 4 (an underslung mode) .
  • the sensor may be configured to detect the state change and transmit the data to processor 701.
  • Processor 701 may be configured to control rotary motor 210 to rotate by 90 degrees about the roll axis based on the detected state change.
  • handle assembly 120 includes a sensor configured to detect a configuration of handle assembly 120.
  • handle assembly 120 may include an angle sensor coupling second part 122 and third part 123 (e.g., disposed between second part 122 and third part 123) configured to monitor an angle between second part 122 and third part 123.
  • the angle sensor may be configured to detect a change of the angle from 0 degrees (as illustrated in FIG. 1A) to 90 degrees (as illustrated in FIG. 5) .
  • the angle sensor is also configured to transmit the angle data to processor 701, which is configured to detect a change of the configuration of handle assembly 120 based on the angle data.
  • Processor 701 is also configured to control one or more axis motors to move payload 130 to a particular position (and/or a particular orientation) based on the detected configuration change.
  • Input device 705 is configured to receive an input from a user.
  • input device 705 may include one or more control joysticks and/or one or more buttons configured to receive user input for moving payload 130.
  • input device 705 is configured to receive input from the user for changing the orientation of payload 130 from the landscape mode (e.g., the state illustrated in FIG. 1A) to the portrait mode (e.g., the state shown in FIG. 3) .
  • Input device 705 is also configured to transmit data relating to the user input to processor 701, which is configured to control rotary motor 210 to rotate payload 130 about the roll axis by 90 degrees.
  • input device 705 may include one or more microphones configured to receive sound signals for controlling handheld gimbal 100. Input device 705 is also configured to transmit the received input to processor 701 for processing. In some embodiments, input device 705 may include another input interface, such as a touch screen, for the user to configure a speed parameter for moving payload 130. In some embodiments, input device 705 is disposed on handle assembly 120.
  • Output device 706 is configured to present data and/or information to a user.
  • output device 706 may be configured to provide a confirmation that payload 130 is moved to a particular position based on output data received from processor 701.
  • output device 706 may include at least one of a speaker configured to provide a sound indicating that payload 130 is moved to a target position.
  • output device 706 may include a display screen configured to display an alert and/or a haptic motor configured to provide vibration to indicate payload 130 is moved to the target position.
  • Communications port 707 is configured to transmit data to and receive data from a user device (e.g., a smart phone, a tablet PC, a laptop, a control device, etc. ) via a network.
  • a user device e.g., a smart phone, a tablet PC, a laptop, a control device, etc.
  • communications port 707 is configured to receive from a smart phone input data for controlling handheld gimbal 100 via a wireless network (e.g., a Wi-Fi network, a Bluetooth network, a cellular network, etc. ) .
  • a wireless network e.g., a Wi-Fi network, a Bluetooth network, a cellular network, etc.
  • communications port 707 is configured to transmit information relating to the parameters of handheld gimbal100 to the user device via a wireless network.
  • Power supply 708 is configured to provide power to other components of handheld gimbal 100.
  • power supply 708 includes a battery disposed in handle assembly 120 (e.g., in first part 121) , which is configured to power the operation of one or more of the above disclosed motors.
  • handle assembly 120 may include one or more receiving parts (e.g., one or more screw holes, positioning holes, etc. ) for receiving and connecting an accessory attached to handheld gimbal 100.
  • receiving parts e.g., one or more screw holes, positioning holes, etc.
  • the user may attach a bracket for holding a mobile device to handheld gimbal 100 via the receiving part (s) so that the user can operate the mobile device while holding handheld gimbal 100.
  • FIG. 8 is a flow chart of an exemplary process 800 for controlling a handheld gimbal.
  • handheld gimbal 100 is configured to determine a state of handle assembly 120 (and/or handheld gimbal 100) .
  • a state of handle assembly 120 (and/or handheld gimbal 100) may include an orientation and/or a configuration of handle assembly 120 (and/or handheld gimbal 100) .
  • handle assembly 120 may include sensor 704 configured to monitor the orientation of handle assembly 120.
  • Processor 701 may receive data relating to the orientation of handle assembly 120 and determine the orientation of handle assembly 120 based on the received data.
  • sensor 704 is configured to detect an angle between two parts of handle assembly 120 (e.g., second part 122 and third part 123) . Sensor 704 may transmit the angle data to processor 701, which determines a configuration of handle assembly 120 based on the angle data.
  • processor 701 is configured to detect a state change of handle assembly 120 (and/or handheld gimbal 100) based on data received from sensor 704.
  • the user initially uses handheld gimbal 100 in the state illustrated in FIG. 3 (referred to herein as the first state) , in which payload 130 is configured to capture an image in the portrait mode.
  • the user rotates handle assembly 120 about the roll axis by 90 degrees to the state illustrated in FIG. 4 (referred to herein as the second state) .
  • Sensor 704 is configured to monitor the orientation of handle assembly 120 and transmit the orientation data to processor 701.
  • Processor 701 is configured to detect a state change of handle assembly 120 from the first state to the second state based on the received data from sensor 704.
  • Processor 701 is also configured to control roll axis assembly 111 to rotate payload 130 about the roll axis by 90 degrees such that payload 130 is configured to capture an image in the landscape mode. Similarly, when the user changes the state of handle assembly 120 from the second state to the first state, processor 701 is configured to control roll axis assembly 111 to rotate payload 130 such that payload 130 is configured to capture an image in the portrait mode.
  • processor 701 is configured to control at least one axis assembly to move payload 130 to a particular position (and/or a particular orientation) based on the determined state of handle assembly 120 (and/or handheld gimbal 100) .
  • processor 701 is configured to generate a control signal for controlling roll axis assembly 111 to rotate payload 130 by 90 degrees based on the determined state of handle assembly 120.
  • Processor 701 is configured to transmit the generated control signal to rotary motor 210, which is configured to rotate payload 130 according to the control signal.
  • the user may change the configuration of the parts of handle assembly 120 to the extended configuration illustrated in FIG. 6.
  • a sensor e.g., one of sensors 704 is configured to monitor the configuration of handle assembly 120 and transmit the data to processor 701 (e.g., data relating to one or more angles between two parts of handle assembly 120) .
  • Processor 701 is configured to determine the extended configuration (and/or detect a configuration change) based on the received data from the sensor.
  • Processor 701 is also configured to generate one or more control signals for controlling one or more axis assemblies to move payload 130 to a position illustrated in FIG. 6.
  • processor 701 may control pitch motor 117A to rotate pitch arm 117B by 90 degrees (about the pitch axis) such that the pointing direction of payload 130 aligns with the pointing direction of handle assembly 120 in this extended configuration.
  • processor 701 is configured to generate a control signal for controlling one or more axis assemblies based on user input.
  • input device 705 is configured to receive data relating to user input from the user.
  • Input device 705 is also configured to transmit the input data to processor 701.
  • processor 701 is configured to receive input data from a user device (e.g., a mobile device) via communications port 707.
  • Processor 701 is configured to generate one or more control signals based on the received input data, which are transmitted to one or more axis motors for moving payload 130 to a particular position (and/or a particular orientation) .
  • FIGs. 9 to 14 illustrate an embodiment of handheld gimbal 100, illustrated and described herein as handheld gimbal 300.
  • handheld gimbal 300 may include similar components of handheld gimbal 100 illustrated in FIGs. 1 to 7 and described above.
  • FIGs. 1 to 7 and described above One having ordinary skill in the art would understand that various components of handheld gimbal 300 described herein can also be used in handheld gimbal 100.
  • handheld gimbal 300 may include components illustrated in FIG. 7 and described above, configured to perform the functions thereof described herein.
  • handheld gimbal 300 may include processor 701 configured to perform one or more steps of process 800 illustrated in FIG. 8 and described above.
  • handheld gimbal 300 includes a first transmission assembly 310, a second transmission assembly 320, a third transmission assembly 330, a handle assembly 340, a stabilization motor 350, and a stabilization motor 360.
  • First transmission assembly 310 includes an installation component 3100, a first transmission component 3200, a connecting structure 3300, and an electronically-controlled stabilization component (not shown in the figures) .
  • Installation component 3100 may include a guiding component 3110.
  • Guiding component 3110 may be configured to accommodate at least one part of a payload 370 (e.g., a camera) across the space formed by inner ring 3120.
  • First transmission component 3200 is configured to slide along guiding component 3110.
  • Connecting structure 3300 is connected to first transmission component 3200 and rotates with first transmission component 3200.
  • the electronically-controlled stabilization component is configured to drive first transmission component 3200 along guiding component 3110 (e.g., along the circumference thereof) .
  • At least a part of payload 370 may penetrate the space formed by inner ring 3120.
  • Payload 370 is fixed to first transmission component 3200 through connecting structure 3300.
  • the electronically-controlled stabilization component is configured to drive first transmission component 3200 to rotate, which in turn drives payload 370 to rotate around the center line of guiding component 3110.
  • a first end of second transmission assembly 320 is fixedly connected to installation component 3100, and a second end of second transmission assembly 320 protrudes from installation component 3100 in the depth direction of inner ring 3120.
  • a first end of third transmission assembly 330 is rotatably connected to the second end of second transmission assembly 320.
  • Handle assembly 340 and a second end of third transmission assembly 330 are rotatably connected.
  • Stabilization motor 350 is coupled between second transmission assembly 320 and third transmission assembly 330.
  • Third transmission assembly 330 is configured to drive second transmission assembly 320 to rotate.
  • the rotation axis of second transmission assembly 320 is perpendicular or substantially perpendicular to the rotation axes of connecting structure 3300.
  • Stabilization motor 360 is configured to drive third transmission assembly 330. In some embodiments, stabilization motor 360 is coupled between third transmission assembly 330 and handle assembly 340. In some embodiments, the rotation axis of third transmission assembly 330 is perpendicular or substantially perpendicular to the rotation axis of second transmission assembly 320 and/or the rotation axis of connecting structure 3300.
  • At least a part of payload 370 penetrates the space formed by inner ring 3120.
  • a part of lens 372 of payload 370 may penetrate the space formed by inner ring 3120. While the description provided herein use lens 372 as an example of the component of payload 370 that penetrates the space formed by inner ring 3120, one having ordinary skill in the art would understand that a different component of payload 370 may penetrate the space formed by inner ring 3120, in addition to or alternative to lens 372.
  • the part of payload 370 penetrating the space formed by inner ring 3120 may include a combination of a lens and one or more other components of payload 370.
  • lens 372 of payload 370 penetrates the space formed by inner ring 3120, and payload 370 is fixed to first transmission component 3200 through connecting structure 3300.
  • first transmission component 3200 which corresponds to the Z axis
  • Second transmission assembly 320 which corresponds to the X axis
  • Third transmission assembly 330 which corresponds to the Y axis, is configured to adjust the roll angle.
  • the electronically-controlled stabilization component drives first transmission component 3200 to rotate, and lens 372 of payload 370 rotates around the center line of guiding component 3110.
  • the center of gravity line of payload 370 can be set in the rotation area of first transmission component 3200, so that the force of first transmission component 3200 is more uniform during the operation of handheld gimbal 300.
  • guiding component 3110 includes a component enabling first transmission component 3200 to rotate along the circumferential direction of guiding component 3110.
  • Guiding component 3110 may include a variety of specific structures, including but not limited to a guide rail, a guide groove, an arc-shaped guide rod, or the like, or a combination thereof.
  • one end of second transmission assembly 320 is rotatably connected, directly or indirectly, to one end of third transmission assembly 330.
  • one end of third transmission assembly 330 is rotatably connected directly or indirectly, to handle assembly 340.
  • stabilization motor 350 is coupled between second transmission assembly 320 and third transmission assembly 330.
  • stabilization motor 350 is fixed to third transmission assembly 330, and the output shaft of stabilization motor 350 is connected to second transmission assembly 320.
  • stabilization motor 350 is configured to drive second transmission assembly 320 to rotate relative to third transmission assembly 330.
  • stabilization motor 360 is coupled between third transmission assembly 330 and handle assembly 340.
  • stabilization motor 360 is fixed to handle assembly 340, and the output shaft of stabilization motor 360 is connected to third transmission assembly 330.
  • stabilization motor 360 is configured to drive third transmission assembly 330 to rotate relative to handle assembly 340.
  • Third transmission assembly 330 and the handle assembly 340 can be rotatably connected through stabilization motor 350.
  • guiding component 3110 includes one or more structures configured to guide first transmission component 3200 to rotate along guiding component 3110.
  • guiding component 3110 comprises a circular ring
  • first transmission component 3200 has a circular ring shape (or an arc shape) coupling the circular ring of guiding component 3110, such that first transmission component 3200 rotates along the circumferential direction of guiding component 3110.
  • guiding component 3110 has the shape of an arc (e.g., a half of a circle)
  • first transmission component 3200 includes a structure having the shape of a ring or an arc (e.g., a half of a circle) coupling guiding component 3110.
  • the arc-shaped guiding component 3110 guides first transmission component 3200 to rotate along guiding component 3110 (within the range of the half circle) .
  • guiding component 3110 and first transmission component 3200 are both arc-shaped, the rotation of first transmission component 3200 is limited to a smaller range (compared with a full-circle motion range) , which may improve stability.
  • installation component 3100 includes inner ring 3120, and guiding component 3110 is provided on inner ring 3120.
  • Lubrication and/or one or more protection layers may be applied to inner ring 3120, so that first transmission component 3200 and guiding component 3110 have a higher matching accuracy and a longer service life.
  • first transmission component 3200 rotates along guiding component 3110 via a magnetic suspension sliding component, a sliding connection, or an indirect sliding connection, or the like.
  • first transmission component 3200 rotates and slides along guiding component 3110.
  • first transmission component 3200 may be directly attached to guiding component 3110.
  • first transmission component 3200 may rotate along guiding component 3110 via an interconnecting component coupling first transmission component 3200 with guiding component 3110.
  • first transmission assembly 310 includes a bearing (not shown in the figures) , and first transmission component 3200 slides along guiding component 3110 via the bearing.
  • the bearing includes but is not limited to a sliding bearing, a roller bearing, or the like.
  • first transmission assembly 310 includes a planetary gear 3600.
  • Planetary gear 3600 is fixedly connected with first transmission component 3200 and is rotatably connected to installation component 3100.
  • planetary gear 3600 is configured to drive first transmission component 3200 to rotate.
  • First transmission assembly 310 also includes an outer ring 3700, which is rotatably connected to installation component 3100.
  • Outer ring 3700 includes an internal gear structure.
  • Guiding component 3110 resides inside outer ring 3700 and has an external gear structure.
  • Planetary gear 3600 has teeth matching with the teeth of the internal gear structure of outer ring 3700 and the teeth of the external gear structure of guiding component 3110.
  • the electronically-controlled stabilization component is configured to drive outer ring 3700 to rotate, which causes planetary gear 3600 to rotate in the circumferential direction of guiding component 3110.
  • first transmission component 3200 rotates along guiding component 3110 via planetary gear 3600 along the axial direction of guiding component 3110.
  • planetary gear 3600 includes a gear.
  • planetary gear 3600 includes two or more gears.
  • the electronically-controlled stabilization component may be configured to drive the rotation of outer ring 3700 in various ways.
  • electronically-controlled stabilization component may drive the rotation of outer ring 3700 via a belt drive mechanism, a chain drive mechanism, a gear drive mechanism, a ring motor, or the like, or a combination thereof.
  • electronically-controlled stabilization component may include a ring motor configured to drive first transmission component 3200 to rotate along guiding component 3110.
  • first transmission component 3200 and installation component 3100 are separated from the ring motor, which may make it more flexible the design of first transmission component 3200 and installation component 3100.
  • the ring motor includes, but is not limited to, a brushless ring motor, an ultrasonic ring motor, a ramp ring motor, or the like, or a combination thereof.
  • electronically-controlled stabilization component includes an arc-shaped motor.
  • the arc-shaped motor is configured to drive first transmission component 3200 (not labeled in FIG. 28) to rotate along guiding component 3110 (not labeled in FIG. 28) .
  • first transmission component 3200 and installation component 3100 are separated from the arc motor, which may make more flexible the design of first transmission component 3200 and installation component 3100.
  • the arc-shaped motor includes an arc-shaped linear motor (or another type of arc-shaped motors) .
  • both guiding component 3110 and first transmission component 3200 have a circular (or a ring) shape.
  • First transmission component 3200 is configured to slide on guiding component 3110.
  • the electronically-controlled stabilization component includes a stator 3410 arranged on installation component 3100.
  • the electronically-controlled stabilization component also includes a rotor 3420 arranged on first transmission component 3200.
  • Stator 3410 and guiding component 3110 are staggered.
  • stator 3410 and rotor 3420 are magnetically excited.
  • Rotor 3420 is configured to drive first transmission component 3200 to rotate along guiding component 3110.
  • stator 3410 is used to drive rotor 3420 to rotate by magnetic excitation, which drives the rotation of first transmission component 3200 along guiding component 3110.
  • installation component 3100, guiding component 3110, and first transmission component 3200 form a circular column structure.
  • the inner side of the circular column structure forms an opening, and stator 3410 and rotor 3420 reside in the circular column structure.
  • At least one part of connecting structure 3300 is outside of the circular column structure.
  • the electronically-controlled stabilization component, installation component 3100, and first transmission component 3200 form a ring motor structure.
  • connecting structure 3300 is used to detachably mount payload 370 onto first transmission component 3200.
  • installation component 3100 includes a protective shell.
  • installation component 3100 and first transmission component 3200 form a shape of a quadrangular prism.
  • a receiving part for receiving, for example, the lens of the payload
  • the receiving part includes one or more penetrating holes, and one or more corresponding parts of connecting structure 3300 may be fixed to the penetrating hole (s) .
  • Payload 370 may be mounted on connecting structure 3300 using, for example, a snap-on structure that can be snapped on the corresponding component of connecting structure 3300. In this example, mounting payload 370 to handheld gimbal 300 can be more flexible.
  • first transmission component 3200 and guiding component 3110 are slidingly connected.
  • the electronically-controlled stabilization component includes a stabilization motor 3430 and a driving component 3440 connected to stabilization motor 3430.
  • First transmission component 3200 is connected to a passive component 3450, which is coupled to driving component 3440.
  • Stabilization motor 3430 drives driving component 3440, which drives passive component 3450, thereby causing first transmission component 3200 to rotate along the circumferential direction of guiding component 31 10.
  • driving component 3440 includes a driving gear
  • passive component 3450 includes a passive gear.
  • the driving gear can drive the passive gear to rotate.
  • first stabilization motor 3430 can indirectly cause the rotation of first transmission component 3200 through the driving and passive gears.
  • the driving gear is directly connected to the passive gear.
  • the driving gear is indirectly connected to the passive gear via a connector (e.g., a transmission gear coupling the driving gear and the passive gear) .
  • driving component 3440 includes a worm
  • passive component 3450 includes a worm gear coupled to the worm of driving component 3440.
  • first stabilization motor 3430 can indirectly drive the rotation of first transmission component 3200 through the worm gear transmission structure.
  • driving component 3440 includes a driving wheel
  • passive component 3450 includes a driven wheel.
  • the electronically-controlled stabilization component includes a flexible transmission structure 3460 (e.g., a ring structure) coupling the driving wheel and the driven wheel.
  • stabilization motor 3430 can indirectly drive the rotation of first transmission component 3200 by using the flexible transmission structure.
  • flexible transmission structure 3460 includes at least one of a belt, a chain, and a crawler.
  • electronically-controlled stabilization component further includes a tensioner 3470. Tensioner 3470 may be disposed between the driving wheel and the passive wheel. In this configuration, tensioner 3470 is used to improve the accuracy of the flexible transmission and make the stabilization of payload 370 more accurate.
  • first transmission assembly 310 includes, but is not limited to, a servo motor.
  • electronically-controlled stabilization component includes a first retractor 3480, a first flexible transmission component 3482, a second retractor 3490, and a first flexible transmission component 3492.
  • a first end of first flexible transmission component 3482 is connected to first retractor 3480 transmission, and a second end of first flexible transmission component 3482 is fixedly connected to a first end of first transmission component 3200.
