WO2022143619A1 - Thermal insulation - Google Patents

Thermal insulation Download PDF

Info

Publication number
WO2022143619A1
WO2022143619A1 PCT/CN2021/141950 CN2021141950W WO2022143619A1 WO 2022143619 A1 WO2022143619 A1 WO 2022143619A1 CN 2021141950 W CN2021141950 W CN 2021141950W WO 2022143619 A1 WO2022143619 A1 WO 2022143619A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cells
composition
battery module
self
battery
Prior art date
Application number
PCT/CN2021/141950
Other languages
French (fr)
Inventor
Lu Zou
Xuesi YAO
Yi Guo
Xiangyang Tai
Kainan ZHANG
Debo HONG
Original Assignee
Dow Silicones Corporation
Dow Global Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Silicones Corporation, Dow Global Technologies Llc filed Critical Dow Silicones Corporation
Publication of WO2022143619A1 publication Critical patent/WO2022143619A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/02Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • H01M50/26Assemblies sealed to each other in a non-detachable manner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams

Definitions

  • This disclosure relates to a process for thermally insulating adjacent battery cells, typically lithium-ion battery cells, with a self-levelling, non-syntactic silicone foam composition, a battery module having thermally insulated adjacent battery cells obtained or obtainable by the aforementioned process and the use of said composition in the thermally insulation of adjacent battery cells in a battery module and the uses of said battery modules.
  • Rechargeable battery cells such as lithium-ion batteries (also referred to as Li-ion batteries or LIBs) are increasingly being used in modules and/or packs of modules for a variety of applications such as electric-vehicle batteries (EVBs) in electric and hybrid (electric and petrol/diesel) powered vehicles with a view to reducing and ultimately eliminating green-house gas emissions therefrom.
  • EVBs are battery packs used to power the propulsion system of electric and hybrid vehicles and as such are designed to give power over sustained periods of time, as opposed to starting, lighting and ignition (SLI) batteries.
  • SLI lighting and ignition
  • Lithium-ion batteries are increasingly becoming the preferred option.
  • individual battery cells (sometimes referred to herein as cells) are aligned in battery modules and a battery pack is constituted by a plurality of electrically interconnected battery modules.
  • the three main constituents in a lithium-ion battery are:
  • lithium ions move from the anode through said electrolyte to the cathode during discharge, and in the reverse direction when being charged.
  • a wide variety of materials may be used as the anode in a lithium-ion battery but by far the most commercially popular is graphite.
  • the preferred material for the cathode in a lithium-ion battery is selected from one of three materials:
  • a layered oxide such as lithium cobalt oxide
  • a polyanion such as lithium iron phosphate
  • a spinel such as lithium manganese oxide
  • lithium-ion batteries Unlike rechargeable batteries with water-based electrolytes, lithium-ion batteries have a potentially hazardous pressurised flammable liquid electrolyte and require strict quality control during manufacture. A large variety of non-aqueous materials have been proposed and/or used as the electrolyte in a lithium-ion battery.
  • a suitable electrolyte is a mixture of organic carbonates e.g., ethylene carbonate and/or diethyl carbonate containing sources of lithium ions, for example lithium hexafluorophosphate (LiPF 6 ) , lithium hexafluoroarsenate monohydrate (LiAsF 6 ) , lithium perchlorate (LiClO 4 ) , lithium tetrafluoroborate (LiBF 4 ) , and lithium triflate (LiCF 3 SO 3 ) .
  • sources of lithium ions for example lithium hexafluorophosphate (LiPF 6 ) , lithium hexafluoroarsenate monohydrate (LiAsF 6 ) , lithium perchlorate (LiClO 4 ) , lithium tetrafluoroborate (LiBF 4 ) , and lithium triflate (LiCF 3 SO 3 ) .
  • LiPF 6 lithium hexafluorophosphate
  • EVBs are generally provided in battery packs which are fitted in suitable spaces within the vehicle such as in the car boot or luggage compartment.
  • the EVBs are designed to protect the occupants of a vehicle from the battery modules of lithium-ion batteries in case of a malfunction.
  • the overheating of a first cell is likely to propagate similar occurrences in adjacent cells resulting in multiple cells in a battery module overheating and failing potentially leading to a “thermal runaway” and cell rupture.
  • a thermal runaway is usually initiated by the malfunction of one of the battery cells in a battery module leading to that cell releasing heat abnormally and to a sudden increase in the battery cell’s temperature.
  • a threshold e.g., about 150°C or thereabouts
  • the constituents in the malfunctioning cell initiate a self-heating, autocatalytic, thermal decomposition exothermic reaction, where the temperature of the battery increases rapidly, e.g., at a rate of more than 20°C. per minute, with the temperature of the battery potentially reaching at least 400°C or even 1000°C.
  • the thermal energy released consequently heats up neighboring battery cells.
  • thermal runaway a “thermal runaway” within the battery module.
  • thermal runaway has commenced inside the battery module it cannot be controlled effectively, potentially resulting in combustive exothermic reactions followed by the release of large amounts of flammable electrolyte gas and battery material decomposition gas (e.g., CO 2 , CO, and H 2 ) and possible explosions.
  • flammable electrolyte gas and battery material decomposition gas e.g., CO 2 , CO, and H 2
  • lithium-ion battery cells are typically produced in three forms as cylindrical cells, as “prismatic” cells which are of a rectangular cuboidal shape and as pouch cells.
  • Providing suitable insulation materials, given the above requirements has proven difficult, not least because the insulation materials need to provide high temperature thermal insulation and meet the UL 94 V0 Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing, required by Underwriters Laboratories of the United States. Even if the insulation materials can achieve both, problems exist especially for battery modules of cylindrical cells because of the irregular geometry of the voids between adjacent cylindrical battery cells, particularly when the batteries are mounted horizontally.
  • coated aerogel felt materials between adjacent battery cells in a battery module to slow down heat transfer has been proposed specifically for battery modules of prismatic cells and pouch cells.
  • said coated aerogel felt materials cause amorphous aerogel silica to disperse into the working environment, requiring more protective equipment during cutting, packaging, storing and transporting processes.
  • these materials provide good initial thermal insulation performance, performance deteriorates dramatically because of a significant decrease in thickness occurring as the pressure within the battery module increases and they are only suitable for use in regular shaped situations so are not practical for cylindrical cells systems.
  • silicone rubber syntactic foams are silicone rubber foams filled with hollow spheres, usually made from glass, which are often referred to as microballoons or cenospheres.
  • a non-syntactic silicone foam composition means that the composition does not contain said hollow spheres, usually made from glass, which are often referred to as microballoons or cenospheres.
  • silicone rubber syntactic foams especially for filling irregular voids between cylindrical battery cells in a battery module can itself be problematic because of the presence of the glass spheres which typically render the foams before cure of a sufficiently high viscosity not to be self-levelling.
  • glass spheres are furthermore, easy to break during pre-cure mixing and handling, can easily be suspended on the surface resulting non-homogeneity, potentially requiring additional mixing.
  • a battery module comprising a housing with a lid in which is disposed a plurality of battery cells which are electrically connected but otherwise physically separated from each other;
  • fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite; and
  • a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule;
  • the battery cells are lithium-ion battery cells, alternatively cylindrical, prismatic or pouch lithium-ion battery cells, alternatively cylindrical, prismatic or pouch lithium-ion battery cells.
  • a battery module having thermally insulated adjacent battery cells obtained or obtainable by following a process comprising the steps of the steps of:
  • a battery module comprising a housing with a lid in which is disposed a plurality of battery cells which are electrically connected but otherwise physically separated from each other;
  • fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite; and
  • a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule;
  • the battery module is one of several battery modules in a battery pack.
  • a self-levelling, non-syntactic silicone foam composition comprising the following components:
  • fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite; and
  • a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule;
  • a battery module comprising a housing with a lid in which is disposed a plurality of battery cells which are electrically connected but otherwise physically separated from each other;
  • a catalyst comprising or consisting of a platinum group metal or a compound or complex thereof
  • fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite;
  • a cross-linker comprising an organosilicon compound having at least two alternatively at least three silicon bonded hydrogen groups per molecule
  • component (ii) is only in the part A composition and components (iv) and (v) are only in the part B composition.
  • the process for thermally insulating adjacent battery cells in a battery module as hereinbefore described comprises the steps of :
  • a battery module comprising a housing with a lid in which is disposed a plurality of battery cells which are electrically connected but otherwise physically separated from each other;
  • Each battery module as hereinbefore described is electrically interconnected with other battery modules in a battery pack. The electrical interconnection may be in series or in parallel, as required.
  • Each battery module as hereinbefore described comprises a housing containing a plurality of battery cells.
  • the individual battery cells in an article such as a battery module as hereinbefore described may be of any suitable shape, for example they may be prismatic, cylindrical or in a pouch form but must be electrically connectable with other cells within the battery module.
  • the cells may be of any type, it is believed the process is most suited for cylindrical cells, given the variable distances between adjacent cylindrical cells.
  • a battery module as hereinbefore described is required to provide mechanical and electrical interfaces to other battery modules and may also comprise, for the sake of example, cooling mechanisms, temperature monitors, voltage monitors and the like.
  • the housing of a battery module as hereinbefore described is sized and designed to both accommodate a predetermined number of individual battery cells and if desired said other systems.
  • Battery module housings may be made from any suitable material, for example metals or injection moulded plastics and may also incorporate insert moldings in which interconnection strips and terminals are moulded into plastic parts. Small components and/or sub-assemblies may be encapsulated in the housing by any suitable means e.g., by over molding for ease of storage and/or protection.
  • the housing of a battery module as hereinbefore described may comprise a thinning area or burst plate. This provides a weakened area in the housing which is designed to prevent the inner pressure within the battery module or battery to exceed a predetermined value. If a predetermined pressure value is reached due to the malfunction of one or more cells the weakening or burst plate will be forced open and will enable gases to escape thereby preventing further pressure build up within the battery cell or battery module concerned.
  • a battery pack comprising at least one battery module as described above, alternatively two or more battery modules as described above.
  • Battery pack designs for e.g., electric-vehicle batteries are complex but incorporate a combination of several simple mechanical and electrical component systems which perform the basic required functions of the pack.
  • the battery packs therefore additionally comprise one or more of the following: -
  • heat dissipation members which are disposed between battery cells, and at least one heat exchange member. whereby heat generated from the battery cells during the charge and discharge of the battery cells is removed by the heat exchange member.
  • the heat dissipation members may be made from a suitable thermally conductive material exhibiting high thermal conductivity and the heat exchange member is provided with one or more coolant channels for allowing a coolant such as a liquid or a gas to flow there;
  • Control systems to keep the battery modules/cells within a predefined specified operating range e.g., for monitoring the battery status and controlling energy flows and to protect them from abuse;
  • a battery pack as described above has to fit the space provided in the article for which it is providing power, e.g., a vehicle. This may dictate the shape of the battery modules and indeed individual cells and consequently the shape and/or form of the battery cells in a module and consequently the thermal insulation therebetween.
  • the thermal insulation may be of variable thickness dependent on the shape of the individual cells, especially in the case of cylindrical batteries.
  • the fact that the silicone foam composition herein is self-levelling means it can flow into the voids or voids between adjacent batteries irrespective of the geometry thereof and is able to completely fill all voids between batteries prior to and/or during foaming and cure to form thermally insulation filling all voids between adjacent batteries.
  • the thermal insulation once fully foamed and cured is able to thermally isolate adjacent batteries from each other taking the shape of the voids between them and therefore is able to ensure insulation adjacent batteries substantially without any cavities in the thermal insulation generated.
  • the battery pack forms part of the outer case of the end-product. The colours and textures of the battery pack housing must match the rest of the product.
  • Such designs may be required to incorporate a mechanical connection means to hold the battery pack in place.
  • Said mechanical connection means e.g., a latch
  • electrical terminals and the like must interface with other parts of the article to be powered by the battery pack.
  • Any suitable material may be used for this, for example ABS polymers may be utilized.
  • the thermal insulation described above is designed to keep a battery cell malfunction localised within said battery module and in the event of a fire to prevent or at least delay the potential for thermal runaway propagation within the whole battery module so as to provide safety protection in the event of the thermal runaway of one battery cell in said battery module.
  • the thermal runaway of the cell concerned can be isolated to prevent or delay the propagation of thermal runaway through further cells in the battery module.
  • the heat diffusion from the battery cell to the neighboring battery cells can be effectively insulated by the silicone foam insulation resulting from the process described herein.
  • the composite heat conduction plate of the disclosure can be disposed between the battery and the circuit board and between battery and the connecting circuit to reduce the battery heating problem caused by the circuit board and the circuit.
  • the heat generated causes a pressure build-up of gases initially within cell but ultimately if the cell fractures within the module.
  • a pressure build-up can be up to a pressure equal or greater than ( ⁇ ) 0.9MPa and is caused by a build-up of heated gas (such as CO 2 , CO, and H 2 ) and/or liquid e.g., electrolyte resulting from the failed cell and/or battery module.
  • temperatures may rise, for example, say 600°C in 400 seconds and a consequential pressure build up to, for the sake of example 0.85MPa, alternatively 0.9MPa or even greater may occur in the event of a malfunctioning cell.
  • a rupture disc housed on top of the cell is designed to rupture when the pressure reaches predetermined value such as e.g., 0.85MPa, alternatively 0.9MPa resulting in said gases and/or liquids e.g., electrolyte and decomposed liquid electrolytes being released from the malfunctioning cell.
  • the pressure will reduce to a more manageable level e.g., 0.3 MPa the cell remains at the excessively high temperature remains and if transferred to other cells in the battery module can initiate thermal run-away in the remaining cells in the battery module.
  • thermal insulation of silicone foam resulting from the method herein between adjacent battery cells avoids or delays thermal run-away to provide enough passenger evacuation time with the intention of providing enough time to enable the driver and passengers to exit a vehicle or the like.
  • self-levelling we mean the non-syntactic, silicone foam composition will flow under the force of gravity sufficiently to provide intimate contact between the composition and the outer surfaces of the battery cells in the housing. This significantly decreases the potential for cavities and fissures in the thermal insulation between adjacent battery cells in the housing.
  • the self-levelling also does away with the necessity of having to manipulate or tool the composition into difficult to reach positions within the housing and the self levelling nature means that prior to foaming and curing the self-levelling, non-syntactic silicone foam composition can surround battery cells relying on the effect of gravity and then can expand to fill the remainder of the housing when the composition foams and cures.
  • the process provides a thermally insulating foam between battery cells in said battery module such that in the event of a malfunction the thermal insulation will prevent the excessive heat increase from being immediately transferred to other nearby/adjacent battery cells.
  • the aforementioned self-levelling, non-syntactic silicone foam composition is dispensed into the housing.
  • the self-levelling, non-syntactic silicone foam composition is most likely to be stored in two or more parts as discussed in more detail below.
  • the different parts are mixed together in a pre-determined weight ratio.
  • the two parts may be pumped from storage to a suitable mixing and dispensing unit e.g., a static mixer and then after mixing is transported to a suitable dispensing means Typically once the parts A and B compositions are mixed, foaming will commence.
  • the foaming composition may be transported to the dispensing head by a pump to control the cell size of the silicone elastomer foam generated.
  • the dispensing head may be controlled by using a pre-programmed or programable robot dispensing head which can be used to apply the composition to the target module.
  • the dispensing head may, for example, be programed to apply an optimized amount of foam at a pre-determined dispensing flow rate. Typically, a predetermined amount of the self-levelling, non-syntactic silicone foam composition is dispensed into each housing.
  • step 3 of the process the dispensed self-levelling, non-syntactic silicone foam composition is allowed to flow within the housing and self-level and as such fill voids between adjacent battery cells in said battery module.
  • step 4 the self-levelling, non-syntactic silicone foam composition is allowed/enabled to cure and foam and consequently to expand to fill the voids between adjacent battery cells and if desired up to the ceiling of the housing.
  • the process is utilized for modules designed to have battery cells positioned in horizontal arrays.
  • battery cells in horizontal arrays because these can provide improved packing and hence better energy density as well as reduced cell rotation and enhanced anti-vibration properties.
  • the arrays of batteries are often designed in multiple layers with adjacent layers separated by fluid (e.g., water) cooling manifolds which are provided to extract heat generated by the battery cells.
  • fluid e.g., water
  • Such arrangements whilst technically advantageous, makes them far more difficult for encapsulants to flow and fill complex voids when cylindrical batteries are placed horizontally within the battery module, because the horizonal battery cell and water-cooling manifold combination makes it far more difficult to ensure encapsulation is achieved without voids being present.
  • a battery module housing having a top, a base and two pairs of opposite sides between the top and the base.
  • the two pairs of opposite sides between the top and the base define an enclosure.
  • One pair of the opposite sides (which are parallel to each other) comprise opposite electrical mountings adapted to engage (mate with) a plurality of cylindrical battery cells in a horizontal array in said enclosure such that when correctly mounted (e.g., each cylindrical battery cell is connected to the correct negative and positive electrical mounting) an electrical circuit is created.
  • each cylindrical battery cell is connected to the correct negative and positive electrical mounting
  • voids have irregularly shaped cross-sections in view of the cylindrical shape of the battery cells between which they occur.
  • the irregular shapes depend on the number of battery cells each battery cell is adjacent to e.g., dependent on the position and geometry of the of cylindrical battery cells relative to each other.
  • each cylindrical battery cell could have e.g., 3, 5 or even 7 adjacent cylindrical battery cells and the cross-sections of the resulting voids result from their positioning relative to each other.
  • the shape of a void between two adjacent battery cells supported on a horizontal surface would be biconcave.
  • the horizontally mounted battery cells are divided into layers/sections by the inclusion of one or more fluid cooling manifold (s) separating adjacent layers of cylindrical battery cells.
  • a process for thermally insulating adjacent battery cells in a battery module as hereinbefore described may be utilized for modules wherein the adjacent battery cells are retained in one or more horizontal arrays in a battery module comprising (I) providing a battery module housing having a top and a base and two pairs of opposite sides between the top and the base, where the two pairs of opposite sides between the top and the base, define an enclosure and one pair of the opposite sides comprise electrical mountings adapted to receive a plurality of cylindrical battery cells in a horizontal array in said enclosure;
  • the enclosure may be filled with a curable silicone foam composition using a foam mixing and/or generating apparatus having one or more foam dispensing tips which are introduced into the enclosure.
  • the foam dispensing tips introduce foam in the enclosure in void (s) between the batteries and between the batteries and the walls of the enclosure at the bottom of the enclosure thereby allowing the foam to be introduced from the base and gradually spreading and filling void (s) between adjacent batteries and between the batteries and the outer walls of the enclosure.
  • the dispensing tips being positioned between the batteries and an enclosure wall.
  • the dispensing tips may be inserting the dispensing tips close to the base and maintaining the tip in the same position until the surrounding volume has been filled and then withdrawing the dispensing tip from the enclosure and enabling the foamed composition to self-level and subsequently cure.
  • the dispensing tip can be gradually withdrawn from the enclosure by gradually moving the tip toward the top of the enclosure as the voids are filled.
  • the cavities can be filled layer by layer such that the cavities in the bottom most layer of batteries are filled with the composition and the composition is allowed to self-level and begin curing and then the tips are raised to the next level and the process is repeated.
  • tips may be inserted through gaps between adjacent water-cooling manifolds to assist in the filling of the central cavities between batteries in the enclosure. They may be designed to penetrate up to a predefined depth in the enclosure and in order to compliment the other tips and dispense and assist in the filling of the voids between batteries.
  • a base mat of thermally insulating material e.g., a prefabricated cured silicone foam base mat may be initially placed on the base of the enclosure.
  • the base mat may be a fluid cooling manifold and then battery cells can be electrically mounted and subsequently silicone foam composition may be introduced into the enclosure to fill the voids to thermally insulate the battery cells.
  • a battery module comprising horizontal battery arrays may comprise two to five layers of fluid cooling manifolds per module. These being vertically separated by layers of battery cells thermally insulated as hereinbefore described.
  • compositions described herein foam and cure when mixed at room temperature and humidity but heating may be used to accelerate cure if desired.
  • cure takes place at room temperature over a period of from 15 minutes to 1 hour, alternatively from 15 to 45 minutes, alternatively from 15 minutes to 40 minutes.
  • the resulting thermal insulation may undergo post-curing.
  • Post-curing can be utilized to stabilize the performance of thermal insulation material in a short time.
  • Post cure if utilized is typically undertaken at a temperature between room temperature (about 23 °C to 25°C) and about 75°C, alternatively about 40 °C and 70 °C, alternatively between 50 and 70°C for a period of e.g., 30 minutes to 3 hours, e.g., 1 hour.
  • the self-levelling, non-syntactic silicone foam composition, described herein, after parts A and B had been mixed, may be of any suitable viscosity where the composition is able to self-level in the module subsequent to being dispensed therein; for example the composition may have a viscosity of from 500 to 20,000mPa. s at 25°C, alternatively 500 to 15,000mPa. s at 25°C, 500 to 10,000mPa. s at 25°C, alternatively 500 to 5,000mPa. s at 25°C.
  • the viscosity measurements of the final composition after parts A and B had been mixed were carried out in accordance with ASTM D1084 using a Brookfield TM spindle LV-3 at 100 rpm.