  • a first end of first flexible transmission component 3492 is connected to second retractor 3490, and a second end of first flexible transmission component 3492 is fixedly connected to a second end of the first transmission component 3200.
  • first transmission component 3200 may rotate in a first rotation direction (e.g., clockwise) via first retractor 3480 and first flexible transmission component 3482, and first transmission component 3200 may rotate in an opposite direction of the first rotation direction (e.g., counterclockwise) via second retractor 3490 and first flexible transmission component 3492. Additionally, first transmission component 3200 may rotate by a small increment by using the retractors to compensate for the potential shake of payload 370.
  • first rotation direction e.g., clockwise
  • first transmission component 3200 may rotate in an opposite direction of the first rotation direction (e.g., counterclockwise) via second retractor 3490 and first flexible transmission component 3492.
  • first transmission component 3200 may rotate by a small increment by using the retractors to compensate for the potential shake of payload 370.
  • first flexible transmission component 3482 includes a first curved flexible body 3402 arranged on the same circumference as the moving direction of first transmission component 3200.
  • First flexible transmission component 3492 includes a second curved flexible body 3404 arranged in the same circumference as the moving direction of the first transmission component 3200.
  • the force during the movement of first transmission component 3200 may be more uniform with first curved flexible body 3402 and second curved flexible body 3404, which may improve the accuracy of stabilization by handheld gimbal 300.
  • first retractor 3480 and/or second retractor 3490 include a component that directly outputs telescopic power output (e.g., a cylinder, a linear motor, a hydraulic cylinder, etc. ) .
  • first retractor 3480 and/or second retractor 3490 include a component that indirectly outputs telescopic power output, such as a rotation power component (e.g., a servo motor) with a screw-nut transmission mechanism, a rotation power component with a rack-pinion transmission mechanism, or a rotation power component with a conveyor mechanism (e.g., a belt, a chain, or the like, or a combination thereof) .
  • connecting structure 3300 (not labeled in FIG. 23) includes a connecting component 3310 fixed to first transmission component 3200 and a fastening component 3320 arranged on connecting component 3310.
  • fastening component 3320 is installed on first transmission component 3200 via connecting component 3310.
  • First transmission component 3200 is detachably connected to payload 370 through fastening component 3320.
  • Fastening component 3320 includes, but is not limited to, a fastening bolt, a bolt, a buckle structure, a magnetic component, or the like, or a combination thereof.
  • fastening component 3320 includes a fastening bolt rotatably arranged on connecting component 3310.
  • connecting component 3310 includes a shape of a rod. One end of connecting component 3310 is fixedly connected to first transmission component 3200, and the other end of connecting component 3310 is connected to fastening component 3320.
  • Fastening component 3320 may protrude from installation component 3100 in the depth direction of the opening of the receiving part (e.g., inner ring 3120) .
  • fastening component 3320 and first transmission component 3200 are spaced apart to form an installation space for accommodating at least one part of payload 370.
  • the position of the fastening component 3320 on connecting component 3310 is adjustable.
  • the installation position of payload 370 relative to connecting component 3310 e.g., including a slider
  • the installation position of payload 370 relative to connecting component 3310 is adjustable, which facilitates the adjustment of the position of lens 372 inside the opening formed by inner ring 3120.
  • Such configuration may cause the center of gravity line of payload 370 to be close to the rotation axis of first transmission component 3200.
  • connecting structure 3300 includes a first sliding component 3330.
  • Connecting component 3310 is slidably connected to first sliding component 3330.
  • One end of first sliding component 3330 protrudes along the depth direction of inner ring 3120, and fastening component 3320 is installed at the other end of first sliding component 3330.
  • fastening component 3320 can be adjusted in one direction by sliding first sliding component 3330 with respect to connecting component 3310, and the center of gravity line of payload 370 can be adjusted to overlap with the rotation axis of the first transmission component 3200.
  • first sliding component 3330 is perpendicular (or substantially perpendicular) to the depth direction of inner ring 3120.
  • Connecting structure 3300 also includes a second sliding component 3340 slidably connected to first sliding component 3330.
  • the moving direction of second sliding component 3340 and the moving direction of first sliding component 3330 and the depth direction of inner ring 3120 are mutually perpendicular or substantially perpendicular to each other.
  • Second sliding component 3340 is provided with a fastening component 3320, which is fixed to one part of payload 370.
  • fastening component 3320 can be adjusted in two directions (vertically and horizontally) , and the center of gravity line of the payload 370 can be moved in two dimensions.
  • first sliding component 3330, second sliding component 3340, and connecting component 3310 the center of gravity line of payload 370 and/or the center of gravity line of the first transmission component 3200 may fall in the axis of rotation of first transmission component 3200, which may improve the stabilization.
  • Slidable connection between first sliding component 3330 and connecting component 3310 and/or slidable connection between second sliding component 3340 and first sliding component 3330 may include, but is not limited to, a damped sliding connection, a sliding connection with locking structure (e.g., using locking or loosening to realize the switch between sliding and fixing) , or the like, or a combination thereof.
  • connecting structure 3300 includes an electrically-controlled retractor 3350, and fastening component 3320 is connected to connecting component 3310 through electrically-controlled retractor 3350.
  • the position of fastening component 3320 with respect to connecting component 3310 is adjustable.
  • the position of fastening component 3320 may be adjusted by an electronic control via electrically-controlled retractor 3350, and the installation position of payload 370 relative to electrically-controlled retractor 3350 can be adjusted by an electronic control, which facilitates the adjustment of the position of lens 372 inside inner ring 3120.
  • electrically-controlled retractor 3350 includes a first telescopic element 3352 and a second telescopic element 3354.
  • First telescopic element 3352 and second telescopic element 3354 may be adjusted, such that fastening component 3320 may move horizontally (and/or vertically) with respect to the rotation axis of first transmission component 3200.
  • first telescopic element 3352 and second telescopic element 3354 can be used to convert telescopic displacement into the position adjustment of fastening component 3320 in two directions, thereby allowing the movement of the center of gravity line of the payload 370 in two dimensions.
  • the center of gravity line of payload 370 and the rotation axis of the first transmission component 3200 may overlap, which may improve the stabilization.
  • first telescopic element 3352 and/or second telescopic element 3354 include, but are not limited to, a component that extends in one direction (e.g., a cylinder, a linear motor, a hydraulic cylinder, etc. ) .
  • first telescopic element 3352 and/or second telescopic element 3354 include any combination of a component that output rotation (e.g., a servo motor) with a transmission mechanism (e.g., a screw-nut transmission mechanism, a rack-pinion transmission mechanism, a conveyor belt mechanism (e.g., a belt, a chain, or the like) ) .
  • second transmission assembly 320 includes a first arm 322.
  • a first end of first arm 322 is fixedly connected to installation component 3100, and a second end of first arm 322 protrudes from installation component 3100 and is connected to third transmission assembly 330.
  • first arm 322 moves payload 370 through first transmission assembly 310 and causes the rotations of first transmission assembly 310 and payload 370 with respect to second transmission assembly 320.
  • first arm 322 includes a first body component 322a and a second body component 322b. One end of the first body component 322a is fixedly connected to installation component 3100, and second body component 322b is rotatably connected to third transmission assembly 330. Second body component 322b is configured to slide along first body component 322a, which may adjust the length of first arm 322 accordingly.
  • first body component 322a and/or second body component 322b include, but are not limited to, a damped sliding connection (when a certain force is applied to slide) or a sliding connection with a locking structure (to lock or release one of first body component 322a and/or second body component 322b) .
  • second transmission assembly 320 includes second arm 324.
  • One end of first arm 322 is fixedly connected to installation component 3100 via second arm 324.
  • First arm 322 does not intersect the rotation path of connecting structure 3300. In this example, second transmission assembly 320 will not interfere with the rotation of payload 370.
  • first arm 322 and the rotation axis of connecting structure 3300 are parallel or substantially parallel to each other, and the length direction of second arm 324 and rotation axis of the connecting structure 3300 are perpendicular or substantially perpendicular to each other.
  • first arm 322 is a part of second transmission assembly 320.
  • first arm 322 and the other parts of second transmission assembly 320 are manufactured in one piece.
  • second transmission assembly 320 is integrated into first transmission assembly 310.
  • second transmission assembly 320 is one of the parts of first transmission assembly 310 (as a module) and is assembled with other components of first transmission assembly 310.
  • third transmission assembly 330 is disposed between second transmission assembly 320 and handle assembly 340.
  • the movement of first transmission assembly 310 does not interfere with the movement of payload 370 (and vice versa) , so that the viewfinder or the display 374 of the payload 370 will not be blocked by one or more components of handheld gimbal 300.
  • third transmission assembly 330 includes a third arm 332, and the rotation axes of third arm 332 and third transmission assembly 330 are in the same direction but separated by a distance.
  • One end of third arm 332 is rotatably connected to second transmission assembly 320, so that handle assembly 340 does not intersect the rotation area of the second transmission assembly 320.
  • the structure of third transmission assembly 330 can be simplified.
  • third transmission assembly 330 includes a fourth arm 334.
  • a first end of fourth arm 334 is fixedly connected to one end of third arm 332, and a second end of fourth arm 334 is rotationally connected to handle assembly 340, so that the movement area of second transmission assembly 320 and the movement area of first transmission assembly 310 do not intersect handle assembly 340.
  • the length direction of third arm 332 and the rotation axis of stabilization motor 360 are parallel or substantially parallel to each other, and the length direction of fourth arm 334 and the rotation axis of stabilization motor 360 are perpendicular or substantially perpendicular to each other.
  • third arm 332 is adjustable
  • fourth arm 334 is adjustable (similar to adjustable first arm 322 described above)
  • third arm 332 includes a third body component and a fourth body component.
  • One end of the third body component is fixedly connected to second transmission assembly 320, and the fourth body component and the third body component are slidably connected, allowing the length of third arm 332 to be adjustable.
  • fourth arm 334 includes a fifth body component and a sixth body component.
  • One end of the fifth body component is fixedly connected to the fourth body component, the sixth body component is rotationally connected to handle assembly 340, and the sixth body component is slidably connected to the fifth body component, so that the length of fourth arm 334 can be adjusted.
  • the length of third arm 332 can be adjusted by modifying the position of the third body component with respect to the fourth body component.
  • the length of the fourth arm 334 can be adjusted by modifying the fifth body component with respect to the sixth body component.
  • connection between the third body component and the fourth body component and/or the connection between the fifth body component and the sixth body component may include, but are not limited to, a sliding connection with damping (allowing a sliding movement when a certain force is reached) or a sliding connection with a locking structure (to lock or release a switch between sliding and locking) , or the like, or a combination thereof.
  • handle assembly 340 includes a first adjusting handle 342, a second adjusting handle 344, and a third adjusting handle 346.
  • First adjusting handle 342 and the third transmission assembly 330 are rotationally connected, and stabilization motor 360 is coupled between first adjusting handle 342 and third transmission assembly 330.
  • the position of first adjusting handle 342 with respect to second adjusting handle 344 is adjustable, and the position of second adjusting handle 344 with respect to third adjusting handle 346 is adjustable.
  • handheld gimbal 300 may be configured into a variety of forms with various configurations of first adjusting handle 342, second adjusting handle 344, and third adjusting handle 346, which enables the user to use handheld gimbal 300 in different scenarios.
  • first adjusting handle 342 and the second adjusting handle 344 are rotatably connected, and can be switched between at least two different angle positions.
  • handle assembly 340 has at least two configurations.
  • first adjusting handle 342 and second adjusting handle 344 are rotatably connected via damping.
  • the configuration of the first adjusting handle 342 and second adjusting handle 344 can be adjusted only by a force applied to first adjusting handle 342 and second adjusting handle 344 that overcomes the frictional resistance of the damping.
  • a first locking member (not shown in the figures) is provided between first adjusting handle 342 and second adjusting handle 344.
  • the first locking member is used to lock or release second adjusting handle 344 (and/or first adjusting handle 342) .
  • the position of first adjusting handle 342 with respect to second adjusting handle 344 can be adjusted manually or automatically.
  • the position of first adjusting handle 342 (and/or the position of second adjusting handle 344) is locked.
  • second adjusting handle 344 and third adjusting handle 346 are rotatably connected, and can be switched between at least two different fixed positions.
  • handle assembly 340 has at least two configurations.
  • second adjusting handle 344 and third adjusting handle 346 are rotatably connected via damping.
  • the configuration of second adjusting handle 344 and third adjusting handle 346 can be adjusted only by a force applied to second adjusting handle 344 and third adjusting handle 346 that overcomes the frictional resistance of the damping.
  • a second locking member (not shown in the figures) is provided between second adjusting handle 344 and third adjusting handle 346.
  • the second locking member is used to lock or release third adjusting handle 346 (and/or second adjusting handle 344) .
  • the position of second adjusting handle 344 with respect to third adjusting handle 346 can be adjusted manually or automatically.
  • the position of second adjusting handle 344 (and/or the position of third adjusting handle 346) is locked.
  • first adjusting handle 342 includes a first handle body 342a and a second handle body 342b.
  • First handle body 342a is perpendicular or substantially perpendicular to second handle body 342b.
  • first handle body 342a and third transmission assembly 330 are rotatably connected.
  • Stabilization motor 360 is coupled between first handle body 342a and third transmission assembly 330.
  • Second handle body 342b is connected to second adjusting handle 344.
  • third transmission assembly 330 is coupled between first handle body 342a and second handle body 342b, which may reduce movement interference among the components of handheld gimbal 300.
  • First handle body 342a and second handle body 342b may provide protection to third transmission assembly 330.
  • third arm 332 and fourth arm 334 can be adjusted (e.g., being folded) to form a compact structure, which is more convenient for storage. Such configuration may further limit the movement area of payload 370 and reduce collisions between payload 370 and components of handheld gimbal 300.
  • first handle body 342a is adjustable.
  • second handle body 342b is adjustable.
  • the lengths of first handle body 342a and second handle body 342b can be in an extended form.
  • the length of first handle body 342a and/or the length of second handle body 342b can be reduced (by, for example, folding first handle body 342a and/or second handle body 342b) , so that handheld gimbal 300 is converted into a compact mode.
  • Handheld gimbal 300 may be stored in the compact mode, which may reduce the packaging volume and transportation costs.
  • third transmission assembly 330 is coupled between first handle body 342a and second handle body 342b.
  • Handheld gimbal 300 is in a first mode (as shown in, e.g., FIG. 25) when second adjusting handle 344 and second handle body 342b are alignedare aligned, and third adjusting handle 346 and first handle body 342a are arranged at the opposite sides of handheld gimbal 300.
  • the user can hold handheld gimbal 300 with both hands or hold it using one hand in an underslung position for a variety of shooting scenarios.
  • handheld gimbal 300 is in a two-hand mode in which the user can use both hands to hold third adjusting handle 346 and first handle body 342a, respectively.
  • first transmission component 3200 (which corresponds to, for example, the Z axis) may be configured for adjusting the roll angle
  • second transmission assembly 320 (which corresponds to, for example, the Y axis) may be configured for adjusting the yaw angle
  • third transmission assembly 330 (which corresponds to, for example, the X axis) may be configured for adjusting the pitch angle.
  • handheld gimbal 300 is in an underslung mode, and the user may hold third adjusting handle 346 using one hand.
  • first transmission component 3200 (which corresponds to, for example, the Z axis) may be configured for adjusting the roll angle
  • third transmission assembly 330 (which corresponds to, for example, the Y axis) may be configured for adjusting the yaw angle
  • second transmission assembly 320 (which corresponds to, for example, the X axis) may be configured for adjusting the pitch angle.
  • handheld gimbal 300 when second adjusting handle 344 and second handle body 342b form an angle (e.g., a right angle) , and third adjusting handle 346 and second adjusting handle 344 are aligned, handheld gimbal 300 is in a second mode. In this configuration, handheld gimbal 300 can be held with one hand.
  • an angle e.g., a right angle
  • first transmission component 3200 (which corresponds to, for example, the Z axis) may be configured for adjusting the roll angle
  • second transmission assembly 320 (which corresponds to, for example, the Y axis) may be configured for adjusting the yaw angle
  • third transmission assembly 330 (which corresponds to, for example, the X axis) may be configured for adjusting the pitch angle.
  • handheld gimbal 300 when second adjusting handle 344 and second handle body 342b form an angle and third adjusting handle 346 and second adjusting handle 344 form an angle, handheld gimbal 300 is in a third mode.
  • the user may hold first handle body 342a with one hand and hold third adjusting handle 346 (or another part) with the other hand.
  • first transmission component 3200 (which corresponds to, for example, the Z axis) may be used for adjusting the roll angle
  • second transmission assembly 320 (which corresponds to, for example, the X axis) may be used for adjusting the pitch angle
  • third transmission assembly 330 (which corresponds to, for example, the Y axis) may be used for adjusting the yaw angle.
  • third adjusting handle 346 includes one or more supporting component 346a.
  • a supporting component 346a may be retracted and expanded.
  • third adjusting handle 346 includes three supporting component 346a.
  • supporting components 346a when opened to form a tripod-like structure, handheld gimbal 300 may stand on a firm structure on its own.
  • first transmission component 3200 (which corresponds to, for example, the Z axis) may be used for adjusting the roll angle
  • second transmission assembly 320 (which corresponds to, for example, the Y axis) may be used for adjusting the yaw angle
  • third transmission assembly 330 (which corresponds to, for example, the X axis) may be used for adjusting the pitch angle.
  • handheld gimbal 300 includes a rigid body (not shown in the figures) and a universal gooseneck hitch (not shown in the figures) fixed on the rigid body.
  • the rigid body is rotationally connected with third transmission assembly 330.
  • the universal gooseneck hitch may be deformed, so that handheld gimbal 300 may have various configurations for the user to hold or for attaching to an external structure (or an external device) , which allows a variety of shooting applications.
  • handheld gimbal 300 may be attached to an external structure (or an external device such as a mobile device) via, for example, a clamping structure.
  • the space formed by inner ring 3120 may accommodate a display of payload 370.
  • the space formed by inner ring 3120 may accommodate lens 372 (as illustrated in FIG. 9) .
  • first arm 322, third arm 332, fourth arm 334, first handle body 342a, and/or second handle body 342b have an adjustable length.
  • first arm 322, third arm 332, fourth arm 334, first handle body 342a, and/or second handle body 342b may include other types of traditional adjustable structures (e.g., one or more detachable length adjustment components) .
  • payload 370 includes a lens 372, and payload 370 is detachably connected to first transmission component 3200 via connecting structure 3300.
  • the user may view images presented in display 374 or a viewfinder of payload 370.
  • the center of gravity line of payload 370 can be set in the rotation area of first transmission component 3200, so that during the use of handheld gimbal 300, the force of first transmission component 3200 is more uniform and the shake compensation can be performed more accurately.
  • handheld gimbal 300 may include one or more receiving parts (e.g., one or more screw holes, positioning holes, etc. ) for receiving and connecting an accessory attached to handheld gimbal 300.
  • the user may attach a bracket for holding a mobile device to handheld gimbal 300 via the receiving part (s) so that the user can operate the mobile device while holding handheld gimbal 300.
  • handheld gimbal 300 may include one or more components configured to mount handheld gimbal 300 onto a vehicle.
  • exemplary vehicles include cars, bicycles, motorcycles, trucks, ships, airplanes, unmanned aerial vehicles, etc.
  • handheld gimbal 300 may be attached to an unmanned aerial vehicle, which may capture one or more images through payload 370.
  • the unmanned aerial vehicle may navigate and/or perform airborne operations (e.g., spraying pesticide) based on the images captured by payload 370.
  • Programs based on the written description and disclosed methods are within the skill of an experienced developer.
  • the various programs or program modules can be created using any of the techniques known to one skilled in the art or can be designed in connection with existing software.
  • program sections or program modules can be designed in or by means of .
  • Net Framework Net Compact Framework (and related languages, such as Visual Basic, C, etc. ) , Java, C++, Objective-C, HTML, HTML/AJAX combinations, XML, or HTML with included Java applets.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Accessories Of Cameras (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Studio Devices (AREA)