  • the viscosity measurement is taken prior to or at the start of the cure of the self-levelling, non-syntactic silicone foam composition, or immediately after dispensing.
  • the viscosity of the final composition after parts A and B have been mixed may be carried out in accordance with ASTM D1084 using a Brookfield TM spindle LV-3 at 100rpm.
  • One or more components of the self-levelling, non-syntactic silicone foam composition may have a viscosity which is greater than the overall viscosity of the composition, providing when all components and additives are mixed together the viscosity of the final composition is within the range specified.
  • the viscosity of the self-levelling, non-syntactic silicone foam composition is greater than (>) the viscosity of each individual component present.
  • the self-levelling, non-syntactic silicone foam composition used in the process described herein comprises five components and may, if desired, contain one or more additives as discussed below.
  • Component (i) of the self-levelling, non-syntactic silicone foam composition used in the process described herein is one or more polydiorganosiloxanes having at least two unsaturated groups per molecule, alternatively at least three unsaturated groups per molecule selected from alkenyl and/or alkynyl groups;
  • the unsaturated groups of component (i) may be terminal, pendent, or in both locations in component (i) .
  • the unsaturated group may be an alkenyl group and/or an alkynyl group.
  • Alkenyl is exemplified by, but not limited to, vinyl, allyl, 2-methyl-allyl, propenyl, and hexenyl groups.
  • Alkenyl groups may have 2 to 30, alternatively 2 to 24, alternatively 2 to 20, alternatively 2 to 12, alternatively 2 to 10, and alternatively 2 to 6 carbon atoms.
  • Alkynyl may be exemplified by, but not limited to, ethynyl, propynyl, and butynyl groups.
  • Alkynyl groups may have 2 to 30, alternatively 2 to 24, alternatively 2 to 20, alternatively 2 to 12, alternatively 2 to 10, and alternatively 2 to 6 carbon atoms.
  • Component (i) has multiple units of the formula (I) :
  • each R is independently selected from an aliphatic hydrocarbyl, aromatic hydrocarbyl, or organyl group (that is any organic substituent group, regardless of functional type, having one free valence at a carbon atom) .
  • Saturated aliphatic hydrocarbyls are exemplified by, but not limited to alkyl groups such as methyl, ethyl, propyl, pentyl, octyl, undecyl, and octadecyl and cycloalkyl groups such as cyclohexyl.
  • Unsaturated aliphatic hydrocarbyls are exemplified by, but not limited to the alkenyl groups and alkynyl groups described above.
  • Aromatic hydrocarbon groups are exemplified by, but not limited to, phenyl, tolyl, xylyl, benzyl, styryl, and 2-phenylethyl.
  • Organyl groups are exemplified by, but not limited to, halogenated alkyl groups (excluding fluoro containing groups) such as chloromethyl and 3-chloropropyl; nitrogen containing groups such as amino groups, amido groups, imino groups, imido groups; oxygen containing groups such as polyoxyalkylene groups, carbonyl groups, alkoxy groups and hydroxyl groups.
  • Further organyl groups may include sulfur containing groups, phosphorus containing groups, boron containing groups. The subscript “a” is 0, 1, 2 or 3.
  • Siloxy units may be described by a shorthand (abbreviated) nomenclature, namely -"M, " “D, “ “T, “ and “Q” , when R is a methyl group.
  • the polydiorganosiloxane of component (i) is substantially linear but may contain a proportion of however, there can be some branching due to the presence of T units (as previously described) within the molecule, hence the average value of a in structure (I) is about 2.
  • Examples of typical groups on component (i) include mainly alkenyl, alkynyl, alkyl, and/or aryl groups, alternatively alkenyl, alkyl, and/or aryl groups.
  • the groups may be in pendent position (on a D or T siloxy unit) or may be terminal (on an M siloxy unit) .
  • the silicon-bonded organic groups attached to component (i) other than alkenyl groups are typically selected from monovalent saturated hydrocarbon groups, which typically contain from 1 to 10 carbon atoms, and monovalent aromatic hydrocarbon groups, which typically contain from 6 to 12 carbon atoms, which are unsubstituted or substituted with the groups that do not interfere with curing of this inventive composition, such as halogen atoms.
  • Preferred species of the silicon-bonded organic groups are, for example, alkyl groups such as methyl, ethyl, and propyl; and aryl groups such as phenyl.
  • Component (i) may be selected from polydimethylsiloxanes, alkylmethylpolysiloxanes, alkylarylpolysiloxanes or copolymers thereof (where reference to alkyl means an alkyl group having two or more carbons) containing e.g. alkenyl and/or alkynyl groups and may have any suitable terminal groups, for example, they may be trialkyl terminated, alkenyldialkyl terminated alkynyldialkyl terminated or may be terminated with any other suitable terminal group combination providing each polymer contains at least two unsaturated groups selected from alkenyl and alkynyl groups per molecule. In one embodiment the terminal groups of such a polymer have no silanol terminal groups.
  • component (i) may, for the sake of example, be:
  • dialkylalkenyl terminated polydimethylsiloxane e.g. dimethylvinyl terminated polydimethylsiloxane
  • a dialkylalkenyl terminated dimethylmethylphenylsiloxane e.g.
  • dimethylvinyl terminated dimethylmethylphenylsiloxane a trialkyl terminated dimethylmethylvinyl polysiloxane; a dialkylvinyl terminated dimethylmethylvinyl polysiloxane copolymer; a dialkylvinyl terminated methylphenylpolysiloxane, a dialkylalkenyl terminated methylvinylmethylphenylsiloxane; a dialkylalkenyl terminated methylvinyldiphenylsiloxane; a dialkylalkenyl terminated methylvinyl methylphenyl dimethylsiloxane; a trimethyl terminated methylvinyl methylphenylsiloxane; a trimethyl terminated methylvinyl diphenylsiloxane; or a trimethyl terminated methylvinyl methylphenyl dimethylsiloxane.
  • the generally substantially linear organopolysiloxane of component (i) is typically a flowable liquid.
  • the substantially linear organopolysiloxane has a viscosity of from having a viscosity of from 100 to 20,000 mPa. s at 25°C mPa. s, alternatively from 200 to 2000 mPa. s, at 25 °C. Viscosity may be measured at 25 °Cusing either a Brookfield TM rotational viscometer with spindle LV-3 (designed for viscosities in the range between 200-400,000 mPa.
  • Component (i) may be present in the composition in an amount of from 30 to 70 wt. %of the composition, alternatively 30 to 65 wt. %of the composition. The fact that component (i) has a relatively low viscosity value of from 100 to 20,000 mPa.
  • component (v) the cross-linker is resinous and has numerous terminal groups comprising Si-H groups.
  • Component (ii) of the self-levelling, non-syntactic silicone foam composition described herein is a catalyst comprising or consisting of a platinum group metal or a compound or complex thereof.
  • platinum group it is meant ruthenium, rhodium, palladium, osmium, iridium and platinum. Platinum and platinum compounds or complexes are preferred due to the high activity level of these catalysts in hydrosilylation reactions.
  • Examples of preferred hydrosilylation catalysts (ii) are platinum based catalysts, for example, platinum black, platinum oxide (Adams catalyst) , platinum on various solid supports, chloroplatinic acids, e.g. hexachloroplatinic acid (Pt oxidation state IV) (Speier catalyst) , chloroplatinic acid in solutions of alcohols e.g. isooctanol or amyl alcohol (Lamoreaux catalyst) , and complexes of chloroplatinic acid with ethylenically unsaturated compounds such as olefins and organosiloxanes containing ethylenically unsaturated silicon-bonded hydrocarbon groups, e.g.
  • platinum based catalysts for example, platinum black, platinum oxide (Adams catalyst) , platinum on various solid supports, chloroplatinic acids, e.g. hexachloroplatinic acid (Pt oxidation state IV) (Speier catalyst) , chloroplatinic
  • Soluble platinum compounds that can be used include, for example, the platinum-olefin complexes of the formulae (PtCl 2 . (olefin) 2 and H (PtCl 3 . olefin) , preference being given in this context to the use of alkenes having 2 to 8 carbon atoms, such as ethylene, propylene, isomers of butene and of octene, or cycloalkanes having 5 to 7 carbon atoms, such as cyclopentene, cyclohexene, and cycloheptene.
  • Platinum catalysts are, for the sake of example a platinum-cyclopropane complex of the formula (PtCl 2 C 3 H 6 ) 2 , the reaction products of hexachloroplatinic acid with alcohols, ethers, and aldehydes or mixtures thereof, or the reaction product of hexachloroplatinic acid and/or its conversion products with vinyl-containing siloxanes such as methylvinylcyclotetrasiloxane in the presence of sodium bicarbonate in ethanolic solution –.
  • Platinum catalysts with phosphorus, sulfur, and amine ligands can be used as well, e.g. (Ph 3 P) 2 PtCl 2 ; and complexes of platinum with vinylsiloxanes, such as sym-divinyltetramethyldisiloxane.
  • a platinum-containing catalyst which is obtained by a process comprising reacting chloroplatinic acid with an aliphatically unsaturated organosilicon compound, such as divinyltetramethyldisiloxane;
  • alkene-platinum-silyl complexes as described in US Pat. No. 6,605,734 such as (COD) Pt (SiMeCl 2 ) 2 where “COD” is 1, 5-cyclooctadiene; and/or
  • (v) Karstedt's catalyst, a platinum divinyl tetramethyl disiloxane complex typically containing about 1 wt. %of platinum typically in a vinyl siloxane polymer. Solvents such as toluene and the like organic solvents have been used historically as alternatives but the use of vinyl siloxane polymers by far the preferred choice. These are described in US3,715,334 and US3,814,730.
  • component (ii) may be selected from co-ordination compounds of platinum.
  • hexachloroplatinic acid and its conversion products with vinyl-containing siloxanes, Karstedt's catalysts and Speier catalysts are preferred.
  • the hydrosilylation catalyst (ii) is present in the total composition in a catalytic amount, i.e., an amount or quantity sufficient to promote a reaction or curing thereof at desired conditions. Varying levels of the hydrosilylation catalyst (ii) can be used to tailor reaction rate and cure kinetics.
  • the catalytic amount of the hydrosilylation catalyst (ii) is generally between 0.01 ppm, and 10,000 parts by weight of platinum-group metal, per million parts (ppm) , based on the combined weight of the composition components (i) and (v) ; alternatively, between 0.01 and 5000 ppm; alternatively, between 0.01 and 3,000 ppm, and alternatively between 0.01 and 1,000 ppm.
  • the catalytic amount of the catalyst may range from 0.01 to 1,000 ppm, alternatively 0.01 to 750 ppm, alternatively 0.01 to 500 ppm and alternatively 0.01 to 100 ppm of metal based on the weight of the composition.
  • the ranges may relate solely to the metal content within the catalyst or to the catalyst altogether (including its ligands) as specified, but typically these ranges relate solely to the metal content within the catalyst.
  • the catalyst may be added as a single species or as a mixture of two or more different species. Typically, dependent on the form/concentration in which the catalyst package is provided the amount of catalyst present will be within the range of from 0.001 to 3.0 wt. %of the composition.
  • Component (iii) of the self-levelling, non-syntactic silicone foam composition used in the process described herein is a chemical blowing agent, a physical blowing agent or a mixture of a chemical blowing agent and a physical blowing agent.
  • the foam composition may be mechanically blown or may comprise chemical and/or physical blowing agents.
  • suitable physical blowing agents including those which are non-flammable and/or inert gas at 0°C (zero °C) may be utilized.
  • component (iii) comprises a chemical blowing agent
  • it comprises one or more hydroxyl-containing blowing agents which will react with cross-linker (v) in the presence of component (ii) the catalyst.
  • component (iii) is a chemical blowing agent, comprising one or more hydroxyl-containing blowing agents
  • each hydroxyl-containing blowing agent has at least one hydroxyl (OH) group, alternatively at least two OH groups, and alternatively three or more OH groups.
  • the OH group (s) can react with the Si-H groups of component (v) , thereby generating hydrogen gas, which is relied upon to generate the foam.
  • Each hydroxyl-containing blowing agent may be a suitable alcohol.
  • These may be selected from aliphatic organic alcohols having from 1 to 12 carbon atoms such as low molecular weight alcohols including, but are not limited to, methanol, ethanol, propanol, isopropanol, and the like or alternatively, benzyl alcohol.
  • the hydroxyl-containing blowing agent may be a diol.
  • suitable diols include, but are not limited to, methylene glycol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane diol, bisphenol A, 1, 4-butanediol, 1, 3-propanediol, 1, 5-pentanediol, 1, 7-heptanediol, 1, 2-hexanediol, triethylene glycol, tripropylene glycol neopentyl glycol, and combinations thereof.
  • the hydroxyl-containing blowing agent may be a triol.
  • component (iii) when a hydroxyl-containing blowing agent is selected from the group of low-boiling alcohols. Most (but not all) of such alcohols have a boiling point lower than about 120°C.
  • the alcohols may or may not be anhydrous, but anhydrous alcohols (containing less than 1 wt. %) water based on weight of alcohol is generally preferred.
  • Other suitable blowing agents are described in US4550125, US6476080, and US20140024731, which are incorporated herein by reference.
  • component (iii) when component (iii) is a chemical blowing agent, the chemical blowing agent may be selected from the group of Si-OH polymers. In certain embodiments, when a chemical blowing agent, component (iii) is selected from the group consisting of organosilanes and organosiloxanes having at least one silanol (Si-OH) group. Such compounds can have structures similar to those for the polymers described above for component (i) .
  • Suitable OH-functional compounds include dialkyl siloxanes, such as OH-terminated dimethyl siloxanes.
  • Such siloxanes may have a relatively low viscosity, such as about 15 to about 20,000mPa. s, about 15 to about 10,000mPa. s, about 15 to about 5,000 mPa. s, about 15 to about 1,000 mPa. s, or about 15 to about 100 mPa. s. measured at 25°C. Viscosity may be measured at 25 °C using either a Brookfield TM rotational viscometer with spindle LV-3 (designed for viscosities in the range between -200-400,000mPa.
  • Brookfield TM rotational viscometer with spindle LV-1 designed for viscosities in the range between 15 -20,000mPa. s) for viscosities less than 200 mPa. s and adapting the speed i.e. shear rate according to the polymer viscosity, for example from 0.005 s -1 to 1s -1 (0.3 to 60 rpm) with, in this instance, 1s -1 preferred.
  • component (iii) may comprise a physical liquid blowing agent.
  • component (iii) is a physical liquid blowing agent
  • said physical liquid blowing agent is tailored to undergo a phase change at the temperature of application.
  • component (iii) is a physical blowing agent
  • said phase change at the temperature of application is the main source for the gas that leads to the formation of the foam by replacing all or most of the hydrogen gas generated when using a chemical blowing agent.
  • component (iii) is a physical blowing agent
  • the physical blowing agent chosen is selected in accordance with its boiling point such that it undergoes a phase change from a liquid to a gaseous state during exposure to atmospheric pressure and the temperature of the cure process, e.g. a temperature less than or equal to 10°C, alternatively less than or equal to 20°C, alternatively less than or equal to 30°C, alternatively less than or equal to 40°C, alternatively less than or equal to 50°C, alternatively less than or equal to 60°C, alternatively less than or equal to 70°C, alternatively less than or equal to 80°C, alternatively less than or equal to 90°C, alternatively less than or equal to 100°C.
  • the physical blowing agent chosen may have a boiling point of between 10 and 30°C, i.e., such that it undergoes a phase change from a liquid to a gaseous state during exposure to atmospheric pressure within this temperature range.
  • the amount of physical blowing agent utilized, when component (iii) is a physical blowing agent, can vary depending on the desired outcome.
  • the amount of physical blowing agent can be varied to tailor final foam density and foam rise profile of the resulting thermal insulation.
  • Useful physical blowing agents include hydrocarbons, such as pentane, hexane, halogenated, more particularly chlorinated and/or fluorinated, hydrocarbons, for example methylene chloride, chloroform, trichloroethane, chlorofluorocarbons, hydrochlorofluorocarbons (HCFCs) , ethers, ketones and esters, for example methyl formate, ethyl formate, methyl acetate or ethyl acetate, in liquid form or air, nitrogen or carbon dioxide as gases.
  • hydrocarbons such as pentane, hexane, halogenated, more particularly chlorinated and/or fluorinated
  • hydrocarbons for example methylene chloride, chloroform, trichloroethane, chlorofluorocarbons, hydrochlorofluorocarbons (HCFCs) , ethers, ketones and esters, for example methyl formate, ethyl formate,
  • the physical blowing agent comprises a compound selected from the group consisting of propane, butane, isobutane, isobutene, isopentane, dimethylether or mixtures thereof. In many embodiments, the blowing agent comprises a compound that is inert.
  • the physical blowing agent comprises a hydrofluorocarbon (HFC) .
  • HFC hydrofluorocarbon
  • “Hydrofluorocarbon” and “HFC” are interchangeable terms and refer to an organic compound containing hydrogen, carbon, and fluorine. The compound is substantially free of halogens other than fluorine.
  • HFCs include aliphatic compounds such as 1, 1, 1, 3, 3-pentafluoropropane, 1, 1, 1, 3, 3-pentafluorobutane, 1-fluorobutane, nonafluorocyclopentane, perfluoro-2-methylbutane, 1-fluorohexane, perfluoro-2, 3-dimethylbutane, perfluoro-1, 2-dimethylcyclobutane, perfluorohexane, perfluoroisohexane, perfluorocyclohexane, perfluoroheptane, perfluoroethylcyclohexane, perfluoro-1, 3-dimethyl cyclohexane, and perfluorooctane; as well as aromatic compounds such as fluorobenzene, 1, 2-difluorobenzene; 1, 4-difluorobenzene, 1, 3-difluorobenzene; 1, 3, 5-trifluorobenzene; 1,
  • compounds such as 1, 1, 1, 3, 3-pentafluoropropane and 1, 1, 1, 3, 3-pentafluorobutane may be preferred due to their increasing availability and ease of use, with 1, 1, 1, 3, 3-pentafluorobutane having a higher boiling point than 1, 1, 1, 3, 3-pentafluoropropane which may be useful in certain applications.
  • HFCs having a boiling point higher than 30°C, such as 1, 1, 1, 3, 3-pentafluorobutane may be desirable because they do not require liquefaction during foam processing.
  • component (iii) when component (iii) is a physical blowing agent, component (iii) comprises 1, 1, 1, 3, 3-pentafluoropropane.
  • component (iii) of the self-levelling, non-syntactic silicone foam composition in the process described herein may alternatively be a mixture of a chemical blowing agent as described above and of a physical blowing agent as described above.
  • Component (iii) is typically present in the composition in an amount of from 2 to about 20 wt. %of the composition, alternatively from 2 to about 15 wt. %of the composition.
  • Component (iv) of the self-levelling, non-syntactic silicone foam composition in the process described herein is one or more fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite.
  • the fire-retardant fillers may optionally also comprise fumed silica.
  • the fire-retardant fillers, when present, may optionally be surface treated with a treating agent.
  • the treating agents used may be selected from one or more of, for example, organosilanes, polydiorganosiloxanes, or organosilazanes, hexaalkyl disilazane, short chain siloxane diols, a fatty acid or a fatty acid ester such as a stearate to render one or more of the filler (s) hydrophobic and therefore easier to handle and obtain a homogeneous mixture with the other components.
  • liquid hydroxyl-terminated polydiorganosiloxane containing an average from 2 to 20 repeating units of diorganosiloxane in each molecule which may optionally contain fluoro groups and or fluoro containing groups, if desired, hexaorganodisiloxane, hexaorganodisilazane, and the like.
  • Component (iv) the filler, may be present in any suitable amount for example from 10 to 50 wt. %of the composition.
  • Component (v) of the self-levelling, non-syntactic silicone foam composition described herein is a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule.
  • Component (v) operates as a cross-linker for curing component (i) , by the addition reaction of the silicon-bonded hydrogen atoms with the unsaturated groups in component (i) catalysed by component (ii) described above.
  • Component (v) normally contains three or more silicon-bonded hydrogen atoms so that the hydrogen atoms of this component can sufficiently react with the unsaturated groups of component (i) to form a network structure therewith and thereby cure the composition.
  • Some or all of Component (v) may alternatively have two silicon bonded hydrogen atoms per molecule when component (i) has greater than (>) 2 unsaturated groups, alternatively alkenyl groups per molecule.
  • Component (v) may be a siloxane e.g., an organohydrogensiloxane or a silane e.g., a monosilane, disilane, trisilane, or polysilane providing each molecule has at least two, alternatively at least three Si-H groups per molecule.
  • the silicon-bonded hydrogen atoms can be located at terminal, pendant, or at both terminal and pendant positions.
  • Cyclosilanes and cyclosiloxanes typically have from 3 to 12 silicon atoms, alternatively from 3 to 10 silicon atoms, alternatively from 3 to 4 silicon atoms.
  • component (v) when component (v) is a siloxane it may comprise an organohydrogensiloxane, which can be a disiloxane, trisiloxane, or polysiloxane.
  • the organohydrogensiloxane may comprise any combination of M, D, T and/or Q siloxy units, so long as component (v) includes at least two silicon-bonded hydrogen atoms.
  • These siloxy units can be combined in various manners to form cyclic, linear, branched and/or resinous (three-dimensional networked) structures.
  • Component (v) may be monomeric, polymeric, oligomeric, linear, branched, cyclic, and/or resinous depending on the selection of M, D, T, and/or Q units.
  • component (v) examples include but are not limited to:
  • trimethylsiloxy-terminated methylhydrogenpolysiloxane trimethylsiloxy-terminated polydimethylsiloxane-methylhydrogensiloxane, dimethylhydrogensiloxy-terminated dimethylsiloxane-methylhydrogensiloxane copolymers, dimethylsiloxane-methylhydrogensiloxane cyclic copolymers, copolymers composed of (CH 3 ) 2 HSiO 1/2 units and SiO 4/2 units, copolymers composed of (CH 3 ) 3 SiO 1/2 units, (CH 3 ) 2 HSiO 1/2 units, and SiO 4/2 units; and copolymers containing (CH 3 ) 2 HSiO 1/2 units and (R 2 Z) d (R 3 ) e SiO (4-d-e) /2 as described above.
  • the cross-linker is selected from one or more of said copolymers composed of (CH 3 ) 2 HSiO 1/2 units and SiO 4/2 units, Copolymers composed of (CH 3 ) 3 SiO 1/2 units, (CH 3 ) 2 HSiO 1/2 units, and SiO 4/2 units; and copolymers containing (CH 3 ) 2 HSiO 1/2 units and (R 2 Z) d (R 3 ) e SiO (4-d-e) /2 as described above, said copolymers may be or are silicone resins. This is preferred because the high proportion of Si-H groups leads to an increased cross-link density in the final cured product.
  • viscosity of this component is not specifically restricted, it may typically be from 5 -1,000 mPa. s at 25°C, alternatively 5 -500 mPa. s at 25°C, alternatively 5 -100 mPa. s at 25°C, alternatively 5 -50mPa. s at 25°C, alternatively 5-20 mPa. s at 25°C using a Brookfield TM rotational viscometer with spindle LV-1 (designed for viscosities in the range between 15 -20,000mPa. s) and adapting the speed i.e.
  • shear rate according to the polymer viscosity for example from 0.005 s -1 to 1s -1 (0.3 to 60 rpm) with, in this instance, 1s -1 preferred , or a Brookfield TM rotational viscometer with spindle YULA-15 (E) (designed for viscosities in the range between 1 -2000 mPa. s) for viscosities less than 15 mPa. s and again adapting the speed i.e. shear rate according to the polymer viscosity, for example from 0.005 s -1 to 1s -1 (0.3 to 60 rpm) with, in this instance, 1s -1 preferred.
  • E Brookfield TM rotational viscometer with spindle YULA-15
  • Component (v) is typically added in an amount such that the molar ratio of the silicon-bonded hydrogen atoms in component (v) to that of all unsaturated groups in the composition and the number of -OH groups in component (iii) , when a chemical blowing agent, is from 0.5: 1 to 20: 1; alternatively of from 0.5 : 1 to 5 : 1, alternatively from 0.6 : 1 to 3 : 1. alternatively from 0.8 : 1 to 3: 1. When this ratio is less than 0.5: 1, a well-cured composition will not be obtained. When the ratio exceeds 20: 1, there is a tendency for the hardness of the cured composition to increase when heated.
  • silicon-bonded hydrogen (Si-H) content of organohydrogenpolysiloxane (v) may be determined using quantitative infra-red analysis in accordance with ASTM E168, if desired.
  • component (v) is present in the composition in an amount of from 0.5 to10 wt. %of the total composition which amount is determined dependent on the required molar ratio of the total number of the silicon-bonded hydrogen atoms in component (v) to the total number of all alkenyl and alkynyl groups in component (i) and the amount of hydroxyl groups in component (iii) when a chemical blowing agent.
  • the self-levelling, non-syntactic silicone foam compositions as described in the process herein are usually stored in two parts to avoid premature cure.
  • the two parts are generally referred to as part A and part B.
  • Two-part compositions are utilized so that that components (i) polymer, (v) cross-linker, (iii) blowing agent and (ii) catalyst are not all stored together.
  • Part A may comprise components (i) , (ii) and part or all of (iii) and Part B comprises at least components (i) and (v) and typically components (i) and (v) and part of (iii) with part A free of component (v) cross-linker and part B free of component (ii) catalyst.
  • component (iii) blowing agent and Component (iv) the filler may be partially in the part A composition and partially in the part B composition.
  • a two-part self-levelling, non-syntactic silicone foam composition comprising a part A composition of component (i) , component (ii) and component (iii) and a part B composition of component (i) , component (iv) and component (v) such that components (ii) and (iii) are only in the part A composition and components (iv) and (v) are only in the part B composition.
  • the part A and part B of the two part composition may be designed to be mixed together in any suitable ratio dependent on the content and concentration of the ingredients present in each part, for example the two part composition may be mixed in a Part A : Part B weight ratio of from 15 : 1 to 1 : 10, alternatively from 15 : 1 to 1 : 5, alternatively from 15 : 1 to 1 : 2.5, alternatively from 10 : 1 to 1 : 2.5.
  • the part A : part B ratio is less than 1 : 1, i.e., between 1 : 1 and 1 : 5 when using the embodiment where all filler is added into to the Part B composition and all blowing agent is added to the to the Part A composition.
  • ingredients of the part A composition are blended together and separately the ingredients of the part B composition are also blended together to form respective part A and part B compositions.
  • the composition may include one or more optional additives but the total weight %of the composition is 100 wt. %.
  • the alkenyl and/or alkynyl content of polymer (i) is determined using quantitative infra-red analysis in accordance with ASTM E168. It was found that utilizing a component (i) having a low viscosity of from 100 to 20,000 mPa. s at 25°C mPa. s, alternatively from 200 to 2000 mPa. s, at 25 °C increases the relative unsaturation content per molecule and as such enhances the cross-link density of the cured product. This is particularly noted when component (v) the cross-linker is resinous and has numerous terminal groups comprising Si-H groups per molecule.
  • the self-levelling, non-syntactic silicone foam compositions as described in the process herein may optionally further comprise additional ingredients or components (hereafter referred to as “additives” ) .
  • additional ingredients include, but are not limited to, resins, inhibitors; surfactants; stabilizers; adhesion promoters; colorants, including dyes and pigments; antioxidants; carrier vehicles; heat stabilizers; flame retardants; flow control additives; inhibitors; non-reinforcing (sometimes referred to as extending) fillers.
  • the one or more additives can be present in a suitable wt. %of the composition.
  • the additive may be present in an amount of up to about 10 or even 15 wt. %based on the understanding that the total wt. %of the composition is 100 wt. %.
  • One of skill in the art can readily determine a suitable amount of additive depending, for example, on the type of additive and the desired outcome. Certain optional additives are described in greater detail below.
  • the composition may further comprise an organopolysiloxane resin ( “resin” ) as a resin foam stabilizer.
  • the resin has a branched or a three-dimensional network molecular structure.
  • the resinous organopolysiloxane may be in a liquid or in a solid form, optionally dispersed in a carrier, which may solubilize and/or disperse the resin therein.
  • the resinous organopolysiloxane may be exemplified by an organopolysiloxane that comprises only T units, an organopolysiloxane that comprises T units in combination with other siloxy units (e.g. M, D, and/or Q siloxy units) , or an organopolysiloxane comprising Q units in combination with other siloxy units (i.e., M, D, and/or T siloxy units) .
  • the resin comprises T and/or Q units.
  • Specific examples are alkenylated silsesquioxanes or MQ resins e.g., vinyl terminated silsesquioxanes or MQ resins.
  • the resin may be formed from multiple units of formula:
  • each R 5 is a substituted or unsubstituted monovalent hydrocarbon group of 1 to 20 carbon atoms, for example, alkyl groups such as methyl, ethyl, propyl, hexyl, octyl, dodecyl, tetradecyl, hexadecyl, and octadecyl, or an aromatic group having 6 to 20 carbons such as benzyl and phenylethyl groups or alkenyl groups such as vinyl, propenyl, n-butenyl, t-butenyl, pentenyl, hexenyl, octenyl and the like and wherein each f′′ is from 0 to 4. If the resin is a T resin, then most groups have f′′ as 1 and if the resin is an MQ resin to largely comprises groups where f′′ is 0 (Q groups) or 4 (M groups) as previously discussed.
  • alkyl groups such as methyl,
  • Suitable pigments may include carbon black, e.g., acetylene black, titanium dioxide, chromium oxide, zinc oxide, bismuth vanadium oxide, iron oxides and mixtures thereof.
  • the composition as described herein may further comprise a hydrosilylation reaction inhibitor to inhibit the cure of the composition.
  • Hydrosilylation reaction inhibitors are used, when required, to prevent or delay the hydrosilylation reaction curing process especially during storage.
  • the optional hydrosilylation reaction inhibitors of platinum based catalysts are well known in the art and include hydrazines, triazoles, phosphines, mercaptans, organic nitrogen compounds, acetylenic alcohols, silylated acetylenic alcohols, maleates, fumarates, ethylenically or aromatically unsaturated amides, ethylenically unsaturated isocyanates, olefinic siloxanes, unsaturated hydrocarbon monoesters and diesters, conjugated ene-ynes, such as 3-methyl-3-penten-1-yne, 3, 5-dimethyl-3-hexen-1-yne hydroperoxides, nitriles, and diaziridines.
  • Alkenyl-substituted siloxanes as described in US3989667 may be used, of which cyclic methylvinylsiloxanes such as 1, 3, 5, 7-tetramethyl-1, 3, 5, 7-tetravinylcyclotetrasiloxane, 1, 3, 5, 7-tetramethyl-1, 3, 5, 7-tetrahexenylcyclotetrasiloxane, are preferred.
  • One class of known hydrosilylation reaction inhibitor includes the acetylenic compounds disclosed in US3445420.
  • Acetylenic alcohols such as 2-methyl-3-butyn-2-ol constitute a preferred class of inhibitors that will suppress the activity of a platinum-containing catalyst at 25 °C.
  • Compositions containing these inhibitors typically require heating at temperature of 70 °C or above to cure at a practical rate.
  • acetylenic alcohols and their derivatives include 3-methyl-1-butyn-3-ol, 1-ethynyl-1-cyclohexanol (ETCH) , 2-methyl-3-butyn-2-ol, 3-butyn-1-ol, 3-butyn-2-ol, propargyl alcohol, 1-phenyl-2-propyn-1-ol, 3, 5-dimethyl-1-hexyn-3-ol, 3-phenyl-1-butyn-3-ol, 1-ethynylcyclopentanol, 3-methyl-1-penten-4-yn-3-ol, and mixtures thereof.
  • Derivatives of acetylenic alcohol may include those compounds having at least one silicon atom.
  • inhibitor concentrations as low as 1 mole of inhibitor per mole of the metal of catalyst will in some instances impart satisfactory storage stability and cure rate. In other instances, inhibitor concentrations of up to 500 moles of inhibitor per mole of the metal of catalyst are required.
  • the optimum concentration for a given inhibitor in a given composition is readily determined by routine experimentation. Dependent on the concentration and form in which the inhibitor selected is provided/available commercially, when present in the composition, the inhibitor is typically present in an amount of from 0.0125 to 10 wt. %of the composition.
  • the composition further comprises an adhesion promoter.
  • the adhesion promoter can improve adhesion of the foam to a substrate being contacted during curing.
  • the adhesion promoter is selected from organosilicon compounds having at least one alkoxy group bonded to a silicon atom in a molecule. This alkoxy group is exemplified by a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group.
  • non-alkoxy groups bonded to a silicon atom of this organosilicon compound are exemplified by substituted or non-substituted monovalent hydrocarbon groups such as alkyl groups, alkenyl groups, aryl groups, aralkyl groups, halogenated alkyl groups and the like; epoxy group-containing monovalent organic groups such as a 3-glycidoxypropyl group, a 4-glycidoxybutyl group, or similar glycidoxyalkyl groups; a 2- (3, 4-epoxycyclohexyl) ethyl group, a 3- (3, 4-epoxycyclohexyl) propyl group, or similar epoxycyclohexylalkyl groups; and a 4-oxiranylbutyl group, an 8-oxiranyloctyl group, or similar oxiranylalkyl groups; acrylic group-containing monovalent organic groups such as a 3-methacryloxypropyl group and the like; and a hydrogen atom
  • This organosilicon compound generally has a silicon-bonded alkenyl group or silicon-bonded hydrogen atom. Moreover, due to the ability to impart good adhesion with respect to various types of substrates, this organosilicon compound generally has at least one epoxy group-containing monovalent organic group in a molecule.
  • This type of organosilicon compound is exemplified by organosilane compounds, organosiloxane oligomers and alkyl silicates. Molecular structure of the organosiloxane oligomer or alkyl silicate is exemplified by a linear chain structure, partially branched linear chain structure, branched chain structure, ring-shaped structure, and net-shaped structure.
  • a linear chain structure, branched chain structure, and net-shaped structure are typical.
  • This type of organosilicon compound is exemplified by silane compounds such as 3-glycidoxypropyltrimethoxysilane, 2- (3, 4-epoxycyclohexyl) -ethyltrimethoxysilane, 3-methacryloxy propyltrimethoxysilane, and the like; siloxane compounds having at least one silicon-bonded alkenyl group or silicon-bonded hydrogen atom, and at least one silicon-bonded alkoxy group in a molecule; mixtures of a silane compound or siloxane compound having at least one silicon-bonded alkoxy group and a siloxane compound having at least one silicon-bonded hydroxyl group and at least one silicon-bonded alkenyl group in the molecule; and methyl polysilicate, ethyl polysilicate, and epoxy group-containing ethyl polysilicate.
  • the part A composition might also include one or more of the aforementioned optional components such as inhibitor (depending on the choice of inhibitor) , pigments or colorants and/or an MQ resin foam stabilizer.
  • the part B blend composition might also include one or more of the aforementioned optional components such inhibitor (depending on the choice of inhibitor) , pigments or colorants and/or an MQ resin foam stabilizer. Alternatively, a proportion of said additives may be present in each both the part A and part B composition if desired.
  • the part A and part B compositions are stored for a period of time before use.
  • the part A composition and part B compositions are mixed to form a foam of the self-levelling, non-syntactic silicone foam composition described above.
  • Any suitable mixer may be used, for example the mixer may be a static mixer or a stirred tank or the like suitable for undertaking thorough mixing of the respective blend compositions.
  • the mixing container is temperature controllable such that the part A composition and part B compositions being mixed can be maintained within a desired temperature range.
  • the self-levelling, non-syntactic silicone foam compositions as described herein produce open cell and/or closed cell foams.
  • the density may be measured by any suitable method such as via the Archimedes principle, using a balance and density kit, and following standard instructions associated therewith.
  • a suitable balance is a Mettler-Toledo XS205DU balance with density kit.
  • a closed cell foam When a closed cell foam, it may have a density of from 0.01 grams per cubic centimeter g/cm 3 to 5 g/cm 3 , alternatively from 0.05 g/cm 3 to 2.5 g/cm 3 alternatively from 0.1 g/cm 3 to 2.0 g/cm 3 , alternatively from 0.1 g/cm 3 to 1.5 g/cm 3 .
  • the foam may be too heavy or stiff for certain applications. If density is too low, the foam may lack desired structural integrity for certain applications.
  • the average pore size can be determined via any suitable method such as in accordance with ATSM method D3576-15 optionally with the following modifications:
  • the self-levelling, non-syntactic silicone foam compositions as described herein generally has pores that are uniform in size and/or shape.
  • the foam has an average pore size of between 0.001mm and 5mm, alternatively between 0.001mm and 2.5mm, alternatively between 0.001mm and 1mm, alternatively between 0.001mm and 0.5mm, alternatively between 0.001mm and 0.25mm, alternatively between 0.001mm and 0.1mm, and alternatively between 0.001mm and 0.05mm.
  • Fig. 1 is a depiction of a battery module with a set of battery cells in place and partially electrically connected;
  • Fig. 2 depicts the process for preparing and dispensing the composition described in the process into the battery module containing a series of battery cells introduce a two-part composition
  • Fig. 3 is a depiction of an insulated series of battery cells after foaming and curing process with the housing of the module removed;
  • Figs. 4a and 4b are two alternate depictions of the thermal insulation cured from the self-levelling, non-syntactic silicone foam composition herein in the absence of cylindrical battery cells.
  • Figs 5a to 5g depicts a step-by-step depiction of a process for insulating a thermally insulated battery module wherein the batteries are engaged in a horizontal position and layers of batteries are separated by fluid cooling manifold (s) as described herein.
  • Fig. 1 is a depiction of a battery module (10) having a housing (12) containing multiple cylindrical lithium-ion batteries (20) .
  • the lithium-ion batteries (20) are held in a base mold, not shown, which separates the batteries, which together forms the basic internals of a cell module. It can be seen that because of the shape of the batteries the voids between them are of an irregular geometry which in the case of Fig. 1 voids are not filled by any thermal insulation or the like.
  • Fig. 2 depicts the process described herein.
  • the part A composition is prepared and deposited in tank (1) and the part B composition is prepared and deposited in tank (2) .
  • the part A composition is pumped from tank (1) through valve (5) using pump (3) to mixer (7) .
  • the part B composition is pumped from tank (2) through valve (6) using pump (4) to mixer (7) .
  • the part A and part B compositions are mixed together in mixer (7) whereafter foaming will commence en route to dispensing head (8) .
  • Dispensing head (8) is used to dispense self-levelling, non-syntactic silicone foam composition as hereinbefore described or comparatives C. 1 or C. 2 into the housing (12) of battery module (10) .
  • a predetermined amount of the self-levelling, non-syntactic silicone foam composition which may have started to foam upon dispensing, from dispensing head (8) , typically dependent on the volume of the housing.
  • the housing (12) is observed to be partially filled with self-levelling, non-syntactic silicone foam composition. Once this action is completed the composition self-levels and then is allowed to continue foaming and curing until the resulting foamed material is prepared.
  • Fig. 3 is a photo of a series of batteries which have been surrounded by thermal insulation as described herein produced by curing and foaming the self-levelling, non-syntactic silicone foam composition.
  • Figures 4a and 4b are two views of the thermal insulation resulting from curing and foaming the self-levelling, non-syntactic silicone foam composition. These clearly show that the insulation is continuous and has filled all voids between the cells.
  • Figs. 5a to 5g there is provided step-by-step depiction of an embodiment of the process for thermally insulating adjacent battery cells in a battery module
  • the battery module is shown cross-sectionally as having a rectangular cuboidal housing with a top and a base.
  • the two pairs of opposite sides between the top and the base, define an enclosure (31) with one pair of the opposite sides having electrical mountings (again not shown) .
  • the electrical mountings are positioned so that multiple battery cells can be mounted horizontally between opposite electrical mountings on the opposite sides such that when mounted there are a plurality of cylindrical battery cells (34) in a horizontal array in said enclosure (31) .
  • FIG. 5a there is a cross-section of the enclosure (31) in which is depicted several battery cells (34) , each separated from its horizontal neighbour with a biconcave void.
  • a fluid cooling manifold (35a) is shown placed on top of the layer of battery cells (34) .
  • Each fluid cooling manifold layer may comprise a single fluid cooling manifold, in this instance depicted as (35a) but the layer may alternatively comprise two or more horizontally adjacent fluid cooling manifolds (41, 42) as depicted in Fig. 5f.
  • Each fluid cooling manifold e.g., 35a, 41, 42
  • cold fluid e.g., water
  • a middle layer of horizontal battery cells (34) has been introduced and sit on fluid cooling manifold (35a) . Again, a series of biconcave voids are formed between horizontally adjacent battery cells (34) in said middle row.
  • a second fluid cooling manifold layer (35b) has been inserted on top of the second layer of horizontal battery cells (34) and a top layer of battery cells (34) have been placed on top of second fluid cooling manifold layer (35b) .
  • second fluid cooling manifold layer (35b) comprises two adjacent fluid cooling manifolds as depicted in Fig. 5f (41, 42) between which there is provided a gap.
  • a central position (38) which would otherwise have been expected to house a battery (34) has been left unoccupied.
  • three dispensing tips (44, 45, 46) have been inserted into housing (31) .
  • Dispensing tips (44) and (46) are inserted adjacent to the wall positioned such that the foam will be issued into the lowest layer of batteries such that the self-levelling, non-syntactic silicone foam composition as described herein is delivered into the lowest layer of batteries and is allowed to flow and self level therein at a rate such that the lowest layer of batteries has all voids filled before substantially any of said self-levelling, non-syntactic silicone foam composition is introduced into the middle layer.
  • the self-levelling, non-syntactic silicone foam composition may then be allowed to complete foaming and at least partially cure before the middle layer of batteries is filled with said self-levelling, non-syntactic silicone foam composition and finally the process is repeated again for the top layer of batteries.
  • Dispensing tips (44) and (46) may be allowed to maintain the same position or depth throughout the filling of each layer. Alternatively, once the bottom layer has been insulated dispensing tips (44) and (46) may be repositioned to be at a height commensurate with the middle layer and subsequently may be repositioned to be at a height commensurate with the top layer once the middle layer has been insulated with said self-levelling, non-syntactic silicone foam composition.
  • the middle layer is then filled with dispensing tips (44) and (46) may be gradually raised and at a predetermined rate commensurate with the speed of dispensing and self-levelling of said self-levelling, non-syntactic silicone foam composition.
  • a third dispensing tip (45) is used centrally in the battery module to assist in the filling of each layer from a central position such that in combination the three dispensing tips are able to dispense and completely fill the voids in each battery layer.
  • Fig. 5g depicts housing (31) completely filled with self-levelling, non-syntactic silicone foam composition (50) which cures in place to insulate the horizontally positioned cylindrical battery cells (34) .
  • the battery modules described herein are suitable for use in a wide variety of applications such as in electric-vehicle battery (EVB) power supplies for electric and hybrid (electric and petrol/diesel) powered vehicles, i.e. in battery packs/systems used to power the propulsion system of electric and hybrid vehicles and as such are designed to give power over sustained periods of time.
  • EVB electric-vehicle battery
  • battery packs store the electricity used by the motor to drive a vehicle's wheels.
  • the propulsion system is powered by a battery pack much like the above, but a combustion engine is also present and as such hybrid vehicles run on electric power until the battery is depleted and then switch over to carbon based fuel which powers an internal combustion engine.
  • the battery module may include a battery pack wherein said self-levelling, non-syntactic silicone foam is used as thermal insulation disposed in said battery module housing to substantially fill voids between adjacent cells, particularly cylindrical cells.
  • the battery module is used in a battery pack in a vehicle such as an all-electric road vehicle (EV) , a plug-in hybrid road vehicle (PHEV) , a hybrid road vehicle (HEV) or alternatively in other modes of transport such as an aircraft, a boat, a ship, a train.
  • a vehicle such as an all-electric road vehicle (EV) , a plug-in hybrid road vehicle (PHEV) , a hybrid road vehicle (HEV) or alternatively in other modes of transport such as an aircraft, a boat, a ship, a train.
  • a vehicle such as an all-electric road vehicle (EV) , a plug-in hybrid road vehicle (PHEV) , a hybrid road vehicle (HEV) or alternatively in other modes of transport such as an aircraft, a boat,
  • compositions, foams, and methods are intended to illustrate and not to limit the invention.
  • compositions were generated utilizing different types and amounts of components. These are detailed below. All amounts are in wt. %unless indicated otherwise. As discussed above all viscosities are measured at 25°C.
  • the viscosity of individual ingredients may be determined by any suitable method such as using a Brookfield TM rotational viscometer with spindle LV-3 (designed for viscosities in the range between 200-400,000 mPa. s) or a Brookfield TM rotational viscometer with spindle LV-1 (designed for viscosities in the range between 15 -20,000mPa. s) for viscosities less than 200mPa. s and adapting the speed i.e. shear rate according to the polymer viscosity, for example from 0.005 s -1 to 1s -1 (0.3 to 60 rpm) with, in this instance, 1s -1 preferred.
  • alkenyl and/or alkynyl content of polymers as well as the silicon-bonded hydrogen (Si-H) content and/or silanol content of ingredients was determined using quantitative infra-red analysis in accordance with ASTM E168.
  • Polymer 1 dimethylvinyl terminated polydimethylsiloxane having a viscosity of 350 mPa. s at 25°C
  • Polymer 2 dimethylvinyl terminated polydimethylsiloxane having a viscosity of 12000 mPa. s at 25°C;
  • Hydromagnesite a hydrated magnesium carbonate mineral having the formula Mg 5 (CO 3 ) 4 (OH) 2 ⁇ 4H 2 O having an average particle size of about 4 ⁇ m, hydrophobically treated with a vinyl silazane;
  • Aluminum trihydrate chemical formula Al (OH) 3
  • Glass Bubbles the glass bubbles used in the comparative Example 1 (C. 1) were commercially available from the 3M Corporation as 3M TM Glass Bubbles S32HS;
  • Resin foam stabilizer a Vi MMQ resin, having a viscosity of ⁇ 45,000 mPa. s at 25°C and ⁇ 0.39 wt. %vinyl;
  • Karstedt s catalyst: a masterbatch of dimethylvinylsiloxy-terminated dimethyl siloxane and platinum complex. Platinum complex content is about 1.4%;
  • Fluorinated silicone polymer a trimethyl terminated polydimethyl methyl perfluoropropyl siloxane having a viscosity of about 10,000 mPa. s at 25°C;
  • Fluorinated silicone resin (viscosity ⁇ 100 mPa. s at 25°C)
  • Organohydrogensiloxane methylhydrogen siloxane, trimethylsiloxy-terminated, having a viscosity of about 20 mPa. s at 25°C and about 1.6 wt. %SiH.
  • Comparative 1 was a syntactic silicone composition.
  • Ex. 1 was a chemically foamed composition;
  • Ex. 2 was a physically foamed composition and
  • Ex. 3 was a preferred physically foamed composition with all the resin foam stabilizer and catalyst in part A and all the filler and cross-linker in part B.
  • the compositions used are depicted in Table 1a (part A) and Table 1b (part B) .
  • Table 1a Part A compositions of Examples and Comparatives (wt. %)
  • the part A composition was prepared in an analogous fashion in each example/comparative, wherein the ingredients excepting the blowing agent were weighed into a Turello mixer container. They were then mixed using a Turello mixer (600 rpm, 20 min) . to form a homogeneous mixture. The mixture was then cooled to 5 °C, and the blowing agent was introduced forming a homogeneous mixture.
  • part B composition was prepared in an analogous fashion in each example/comparative, all the ingredients were weighed into a Turello mixer container. They were then mixed using said Turello mixer (600 rpm, 20 min) to produce a homogeneous mixture If it is needed to add foam blowing agent, follow the same procedure as described in part A.
  • UL 94 is the Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing in accordance with the Underwriters Laboratories of the United States. The standard determines the material’s tendency to either extinguish or spread the flame once the specimen has been ignited. The test was undertaken using an HVUL2 Horizontal Vertical Flame Chamber from Atlas with the sample test pieces had the following sizes: (125 ⁇ 5) x (13.0 ⁇ 0.5) x (2 ⁇ 0.1) mm
  • the thermal testing was undertaken on a test station comprising a heatable base plate with heat face dimension of 15cm x 17cm to provide heating temperature at about 600°C, an aluminum plate with dimension of 15cm x 17cm x 3cm, and a steel loading plate.
  • the total weight of aluminum plate and steel loading plate was 19.2kg.
  • Test specimens were prepared having the dimensions 8cm length, 8 4cm width and approximately 2mm thickness. The test specimen was mounted on the center of the aluminum plate, facing to heatable base plate with the surface area directly contacting with the heatable base plate was 0.0064m 2 .
  • the steel loading plate was placed on the aluminum plate to make 0.03MPa pressure on the test specimen during testing.
  • Two line notches in parallel, with depth as 0.45mm were cut on the specimen holding face of aluminum plate, starting from the long edge (17cm) , end with length of 7.5cm, distance between the two line notches was 4cm, evenly positioned near the center of aluminum plate.
  • Two K-type jacketed thermocouples with O. D. as 0.5mm were placed in the lined notches to measure the back temperature of test specimen. Polyimide tape was used to fix thermocouples and mount test specimen on aluminum plate.
  • the test lasted for 20min, with back temperature of specimen recorded. After the test, steel loading and Aluminum plate was removed from the heat stage.
  • the temperature of the back face was ⁇ 250°C after 20 mins.
  • each of Ex. 1 to 3 showed excellent flowability and were able to self-level much better.
  • the viscosities of Ex. 1-3 are all much lower i.e., between 800 and 1100 mPa. s at 25°C, which make the self-levelling as described herein easier to realize.
  • the thermal insulation performance and flame retardancy are also significantly enhanced.
  • C. 2 is a product developed for EV battery module potting with low viscosity (2000 mPa. s at 25°C) .
  • Another advantage of the formulation in our invention is its high hardness. The hardness reached to 23 Shore A, while the hardness of C. 2 is only 11 Shore A.