Abstract

A handheld gimbal includes a body and a handle assembly coupled to the body. The body includes one or more axis assemblies and a support platform configured to support a payload. The one or more axis assemblies include a rotary motor configured to move the support platform about an axis. The rotary motor has an opening configured to accommodate at least one portion of a lens of the payload.

Description

HANDHELD GIMBAL CONTROL METHOD AND HANDHELD GIMBAL TECHNICAL FIELD
The present disclosure relates to gimbal technologies and, more particularly, to a gimbal control method and a gimbal.
BACKGROUND
A handheld or portable gimbal can be small and easy to carry. An imaging device such as a camcorder, a camera, or a smartphone can be mounted on the gimbal. The gimbal can stably maintain the imaging device at an attitude, improving the imaging quality. The handle of existing gimbals is generally designed as a fixed structure, which may cause difficulty for handling and storing the gimbals.
SUMMARY
In one aspect of the disclosure, a handheld gimbal includes a body and a handle assembly coupled to the body. The body includes one or more axis assemblies and a support platform configured to support a payload. The one or more axis assemblies includes a rotary motor configured to move the support platform about an axis. The rotary motor has an opening configured to accommodate at least one portion of a lens of the payload.
In another aspect of the disclosure, a method for moving a payload includes providing a gimbal assembly. The gimbal assembly includes a rotary motor configured to move a support platform rigidly connected to the payload about an axis. The rotary motor has an opening configured to accommodate at least one portion of a lens of the payload. The method also includes controlling, by a processor of the gimbal assembly, the rotary motor to move the support platform to a particular position based on a control signal.
In another aspect of the disclosure, a non-transitory computer-readable medium store instructions that, when executed by at least one processor, cause a computing device to perform a process for controlling handheld gimbal. The process includes determining a state of a handle assembly of the handheld gimbal. The handheld gimbal includes one or more axis assemblies and a support platform configured to support a payload. The one or more axis assemblies includes a rotary motor configured to move the support platform about an axis. The rotary motor has an opening configured to accommodate at least one portion of a lens of the payload. The process also includes controlling the one or more axis assemblies to move the support platform to a particular position based on the determined state of the handle assembly.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Other systems, methods, and computer-readable media are also disclosed herein
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a schematic illustration of a front perspective view of an exemplary handheld gimbal, consistent with disclosed embodiments.
FIG. 1B is a schematic illustration of a back perspective view of an exemplary handheld gimbal, consistent with disclosed embodiments.
FIG. 2 is a schematic illustration of a side perspective view of an exemplary handheld gimbal, consistent with disclosed embodiments.
FIG. 3 is a schematic illustration of a front perspective view of an exemplary handheld gimbal in a portrait mode, consistent with disclosed embodiments.
FIG. 4 is a schematic illustration of a back perspective view of an exemplary handheld gimbal in an underslung mode, consistent with disclosed embodiments.
FIG. 5 is a schematic illustration of a back perspective view of an exemplary handheld gimbal having a handle assembly in an extended configuration, consistent with disclosed embodiments.
FIG. 6 is a schematic illustration of a back perspective view of an exemplary handheld gimbal having a handle assembly in an extended configuration, consistent with disclosed embodiments.
FIG. 7 is a block diagram illustrating an exemplary handheld gimbal, consistent with disclosed embodiments.
FIG. 8 is a flow chart of an exemplary process for controlling a handheld gimbal, consistent with disclosed embodiments.
FIG. 9 is a schematic diagram illustrating an exemplary imaging system, consistent with disclosed embodiments.
FIG. 10 is a schematic diagram illustrating an exemplary handheld gimbal shown in FIG. 9, consistent with disclosed embodiments.
FIG. 11 is a schematic diagram illustrating an exemplary stabilization mechanism shown in FIG. 10 detached from a transmission assembly, consistent with disclosed embodiments.
FIG. 12 is a schematic diagram illustrating the stabilization mechanism shown in FIG. 12, consistent with disclosed embodiments.
FIG. 13 is an exploded view of the stabilization mechanism shown in FIG. 10, consistent with disclosed embodiments.
FIG. 14 is a schematic diagram illustrating exemplary guiding component and first transmission component, consistent with disclosed embodiments.
FIG. 15 is a schematic diagram illustrating an alternative configuration of the exemplary guiding component and first transmission component, consistent with disclosed embodiments.
FIG. 16 is a schematic diagram further illustrating the exemplary stabilization mechanism, consistent with disclosed embodiments.
FIG. 17 is a schematic diagram further illustrating the exemplary stabilization mechanism, consistent with disclosed embodiments.
FIG. 18 is a partial schematic diagram illustrating the stabilization mechanism shown in FIG. 17, consistent with disclosed embodiments.
FIG. 19 is a schematic diagram illustrating transmission components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
FIG. 20 is a schematic diagram illustrating an alternative configuration of transmission components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
FIG. 21 is a schematic diagram illustrating an alternative configuration of transmission components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
FIG. 22 is a schematic diagram illustrating an alternative configuration of transmission components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
FIG. 23 is a schematic diagram illustrating components of the exemplary stabilization mechanism and a connecting structure shown in FIG. 10, consistent with disclosed embodiments.
FIG. 24 is a schematic diagram illustrating components of an exemplary stabilization mechanism, consistent with disclosed embodiments.
FIG. 25 is a schematic diagram illustrating the imaging system shown in FIG. 9 in a first mode, consistent with disclosed embodiments.
FIG. 26 is a schematic diagram illustrating another scenario of using the imaging system shown in FIG. 9 in the first mode, consistent with disclosed embodiments.
FIG. 27 is a schematic structural diagram illustrating the imaging system shown in FIG. 9 in a second mode, consistent with disclosed embodiments.
FIG. 28 is a schematic diagram illustrating components of the exemplary stabilization mechanism, consistent with disclosed embodiments.
DETAILED DESCRIPTION
The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers refer to the same or similar parts. While several illustrative embodiments are described herein, modifications, adaptations and other implementations are possible. For example, substitutions,  additions or modifications may be made to the components illustrated in the drawings. Accordingly, the following detailed description is not limited to the disclosed embodiments and examples. Instead, the proper scope is defined by the appended claims.
Pitch angle, yaw angle, and roll angle may be used to express the relationship between the coordinate system of a camera of a shooting device and the coordinate system of the ground, based on an attitude angle and/or the Euler Angle principle. The relationship may reflect the attitude of the camera relative to the ground, and a three-axis coordinate system can be established, such as (the X-Y-Z axes coordinate system) . A traditional stabilization device based on the above-mentioned principle can compensate for camera shake in three rotation axis directions of a pitch axis, a yaw axis and a roll axis, so as to achieve imaging stabilization. The stabilization device may include a pitch axis stabilization mechanism, a yaw axis stabilization mechanism and a roll axis stabilization mechanism. Among them, the pitch axis stabilization mechanism may be used to adjust the pitch angle of the camera, so that the camera can rotate around the X axis; the yaw axis stabilization mechanism is used to adjust the yaw angle of the camera, so that the camera can rotate around the Y axis; the roll axis stabilization mechanism is used to adjust the roll angle (Roll) of the camera, so that the camera can rotate around the Z axis.
Existing stabilization devices can only perform shake compensation for camera devices with small and plate-shaped lenses such as mobile phones and tablet computers to achieve stabilization, but it may be difficult to provide stabilization for cameras with larger lenses. Therefore, a new design may be desirable to achieve the stabilization of a camera with a larger lens size. Additionally, parts of existing  stabilization devices may block the viewfinder and/or the display of the camera at certain angles, and under such circumstances, the user may not be able to view what the camera captures in real time. To solve this problem, a user may use an external monitor to view what the camera is capturing. This solution, however, not only increases the cost, but also causes more inconvenience.
This disclosure provides systems and methods for driving a camera to move along one or more axes. In some embodiments, one or more parts of the camera (such as a lens, especially a long lens) may have a small motion range when the camera moves (e.g., rolling) . In this example, when the stabilization device is used, the user can view the live image through the viewfinder or display of the camera.
For example, this disclosure provides novel gimbal systems having a configurable handle assembly and methods for controlling the same. The gimbal systems described herein improve a grip by a user, making shooting more natural and labor-saving The disclosed gimbal systems have improved designs for connecting to and releasing a payload (e.g., a camera) from the gimbal systems, which makes the connection and disconnection faster and more convenient. Additionally, the disclosed gimbal systems have various configurations for a variety of shooting scenarios to allow quick switches between different shooting modes (e.g., switching from a landscape mode to a portrait mode) .
FIG. 1A is a schematic illustration of a front perspective view of an exemplary handheld gimbal 100, and FIG. 1B is a schematic illustration of a back perspective view of handheld gimbal 100, consistent with disclosed embodiments. As illustrated in FIG. 1A, handheld gimbal 100 includes a body 110 and a handle assembly 120. Body 110 includes a support platform 119 (partially blocked in FIG.  1A, but shown in FIG. 1 B) configured to support a payload 130 (e.g., a photographic device) , which may be rigidly connected to support platform 119. Body 110 may include one or more axis assemblies. For example, as illustrated in FIG. 1A, body 110 includes a roll axis assembly 111, a yaw axis assembly 114, and a pitch axis assembly 117. One or more axis assemblies may be configured to move support platform 119 (and payload 130) . Support platform 119 may be rigidly connected to one of the axis assemblies or to a rigid structure that is connected to one of the axis assemblies. By way of example, as shown in FIGs. 1A and 1 B, support platform 119 is connected to roll axis assembly 111, which may include a rotary motor configured to rotate support platform 119 about a roll axis based on one or more control signals received from a processor of handheld gimbal100 (e.g., processor 701 illustrated in FIG. 7) . Support platform 119 may be connected to the rotary motor or a rigid structure that is connected to the rotary motor. Yaw axis assembly 1 14 may be configured to rotate support platform 119 (and payload 130) about a yaw axis, and pitch axis assembly 117 may be configured to rotate support platform 119 (and payload 130) about a pitch axis.
In some embodiments, roll axis assembly 111 is connected to yaw axis assembly 114, which is connected to pitch axis assembly 117. For example, as illustrated in FIG. 1A, yaw axis assembly 114 includes a yaw arm 114B and a yaw motor 114A configured to rotate yaw arm 114B about the yaw axis based on one or more control signals received from a processor of handheld gimbal 100 (e.g., processor 701 illustrated in FIG. 7) . By way of example, yaw motor 114A rotates to a target yaw angle based on a control signal received from the processor, thereby rotating yaw arm 114B to the target yaw angle. Alternatively, yaw motor 114A indirectly drives yaw arm 114B via, for example, a gear coupling yaw motor 114A  and yaw arm 114B. Yaw arm 114B is connected to roll axis assembly 111 (e.g., via a non-moving part of roll axis assembly 111) . Pitch axis assembly 117 includes a pitch arm 117B and a pitch motor 117A configured to rotate pitch arm 117B about the pitch axis based on one or more control signals received from a processor of handheld gimbal 100 (e.g., processor 701 illustrated in FIG. 7) . By way of example, pitch motor 117A rotates to a target pitch angle based on a control signal received from the processor, thereby rotating pitch arm 117B to the target pitch angle. Alternatively, pitch motor 117A indirectly drives yaw arm 114B via, for example, a gear coupling pitch motor 117A and yaw arm 114B. Yaw arm 114B is connected to roll axis assembly 111 (e.g., via a non-moving part of roll axis assembly 111 ) . Pitch arm 117B is connected to yaw axis assembly 114 (e.g., via a non-moving part of yaw axis assembly 114) . Pitch axis assembly 117 may also be connected to handle assembly 120 (via, for example, first part 121 of handle assembly 120 as illustrated in FIG. 1A) .
A user may hold or grip handle assembly 120 using one hand or two hands, depending on a particular state of handheld gimbal 100 (and/or handle assembly 120) . For example, as illustrated in FIG. 1A, handle assembly 120 may include a plurality of parts, e.g., first part 121, second part 122, third part 123, and fourth part 124, which may form different configurations. By way of example, first part 121, second part 122, third part 123, and fourth part 124 may form a U shape illustrated in FIG. 1A, and the user may hold first part 121 using one hand and hold fourth part 124 using the other hand. In this configuration, payload 130 can capture images in the landscape mode. While the parts of handle assembly 120 are described herein as separate pieces, one skilled in the art will now understand that two or more of the parts may be integrated as one piece. For example, first part 121  and second part 122 may be one piece having an L shape, which may be connected to pitch axis assembly 117 at one end and be connected to third part 123 at the other end.
In some embodiments, payload 130 includes a body 131 and a lens 132. Roll axis assembly 111 includes an opening configured to accommodate at least one portion of lens 132. For example, as illustrated in FIG. 1A, roll axis assembly 111 includes a rotary motor having a ring-like opening, and lens 132 can be inserted in the opening. In some embodiments, lens 132 does not contact the opening. For example, support platform 119 may be connected to body 131 of payload 130 (via, e.g., a quick-release plate mounted on the bottom of payload 130) and provide full support to payload 130. In other embodiments, at least one portion of lens 132 is supported by a rigid structure connected to a movable component of the rotary motor (e.g., a motor rotor 212 illustrated in FIG. 2) and/or support platform 119, which provides at least some support to payload 130. Alternatively, support platform 119 may be rigidly connected to at least a portion of lens 132 instead of being connected to body 131.
While payload 130 in various figures is shown as a camera, one skilled in the art will now understand that payload 130 may include a camera, a camcorder, a mobile phone, a Light Detection and Ranging (LiDAR) scanner, a laser meter, or the like, or a combination thereof.
FIG. 2 is a schematic illustration of a side perspective view of handheld gimbal 100. As described above, payload 130 may be connected to support platform 119. For example, as illustrated in FIG. 2, support platform 119 includes a connector 230, one end of which is rigidly connected to the bottom of body 131 of payload 130. By way of example, connector 230 may include a 1/4 inch screw configured to be  inserted into an internally threaded bore having 1/4 inches threads in the bottom of body 131. As another example, connector 230 may include a rail configured to receive a plate (e.g., a quick-release plate) mounted to the bottom of body 131, and the user may slide the plate into the rail of connector 230. Alternatively or additionally, connector 230 may include a magnetic component configured to magnetically couple to a component (e.g., a plate or a disc) mounted to body 131, thereby firmly attaching payload 130 to support platform 119. In some embodiments, connector 230 also includes a locking mechanism for locking body 131 to support platform 119.
In some embodiments, support platform 119 includes a leveling mechanism configured to adjust the balance of payload 130 on handheld gimbal 100 when payload 130 is mounted on support platform 119. In some instances, when payload 130 is mounted on support platform 119, the center of gravity of payload 130 may not be aligned with the center of gravity of handheld gimbal 100, and payload 130 may be tilted. The user (and/or handheld gimbal 100) may adjust the balance of handheld gimbal 100 using the leveling mechanism. For example, support platform 119 includes a guide rail along the direction perpendicular to the pointing direction of lens 132. Support platform 119 also includes a leveling block 240 (shown in FIG. 2) configured to slide along the guide rail. The user may slide leveling block 240 along with the rail to balance handheld gimbal 100.
As described elsewhere in this disclosure, handheld gimbal 100 includes roll axis assembly 111 configured to move support platform 119 about the roll axis. In some embodiments, roll axis assembly 111 includes a rotary motor 210 as illustrated in FIG. 2. Rotary motor 210 includes a motor stator 211 and a motor rotor 212. Motor stator 211 is not movable, while motor rotor 212 is rotatable with respect to motor stator 211 about the roll axis. In some embodiments, motor rotor 212 is rotatable in  the range of 0 to 360 degrees (i.e., a full circle) . Alternatively, motor rotor 212 is rotatable in a range less than a full circle (e.g., 0 to 270 degrees, 0 to 180 degrees, 0 to 90 degrees) . In some embodiments, support platform 119 is rigidly connected to motor rotor 212 (or a rigid structure connected to motor rotor 212) such that support platform 119 (and payload 130) rotates about the roll axis when motor rotor 212 rotates. Lens 132 may also be rotatable about the roll axis with at least a portion thereof inside the opening of rotary motor 210. Motor stator 211 is rigidly connected to yaw arm 114A, which is coupled to yaw axis motor 114B. When yaw axis motor 114B rotates about the yaw axis, yaw arm 114A rotates therewith, thereby moving roll axis assembly 111 (and support platform 119 and payload 130) about the yaw axis.
In some embodiments, handheld gimbal 100 is configured to move payload 130 to a particular position (and/or a particular orientation) based on one or more control signals. For example, handheld gimbal 100 may be in the state illustrated in FIG. 1A, in which payload 130 is configured to capture images in the landscape mode. Handle assembly 120 may receive user input (via, e.g., an input device 705 or a communications port 707 illustrated FIG. 7) to change to the portrait mode. A processor of handle assembly 120 (e.g., processor 701 illustrated in FIG. 7) is configured to generate a control signal for controlling roll axis assembly 111 to rotate 90 degrees about the roll axis. As a result, payload 130 rotates 90 degrees about the roll axis to a state illustrated in FIG. 3 (which is a front perspective view of handheld gimbal 100 in a portrait mode) , in which payload 130 is configured to capture images in the portrait mode.