Abstract

This disclosure relates to a process for thermally insulating adjacent battery cells (20), typically lithium-ion battery cells, with a self-levelling, non-syntactic silicone foam composition, a battery module (10) having thermally insulated adjacent battery cells (20) obtained or obtainable by the aforementioned process and the use of said composition in the thermally insulation of adjacent battery cells in a battery module and the uses of said battery modules.

Description

THERMAL INSULATION
This disclosure relates to a process for thermally insulating adjacent battery cells, typically lithium-ion battery cells, with a self-levelling, non-syntactic silicone foam composition, a battery module having thermally insulated adjacent battery cells obtained or obtainable by the aforementioned process and the use of said composition in the thermally insulation of adjacent battery cells in a battery module and the uses of said battery modules.
Rechargeable battery cells (sometimes referred to as secondary battery cells) such as lithium-ion batteries (also referred to as Li-ion batteries or LIBs) are increasingly being used in modules and/or packs of modules for a variety of applications such as electric-vehicle batteries (EVBs) in electric and hybrid (electric and petrol/diesel) powered vehicles with a view to reducing and ultimately eliminating green-house gas emissions therefrom. EVBs are battery packs used to power the propulsion system of electric and hybrid vehicles and as such are designed to give power over sustained periods of time, as opposed to starting, lighting and ignition (SLI) batteries. Lithium-ion batteries are increasingly becoming the preferred option. For the avoidance of doubt in this disclosure and in consideration of usable space from a practical perspective, individual battery cells (sometimes referred to herein as cells) are aligned in battery modules and a battery pack is constituted by a plurality of electrically interconnected battery modules.
The three main constituents in a lithium-ion battery are:
an anode (negative electrode) ;
a cathode (positive electrode) and
an electrolyte.
In use in a lithium-ion battery, lithium ions move from the anode through said electrolyte to the cathode during discharge, and in the reverse direction when being charged.
A wide variety of materials may be used as the anode in a lithium-ion battery but by far the most commercially popular is graphite. Currently the preferred material for the cathode in a lithium-ion battery is selected from one of three materials:
(i) a layered oxide (such as lithium cobalt oxide) ,
(ii) a polyanion (such as lithium iron phosphate) or
(iii) a spinel (such as lithium manganese oxide) .
Unlike rechargeable batteries with water-based electrolytes, lithium-ion batteries have a potentially hazardous pressurised flammable liquid electrolyte and require strict quality control during manufacture. A large variety of non-aqueous materials have been proposed and/or used as the electrolyte in a lithium-ion battery. One example of a suitable electrolyte is a mixture of organic carbonates e.g., ethylene carbonate and/or diethyl carbonate containing sources of lithium ions, for example lithium hexafluorophosphate (LiPF 6) , lithium hexafluoroarsenate monohydrate (LiAsF 6) , lithium perchlorate (LiClO 4) , lithium tetrafluoroborate (LiBF 4) , and lithium triflate (LiCF 3SO 3) .
In order to provide power over sustained periods of time, i.e., to enable acceptably long journeys between recharges, EVBs are generally provided in battery packs which are fitted in suitable spaces within the vehicle such as in the car boot or luggage compartment. The EVBs are designed to protect the occupants of a vehicle from the battery modules of lithium-ion batteries in case of a malfunction.
When a lithium-ion battery cell malfunctions (for whatever reason) the cell typically overheats and/or becomes over charged which may consequently lead to a fire and/or explosion. Such malfunctions may be caused, for the sake of example, by
(i) short circuiting,
(ii) being physically damaged i.e., being crushed, or
(iii) being subjected to a higher electrical load without having overcharge protection.
If present in a multi-cell battery module of lithium-ion batteries, the overheating of a first cell is likely to propagate similar occurrences in adjacent cells resulting in multiple cells in a battery module overheating and failing potentially leading to a “thermal runaway” and cell rupture.
A thermal runaway is usually initiated by the malfunction of one of the battery cells in a battery module leading to that cell releasing heat abnormally and to a sudden increase in the battery cell’s temperature. Once the temperature exceeds a threshold of e.g., about 150℃ or thereabouts, the constituents in the malfunctioning cell initiate a self-heating, autocatalytic, thermal decomposition exothermic reaction, where the temperature of the battery increases rapidly, e.g., at a rate of more than 20℃. per minute, with the temperature of the battery potentially reaching at least 400℃ or even 1000℃. In the absence of good insulation and heat dissipation structures in the battery module in which the malfunctioning battery is housed, the thermal energy released consequently heats up neighboring battery cells. resulting in a “thermal runaway” within the battery module. When thermal runaway has commenced inside the battery module it cannot be controlled effectively, potentially resulting in combustive exothermic reactions followed by the release of large amounts of flammable electrolyte gas and battery material decomposition gas (e.g., CO 2, CO, and H 2) and possible explosions.
Whilst circuitry has been developed to disconnect lithium-ion cells (and battery modules) if/when the voltage generated is outside a predefined safe voltage range per cell. or when overcharged or discharged, lithium battery packs, are still susceptible to thermal runaway and cell rupture situations in the event of damage or malfunction.
Hence, the provision of safety measures to enable occupants to exit a vehicle in the event of such a malfunction and to protect them from an immediate risk of toxic gases entering the passenger compartment e.g. by the provision of a sturdy battery pack which can withstand a certain  amount of pressure increase because of gas generation and to minimize the effect of the potential for thermal runaway propagation between adjacent cells Thermal insulation materials are now utilized to minimize EVB thermal runaway propagation. These materials need to have high levels of flame retardancy, high levels of thermal insulation and to have good temperature resistance. They are also preferred to be light weight, have good electrical insulation performance are required in this application. Few polymer composites have been proven to provide such properties especially when dealing with temperatures reaching 400℃ or even 1000℃. One factor that has hindered the finding of suitable means of providing such materials is that lithium-ion battery cells, are typically produced in three forms as cylindrical cells, as “prismatic” cells which are of a rectangular cuboidal shape and as pouch cells. Providing suitable insulation materials, given the above requirements has proven difficult, not least because the insulation materials need to provide high temperature thermal insulation and meet the UL 94 V0 Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing, required by Underwriters Laboratories of the United States. Even if the insulation materials can achieve both, problems exist especially for battery modules of cylindrical cells because of the irregular geometry of the voids between adjacent cylindrical battery cells, particularly when the batteries are mounted horizontally.
The use of coated aerogel felt materials between adjacent battery cells in a battery module to slow down heat transfer has been proposed specifically for battery modules of prismatic cells and pouch cells. However, said coated aerogel felt materials cause amorphous aerogel silica to disperse into the working environment, requiring more protective equipment during cutting, packaging, storing and transporting processes. Furthermore, whilst these materials provide good initial thermal insulation performance, performance deteriorates dramatically because of a significant decrease in thickness occurring as the pressure within the battery module increases and they are only suitable for use in regular shaped situations so are not practical for cylindrical cells systems.
For cylindrical battery cells, the use of silicone rubber syntactic foams has been proposed with a view to trying to fill the irregular voids between cylindrical battery cells in a battery module and provide a physical barrier. For the avoidance of doubt, silicone rubber syntactic foams are silicone rubber foams filled with hollow spheres, usually made from glass, which are often referred to as microballoons or cenospheres. A non-syntactic silicone foam composition means that the composition does not contain said hollow spheres, usually made from glass, which are often referred to as microballoons or cenospheres. However, the use of said silicone rubber syntactic foams especially for filling irregular voids between cylindrical battery cells in a battery module can itself be problematic because of the presence of the glass spheres which typically render the foams before cure of a sufficiently high viscosity not to be self-levelling. Given their relatively fragile nature, glass spheres are furthermore, easy to break during pre-cure mixing and handling, can easily be suspended on the surface resulting non-homogeneity, potentially requiring additional mixing.
Furthermore, such foams are expensive because of the use of glass spheres which is contrary to the needs of the industry and such materials are likely not to meet the requirement of UL 94 V0 type flame retardant tests.
There is provided herein a process for thermally insulating adjacent battery cells in a battery module comprising the steps of :
(1) Taking a battery module comprising a housing with a lid in which is disposed a plurality of battery cells which are electrically connected but otherwise physically separated from each other;
(2) Dispensing a self-levelling, non-syntactic silicone foam composition into said housing, said self-levelling, non-syntactic silicone foam composition comprising the following components:
(i) one or more polydiorganosiloxanes having a viscosity of from 100 to 20,000 mPa. s at 25℃ and at least two unsaturated groups per molecule selected from alkenyl and/or alkynyl groups;
(ii) a platinum group metal, or a compound or complex of a platinum group metal;
(iii) a chemical blowing agent, a physical blowing agent or a mixture of a chemical blowing agent and a physical blowing agent;
(iv) one or more fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite; and
(v) a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule;
(3) Allowing the self-levelling, non-syntactic silicone foam composition to flow within the housing and self-level and as such fill voids between adjacent battery cells in said battery module; and
(4) enabling the self-levelling, non-syntactic silicone foam composition to foam, cure and consequently expand to fill the voids between adjacent battery cells during foaming and curing.
In one embodiment the battery cells are lithium-ion battery cells, alternatively cylindrical, prismatic or pouch lithium-ion battery cells, alternatively cylindrical, prismatic or pouch lithium-ion battery cells.
There is also provided a battery module having thermally insulated adjacent battery cells obtained or obtainable by following a process comprising the steps of the steps of:
(1) Taking a battery module comprising a housing with a lid in which is disposed a plurality of battery cells which are electrically connected but otherwise physically separated from each other;
(2) Dispensing a self-levelling, non-syntactic silicone foam composition into said housing, self-levelling, non-syntactic silicone foam composition comprising the following components:
(i) one or more polydiorganosiloxanes having a viscosity of from 100 to 20,000 mPa. s at 25℃ and at least two unsaturated groups per molecule selected from alkenyl and/or alkynyl groups;
(ii) a platinum group metal, or a compound or complex of a platinum group metal;
(iii) a chemical blowing agent, a physical blowing agent or a mixture of a chemical blowing agent and a physical blowing agent;
(iv) one or more fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite; and
(v) a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule;
(3) Allowing the self-levelling, non-syntactic silicone foam composition to flow within the housing and self-level and as such fill voids between adjacent battery cells in said battery module; and
(4) enabling the self-levelling, non-syntactic silicone foam composition to foam, cure and consequently expand to fill the voids between adjacent battery cells during foaming and curing.
In one embodiment the battery module is one of several battery modules in a battery pack.
There is further provided, a use of a self-levelling, non-syntactic silicone foam composition comprising the following components:
(i) one or more polydiorganosiloxanes having a viscosity of from 100 to 20,000 mPa. s at 25℃ and at least two unsaturated groups per molecule selected from alkenyl and/or alkynyl groups;
(ii) a platinum group metal, or a compound or complex of a platinum group metal;
(iii) a chemical blowing agent, a physical blowing agent or a mixture of a chemical blowing agent and a physical blowing agent;
(iv) one or more fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite; and
(v) a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule;
to provide a battery module having thermally insulated adjacent battery cells obtained or obtainable by following a process comprising the steps of :
(1) Taking a battery module comprising a housing with a lid in which is disposed a plurality of battery cells which are electrically connected but otherwise physically separated from each other;
(2) Dispensing said self-levelling, non-syntactic silicone foam composition into said housing, said self-levelling, non-syntactic silicone foam composition
(3) Allowing the self-levelling, non-syntactic silicone foam to flow within the housing and self-level and as such fill voids between adjacent battery cells in said battery module; and
(4) enabling the self-levelling, non-syntactic silicone foam composition to foam, cure and consequently expand to fill the voids between adjacent battery cells during foaming and curing.
There is also provided a two-part self-levelling, non-syntactic silicone foam composition comprising a part A composition of
(i) one or more polydiorganosiloxanes having a viscosity of from 100 to 20,000 mPa. s at 25℃ and at least two unsaturated groups per molecule selected from alkenyl and/or alkynyl groups; and
(ii) a catalyst comprising or consisting of a platinum group metal or a compound or complex thereof;
(iii) a chemical blowing agent, a physical blowing agent or a mixture of a chemical blowing agent and a physical blowing agent; and
a part B composition comprising
(i) one or more polydiorganosiloxanes having a viscosity of from 100 to 20,000 mPa. s at 25℃ and at least two unsaturated groups per molecule selected from alkenyl and/or alkynyl groups;
(iv) one or more fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite;
(v) a cross-linker comprising an organosilicon compound having at least two alternatively at least three silicon bonded hydrogen groups per molecule;
such that component (ii) is only in the part A composition and components (iv) and (v) are only in the part B composition.
The process for thermally insulating adjacent battery cells in a battery module as hereinbefore described comprises the steps of :
(1) Taking a battery module comprising a housing with a lid in which is disposed a plurality of battery cells which are electrically connected but otherwise physically separated from each other;
(2) Dispensing the aforementioned self-levelling, non-syntactic silicone foam composition in the housing;
(3) Allowing the self-levelling, non-syntactic silicone foam composition to flow within the housing and self-level and as such fill voids between adjacent battery cells in said battery module; and
(4) enabling the self-levelling, non-syntactic silicone foam composition to foam, cure and consequently expand to fill the voids between adjacent battery cells during foaming and curing.
Each battery module as hereinbefore described is electrically interconnected with other battery modules in a battery pack. The electrical interconnection may be in series or in parallel, as required. Each battery module as hereinbefore described comprises a housing containing a plurality of battery cells. The individual battery cells in an article such as a battery module as hereinbefore described may be of any suitable shape, for example they may be prismatic, cylindrical or in a pouch form but must be electrically connectable with other cells within the battery module. For the process herein, whilst the cells may be of any type, it is believed the process is most suited for cylindrical cells, given the variable distances between adjacent cylindrical cells.
A battery module as hereinbefore described is required to provide mechanical and electrical interfaces to other battery modules and may also comprise, for the sake of example, cooling mechanisms, temperature monitors, voltage monitors and the like. Hence, the housing of a battery module as hereinbefore described is sized and designed to both accommodate a predetermined number of individual battery cells and if desired said other systems.
Battery module housings may be made from any suitable material, for example metals or injection moulded plastics and may also incorporate insert moldings in which interconnection strips and terminals are moulded into plastic parts. Small components and/or sub-assemblies may be encapsulated in the housing by any suitable means e.g., by over molding for ease of storage and/or protection.
The housing of a battery module as hereinbefore described (and/or individual battery cells therein) may comprise a thinning area or burst plate. This provides a weakened area in the housing which is designed to prevent the inner pressure within the battery module or battery to exceed a predetermined value. If a predetermined pressure value is reached due to the malfunction of one or more cells the weakening or burst plate will be forced open and will enable gases to escape thereby preventing further pressure build up within the battery cell or battery module concerned.
In one embodiment herein there is provided a battery pack comprising at least one battery module as described above, alternatively two or more battery modules as described above.
Battery pack designs for e.g., electric-vehicle batteries are complex but incorporate a combination of several simple mechanical and electrical component systems which perform the  basic required functions of the pack. The battery packs therefore additionally comprise one or more of the following: -
(i) support electronics;
(ii) heaters (to extend the lower working temperature or cells) having their own control circuits;
(iii) heat dissipation members which are disposed between battery cells, and at least one heat exchange member. whereby heat generated from the battery cells during the charge and discharge of the battery cells is removed by the heat exchange member. The heat dissipation members may be made from a suitable thermally conductive material exhibiting high thermal conductivity and the heat exchange member is provided with one or more coolant channels for allowing a coolant such as a liquid or a gas to flow there;
(iv) coolers;
(v) Fixing points and methods and interconnections;
(vi) Control systems to keep the battery modules/cells within a predefined specified operating range e.g., for monitoring the battery status and controlling energy flows and to protect them from abuse;
(vii) fuel gauging means to estimate the state of charge (SOC) ; and/or
(viii) communications systems for communicating with other systems e.g., other vehicle systems.
A battery pack as described above has to fit the space provided in the article for which it is providing power, e.g., a vehicle. This may dictate the shape of the battery modules and indeed individual cells and consequently the shape and/or form of the battery cells in a module and consequently the thermal insulation therebetween.
The thermal insulation may be of variable thickness dependent on the shape of the individual cells, especially in the case of cylindrical batteries. The fact that the silicone foam composition herein is self-levelling means it can flow into the voids or voids between adjacent batteries irrespective of the geometry thereof and is able to completely fill all voids between batteries prior to and/or during foaming and cure to form thermally insulation filling all voids between adjacent batteries. The thermal insulation once fully foamed and cured is able to thermally isolate adjacent batteries from each other taking the shape of the voids between them and therefore is able to ensure insulation adjacent batteries substantially without any cavities in the thermal insulation generated. In some designs the battery pack forms part of the outer case of the end-product. The colours and textures of the battery pack housing must match the rest of the product. Such designs may be required to incorporate a mechanical connection means to hold the battery pack in place. Said mechanical connection means (e.g., a latch) , as well as electrical terminals and the like, must interface with  other parts of the article to be powered by the battery pack. Any suitable material may be used for this, for example ABS polymers may be utilized.
The thermal insulation described above is designed to keep a battery cell malfunction localised within said battery module and in the event of a fire to prevent or at least delay the potential for thermal runaway propagation within the whole battery module so as to provide safety protection in the event of the thermal runaway of one battery cell in said battery module.
Therefore, when any one of the battery cells in a battery module as hereinbefore described releases heat abnormally due to short-circuit, overcharging, or other reasons, the thermal runaway of the cell concerned can be isolated to prevent or delay the propagation of thermal runaway through further cells in the battery module. The heat diffusion from the battery cell to the neighboring battery cells can be effectively insulated by the silicone foam insulation resulting from the process described herein. In addition, for some battery modules having control circuit boards disposed in the battery module housing, the composite heat conduction plate of the disclosure can be disposed between the battery and the circuit board and between battery and the connecting circuit to reduce the battery heating problem caused by the circuit board and the circuit.
As mentioned elsewhere, when a battery cell malfunctions, the heat generated causes a pressure build-up of gases initially within cell but ultimately if the cell fractures within the module. Such a pressure build-up can be up to a pressure equal or greater than (≥) 0.9MPa and is caused by a build-up of heated gas (such as CO 2, CO, and H 2) and/or liquid e.g., electrolyte resulting from the failed cell and/or battery module. Analysis of the failure mode and the behavior of lithium-ion battery cells has indicated that, in the event of a thermal runaway in a battery cell occurring, temperatures may rise, for example, say 600℃ in 400 seconds and a consequential pressure build up to, for the sake of example 0.85MPa, alternatively 0.9MPa or even greater may occur in the event of a malfunctioning cell. A rupture disc housed on top of the cell is designed to rupture when the pressure reaches predetermined value such as e.g., 0.85MPa, alternatively 0.9MPa resulting in said gases and/or liquids e.g., electrolyte and decomposed liquid electrolytes being released from the malfunctioning cell. Even so, whilst this relieves the pressure build-up, e.g., the pressure will reduce to a more manageable level e.g., 0.3 MPa the cell remains at the excessively high temperature remains and if transferred to other cells in the battery module can initiate thermal run-away in the remaining cells in the battery module.
Having thermal insulation of silicone foam resulting from the method herein between adjacent battery cells avoids or delays thermal run-away to provide enough passenger evacuation time with the intention of providing enough time to enable the driver and passengers to exit a vehicle or the like.
The process described herein produces thermal insulation of any desired shape due to the self-levelling nature of the self-levelling, non-syntactic silicone foam composition and is therefore particularly suitable for dealing with modules containing cylindrical battery cells. By “self- levelling” we mean the non-syntactic, silicone foam composition will flow under the force of gravity sufficiently to provide intimate contact between the composition and the outer surfaces of the battery cells in the housing. This significantly decreases the potential for cavities and fissures in the thermal insulation between adjacent battery cells in the housing. The self-levelling also does away with the necessity of having to manipulate or tool the composition into difficult to reach positions within the housing and the self levelling nature means that prior to foaming and curing the self-levelling, non-syntactic silicone foam composition can surround battery cells relying on the effect of gravity and then can expand to fill the remainder of the housing when the composition foams and cures.
The process provides a thermally insulating foam between battery cells in said battery module such that in the event of a malfunction the thermal insulation will prevent the excessive heat increase from being immediately transferred to other nearby/adjacent battery cells.
In the second step of the process the aforementioned self-levelling, non-syntactic silicone foam composition is dispensed into the housing. The self-levelling, non-syntactic silicone foam composition is most likely to be stored in two or more parts as discussed in more detail below. Hence, before dispensing into the housing when the self-levelling, non-syntactic silicone foam composition is in two parts, typically referred to as part A and part B, the different parts are mixed together in a pre-determined weight ratio. The two parts may be pumped from storage to a suitable mixing and dispensing unit e.g., a static mixer and then after mixing is transported to a suitable dispensing means Typically once the parts A and B compositions are mixed, foaming will commence. The foaming composition may be transported to the dispensing head by a pump to control the cell size of the silicone elastomer foam generated. herein. The dispensing head may be controlled by using a pre-programmed or programable robot dispensing head which can be used to apply the composition to the target module. The dispensing head may, for example, be programed to apply an optimized amount of foam at a pre-determined dispensing flow rate. Typically, a predetermined amount of the self-levelling, non-syntactic silicone foam composition is dispensed into each housing.
In step 3 of the process the dispensed self-levelling, non-syntactic silicone foam composition is allowed to flow within the housing and self-level and as such fill voids between adjacent battery cells in said battery module.
In step 4 the self-levelling, non-syntactic silicone foam composition is allowed/enabled to cure and foam and consequently to expand to fill the voids between adjacent battery cells and if desired up to the ceiling of the housing.
In one embodiment, the process is utilized for modules designed to have battery cells positioned in horizontal arrays. Technically it is often preferred to utilize battery cells in horizontal arrays because these can provide improved packing and hence better energy density as well as reduced cell rotation and enhanced anti-vibration properties. In such modules the arrays of batteries are often designed  in multiple layers with adjacent layers separated by fluid (e.g., water) cooling manifolds which are provided to extract heat generated by the battery cells. Such arrangements, whilst technically advantageous, makes them far more difficult for encapsulants to flow and fill complex voids when cylindrical batteries are placed horizontally within the battery module, because the horizonal battery cell and water-cooling manifold combination makes it far more difficult to ensure encapsulation is achieved without voids being present.
Hence in this embodiment, there is provided a battery module housing having a top, a base and two pairs of opposite sides between the top and the base. The two pairs of opposite sides between the top and the base, define an enclosure. One pair of the opposite sides (which are parallel to each other) comprise opposite electrical mountings adapted to engage (mate with) a plurality of cylindrical battery cells in a horizontal array in said enclosure such that when correctly mounted (e.g., each cylindrical battery cell is connected to the correct negative and positive electrical mounting) an electrical circuit is created. When the cylindrical battery cells are correctly mounted between the respective electrical mountings on opposite sides of the enclosure, neighbouring cells do not come into touching contact with each other and as such voids are created between adjacent cylindrical battery cells as they are mounted in place. These voids have irregularly shaped cross-sections in view of the cylindrical shape of the battery cells between which they occur. The irregular shapes depend on the number of battery cells each battery cell is adjacent to e.g., dependent on the position and geometry of the of cylindrical battery cells relative to each other. For example, each cylindrical battery cell could have e.g., 3, 5 or even 7 adjacent cylindrical battery cells and the cross-sections of the resulting voids result from their positioning relative to each other. For example, the shape of a void between two adjacent battery cells supported on a horizontal surface would be biconcave. Additionally, the horizontally mounted battery cells are divided into layers/sections by the inclusion of one or more fluid cooling manifold (s) separating adjacent layers of cylindrical battery cells. Such an arrangement, whilst technically advantageous from a battery module perspective, makes it far more difficult for liquid compositions to be introduced into the enclosure retaining said batteries and being allowed to flow and fill the complex voids therein, because the horizonal battery cell and water-cooling manifold combination makes it far more difficult to ensure encapsulation is achieved without voids being present.
After much effort a solution to this issue has been identified in that a process for thermally insulating adjacent battery cells in a battery module as hereinbefore described may be utilized for modules wherein the adjacent battery cells are retained in one or more horizontal arrays in a battery module comprising (I) providing a battery module housing having a top and a base and two pairs of opposite sides between the top and the base, where the two pairs of opposite sides between the top and the base, define an enclosure and one pair of the opposite sides comprise electrical mountings adapted to receive a plurality of cylindrical battery cells in a horizontal array in said enclosure;
(II) mounting in the enclosure, a plurality of layers of cylindrical battery cells in a horizontal array, each cylindrical battery cell being mounted between opposite electrical mountings in the one pair of the opposite sides and thereby creating voids both between adjacent cylindrical battery cells in the enclosure and surrounding the battery module assembly within the enclosure; and
one or more fluid cooling manifold (s) separating adjacent layers of cylindrical battery cells; and
(III) filling said voids with the curable silicone foam composition as identified in any preceding claim characterised in that one or more foam dispensing tips are supplied, preferably continuously supplied, with foam and utilized to introduce foam into the void between the batteries and the walls of the enclosure at the bottom of the enclosure thereby allowing the foam to be introduced from the base, self-level and fill each layer of batteries sequentially from bottom to top of the enclosure and allowing the foam to cure; and
(IV) allowing and/or enabling the foam to cure.
In this process the enclosure may be filled with a curable silicone foam composition using a foam mixing and/or generating apparatus having one or more foam dispensing tips which are introduced into the enclosure. Given the presence of the fluid cooling manifold (s) dividing the cylindrical battery cells into layers, preferably the foam dispensing tips introduce foam in the enclosure in void (s) between the batteries and between the batteries and the walls of the enclosure at the bottom of the enclosure thereby allowing the foam to be introduced from the base and gradually spreading and filling void (s) between adjacent batteries and between the batteries and the outer walls of the enclosure. The dispensing tips being positioned between the batteries and an enclosure wall. This may be achieved by inserting the dispensing tips close to the base and maintaining the tip in the same position until the surrounding volume has been filled and then withdrawing the dispensing tip from the enclosure and enabling the foamed composition to self-level and subsequently cure. Alternatively, the dispensing tip can be gradually withdrawn from the enclosure by gradually moving the tip toward the top of the enclosure as the voids are filled. In a further alternative the cavities can be filled layer by layer such that the cavities in the bottom most layer of batteries are filled with the composition and the composition is allowed to self-level and begin curing and then the tips are raised to the next level and the process is repeated. When each water-cooling manifold layer separating the layers of horizontal batteries contains two or more water-cooling manifolds, tips may be inserted through gaps between adjacent water-cooling manifolds to assist in the filling of the central cavities between batteries in the enclosure. They may be designed to penetrate up to a predefined depth in the enclosure and in order to compliment the other tips and dispense and assist in the filling of the voids between batteries.
Once void (s) are filled the foam composition is allowed to cure in (IV) . In one embodiment a base mat of thermally insulating material, e.g., a prefabricated cured silicone foam base mat may be initially placed on the base of the enclosure. Alternatively, the base mat may be a fluid cooling manifold and then battery cells can be electrically mounted and subsequently silicone foam composition may be introduced into the enclosure to fill the voids to thermally insulate the battery cells. Typically, a battery module comprising horizontal battery arrays may comprise two to five layers of fluid cooling manifolds per module. These being vertically separated by layers of battery cells thermally insulated as hereinbefore described.
Compositions described herein foam and cure when mixed at room temperature and humidity but heating may be used to accelerate cure if desired. Typically cure takes place at room temperature over a period of from 15 minutes to 1 hour, alternatively from 15 to 45 minutes, alternatively from 15 minutes to 40 minutes. After curing, the resulting thermal insulation may undergo post-curing. Post-curing can be utilized to stabilize the performance of thermal insulation material in a short time. Post cure, if utilized is typically undertaken at a temperature between room temperature (about 23 ℃ to 25℃) and about 75℃, alternatively about 40 ℃ and 70 ℃, alternatively between 50 and 70℃ for a period of e.g., 30 minutes to 3 hours, e.g., 1 hour.
The self-levelling, non-syntactic silicone foam composition, described herein, after parts A and B had been mixed, may be of any suitable viscosity where the composition is able to self-level in the module subsequent to being dispensed therein; for example the composition may have a viscosity of from 500 to 20,000mPa. s at 25℃, alternatively 500 to 15,000mPa. s at 25℃, 500 to 10,000mPa. s at 25℃, alternatively 500 to 5,000mPa. s at 25℃. The viscosity measurements of the final composition after parts A and B had been mixed were carried out in accordance with ASTM D1084 using a Brookfield TM spindle LV-3 at 100 rpm. Preferably the viscosity measurement is taken prior to or at the start of the cure of the self-levelling, non-syntactic silicone foam composition, or immediately after dispensing. The viscosity of the final composition after parts A and B have been mixed may be carried out in accordance with ASTM D1084 using a Brookfield TM spindle LV-3 at 100rpm. One or more components of the self-levelling, non-syntactic silicone foam composition may have a viscosity which is greater than the overall viscosity of the composition, providing when all components and additives are mixed together the viscosity of the final composition is within the range specified. In one embodiment the viscosity of the self-levelling, non-syntactic silicone foam composition is greater than (>) the viscosity of each individual component present.
The self-levelling, non-syntactic silicone foam composition used in the process described herein, comprises five components and may, if desired, contain one or more additives as discussed below.
Component (i) of the self-levelling, non-syntactic silicone foam composition used in the process described herein is one or more polydiorganosiloxanes having at least two unsaturated  groups per molecule, alternatively at least three unsaturated groups per molecule selected from alkenyl and/or alkynyl groups;
The unsaturated groups of component (i) may be terminal, pendent, or in both locations in component (i) . For example, the unsaturated group may be an alkenyl group and/or an alkynyl group. Alkenyl is exemplified by, but not limited to, vinyl, allyl, 2-methyl-allyl, propenyl, and hexenyl groups. Alkenyl groups may have 2 to 30, alternatively 2 to 24, alternatively 2 to 20, alternatively 2 to 12, alternatively 2 to 10, and alternatively 2 to 6 carbon atoms. Alkynyl may be exemplified by, but not limited to, ethynyl, propynyl, and butynyl groups. Alkynyl groups may have 2 to 30, alternatively 2 to 24, alternatively 2 to 20, alternatively 2 to 12, alternatively 2 to 10, and alternatively 2 to 6 carbon atoms.
Component (i) has multiple units of the formula (I) :
R aSiO  (4-a) /2   (I)
in which each R is independently selected from an aliphatic hydrocarbyl, aromatic hydrocarbyl, or organyl group (that is any organic substituent group, regardless of functional type, having one free valence at a carbon atom) . Saturated aliphatic hydrocarbyls are exemplified by, but not limited to alkyl groups such as methyl, ethyl, propyl, pentyl, octyl, undecyl, and octadecyl and cycloalkyl groups such as cyclohexyl. Unsaturated aliphatic hydrocarbyls are exemplified by, but not limited to the alkenyl groups and alkynyl groups described above. Aromatic hydrocarbon groups are exemplified by, but not limited to, phenyl, tolyl, xylyl, benzyl, styryl, and 2-phenylethyl. Organyl groups are exemplified by, but not limited to, halogenated alkyl groups (excluding fluoro containing groups) such as chloromethyl and 3-chloropropyl; nitrogen containing groups such as amino groups, amido groups, imino groups, imido groups; oxygen containing groups such as polyoxyalkylene groups, carbonyl groups, alkoxy groups and hydroxyl groups. Further organyl groups may include sulfur containing groups, phosphorus containing groups, boron containing groups. The subscript “a” is 0, 1, 2 or 3.
Siloxy units may be described by a shorthand (abbreviated) nomenclature, namely -"M, " "D, " "T, " and "Q" , when R is a methyl group. The M unit corresponds to a siloxy unit where a = 3, that is R 3SiO 1/2; the D unit corresponds to a siloxy unit where a = 2, namely R 2SiO 2/2; the T unit corresponds to a siloxy unit where a = 1, namely R 1SiO 3/2; the Q unit corresponds to a siloxy unit where a = 0, namely SiO 4/2. The polydiorganosiloxane of component (i) is substantially linear but may contain a proportion of however, there can be some branching due to the presence of T units (as previously described) within the molecule, hence the average value of a in structure (I) is about 2.
Examples of typical groups on component (i) include mainly alkenyl, alkynyl, alkyl, and/or aryl groups, alternatively alkenyl, alkyl, and/or aryl groups. The groups may be in pendent position (on a D or T siloxy unit) or may be terminal (on an M siloxy unit) .
The silicon-bonded organic groups attached to component (i) other than alkenyl groups are typically selected from monovalent saturated hydrocarbon groups, which typically contain from 1 to 10  carbon atoms, and monovalent aromatic hydrocarbon groups, which typically contain from 6 to 12 carbon atoms, which are unsubstituted or substituted with the groups that do not interfere with curing of this inventive composition, such as halogen atoms. Preferred species of the silicon-bonded organic groups are, for example, alkyl groups such as methyl, ethyl, and propyl; and aryl groups such as phenyl.
Component (i) may be selected from polydimethylsiloxanes, alkylmethylpolysiloxanes, alkylarylpolysiloxanes or copolymers thereof (where reference to alkyl means an alkyl group having two or more carbons) containing e.g. alkenyl and/or alkynyl groups and may have any suitable terminal groups, for example, they may be trialkyl terminated, alkenyldialkyl terminated alkynyldialkyl terminated or may be terminated with any other suitable terminal group combination providing each polymer contains at least two unsaturated groups selected from alkenyl and alkynyl groups per molecule. In one embodiment the terminal groups of such a polymer have no silanol terminal groups.
Hence component (i) may, for the sake of example, be:
a dialkylalkenyl terminated polydimethylsiloxane, e.g. dimethylvinyl terminated polydimethylsiloxane; a dialkylalkenyl terminated dimethylmethylphenylsiloxane, e.g. dimethylvinyl terminated dimethylmethylphenylsiloxane; a trialkyl terminated dimethylmethylvinyl polysiloxane; a dialkylvinyl terminated dimethylmethylvinyl polysiloxane copolymer; a dialkylvinyl terminated methylphenylpolysiloxane, a dialkylalkenyl terminated methylvinylmethylphenylsiloxane; a dialkylalkenyl terminated methylvinyldiphenylsiloxane; a dialkylalkenyl terminated methylvinyl methylphenyl dimethylsiloxane; a trimethyl terminated methylvinyl methylphenylsiloxane; a trimethyl terminated methylvinyl diphenylsiloxane; or a trimethyl terminated methylvinyl methylphenyl dimethylsiloxane.
In these embodiments, at a temperature of 25 ℃, the generally substantially linear organopolysiloxane of component (i) is typically a flowable liquid. Generally, the substantially linear organopolysiloxane has a viscosity of from having a viscosity of from 100 to 20,000 mPa. s at 25℃ mPa. s, alternatively from 200 to 2000 mPa. s, at 25 ℃. Viscosity may be measured at 25 ℃using either a Brookfield TM rotational viscometer with spindle LV-3 (designed for viscosities in the range between 200-400,000 mPa. s) or a Brookfield TM rotational viscometer with spindle LV-1 (designed for viscosities in the range between 15 -20,000mPa. s) for viscosities less than 1000mPa. s and adapting the speed i.e. shear rate according to the polymer viscosity, for example from 0.005 s -1 to 1s -1 (0.3 to 60 rpm) with, in this instance, 1s -1 preferred. Component (i) may be present in the composition in an amount of from 30 to 70 wt. %of the composition, alternatively 30 to 65 wt. %of the composition. The fact that component (i) has a relatively low viscosity value of from 100 to 20,000 mPa. s at 25℃ mPa. s, alternatively from 200 to 2000 mPa. s, at 25 ℃ increases the relative unsaturation content per molecule and as such enhances the cross-link density of the cured product. This is particularly noted when component (v) the cross-linker is resinous and has numerous terminal groups comprising Si-H groups.
Component (ii) of the self-levelling, non-syntactic silicone foam composition described herein is a catalyst comprising or consisting of a platinum group metal or a compound or complex thereof. By “platinum group” it is meant ruthenium, rhodium, palladium, osmium, iridium and platinum. Platinum and platinum compounds or complexes are preferred due to the high activity level of these catalysts in hydrosilylation reactions.
Examples of preferred hydrosilylation catalysts (ii) are platinum based catalysts, for example, platinum black, platinum oxide (Adams catalyst) , platinum on various solid supports, chloroplatinic acids, e.g. hexachloroplatinic acid (Pt oxidation state IV) (Speier catalyst) , chloroplatinic acid in solutions of alcohols e.g. isooctanol or amyl alcohol (Lamoreaux catalyst) , and complexes of chloroplatinic acid with ethylenically unsaturated compounds such as olefins and organosiloxanes containing ethylenically unsaturated silicon-bonded hydrocarbon groups, e.g. tetra-vinyl-tetramethylcyclotetrasiloxane-platinum complex (Ashby catalyst) . Soluble platinum compounds that can be used include, for example, the platinum-olefin complexes of the formulae (PtCl 2. (olefin)  2 and H (PtCl 3. olefin) , preference being given in this context to the use of alkenes having 2 to 8 carbon atoms, such as ethylene, propylene, isomers of butene and of octene, or cycloalkanes having 5 to 7 carbon atoms, such as cyclopentene, cyclohexene, and cycloheptene. Other soluble platinum catalysts are, for the sake of example a platinum-cyclopropane complex of the formula (PtCl 2C 3H 62, the reaction products of hexachloroplatinic acid with alcohols, ethers, and aldehydes or mixtures thereof, or the reaction product of hexachloroplatinic acid and/or its conversion products with vinyl-containing siloxanes such as methylvinylcyclotetrasiloxane in the presence of sodium bicarbonate in ethanolic solution –. Platinum catalysts with phosphorus, sulfur, and amine ligands can be used as well, e.g. (Ph 3P)  2PtCl 2; and complexes of platinum with vinylsiloxanes, such as sym-divinyltetramethyldisiloxane.
Hence, specific examples of suitable platinum-based catalysts include
(i) complexes of chloroplatinic acid with organosiloxanes containing ethylenically unsaturated hydrocarbon groups are described in US 3,419,593;
(ii) chloroplatinic acid, either in hexahydrate form or anhydrous form;
(iii) a platinum-containing catalyst which is obtained by a process comprising reacting chloroplatinic acid with an aliphatically unsaturated organosilicon compound, such as divinyltetramethyldisiloxane;
(iv) alkene-platinum-silyl complexes as described in US Pat. No. 6,605,734 such as (COD) Pt (SiMeCl 22 where “COD” is 1, 5-cyclooctadiene; and/or
(v) Karstedt's catalyst, a platinum divinyl tetramethyl disiloxane complex typically containing about 1 wt. %of platinum typically in a vinyl siloxane polymer. Solvents such as toluene and the like organic solvents have been used historically as alternatives but the use of vinyl siloxane polymers by far the preferred choice. These are described in US3,715,334 and US3,814,730. In one preferred embodiment component (ii) may be selected from co-ordination compounds of platinum. In one  embodiment hexachloroplatinic acid and its conversion products with vinyl-containing siloxanes, Karstedt's catalysts and Speier catalysts are preferred.