In some embodiments, handle assembly 120 (and/or handheld gimbal 100) includes various states, and handle assembly 120 may detect a current state and  move payload 130 to a particular position (and/or a particular orientation) based on the detected state. A position of payload 130 refers to the position relative to a fixed component of handheld gimbal 100 (e.g., first part 121 of handle assembly 120) . An orientation of payload 130 refers to the shooting direction of payload 130. A state of handle assembly 120 (and/or handheld gimbal 100) may include a particular orientation and/or configuration thereof. For example, handle assembly 120 is in the state illustrated in FIG. 1A, in which payload 130 is configured to capture images in the landscape mode. The user may rotate handle assembly 120 counterclockwise by 90 degrees to the state illustrated in FIG. 4 (which is a schematic illustration of a back perspective view of handheld gimbal 100 in an underslung mode) , which is referred to herein as the underslung mode. The user may lift and hold fourth part 124 using one hand. The underslung mode may be used for application scenarios such as low angle shots (e.g., for low to ground scenes) . In some embodiments, in the underslung mode under, the highest point of payload 130 is below at least one part of the handle assembly (e.g., fourth part 124) . Handheld gimbal 100 may be configured to detect the current state and move payload 130 to a particular position (and/or a particular orientation) . For example, handle assembly 120 may include a sensor (e.g., an accelerometer and/or a gyroscope) configured to monitor the orientation of handle assembly 120 (or at least one part thereof) . As noted above, handle assembly 120 includes processor 701 configured to receive data from the sensor and determine the orientation of handle assembly. Processor 701 may also be configured to control roll axis assembly 111 to rotate payload 130 about the roll axis such that payload 130 is horizontally oriented (or at a particular orientation) when handle assembly 120 has rotated 90 degrees. In some embodiments, the sensor continuously monitors the orientation of handle assembly 120 (or at least one  part thereof) , and processor 701 controls roll axis assembly 111 to rotate payload 130 continuously based on the monitored orientation of handle assembly 120 (or at least one part thereof) such that payload 130 remains horizontally oriented (or at a particular orientation) .
Handle assembly 120 may include a plurality of configurations. For example, as illustrated in FIG. 1A, handle assembly 120 includes a plurality of parts forming a U shape, and the user may hold first part 121 and fourth part 124. The parts of handle assembly 120 may be configured to form other shapes. The parts may include at least one part that is movable relative to another part. For example, third part 123 and fourth part 124 may be configured to move relative to first part 121 and second part 122. By way of example, handle assembly 120 may include a rotating mechanism coupling second part 122 and third part 123 so that second part 122 is rotatable relative to third part 123 about an axle of the rotating mechanism. In some embodiments, the rotating mechanism coupling second part 122 and third part 123 includes a hinge. The user (and/or handheld gimbal100) may rotate third part 123 with respect to second part 122 about the axle of the rotating mechanism. Alternatively or additionally, handle assembly 120 may include a rotating mechanism coupling third part 123 and fourth part 124 to allow rotation of fourth part 124 with respect to third part 123. In some embodiments, the rotating mechanism coupling fourth part 124 and third part 123 includes a hinge. By way of example, starting with the configuration illustrated in FIG. 1A, the user may hold first part 121, push down third part 123 (and fourth part 124) , and rotate fourth part 124 clockwise with respect to third part 123 to obtain an extended configuration illustrated in FIG. 5. As illustrated in FIG. 5, third part 123 and second part 122 form a right angle, and fourth part 124 and third part 123 form a straight line. As described above, first part 121 is  coupled to pitch axis assembly 117. In the configuration illustrated in FIG. 1A, third part 123 is perpendicular (or substantially perpendicular) to at least one portion of first part 121, while in the configuration illustrated in FIG. 5, third part 123 is parallel (or substantially parallel) to first part 121 or at least one portion of first part 121.
In some embodiments, fourth part 124 includes a connector configured to connect handle assembly 120 to an extension rod, a monopod, or a tripod. For example, first part 121 may include a receiving part 124A including an internally threaded bore (e.g., 1/4 inch threads) for accommodating a mounting component (e.g., a 1/4 inch screw) of an extension rod (or a monopod or a tripod or the like) .
FIG. 6 illustrates another exemplary configuration of handheld gimbal 100, consistent with disclosed embodiments. The user may hold first part 121 with one hand and hold fourth part 124 (or another part) with the other hand. In some embodiments, fourth part 124 is configured to rotate about an axle of a hinge coupling the fourth part 124 and third part 123 with respect to third part 123 in the range of 0 to 360 degrees. For example, as illustrated in FIG. 6, first part 121 is at a position at which it forms a 45-degree angle with third part 123 (or second part 122 or first part 121) .
With reference to FIG. 5, in some embodiments, handle assembly 120 may include one or more locking mechanisms for locking one part with respect to another part. For example, handle assembly 120 may include a knob connected to the rotating mechanism coupling third part 123 and fourth part 124, configured so the user can tighten the knob to lock the position of fourth part 124 relative to third part 123.
While handheld gimbal 100 illustrated in the figures has a pitch-yaw-roll configuration (in the order from the handle assembly to the payload) , one skilled in  the art will now understand that other configurations are also possible. For example, handheld gimbal 100 may have a yaw-pitch-roll configuration.
FIG. 7 is a block diagram illustrating handheld gimbal 100, consistent with some embodiments of the present disclosure. As illustrated in FIG. 7, handheld gimbal 100 includes at least one processor 701, a memory 702, one or more axis assemblies 703 (e.g., roll axis assembly 111, yaw axis assembly 114, pitch axis assembly 117) , one or more sensors 704, an input device 705, an output device 706, a communications port 707, and a power supply 708.
Processor 701 is configured to perform the functions of handheld gimbal 100 described herein. For example, processor 701 is configured to receive user input from, for example, input device 705 and control one or more axis assemblies to move payload 130 to a particular position (and/or a particular orientation) based on the user input. As another example, processor 701 is configured to detect a state of handle assembly 120 based on data received from one or more of sensors 704 and control one or more axis assemblies to move payload 130 to a particular position (and/or a particular orientation) based on the detected state.
Memory 702 is configured to store data and/or instructions for other components of handheld gimbal 100. For example, memory 702 stores instructions for processor 701 to perform one or more functions described herein.
One or more axis assemblies 703 are configured to move payload 130 based on control signals received from processor 701. For example, roll axis assembly 111 (e.g., including rotary motor 210) is configured to receive a control signal from processor 701 and, in response, rotate 90 degrees about the roll axis based on the control signal, thereby rotating payload 130 by 90 degrees about the roll axis. As a result, payload 130 changes from the landscape mode (for capturing  images in the landscape mode) to the portrait mode (for capturing images in the portrait mode) .
Sensors 704 comprise one or more sensors configured to monitor a state of handheld gimbal 100 and/or handle assembly 120. A state may include an orientation and/or configuration. For example, handle assembly 120 may include a sensor provided as an accelerometer or a gyroscope configured to monitor the orientation of handle assembly 120. By way of example, a sensor provided as an accelerometer or a gyroscope may be disposed in first part 121 and configured to monitor the orientation of handle assembly 120. Starting with the state illustrated in FIG. 1A, the user may rotate handle assembly 120 to the state shown in FIG. 4 (an underslung mode) . The sensor may be configured to detect the state change and transmit the data to processor 701. Processor 701 may be configured to control rotary motor 210 to rotate by 90 degrees about the roll axis based on the detected state change. Alternatively or additionally, handle assembly 120 includes a sensor configured to detect a configuration of handle assembly 120. For example, with reference to FIG. 6, handle assembly 120 may include an angle sensor coupling second part 122 and third part 123 (e.g., disposed between second part 122 and third part 123) configured to monitor an angle between second part 122 and third part 123. When the user rotates second part 122 relative to third part 123, the angle sensor may be configured to detect a change of the angle from 0 degrees (as illustrated in FIG. 1A) to 90 degrees (as illustrated in FIG. 5) . The angle sensor is also configured to transmit the angle data to processor 701, which is configured to detect a change of the configuration of handle assembly 120 based on the angle data. Processor 701 is also configured to control one or more axis motors to move  payload 130 to a particular position (and/or a particular orientation) based on the detected configuration change.
Input device 705 is configured to receive an input from a user. For example, input device 705 may include one or more control joysticks and/or one or more buttons configured to receive user input for moving payload 130. By way of example, input device 705 is configured to receive input from the user for changing the orientation of payload 130 from the landscape mode (e.g., the state illustrated in FIG. 1A) to the portrait mode (e.g., the state shown in FIG. 3) . Input device 705 is also configured to transmit data relating to the user input to processor 701, which is configured to control rotary motor 210 to rotate payload 130 about the roll axis by 90 degrees.
Alternatively or additionally, input device 705 may include one or more microphones configured to receive sound signals for controlling handheld gimbal 100. Input device 705 is also configured to transmit the received input to processor 701 for processing. In some embodiments, input device 705 may include another input interface, such as a touch screen, for the user to configure a speed parameter for moving payload 130. In some embodiments, input device 705 is disposed on handle assembly 120.
Output device 706 is configured to present data and/or information to a user. For example, output device 706 may be configured to provide a confirmation that payload 130 is moved to a particular position based on output data received from processor 701. By way of example, output device 706 may include at least one of a speaker configured to provide a sound indicating that payload 130 is moved to a target position. Alternatively or additionally, output device 706 may include a display  screen configured to display an alert and/or a haptic motor configured to provide vibration to indicate payload 130 is moved to the target position.
Communications port 707 is configured to transmit data to and receive data from a user device (e.g., a smart phone, a tablet PC, a laptop, a control device, etc. ) via a network. For example, communications port 707 is configured to receive from a smart phone input data for controlling handheld gimbal 100 via a wireless network (e.g., a Wi-Fi network, a Bluetooth network, a cellular network, etc. ) . As another example, communications port 707 is configured to transmit information relating to the parameters of handheld gimbal100 to the user device via a wireless network.
Power supply 708 is configured to provide power to other components of handheld gimbal 100. For example, power supply 708 includes a battery disposed in handle assembly 120 (e.g., in first part 121) , which is configured to power the operation of one or more of the above disclosed motors.
In some embodiments, handle assembly 120 may include one or more receiving parts (e.g., one or more screw holes, positioning holes, etc. ) for receiving and connecting an accessory attached to handheld gimbal 100. For example, the user may attach a bracket for holding a mobile device to handheld gimbal 100 via the receiving part (s) so that the user can operate the mobile device while holding handheld gimbal 100.
FIG. 8 is a flow chart of an exemplary process 800 for controlling a handheld gimbal. At step 802, handheld gimbal 100 is configured to determine a state of handle assembly 120 (and/or handheld gimbal 100) . As described elsewhere in this disclosure, a state of handle assembly 120 (and/or handheld gimbal 100) may include an orientation and/or a configuration of handle assembly 120 (and/or  handheld gimbal 100) . For example, handle assembly 120 may include sensor 704 configured to monitor the orientation of handle assembly 120. Processor 701 may receive data relating to the orientation of handle assembly 120 and determine the orientation of handle assembly 120 based on the received data. As another example, sensor 704 is configured to detect an angle between two parts of handle assembly 120 (e.g., second part 122 and third part 123) . Sensor 704 may transmit the angle data to processor 701, which determines a configuration of handle assembly 120 based on the angle data.
In some embodiments, processor 701 is configured to detect a state change of handle assembly 120 (and/or handheld gimbal 100) based on data received from sensor 704. By way of example, the user initially uses handheld gimbal 100 in the state illustrated in FIG. 3 (referred to herein as the first state) , in which payload 130 is configured to capture an image in the portrait mode. The user rotates handle assembly 120 about the roll axis by 90 degrees to the state illustrated in FIG. 4 (referred to herein as the second state) . Sensor 704 is configured to monitor the orientation of handle assembly 120 and transmit the orientation data to processor 701. Processor 701 is configured to detect a state change of handle assembly 120 from the first state to the second state based on the received data from sensor 704. Processor 701 is also configured to control roll axis assembly 111 to rotate payload 130 about the roll axis by 90 degrees such that payload 130 is configured to capture an image in the landscape mode. Similarly, when the user changes the state of handle assembly 120 from the second state to the first state, processor 701 is configured to control roll axis assembly 111 to rotate payload 130 such that payload 130 is configured to capture an image in the portrait mode.
At step 804, processor 701 is configured to control at least one axis assembly to move payload 130 to a particular position (and/or a particular orientation) based on the determined state of handle assembly 120 (and/or handheld gimbal 100) . For example, processor 701 is configured to generate a control signal for controlling roll axis assembly 111 to rotate payload 130 by 90 degrees based on the determined state of handle assembly 120. Processor 701 is configured to transmit the generated control signal to rotary motor 210, which is configured to rotate payload 130 according to the control signal. As another example, starting with handle assembly 120 in the configuration illustrated in FIG. 1A (i.e., having the U shape) , the user may change the configuration of the parts of handle assembly 120 to the extended configuration illustrated in FIG. 6. A sensor (e.g., one of sensors 704) is configured to monitor the configuration of handle assembly 120 and transmit the data to processor 701 (e.g., data relating to one or more angles between two parts of handle assembly 120) . Processor 701 is configured to determine the extended configuration (and/or detect a configuration change) based on the received data from the sensor. Processor 701 is also configured to generate one or more control signals for controlling one or more axis assemblies to move payload 130 to a position illustrated in FIG. 6. By way of example, processor 701 may control pitch motor 117A to rotate pitch arm 117B by 90 degrees (about the pitch axis) such that the pointing direction of payload 130 aligns with the pointing direction of handle assembly 120 in this extended configuration.
In some embodiments, processor 701 is configured to generate a control signal for controlling one or more axis assemblies based on user input. For example, input device 705 is configured to receive data relating to user input from the user. Input device 705 is also configured to transmit the input data to processor 701.  Alternatively or additionally, processor 701 is configured to receive input data from a user device (e.g., a mobile device) via communications port 707. Processor 701 is configured to generate one or more control signals based on the received input data, which are transmitted to one or more axis motors for moving payload 130 to a particular position (and/or a particular orientation) .
FIGs. 9 to 14 illustrate an embodiment of handheld gimbal 100, illustrated and described herein as handheld gimbal 300. In some embodiments, handheld gimbal 300 may include similar components of handheld gimbal 100 illustrated in FIGs. 1 to 7 and described above. One having ordinary skill in the art would understand that various components of handheld gimbal 300 described herein can also be used in handheld gimbal 100. In some embodiments, handheld gimbal 300 may include components illustrated in FIG. 7 and described above, configured to perform the functions thereof described herein. For example, handheld gimbal 300 may include processor 701 configured to perform one or more steps of process 800 illustrated in FIG. 8 and described above.
As illustrated in FIGs. 9 to 14, handheld gimbal 300 includes a first transmission assembly 310, a second transmission assembly 320, a third transmission assembly 330, a handle assembly 340, a stabilization motor 350, and a stabilization motor 360.
First transmission assembly 310 includes an installation component 3100, a first transmission component 3200, a connecting structure 3300, and an electronically-controlled stabilization component (not shown in the figures) . Installation component 3100 may include a guiding component 3110. Guiding component 3110 may be configured to accommodate at least one part of a payload 370 (e.g., a camera) across the space formed by inner ring 3120. First transmission  component 3200 is configured to slide along guiding component 3110. Connecting structure 3300 is connected to first transmission component 3200 and rotates with first transmission component 3200. The electronically-controlled stabilization component is configured to drive first transmission component 3200 along guiding component 3110 (e.g., along the circumference thereof) . At least a part of payload 370 (e.g., a part of a lens 372 of payload 370) may penetrate the space formed by inner ring 3120. Payload 370 is fixed to first transmission component 3200 through connecting structure 3300. The electronically-controlled stabilization component is configured to drive first transmission component 3200 to rotate, which in turn drives payload 370 to rotate around the center line of guiding component 3110.
In some embodiments, a first end of second transmission assembly 320 is fixedly connected to installation component 3100, and a second end of second transmission assembly 320 protrudes from installation component 3100 in the depth direction of inner ring 3120. A first end of third transmission assembly 330 is rotatably connected to the second end of second transmission assembly 320. Handle assembly 340 and a second end of third transmission assembly 330 are rotatably connected. Stabilization motor 350 is coupled between second transmission assembly 320 and third transmission assembly 330. Third transmission assembly 330 is configured to drive second transmission assembly 320 to rotate. In some embodiments, the rotation axis of second transmission assembly 320 is perpendicular or substantially perpendicular to the rotation axes of connecting structure 3300. Stabilization motor 360 is configured to drive third transmission assembly 330. In some embodiments, stabilization motor 360 is coupled between third transmission assembly 330 and handle assembly 340. In some embodiments, the rotation axis of third transmission assembly 330 is perpendicular or substantially  perpendicular to the rotation axis of second transmission assembly 320 and/or the rotation axis of connecting structure 3300.
In some embodiments, at least a part of payload 370 penetrates the space formed by inner ring 3120. For example, a part of lens 372 of payload 370 may penetrate the space formed by inner ring 3120. While the description provided herein use lens 372 as an example of the component of payload 370 that penetrates the space formed by inner ring 3120, one having ordinary skill in the art would understand that a different component of payload 370 may penetrate the space formed by inner ring 3120, in addition to or alternative to lens 372. For example, the part of payload 370 penetrating the space formed by inner ring 3120 may include a combination of a lens and one or more other components of payload 370.