The hydrosilylation catalyst (ii) is present in the total composition in a catalytic amount, i.e., an amount or quantity sufficient to promote a reaction or curing thereof at desired conditions. Varying levels of the hydrosilylation catalyst (ii) can be used to tailor reaction rate and cure kinetics. The catalytic amount of the hydrosilylation catalyst (ii) is generally between 0.01 ppm, and 10,000 parts by weight of platinum-group metal, per million parts (ppm) , based on the combined weight of the composition components (i) and (v) ; alternatively, between 0.01 and 5000 ppm; alternatively, between 0.01 and 3,000 ppm, and alternatively between 0.01 and 1,000 ppm. In specific embodiments, the catalytic amount of the catalyst may range from 0.01 to 1,000 ppm, alternatively 0.01 to 750 ppm, alternatively 0.01 to 500 ppm and alternatively 0.01 to 100 ppm of metal based on the weight of the composition. The ranges may relate solely to the metal content within the catalyst or to the catalyst altogether (including its ligands) as specified, but typically these ranges relate solely to the metal content within the catalyst. The catalyst may be added as a single species or as a mixture of two or more different species. Typically, dependent on the form/concentration in which the catalyst package is provided the amount of catalyst present will be within the range of from 0.001 to 3.0 wt. %of the composition.
Component (iii) of the self-levelling, non-syntactic silicone foam composition used in the process described herein is a chemical blowing agent, a physical blowing agent or a mixture of a chemical blowing agent and a physical blowing agent. Hence, the foam composition may be mechanically blown or may comprise chemical and/or physical blowing agents. In order to avoid the generation of explosive gases and or volatile organics the use of suitable physical blowing agents, including those which are non-flammable and/or inert gas at 0℃ (zero ℃) may be utilized. [0052] When component (iii) comprises a chemical blowing agent, it comprises one or more hydroxyl-containing blowing agents which will react with cross-linker (v) in the presence of component (ii) the catalyst. When component (iii) is a chemical blowing agent, comprising one or more hydroxyl-containing blowing agents, each hydroxyl-containing blowing agent has at least one hydroxyl (OH) group, alternatively at least two OH groups, and alternatively three or more OH groups. The OH group (s) can react with the Si-H groups of component (v) , thereby generating hydrogen gas, which is relied upon to generate the foam. Each hydroxyl-containing blowing agent may be a suitable alcohol. These may be selected from aliphatic organic alcohols having from 1 to 12 carbon atoms such as low molecular weight alcohols including, but are not limited to, methanol, ethanol, propanol, isopropanol, and the like or alternatively, benzyl alcohol.
In one embodiment the hydroxyl-containing blowing agent may be a diol. Examples of suitable diols include, but are not limited to, methylene glycol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane diol, bisphenol A, 1, 4-butanediol, 1, 3-propanediol, 1, 5-pentanediol, 1, 7-heptanediol, 1, 2-hexanediol, triethylene glycol, tripropylene glycol neopentyl  glycol, and combinations thereof. Alternatively, the hydroxyl-containing blowing agent may be a triol.
In various embodiments, component (iii) , when a hydroxyl-containing blowing agent is selected from the group of low-boiling alcohols. Most (but not all) of such alcohols have a boiling point lower than about 120℃. The alcohols may or may not be anhydrous, but anhydrous alcohols (containing less than 1 wt. %) water based on weight of alcohol is generally preferred. Other suitable blowing agents are described in US4550125, US6476080, and US20140024731, which are incorporated herein by reference.
Component (iii) when a hydroxyl-containing blowing agent is present in an amount to provide an OH content of from about 10 parts per million (ppm) to 50,000ppm, alternatively about 100ppm to 20,000ppm, alternatively about 500ppm to 10,000 ppm, alternatively about 500 to about 7500 ppm.
In other embodiments, when component (iii) is a chemical blowing agent, the chemical blowing agent may be selected from the group of Si-OH polymers. In certain embodiments, when a chemical blowing agent, component (iii) is selected from the group consisting of organosilanes and organosiloxanes having at least one silanol (Si-OH) group. Such compounds can have structures similar to those for the polymers described above for component (i) .
Examples of suitable OH-functional compounds include dialkyl siloxanes, such as OH-terminated dimethyl siloxanes. Such siloxanes may have a relatively low viscosity, such as about 15 to about 20,000mPa. s, about 15 to about 10,000mPa. s, about 15 to about 5,000 mPa. s, about 15 to about 1,000 mPa. s, or about 15 to about 100 mPa. s. measured at 25℃. Viscosity may be measured at 25 ℃ using either a Brookfield TM rotational viscometer with spindle LV-3 (designed for viscosities in the range between -200-400,000mPa. s) or a Brookfield TM rotational viscometer with spindle LV-1 (designed for viscosities in the range between 15 -20,000mPa. s) for viscosities less than 200 mPa. s and adapting the speed i.e. shear rate according to the polymer viscosity, for example from 0.005 s -1 to 1s -1 (0.3 to 60 rpm) with, in this instance, 1s -1 preferred.
Alternatively, component (iii) may comprise a physical liquid blowing agent. When component (iii) is a physical liquid blowing agent, said physical liquid blowing agent is tailored to undergo a phase change at the temperature of application. When component (iii) is a physical blowing agent said phase change at the temperature of application is the main source for the gas that leads to the formation of the foam by replacing all or most of the hydrogen gas generated when using a chemical blowing agent.
When component (iii) is a physical blowing agent, the physical blowing agent chosen is selected in accordance with its boiling point such that it undergoes a phase change from a liquid to a gaseous state during exposure to atmospheric pressure and the temperature of the cure process, e.g. a temperature less than or equal to 10℃, alternatively less than or equal to 20℃, alternatively less than or equal to 30℃, alternatively less than or equal to 40℃, alternatively less than or equal to  50℃, alternatively less than or equal to 60℃, alternatively less than or equal to 70℃, alternatively less than or equal to 80℃, alternatively less than or equal to 90℃, alternatively less than or equal to 100℃. In the case of room temperature vulcanization systems, the physical blowing agent chosen may have a boiling point of between 10 and 30℃, i.e., such that it undergoes a phase change from a liquid to a gaseous state during exposure to atmospheric pressure within this temperature range.
The amount of physical blowing agent utilized, when component (iii) is a physical blowing agent, can vary depending on the desired outcome. For example, the amount of physical blowing agent can be varied to tailor final foam density and foam rise profile of the resulting thermal insulation.
Useful physical blowing agents include hydrocarbons, such as pentane, hexane, halogenated, more particularly chlorinated and/or fluorinated, hydrocarbons, for example methylene chloride, chloroform, trichloroethane, chlorofluorocarbons, hydrochlorofluorocarbons (HCFCs) , ethers, ketones and esters, for example methyl formate, ethyl formate, methyl acetate or ethyl acetate, in liquid form or air, nitrogen or carbon dioxide as gases. In certain embodiments, the physical blowing agent comprises a compound selected from the group consisting of propane, butane, isobutane, isobutene, isopentane, dimethylether or mixtures thereof. In many embodiments, the blowing agent comprises a compound that is inert.
In various embodiments, the physical blowing agent comprises a hydrofluorocarbon (HFC) . “Hydrofluorocarbon” and “HFC” are interchangeable terms and refer to an organic compound containing hydrogen, carbon, and fluorine. The compound is substantially free of halogens other than fluorine.
Examples of suitable HFCs include aliphatic compounds such as 1, 1, 1, 3, 3-pentafluoropropane, 1, 1, 1, 3, 3-pentafluorobutane, 1-fluorobutane, nonafluorocyclopentane, perfluoro-2-methylbutane, 1-fluorohexane, perfluoro-2, 3-dimethylbutane, perfluoro-1, 2-dimethylcyclobutane, perfluorohexane, perfluoroisohexane, perfluorocyclohexane, perfluoroheptane, perfluoroethylcyclohexane, perfluoro-1, 3-dimethyl cyclohexane, and perfluorooctane; as well as aromatic compounds such as fluorobenzene, 1, 2-difluorobenzene; 1, 4-difluorobenzene, 1, 3-difluorobenzene; 1, 3, 5-trifluorobenzene; 1, 2, 4, 5-tetrafluorobenzene, 1, 2, 3, 5-tetrafluorobenzene, 1, 2, 3, 4-tetrafluorobenzene, pentafluorobenzene, hexafluorobenzene, and 1-fluro-3-(trifluoromethyl) benzene. In certain embodiments, compounds such as 1, 1, 1, 3, 3-pentafluoropropane and 1, 1, 1, 3, 3-pentafluorobutane may be preferred due to their increasing availability and ease of use, with 1, 1, 1, 3, 3-pentafluorobutane having a higher boiling point than 1, 1, 1, 3, 3-pentafluoropropane which may be useful in certain applications. For example, HFCs having a boiling point higher than 30℃, such as 1, 1, 1, 3, 3-pentafluorobutane, may be desirable because they do not require liquefaction during foam processing. In specific embodiments, when component (iii) is a physical blowing agent, component (iii) comprises 1, 1, 1, 3, 3-pentafluoropropane.
If desired component (iii) of the self-levelling, non-syntactic silicone foam composition in the process described herein may alternatively be a mixture of a chemical blowing agent as described above and of a physical blowing agent as described above. Component (iii) is typically present in the composition in an amount of from 2 to about 20 wt. %of the composition, alternatively from 2 to about 15 wt. %of the composition.
Component (iv) of the self-levelling, non-syntactic silicone foam composition in the process described herein is one or more fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite. The fire-retardant fillers may optionally also comprise fumed silica. The fire-retardant fillers, when present, may optionally be surface treated with a treating agent. The treating agents used may be selected from one or more of, for example, organosilanes, polydiorganosiloxanes, or organosilazanes, hexaalkyl disilazane, short chain siloxane diols, a fatty acid or a fatty acid ester such as a stearate to render one or more of the filler (s) hydrophobic and therefore easier to handle and obtain a homogeneous mixture with the other components. Specific examples include but are not limited to liquid hydroxyl-terminated polydiorganosiloxane containing an average from 2 to 20 repeating units of diorganosiloxane in each molecule which may optionally contain fluoro groups and or fluoro containing groups, if desired, hexaorganodisiloxane, hexaorganodisilazane, and the like. Component (iv) , the filler, may be present in any suitable amount for example from 10 to 50 wt. %of the composition.
Component (v) of the self-levelling, non-syntactic silicone foam composition described herein is a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule. Component (v) operates as a cross-linker for curing component (i) , by the addition reaction of the silicon-bonded hydrogen atoms with the unsaturated groups in component (i) catalysed by component (ii) described above. Component (v) normally contains three or more silicon-bonded hydrogen atoms so that the hydrogen atoms of this component can sufficiently react with the unsaturated groups of component (i) to form a network structure therewith and thereby cure the composition. Some or all of Component (v) may alternatively have two silicon bonded hydrogen atoms per molecule when component (i) has greater than (>) 2 unsaturated groups, alternatively alkenyl groups per molecule.
Component (v) may be a siloxane e.g., an organohydrogensiloxane or a silane e.g., a monosilane, disilane, trisilane, or polysilane providing each molecule has at least two, alternatively at least three Si-H groups per molecule. In acyclic polysilanes and polysiloxanes, the silicon-bonded hydrogen atoms can be located at terminal, pendant, or at both terminal and pendant positions. Cyclosilanes and cyclosiloxanes typically have from 3 to 12 silicon atoms, alternatively from 3 to 10 silicon atoms, alternatively from 3 to 4 silicon atoms.
When component (v) is a siloxane it may comprise an organohydrogensiloxane, which can be a disiloxane, trisiloxane, or polysiloxane. The organohydrogensiloxane, may comprise any  combination of M, D, T and/or Q siloxy units, so long as component (v) includes at least two silicon-bonded hydrogen atoms. These siloxy units can be combined in various manners to form cyclic, linear, branched and/or resinous (three-dimensional networked) structures. Component (v) may be monomeric, polymeric, oligomeric, linear, branched, cyclic, and/or resinous depending on the selection of M, D, T, and/or Q units.
Examples of component (v) include but are not limited to:
trimethylsiloxy-terminated methylhydrogenpolysiloxane, trimethylsiloxy-terminated polydimethylsiloxane-methylhydrogensiloxane, dimethylhydrogensiloxy-terminated dimethylsiloxane-methylhydrogensiloxane copolymers, dimethylsiloxane-methylhydrogensiloxane cyclic copolymers, copolymers composed of (CH 32HSiO 1/2 units and SiO 4/2 units, copolymers composed of (CH 33SiO 1/2 units, (CH 32HSiO 1/2 units, and SiO 4/2 units; and copolymers containing (CH 32HSiO 1/2 units and (R 2Z)  d (R 3e SiO  (4-d-e) /2 as described above. In one embodiment the cross-linker is selected from one or more of said copolymers composed of (CH 32HSiO 1/2 units and SiO 4/2 units, Copolymers composed of (CH 33SiO 1/2 units, (CH 32HSiO 1/2 units, and SiO 4/2 units; and copolymers containing (CH 32HSiO 1/2 units and (R 2Z)  d (R 3e SiO  (4-d-e) /2 as described above, said copolymers may be or are silicone resins. This is preferred because the high proportion of Si-H groups leads to an increased cross-link density in the final cured product.
While the viscosity of this component is not specifically restricted, it may typically be from 5 -1,000 mPa. s at 25℃, alternatively 5 -500 mPa. s at 25℃, alternatively 5 -100 mPa. s at 25℃, alternatively 5 -50mPa. s at 25℃, alternatively 5-20 mPa. s at 25℃ using a Brookfield TM rotational viscometer with spindle LV-1 (designed for viscosities in the range between 15 -20,000mPa. s) and adapting the speed i.e. shear rate according to the polymer viscosity, for example from 0.005 s -1 to 1s -1 (0.3 to 60 rpm) with, in this instance, 1s -1 preferred , or a Brookfield TM rotational viscometer with spindle YULA-15 (E) (designed for viscosities in the range between 1 -2000 mPa. s) for viscosities less than 15 mPa. s and again adapting the speed i.e. shear rate according to the polymer viscosity, for example from 0.005 s -1 to 1s -1 (0.3 to 60 rpm) with, in this instance, 1s -1 preferred.
Component (v) is typically added in an amount such that the molar ratio of the silicon-bonded hydrogen atoms in component (v) to that of all unsaturated groups in the composition and the number of -OH groups in component (iii) , when a chemical blowing agent, is from 0.5: 1 to 20: 1; alternatively of from 0.5 : 1 to 5 : 1, alternatively from 0.6 : 1 to 3 : 1. alternatively from 0.8 : 1 to 3: 1. When this ratio is less than 0.5: 1, a well-cured composition will not be obtained. When the ratio exceeds 20: 1, there is a tendency for the hardness of the cured composition to increase when heated. The amounts of each group mentioned in the above ratio, e.g., silicon-bonded hydrogen (Si-H) content of organohydrogenpolysiloxane (v) may be determined using quantitative infra-red analysis in accordance with ASTM E168, if desired.
Typically component (v) is present in the composition in an amount of from 0.5 to10 wt. %of the total composition which amount is determined dependent on the required molar ratio of the total number of the silicon-bonded hydrogen atoms in component (v) to the total number of all alkenyl and alkynyl groups in component (i) and the amount of hydroxyl groups in component (iii) when a chemical blowing agent.
The self-levelling, non-syntactic silicone foam compositions as described in the process herein are usually stored in two parts to avoid premature cure. The two parts are generally referred to as part A and part B. Two-part compositions are utilized so that that components (i) polymer, (v) cross-linker, (iii) blowing agent and (ii) catalyst are not all stored together. For example, Part A may comprise components (i) , (ii) and part or all of (iii) and Part B comprises at least components (i) and (v) and typically components (i) and (v) and part of (iii) with part A free of component (v) cross-linker and part B free of component (ii) catalyst. Typically, component (iii) blowing agent and Component (iv) , the filler may be partially in the part A composition and partially in the part B composition.
In one embodiment, as indicated above, there is provided a two-part self-levelling, non-syntactic silicone foam composition comprising a part A composition of component (i) , component (ii) and component (iii) and a part B composition of component (i) , component (iv) and component (v) such that components (ii) and (iii) are only in the part A composition and components (iv) and (v) are only in the part B composition.
It was found in the latter embodiment that by only having component (iii) blowing agent in Part A, and only having component (iv) filler in Part B, processing be improved compared with the standard where filler and blowing agent are equally distributed in both Part A and Part B. This is because if the filler begins to settle, oil migration occurs, and the appropriate part in which this happens has to be remixed before use. The fact that component (iii) blowing agents are usually designed to have low boiling points due to their function in the process any remixing to render said component homogeneous again can result in the generation of heat during remixing. It was found that by separating component (iii) and component (iv) by having all component (iii) in part A and all component (iv) in part B this is no longer an issue as the part B composition can be remixed as and when necessary and the filler settling issue no longer occurs in part A.
The part A and part B of the two part composition may be designed to be mixed together in any suitable ratio dependent on the content and concentration of the ingredients present in each part, for example the two part composition may be mixed in a Part A : Part B weight ratio of from 15 : 1 to 1 : 10, alternatively from 15 : 1 to 1 : 5, alternatively from 15 : 1 to 1 : 2.5, alternatively from 10 : 1 to 1 : 2.5. Typically, the part A : part B ratio is less than 1 : 1, i.e., between 1 : 1 and 1 : 5 when using the embodiment where all filler is added into to the Part B composition and all blowing agent is added to the to the Part A composition.
Before being mixed together in the above process the ingredients of the part A composition are blended together and separately the ingredients of the part B composition are also blended together to form respective part A and part B compositions.
The composition may include one or more optional additives but the total weight %of the composition is 100 wt. %. The alkenyl and/or alkynyl content of polymer (i) is determined using quantitative infra-red analysis in accordance with ASTM E168. It was found that utilizing a component (i) having a low viscosity of from 100 to 20,000 mPa. s at 25℃ mPa. s, alternatively from 200 to 2000 mPa. s, at 25 ℃ increases the relative unsaturation content per molecule and as such enhances the cross-link density of the cured product. This is particularly noted when component (v) the cross-linker is resinous and has numerous terminal groups comprising Si-H groups per molecule. It was also found that this resulted in the cured silicone foam which is the cured product of the composition herein is able to generate in ceramifying of silicone foam under high temperature and therefore is able to meet the high temperature thermal insulation requirements of the UL 94 V0 Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing, required by Underwriters Laboratories of the United States.
The self-levelling, non-syntactic silicone foam compositions as described in the process herein may optionally further comprise additional ingredients or components (hereafter referred to as “additives” ) . Examples of additional ingredients include, but are not limited to, resins, inhibitors; surfactants; stabilizers; adhesion promoters; colorants, including dyes and pigments; antioxidants; carrier vehicles; heat stabilizers; flame retardants; flow control additives; inhibitors; non-reinforcing (sometimes referred to as extending) fillers.
The one or more additives can be present in a suitable wt. %of the composition. When present the additive may be present in an amount of up to about 10 or even 15 wt. %based on the understanding that the total wt. %of the composition is 100 wt. %. One of skill in the art can readily determine a suitable amount of additive depending, for example, on the type of additive and the desired outcome. Certain optional additives are described in greater detail below.
For example, the composition may further comprise an organopolysiloxane resin ( “resin” ) as a resin foam stabilizer. The resin has a branched or a three-dimensional network molecular structure. At 25℃, the resinous organopolysiloxane may be in a liquid or in a solid form, optionally dispersed in a carrier, which may solubilize and/or disperse the resin therein.
In specific embodiments, the resinous organopolysiloxane may be exemplified by an organopolysiloxane that comprises only T units, an organopolysiloxane that comprises T units in combination with other siloxy units (e.g. M, D, and/or Q siloxy units) , or an organopolysiloxane comprising Q units in combination with other siloxy units (i.e., M, D, and/or T siloxy units) . Typically, the resin comprises T and/or Q units. Specific examples are alkenylated silsesquioxanes or MQ resins e.g., vinyl terminated silsesquioxanes or MQ resins.
For example, the resin may be formed from multiple units of formula:
R 5 f″SiO  (4-f″) /2
wherein each R 5 is a substituted or unsubstituted monovalent hydrocarbon group of 1 to 20 carbon atoms, for example, alkyl groups such as methyl, ethyl, propyl, hexyl, octyl, dodecyl, tetradecyl, hexadecyl, and octadecyl, or an aromatic group having 6 to 20 carbons such as benzyl and phenylethyl groups or alkenyl groups such as vinyl, propenyl, n-butenyl, t-butenyl, pentenyl, hexenyl, octenyl and the like and wherein each f″ is from 0 to 4. If the resin is a T resin, then most groups have f″ as 1 and if the resin is an MQ resin to largely comprises groups where f″ is 0 (Q groups) or 4 (M groups) as previously discussed.
Suitable pigments may include carbon black, e.g., acetylene black, titanium dioxide, chromium oxide, zinc oxide, bismuth vanadium oxide, iron oxides and mixtures thereof.
The composition as described herein may further comprise a hydrosilylation reaction inhibitor to inhibit the cure of the composition. Hydrosilylation reaction inhibitors are used, when required, to prevent or delay the hydrosilylation reaction curing process especially during storage. The optional hydrosilylation reaction inhibitors of platinum based catalysts are well known in the art and include hydrazines, triazoles, phosphines, mercaptans, organic nitrogen compounds, acetylenic alcohols, silylated acetylenic alcohols, maleates, fumarates, ethylenically or aromatically unsaturated amides, ethylenically unsaturated isocyanates, olefinic siloxanes, unsaturated hydrocarbon monoesters and diesters, conjugated ene-ynes, such as 3-methyl-3-penten-1-yne, 3, 5-dimethyl-3-hexen-1-yne hydroperoxides, nitriles, and diaziridines. Alkenyl-substituted siloxanes as described in US3989667 may be used, of which cyclic methylvinylsiloxanes such as 1, 3, 5, 7-tetramethyl-1, 3, 5, 7-tetravinylcyclotetrasiloxane, 1, 3, 5, 7-tetramethyl-1, 3, 5, 7-tetrahexenylcyclotetrasiloxane, are preferred.