In some embodiments, lens 372 of payload 370 penetrates the space formed by inner ring 3120, and payload 370 is fixed to first transmission component 3200 through connecting structure 3300. When handheld gimbal 300 is activated for stabilization, first transmission component 3200, which corresponds to the Z axis, is configured to adjust the roll angle. Second transmission assembly 320, which corresponds to the X axis, is configured to adjust the pitch angle. Third transmission assembly 330, which corresponds to the Y axis, is configured to adjust the roll angle. The electronically-controlled stabilization component drives first transmission component 3200 to rotate, and lens 372 of payload 370 rotates around the center line of guiding component 3110. The center of gravity line of payload 370 can be set in the rotation area of first transmission component 3200, so that the force of first transmission component 3200 is more uniform during the operation of handheld gimbal 300.
In some embodiments, guiding component 3110 includes a component enabling first transmission component 3200 to rotate along the circumferential direction of guiding component 3110. Guiding component 3110 may include a variety of specific structures, including but not limited to a guide rail, a guide groove, an arc-shaped guide rod, or the like, or a combination thereof.
In some embodiments, one end of second transmission assembly 320 is rotatably connected, directly or indirectly, to one end of third transmission assembly 330.
In some embodiments, one end of third transmission assembly 330 is rotatably connected directly or indirectly, to handle assembly 340.
In some embodiments, stabilization motor 350 is coupled between second transmission assembly 320 and third transmission assembly 330. For example, stabilization motor 350 is fixed to third transmission assembly 330, and the output shaft of stabilization motor 350 is connected to second transmission assembly 320. In this example, stabilization motor 350 is configured to drive second transmission assembly 320 to rotate relative to third transmission assembly 330.
In some embodiments, stabilization motor 360 is coupled between third transmission assembly 330 and handle assembly 340. For example, stabilization motor 360 is fixed to handle assembly 340, and the output shaft of stabilization motor 360 is connected to third transmission assembly 330. In this example, stabilization motor 360 is configured to drive third transmission assembly 330 to rotate relative to handle assembly 340. Third transmission assembly 330 and the handle assembly 340 can be rotatably connected through stabilization motor 350.
In some embodiments, guiding component 3110 includes one or more structures configured to guide first transmission component 3200 to rotate along  guiding component 3110. For example, as shown in FIG. 14, guiding component 3110 comprises a circular ring, and first transmission component 3200 has a circular ring shape (or an arc shape) coupling the circular ring of guiding component 3110, such that first transmission component 3200 rotates along the circumferential direction of guiding component 3110. Alternatively, as shown in FIG. 15, guiding component 3110 has the shape of an arc (e.g., a half of a circle) , and first transmission component 3200 includes a structure having the shape of a ring or an arc (e.g., a half of a circle) coupling guiding component 3110. The arc-shaped guiding component 3110 guides first transmission component 3200 to rotate along guiding component 3110 (within the range of the half circle) . In this example, since guiding component 3110 and first transmission component 3200 are both arc-shaped, the rotation of first transmission component 3200 is limited to a smaller range (compared with a full-circle motion range) , which may improve stability.
In some embodiments, as shown in FIG. 17, which is a schematic diagram illustrating a cross section of installation component 3100, installation component 3100 includes inner ring 3120, and guiding component 3110 is provided on inner ring 3120. Lubrication and/or one or more protection layers may be applied to inner ring 3120, so that first transmission component 3200 and guiding component 3110 have a higher matching accuracy and a longer service life.
In some embodiments, first transmission component 3200 rotates along guiding component 3110 via a magnetic suspension sliding component, a sliding connection, or an indirect sliding connection, or the like.
In some embodiments, first transmission component 3200 rotates and slides along guiding component 3110. For example, first transmission component 3200 may be directly attached to guiding component 3110. Alternatively, first  transmission component 3200 may rotate along guiding component 3110 via an interconnecting component coupling first transmission component 3200 with guiding component 3110.
In some embodiments, first transmission assembly 310 includes a bearing (not shown in the figures) , and first transmission component 3200 slides along guiding component 3110 via the bearing. In some embodiments, the bearing includes but is not limited to a sliding bearing, a roller bearing, or the like.
In some embodiments, as shown in FIG. 16, first transmission assembly 310 includes a planetary gear 3600. Planetary gear 3600 is fixedly connected with first transmission component 3200 and is rotatably connected to installation component 3100. In this example, planetary gear 3600 is configured to drive first transmission component 3200 to rotate. First transmission assembly 310 also includes an outer ring 3700, which is rotatably connected to installation component 3100. Outer ring 3700 includes an internal gear structure. Guiding component 3110 resides inside outer ring 3700 and has an external gear structure. Planetary gear 3600 has teeth matching with the teeth of the internal gear structure of outer ring 3700 and the teeth of the external gear structure of guiding component 3110. The electronically-controlled stabilization component is configured to drive outer ring 3700 to rotate, which causes planetary gear 3600 to rotate in the circumferential direction of guiding component 3110. As such, first transmission component 3200 rotates along guiding component 3110 via planetary gear 3600 along the axial direction of guiding component 3110. In some embodiments, planetary gear 3600 includes a gear. Alternatively, planetary gear 3600 includes two or more gears.
The electronically-controlled stabilization component may be configured to drive the rotation of outer ring 3700 in various ways. For example, electronically- controlled stabilization component may drive the rotation of outer ring 3700 via a belt drive mechanism, a chain drive mechanism, a gear drive mechanism, a ring motor, or the like, or a combination thereof. By way of example, electronically-controlled stabilization component may include a ring motor configured to drive first transmission component 3200 to rotate along guiding component 3110. In this example, first transmission component 3200 and installation component 3100 are separated from the ring motor, which may make it more flexible the design of first transmission component 3200 and installation component 3100. In some embodiments, the ring motor includes, but is not limited to, a brushless ring motor, an ultrasonic ring motor, a ramp ring motor, or the like, or a combination thereof.
In some embodiments, as shown in FIG. 28, which is a schematic diagram illustrating an exemplary transmission component 3200, electronically-controlled stabilization component includes an arc-shaped motor. The arc-shaped motor is configured to drive first transmission component 3200 (not labeled in FIG. 28) to rotate along guiding component 3110 (not labeled in FIG. 28) . In this example, first transmission component 3200 and installation component 3100 (not labeled in FIG. 28) are separated from the arc motor, which may make more flexible the design of first transmission component 3200 and installation component 3100. In some embodiments, the arc-shaped motor includes an arc-shaped linear motor (or another type of arc-shaped motors) .
In some embodiments, as shown in FIGs. 12 and 13, both guiding component 3110 and first transmission component 3200 have a circular (or a ring) shape. First transmission component 3200 is configured to slide on guiding component 3110. The electronically-controlled stabilization component includes a stator 3410 arranged on installation component 3100. The electronically-controlled  stabilization component also includes a rotor 3420 arranged on first transmission component 3200. Stator 3410 and guiding component 3110 are staggered. In some embodiments, stator 3410 and rotor 3420 are magnetically excited. Rotor 3420 is configured to drive first transmission component 3200 to rotate along guiding component 3110. In this example, stator 3410 is used to drive rotor 3420 to rotate by magnetic excitation, which drives the rotation of first transmission component 3200 along guiding component 3110.
In some embodiments, installation component 3100, guiding component 3110, and first transmission component 3200 form a circular column structure. The inner side of the circular column structure forms an opening, and stator 3410 and rotor 3420 reside in the circular column structure. At least one part of connecting structure 3300 is outside of the circular column structure. The electronically-controlled stabilization component, installation component 3100, and first transmission component 3200 form a ring motor structure. In some embodiments, connecting structure 3300 is used to detachably mount payload 370 onto first transmission component 3200.
In some embodiments, installation component 3100 includes a protective shell.
In some embodiments, installation component 3100 and first transmission component 3200 form a shape of a quadrangular prism. A receiving part (for receiving, for example, the lens of the payload) includes one or more fixing parts, and connecting structure 3300 may be fixed to the receiving part through the fixing part (s) . For example, the receiving part includes one or more penetrating holes, and one or more corresponding parts of connecting structure 3300 may be fixed to the penetrating hole (s) . Payload 370 may be mounted on connecting structure 3300  using, for example, a snap-on structure that can be snapped on the corresponding component of connecting structure 3300. In this example, mounting payload 370 to handheld gimbal 300 can be more flexible.
In some embodiments, as shown in FIGs. 17 and 18, which are schematic diagrams illustrating an exemplary stabilization mechanism, first transmission component 3200 and guiding component 3110 are slidingly connected. The electronically-controlled stabilization component includes a stabilization motor 3430 and a driving component 3440 connected to stabilization motor 3430. First transmission component 3200 is connected to a passive component 3450, which is coupled to driving component 3440. Stabilization motor 3430 drives driving component 3440, which drives passive component 3450, thereby causing first transmission component 3200 to rotate along the circumferential direction of guiding component 31 10.
In some embodiments, driving component 3440 includes a driving gear, and passive component 3450 includes a passive gear. The driving gear can drive the passive gear to rotate. In this example, first stabilization motor 3430 can indirectly cause the rotation of first transmission component 3200 through the driving and passive gears. In some embodiments, the driving gear is directly connected to the passive gear. Alternatively, the driving gear is indirectly connected to the passive gear via a connector (e.g., a transmission gear coupling the driving gear and the passive gear) .
In some embodiments, as shown in FIG. 20, which is a schematic diagram illustrating an alternative configuration of transmission components of the exemplary stabilization mechanism of handheld gimbal 300, driving component 3440 includes a worm, and passive component 3450 includes a worm gear coupled to the worm of  driving component 3440. In this example, first stabilization motor 3430 can indirectly drive the rotation of first transmission component 3200 through the worm gear transmission structure.
In some embodiments, as shown in FIG. 21, which is a schematic diagram illustrating an alternative configuration of transmission components of the exemplary stabilization mechanism, driving component 3440 includes a driving wheel, and passive component 3450 includes a driven wheel. The electronically-controlled stabilization component includes a flexible transmission structure 3460 (e.g., a ring structure) coupling the driving wheel and the driven wheel. In this configuration, stabilization motor 3430 can indirectly drive the rotation of first transmission component 3200 by using the flexible transmission structure. In some embodiments, flexible transmission structure 3460 includes at least one of a belt, a chain, and a crawler. In some embodiments, electronically-controlled stabilization component further includes a tensioner 3470. Tensioner 3470 may be disposed between the driving wheel and the passive wheel. In this configuration, tensioner 3470 is used to improve the accuracy of the flexible transmission and make the stabilization of payload 370 more accurate.
In some embodiments, first transmission assembly 310 includes, but is not limited to, a servo motor.
In some embodiments, electronically-controlled stabilization component includes a first retractor 3480, a first flexible transmission component 3482, a second retractor 3490, and a first flexible transmission component 3492. A first end of first flexible transmission component 3482 is connected to first retractor 3480 transmission, and a second end of first flexible transmission component 3482 is fixedly connected to a first end of first transmission component 3200. A first end of  first flexible transmission component 3492 is connected to second retractor 3490, and a second end of first flexible transmission component 3492 is fixedly connected to a second end of the first transmission component 3200. In this example, first transmission component 3200 may rotate in a first rotation direction (e.g., clockwise) via first retractor 3480 and first flexible transmission component 3482, and first transmission component 3200 may rotate in an opposite direction of the first rotation direction (e.g., counterclockwise) via second retractor 3490 and first flexible transmission component 3492. Additionally, first transmission component 3200 may rotate by a small increment by using the retractors to compensate for the potential shake of payload 370.
In some embodiments, as shown in FIG. 22, which is a schematic diagram illustrating an alternative configuration of the transmission components of handheld gimbal 300, first flexible transmission component 3482 includes a first curved flexible body 3402 arranged on the same circumference as the moving direction of first transmission component 3200. First flexible transmission component 3492 includes a second curved flexible body 3404 arranged in the same circumference as the moving direction of the first transmission component 3200. In this example, the force during the movement of first transmission component 3200 may be more uniform with first curved flexible body 3402 and second curved flexible body 3404, which may improve the accuracy of stabilization by handheld gimbal 300.
In some embodiments, first retractor 3480 and/or second retractor 3490 include a component that directly outputs telescopic power output (e.g., a cylinder, a linear motor, a hydraulic cylinder, etc. ) . Alternatively, first retractor 3480 and/or second retractor 3490 include a component that indirectly outputs telescopic power output, such as a rotation power component (e.g., a servo motor) with a screw-nut  transmission mechanism, a rotation power component with a rack-pinion transmission mechanism, or a rotation power component with a conveyor mechanism (e.g., a belt, a chain, or the like, or a combination thereof) .
In some embodiments, as shown in FIG. 23, connecting structure 3300 (not labeled in FIG. 23) includes a connecting component 3310 fixed to first transmission component 3200 and a fastening component 3320 arranged on connecting component 3310. In this example, fastening component 3320 is installed on first transmission component 3200 via connecting component 3310. First transmission component 3200 is detachably connected to payload 370 through fastening component 3320. Fastening component 3320 includes, but is not limited to, a fastening bolt, a bolt, a buckle structure, a magnetic component, or the like, or a combination thereof. In some embodiments, fastening component 3320 includes a fastening bolt rotatably arranged on connecting component 3310. In some embodiments, connecting component 3310 includes a shape of a rod. One end of connecting component 3310 is fixedly connected to first transmission component 3200, and the other end of connecting component 3310 is connected to fastening component 3320. Fastening component 3320 may protrude from installation component 3100 in the depth direction of the opening of the receiving part (e.g., inner ring 3120) . In this example, fastening component 3320 and first transmission component 3200 are spaced apart to form an installation space for accommodating at least one part of payload 370.
In some embodiments, as shown in FIG. 23, the position of the fastening component 3320 on connecting component 3310 is adjustable. In this example, the installation position of payload 370 relative to connecting component 3310 (e.g., including a slider) is adjustable, which facilitates the adjustment of the position of  lens 372 inside the opening formed by inner ring 3120. Such configuration may cause the center of gravity line of payload 370 to be close to the rotation axis of first transmission component 3200.
In some embodiments, as shown in FIG. 11, connecting structure 3300 includes a first sliding component 3330. Connecting component 3310 is slidably connected to first sliding component 3330. One end of first sliding component 3330 protrudes along the depth direction of inner ring 3120, and fastening component 3320 is installed at the other end of first sliding component 3330. In this example, fastening component 3320 can be adjusted in one direction by sliding first sliding component 3330 with respect to connecting component 3310, and the center of gravity line of payload 370 can be adjusted to overlap with the rotation axis of the first transmission component 3200.
In some embodiments, as shown in FIG. 23, the moving direction of first sliding component 3330 is perpendicular (or substantially perpendicular) to the depth direction of inner ring 3120. Connecting structure 3300 (not labeled in FIG. 23) also includes a second sliding component 3340 slidably connected to first sliding component 3330. The moving direction of second sliding component 3340 and the moving direction of first sliding component 3330 and the depth direction of inner ring 3120 are mutually perpendicular or substantially perpendicular to each other. Second sliding component 3340 is provided with a fastening component 3320, which is fixed to one part of payload 370. In this example, with first sliding component 3330, second sliding component 3340, and connecting component 3310, fastening component 3320 can be adjusted in two directions (vertically and horizontally) , and the center of gravity line of the payload 370 can be moved in two dimensions. As such, under certain arrangements of first sliding component 3330, second sliding  component 3340, and connecting component 3310, the center of gravity line of payload 370 and/or the center of gravity line of the first transmission component 3200 may fall in the axis of rotation of first transmission component 3200, which may improve the stabilization. For example, by adjusting the position of fastening component 3320 in the horizontal and vertical directions, the installation position of payload 370 can be adjusted so that the center of gravity line of the payload 370 falls along the rotation axis of first transmission component 3200. Slidable connection between first sliding component 3330 and connecting component 3310 and/or slidable connection between second sliding component 3340 and first sliding component 3330 may include, but is not limited to, a damped sliding connection, a sliding connection with locking structure (e.g., using locking or loosening to realize the switch between sliding and fixing) , or the like, or a combination thereof.
In some embodiments, as shown in FIG. 24, which is a schematic diagram illustrating components of an exemplary stabilization mechanism, connecting structure 3300 includes an electrically-controlled retractor 3350, and fastening component 3320 is connected to connecting component 3310 through electrically-controlled retractor 3350. The position of fastening component 3320 with respect to connecting component 3310 is adjustable. In this example, the position of fastening component 3320 may be adjusted by an electronic control via electrically-controlled retractor 3350, and the installation position of payload 370 relative to electrically-controlled retractor 3350 can be adjusted by an electronic control, which facilitates the adjustment of the position of lens 372 inside inner ring 3120. As such, the center of gravity of the payload 370 may be adjusted to fall along the axis of rotation of the first transmission component 3200. In some embodiments, electrically-controlled retractor 3350 includes a first telescopic element 3352 and a second telescopic  element 3354. First telescopic element 3352 and second telescopic element 3354 may be adjusted, such that fastening component 3320 may move horizontally (and/or vertically) with respect to the rotation axis of first transmission component 3200. In this example, first telescopic element 3352 and second telescopic element 3354 can be used to convert telescopic displacement into the position adjustment of fastening component 3320 in two directions, thereby allowing the movement of the center of gravity line of the payload 370 in two dimensions. As such, the center of gravity line of payload 370 and the rotation axis of the first transmission component 3200 may overlap, which may improve the stabilization.
In some embodiments, first telescopic element 3352 and/or second telescopic element 3354 include, but are not limited to, a component that extends in one direction (e.g., a cylinder, a linear motor, a hydraulic cylinder, etc. ) . Alternatively, first telescopic element 3352 and/or second telescopic element 3354 include any combination of a component that output rotation (e.g., a servo motor) with a transmission mechanism (e.g., a screw-nut transmission mechanism, a rack-pinion transmission mechanism, a conveyor belt mechanism (e.g., a belt, a chain, or the like) ) .
In some embodiments, as shown in FIGs. 9 and 10, second transmission assembly 320 includes a first arm 322. A first end of first arm 322 is fixedly connected to installation component 3100, and a second end of first arm 322 protrudes from installation component 3100 and is connected to third transmission assembly 330. In this example, first arm 322 moves payload 370 through first transmission assembly 310 and causes the rotations of first transmission assembly 310 and payload 370 with respect to second transmission assembly 320.
In some embodiments, as shown in FIGs. 9 and 24, the length of first arm 322 is adjustable. In this example, it is possible to adapt different sized payloads. In some embodiments, as illustrated in FIG. 24, first arm 322 includes a first body component 322a and a second body component 322b. One end of the first body component 322a is fixedly connected to installation component 3100, and second body component 322b is rotatably connected to third transmission assembly 330. Second body component 322b is configured to slide along first body component 322a, which may adjust the length of first arm 322 accordingly.
In some embodiments, first body component 322a and/or second body component 322b include, but are not limited to, a damped sliding connection (when a certain force is applied to slide) or a sliding connection with a locking structure (to lock or release one of first body component 322a and/or second body component 322b) .
In some embodiments, as shown in FIGs. 10 and 11, second transmission assembly 320 includes second arm 324. One end of first arm 322 is fixedly connected to installation component 3100 via second arm 324. First arm 322 does not intersect the rotation path of connecting structure 3300. In this example, second transmission assembly 320 will not interfere with the rotation of payload 370.
In some embodiments, the length direction of first arm 322 and the rotation axis of connecting structure 3300 are parallel or substantially parallel to each other, and the length direction of second arm 324 and rotation axis of the connecting structure 3300 are perpendicular or substantially perpendicular to each other.
In some embodiments, first arm 322 is a part of second transmission assembly 320. For example, first arm 322 and the other parts of second transmission assembly 320 are manufactured in one piece.
In some embodiments, second transmission assembly 320 is integrated into first transmission assembly 310. For example, second transmission assembly 320 is one of the parts of first transmission assembly 310 (as a module) and is assembled with other components of first transmission assembly 310.
In some embodiments, as shown in FIGs. 10 and 11, third transmission assembly 330 is disposed between second transmission assembly 320 and handle assembly 340. In this example, the movement of first transmission assembly 310 does not interfere with the movement of payload 370 (and vice versa) , so that the viewfinder or the display 374 of the payload 370 will not be blocked by one or more components of handheld gimbal 300.
In some embodiments, as shown in FIG. 10, third transmission assembly 330 includes a third arm 332, and the rotation axes of third arm 332 and third transmission assembly 330 are in the same direction but separated by a distance. One end of third arm 332 is rotatably connected to second transmission assembly 320, so that handle assembly 340 does not intersect the rotation area of the second transmission assembly 320. In this example, with third arm 332, the structure of third transmission assembly 330 can be simplified.
In some embodiments, as shown in FIG. 10, third transmission assembly 330 includes a fourth arm 334. A first end of fourth arm 334 is fixedly connected to one end of third arm 332, and a second end of fourth arm 334 is rotationally connected to handle assembly 340, so that the movement area of second transmission assembly 320 and the movement area of first transmission assembly 310 do not intersect handle assembly 340.
In some embodiments, the length direction of third arm 332 and the rotation axis of stabilization motor 360 are parallel or substantially parallel to each  other, and the length direction of fourth arm 334 and the rotation axis of stabilization motor 360 are perpendicular or substantially perpendicular to each other.
In some embodiments, the length of third arm 332 is adjustable, and the length of fourth arm 334 is adjustable (similar to adjustable first arm 322 described above) . In this example, it is possible to adapt to different sized payloads. For example, third arm 332 includes a third body component and a fourth body component. One end of the third body component is fixedly connected to second transmission assembly 320, and the fourth body component and the third body component are slidably connected, allowing the length of third arm 332 to be adjustable. Alternatively or additionally, fourth arm 334 includes a fifth body component and a sixth body component. One end of the fifth body component is fixedly connected to the fourth body component, the sixth body component is rotationally connected to handle assembly 340, and the sixth body component is slidably connected to the fifth body component, so that the length of fourth arm 334 can be adjusted. In this example, the length of third arm 332 can be adjusted by modifying the position of the third body component with respect to the fourth body component. Similarly, the length of the fourth arm 334 can be adjusted by modifying the fifth body component with respect to the sixth body component.
The connection between the third body component and the fourth body component and/or the connection between the fifth body component and the sixth body component may include, but are not limited to, a sliding connection with damping (allowing a sliding movement when a certain force is reached) or a sliding connection with a locking structure (to lock or release a switch between sliding and locking) , or the like, or a combination thereof.
In some embodiments, as shown in FIGs. 9, 25, 26, and 27, handle assembly 340 includes a first adjusting handle 342, a second adjusting handle 344, and a third adjusting handle 346. First adjusting handle 342 and the third transmission assembly 330 are rotationally connected, and stabilization motor 360 is coupled between first adjusting handle 342 and third transmission assembly 330. The position of first adjusting handle 342 with respect to second adjusting handle 344 is adjustable, and the position of second adjusting handle 344 with respect to third adjusting handle 346 is adjustable. In this example, handheld gimbal 300 may be configured into a variety of forms with various configurations of first adjusting handle 342, second adjusting handle 344, and third adjusting handle 346, which enables the user to use handheld gimbal 300 in different scenarios.
In some embodiments, first adjusting handle 342 and the second adjusting handle 344 are rotatably connected, and can be switched between at least two different angle positions. In this example, handle assembly 340 has at least two configurations.
In some embodiments, first adjusting handle 342 and second adjusting handle 344 are rotatably connected via damping. In this example, the configuration of the first adjusting handle 342 and second adjusting handle 344 can be adjusted only by a force applied to first adjusting handle 342 and second adjusting handle 344 that overcomes the frictional resistance of the damping.
In some embodiments, a first locking member (not shown in the figures) is provided between first adjusting handle 342 and second adjusting handle 344. The first locking member is used to lock or release second adjusting handle 344 (and/or first adjusting handle 342) . When the first locking member is released, the position of first adjusting handle 342 with respect to second adjusting handle 344 can be  adjusted manually or automatically. When the first locking member is locked, the position of first adjusting handle 342 (and/or the position of second adjusting handle 344) is locked.
In some embodiments, second adjusting handle 344 and third adjusting handle 346 are rotatably connected, and can be switched between at least two different fixed positions. In this example, handle assembly 340 has at least two configurations.
In some embodiments, second adjusting handle 344 and third adjusting handle 346 are rotatably connected via damping. In this example, the configuration of second adjusting handle 344 and third adjusting handle 346 can be adjusted only by a force applied to second adjusting handle 344 and third adjusting handle 346 that overcomes the frictional resistance of the damping.
In some embodiments, a second locking member (not shown in the figures) is provided between second adjusting handle 344 and third adjusting handle 346. The second locking member is used to lock or release third adjusting handle 346 (and/or second adjusting handle 344) . When the second locking member is released, the position of second adjusting handle 344 with respect to third adjusting handle 346 can be adjusted manually or automatically. When the second locking member is locked, the position of second adjusting handle 344 (and/or the position of third adjusting handle 346) is locked.
In some embodiments, as shown in FIGs. 9, 25, 26, and 27, first adjusting handle 342 includes a first handle body 342a and a second handle body 342b. First handle body 342a is perpendicular or substantially perpendicular to second handle body 342b. In some embodiments, first handle body 342a and third transmission assembly 330 are rotatably connected. Stabilization motor 360 is coupled between  first handle body 342a and third transmission assembly 330. Second handle body 342b is connected to second adjusting handle 344. With various configurations of first handle body 342a and second handle body 342b, handle assembly 340 can have various forms. In some embodiments, third transmission assembly 330 is coupled between first handle body 342a and second handle body 342b, which may reduce movement interference among the components of handheld gimbal 300. First handle body 342a and second handle body 342b may provide protection to third transmission assembly 330. In some embodiments, third arm 332 and fourth arm 334 can be adjusted (e.g., being folded) to form a compact structure, which is more convenient for storage. Such configuration may further limit the movement area of payload 370 and reduce collisions between payload 370 and components of handheld gimbal 300.
In some embodiments, the length of first handle body 342a is adjustable. Alternatively or additionally, the length of the second handle body 342b is adjustable. When handheld gimbal 300 is in use, the lengths of first handle body 342a and second handle body 342b can be in an extended form. When handheld gimbal 300 is not in use, the length of first handle body 342a and/or the length of second handle body 342b can be reduced (by, for example, folding first handle body 342a and/or second handle body 342b) , so that handheld gimbal 300 is converted into a compact mode. Handheld gimbal 300 may be stored in the compact mode, which may reduce the packaging volume and transportation costs.
In some embodiments, as illustrated in FIGs. 9, 25, 26, and 27, third transmission assembly 330 is coupled between first handle body 342a and second handle body 342b. Handheld gimbal 300 is in a first mode (as shown in, e.g., FIG. 25) when second adjusting handle 344 and second handle body 342b are alignedare  aligned, and third adjusting handle 346 and first handle body 342a are arranged at the opposite sides of handheld gimbal 300. In this mode, the user can hold handheld gimbal 300 with both hands or hold it using one hand in an underslung position for a variety of shooting scenarios.
In some embodiments, as shown in FIG. 25, handheld gimbal 300 is in a two-hand mode in which the user can use both hands to hold third adjusting handle 346 and first handle body 342a, respectively. When handheld gimbal 300 is activated for stabilization, first transmission component 3200 (which corresponds to, for example, the Z axis) may be configured for adjusting the roll angle, second transmission assembly 320 (which corresponds to, for example, the Y axis) may be configured for adjusting the yaw angle, and third transmission assembly 330 (which corresponds to, for example, the X axis) may be configured for adjusting the pitch angle.
In some embodiments, as shown in FIG. 26, handheld gimbal 300 is in an underslung mode, and the user may hold third adjusting handle 346 using one hand. When handheld gimbal 300 is activated for stabilization, first transmission component 3200 (which corresponds to, for example, the Z axis) may be configured for adjusting the roll angle, third transmission assembly 330 (which corresponds to, for example, the Y axis) may be configured for adjusting the yaw angle, and second transmission assembly 320 (which corresponds to, for example, the X axis) may be configured for adjusting the pitch angle.
In some embodiments, as shown in FIG. 27, when second adjusting handle 344 and second handle body 342b form an angle (e.g., a right angle) , and third adjusting handle 346 and second adjusting handle 344 are aligned, handheld gimbal 300 is in a second mode. In this configuration, handheld gimbal 300 can be  held with one hand. When handheld gimbal 300 is activated for stabilization, first transmission component 3200 (which corresponds to, for example, the Z axis) may be configured for adjusting the roll angle, second transmission assembly 320 (which corresponds to, for example, the Y axis) may be configured for adjusting the yaw angle, and third transmission assembly 330 (which corresponds to, for example, the X axis) may be configured for adjusting the pitch angle.
In some embodiments, as illustrated in FIG. 9, when second adjusting handle 344 and second handle body 342b form an angle and third adjusting handle 346 and second adjusting handle 344 form an angle, handheld gimbal 300 is in a third mode. The user may hold first handle body 342a with one hand and hold third adjusting handle 346 (or another part) with the other hand. When handheld gimbal 300 is activated for stabilization, first transmission component 3200 (which corresponds to, for example, the Z axis) may be used for adjusting the roll angle, second transmission assembly 320 (which corresponds to, for example, the X axis) may be used for adjusting the pitch angle, and third transmission assembly 330 (which corresponds to, for example, the Y axis) may be used for adjusting the yaw angle.
In some embodiments, as shown in FIG. 27, third adjusting handle 346 includes one or more supporting component 346a. A supporting component 346a may be retracted and expanded. In some embodiments, third adjusting handle 346 includes three supporting component 346a. In this example, when supporting components 346a are opened to form a tripod-like structure, handheld gimbal 300 may stand on a firm structure on its own. When handheld gimbal 300 is activated for stabilization, first transmission component 3200 (which corresponds to, for example, the Z axis) may be used for adjusting the roll angle, second transmission assembly  320 (which corresponds to, for example, the Y axis) may be used for adjusting the yaw angle, and third transmission assembly 330 (which corresponds to, for example, the X axis) may be used for adjusting the pitch angle.
In some embodiments, handheld gimbal 300 includes a rigid body (not shown in the figures) and a universal gooseneck hitch (not shown in the figures) fixed on the rigid body. The rigid body is rotationally connected with third transmission assembly 330. The universal gooseneck hitch may be deformed, so that handheld gimbal 300 may have various configurations for the user to hold or for attaching to an external structure (or an external device) , which allows a variety of shooting applications. In some embodiments, handheld gimbal 300 may be attached to an external structure (or an external device such as a mobile device) via, for example, a clamping structure.
In some embodiments, the space formed by inner ring 3120 may accommodate a display of payload 370. Alternatively or additionally, the space formed by inner ring 3120 may accommodate lens 372 (as illustrated in FIG. 9) .
In some embodiments, first arm 322, third arm 332, fourth arm 334, first handle body 342a, and/or second handle body 342b have an adjustable length. In addition to the examples described elsewhere in this disclosure, first arm 322, third arm 332, fourth arm 334, first handle body 342a, and/or second handle body 342b may include other types of traditional adjustable structures (e.g., one or more detachable length adjustment components) .
In some embodiments, as shown in FIGs. 9, 10, and 25 to 27, payload 370 includes a lens 372, and payload 370 is detachably connected to first transmission component 3200 via connecting structure 3300. The user may view images presented in display 374 or a viewfinder of payload 370. When handheld gimbal 300  is activated for stabilization, the center of gravity line of payload 370 can be set in the rotation area of first transmission component 3200, so that during the use of handheld gimbal 300, the force of first transmission component 3200 is more uniform and the shake compensation can be performed more accurately.
In some embodiments, handheld gimbal 300 may include one or more receiving parts (e.g., one or more screw holes, positioning holes, etc. ) for receiving and connecting an accessory attached to handheld gimbal 300. For example, the user may attach a bracket for holding a mobile device to handheld gimbal 300 via the receiving part (s) so that the user can operate the mobile device while holding handheld gimbal 300.
In some embodiments, handheld gimbal 300 may include one or more components configured to mount handheld gimbal 300 onto a vehicle. Exemplary vehicles include cars, bicycles, motorcycles, trucks, ships, airplanes, unmanned aerial vehicles, etc. For example, handheld gimbal 300 may be attached to an unmanned aerial vehicle, which may capture one or more images through payload 370. Alternatively or additionally, the unmanned aerial vehicle may navigate and/or perform airborne operations (e.g., spraying pesticide) based on the images captured by payload 370.
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to the precise forms or embodiments disclosed. Modifications and adaptations will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed embodiments. Additionally, although aspects of the disclosed embodiments are described as being stored in memory, one skilled in the art will appreciate that these aspects can also be stored on other types of computer-readable media, such as secondary storage  devices, for example, hard disks or CD ROM, or other forms of RAM or ROM, USB media, DVD, Blu-ray, or other optical drive media.
Computer programs based on the written description and disclosed methods are within the skill of an experienced developer. The various programs or program modules can be created using any of the techniques known to one skilled in the art or can be designed in connection with existing software. For example, program sections or program modules can be designed in or by means of . Net Framework, . Net Compact Framework (and related languages, such as Visual Basic, C, etc. ) , Java, C++, Objective-C, HTML, HTML/AJAX combinations, XML, or HTML with included Java applets.
Moreover, while illustrative embodiments have been described herein, the scope of any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments) , adaptations and/or alterations as would be appreciated by those skilled in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application. The examples are to be construed as non-exclusive. Furthermore, the steps of the disclosed methods may be modified in any manner, including by reordering steps and/or inserting or deleting steps. It is intended, therefore, that the specification and examples be considered as illustrative only, with a true scope and spirit being indicated by the following claims and their full scope of equivalents.