One class of known hydrosilylation reaction inhibitor includes the acetylenic compounds disclosed in US3445420. Acetylenic alcohols such as 2-methyl-3-butyn-2-ol constitute a preferred class of inhibitors that will suppress the activity of a platinum-containing catalyst at 25 ℃. Compositions containing these inhibitors typically require heating at temperature of 70 ℃ or above to cure at a practical rate.
Examples of acetylenic alcohols and their derivatives include 3-methyl-1-butyn-3-ol, 1-ethynyl-1-cyclohexanol (ETCH) , 2-methyl-3-butyn-2-ol, 3-butyn-1-ol, 3-butyn-2-ol, propargyl alcohol, 1-phenyl-2-propyn-1-ol, 3, 5-dimethyl-1-hexyn-3-ol, 3-phenyl-1-butyn-3-ol, 1-ethynylcyclopentanol, 3-methyl-1-penten-4-yn-3-ol, and mixtures thereof. Derivatives of acetylenic alcohol may include those compounds having at least one silicon atom.
When present, inhibitor concentrations as low as 1 mole of inhibitor per mole of the metal of catalyst will in some instances impart satisfactory storage stability and cure rate. In other instances, inhibitor concentrations of up to 500 moles of inhibitor per mole of the metal of catalyst are required. The optimum concentration for a given inhibitor in a given composition is readily  determined by routine experimentation. Dependent on the concentration and form in which the inhibitor selected is provided/available commercially, when present in the composition, the inhibitor is typically present in an amount of from 0.0125 to 10 wt. %of the composition.
In various embodiments, the composition further comprises an adhesion promoter. The adhesion promoter can improve adhesion of the foam to a substrate being contacted during curing. In certain embodiments, the adhesion promoter is selected from organosilicon compounds having at least one alkoxy group bonded to a silicon atom in a molecule. This alkoxy group is exemplified by a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group. Moreover, non-alkoxy groups bonded to a silicon atom of this organosilicon compound are exemplified by substituted or non-substituted monovalent hydrocarbon groups such as alkyl groups, alkenyl groups, aryl groups, aralkyl groups, halogenated alkyl groups and the like; epoxy group-containing monovalent organic groups such as a 3-glycidoxypropyl group, a 4-glycidoxybutyl group, or similar glycidoxyalkyl groups; a 2- (3, 4-epoxycyclohexyl) ethyl group, a 3- (3, 4-epoxycyclohexyl) propyl group, or similar epoxycyclohexylalkyl groups; and a 4-oxiranylbutyl group, an 8-oxiranyloctyl group, or similar oxiranylalkyl groups; acrylic group-containing monovalent organic groups such as a 3-methacryloxypropyl group and the like; and a hydrogen atom.
This organosilicon compound generally has a silicon-bonded alkenyl group or silicon-bonded hydrogen atom. Moreover, due to the ability to impart good adhesion with respect to various types of substrates, this organosilicon compound generally has at least one epoxy group-containing monovalent organic group in a molecule. This type of organosilicon compound is exemplified by organosilane compounds, organosiloxane oligomers and alkyl silicates. Molecular structure of the organosiloxane oligomer or alkyl silicate is exemplified by a linear chain structure, partially branched linear chain structure, branched chain structure, ring-shaped structure, and net-shaped structure. A linear chain structure, branched chain structure, and net-shaped structure are typical. This type of organosilicon compound is exemplified by silane compounds such as 3-glycidoxypropyltrimethoxysilane, 2- (3, 4-epoxycyclohexyl) -ethyltrimethoxysilane, 3-methacryloxy propyltrimethoxysilane, and the like; siloxane compounds having at least one silicon-bonded alkenyl group or silicon-bonded hydrogen atom, and at least one silicon-bonded alkoxy group in a molecule; mixtures of a silane compound or siloxane compound having at least one silicon-bonded alkoxy group and a siloxane compound having at least one silicon-bonded hydroxyl group and at least one silicon-bonded alkenyl group in the molecule; and methyl polysilicate, ethyl polysilicate, and epoxy group-containing ethyl polysilicate.
When using one or more additives in addition to components (i) to (v) of the composition as described above, the part A composition might also include one or more of the aforementioned optional components such as inhibitor (depending on the choice of inhibitor) , pigments or colorants and/or an MQ resin foam stabilizer.
The part B blend composition might also include one or more of the aforementioned optional components such inhibitor (depending on the choice of inhibitor) , pigments or colorants and/or an MQ resin foam stabilizer. Alternatively, a proportion of said additives may be present in each both the part A and part B composition if desired.
Typically the part A and part B compositions are stored for a period of time before use. In step (i) the part A composition and part B compositions are mixed to form a foam of the self-levelling, non-syntactic silicone foam composition described above. Any suitable mixer may be used, for example the mixer may be a static mixer or a stirred tank or the like suitable for undertaking thorough mixing of the respective blend compositions. Optionally the mixing container is temperature controllable such that the part A composition and part B compositions being mixed can be maintained within a desired temperature range.
For the avoidance of doubt it is to be understood that in the above and all other references to %weight (%wt. ) of the composition in this disclosure, the total %wt. of all compositions is in all instances is 100%.
The self-levelling, non-syntactic silicone foam compositions as described herein produce open cell and/or closed cell foams. When the foam is a closed cell foam the density may be measured by any suitable method such as via the Archimedes principle, using a balance and density kit, and following standard instructions associated therewith. A suitable balance is a Mettler-Toledo XS205DU balance with density kit. When a closed cell foam, it may have a density of from 0.01 grams per cubic centimeter g/cm 3 to 5 g/cm 3, alternatively from 0.05 g/cm 3 to 2.5 g/cm 3 alternatively from 0.1 g/cm 3 to 2.0 g/cm 3, alternatively from 0.1 g/cm 3 to 1.5 g/cm 3.
If density is too high, the foam may be too heavy or stiff for certain applications. If density is too low, the foam may lack desired structural integrity for certain applications.
The average pore size can be determined via any suitable method such as in accordance with ATSM method D3576-15 optionally with the following modifications:
(1) image a foam using optical or electron microscopy rather than projecting the image on a screen; and
(2) scribe a line of known length that spans greater than 15 cells rather than scribing a 30 mm line.
The self-levelling, non-syntactic silicone foam compositions as described herein generally has pores that are uniform in size and/or shape. Typically, the foam has an average pore size of between 0.001mm and 5mm, alternatively between 0.001mm and 2.5mm, alternatively between 0.001mm and 1mm, alternatively between 0.001mm and 0.5mm, alternatively between 0.001mm and 0.25mm, alternatively between 0.001mm and 0.1mm, and alternatively between 0.001mm and 0.05mm.
Description of the Figures
Fig. 1 is a depiction of a battery module with a set of battery cells in place and partially electrically connected;
Fig. 2 depicts the process for preparing and dispensing the composition described in the process into the battery module containing a series of battery cells introduce a two-part composition;
Fig. 3 is a depiction of an insulated series of battery cells after foaming and curing process with the housing of the module removed;
Figs. 4a and 4b are two alternate depictions of the thermal insulation cured from the self-levelling, non-syntactic silicone foam composition herein in the absence of cylindrical battery cells.
Figs 5a to 5g depicts a step-by-step depiction of a process for insulating a thermally insulated battery module wherein the batteries are engaged in a horizontal position and layers of batteries are separated by fluid cooling manifold (s) as described herein.
Fig. 1 is a depiction of a battery module (10) having a housing (12) containing multiple cylindrical lithium-ion batteries (20) . The lithium-ion batteries (20) are held in a base mold, not shown, which separates the batteries, which together forms the basic internals of a cell module. It can be seen that because of the shape of the batteries the voids between them are of an irregular geometry which in the case of Fig. 1 voids are not filled by any thermal insulation or the like.
Fig. 2 depicts the process described herein. During the process, the part A composition is prepared and deposited in tank (1) and the part B composition is prepared and deposited in tank (2) . The part A composition is pumped from tank (1) through valve (5) using pump (3) to mixer (7) . In an analogous fashion the part B composition is pumped from tank (2) through valve (6) using pump (4) to mixer (7) . The part A and part B compositions are mixed together in mixer (7) whereafter foaming will commence en route to dispensing head (8) . Dispensing head (8) is used to dispense self-levelling, non-syntactic silicone foam composition as hereinbefore described or comparatives C. 1 or C. 2 into the housing (12) of battery module (10) . A predetermined amount of the self-levelling, non-syntactic silicone foam composition, which may have started to foam upon dispensing, from dispensing head (8) , typically dependent on the volume of the housing. In Fig. 2 the housing (12) is observed to be partially filled with self-levelling, non-syntactic silicone foam composition. Once this action is completed the composition self-levels and then is allowed to continue foaming and curing until the resulting foamed material is prepared.
Fig. 3 is a photo of a series of batteries which have been surrounded by thermal insulation as described herein produced by curing and foaming the self-levelling, non-syntactic silicone foam composition. As previously indicated Figures 4a and 4b are two views of the thermal insulation resulting from curing and foaming the self-levelling, non-syntactic silicone foam composition. These clearly show that the insulation is continuous and has filled all voids between the cells.
In Figs. 5a to 5g, there is provided step-by-step depiction of an embodiment of the process for thermally insulating adjacent battery cells in a battery module wherein the battery module is shown cross-sectionally as having a rectangular cuboidal housing with a top and a base. There are two pairs of opposite sides between the top and the base. The two pairs of opposite sides (not shown)  between the top and the base, define an enclosure (31) with one pair of the opposite sides having electrical mountings (again not shown) . The electrical mountings are positioned so that multiple battery cells can be mounted horizontally between opposite electrical mountings on the opposite sides such that when mounted there are a plurality of cylindrical battery cells (34) in a horizontal array in said enclosure (31) .
In Fig. 5a, there is a cross-section of the enclosure (31) in which is depicted several battery cells (34) , each separated from its horizontal neighbour with a biconcave void.
In Fig. 5b a fluid cooling manifold (35a) is shown placed on top of the layer of battery cells (34) . Each fluid cooling manifold layer may comprise a single fluid cooling manifold, in this instance depicted as (35a) but the layer may alternatively comprise two or more horizontally adjacent fluid cooling manifolds (41, 42) as depicted in Fig. 5f. Each fluid cooling manifold (e.g., 35a, 41, 42) has a fluid inlet, introducing cold fluid e.g., water, and a fluid outlet removing heated fluid (neither shown) with a view to controlling the temperature of the cells (34) in the module during use. In Fig. 5c, a middle layer of horizontal battery cells (34) has been introduced and sit on fluid cooling manifold (35a) . Again, a series of biconcave voids are formed between horizontally adjacent battery cells (34) in said middle row. In Fig. 5d a second fluid cooling manifold layer (35b) has been inserted on top of the second layer of horizontal battery cells (34) and a top layer of battery cells (34) have been placed on top of second fluid cooling manifold layer (35b) . In this instance second fluid cooling manifold layer (35b) comprises two adjacent fluid cooling manifolds as depicted in Fig. 5f (41, 42) between which there is provided a gap. In said top layer a central position (38) which would otherwise have been expected to house a battery (34) has been left unoccupied. In Fig. 5e three dispensing tips (44, 45, 46) have been inserted into housing (31) . Dispensing tips (44) and (46) are inserted adjacent to the wall positioned such that the foam will be issued into the lowest layer of batteries such that the self-levelling, non-syntactic silicone foam composition as described herein is delivered into the lowest layer of batteries and is allowed to flow and self level therein at a rate such that the lowest layer of batteries has all voids filled before substantially any of said self-levelling, non-syntactic silicone foam composition is introduced into the middle layer. The self-levelling, non-syntactic silicone foam composition may then be allowed to complete foaming and at least partially cure before the middle layer of batteries is filled with said self-levelling, non-syntactic silicone foam composition and finally the process is repeated again for the top layer of batteries. Dispensing tips (44) and (46) may be allowed to maintain the same position or depth throughout the filling of each layer. Alternatively, once the bottom layer has been insulated dispensing tips (44) and (46) may be repositioned to be at a height commensurate with the middle layer and subsequently may be repositioned to be at a height commensurate with the top layer once the middle layer has been insulated with said self-levelling, non-syntactic silicone foam composition. In a further alternative, the middle layer is then filled with dispensing tips (44) and (46) may be gradually raised and at a predetermined rate commensurate with the speed of  dispensing and self-levelling of said self-levelling, non-syntactic silicone foam composition. It can be seen however that a third dispensing tip (45) is used centrally in the battery module to assist in the filling of each layer from a central position such that in combination the three dispensing tips are able to dispense and completely fill the voids in each battery layer. Fig. 5g depicts housing (31) completely filled with self-levelling, non-syntactic silicone foam composition (50) which cures in place to insulate the horizontally positioned cylindrical battery cells (34) .
The battery modules described herein are suitable for use in a wide variety of applications such as in electric-vehicle battery (EVB) power supplies for electric and hybrid (electric and petrol/diesel) powered vehicles, i.e. in battery packs/systems used to power the propulsion system of electric and hybrid vehicles and as such are designed to give power over sustained periods of time. As previously discussed, battery packs store the electricity used by the motor to drive a vehicle's wheels. In the case of hybrid type electric vehicles, the propulsion system is powered by a battery pack much like the above, but a combustion engine is also present and as such hybrid vehicles run on electric power until the battery is depleted and then switch over to carbon based fuel which powers an internal combustion engine. These may include a battery pack wherein said self-levelling, non-syntactic silicone foam is used as thermal insulation disposed in said battery module housing to substantially fill voids between adjacent cells, particularly cylindrical cells. Typically, the battery module is used in a battery pack in a vehicle such as an all-electric road vehicle (EV) , a plug-in hybrid road vehicle (PHEV) , a hybrid road vehicle (HEV) or alternatively in other modes of transport such as an aircraft, a boat, a ship, a train.
The following examples, illustrating the compositions, foams, and methods, are intended to illustrate and not to limit the invention.
Compositions were generated utilizing different types and amounts of components. These are detailed below. All amounts are in wt. %unless indicated otherwise. As discussed above all viscosities are measured at 25℃. The viscosity of individual ingredients may be determined by any suitable method such as using a Brookfield TM rotational viscometer with spindle LV-3 (designed for viscosities in the range between 200-400,000 mPa. s) or a Brookfield TM rotational viscometer with spindle LV-1 (designed for viscosities in the range between 15 -20,000mPa. s) for viscosities less than 200mPa. s and adapting the speed i.e. shear rate according to the polymer viscosity, for example from 0.005 s -1 to 1s -1 (0.3 to 60 rpm) with, in this instance, 1s -1 preferred.
The alkenyl and/or alkynyl content of polymers as well as the silicon-bonded hydrogen (Si-H) content and/or silanol content of ingredients was determined using quantitative infra-red analysis in accordance with ASTM E168.
The following ingredients were used in the Examples:
Polymer 1: dimethylvinyl terminated polydimethylsiloxane having a viscosity of 350 mPa. s at 25℃;  Polymer 2: dimethylvinyl terminated polydimethylsiloxane having a viscosity of 12000 mPa. s at 25℃;
Hydromagnesite: a hydrated magnesium carbonate mineral having the formula Mg 5 (CO 34 (OH)  2·4H 2O having an average particle size of about 4μm, hydrophobically treated with a vinyl silazane; Aluminum trihydrate: chemical formula Al (OH)  3
Glass Bubbles: the glass bubbles used in the comparative Example 1 (C. 1) were commercially available from the 3M Corporation as 3M TM Glass Bubbles S32HS;
Resin foam stabilizer: a  ViMMQ resin, having a viscosity of ~45,000 mPa. s at 25℃ and ~0.39 wt. %vinyl;
Karstedt’s catalyst: a masterbatch of dimethylvinylsiloxy-terminated dimethyl siloxane and platinum complex. Platinum complex content is about 1.4%;
Fluorinated silicone polymer : a trimethyl terminated polydimethyl methyl perfluoropropyl siloxane having a viscosity of about 10,000 mPa. s at 25℃;
Fluorinated silicone resin (viscosity ~ 100 mPa. s at 25℃)
Physical Blowing Agent : 1, 1, 1, 3, 3-pentafluoropropane;
Organohydrogensiloxane: methylhydrogen siloxane, trimethylsiloxy-terminated, having a viscosity of about 20 mPa. s at 25℃ and about 1.6 wt. %SiH.
Three example compositions and two comparative compositions were prepared. Comparative 1 (C. 1) was a syntactic silicone composition. Ex. 1 was a chemically foamed composition; Ex. 2 was a physically foamed composition and Ex. 3 was a preferred physically foamed composition with all the resin foam stabilizer and catalyst in part A and all the filler and cross-linker in part B. The compositions used are depicted in Table 1a (part A) and Table 1b (part B) .
Table 1a: Part A compositions of Examples and Comparatives (wt. %)
Figure PCTCN2021141950-appb-000001
Figure PCTCN2021141950-appb-000002
Table 1b Part B compositions of Examples and Comparatives (wt. %)
Figure PCTCN2021141950-appb-000003
The part A composition was prepared in an analogous fashion in each example/comparative, wherein the ingredients excepting the blowing agent were weighed into a Turello mixer container. They were then mixed using a Turello mixer (600 rpm, 20 min) . to form a homogeneous mixture. The mixture was then cooled to 5 ℃, and the blowing agent was introduced forming a homogeneous mixture.
Likewise, the part B composition was prepared in an analogous fashion in each example/comparative, all the ingredients were weighed into a Turello mixer container. They were then mixed using said Turello mixer (600 rpm, 20 min) to produce a homogeneous mixture If it is needed to add foam blowing agent, follow the same procedure as described in part A.
A series of physical tests were carried out using the compositions defined above with respect to the composition or the resulting foam. The viscosity measurements of the final composition after parts A and B had been mixed were carried out in accordance with ASTM D1084 using a Brookfield TM spindle LV-3 at 100rpm. Preferably the viscosity was less than or equal (≤) 2000m Pa. s at 25℃. Density measurements were undertaken in accordance with ASTM D792 using an AB204-SAnalytical Balance from Mettler Toledo. Preferably the density was less than 0.9 g/cm 3. Shore A hardness was determined in accordance with ASTM D 2240 using a hardness tester from Instron Type A Durometer with the sample sizes having a thickness of greater than (>) 6.5 mm. Preferably the Shore A hardness was greater than 20.
Samples underwent UL 94 testing. UL 94 is the Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing in accordance with the Underwriters Laboratories of the United States. The standard determines the material’s tendency to either extinguish or spread the flame once the specimen has been ignited. The test was undertaken using  an HVUL2 Horizontal Vertical Flame Chamber from Atlas with the sample test pieces had the following sizes: (125 ± 5) x (13.0 ± 0.5) x (2 ± 0.1) mm
Thermal insulation test Procedure and Conditions:
The thermal testing was undertaken on a test station comprising a heatable base plate with heat face dimension of 15cm x 17cm to provide heating temperature at about 600℃, an aluminum plate with dimension of 15cm x 17cm x 3cm, and a steel loading plate. The total weight of aluminum plate and steel loading plate was 19.2kg. Test specimens were prepared having the dimensions 8cm length, 8 4cm width and approximately 2mm thickness. The test specimen was mounted on the center of the aluminum plate, facing to heatable base plate with the surface area directly contacting with the heatable base plate was 0.0064m 2. The steel loading plate was placed on the aluminum plate to make 0.03MPa pressure on the test specimen during testing. Two line notches in parallel, with depth as 0.45mm were cut on the specimen holding face of aluminum plate, starting from the long edge (17cm) , end with length of 7.5cm, distance between the two line notches was 4cm, evenly positioned near the center of aluminum plate. Two K-type jacketed thermocouples with O. D. as 0.5mm (WRNK-191, from Taizhou Cesmooy) were placed in the lined notches to measure the back temperature of test specimen. Polyimide tape was used to fix thermocouples and mount test specimen on aluminum plate.
The test lasted for 20min, with back temperature of specimen recorded. After the test, steel loading and Aluminum plate was removed from the heat stage.
Preferably the temperature of the back face was < 250℃ after 20 mins.
Electrical insulation measurements were undertaken in accordance with ASTM D 149 for dielectric strength using a 700-D149 Series -Dielectric Breakdown Tester for ASTM D149 from Hipotronics Inc. using a voltage increase speed 1 kV/s, sample size: 100 x 100 x 1mm. Volume resistance measurements were determined in accordance with ASTM D257 using a 4339B High Resistance Meter from Agilent Technologies and sample sizes of 100 x 100 x 1mm.
The physical property results are provided in Table 2.
Table 2a: Physical property results
Figure PCTCN2021141950-appb-000004
Compared with C. 1 (glass bubble filled silicone) , each of Ex. 1 to 3 showed excellent flowability and were able to self-level much better. The viscosities of Ex. 1-3 are all much lower i.e., between 800 and 1100 mPa. s at 25℃, which make the self-levelling as described herein easier to realize. The thermal insulation performance and flame retardancy are also significantly enhanced. C. 2 is a product developed for EV battery module potting with low viscosity (2000 mPa. s at 25℃) . Another advantage of the formulation in our invention is its high hardness. The hardness reached to 23 Shore A, while the hardness of C. 2 is only 11 Shore A.
Table 2b Physical property results
Figure PCTCN2021141950-appb-000005

Claims (16)

  1. A process for thermally insulating adjacent battery cells (20) in a battery module (10) comprising the steps of:
    (1) Taking a battery module (10) comprising a housing (12) with a lid in which is disposed a plurality of battery cells (20) which are electrically connected but otherwise physically separated from each other;
    (2) Dispensing a self-levelling, non-syntactic silicone foam composition into said housing (12) , said self-levelling, non-syntactic silicone foam composition comprising the following components:
    (i) one or more polydiorganosiloxanes having a viscosity of from 100 to 20,000 mPa.s at 25℃ having at least two unsaturated groups per molecule selected from alkenyl and/or alkynyl groups;
    (ii) a platinum group metal, or a compound or complex of a platinum group metal;
    (iii) a chemical blowing agent, a physical blowing agent or a mixture of a chemical blowing agent and a physical blowing agent;
    (iv) one or more fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite; and
    (v) a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule;
    (3) Allowing the self-levelling, non-syntactic silicone foam composition to flow within the housing (12) and self-level and as such fill voids between adjacent battery cells (20) in said battery module; and
    (4) enabling the self-levelling, non-syntactic silicone foam composition to foam, cure and consequently expand to fill the voids between adjacent battery cells during foaming and curing.
  2. A process for thermally insulating adjacent battery cells (20) in a battery module (10) in accordance with claim 1 wherein the battery cells (20) are cylindrical lithium-ion battery cells.
  3. A process for thermally insulating adjacent battery cells (20) in a battery module (10) in accordance with any preceding claim wherein the self-levelling, non-syntactic silicone foam composition has a viscosity of from 500 to 20,000 mPa.s at 25℃.
  4. A process for thermally insulating adjacent battery cells (20) in a battery module (10) in accordance with any preceding claim wherein the composition is stored in two parts before use and the two parts are mixed before step 2.
  5. A process for thermally insulating adjacent battery cells (20) in a battery module (10) in accordance with any preceding claim wherein the self-levelling, non-syntactic silicone foam composition is stored in a part A composition and a part B composition prior to use wherein the part  A composition comprises component (i) , component (ii) and component (iii) and the part B composition comprises component (i) , component (iv) and component (v) ;
    such that components (ii) and (iii) are only in the part A composition and components (iv) and (v) are only in the part B composition.
  6. A process for thermally insulating adjacent battery cells (20) in a battery module (10) in accordance with any preceding claim wherein component (iv) the one or more fire retardant fillers comprises hydromagnesite, which may optionally be hydrophobically treated.
  7. A process for thermally insulating adjacent battery cells (20, 34) in a battery module (10) in accordance with any preceding claim, wherein the adjacent battery cells (34) are retained in one or more horizontal arrays in a battery module, comprising
    (I) providing a battery module housing having a top and a base and two pairs of opposite sides between the top and the base, where the two pairs of opposite sides between the top and the base, define an enclosure (31) and one pair of the opposite sides comprise electrical mountings adapted to receive a plurality of cylindrical battery cells in a horizontal array in said enclosure (31) ;
    (II) mounting in the enclosure (31) ,
    a plurality of layers of cylindrical battery cells (34) in a horizontal array, each cylindrical battery cell (34) being mounted between opposite electrical mountings in the one pair of the opposite sides and thereby creating voids both between adjacent cylindrical battery cells in the enclosure (31) and surrounding the battery module assembly within the enclosure (31) ; and
    one or more fluid cooling manifold (s) (41, 42) separating adjacent layers of cylindrical battery cells (34) ; and
    (III) filling said voids with the curable silicone foam composition as identified in any preceding claim characterised in that one or more foam dispensing tips (44, 46) are supplied, with foam and utilized to introduce foam into the voids between the batteries and the walls of the enclosure (31) at the bottom of the enclosure (31) , thereby allowing the foam to be introduced from the base, self-level and fill each layer of batteries sequentially from bottom to top of the enclosure (31) ; and
    (IV) allowing and/or enabling the foam to cure.
  8. A process for thermally insulating adjacent battery cells (20, 34) in a battery module (10) in accordance with claim 7 wherein the dispensing tips (44, 46) may remain statically positioned in the enclosure (31) whilst the foam is introduced or may be moved to the base of each sequential layer of battery cells (34) once the preceding layer is filled or may be gradually raised from the  bottom of the enclosure (31) to the top at a constant rate until every layer of battery cells (34) is filled.
  9. A process for thermally insulating adjacent battery cells (20, 34) in a battery module (10) in accordance with claim 7 or 8 wherein when each layer of batteries cells (34) is separated horizontally from its neighbouring layer by two or more fluid cooling manifold (s) (41, 42) additional dispensing tips (45) may be introduced into the enclosure (31) between adjacent fluid cooling manifold (s) to provide additional means of introducing the foam into the enclosure (31) .
  10. A battery module (10) having thermally insulated adjacent battery cells (20, 34) obtained or obtainable by following the process in accordance with any one of claims 1 to 9 which meets the requirements of the UL 94 V0 Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing, required by Underwriters Laboratories of the United States.
  11. A battery module in accordance with claim 10 wherein the battery cells (20, 34) are cylindrical lithium-ion battery cells.
  12. A battery pack comprising at least one battery module (10) in accordance with claim 10 or 11.
  13. Use of a battery module (10) in accordance with claim 10 or 11 in a battery pack for a vehicle.
  14. Use of a battery module (10) in accordance with claim 13 wherein the vehicle is an all-electric road vehicle (EV) , a plug-in hybrid road vehicle (PHEV) , a hybrid road vehicle (HEV) or alternatively in other modes of transport such as an aircraft, a boat, a ship, a train.
  15. Use of a self-levelling, non-syntactic silicone foam composition comprising the following components:
    (i) one or more polydiorganosiloxanes having at least two unsaturated groups per molecule selected from alkenyl and/or alkynyl groups;
    (ii) a platinum group metal, or a compound or complex of a platinum group metal;
    (iii) a chemical blowing agent, a physical blowing agent or a mixture of a chemical blowing agent and a physical blowing agent;
    (iv) one or more fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite; and
    (v) a cross-linker comprising an organosilicon compound having at least two, alternatively at least three silicon bonded hydrogen groups per molecule;
    to provide a battery module having thermally insulated adjacent battery cells obtained or obtainable by following the process in accordance with any one of claims 1 to 9 and which upon cure meets the  requirements of the UL 94 V0 Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing, required by Underwriters Laboratories of the United States.
  16. A two-part self-levelling, non-syntactic silicone foam composition comprising a part A composition of
    (i) one or more polydiorganosiloxanes having a viscosity of from 100 to 20,000 mPa.s at 25℃ and at least two unsaturated groups per molecule selected from alkenyl and/or alkynyl groups; and
    (ii) a catalyst comprising or consisting of a platinum group metal or a compound or complex thereof;
    (iii) a chemical blowing agent, a physical blowing agent or a mixture of a chemical blowing agent and a physical blowing agent; and
    a part B composition comprising
    (i) one or more polydiorganosiloxanes having a viscosity of from 100 to 1000mPa.s at 25℃ having at least two unsaturated groups per molecule selected from alkenyl and/or alkynyl groups;
    (iv) one or more fire retardant fillers selected from the group of wollastonite, aluminium trihydrate, magnesium hydroxide, halloysite, huntite, hydromagnesite, expandable graphite, zinc borate, mica and/or hydrotalcite;
    (v) a cross-linker comprising an organosilicon compound having at least two, alternatively at
    least three silicon bonded hydrogen groups per molecule;
    such that component (ii) is only in the part A composition and components (iv) and (v) are only in the part B composition.
PCT/CN2021/141950 2020-12-29 2021-12-28 Thermal insulation WO2022143619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/140713 WO2022141035A1 (en) 2020-12-29 2020-12-29 Thermal insulation for battery modules
CNPCT/CN2020/140713 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022143619A1 true WO2022143619A1 (en) 2022-07-07

Family

ID=74418121

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/140713 WO2022141035A1 (en) 2020-12-29 2020-12-29 Thermal insulation for battery modules
PCT/CN2021/141950 WO2022143619A1 (en) 2020-12-29 2021-12-28 Thermal insulation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140713 WO2022141035A1 (en) 2020-12-29 2020-12-29 Thermal insulation for battery modules

Country Status (1)

Country Link
WO (2) WO2022141035A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11780983B2 (en) 2017-02-08 2023-10-10 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419593A (en) 1965-05-17 1968-12-31 Dow Corning Catalysts for the reaction of = sih with organic compounds containing aliphatic unsaturation
US3445420A (en) 1966-06-23 1969-05-20 Dow Corning Acetylenic inhibited platinum catalyzed organopolysiloxane composition
US3715334A (en) 1970-11-27 1973-02-06 Gen Electric Platinum-vinylsiloxanes
US3814730A (en) 1970-08-06 1974-06-04 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US3989667A (en) 1974-12-02 1976-11-02 Dow Corning Corporation Olefinic siloxanes as platinum inhibitors
US4550125A (en) 1985-03-25 1985-10-29 Dow Corning Corporation Foamable polyorganosiloxane compositions
US6476080B2 (en) 2000-12-21 2002-11-05 The Dow Chemical Company Blowing agent compositions containing hydrofluorocarbons and a low-boiling alcohol and/or low-boiling carbonyl compound
US6605734B2 (en) 2001-12-07 2003-08-12 Dow Corning Corporation Alkene-platinum-silyl complexes
US20140024731A1 (en) 2010-09-06 2014-01-23 Bluestar Silicones France Sas Silicone composition for elastomer foam
US20180223070A1 (en) * 2017-02-08 2018-08-09 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
WO2020028299A1 (en) * 2018-07-31 2020-02-06 Dow Silicones Corporation Composition, foamed silicone elastomer formed therefrom, and methods of formation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419593A (en) 1965-05-17 1968-12-31 Dow Corning Catalysts for the reaction of = sih with organic compounds containing aliphatic unsaturation
US3445420A (en) 1966-06-23 1969-05-20 Dow Corning Acetylenic inhibited platinum catalyzed organopolysiloxane composition
US3814730A (en) 1970-08-06 1974-06-04 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
US3715334A (en) 1970-11-27 1973-02-06 Gen Electric Platinum-vinylsiloxanes
US3989667A (en) 1974-12-02 1976-11-02 Dow Corning Corporation Olefinic siloxanes as platinum inhibitors
US4550125A (en) 1985-03-25 1985-10-29 Dow Corning Corporation Foamable polyorganosiloxane compositions
US6476080B2 (en) 2000-12-21 2002-11-05 The Dow Chemical Company Blowing agent compositions containing hydrofluorocarbons and a low-boiling alcohol and/or low-boiling carbonyl compound
US6605734B2 (en) 2001-12-07 2003-08-12 Dow Corning Corporation Alkene-platinum-silyl complexes
US20140024731A1 (en) 2010-09-06 2014-01-23 Bluestar Silicones France Sas Silicone composition for elastomer foam
US20180223070A1 (en) * 2017-02-08 2018-08-09 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
WO2020028299A1 (en) * 2018-07-31 2020-02-06 Dow Silicones Corporation Composition, foamed silicone elastomer formed therefrom, and methods of formation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11780983B2 (en) 2017-02-08 2023-10-10 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
US11905385B2 (en) 2017-02-08 2024-02-20 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management

Also Published As

Publication number Publication date
WO2022141035A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US11905385B2 (en) Secondary battery pack with improved thermal management
TWI753101B (en) Silicone rubber syntactic foam
JP6523210B2 (en) Low temperature thermal conductive and high temperature insulating composition
WO2021163826A1 (en) Elastomeric silicone materials and applications thereof
WO2022143619A1 (en) Thermal insulation
WO2023122936A1 (en) Assembling a battery module
WO2021163827A1 (en) Elastomeric silicone materials and their applications
US20230340222A1 (en) Silicone foam which is air foamed and syntactic and article such as a secondary battery pack comprising said foam
TW202407008A (en) New silicone foam which is air foamed and syntactic and article such as a secondary battery pack comprising said foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848148

Country of ref document: EP

Kind code of ref document: A1