Claims (44)

  1. A handheld gimbal, comprising:
    a body comprising one or more axis assemblies and a support platform configured to support a payload, wherein:
    the one or more axis assemblies comprise a rotary motor configured to move the support platform about an axis, and
    the rotary motor has an opening configured to accommodate at least one portion of a lens of the payload; and
    a handle assembly coupled to the body.
  2. The handheld gimbal of claim 1, wherein the support platform comprises a connector coupled to a body of the payload.
  3. The handheld gimbal of claim 2, wherein the connector comprises a rail configured to receive a plate mounted to the body of the payload.
  4. The handheld gimbal of claim 3, wherein the plate is a quick-release plate.
  5. The handheld gimbal of claim 2, wherein the connector further comprises a locking mechanism for locking the body of the payload to the support platform.
  6. The handheld gimbal of claim 2, wherein the connector comprises a magnetic component configured to magnetically couple to a component mounted to the body of the payload.
  7. The handheld gimbal of claim 1, wherein the support platform comprises a leveling mechanism configured to adjust a balance of the payload on the handheld gimbal.
  8. The handheld gimbal of claim 7, wherein the leveling mechanism comprises a guide rail and a sliding block configured to slide along the guide rail.
  9. The handheld gimbal of claim 1, wherein the support platform is connected to the rotary motor or a rigid structure connected to the rotary motor.
  10. The handheld gimbal of claim 1, wherein the support platform is rigidly connected to at least a portion of the lens of the payload.
  11. The handheld gimbal of claim 1, wherein the one or more axis assemblies comprise a roll axis assembly, the roll axis assembly comprising the rotary motor, wherein the rotary motor is configured to move the payload about a roll axis.
  12. The handheld gimbal of claim 11, wherein the one or more axis assemblies further comprise a yaw axis motor configured to move the payload about a yaw axis.
  13. The handheld gimbal of claim 11, wherein the one or more axis assemblies further comprise a pitch axis motor configured to move the payload about a pitch axis.
  14. The handheld gimbal of claim 13, wherein the one or more axis assemblies further comprise a yaw axis motor configured to move the payload about a yaw axis.
  15. The handheld gimbal of claim 14, wherein:
    the roll axis assembly is coupled to the support platform;
    the yaw axis assembly is coupled to the roll axis assembly;
    the pitch axis assembly is coupled to the yaw axis assembly; and
    the handle assembly is coupled to the pitch axis assembly.
  16. The handheld gimbal of claim 1, wherein the handle assembly comprises a plurality of parts comprising a first part and a second part, the first part being movable relative to the second part.
  17. The handheld gimbal of claim 16, wherein the first part is rotatable relative to the second part.
  18. The handheld gimbal of claim 17, wherein the first part is rotatable relative to the second part along a hinge coupling the first part and the second part.
  19. The handheld gimbal of claim 16, wherein the plurality of parts form a U shape.
  20. The handheld gimbal of claim 16, wherein:
    the first part is coupled to one of the one or more axis assemblies; and
    the handle assembly has a first state in which the second part is parallel to at least one portion of the first part.
  21. The handheld gimbal of claim 20, wherein the handle assembly has a second state in which the second part is perpendicular to the at least one portion of the first part.
  22. The handheld gimbal of claim 20, wherein the handle assembly has a second state in which the second part and the at least one portion of the first part form a 45 degree.
  23. The handheld gimbal of claim 1, wherein the handle assembly comprises a receiving part for accommodating at least one of a mounting component of a tripod, a mounting component of a monopod, or a mounting component of an extension rod.
  24. The handheld gimbal of claim 23, wherein the receiving part comprises an internally threaded bore having 1/4 inch threads for receiving a 1/4 inch screw.
  25. The handheld gimbal of claim 1, wherein the handheld gimbal further comprises a processor configured to control a motor of the one or more axis assemblies to move the support platform.
  26. The handheld gimbal of claim 25, wherein the handle assembly has a first state in which the payload is configured to capture an image in a portrait mode and a  second state in which the payload is configured to capture an image in a landscape mode.
  27. The handheld gimbal of claim 26, wherein the processor is configured to:
    detect a state change of the handle assembly from the first state to the second state; and
    control a motor of the one or more axis assemblies to move the support platform to a position at which the payload is configured to capture an image in the landscape mode.
  28. The handheld gimbal of claim 26, wherein the processor is configured to:
    detect a state change of the handle assembly from the second state to the first state; and
    control the motor of the one or more axis assemblies to move the support platform to a position at which the payload is configured to capture an image in the landscape mode.
  29. The handheld gimbal of claim 25, wherein the handheld gimbal further comprises a sensor configured to monitor an orientation of the handle assembly.
  30. The handheld gimbal of claim 29, wherein the processor is configured to control the motor of the one or more axis assemblies to move the support platform to a particular position based on data received from the sensor.
  31. The handheld gimbal of claim 29, wherein the sensor comprises at least one of an accelerometer or a gyroscope.
  32. The handheld gimbal of claim 29, wherein the sensor is inside the handheld assembly.
  33. The handheld gimbal of claim 1, wherein the handheld gimbal is operable to move at least one of the one or more axis assemblies to an underslung mode in which a highest point of the payload is below at least one part of the handle assembly.
  34. The handheld gimbal of claim 33, wherein the payload is an image capturing device, and wherein the payload is operable to capture an image in a portrait mode when the handheld gimbal is in the underslung mode.
  35. The handheld gimbal of claim 1, wherein the handle assembly comprises one or more receiving parts for receiving an accessory attached to the handle assembly.
  36. A method for moving a payload connected to a handheld gimbal, the method comprising:
    providing a gimbal assembly comprising a rotary motor configured to move a support platform rigidly connected to the payload about an axis, wherein the rotary motor has an opening configured to accommodate at least one portion of a lens of the payload; and
    controlling, by a processor of the handheld gimbal, the rotary motor to move the support platform to a particular position based on a control signal.
  37. The method of claim 36, further comprising:
    determining, by the processor, a state of a handle assembly of the handheld gimbal; and
    generating the control signal based on the determined state of the handle assembly.
  38. The method of claim 37, wherein determining a state of the handle assembly comprises determining an orientation of the handle assembly.
  39. The method of claim 38, wherein determining an orientation of the handle assembly comprises:
    receiving, from a sensor, data relating to an orientation of the handle assembly; and
    determining the orientation of the handle assembly based on the received data.
  40. The method of claim 37, wherein determining a state of the handle assembly comprises determining a configuration of the handle assembly.
  41. The method of claim 40, wherein determining a configuration of the handle assembly comprises:
    receiving, from a sensor, data relating to a configuration of the handle assembly; and
    determining the configuration of the handle assembly based on the received data.
  42. The method of claim 36, further comprising:
    receiving, from an input device, data relating to user input; and
    generating the control signal based on the received data.
  43. The method of claim 36, further comprising:
    receiving, from a user device via a communications port of the handheld gimbal, data relating to user input; and
    generating the control signal based on the received data.
  44. A non-transitory computer-readable medium storing instructions that, when executed, causes a computing device to perform a process for controlling a handheld gimbal, the process comprising:
    determining a state of a handle assembly of the handheld gimbal, wherein:
    the handheld gimbal comprises one or more axis assemblies and a support platform configured to support a payload;
    the one or more axis assemblies comprises a rotary motor configured to move the support platform about an axis; and
    the rotary motor has an opening configured to accommodate at least one portion of a lens of the payload; and
    controlling the one or more axis assemblies to move the support platform to a particular position based on the determined state of the handle assembly.
PCT/CN2021/142458 2020-12-31 2021-12-29 Handheld gimbal control method and handheld gimbal WO2022143767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/14228.1 2020-12-31
PCT/CN2020/142281 WO2022141451A1 (en) 2020-12-31 2020-12-31 Stabilizing mechanism, stabilizing device and photographing apparatus

Publications (1)

Publication Number Publication Date
WO2022143767A1 true WO2022143767A1 (en) 2022-07-07

Family

ID=82258917

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/142281 WO2022141451A1 (en) 2020-12-31 2020-12-31 Stabilizing mechanism, stabilizing device and photographing apparatus
PCT/CN2021/142458 WO2022143767A1 (en) 2020-12-31 2021-12-29 Handheld gimbal control method and handheld gimbal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142281 WO2022141451A1 (en) 2020-12-31 2020-12-31 Stabilizing mechanism, stabilizing device and photographing apparatus

Country Status (2)

Country Link
CN (1) CN114788252A (en)
WO (2) WO2022141451A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240027882A1 (en) * 2022-07-20 2024-01-25 Nodal Film Systems Llc Camera Head with Integrated PCB Stator Motors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283996A (en) * 1989-04-21 1990-11-21 Hitachi Ltd Hand strap of video camera
CN205244760U (en) * 2015-11-20 2016-05-18 深圳市道通智能航空技术有限公司 Both arms cloud platform
DE102015107483A1 (en) * 2015-05-12 2016-11-17 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Camera stabilization device and camera mounting device therefor
CN106678506A (en) * 2017-02-28 2017-05-17 深圳市越疆科技有限公司 Camera shooting stabilizing and fixing device
CN107390457A (en) * 2016-05-17 2017-11-24 零度智控(北京)智能科技有限公司 A kind of head assembly and hand-held device
CN207064996U (en) * 2017-05-26 2018-03-02 深圳市大疆创新科技有限公司 The moving camera of cradle head mechanism and the application cradle head mechanism
CN109828274A (en) * 2019-01-07 2019-05-31 深圳市道通智能航空技术有限公司 Adjust the method, apparatus and unmanned plane of the main detection direction of airborne radar

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2222730A1 (en) * 1973-03-21 1974-10-18 Pujol Gerard Stabilised platform for cine camera - esp for aerial photography, compensates for rotation along coordinate axes
US20100264283A1 (en) * 2007-09-14 2010-10-21 Marco Stoffel Support for compact video camera
EP2584402A3 (en) * 2011-10-21 2013-05-22 Seven Stones GmbH Support for camera
CN202647108U (en) * 2012-06-04 2013-01-02 深圳市大疆创新科技有限公司 Cradle head and aircraft comprising the same
CN108332023B (en) * 2017-01-19 2021-04-30 北京远度互联科技有限公司 Two-axis and three-axis pan-tilt and shooting equipment thereof
CN207634925U (en) * 2017-06-20 2018-07-20 深圳市道通智能航空技术有限公司 A kind of holder and the camera assembly with this holder
CN207421663U (en) * 2017-10-13 2018-05-29 深圳市道通智能航空技术有限公司 Holder and the camera assembly with this holder
WO2019178877A1 (en) * 2018-03-23 2019-09-26 深圳市大疆创新科技有限公司 Vertical stability enhancing mechanism and vertical stability enhancing device
WO2020042184A1 (en) * 2018-08-31 2020-03-05 深圳市大疆创新科技有限公司 Stabilizing apparatus and gimbal apparatus
WO2020056637A1 (en) * 2018-09-19 2020-03-26 深圳市大疆创新科技有限公司 Handheld gimbal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283996A (en) * 1989-04-21 1990-11-21 Hitachi Ltd Hand strap of video camera
DE102015107483A1 (en) * 2015-05-12 2016-11-17 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Camera stabilization device and camera mounting device therefor
CN205244760U (en) * 2015-11-20 2016-05-18 深圳市道通智能航空技术有限公司 Both arms cloud platform
CN107390457A (en) * 2016-05-17 2017-11-24 零度智控(北京)智能科技有限公司 A kind of head assembly and hand-held device
CN106678506A (en) * 2017-02-28 2017-05-17 深圳市越疆科技有限公司 Camera shooting stabilizing and fixing device
CN207064996U (en) * 2017-05-26 2018-03-02 深圳市大疆创新科技有限公司 The moving camera of cradle head mechanism and the application cradle head mechanism
CN109828274A (en) * 2019-01-07 2019-05-31 深圳市道通智能航空技术有限公司 Adjust the method, apparatus and unmanned plane of the main detection direction of airborne radar

Also Published As

Publication number Publication date
CN114788252A (en) 2022-07-22
WO2022141451A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US9574703B2 (en) Hand-held or vehicle mounted camera stabilization system
US9903533B2 (en) Triaxial stabilizer for mobile phone
WO2017206421A1 (en) Pan-tilt, imaging device and unmanned aerial vehicle
US20200401021A1 (en) Camera System and Mobile Terminal Using Same
EP3470952B1 (en) Controlling device, gimbal on which the controlling device is applied and method for controlling a gimbal
US9561870B2 (en) Carrier having non-orthogonal axes
KR101617808B1 (en) Installation for helicam gimbal having a function of controlling center of camera
US11209118B2 (en) Support and stabilization systems
CN110546587B (en) Method and apparatus for stabilizing a payload
US8154653B2 (en) Expandable two axis or three axis camera support
WO2022143767A1 (en) Handheld gimbal control method and handheld gimbal
WO2022077397A1 (en) Gimbal control method and gimbal
KR20120098535A (en) Position controller for removable optical element
US20180302566A1 (en) Camera device and gravity compensation method
JP2010533884A (en) Panorama head for photographic and video photographic equipment
KR102399007B1 (en) Gimbal device for mobile device
WO2022067548A1 (en) Gimbal control method and apparatus, gimbal and movable platform
KR200491352Y1 (en) Manual Stage of fixing device
WO2019007129A1 (en) Pan-tilt, and camera assembly and unmanned aerial vehicle having same
WO2021114280A1 (en) Follower and gimbal assembly
JP5632083B2 (en) Drive device
US8286931B2 (en) Suspension arrangement for directional equipment
JP7032068B2 (en) How to adjust the reference angle position of the rotating body of the optical unit with runout correction function
WO2021026729A1 (en) Holding device for photographing device and gimbal
JP2021165786A (en) Driving device, shake correction device, and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE