WO2022142886A1 - 数据处理方法、装置及计算机可读存储介质 - Google Patents

数据处理方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2022142886A1
WO2022142886A1 PCT/CN2021/132811 CN2021132811W WO2022142886A1 WO 2022142886 A1 WO2022142886 A1 WO 2022142886A1 CN 2021132811 W CN2021132811 W CN 2021132811W WO 2022142886 A1 WO2022142886 A1 WO 2022142886A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
data
identification code
indication information
processing
Prior art date
Application number
PCT/CN2021/132811
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21913628.0A priority Critical patent/EP4261707A4/en
Publication of WO2022142886A1 publication Critical patent/WO2022142886A1/zh
Priority to US18/344,552 priority patent/US20230351053A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/64Protecting data integrity, e.g. using checksums, certificates or signatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3841Data obtained from two or more sources, e.g. probe vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]

Definitions

  • the present application relates to the technical field of autonomous driving, and in particular, to a data processing method, device, and computer-readable storage medium.
  • Autonomous driving is a mainstream application in the field of artificial intelligence.
  • Autonomous driving technology relies on the cooperation of monitoring devices such as computer vision, radar, and global positioning systems, so that motor vehicles can achieve autonomous driving without the need for human active operation.
  • Self-driving vehicles use various computing systems to transport passengers from one location to another. Some autonomous vehicles may require some initial or continuous input from an operator (such as driver, passenger).
  • An autonomous vehicle permits the operator to switch from a manual driving mode to an autonomous driving mode or an assisted driving mode in between.
  • Autonomous driving technology can effectively avoid the driving errors of human drivers, reduce the occurrence of traffic accidents, and improve the transportation efficiency of highways. Therefore, autonomous driving technology is getting more and more attention.
  • L3 level autonomous driving requires the use of high-precision maps.
  • the data collection in the traditional high-precision map production process relies on sensors such as lidar, cameras, and high-precision combined inertial navigation, and the map collectors need to have certain surveying and mapping qualifications and professional mapping capabilities. Therefore, data acquisition, processing and maintenance costs Very high.
  • the update of high-precision maps is more important than the initial production of maps.
  • Traditional mapping methods cannot meet the needs of high-precision map updates due to factors such as cost.
  • the high-precision map can be updated by means of crowdsourcing data collection.
  • the implementation process can be described as follows: the server obtains the perception data reported by the crowdsourced vehicles, and then determines the actual situation and the existing high-precision according to the acquired perception data. Where there are differences between the maps, high-precision map updates can be achieved based on the differences. Crowdsourced vehicles come from a wide range of sources and a large number. After the server obtains the perception data reported by each vehicle, it does not distinguish the data sources of the vehicles. Generally, the high-precision map is updated based on the perception data reported by all vehicles, which cannot guarantee the accuracy of the data. Safety and reliability.
  • the present application provides a data processing method, device, and computer-readable storage medium, which can improve the security and reliability of data used to generate high-precision maps.
  • a first aspect provides a data processing method, the method may include the following steps: receiving vehicle type indication information from the vehicle side, where the vehicle type indication information is used to indicate the type of the first vehicle; here, the vehicle side may include a vehicle , may also include a vehicle and a vehicle cloud (usually a vehicle server deployed by a car factory); assign an identification code to the first vehicle according to the vehicle type indication information, and the identification code is related to the processing method of the first perception data reported for the first vehicle
  • the processing method can be determined according to the vehicle type indication information before assigning the identification code; the identification code is sent to the vehicle side; the perception data report message is received from the vehicle side, and the perception data report message includes the first vehicle reported The first sensing data and the identification code; the first sensing data is processed according to the processing mode associated with the identification code.
  • the above method can be applied to the following application scenarios: Scenario 1, the map cloud (usually a map server deployed by a map service provider) and the vehicle directly exchange information; Scenario 2, the map cloud and the vehicle conduct information interaction through the vehicle cloud .
  • the execution body of the above method is the map cloud, and the vehicle side is the first vehicle (scheme 1); in the case of information interaction between the map cloud and the vehicle through the vehicle cloud Next, the execution body of the above method is the map cloud, and the vehicle side is the vehicle cloud (scheme 2).
  • the map cloud assigns identification codes to vehicles and maintains the corresponding relationship between the identification codes and data processing methods, so as to quickly determine the processing methods of the received crowdsourcing collected data, and conduct data processing for data from different types of vehicles. Different processing, thereby improving the security and reliability of the data.
  • the processing method includes: setting the confidence level of the first sensing data as the first confidence level, wherein the first confidence level is associated with the identification code; or determining the use priority of the first sensing data as the first confidence level A priority, where the first priority is associated with the identification code.
  • the identification code uniquely identifies the first vehicle, and the identification code is associated with the processing mode, including: storing the corresponding relationship between the identification code and the processing mode.
  • the processing manner is a first type of processing manner among multiple types of processing manners
  • the identification code is associated with the processing manner, including: the identification code is used to indicate the first type of processing manner.
  • the vehicle type indication information includes at least one of the following contents: attribute information of the first vehicle; holder information of the first vehicle; model or configuration parameters of the data collection device in the first vehicle ; the model or configuration parameters of the data processing device in the first vehicle; or, the reported data type supported by the first vehicle.
  • the attribute information may be, for example, information that can indicate whether the first vehicle is a registered crowdsourced data collection vehicle or a vehicle that has not been registered with a map service provider; the attribute information may be, for example, information that can indicate that information on whether the first vehicle belongs to a vehicle under unified management by a travel company or a map service provider or a socially idle vehicle; the attribute information can also be described from other perspectives, which is not limited in the present invention.
  • the first vehicle is a registered crowdsourced data collection vehicle
  • the vehicle type indication information includes at least one of the following information: the model of the crowdsourced data collection unit; the model of the crowdsourced data processing unit ; the capability of the crowdsourced data collection unit; the capability of the crowdsourced data processing unit; the identity of the company to which the first vehicle belongs; the identity information of the individual to which the first vehicle belongs; the identity of the manufacturer of the first vehicle; between values generated according to predefined rules.
  • the first vehicle is a registered crowdsourced data collection vehicle
  • the first confidence level is higher than the confidence level of the perception data reported by the unregistered data collection vehicle
  • the first priority is higher than the unregistered data collection vehicle.
  • the first vehicle is an unregistered data collection vehicle
  • receiving vehicle type indication information from the vehicle side includes: receiving a registration request message from the vehicle side, where the registration request message includes vehicle type indication information.
  • an embodiment of the present application provides a data processing method, the method may include the following steps: sending vehicle type indication information to a server side; receiving an identification code from the server side, the identification code and the perception data reported for the first vehicle The processing method of the first vehicle is related; a sensing data reporting message is sent to the server side, and the sensing data reporting message includes the first sensing data and the identification code reported by the first vehicle.
  • the above method can be applied to the following application scenarios: Scenario 1, information interaction between the map cloud and the vehicle directly; or scenario 2, information interaction between the map cloud and the vehicle through the vehicle cloud.
  • the execution subject of the above method is the first vehicle, and the server side is the map cloud (scheme 3); in the case of information interaction between the map cloud and the vehicle through the vehicle cloud
  • the execution subject of the above method is the first vehicle, and the server side is the vehicle cloud (scheme 4); in the case of information exchange between the map cloud and the vehicle through the vehicle cloud, the execution subject of the above method may also be the vehicle cloud,
  • the server side is the map cloud (plan 5).
  • the map cloud assigns identification codes to vehicles and maintains the corresponding relationship between the identification codes and data processing methods, so as to quickly determine the processing methods of the received crowdsourcing collected data, and conduct data processing for data from different types of vehicles. Different processing, thereby improving the security and reliability of the data.
  • the above-mentioned processing method includes: setting the confidence level of the first perception data as the first confidence level, wherein the first confidence level is associated with the identification code; or, determining the use priority of the first perception data is the first priority, where the first priority is associated with the identification code.
  • the identification code uniquely identifies the first vehicle.
  • the processing method is a first type of processing method among multiple types of processing methods
  • the identification code is associated with the processing method for the perception data reported by the first vehicle, including: the identification code is used to indicate the first type of processing method.
  • a type of treatment is used to indicate the first type of processing method.
  • the vehicle type indication information includes at least one of the following contents: attribute information of the first vehicle; holder information of the first vehicle; model or configuration parameters of the data collection device in the first vehicle ; the model or configuration parameters of the data processing device in the first vehicle; or, the reported data type supported by the first vehicle.
  • the attribute information may be, for example, information that can indicate whether the first vehicle is a registered crowdsourced data collection vehicle or a vehicle that has not been registered with a map service provider; the attribute information may be, for example, information that can indicate that information on whether the first vehicle belongs to a vehicle under unified management by a travel company or a map service provider or a socially idle vehicle; the attribute information can also be described from other perspectives, which is not limited in the present invention.
  • the first vehicle is a registered crowdsourced data collection vehicle
  • the vehicle type indication information includes at least one of the following information: the model of the crowdsourced data collection unit; the model of the crowdsourced data processing unit ; the capability of the crowdsourced data collection unit; the capability of the crowdsourced data processing unit; the identity of the company to which the first vehicle belongs; the identity information of the individual to which the first vehicle belongs; the identity of the manufacturer of the first vehicle; between values generated according to predefined rules.
  • the first vehicle is a registered crowdsourced data collection vehicle
  • the first confidence level is higher than the confidence level of the perception data reported by the unregistered data collection vehicle
  • the first priority is higher than the unregistered data collection vehicle. The priority of perception data reported by registered data collection vehicles.
  • the first vehicle is an unregistered data collection vehicle
  • sending the vehicle type indication information to the server side by the first vehicle includes: sending a registration request message to the server side, where the registration request message includes the vehicle type indication information.
  • an embodiment of the present application provides a data processing device, the data processing device may include a receiving module, a processing module and a sending module; wherein the receiving module is configured to receive vehicle type indication information from a vehicle side, the vehicle The type indication information is used to indicate the type of the first vehicle; the processing module is used to assign an identification code to the first vehicle according to the vehicle type indication information, and the identification code is associated with the processing method of the first perception data reported for the first vehicle , the processing method may be determined according to the vehicle type indication information before assigning the identification code; the sending module is used to send the identification code to the vehicle side; the receiving module is also used to receive the sensing data report message from the vehicle side, and the sensing The data reporting message includes the first sensing data and the identification code reported by the first vehicle; the processing module is further configured to process the first sensing data according to the processing method associated with the identification code.
  • the processing method includes: setting the confidence level of the first perception data as the first confidence level, where the first confidence level is associated with the identification code; or, determining the use priority of the first perception data as A first priority, where the first priority is associated with an identification code.
  • the identification code uniquely identifies the first vehicle, and the identification code is associated with the processing mode, including: storing the association relationship between the identification code and the processing mode.
  • the processing manner is a first type of processing manner among multiple types of processing manners
  • the identification code is associated with the processing manner, including: the identification code is used to indicate the first type of processing manner.
  • the vehicle type indication information includes at least one of the following contents: attribute information of the first vehicle; holder information of the first vehicle; model or configuration parameters of the data collection device in the first vehicle ; the model or configuration parameters of the data processing device in the first vehicle; or, the reported data type supported by the first vehicle.
  • the first vehicle is a registered crowdsourced data collection vehicle
  • the vehicle type indication information includes at least one of the following information: the model of the crowdsourced data collection unit; the model of the crowdsourced data processing unit ; the capability of the crowdsourced data collection unit; the capability of the crowdsourced data processing unit; the identity of the company to which the first vehicle belongs; the identity information of the individual to which the first vehicle belongs; the identity of the manufacturer of the first vehicle; between values generated according to predefined rules.
  • the first vehicle is a registered crowdsourced data collection vehicle
  • the first confidence level is higher than the confidence level of the perception data reported by the unregistered data collection vehicle
  • the first priority is higher than the unregistered data collection vehicle. The priority of perception data reported by registered data collection vehicles.
  • the first vehicle is an unregistered data collection vehicle
  • the receiving module is specifically configured to: receive a registration request message from the vehicle side, where the registration request message includes vehicle type indication information.
  • an embodiment of the present application provides a data processing device, which may include a sending module and a receiving module; wherein the sending module is used to send vehicle type indication information to the server side; the receiving module is used to send vehicle type indication information to the server side; receiving an identification code, where the identification code is associated with the processing method of the sensing data reported by the first vehicle; the sending module is further configured to send a sensing data reporting message to the server side, where the sensing data reporting message includes the first sensing data reported by the first vehicle data and identification codes.
  • the processing method includes: setting the confidence level of the first perception data as the first confidence level, where the first confidence level is associated with the identification code; or, determining the use priority of the first perception data as A first priority, where the first priority is associated with an identification code.
  • the identification code uniquely identifies the first vehicle.
  • the processing method is a first type of processing method among multiple types of processing methods
  • the identification code is associated with the processing method for the perception data reported by the first vehicle, including: the identification code is used to indicate the first type of processing method.
  • a type of treatment is used to indicate the first type of processing method.
  • the vehicle type indication information includes at least one of the following contents: attribute information of the first vehicle; holder information of the first vehicle; model or configuration parameters of the data collection device in the first vehicle ; the model or configuration parameters of the data processing device in the first vehicle; or, the reported data type supported by the first vehicle.
  • the vehicle type indication information includes at least one of the following information: the model of the crowdsourced data collection unit; the model of the crowdsourced data processing unit; the capability of the crowdsourced data collection unit; The capability of the unit; the identity of the company to which the first vehicle belongs; the identity information of the individual to which the first vehicle belongs; the identity of the manufacturer of the first vehicle; or a value generated between the cloud and the company according to predefined rules.
  • the first vehicle is a registered crowdsourced data collection vehicle
  • the first confidence level is higher than the confidence level of the perception data reported by the unregistered data collection vehicle
  • the first priority is higher than the unregistered data collection vehicle. The priority of perception data reported by registered data collection vehicles.
  • the first vehicle is an unregistered data collection vehicle
  • the sending module is specifically configured to: send a registration request message to the server side, where the registration request message includes vehicle type indication information.
  • the embodiments of the present application provide another data processing apparatus, the data processing apparatus may include a memory and a processor, where the memory is used to store a computer program, and the processor executes the computer program to implement the above-mentioned first aspect or the above-mentioned first aspect.
  • the data processing apparatus may include a memory and a processor, where the memory is used to store a computer program, and the processor executes the computer program to implement the above-mentioned first aspect or the above-mentioned first aspect.
  • an embodiment of the present application provides another data processing apparatus, the data processing apparatus may include a memory and a processor, where the memory is used to store a computer program, and the processor executes the computer program to implement the above-mentioned second aspect or the above-mentioned first aspect.
  • the data processing apparatuses in the third aspect and the fifth aspect may be a single deployed map server, or a distributed deployment It can also be a component or chip in the map server.
  • the data processing device of the fourth aspect and the sixth aspect may be a vehicle, or a component in the vehicle or The chip (for scheme 3) can also be a vehicle server, or a component or chip within the service period of the vehicle (for scheme 4 and scheme 5).
  • embodiments of the present application further provide a computer-readable storage medium, where the computer storage medium stores a computer program, the computer program includes program instructions, and the program instructions, when executed by a processor, cause the processor to execute the above-mentioned first aspect or the above-mentioned The method of any one of the implementation manners of the first aspect.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer storage medium stores a computer program, the computer program includes program instructions, and the program instructions, when executed by a processor, cause the processor to execute the above-mentioned second aspect or the above-mentioned The method for any implementation manner of the second aspect.
  • an embodiment of the present application further provides a computer program product, when the computer program product runs on a processor, the method of the first aspect or any one of the implementation manners of the first aspect is executed. .
  • an embodiment of the present application further provides a computer program product, when the computer program product runs on a processor, the method of the second aspect or any one of the implementation manners of the second aspect is executed. .
  • Fig. 1a, Fig. 1b, Fig. 1c, Fig. 1d are schematic diagrams of a high-precision map provided by an embodiment of the present application, respectively;
  • FIG. 2 is a schematic diagram of a first application scenario provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a second application scenario provided by an embodiment of the present application.
  • FIG. 4 is a functional block diagram of a vehicle 400 according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a data processing method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another data processing method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another data processing method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another data processing method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a data processing apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another data processing apparatus provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another data processing apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another data processing apparatus provided by an embodiment of the present application.
  • any embodiment or design approach described in the embodiments of the present application as “exemplarily” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplarily” or “such as” is intended to present the related concepts in a specific manner.
  • “A and/or B” means A and B, and A or B has two meanings.
  • “A, and/or B, and/or C” means any one of A, B, and C, alternatively, means any two of A, B, and C, alternatively, means A and B and C.
  • Autonomous vehicles also known as unmanned vehicles, intelligent driving vehicles, computer-driven vehicles, or wheeled mobile robots, are intelligent vehicles that realize unmanned driving through computer systems. In practical applications, autonomous vehicles cooperate with artificial intelligence, monitoring devices (vision sensors, radar, etc.) and global positioning systems to allow computer equipment to operate motor vehicles automatically and safely without any human active operation.
  • unmanned vehicles intelligent driving vehicles, computer-driven vehicles, or wheeled mobile robots
  • autonomous vehicles cooperate with artificial intelligence, monitoring devices (vision sensors, radar, etc.) and global positioning systems to allow computer equipment to operate motor vehicles automatically and safely without any human active operation.
  • High-precision maps are electronic maps with higher precision, more data dimensions, and stronger real-time performance.
  • the higher accuracy is reflected in the fact that the high-precision map can be accurate to the lane level or even the centimeter level, and the data dimension is more reflected in the high-precision map.
  • the information of both map elements and map elements is richer, and the real-time performance is stronger, which is reflected in the update of the high-precision map.
  • the frequency is greatly improved.
  • a high-resolution map can contain static layers or dynamic layers.
  • the information carried by the static layer can be: the connection relationship between roads, the location of lane lines, the number of lane lines, and other objects around the road, etc.; for another example, the information carried by the static layer can be: traffic Signed information (for example, the location, height, content of signs, speed limit signs, continuous detours or slow driving, etc.) of traffic lights, trees around the road, building information, etc.
  • traffic Signed information for example, the location, height, content of signs, speed limit signs, continuous detours or slow driving, etc.
  • the information carried by the dynamic layer includes dynamic traffic information or dynamic events, and the information may be associated with a time point (or time period) or may not be related to a time point (or time period).
  • the format of the dynamic layer information may be: timestamp+road segment+information.
  • the weather information of road section 1 at a certain moment or a certain time period the road surface information of road section 1 at a certain moment or a certain period of time (for example, road interruption, road maintenance, road loss, road water accumulation) )and many more.
  • the use object of the high-precision map is often a vehicle with automatic driving capability.
  • FIGS. 1 a to 1 d are schematic diagrams of a high-precision map provided by the embodiment of the present application.
  • the high-precision map contains static layer information such as lane line information, number of lanes, road boundary information, and road driving parameters.
  • the high-precision map includes static layer information such as lane line information, number of lanes, road boundary information, and green belt information, as well as dynamic layer information such as trees that fall on the road.
  • the high-precision map contains static layer information such as lane line information, number of lanes, road boundary information, and green belt information, as well as weather information (for example, at time T1, Dynamic layer information such as light snow to heavy snow);
  • the high-precision map contains static layer information such as lane line information, number of lanes, road boundary information, green belt information, and digital information equipment.
  • dynamic layer information such as weather information (at time T1, from sunny to cloudy), historical probability of pedestrians and non-motor vehicles passing through 60%, moderate congestion and other dynamic layer information.
  • High-precision maps can effectively overcome the perception defects of traditional hardware sensors, such as the limited data acquired by the sensor, the limited detection range of the sensor, and the detection of the sensor is easily affected by the environment.
  • FIG. 2 is a schematic diagram of a first application scenario provided by an embodiment of the present application. As shown in FIG. 2 , in this application scenario, direct communication can be performed between the vehicle 201 and the map cloud 202 through wired or wireless means.
  • the vehicle 201 may send vehicle type indication information to the map cloud 202 , for example, the vehicle type indication information may include at least one of the following: attribute information of the vehicle; information of the holder of the vehicle; data in the vehicle The model or configuration parameters of the collection device; the model or configuration parameters of the data processing device in the vehicle; the reported data type supported by the vehicle; after the map cloud 202 receives the above vehicle type indication information, it can be determined according to the vehicle type indication information reported by the vehicle 201
  • an identification code is allocated to the vehicle 201, wherein the identification code is associated with the processing method, and then the map cloud 202 sends the identification code to the vehicle 101, so that the vehicle 201 can receive the map
  • the identification code sent by the cloud 202 when the vehicle 201 sends a sensing data reporting message to the map cloud, the sensing data reporting message includes the first sensing data and the identification code obtained by the vehicle, so that the map cloud 202 can process according to the processing method corresponding to the
  • the map cloud 202 can control the vehicle 201 through multi-dimensional data contained in the high-resolution map, and run its stored programs related to controlling the automatic driving of the vehicle (eg, instructing the vehicle how to drive through a driving strategy).
  • map cloud 202 may enable configuration and management of keys.
  • the vehicle 201 can encrypt the first sensing data according to the key from the map cloud 202 to obtain the encrypted first sensing data; and then report the encrypted first sensing data to the map cloud 202, so that the map cloud 202
  • the encrypted first sensing data may be decrypted according to the key.
  • the cloud server instructs the autonomous vehicle how to drive in a given scenario.
  • the map cloud 202 acquires the map layer information for describing the road segment (eg, the first road segment) on which the vehicle 201 travels, specifies a driving strategy for the autonomous vehicle according to the map layer information, and sends the driving strategy to the autonomous driving vehicle.
  • the presence of obstacles in front of the self-driving vehicle can be determined through dynamic layer information, and the self-driving vehicle can be informed how to avoid the obstacle; another example, the road surface water situation can be determined through dynamic layer information, and the self-driving vehicle can be informed how to avoid the road with water.
  • the cloud server can confirm the existence of a temporary stop sign in front of the road, and inform the autonomous vehicle that it can temporarily stop at the corresponding location as required.
  • FIG. 3 is a schematic diagram of a second application scenario provided by an embodiment of the present application.
  • the vehicle 303 and the vehicle cloud 304 can communicate directly by wire or wireless, and the vehicle cloud 304 and the map cloud 305 can communicate directly by wire or wireless;
  • the vehicle 303 and the map cloud 305 can communicate with the map cloud 305 indirectly through the vehicle cloud 304 .
  • the vehicle 303 may send vehicle type indication information to the vehicle cloud 304.
  • the vehicle type indication information may include at least one of the following: attribute information of the vehicle; vehicle owner information; data in the vehicle The model or configuration parameters of the collection device; the model or configuration parameters of the data processing device in the vehicle; the reported data type supported by the vehicle; after receiving the vehicle type indication information, the vehicle cloud 304 can forward the vehicle type indication information to the map cloud 305, so that the map cloud 305 can determine the processing method for the perception data reported by the vehicle according to the vehicle type indication information reported by the vehicle 303, and assign an identification code to the vehicle 303, wherein the above-mentioned identification code is associated with the processing method, specifically, the map The cloud 305 sends the identification code to the vehicle cloud 304 , and then the vehicle cloud 304 forwards the identification code to the vehicle 303 , so that the vehicle 303 can receive the identification code sent from the map cloud 305 .
  • the perception data reporting message includes the first perception data and the identification code obtained by the vehicle, and the vehicle cloud 304 forwards the perception data reporting message to the map cloud 305, so that the map cloud 305
  • the first sensing data reported by the vehicle 303 may be processed according to the processing method corresponding to the identification code.
  • the high-precision map may be updated based on the first perception data.
  • the vehicle cloud 304 may enable configuration and management of keys.
  • the vehicle 303 can encrypt the first perception data according to the key from the vehicle cloud 304 to obtain the encrypted first perception data; after that, the encrypted first perception data is reported to the vehicle cloud 304, so that the vehicle cloud 304
  • the encrypted first sensing data may be decrypted according to the key.
  • the vehicle cloud 304 forwards the encrypted first perception data to the map cloud 305, since a communication connection is established between the vehicle cloud 304 and the map cloud 305, the vehicle cloud 304 can assist the map cloud 305 to decrypt the first perception data .
  • the vehicle 400 may be configured in a fully autonomous driving mode, a partially autonomous driving mode, or a manual driving mode.
  • the fully automatic driving mode can be L5, which means that all driving operations are completed by the vehicle, and the human driver does not need to maintain attention
  • the partial automatic driving mode can be L1, L2, L3, L4, among which , L1 means that the vehicle provides driving for one operation of the steering wheel and acceleration and deceleration, and the human driver is responsible for the rest of the driving operations; L2 means that the vehicle provides driving for multiple operations in the steering wheel and acceleration and deceleration, and the human driver is responsible for the rest of the driving actions ; L3 means that most of the driving operations are completed by the vehicle, and the human driver needs to keep their attention in case of emergency; L4 means that all the driving operations are completed by the vehicle, and the human driver does not need to maintain attention, but the road and environmental conditions are limited;
  • the manual driving mode can be L0, which means that the human driver has full authority to drive the car.
  • the vehicle 400 may at least include the following subsystems: a sensing subsystem 401 , a decision-making subsystem 402 and an execution subsystem 403 .
  • Sensing subsystem 401 may include at least sensors.
  • the sensors may include internal sensors and external sensors; wherein, the internal sensors are used to monitor the state of the vehicle, and may include at least one of a vehicle speed sensor, an acceleration sensor, an angular velocity sensor, and the like.
  • the external sensor is mainly used to monitor the external environment around the vehicle, which can include, for example, visual sensors and radar sensors; the visual sensor monitors the image data of the surrounding environment of the vehicle by acquiring image data; the radar sensor transmits electromagnetic waves and then receives reflections from surrounding objects It can detect various data such as the distance between surrounding objects and the vehicle, and the shape of surrounding objects.
  • multiple radar sensors are distributed throughout the exterior of the vehicle 400 .
  • Some of the plurality of radar sensors are coupled to the front of the vehicle 400 to locate objects in front of the vehicle 400 .
  • One or more other radar sensors may be located at the rear of the vehicle 400 to locate objects behind the vehicle 400 .
  • Other radar sensors may be located on the side of the vehicle 400 to locate objects approaching the vehicle 400 from the side.
  • the LIDAR sensor is installed in a rotating structure on the top of the vehicle 400 , and the LIDAR sensor can sense objects around the vehicle 400 through a 360-degree rotation.
  • a camera, video camera, or other image sensor may be mounted on the vehicle 400 to capture images as the vehicle 400 moves.
  • a Global Positioning System (GPS) sensor may be located on the vehicle 400 to provide the controller with the geographic location coordinates of the vehicle 400 and the time when the coordinates were generated.
  • GPS Global Positioning System
  • a GPS includes an antenna for receiving GPS satellite signals and a GPS receiver coupled to the antenna.
  • the decision-making subsystem 402 may include at least an electronic control unit (Electronic Control Unit, ECU), a map database, and an object database.
  • ECU Electronic Control Unit
  • ECU also known as "trip computer”, “vehicle computer”, etc.
  • the ECU is connected to the bus and communicates with other devices through the bus.
  • an ECU can acquire information from sensors, map data, or human-machine interface (HMI), and output information to the HMI or actuators.
  • the ECU loads the program stored in the ROM into the RAM, and runs the program in the RAM to realize the automatic driving function.
  • the ECU can identify static and/or dynamic objects around the vehicle, for example, based on external sensors, monitoring the speed or direction of surrounding objects, etc.
  • the ECU can obtain the state information of the vehicle itself, based on the output information of the internal sensors. Based on this information, the ECU plans the driving path, and outputs the corresponding control signal to the actuator, which performs the corresponding operation.
  • the communication unit is used for data interaction with surrounding vehicles, roadside communication devices, or servers.
  • a radio coupled to an antenna may be located in the vehicle to provide wireless communication for the system.
  • the communication unit can operate based on any wireless communication technology or wireless standard, including but not limited to V2X (vehicle to everything), WiFi (IEEE802.11), Global System for Mobile Communications (GSM), Code Division Multiple Access One or more of (Code Division Multiple Access, CDMA), Time Division Multiple Access (Time Division Multiple Access, TDMA), Long Term Evolution (Long Term Evolution, LTE), and New Radio (New Radio).
  • V2X vehicle to everything
  • WiFi IEEE802.11
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • Time Division Multiple Access Time Division Multiple Access
  • TDMA Time Division Multiple Access
  • LTE Long Term Evolution
  • New Radio New Radio
  • the map database is used to store map information; in some feasible embodiments, a hard disk drive (Hard Disk Drive, HDD) may be used as a data storage device of the map database.
  • the map database can be stored in a single map server or a map server based on cloud storage technology.
  • Actuating subsystem 403 may include at least actuators for controlling lateral and/or longitudinal movement of vehicle 400 .
  • the brake actuator controls the braking system and the braking force according to the control signal received from the ECU;
  • the steering actuator controls the steering system through the control signal from the ECU; in some feasible embodiments, the steering system may be an electronic steering system, Or a mechanical steering system.
  • FIG. 4 the elements of the system in FIG. 4 are for illustrative purposes only, and other systems including more or fewer components may be used to perform any of the methods disclosed herein.
  • FIG. 5 is a schematic flowchart of a data processing method provided by an embodiment of the application, and specifically illustrates that in the application scenario shown in FIG. 2 (direct communication between the vehicle and the map cloud), the map cloud is How to process the perception data reported by the vehicle, the method may include but is not limited to the following steps:
  • Step S501 the first vehicle sends vehicle type indication information to the map cloud.
  • the vehicle type indication information may include at least one of the following: attribute information of the first vehicle; holder information of the first vehicle; model or configuration parameters of the data collection device in the first vehicle; The model or configuration parameters of the data processing device in the first vehicle; or the reported data type supported by the first vehicle.
  • the attribute information may be, for example, information that can indicate whether the first vehicle is a registered crowdsourced data collection vehicle or a vehicle that has not been registered with a map service provider; the attribute information may be, for example, , which can indicate whether the first vehicle belongs to a vehicle under unified management by a travel company or a map service provider, or is a socially idle vehicle.
  • the vehicle's owner information may include the vehicle's natural person attribution information or the vehicle's legal person attribution information, and the like.
  • the model or configuration parameter of the data collection device in the vehicle may be the model or configuration parameter of the sensor.
  • the model or configuration specification of the data processing device in the vehicle may be the model or configuration parameter of the processor.
  • the data type supported by the vehicle for reporting may be at least one of multiple data types supported by industry standards, for example, the upload data type supported by the vehicle may be a character type; for another example, the upload data type supported by the vehicle may be Integer; as another example, the vehicle configures the packet based on the provisions of a specific standard.
  • Step S502 the map cloud receives vehicle type indication information from the first vehicle.
  • Step S503 The map cloud determines a processing method for the perception data reported by the first vehicle according to the vehicle type indication information.
  • the above processing method may include: setting the confidence level of the first perception data as the first confidence level, where the first confidence level is associated with the identification code; or, determining the use priority of the first perception data as A first priority, where the first priority is associated with an identification code.
  • first confidence level and first priority are only examples, and should not constitute a limitation.
  • the processing method of the first perception data is enriched, so that the first perception data can be processed in a targeted manner in the future.
  • Step S504 the map cloud assigns an identification code to the first vehicle, and the identification code is associated with the processing method.
  • the identification code may be used to uniquely identify the first vehicle.
  • the association between the identification code and the processing mode can be expressed as a corresponding relationship between the identification code and the processing mode.
  • the corresponding relationship between the identification code and the processing mode can be established, and the corresponding relationship between the identification code and the processing mode can be stored.
  • the corresponding relationship between the identification code and the processing method can be shown in Table 1:
  • Table 1 is only a possible representation of the corresponding relationship, and the number and type of parameters in the table and the specific values of the parameters can be modified adaptively, which is not specifically limited in this application.
  • the processing mode is a first type of processing mode among multiple types of processing modes, and the association between the identification code and the processing mode may be represented as indicating the first type of processing mode through the identification code.
  • Step S505 the map cloud sends the identification code to the first vehicle.
  • Step S506 the first vehicle receives the identification code from the map cloud.
  • Step S507 The first vehicle sends a perception data reporting message to the map cloud, where the perception data reporting message includes the first perception data and the identification code reported by the first vehicle.
  • the perception data refers to the data acquired by the vehicle through the sensor and reported by the vehicle to the map cloud.
  • Step S508 the map cloud receives a perception data report message from the first vehicle.
  • Step S509 the map cloud processes the first perception data according to the processing method associated with the identification code.
  • the identification code indicates processing mode 1
  • the identification code indicates processing mode 2
  • the first sensing data is processed through processing mode 2.
  • the map cloud separately processes vehicles from different sources, and assigns corresponding identification codes to them, because the perception data sent by the vehicle is reported in the message. Including the perception data and identification code obtained by the vehicle can improve the security and reliability of the map cloud when using the perception data.
  • the map cloud can realize the configuration and management of the key.
  • the first vehicle can perform the data obtained by the sensor according to the key from the map cloud. Encryption to obtain the first perception data, and then, the first vehicle sends a perception data report message to the map cloud.
  • the perception data report message includes the first perception data and the identification code obtained by the first vehicle after encryption by the key, thereby
  • the map cloud can decrypt the first sensing data according to the above key, and process the decrypted first sensing data according to the processing method associated with the identification code.
  • the key in this document may be a private key, a symmetric key encrypted with a public key, or a digital authentication certificate. Through this implementation manner, the security of information interaction between each interaction terminal can be improved.
  • Step S1-1 the first vehicle sends vehicle type indication information to the map cloud.
  • the vehicle type indication information may include at least one of the following information: the model of the crowdsourced data collection unit; the model of the crowdsourced data processing unit; the capability of the crowdsourced data collection unit; the capability of the crowdsourced data processing unit; The identifier of the company to which the first vehicle belongs; the identity information of the individual to which the first vehicle belongs; the identifier of the manufacturer of the first vehicle; or a value generated between the cloud and the company according to a predefined rule.
  • the value generated between the cloud and the company according to a predefined rule may be 1, or may be any other value, and this is just an example.
  • Step S1-2 the map cloud receives vehicle type indication information from the first vehicle.
  • Step S1-3 The map cloud determines a processing method for the perception data reported by the first vehicle according to the vehicle type indication information.
  • the above processing method may include: setting the confidence level of the first perception data as the first confidence level, wherein the first confidence level is associated with the identification code assigned to the vehicle by the map cloud; For a registered crowdsourced data collection vehicle, the first confidence level is higher than the confidence level of the perception data reported by an unregistered data collection vehicle. Determine the use priority of the first perception data as the first priority, wherein the first priority is associated with the identification code; further, corresponding to the vehicle being a registered crowdsourced data collection vehicle, the first priority is high The priority of perception data reported by unregistered data collection vehicles.
  • Step S1-4 the map cloud assigns an identification code to the first vehicle, and the identification code is associated with the processing method.
  • Step S1-5 the map cloud sends the identification code to the first vehicle.
  • Step S1-6 the first vehicle receives the identification code from the map cloud.
  • Step S1-7 the first vehicle sends a perception data reporting message to the map cloud, where the perception data reporting message includes the first perception data and the identification code reported by the first vehicle.
  • Step S1-8 the map cloud receives a perception data report message from the first vehicle.
  • Step S1-9 the map cloud processes the first perception data according to the processing method associated with the identification code.
  • the interaction counterparts of the above method are the vehicle side and the map cloud, where the vehicle side includes the vehicle and the vehicle cloud. , at this time, the vehicle communicates with the map cloud indirectly through the vehicle cloud.
  • the vehicle side includes the vehicle and the vehicle cloud.
  • the vehicle communicates with the map cloud indirectly through the vehicle cloud.
  • FIG. 6 is a schematic flowchart of a data processing method provided by an embodiment of the present application, and specifically illustrates the application scenario shown in FIG. 3 above (the vehicle communicates with the map cloud indirectly through the vehicle cloud), and the map cloud is How to process the perception data reported by the vehicle, the method may include but is not limited to the following steps:
  • Step S601a the first vehicle sends vehicle type indication information to the vehicle cloud.
  • Step S601b the vehicle cloud sends vehicle type indication information to the map cloud.
  • Step S602 the map cloud receives vehicle type indication information from the vehicle cloud.
  • Step S603 The map cloud determines a processing method for the perception data reported by the first vehicle according to the vehicle type indication information.
  • Step S604 the map cloud assigns an identification code to the first vehicle, and the identification code is associated with the processing method.
  • Step S605a the map cloud sends the identification code to the vehicle cloud.
  • Step S605b the vehicle cloud sends the identification code to the first vehicle.
  • Step S606 the first vehicle receives the identification code from the vehicle cloud.
  • Step S607a the first vehicle sends a sensing data reporting message to the vehicle cloud, where the sensing data reporting message includes the first sensing data and the identification code reported by the first vehicle.
  • Step S607b the vehicle cloud sends a perception data report message to the map cloud.
  • Step S608 the map cloud receives a perception data report message from the vehicle cloud.
  • Step S609 the map cloud processes the first perception data according to the processing method associated with the identification code.
  • the map cloud separately processes vehicles from different sources, and assigns corresponding identification codes to them. It includes the perception data and identification code obtained by the vehicle, which can improve the security and reliability of the perception data used by the map cloud.
  • the vehicle cloud can realize the configuration and management of keys, and the communication connection is established between the vehicle cloud and the map cloud through handshake.
  • This key rule implements handshake.
  • the first vehicle can encrypt the data obtained by the sensor according to the key from the vehicle cloud to obtain the first perception data, and then the first vehicle sends the perception data report message To the vehicle cloud, at this time, the perception data reporting message includes the first perception data and the identification code obtained by the first vehicle after encryption by the key, and the vehicle cloud forwards the above perception data reporting message to the map cloud.
  • a communication connection is established between them through a handshake, and the vehicle cloud can assist the map cloud to decrypt the first perception data.
  • the key in this embodiment may be a private key, a symmetric key encrypted with a public key, or a digital authentication certificate.
  • FIG. 7 is a schematic flowchart of a data processing method provided by an embodiment of the present application, and specifically illustrates the application scenario shown in FIG. 2 (direct information exchange between the map cloud and the vehicle), for the vehicle
  • FIG. 2 direct information exchange between the map cloud and the vehicle
  • FIG. 7 For unregistered crowdsourced data collection vehicles, how the map cloud processes the perception data reported by vehicles, including but not limited to the following steps:
  • Step S701 the first vehicle sends a registration request message to the map cloud, wherein the registration request message includes vehicle type indication information.
  • Step S702 the map cloud receives registration request information from the first vehicle.
  • Step S703 the map cloud assigns an identification code to the first vehicle according to the vehicle type indication information included in the registration request information, and the identification code is associated with the processing method of the perception data reported by the first vehicle;
  • the identification code assigned to the first vehicle by the map cloud is used to indicate that the first vehicle is a crowdsourced data collection vehicle that has been successfully registered.
  • Step S704 the map cloud sends a registration feedback message to the first vehicle, wherein the registration feedback message includes the identification code allocated for the first vehicle;
  • Step S705 the first vehicle receives registration feedback information from the map cloud.
  • Step S706 the first vehicle sends a perception data reporting message to the map cloud, where the perception data reporting message includes the first perception data and the identification code reported by the first vehicle.
  • Step S707 the map cloud receives a perception data reporting message from the first vehicle.
  • Step S708 The map cloud processes the first perception data according to the processing method associated with the identification code.
  • the interaction counterparts of the above method are the vehicle side and the map cloud, where the vehicle side includes the vehicle and the vehicle cloud. , at this time, the vehicle communicates with the map cloud indirectly through the vehicle cloud.
  • the vehicle side includes the vehicle and the vehicle cloud.
  • the vehicle communicates with the map cloud indirectly through the vehicle cloud.
  • the vehicle cloud is used as an intermediate transmission medium to realize the information transmission between the vehicle and the map cloud.
  • This implementation is only an example and should not constitute a limitation.
  • the vehicle cloud processes the acquired vehicle type indication information, for example, the processing may include adding a tag to the vehicle type indication information After that, encapsulate the above vehicle type indication information and label information, and send the encapsulated vehicle type indication information and label information to the map cloud, so that the map cloud can perform other processing steps as shown in FIG. 6 .
  • the vehicle type indication information may be generated by the vehicle cloud based on the information interaction between the first vehicle and the vehicle cloud.
  • the vehicle cloud may send the vehicle type indication information to the map cloud
  • the processing method of the perception data reported for the first vehicle is determined according to the vehicle type indication information through the map cloud.
  • the vehicle cloud may store the identification code and not forward the identification code to the first vehicle.
  • the vehicle cloud can encapsulate the first perception data reported by the first vehicle and the identification code of the first vehicle stored in the vehicle cloud together into a perception data reporting message, and then , and send the above-mentioned encapsulated perception data reporting message to the map cloud, so as to perform subsequent processing steps through the map cloud.
  • FIG. 8 is a schematic flowchart of a data processing method provided by an embodiment of the present application. communicate with the map cloud), how the map cloud processes the perception data reported by the vehicle, the method may include but is not limited to the following steps:
  • Step S801 the vehicle cloud sends vehicle type indication information to the map cloud.
  • the vehicle type indication information may be generated by the vehicle cloud, because the vehicle cloud, as the manager of the vehicle, will store some basic information of the vehicle, which may indicate the type, identity or capability of the vehicle.
  • Step S802 the map cloud receives vehicle type indication information from the vehicle cloud.
  • Step S803 The map cloud determines a processing method for the perception data reported by the first vehicle according to the vehicle type indication information.
  • Step S804 the map cloud assigns an identification code to the first vehicle, and the identification code is associated with the processing method.
  • Step S805 the map cloud sends the identification code to the vehicle cloud.
  • Step S806 the vehicle cloud receives the identification code from the map cloud.
  • the vehicle cloud may only store the identification code without sending the identification code to the vehicle.
  • Step S807 the first vehicle sends the first perception data to the vehicle cloud.
  • Step S808 the vehicle cloud receives the first perception data from the first vehicle.
  • Step S809 the vehicle cloud sends a perception data reporting message to the map cloud, where the perception data reporting message includes the perception data and the identification code reported by the first vehicle.
  • the vehicle cloud can encapsulate the first sensing data reported by the first vehicle and the identification code of the first vehicle stored in the vehicle cloud together into a sensing data reporting message, Then, the packaged perception data report message is sent to the map cloud.
  • Step S8010 the map cloud receives a perception data report message from the vehicle cloud.
  • Step S8011 the map cloud processes the first perception data according to the processing method associated with the identification code.
  • the method embodiment shown in FIG. 7 illustrates how the vehicle cloud interacts with the map cloud to realize the processing of the perception data reported by the first vehicle. Compared with the method shown in FIG. 6 According to the method embodiment, the vehicle cloud is no longer just an intermediate transfer medium, but substantially participates in the processing of perception data.
  • the perception data may be lane-level data reported by vehicles.
  • the map cloud after acquiring the perception data reported by multiple vehicles, The map cloud can update the high-precision map based on the perception data reported by multiple vehicles, so that the high-precision map at the lane level can be obtained accurately and timely.
  • the above-mentioned multiple vehicles can be vehicles driving in a specific area.
  • the local area can be updated in a targeted manner, which improves the update speed of the high-precision map and reduces the time required to update the information. Collection cost.
  • the map cloud can send the updated high-precision map to the first vehicle.
  • the map cloud determines the map format acceptable to the first vehicle before sending the updated high-precision map to the first vehicle. If the map cloud updates The updated high-precision map is in a format acceptable to the first vehicle.
  • the map cloud directly sends the updated high-precision map to the first vehicle; if the updated high-precision map of the map cloud is not a file acceptable to the first vehicle At this time, the map cloud needs to convert the updated high-precision map into a map format acceptable to the first vehicle, so that the first vehicle can drive automatically based on the updated high-precision map, or the driver can high-resolution maps for driving.
  • the first vehicle can also actively request map update.
  • the map cloud After receiving the map update request sent by the first vehicle, the map cloud will send the updated high-precision map data to the first vehicle, and the first vehicle can judge according to the map data. Whether a map update is required.
  • the map cloud can also directly send the updated version of the high-precision map update file to the first vehicle.
  • the first vehicle if the first vehicle determines that the high-precision map stored by itself is the latest version, it does not need to be updated; if When the first vehicle determines that the high-precision map stored by itself is not the latest version, it may update the map according to the above-mentioned map update file.
  • the existing high-precision map version of the first vehicle is version 1.0
  • the generated map update file is version 1.1
  • the map cloud first sends the above-mentioned map update file of version 1.1 to the first vehicle.
  • the first vehicle compares the version number 1.1 with the version number of the high-precision map stored by itself, and determines that the high-precision map version stored by itself is not the latest version.
  • the first vehicle can update the map according to the map update file.
  • the first vehicle can drive automatically based on the updated high-precision map, or the driver can drive according to the updated high-precision map.
  • each device includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 9 shows a schematic diagram of a possible logical structure of the apparatus, and the apparatus may be the above-mentioned data processing apparatus, or may be a chip in the data processing apparatus, or It may be a processing system or the like in the data processing apparatus.
  • an embodiment of the present application provides a data processing apparatus, and the data processing apparatus 90 may include a receiving module 901, a processing module 902 and a sending module 903, wherein:
  • the above receiving module 901 is configured to receive vehicle type indication information from the vehicle side, where the vehicle type indication information is used to indicate the type of the first vehicle;
  • the above-mentioned processing module 902 is configured to determine a processing method for the perception data reported by the first vehicle according to the vehicle type indication information; assign an identification code to the first vehicle, and the identification code is associated with the processing method;
  • the above-mentioned sending module 903 is used to send the identification code to the vehicle side;
  • the above receiving module 901 is further configured to receive a perception data report message from the vehicle side, where the perception data report message includes the first perception data and the identification code reported by the first vehicle;
  • the above-mentioned processing module 902 is further configured to process the first perception data according to the processing method associated with the identification code.
  • the above processing manner includes:
  • the use priority of the first sensing data is determined as the first priority, wherein the first priority is associated with the identification code.
  • the above-mentioned identification code uniquely identifies the first vehicle, and the identification code is associated with the processing mode, including: storing the association relationship between the identification code and the processing mode.
  • the above processing method is the first type of processing method among multiple types of processing methods, and the identification code is associated with the processing method, including:
  • the identification code is used to indicate the first type of processing.
  • the above vehicle type indication information includes at least one of the following contents:
  • the vehicle type indication information includes at least one of the following information:
  • the model of the crowdsourced data collection unit is the model of the crowdsourced data collection unit
  • the model of the crowdsourced data processing unit is the model of the crowdsourced data processing unit
  • the first confidence level is higher than the confidence level of the perception data reported by the unregistered data collection vehicle, and the first priority is higher than The priority of perception data reported by unregistered data collection vehicles.
  • the receiving module 901 is specifically configured to: receive a registration request message from the vehicle side, where the registration request message includes vehicle type indication information.
  • each unit may also correspond to the corresponding descriptions of the embodiments shown in FIG. 5 to FIG. 8 .
  • FIG. 10 shows a schematic diagram of a possible logical structure of an apparatus, and the apparatus may be the above-mentioned data processing apparatus, or may be a chip in the data processing apparatus, or may be the data processing apparatus processing system, etc.
  • an embodiment of the present application provides a data processing apparatus, and the data processing apparatus 100 may include a sending module 1001 and a receiving module 1002, wherein:
  • the above-mentioned sending module 1001 is used to send vehicle type indication information to the server side;
  • the above-mentioned receiving module 1002 receives an identification code from the server side, and the identification code is associated with the processing method of the perception data reported by the first vehicle;
  • the above-mentioned sending module 1001 is further configured to send a sensing data reporting message to the server side, where the sensing data reporting message includes the first sensing data and the identification code reported by the first vehicle.
  • the above processing manner includes:
  • the use priority of the first sensing data is determined as the first priority, wherein the first priority is associated with the identification code.
  • the above-mentioned identification code uniquely identifies the first vehicle.
  • the above-mentioned processing method is the first type of processing method among multiple types of processing methods, and the identification code is associated with the processing method for the perception data reported by the first vehicle, including:
  • the identification code is used to indicate the first type of processing.
  • the above vehicle type indication information includes at least one of the following contents:
  • the above vehicle type indication information includes at least one of the following information:
  • the model of the crowdsourced data collection unit is the model of the crowdsourced data collection unit
  • the first confidence level is higher than the confidence level of the perception data reported by the unregistered data collection vehicle, and the first priority is higher than The priority of perception data reported by unregistered data collection vehicles.
  • the sending module 1001 is specifically configured to: send a registration request message to the server side, where the registration request message includes vehicle type indication information.
  • each unit may also correspond to the corresponding descriptions of the embodiments shown in FIG. 5 to FIG. 8 .
  • FIG. 11 is a schematic structural diagram of a data processing apparatus 110 according to an embodiment of the present application.
  • the data processing apparatus 110 includes at least one processor 1101 and at least one communication interface 1103 .
  • at least one memory 1102 may also be included.
  • the cloud server may also include general components such as an antenna, which will not be described in detail here.
  • the data processing device 110 may be a single deployed map server, or multiple map servers deployed in a distributed manner, or It is a component or chip in the map server.
  • the processor 1101 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the above programs.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication interface 1103 is used to communicate with other devices or communication networks.
  • Memory 1102 which can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of static storage devices that can store information and instructions
  • ROM read-only memory
  • RAM random access memory
  • dynamic storage device it can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by Any other medium accessed by the computer, but not limited to this.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 1102 is used to store the application code for executing the above solution, and the execution is controlled by the processor 1101 .
  • the processor 1101 is used for executing the application code stored in the memory 1102 .
  • the code stored in the memory 1102 may execute the data processing methods provided in FIGS. 5-8 above.
  • the processor 1101 is used to call data and program codes in the memory, and execute:
  • vehicle type indication information from the vehicle side through the communication interface 1103, where the vehicle type indication information is used to indicate the type of the first vehicle;
  • sensing data reporting message includes the first sensing data reported by the first vehicle and the identification code
  • the first sensory data is processed according to the processing method associated with the identification code.
  • the processing method includes:
  • a usage priority of the first sensing data is determined as a first priority, wherein the first priority is associated with the identification code.
  • the identification code uniquely identifies the first vehicle, and the identification code is associated with the processing method, including:
  • the processing method is a first type of processing method among multiple types of processing methods
  • the identification code is associated with the processing method, including:
  • the identification code is used to indicate the first type of processing mode.
  • the vehicle type indication information includes at least one of the following:
  • the vehicle type indication information indicates that the first vehicle is a registered crowdsourced data collection vehicle, and the vehicle type indication information includes at least one of the following information:
  • the model of the crowdsourced data collection unit is the model of the crowdsourced data collection unit
  • the vehicle type indication information indicates that the first vehicle is a registered crowdsourcing data collection vehicle, the first confidence level is higher than the confidence level of the perception data reported by the unregistered data collection vehicle, and the first A priority is higher than the priority of perception data reported by unregistered data collection vehicles.
  • the first vehicle is an unregistered data collection vehicle
  • the vehicle type indication information received from the vehicle side through the communication interface 1103 includes:
  • a registration request message is received from the vehicle side through the communication interface 1103, where the registration request message includes the vehicle type indication information.
  • the data processing device 120 includes at least one processor 1201 and at least one communication interface 1203 .
  • at least one memory 1202 may also be included.
  • the data processing apparatus 120 may also include general components such as an antenna, which will not be described in detail here.
  • the data processing device 120 may be a vehicle, or a component in the vehicle Or chip (for scheme 3), it can also be a vehicle server, or a component or chip within the service period of the vehicle (for scheme 4 and scheme 5).
  • the processor 1201 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the above programs.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication interface 1203 is used to communicate with other devices or communication networks.
  • the memory 1202 can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of static storage devices that can store information and instructions Type of dynamic storage device, it can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being accessed by Any other medium accessed by the computer, but not limited to this.
  • the memory can exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory 1202 is used to store the application code for executing the above solution, and the execution is controlled by the processor 1201 .
  • the processor 1201 is used for executing the application code stored in the memory 1202 .
  • the code stored in the memory 1202 may perform the above data processing methods.
  • the processor 1201 is used to call data and program codes in the memory, and execute:
  • a sensing data reporting message is sent to the server side through the communication interface 1203, where the sensing data reporting message includes the first sensing data reported by the first vehicle and the identification code.
  • the processing method includes:
  • a usage priority of the first sensing data is determined as a first priority, wherein the first priority is associated with the identification code.
  • the identification code uniquely identifies the first vehicle.
  • the processing method is a first type of processing method among multiple types of processing methods, and the identification code is associated with the processing method of the perception data reported for the first vehicle, including:
  • the identification code is used to indicate the first type of processing mode.
  • the vehicle type indication information includes at least one of the following:
  • the vehicle type indication information indicates that the first vehicle is a registered crowdsourced data collection vehicle, and the vehicle type indication information includes at least one of the following information:
  • the model of the crowdsourced data collection unit is the model of the crowdsourced data collection unit
  • the model of the crowdsourced data processing unit is the model of the crowdsourced data processing unit
  • the vehicle type indication information indicates that the first vehicle is a registered crowdsourcing data collection vehicle, the first confidence level is higher than the confidence level of the perception data reported by the unregistered data collection vehicle, and the first A priority is higher than the priority of perception data reported by unregistered data collection vehicles.
  • the first vehicle is an unregistered data collection vehicle
  • the vehicle type indication information sent to the server side through the communication interface 1203 includes:
  • a registration request message is sent to the server side through the communication interface 1203, where the registration request message includes the vehicle type indication information.
  • Embodiments of the present invention further provide a computer storage medium, where instructions are stored in the computer-readable storage medium, when the computer or processor is run on the computer or processor, the computer or processor is made to execute the method described in any one of the foregoing embodiments. one or more steps. If each component module of the above-mentioned device is realized in the form of software functional unit and sold or used as an independent product, it can be stored in the computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or The part said to have contributed to the prior art or the whole or part of the technical solution can be embodied in the form of a software product, and the computer product is stored in a computer-readable storage medium.
  • the above-mentioned computer-readable storage medium may be an internal storage unit of the device described in the foregoing embodiments, such as a hard disk or a memory.
  • the above-mentioned computer-readable storage medium can also be an external storage device of the above-mentioned equipment, such as a plug-in hard disk equipped, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card) )Wait.
  • the above-mentioned computer-readable storage medium may also include both an internal storage unit of the above-mentioned device and an external storage device.
  • the above-mentioned computer-readable storage medium is used to store the above-mentioned computer program and other programs and data required by the above-mentioned device.
  • the above-mentioned computer-readable storage medium can also be used to temporarily store data that has been output or is to be output.
  • the computer program can be stored in a computer-readable storage medium, and the program is executed , may include the flow of the above-mentioned method embodiments.
  • the aforementioned storage medium includes various media that can store program codes, such as ROM, RAM, magnetic disk, or optical disk.
  • the modules in the apparatus of the embodiment of the present application may be combined, divided and deleted according to actual needs.
  • Computer-readable media may include computer-readable storage media, which corresponds to tangible media, such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another (eg, according to a communication protocol) .
  • a computer-readable medium may generally correspond to (1) a non-transitory tangible computer-readable storage medium, or (2) a communication medium such as a signal or carrier wave.
  • Data storage media can be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementing the techniques described in this application.
  • the computer program product may comprise a computer-readable medium.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Bioethics (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Graphics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

自动驾驶依赖于准确度高且快速更新的高精度地图,众多车辆上报的数据是未来高精度地图更新的主要数据来源,为了提高高精度地图数据的安全性和可靠性,提供了一种数据处理方法、装置及计算机可读存储介质,对数据来源的车辆进行快速的识别和区分处理。具体通过地图云为车辆分配标识码,并维护标识码与数据处理方式的对应关系,以及将识别码发送给车辆;车辆在上报数据的同时上报车辆被分配的识别码,即通过识别码标识数据的对应处理方式,能够使地图云在接收到车辆上报的数据上报消息后,通过其中包括的识别码快速确定数据的处理方式,不同类型车辆的数据被区分对待,从而能够基于安全性和可靠性更高的数据更新地图。

Description

数据处理方法、装置及计算机可读存储介质
本申请要求于2020年12月31日提交中国专利局、申请号为202011644482.6、申请名称为“地图更新方法、相关设备及计算机可读存储介质”的中国专利申请的优先权,本申请要求于2021年4月15日提交中国专利局、申请号为202110404844.2、申请名称为“数据处理方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动驾驶技术领域,尤其涉及一种数据处理方法、装置及计算机可读存储介质。
背景技术
自动驾驶是人工智能领域的一种主流应用,自动驾驶技术依靠计算机视觉、雷达等监控装置和全球定位系统协同合作,让机动车辆可以在不需要人类主动操作下,实现自动驾驶。自动驾驶的车辆使用各种计算系统来实现将乘客从一个位置运输到另一个位置。一些自动驾驶车辆可能要来自操作者(诸如驾驶员、乘客)的一些初始输入或者连续输入。自动驾驶车辆准许操作者从手动驾驶模式切换到自动驾驶模式或者介于两者之间的辅助驾驶模式。自动驾驶技术能够有效避免人类驾驶员的驾驶失误,减少交通事故的发生,且能够提高公路的运输效率。因此,自动驾驶技术越来越受到重视。
一般来说,L3级别自动驾驶(有条件自动驾驶)的实现需要使用高精度地图。传统的高精度地图制作过程中的数据采集依赖光雷达、摄像头、高精度组合惯导等传感器,且需要采图方具备一定的测绘资质和专业的测绘能力,因此,数据采集、处理以及维护成本极高。而随着道路不断修建,高精度地图的更新比地图的初始制作更为重要,传统采图手段受限于成本等因素无法满足高精度地图更新的需求。
目前,可以采用众包数据采集的方式对高精度地图进行更新,其实现过程可以描述为:服务器获取众包车辆上报的感知数据,然后,根据获取的感知数据确定现实情况与现有的高精度地图之间存在差异的地方,从而可以基于有差异的地方实现高精度地图的更新。众包车辆来源广泛且数量庞大,服务器获取每个车辆上报的感知数据后,对车辆不进行数据来源方面的区分,笼统的基于所有车辆上报的感知数据对高精度地图进行更新,无法保证数据的安全性和可靠性。
发明内容
本申请提供了一种数据处理方法、装置及计算机可读存储介质,可以提高用于生成高精度地图的数据的安全性和可靠性。
需要说明的是,本申请提供的各实施例中,各步骤的执行顺序可以有多种可能的实现方式,其中的部分或全部步骤可以先后执行或并行执行。
第一方面,提供了一种数据处理方法,该方法可以包括如下步骤:从车辆侧接收车辆类型指示信息,所述车辆类型指示信息用于指示第一车辆的类型;这里,车辆侧可以包括车辆, 也可以包括车辆以及车辆云(通常为车厂部署的车辆服务器);根据车辆类型指示信息为第一车辆分配标识码,标识码与针对所述第一车辆上报的第一感知数据的处理方式相关联,该处理方式可以是在分配标识码之前根据所述车辆类型指示信息确定的;将标识码发送给车辆侧;从车辆侧接收感知数据上报消息,感知数据上报消息中包括第一车辆上报的第一感知数据和标识码;根据与标识码关联的处理方式处理第一感知数据。上述方法可以应用于如下应用场景:场景一,地图云(通常为地图服务提供商部署的地图服务器)与车辆之间直接进行信息交互;场景二,地图云与车辆之间通过车辆云进行信息交互。在地图云与车辆之间直接进行信息交互的情况下,上述方法的执行主体为地图云,车辆侧为第一车辆(方案一);在地图云与车辆之间通过车辆云进行信息交互的情况下,上述方法的执行主体为地图云,车辆侧为车辆云(方案二)。
实施本申请实施例,地图云通过为车辆分配标识码,并维护标识码与数据处理方式的对应关系,便于快速确定接收到的众包采集数据的处理方式,并针对来自不同类型车辆的数据进行不同的处理,从而提高数据的安全性和可靠性。
在一种可能的实现方式中,处理方式包括:设置第一感知数据的置信度为第一置信度,其中第一置信度与标识码相关联;或者确定第一感知数据的使用优先级为第一优先级,其中第一优先级与标识码相关联。
在一种可能的实现方式中,标识码唯一标识第一车辆,标识码与处理方式相关联,包括:存储标识码与处理方式的对应关系。
在一种可能的实现方式中,处理方式为多种类型处理方式中的第一类型处理方式,标识码与处理方式相关联,包括:标识码用于指示第一类型处理方式。
在一种可能的实现方式中,车辆类型指示信息包括以下内容中的至少一项:第一车辆的属性信息;第一车辆的持有人信息;第一车辆中数据采集装置的型号或者配置参数;第一车辆中数据处理装置的型号或者配置参数;或者,第一车辆支持的上报数据类型。所述属性信息例如可以为能够指示所述第一车辆是已注册过的众包数据采集车辆还是未在地图服务提供商处注册过的车辆的信息;所述属性信息又例如可以为能够指示所述第一车辆是属于出行公司或者地图服务提供商等统一管理的车辆还是社会闲散车辆的信息;还可以从其他角度对所述属性信息进行描述,本发明在此不做限定。
在一种可能的实现方式中,第一车辆为注册过的众包数据采集车辆,车辆类型指示信息包括以下信息中的至少一项:众包数据采集单元的型号;众包数据处理单元的型号;众包数据采集单元的能力;众包数据处理单元的能力;第一车辆所属的公司的标识;第一车辆所属的个人的身份信息;第一车辆的制造商的标识;或者,云端与公司之间按照预定义规则产生的值。
在一种可能的实现方式中,第一车辆为注册过的众包数据采集车辆,第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。实施本申请实施例中,由于第一感知数据具有上述特性,当通过第一感知数据对高精度地图进行更新时,可以保证高精度地图的准确性。
在一种可能的实现方式中,第一车辆为未注册过的数据采集车辆,从车辆侧接收车辆类型指示信息包括:从车辆侧接收注册请求消息,注册请求消息中包括车辆类型指示信息。
第二方面,本申请实施例提供了一种数据处理方法,该方法可以包括如下步骤:向服务器侧发送车辆类型指示信息;从服务器侧接收标识码,标识码与针对第一车辆上报的感知数据的处理方式相关联;向服务器侧发送感知数据上报消息,感知数据上报消息中包括第一车 辆上报的第一感知数据和标识码。
上述方法可以应用于如下应用场景:场景一,地图云与车辆之间直接进行信息交互;或者场景二,地图云与车辆之间通过车辆云进行信息交互。在地图云与车辆之间直接进行信息交互的情况下,上述方法的执行主体为第一车辆,服务器侧为地图云(方案三);在地图云与车辆之间通过车辆云进行信息交互的情况下,上述方法的执行主体为第一车辆,服务器侧为车辆云(方案四);在地图云与车辆之间通过车辆云进行信息交互的情况下,上述方法的执行主体还可以为车辆云,服务器侧为地图云(方案五)。
实施本申请实施例,地图云通过为车辆分配标识码,并维护标识码与数据处理方式的对应关系,便于快速确定接收到的众包采集数据的处理方式,并针对来自不同类型车辆的数据进行不同的处理,从而提高数据的安全性和可靠性。
在一种可能的实现方式中,上述处理方式包括:设置第一感知数据的置信度为第一置信度,其中第一置信度与标识码相关联;或者,确定第一感知数据的使用优先级为第一优先级,其中第一优先级与标识码相关联。
在一种可能的实现方式中,标识码唯一标识第一车辆。
在一种可能的实现方式中,处理方式为多种类型处理方式中的第一类型处理方式,标识码与针对第一车辆上报的感知数据的处理方式相关联,包括:标识码用于指示第一类型处理方式。
在一种可能的实现方式中,车辆类型指示信息包括以下内容中的至少一项:第一车辆的属性信息;第一车辆的持有人信息;第一车辆中数据采集装置的型号或者配置参数;第一车辆中数据处理装置的型号或者配置参数;或者,第一车辆支持的上报数据类型。所述属性信息例如可以为能够指示所述第一车辆是已注册过的众包数据采集车辆还是未在地图服务提供商处注册过的车辆的信息;所述属性信息又例如可以为能够指示所述第一车辆是属于出行公司或者地图服务提供商等统一管理的车辆还是社会闲散车辆的信息;还可以从其他角度对所述属性信息进行描述,本发明在此不做限定。
在一种可能的实现方式中,第一车辆为注册过的众包数据采集车辆,车辆类型指示信息包括以下信息中的至少一项:众包数据采集单元的型号;众包数据处理单元的型号;众包数据采集单元的能力;众包数据处理单元的能力;第一车辆所属的公司的标识;第一车辆所属的个人的身份信息;第一车辆的制造商的标识;或者,云端与公司之间按照预定义规则产生的值。
在一种可能的实现方式中,第一车辆为注册过的众包数据采集车辆,第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。
在一种可能的实现方式中,第一车辆为未注册过的数据采集车辆,第一车辆向服务器侧发送车辆类型指示信息包括:向服务器侧发送注册请求消息,注册请求消息中包括车辆类型指示信息。
第三方面,本申请实施例提供了一种数据处理装置,该数据处理装置可以包括接收模块、处理模块和发送模块;其中,接收模块,用于从车辆侧接收车辆类型指示信息,所述车辆类型指示信息用于指示第一车辆的类型;处理模块,用于根据车辆类型指示信息为第一车辆分配标识码,标识码与针对所述第一车辆上报的第一感知数据的处理方式相关联,该处理方式可以是在分配标识码之前根据所述车辆类型指示信息确定的;发送模块,用于将标识码发送给车辆侧;接收模块,还用于从车辆侧接收感知数据上报消息,感知数据上报消息中包括第 一车辆上报的第一感知数据和标识码;处理模块,还用于根据与标识码关联的处理方式处理第一感知数据。
在一种可能的实现方式中,处理方式包括:设置第一感知数据的置信度为第一置信度,其中第一置信度与标识码相关联;或者,确定第一感知数据的使用优先级为第一优先级,其中第一优先级与标识码相关联。
在一种可能的实现方式中,标识码唯一标识第一车辆,标识码与处理方式相关联,包括:存储标识码与处理方式的关联关系。
在一种可能的实现方式中,处理方式为多种类型处理方式中的第一类型处理方式,标识码与处理方式相关联,包括:标识码用于指示第一类型处理方式。
在一种可能的实现方式中,车辆类型指示信息包括以下内容中的至少一项:第一车辆的属性信息;第一车辆的持有人信息;第一车辆中数据采集装置的型号或者配置参数;第一车辆中数据处理装置的型号或者配置参数;或者,第一车辆支持的上报数据类型。
在一种可能的实现方式中,第一车辆为注册过的众包数据采集车辆,车辆类型指示信息包括以下信息中的至少一项:众包数据采集单元的型号;众包数据处理单元的型号;众包数据采集单元的能力;众包数据处理单元的能力;第一车辆所属的公司的标识;第一车辆所属的个人的身份信息;第一车辆的制造商的标识;或者,云端与公司之间按照预定义规则产生的值。
在一种可能的实现方式中,第一车辆为注册过的众包数据采集车辆,第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。
在一种可能的实现方式中,第一车辆为未注册过的数据采集车辆,接收模块,具体用于:从车辆侧接收注册请求消息,注册请求消息中包括车辆类型指示信息。
第四方面,本申请实施例提供了一种数据处理装置,该数据处理装置可以包括发送模块和接收模块;其中,发送模块,用于向服务器侧发送车辆类型指示信息;接收模块,从服务器侧接收标识码,标识码与针对第一车辆上报的感知数据的处理方式相关联;发送模块,还用于向服务器侧发送感知数据上报消息,感知数据上报消息中包括第一车辆上报的第一感知数据和标识码。
在一种可能的实现方式中,处理方式包括:设置第一感知数据的置信度为第一置信度,其中第一置信度与标识码相关联;或者,确定第一感知数据的使用优先级为第一优先级,其中第一优先级与标识码相关联。
在一种可能的实现方式中,标识码唯一标识第一车辆。
在一种可能的实现方式中,处理方式为多种类型处理方式中的第一类型处理方式,标识码与针对第一车辆上报的感知数据的处理方式相关联,包括:标识码用于指示第一类型处理方式。
在一种可能的实现方式中,车辆类型指示信息包括以下内容中的至少一项:第一车辆的属性信息;第一车辆的持有人信息;第一车辆中数据采集装置的型号或者配置参数;第一车辆中数据处理装置的型号或者配置参数;或者,第一车辆支持的上报数据类型。
在一种可能的实现方式中,车辆类型指示信息包括以下信息中的至少一项:众包数据采集单元的型号;众包数据处理单元的型号;众包数据采集单元的能力;众包数据处理单元的能力;第一车辆所属的公司的标识;第一车辆所属的个人的身份信息;第一车辆的制造商的标识;或者,云端与公司之间按照预定义规则产生的值。
在一种可能的实现方式中,第一车辆为注册过的众包数据采集车辆,第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。
在一种可能的实现方式中,第一车辆为未注册过的数据采集车辆,发送模块,具体用于:向服务器侧发送注册请求消息,注册请求消息中包括车辆类型指示信息。
第五方面,本申请实施例提供了另一种数据处理装置,该数据处理装置可以包括存储器和处理器,存储器用于存储计算机程序,处理器执行该计算机程序以实现上述第一方面或者上述第一方面的任意一种实现方式的方法。
第六方面,本申请实施例提供了另一种数据处理装置,该数据处理装置可以包括存储器和处理器,存储器用于存储计算机程序,处理器执行该计算机程序以实现上述第二方面或者上述第二方面的任意一种实现方式的方法。
基于上述关于第一方面的介绍中描述的场景一中的方案一和场景二中的方案二,上述第三方面和第五方面的数据处理装置可以为单一部署的地图服务器,或者是分布式部署的多台地图服务器,还可以是地图服务器内的部件或者芯片。基于上述关于第二方面的介绍中描述的场景一中的方案三和场景二中的方案四、方案五,上述第四方面和第六方面的数据处理装置可以为车辆,或者车辆内的部件或芯片(针对方案三),还可以为车辆服务器,或者车辆服务期内的部件或芯片(针对方案四和方案五)。
第七方面,本申请实施例还提供一种计算机可读存储介质,计算机存储介质存储有计算机程序,计算机程序包括程序指令,程序指令当被处理器执行时使处理器执行上述第一方面或者上述第一方面的任意一种实现方式的方法。
第八方面,本申请实施例还提供一种计算机可读存储介质,计算机存储介质存储有计算机程序,计算机程序包括程序指令,程序指令当被处理器执行时使处理器执行上述第二方面或者上述第二方面的任意一种实现方式的方法。
第九方面,本申请实施例还提供了一种计算机程序产品,当所述计算机程序产品在处理器上运行时,使上述第一方面或者上述第一方面的任意一种实现方式的方法被执行。
第十方面,本申请实施例还提供了一种计算机程序产品,当所述计算机程序产品在处理器上运行时,使上述第二方面或者上述第二方面的任意一种实现方式的方法被执行。
附图说明
图1a、图1b、图1c、图1d分别为本申请实施例提供的一种高精度地图的示意图;
图2为本申请实施例提供的第一应用场景的示意图;
图3为本申请实施例提供的第二应用场景的示意图;
图4为本申请实施例提供的一种车辆400的功能性框图;
图5为本申请实施例提供的一种数据处理方法的流程示意图;
图6为本申请实施例提供的另一种数据处理方法的流程示意图;
图7为本申请实施例提供的另一种数据处理方法的流程示意图;
图8为本申请实施例提供的另一种数据处理方法的流程示意图;
图9为本申请实施例提供的一种数据处理装置的结构示意图;
图10为本申请实施例提供的另一种数据处理装置的结构示意图;
图11为本申请实施例提供的另一种数据处理装置的结构示意图;
图12为本申请实施例提供的另一种数据处理装置的结构示意图。
具体实施方式
下面结合附图对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区分不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一些列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。需要说明的是,本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方法不应被解释为比其他实施例或设计方案更优地或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例中,“A和/或B”表示A和B,A或B两个含义。“A,和/或B,和/或C”表示A、B、C中的任一个,或者,表示A、B、C中的任两个,或者,表示A和B和C。
为了便于理解本申请所描述的技术方案,下面对本申请中的部分用语进行解释说明:
(1)自动驾驶车辆(Autonomous vehicles),又称无人驾驶汽车、智能驾驶车辆、电脑驾驶汽车、或轮式移动机器人,是一种通过计算机系统实现无人驾驶的智能汽车。在实际应用中,自动驾驶车辆通过人工智能、监控装置(视觉传感器、雷达等)和全球定位系统协同合作,让计算机设备可以在没有任何人类主动的操作下,自动安全地操作机动车辆。
(2)高精度地图,通俗来讲就是精度更高、数据维度更多、实时性更强的电子地图。精度更高体现在高精度地图可以精确到车道级甚至厘米级别,数据维度更多体现在高精度地图中不论是地图元素还是地图元素的信息都更丰富,实时性更强体现在高精度地图更新的频率相对于传统导航地图大幅度提升。具体地,高精度地图中可以包含静态图层,也可以包含动态图层。举例来说,静态图层承载的信息可以为:道路之间的连接关系、车道线的位置、车道线的数量以及道路周围的其他对象等;再例如,静态图层承载的信息可以为:交通标识的信息(例如,红绿灯的位置、高度、标识的内容、限速标识、连续弯路或慢行等)、道路周围的树木、建筑物信息等。举例来说,动态图层承载的信息包括动态交通信息或动态事件,该信息可以与时间点(或时间段)关联,也可以与时间点(或时间段)无关。在一些实现方式中,动态图层信息的格式可以为:时间戳+路段+信息。如,某个时刻或某个时间段内路段1的天气信息,某个时刻或某个时间段内路段1的路面信息(例如,道路中断情况,道路维修情况、道路遗撒情况、道路积水情况)等等。
在本申请实施例中,高精度地图的使用对象往往为具有自动驾驶能力的车辆。
在本申请实施例中,图1a-图1d为本申请实施例提供的一种高精度地图的示意图。以路段1为例,如图1a所示,高精度地图中包含车道线信息、车道数、道路边界信息、道路行驶参数等静态图层信息。以路段2为例,如图1b所示,高精度地图中包含车道线信息、车道数、道路边界信息、绿化带信息等静态图层信息,还包括横倒在路面的树木等动态图层信息;以路段3为例,如图1c所示,高精度地图中包含车道线信息、车道数、道路边界信息、绿化带信息等静态图层信息,还包含天气信息(例如,在T1时刻点,小雪转大雪)等动态图层信息; 以路段4为例,如图1d所示,高精度地图中包含车道线信息、车道数、道路边界信息、绿化带信息、数字化信息设备等静态图层信息,还包含天气信息(在T1时刻点,晴转阴)、行人和非机动车的历史穿行概率60%、中度拥堵等动态图层信息。
高精度地图可以有效克服传统硬件传感器的感知缺陷,例如,传感器获取的数据有限,传感器检测的范围有限,以及传感器的检测容易受环境的影响。
下面对本申请实施例的应用场景进行描述。需要说明的是,本申请描述的应用场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新应用场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
请参见图2,图2是本申请实施例提供的第一应用场景的示意图。如图2所示,在该应用场景中,车辆201与地图云202之间可以通过有线或无线方式进行直接通信。
在一些实施例中,车辆201可以向地图云202发送车辆类型指示信息,例如,车辆类型指示信息可以包括以下内容中的至少一项:车辆的属性信息;车辆的持有人信息;车辆中数据采集装置的型号或配置参数;车辆中数据处理装置的型号或者配置参数;车辆支持的上报数据类型;地图云202在接收到上述车辆类型指示信息之后,可以根据车辆201上报的车辆类型指示信息确定针对车辆上报的感知数据的处理方式,并为车辆201分配标识码,其中,上述标识码与处理方式相关联,之后,地图云202将上述标识码发送给车辆101,从而车辆201可以接收到地图云202发送的标识码,当车辆201向地图云发送感知数据上报消息时,感知数据上报消息中包括车辆获得的第一感知数据和标识码,从而地图云202可以根据标识码对应的处理方式处理车辆201上报的第一感知数据。在一些实施例中,地图云根据与标识码关联的处理方式对车辆上报的第一感知数据进行处理,以基于第一感知数据对高精度地图进行更新。
在一些实施例中,地图云202可以通过高精度地图中包含的多维度的数据,运行其存储的控制汽车自动驾驶相关的程序对车辆201进行控制(例如,通过驾驶策略指示车辆如何行驶)。
在一些实施例中,地图云202可以实现密钥的配置和管理。例如,车辆201可以根据来自地图云202的密钥对第一感知数据进行加密,得到加密后的第一感知数据;之后,将加密后的第一感知数据上报给地图云202,从而地图云202可以根据密钥对上述加密后的第一感知数据进行解密。
在一些实施例中,云端服务器向自动驾驶车辆指示如何在给定场景中行驶。地图云202获取用于描述车辆201行驶的路段(例如,第一路段)的地图图层信息之后,根据该地图图层信息为自动驾驶车辆指定驾驶策略,并将该驾驶策略发送给该自动驾驶车辆。例如,通过动态图层信息确定自动驾驶车辆前方存在障碍物,并告知自动驾驶车辆如何绕开障碍物;又例如,通过动态图层信息确定路面积水情况,告知自动驾驶车辆如何在积水路面上驾驶;又例如,云端服务器基于关于第一路段的地图图层信息,可以确认道路前方具有临时停车标志的存在,并告知自动驾驶车辆可以根据需求在相应的位置临时停车。
请参见图3,图3是本申请实施例提供的第二应用场景的示意图。如图3所示,在该应用场景中,车辆303与车辆云304之间可以通过有线或无线方式直接进行通信,车辆云304与地图云305之间可以通过有线或无线方式直接进行通信;对车辆303和地图云305来说,车辆303可以间接通过车辆云304与地图云305进行通信。
在一些实施例中,车辆303可以向车辆云304发送车辆类型指示信息,例如,车辆类型 指示信息可以包括以下内容中的至少一项:车辆的属性信息;车辆的持有人信息;车辆中数据采集装置的型号或配置参数;车辆中数据处理装置的型号或者配置参数;车辆支持的上报数据类型;车辆云304在接收到上述车辆类型指示信息之后,可以将上述车辆类型指示信息转发给地图云305,从而地图云305可以根据车辆303上报的车辆类型指示信息确定针对车辆上报的感知数据的处理方式,并为车辆303分配标识码,其中,上述标识码与处理方式相关联,具体地,地图云305将标识码发送给车辆云304,之后,车辆云304将上述标识码转发给车辆303,从而车辆303可以接收到来自地图云305发送的标识码。当车辆303向车辆云304发送感知数据上报消息时,感知数据上报消息中包括车辆获得的第一感知数据和标识码,车辆云304将上述感知数据上报消息转发给地图云305,从而地图云305可以根据标识码对应的处理方式处理车辆303上报的第一感知数据。在一些实施例中,地图云305根据与标识码关联的处理方式对车辆上报的第一感知数据进行处理了之后,可以基于第一感知数据对高精度地图进行更新。
在一些实施例中,车辆云304可以实现密钥的配置和管理。例如,车辆303可以根据来自车辆云304的密钥对第一感知数据进行加密,得到加密后的第一感知数据;之后,将加密后的第一感知数据上报给车辆云304,从而车辆云304可以根据密钥对上述加密后的第一感知数据进行解密。当车辆云304将上述加密后的第一感知数据转发给地图云305时,由于车辆云304与地图云305之间建立有通信连接,车辆云304可以辅助地图云305实现第一感知数据的解密。
为了更好的理解上述应用场景,下面结合图4介绍本申请实施例涉及的车辆400。在一些实施方式中,可以将车辆400配置为完全自动驾驶模式或部分地自动驾驶模式,亦或是人工驾驶模式。以SAE提出的自动驾驶分级为例,完全自动驾驶模式可以为L5,表示由车辆完成所有驾驶操作,人类驾驶员无需保持注意力;部分地自动驾驶模式可以为L1、L2、L3、L4,其中,L1表示车辆对方向盘和加减速中的一项操作提供驾驶,人类驾驶员负责其余的驾驶操作;L2表示车辆对方向盘和加减速中的多项操作提供驾驶,人类驾驶员负责其余的驾驶动作;L3表示由车辆完成绝大部分驾驶操作,人类驾驶员需保持注意力集中以备不时之需;L4表示由车辆完成所有驾驶操作,人类驾驶员无需保持注意力,但限定道路和环境条件;人工驾驶模式可以为L0,表示由人类驾驶者全权驾驶汽车。
在本申请实施例中,车辆400可以至少包括如下子系统:传感子系统401,决策子系统402和执行子系统403。传感子系统401至少可以包括传感器。具体地,传感器可以包括内部传感器和外部传感器;其中,内部传感器用来监测车辆的状态,可以包括车辆速度传感器、加速度传感器、角速度传感器等中的至少一种。外部传感器主要用来监测车辆周围的外部环境,示例性的,可以包括视觉传感器和雷达传感器;视觉传感器通过获取图像数据来监测车辆周围环境的图像数据;雷达传感器通过发射电磁波,然后接收周围物体反射的电磁波来检测周围物体与车辆的距离、周围物体的外形等各项数据。
例如,多个雷达传感器分布在整个车辆400的外部。多个雷达传感器中的部分传感器耦合到车辆400的前部,从而定位车辆400前方的对象。一个或多个其他雷达传感器可位于车辆400的后部,从而定位车辆400后方的对象。其他雷达传感器可位于车辆400的侧面,从而定位从侧面靠近车辆400的对象。
再例如,将LIDAR传感器安装在车辆400顶部的旋转结构中,LIDAR传感器能通过360度的旋转感应车辆400周围的对象。
再例如,照相机、摄像机或其他图像传感器可安装在车辆400上,从而随着车辆400的 移动捕获图像。
再例如,全球定位系统(Global Positioning System,GPS)传感器可位于车辆400上,从而向控制器提供车辆400的地理位置坐标和坐标的生成时间。GPS包括用于接收GPS卫星信号的天线以及耦合到天线的GPS接收器。
决策子系统402至少可以包括电子控制单元(Electronic Control Unit,ECU)、地图数据库、对象数据库。具体来说,ECU,又称“行车电脑”、“车载电脑”等,是汽车专用的微机控制器,ECU与总线相连,并通过总线与其他设备进行通信。例如,ECU可以获取传感器、地图数据或人机接口(Human Machine Interface,HMI)传递的信息,并输出信息到HMI或执行器。例如,ECU加载存储在ROM中的程序到RAM,运行RAM中的程序,来实现自动驾驶功能。ECU可以识别车辆周围静态的和/或动态的目标,例如,基于外部传感器,监测周围目标的速度或方向等。ECU可以获取到车辆自身状态信息,基于内部传感器的输出信息。ECU根据这些信息,对驾驶路径进行规划,并输出相应的控制信号到执行器,由执行器执行相应的操作。
在本申请实施例中,通信单元用于与周围车辆、路边通信设备或服务器进行数据交互。例如,耦合到天线的无线电可位于车辆中,从而为系统提供无线通信。通信单元可以基于任何无线通信技术或无线标准进行操作,包括但不限于V2X(vehicle to everything)、WiFi(IEEE802.11)、全球移动通信系统(Global System for Mobile Communications,GSM)、码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、长期演进(Long Term Evolution,LTE)、新空口(New Radio)中的一种或多种。
在本申请实施例中,地图数据库用于存放地图信息;在一些可行的实施例中,可以使用硬盘驱动器(Hard Disk Drive,HDD)作为地图数据库的数据存储设备。地图数据库可以存储于单一的地图服务器,也可以存储于基于云存储技术实现的地图服务器。
执行子系统403至少可以包括执行器,执行器用于控制车辆400进行横向和/或纵向运动。例如,刹车执行器根据从ECU接收的控制信号,控制刹车系统和刹车的力度;转向执行器通过来自ECU的控制信号控制转向系统;在一些可行的实施例中,转向系统可以是电子转向系统,或者是机械转向系统。
需要说明的是,图4中的系统的元件仅出于说明目的,包括更多或更少组件的其他系统可用于执行本申请公开的任何方法。
参见图5,图5为本申请实施例提供的一种数据处理方法的流程示意图,具体阐述了在上述图2所示的应用场景(车辆与地图云之间进行直接通信)中,地图云是如何对车辆上报的感知数据进行处理的,该方法可以包括但不限于如下步骤:
步骤S501、第一车辆向地图云发送车辆类型指示信息。
在本申请实施例中,车辆类型指示信息可以包括以下内容中的至少一项:第一车辆的属性信息;第一车辆的持有人信息;第一车辆中数据采集装置的型号或配置参数;第一车辆中数据处理装置的型号或配置参数;或者第一车辆支持的上报数据类型。
在本申请实施例中,属性信息例如可以为,能够指示第一车辆是已注册过的众包数据采集车辆,还是未在地图服务提供商处注册过的车辆的信息;属性信息又例如可以为,能够指示第一车辆是属于出行公司或者地图服务提供商等统一管理的车辆,还是社会闲散车辆的信息。
示例性地,车辆的持有人信息可以包括车辆的自然人归属信息或者车辆的法人归属信息等。
示例性地,车辆中数据采集装置的型号或配置参数可以为传感器的型号或配置参数。
示例性地,车辆中数据处理装置的型号或配置阐述可以为处理器的型号或配置参数。
示例性地,车辆支持上报的数据类型可以为业界标准支持的多种数据类型中的至少一种,例如,车辆支持的上传数据类型可以为字符型;又例如,车辆支持的上传数据类型可以为整型;又例如,车辆基于某种特定标准的规定对数据包进行配置。
步骤S502、地图云从第一车辆接收车辆类型指示信息。
步骤S503、地图云根据车辆类型指示信息确定针对第一车辆上报的感知数据的处理方式。
在本申请实施例中,上述处理方式可以包括:设置第一感知数据的置信度为第一置信度,其中第一置信度与标识码相关联;或者,确定第一感知数据的使用优先级为第一优先级,其中第一优先级与标识码相关联。需要说明的是,上述第一置信度以及第一优先级只是一种示例,不应构成限定。通过这一实现方式,丰富了对第一感知数据的处理方式,以便后续可以有针对性地对第一感知数据进行处理。
步骤S504、地图云为第一车辆分配标识码,标识码与处理方式相关联。
在一些实施例中,标识码可以用来唯一标识第一车辆。标识码与处理方式相关联可以表示为标识码与处理方式之间有对应关系。在实际应用中,可以建立标识码与处理方式之间的对应关系,并存储标识码与处理方式之间的对应关系。例如,标识码与处理方式之间的对应关系可以如表1所示:
标识码 处理方式
ID1 处理方式1
ID2 处理方式2
ID3 处理方式3
表1
本领域技术人员可知,表1只是一种对应关系的可能的表现形式,表格中的参数的个数和类型以及参数的具体数值都可以进行适应性修改,本申请对此不作具体限定。
在一些实施例中,处理方式为多种类型处理方式中的第一类型处理方式,标识码与处理方式相关联可以表示为通过标识码指示第一类型处理方式。
步骤S505、地图云将标识码发送给第一车辆。
步骤S506、第一车辆从地图云接收标识码。
步骤S507、第一车辆向地图云发送感知数据上报消息,感知数据上报消息中包括第一车辆上报的第一感知数据和标识码。
在本申请实施例中,感知数据是指,车辆通过传感器获取的数据,并由车辆上报给地图云。
步骤S508、地图云从第一车辆接收感知数据上报消息。
步骤S509、地图云根据与标识码关联的处理方式处理第一感知数据。
例如,标识码指示了处理方式1,此时,通过处理方式1处理第一感知数据;又例如,标识码指示了处理方式2,此时,通过处理方式2处理第一感知数据。
实施本申请实施例,在车辆与地图云之间进行直接通信的应用场景中,地图云针对不同来源的车辆分别进行处理,并为其分配相应的标识码,由于车辆发送的感知数据上报消息中包括车辆获得的感知数据和标识码,可以提升地图云使用感知数据时的安全性和可靠性。
需要说明的是,在图2所示的应用场景中,地图云可以实现密钥的配置和管理,对第一车辆来说,第一车辆可以根据来自地图云的密钥对传感器获取的数据进行加密,得到第一感 知数据,然后,第一车辆向地图云发送感知数据上报消息,此时,感知数据上报消息中包括第一车辆通过密钥加密后得到的第一感知数据和标识码,从而地图云可以根据上述密钥对第一感知数据进行解密,并根据与标识码关联的处理方式处理解密后的第一感知数据。应理解本文中的密钥可以是私钥,也可以是公钥加密的对称密钥或者数字认证证书。通过这一实现方式,可以提高各个交互端间信息交互的安全性。
下面具体阐述在地图云与车辆之间直接进行信息交互的应用场景下,针对车辆为已注册过的众包数据采集车辆,地图云是如何对车辆上报的感知数据进行处理的,可以包括但不限于如下步骤:
步骤S1-1、第一车辆向地图云发送车辆类型指示信息。
具体实现中,车辆类型指示信息可以包括以下信息中的至少一项:众包数据采集单元的型号;众包数据处理单元的型号;众包数据采集单元的能力;众包数据处理单元的能力;第一车辆所属的公司的标识;第一车辆所属的个人的身份信息;第一车辆的制造商的标识;或者,云端与公司之间按照预定义规则产生的值。示例性地,云端与公司之间按照预定义规则产生的值可以为1,也可以为其他任意数值,此处只是一种示例。
步骤S1-2、地图云从第一车辆接收车辆类型指示信息。
步骤S1-3、地图云根据车辆类型指示信息确定针对第一车辆上报的感知数据的处理方式。
具体实现中,上述处理方式可以包括:设置第一感知数据的置信度为第一置信度,其中第一置信度与地图云分配给车辆的标识码相关联;进一步地,对应于该车辆为已注册过的众包数据采集车辆,该第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度。确定第一感知数据的使用优先级为第一优先级,其中第一优先级与标识码相关联;进一步地,对应于该车辆为已注册过的众包数据采集车辆,该第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。通过这一实现方式,由于第一感知数据具有上述特性,当通过第一感知数据对高精度地图进行更新时,可以提高高精度地图的准确性。
步骤S1-4、地图云为第一车辆分配标识码,标识码与处理方式相关联。
步骤S1-5、地图云将标识码发送给第一车辆。
步骤S1-6、第一车辆从地图云接收标识码。
步骤S1-7、第一车辆向地图云发送感知数据上报消息,感知数据上报消息中包括第一车辆上报的第一感知数据和标识码。
步骤S1-8、地图云从第一车辆接收感知数据上报消息。
步骤S1-9、地图云根据与标识码关联的处理方式处理第一感知数据。
可以理解的是,在图3所示的应用场景中,针对车辆为已注册过的众包数据采集车辆,上述方法的交互对端为车辆侧和地图云,其中,车辆侧包括车辆和车辆云,此时,车辆间接通过车辆云与地图云进行通信,关于其具体实现请参考前述实施例的相关描述,此处不多加赘述。
参见图6,图6为本申请实施例提供的一种数据处理方法的流程示意图,具体阐述了在上述图3所示的应用场景(车辆间接通过车辆云与地图云进行通信),地图云是如何对车辆上报的感知数据进行处理的,该方法可以包括但不限于如下步骤:
步骤S601a、第一车辆向车辆云发送车辆类型指示信息。
步骤S601b、车辆云向地图云发送车辆类型指示信息。
关于车辆类型指示信息的具体表现形态请参考前述阐述,此处不多加赘述。
步骤S602、地图云从车辆云接收车辆类型指示信息。
步骤S603、地图云根据车辆类型指示信息确定针对第一车辆上报的感知数据的处理方式。
步骤S604、地图云为第一车辆分配标识码,标识码与处理方式相关联。
步骤S605a、地图云将标识码发送给车辆云。
步骤S605b、车辆云将标识码发送给第一车辆。
步骤S606、第一车辆从车辆云接收标识码。
步骤S607a、第一车辆向车辆云发送感知数据上报消息,感知数据上报消息中包括第一车辆上报的第一感知数据和标识码。
步骤S607b、车辆云向地图云发送感知数据上报消息。
步骤S608、地图云从车辆云接收感知数据上报消息。
步骤S609、地图云根据与标识码关联的处理方式处理第一感知数据。
实施本申请实施例,在车辆间接通过车辆云与地图云进行通信的应用场景中,地图云针对不同来源的车辆分别进行处理,并为其分配相应的标识码,由于车辆发送的感知数据上报消息中包括车辆获得的感知数据和标识码,可以提高地图云使用感知数据的安全性和可靠性。
需要说明的是,在图3所示的应用场景中,车辆云可以实现密钥的配置和管理,车辆云与地图云之间通过握手建立通信连接,例如,车辆云与地图云之间基于某种密钥规则实现握手,对第一车辆来说,第一车辆可以根据来自车辆云的密钥对传感器获取的数据进行加密,得到第一感知数据,然后,第一车辆将感知数据上报消息发送给车辆云,此时,感知数据上报消息中包括第一车辆通过密钥加密后得到的第一感知数据和标识码,车辆云将上述感知数据上报消息转发给地图云,由于车辆云与地图云之间通过握手建立有通信连接,车辆云可以辅助地图云实现第一感知数据的解密。应理解本实施例中的密钥可以是私钥,也可以是公钥加密的对称密钥或者数字认证证书。通过这一实现方式,可以提高各个交互端间信息交互的安全性。
参见图7,图7为本申请实施例提供的一种数据处理方法的流程示意图,具体阐述了在上述图2所示的应用场景(地图云与车辆之间直接进行信息交互),针对车辆为未注册过的众包数据采集车辆,地图云是如何对车辆上报的感知数据进行处理的,可以包括但不限于如下步骤:
步骤S701、第一车辆向地图云发送注册请求消息,其中,注册请求消息中包括车辆类型指示信息。
步骤S702、地图云从第一车辆接收注册请求信息。
步骤S703、地图云根据注册请求信息中包含的车辆类型指示信息为第一车辆分配标识码,该标识码关联了针对第一车辆上报的感知数据的处理方式;
在一些实施例中,地图云为第一车辆分配的标识码为用于指示第一车辆为已注册成功的众包数据采集车辆。
步骤S704、地图云向第一车辆发送注册反馈消息,其中,注册反馈消息中包含为第一车辆分配的标识码;
步骤S705、第一车辆从地图云接收注册反馈信息。
步骤S706、第一车辆向地图云发送感知数据上报消息,感知数据上报消息中包括第一车辆上报的第一感知数据和标识码。
步骤S707、地图云从第一车辆接收感知数据上报消息。
步骤S708、地图云根据与标识码关联的处理方式处理第一感知数据。
可以理解的是,在图3所示的应用场景中,针对车辆为未注册过的众包数据采集车辆, 上述方法的交互对端为车辆侧和地图云,其中,车辆侧包括车辆和车辆云,此时,车辆间接通过车辆云与地图云进行通信,关于其具体实现请参考前述实施例的相关描述,此处不多加赘述。
需要说明的是,在图6所示的方法实施例中阐述了车辆云作为中间传递媒介,实现车辆与地图云之间的信息传递,该实现仅作为一种示例,不应构成限定。在一些实施例中,车辆云在获取到第一车辆发送的车辆类型指示信息之后,车辆云对上述获取到的车辆类型指示信息进行处理,例如,该处理可以包括在车辆类型指示信息中增加标签信息,之后,将上述车辆类型指示信息与标签信息进行封装,并将封装后的车辆类型指示信息与标签信息发送给地图云,以便地图云执行如图6所示的其他处理步骤。在一些实施例中,上述车辆类型指示信息可以为车辆云基于第一车辆与车辆云之间的信息交互生成的,在这种情况下,车辆云可以将上述车辆类型指示信息发送给地图云,以通过地图云根据车辆类型指示信息确定针对第一车辆上报的感知数据的处理方式。在一些实施例中,当地图云将标识码发送给了车辆云时,车辆云可以存储该标识码,并不将标识码转发给第一车辆。当第一车辆将获得的第一感知数据上报给车辆云时,车辆云可以对第一车辆上报的第一感知数据以及车辆云存储的第一车辆的标识码一起封装成感知数据上报消息,之后,将上述封装好的感知数据上报消息发送给地图云,以通过地图云执行后续处理步骤。下面结合上述其中一种示例进行具体阐述,请参见图8,为本申请实施例提供的一种数据处理方法的流程示意图,具体阐述了在上述图3所示的应用场景(车辆间接通过车辆云与地图云进行通信),地图云是如何对车辆上报的感知数据进行处理的,该方法可以包括但不限于如下步骤:
步骤S801、车辆云向地图云发送车辆类型指示信息。
在一些实施例中,车辆类型指示信息可以为车辆云生成的,因为车辆云作为车辆的管理者,会存储车辆的一些基本信息,可以指示车辆的种类、身份或者能力。
步骤S802、地图云从车辆云接收车辆类型指示信息。
步骤S803、地图云根据车辆类型指示信息确定针对第一车辆上报的感知数据的处理方式。
步骤S804、地图云为第一车辆分配标识码,标识码与处理方式相关联。
步骤S805、地图云将标识码发送给车辆云。
步骤S806、车辆云从地图云接收标识码。具体实现中,车辆云在接收到地图云发送的标识码后,可以仅存储上述标识码,而不将上述标识码发送给车辆。
步骤S807、第一车辆向车辆云发送第一感知数据。
步骤S808、车辆云从第一车辆接收第一感知数据。
步骤S809、车辆云向地图云发送感知数据上报消息,感知数据上报消息中包括第一车辆上报的感知数据和标识码。
具体实现中,车辆云在获取到第一车辆上报的第一感知数据后,可以将第一车辆上报的第一感知数据以及车辆云存储的第一车辆的标识码一起封装成感知数据上报消息,然后,将封装好的感知数据上报消息发送给地图云。
步骤S8010、地图云从车辆云接收感知数据上报消息。
步骤S8011、地图云根据标识码关联的处理方式处理第一感知数据。
需要说明的是,在图7所示的方法实施例中阐述了车辆云是如何与地图云进行信息交互,以实现针对第一车辆上报的感知数据的处理的,相较于图6所示的方法实施例来说,车辆云不再只是作为一种中间传递媒介,而是实质性的参与了感知数据的处理。
需要说明的是,在前述图5-图8所示的方法实施例中,感知数据可以为车辆上报的车道 级别的数据,对地图云来说,在获取到多个车辆上报的感知数据后,地图云可以基于多个车辆上报的感知数据对高精度地图进行更新,从而可以准确及时地得到车道级别的高精度地图。进一步地,上述多个车辆可以为行驶在某个特定区域的车辆,对地图云来说,可以有针对性地对局部区域进行更新,提高了高精度地图的更新速度,还可以降低更新信息的采集成本。
在实际应用中,在地图云更新了高精度地图之后,地图云可以向第一车辆发送更新后的高精度地图。在一种可行的实施例中,以图3所示的应用场景为例,地图云在向第一车辆发送更新后的高精度地图之前,确定第一车辆可以接受的地图格式,如果地图云更新后的高精度地图为第一车辆可以接受的文格式,此时,地图云直接向第一车辆发送更新后的高精度地图;如果地图云更新后的高精度地图不是第一车辆可以接受的文件格式,此时,地图云需要将更新后的高精度地图转换为第一车辆可以接受的地图格式,从而第一车辆可以基于更新后的高精度图进行自动驾驶,或者,驾驶员可以根据更新后的高精度地图进行驾驶。
另外,第一车辆还可以主动请求地图更新,地图云在接收到第一车辆发送的地图更新请求之后,会向第一车辆发送更新后的高精度地图数据,第一车辆可以根据该地图数据判断是否需要进行地图更新。
地图云也可以直接向第一车辆发送更新后的高精度地图更新文件的版本,对第一车辆来说,如果第一车辆确定自身存储的高精度地图为最新版本时,不需要进行更新;如果第一车辆确定自身存储的高精度地图不是最新版本时,可以根据上述地图更新文件进行地图更新。
例如,第一车辆现有的高精度地图版本为1.0的版本,而地图云经过更新后,生成的地图更新文件为1.1版本,地图云首先将上述1.1版本的地图更新文件发送给第一车辆,第一车辆将该版本号1.1与自身存储的高精度地图版本号相比较,确定自身存储的高精度地图版本不是最新版本,此时,第一车辆可以根据上述地图更新文件进行地图更新。继而,第一车辆可以基于更新后的高精度图进行自动驾驶,或者,驾驶员可以根据更新后的高精度地图进行驾驶。
前述实施例重点阐述了地图云如何对车辆上报的感知数据进行处理的,接下来具体介绍本申请涉及的装置。需要说明的是,对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。可以理解的是,各个装置为了实现上述对应的功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图9示出了装置的一种可能的逻辑结构示意图,该装置可以是上述的数据处理装置,或者可以是该数据处理装置中的芯片,或者可以是该数据处理装置中的处理系统等。
如图9所示,本申请实施例提供了一种数据处理装置,该数据处理装置90可以包括接收 模块901、处理模块902和发送模块903,其中:
上述接收模块901,用于从车辆侧接收车辆类型指示信息,所述车辆类型指示信息用于指示第一车辆的类型;
上述处理模块902,用于根据该车辆类型指示信息确定针对第一车辆上报的感知数据的处理方式;为第一车辆分配标识码,标识码与处理方式相关联;
上述发送模块903,用于将标识码发送给车辆侧;
上述接收模块901,还用于从车辆侧接收感知数据上报消息,感知数据上报消息中包括第一车辆上报的第一感知数据和标识码;
上述处理模块902,还用于根据与标识码关联的处理方式处理第一感知数据。
在一种可能的实现方式中,上述处理方式包括:
设置第一感知数据的置信度为第一置信度,其中第一置信度与标识码相关联;或者
确定第一感知数据的使用优先级为第一优先级,其中第一优先级与标识码相关联。
在一种可能的实现方式中,上述标识码唯一标识第一车辆,且该标识码与处理方式相关联,包括:存储标识码与处理方式的关联关系。
在一种可能的实现方式中,上述处理方式为多种类型处理方式中的第一类型处理方式,标识码与处理方式相关联,包括:
标识码用于指示第一类型处理方式。
在一种可能的实现方式中,上述车辆类型指示信息包括以下内容中的至少一项:
第一车辆的属性信息;
第一车辆的持有人信息;
第一车辆中数据采集装置的型号或者配置参数;
第一车辆中数据处理装置的型号或者配置参数;或者
第一车辆支持的上报数据类型。
在一种可能的实现方式中,针对第一车辆为注册过的众包数据采集车辆,车辆类型指示信息包括以下信息中的至少一项:
众包数据采集单元的型号;
众包数据处理单元的型号;
众包数据采集单元的能力;
众包数据处理单元的能力;
第一车辆所属的公司的标识;
第一车辆所属的个人的身份信息;
第一车辆的制造商的标识;或者
云端与公司之间按照预定义规则产生的值。
在一种可能的实现方式中,针对第一车辆为注册过的众包数据采集车辆,第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。
在一种可能的实现方式中,针对第一车辆为未注册过的数据采集车辆,接收模块901,具体用于:从车辆侧接收注册请求消息,注册请求消息中包括车辆类型指示信息。
需要说明的是,各个单元的实现还可以对应参照图5-图8所示的实施例的相应描述。
在本申请实施例中,图10示出了装置的一种可能的逻辑结构示意图,该装置可以是上述 的数据处理装置,或者可以是该数据处理装置中的芯片,或者可以是该数据处理装置中的处理系统等。如图10所示,本申请实施例提供了一种数据处理装置,该数据处理装置100可以包括发送模块1001和接收模块1002,其中:
上述发送模块1001,用于向服务器侧发送车辆类型指示信息;
上述接收模块1002,从服务器侧接收标识码,标识码与针对第一车辆上报的感知数据的处理方式相关联;
上述发送模块1001,还用于向服务器侧发送感知数据上报消息,感知数据上报消息中包括第一车辆上报的第一感知数据和标识码。
在一种可能的实现方式中,上述处理方式包括:
设置第一感知数据的置信度为第一置信度,其中第一置信度与标识码相关联;或者
确定第一感知数据的使用优先级为第一优先级,其中第一优先级与标识码相关联。
在一种可能的实现方式中,上述标识码唯一标识第一车辆。
在一种可能的实现方式中,上述处理方式为多种类型处理方式中的第一类型处理方式,标识码与针对第一车辆上报的感知数据的处理方式相关联,包括:
标识码用于指示第一类型处理方式。
在一种可能的实现方式中,上述车辆类型指示信息包括以下内容中的至少一项:
第一车辆的属性信息;
第一车辆的持有人信息;
第一车辆中数据采集装置的型号或者配置参数;
第一车辆中数据处理装置的型号或者配置参数;或者
第一车辆支持的上报数据类型。
在一种可能的实现方式中,上述车辆类型指示信息包括以下信息中的至少一项:
众包数据采集单元的型号;
众包数据处理单元的型号;
众包数据采集单元的能力;
众包数据处理单元的能力;
第一车辆所属的公司的标识;
第一车辆所属的个人的身份信息;
第一车辆的制造商的标识;或者
云端与公司之间按照预定义规则产生的值。
在一种可能的实现方式中,针对第一车辆为注册过的众包数据采集车辆,第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。
在一种可能的实现方式中,针对第一车辆为未注册过的数据采集车辆,发送模块1001,具体用于:向服务器侧发送注册请求消息,注册请求消息中包括车辆类型指示信息。
需要说明的是,各个单元的实现还可以对应参照图5-图8所示的实施例的相应描述。
请参见图11,图11为本申请实施例提供的一种数据处理装置110的结构示意图,该数据处理装置110包括至少一个处理器1101以及至少一个通信接口1103。可选的,还可以包括至少一个存储器1102。该云端服务器还可以包括天线等通用部件,在此不再详述。在实际应用中,基于本申请描述的场景一中的方案一和场景二中的方案二,上述数据处理装置110可以 为单一部署的地图服务器,或者是分布式部署的多台地图服务器,还可以是地图服务器内的部件或者芯片。
处理器1101可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口1103,用于与其他设备或通信网络通信。
存储器1102,可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器1102用于存储执行以上方案的应用程序代码,并由处理器1101来控制执行。所述处理器1101用于执行所述存储器1102中存储的应用程序代码。例如,存储器1102存储的代码可执行以上图5-图8提供的数据处理方法。
具体地,处理器1101用于调用存储器中的数据和程序代码,执行:
通过通信接口1103从车辆侧接收车辆类型指示信息,所述车辆类型指示信息用于指示第一车辆的类型;
根据所述车辆类型指示信息确定针对第一车辆上报的感知数据的处理方式;
为所述第一车辆分配标识码,所述标识码与所述处理方式相关联;
通过通信接口1103将所述标识码发送给所述车辆侧;
通过通信接口1103从所述车辆侧接收感知数据上报消息,所述感知数据上报消息中包括所述第一车辆上报的第一感知数据和所述标识码;
根据与所述标识码关联的处理方式处理所述第一感知数据。
其中,所述处理方式包括:
设置所述第一感知数据的置信度为第一置信度,其中所述第一置信度与所述标识码相关联;或者
确定所述第一感知数据的使用优先级为第一优先级,其中所述第一优先级与所述标识码相关联。
其中,所述标识码唯一标识所述第一车辆,所述标识码与所述处理方式相关联,包括:
存储所述标识码与所述处理方式的对应关系。
其中,所述处理方式为多种类型处理方式中的第一类型处理方式,所述标识码与所述处理方式相关联,包括:
所述标识码用于指示所述第一类型处理方式。
其中,所述车辆类型指示信息包括以下内容中的至少一项:
所述第一车辆的属性信息;
所述第一车辆的持有人信息;
所述第一车辆中数据采集装置的型号或者配置参数;
所述第一车辆中数据处理装置的型号或者配置参数;或者
所述第一车辆支持的上报数据类型。
其中,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述车辆类型指示信息包括以下信息中的至少一项:
众包数据采集单元的型号;
众包数据处理单元的型号;
众包数据采集单元的能力;
众包数据处理单元的能力;
所述第一车辆所属的公司的标识;
所述第一车辆所属的个人的身份信息;
所述第一车辆的制造商的标识;或者
云端与所述公司之间按照预定义规则产生的值。
其中,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,所述第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。
其中,所述第一车辆为未注册过的数据采集车辆,所述通过通信接口1103从车辆侧接收车辆类型指示信息包括:
通过通信接口1103从所述车辆侧接收注册请求消息,所述注册请求消息中包括所述车辆类型指示信息。
需要说明的是,本申请实施例中所描述的数据处理装置110的功能可参见上述图5-图8中的所述的方法实施例中的相关描述,此处不再赘述。
请参见图12,图12为本申请实施例提供的一种数据处理装置的结构示意图。该数据处理装置120包括至少一个处理器1201以及至少一个通信接口1203。可选的,还可以包括至少一个存储器1202。该数据处理装置120还可以包括天线等通用部件,在此不再详述。在实际应用中,基于本申请描述的场景一中的方案三和场景二中的方案四、方案五,上述第四方面和第六方面,上述数据处理装置120可以为车辆,或者车辆内的部件或芯片(针对方案三),还可以为车辆服务器,或者车辆服务期内的部件或芯片(针对方案四和方案五)。
处理器1201可以是通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制以上方案程序执行的集成电路。
通信接口1203,用于与其他设备或通信网络通信。
存储器1202,可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器1202用于存储执行以上方案的应用程序代码,并由处理器1201来控制执行。所述处理器1201用于执行所述存储器1202中存储的应用程序代码。例如,存储器 1202存储的代码可执行以上数据处理方法。
具体地,处理器1201用于调用存储器中的数据和程序代码,执行:
通过通信接口1203向服务器侧发送车辆类型指示信息;
通过通信接口1203从所述服务器侧接收标识码,所述标识码与针对所述第一车辆上报的感知数据的处理方式相关联;
通过通信接口1203向所述服务器侧发送感知数据上报消息,所述感知数据上报消息中包括所述第一车辆上报的第一感知数据和所述标识码。
其中,所述处理方式包括:
设置所述第一感知数据的置信度为第一置信度,其中所述第一置信度与所述标识码相关联;或者
确定所述第一感知数据的使用优先级为第一优先级,其中所述第一优先级与所述标识码相关联。
其中,所述标识码唯一标识所述第一车辆。
其中,所述处理方式为多种类型处理方式中的第一类型处理方式,所述标识码与针对所述第一车辆上报的感知数据的处理方式相关联,包括:
所述标识码用于指示所述第一类型处理方式。
其中,所述车辆类型指示信息包括以下内容中的至少一项:
所述第一车辆的属性信息;
所述第一车辆的持有人信息;
所述第一车辆中数据采集装置的型号或者配置参数;
所述第一车辆中数据处理装置的型号或者配置参数;或者
所述第一车辆支持的上报数据类型。
其中,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述车辆类型指示信息包括以下信息中的至少一项:
众包数据采集单元的型号;
众包数据处理单元的型号;
众包数据采集单元的能力;
众包数据处理单元的能力;
所述第一车辆所属的公司的标识;
所述第一车辆所属的个人的身份信息;
所述第一车辆的制造商的标识;或者
云端与所述公司之间按照预定义规则产生的值。
其中,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,所述第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。
其中,所述第一车辆为未注册过的数据采集车辆,所述通过通信接口1203向服务器侧发送车辆类型指示信息包括:
通过通信接口1203向所述服务器侧发送注册请求消息,所述注册请求消息中包括所述车辆类型指示信息。
需要说明的是,本申请实施例中所描述的数据处理装置120的功能可参见上述图5-图8中的所述的方法实施例中的相关描述,此处不再赘述。
本发明实施例还提供了一种计算机存储介质,该计算机可读存储介质中存储有指令,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个实施例所述方法中的一个或多个步骤。上述装置的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中,基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机产品存储在计算机可读存储介质中。
上述计算机可读存储介质可以是前述实施例所述的设备的内部存储单元,例如硬盘或内存。上述计算机可读存储介质也可以是上述设备的外部存储设备,例如配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,上述计算机可读存储介质还可以既包括上述设备的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述设备所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可通过计算机程序来指令相关的硬件来完成,该计算机的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
可以理解,本领域普通技术人员可以意识到,结合本申请各个实施例中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域技术人员能够领会,结合本申请各个实施例中公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部 件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种数据处理方法,其特征在于,包括:
    从车辆侧接收车辆类型指示信息,所述车辆类型指示信息用于指示第一车辆的类型;
    根据所述车辆类型指示信息为所述第一车辆分配标识码,所述标识码与针对所述第一车辆上报的第一感知数据的处理方式相关联;
    将所述标识码发送给所述车辆侧;
    从所述车辆侧接收感知数据上报消息,所述感知数据上报消息中包括所述第一感知数据和所述标识码;
    根据所述处理方式处理所述第一感知数据。
  2. 如权利要求1所述的方法,其特征在于,所述处理方式包括:
    设置所述第一感知数据的置信度为第一置信度,其中所述第一置信度与所述标识码相关联;或者
    确定所述第一感知数据的使用优先级为第一优先级,其中所述第一优先级与所述标识码相关联。
  3. 如权利要求1或2所述的方法,其特征在于,所述标识码唯一标识所述第一车辆,所述标识码与所述处理方式相关联,包括:
    存储所述标识码与所述处理方式的对应关系。
  4. 如权利要求1或2所述的方法,其特征在于,所述处理方式为多种类型处理方式中的第一类型处理方式,所述标识码与所述处理方式相关联,包括:
    所述标识码用于指示所述第一类型处理方式。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述车辆类型指示信息包括以下内容中的至少一项:
    所述第一车辆的属性信息;
    所述第一车辆的持有人信息;
    所述第一车辆中数据采集装置的型号或者配置参数;
    所述第一车辆中数据处理装置的型号或者配置参数;或者
    所述第一车辆支持的上报数据类型。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述车辆类型指示信息包括以下信息中的至少一项:
    众包数据采集单元的型号;
    众包数据处理单元的型号;
    众包数据采集单元的能力;
    众包数据处理单元的能力;
    所述第一车辆所属的公司的标识;
    所述第一车辆所属的个人的身份信息;
    所述第一车辆的制造商的标识;或者
    云端与所述公司之间按照预定义规则产生的值。
  7. 如权利要求2-6任一项所述的方法,其特征在于,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,所述第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。
  8. 如权利要求1-5任一项所述的方法,其特征在于,所述第一车辆为未注册过的数据采集车辆,所述从车辆侧接收车辆类型指示信息包括:
    从所述车辆侧接收注册请求消息,所述注册请求消息中包括所述车辆类型指示信息。
  9. 一种数据处理方法,其特征在于,包括:
    向服务器侧发送车辆类型指示信息,所述车辆类型指示信息用于指示第一车辆的类型;
    从所述服务器侧接收标识码,所述标识码与针对所述第一车辆上报的感知数据的处理方式相关联;
    向所述服务器侧发送感知数据上报消息,所述感知数据上报消息中包括所述第一车辆上报的第一感知数据和所述标识码。
  10. 如权利要求9所述的方法,其特征在于,所述处理方式包括:
    所述第一感知数据的置信度被设置为第一置信度,其中所述第一置信度与所述标识码相关联;或者
    所述第一感知数据的使用优先级被设置为第一优先级,其中所述第一优先级与所述标识码相关联。
  11. 如权利要求9或10所述的方法,其特征在于,所述标识码唯一标识所述第一车辆。
  12. 如权利要求9或10所述的方法,其特征在于,所述处理方式为多种类型处理方式中的第一类型处理方式,所述标识码与针对所述第一车辆上报的感知数据的处理方式相关联,包括:
    所述标识码用于指示所述第一类型处理方式。
  13. 如权利要求9-12任一项所述的方法,其特征在于,所述车辆类型指示信息包括以下内容中的至少一项:
    所述第一车辆的属性信息;
    所述第一车辆的持有人信息;
    所述第一车辆中数据采集装置的型号或者配置参数;
    所述第一车辆中数据处理装置的型号或者配置参数;或者
    所述第一车辆支持的上报数据类型。
  14. 如权利要求9-13任一项所述的方法,其特征在于,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述车辆类型指示信息包括以下信息中的至少一项:
    众包数据采集单元的型号;
    众包数据处理单元的型号;
    众包数据采集单元的能力;
    众包数据处理单元的能力;
    所述第一车辆所属的公司的标识;
    所述第一车辆所属的个人的身份信息;
    所述第一车辆的制造商的标识;或者
    云端与所述公司之间按照预定义规则产生的值。
  15. 如权利要求10-14任一项所述的方法,其特征在于,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,所述第一优先级高于未注册过的数据采集车辆上报的感知数据的优先级。
  16. 如权利要求9-13任一项所述的方法,其特征在于,所述第一车辆为未注册过的数据采 集车辆,所述向服务器侧发送车辆类型指示信息包括:
    向所述服务器侧发送注册请求消息,所述注册请求消息中包括所述车辆类型指示信息。
  17. 一种数据处理装置,其特征在于,包括:接收模块、处理模块和发送模块;其中
    所述接收模块,用于从车辆侧接收车辆类型指示信息,所述车辆类型指示信息用于指示第一车辆的类型;
    所述处理模块,用于根据所述车辆类型指示信息为所述第一车辆分配标识码,所述标识码与针对所述第一车辆上报的第一感知数据的处理方式相关联;
    所述发送模块,用于将所述标识码发送给所述车辆侧;
    所述接收模块,还用于从所述车辆侧接收感知数据上报消息,所述感知数据上报消息中包括所述第一感知数据和所述标识码;
    所述处理模块,还用于根据与所述处理方式处理所述第一感知数据。
  18. 如权利要求17所述的装置,其特征在于,所述处理方式包括:
    设置所述第一感知数据的置信度为第一置信度,其中所述第一置信度与所述标识码相关联;或者
    确定所述第一感知数据的使用优先级为第一优先级,其中所述第一优先级与所述标识码相关联。
  19. 如权利要求17或18所述的装置,其特征在于,所述标识码唯一标识所述第一车辆,所述标识码与所述处理方式相关联,包括:存储所述标识码与所述处理方式的关联关系。
  20. 如权利要求17或18所述的装置,其特征在于,所述处理方式为多种类型处理方式中的第一类型处理方式,所述标识码与所述处理方式相关联,包括:
    所述标识码用于指示所述第一类型处理方式。
  21. 如权利要求17-20任一项所述的装置,其特征在于,所述车辆类型指示信息包括以下内容中的至少一项:
    所述第一车辆的属性信息;
    所述第一车辆的持有人信息;
    所述第一车辆中数据采集装置的型号或者配置参数;
    所述第一车辆中数据处理装置的型号或者配置参数;或者
    所述第一车辆支持的上报数据类型。
  22. 如权利要求17-21任一项所述的装置,其特征在于,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述车辆类型指示信息包括以下信息中的至少一项:
    众包数据采集单元的型号;
    众包数据处理单元的型号;
    众包数据采集单元的能力;
    众包数据处理单元的能力;
    所述第一车辆所属的公司的标识;
    所述第一车辆所属的个人的身份信息;
    所述第一车辆的制造商的标识;或者
    云端与所述公司之间按照预定义规则产生的值。
  23. 如权利要求18-22任一项所述的装置,其特征在于,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,所述第一优先级高于未注册过的数据采集车辆上报的感知数据的优先 级。
  24. 如权利要求17-21任一项所述的装置,其特征在于,所述第一车辆为未注册过的数据采集车辆,所述接收模块,具体用于:从所述车辆侧接收注册请求消息,所述注册请求消息中包括所述车辆类型指示信息。
  25. 一种数据处理装置,其特征在于,包括:发送模块和接收模块;其中,
    所述发送模块,用于向服务器侧发送车辆类型指示信息,所述车辆类型指示信息用于指示第一车辆的类型;
    所述接收模块,从所述服务器侧接收标识码,所述标识码与针对所述第一车辆上报的感知数据的处理方式相关联;
    所述发送模块,还用于向所述服务器侧发送感知数据上报消息,所述感知数据上报消息中包括所述第一车辆上报的第一感知数据和所述标识码。
  26. 如权利要求25所述的装置,其特征在于,所述处理方式包括:
    所述第一感知数据的置信度被设置为第一置信度,其中所述第一置信度与所述标识码相关联;或者
    确定所述第一感知数据的使用优先级被设置为第一优先级,其中所述第一优先级与所述标识码相关联。
  27. 如权利要求25或26所述的装置,其特征在于,所述标识码唯一标识所述第一车辆。
  28. 如权利要求25或26所述的装置,其特征在于,所述处理方式为多种类型处理方式中的第一类型处理方式,所述标识码与针对所述第一车辆上报的感知数据的处理方式相关联,包括:
    所述标识码用于指示所述第一类型处理方式。
  29. 如权利要求25-28任一项所述的装置,其特征在于,所述车辆类型指示信息包括以下内容中的至少一项:
    所述第一车辆的属性信息;
    所述第一车辆的持有人信息;
    所述第一车辆中数据采集装置的型号或者配置参数;
    所述第一车辆中数据处理装置的型号或者配置参数;或者
    所述第一车辆支持的上报数据类型。
  30. 如权利要求25-29任一项所述的装置,其特征在于,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述车辆类型指示信息包括以下信息中的至少一项:
    众包数据采集单元的型号;
    众包数据处理单元的型号;
    众包数据采集单元的能力;
    众包数据处理单元的能力;
    所述第一车辆所属的公司的标识;
    所述第一车辆所属的个人的身份信息;
    所述第一车辆的制造商的标识;或者
    云端与所述公司之间按照预定义规则产生的值。
  31. 如权利要求26-30任一项所述的装置,其特征在于,所述车辆类型指示信息指示所述第一车辆为注册过的众包数据采集车辆,所述第一置信度高于未注册过的数据采集车辆上报的感知数据的置信度,所述第一优先级高于未注册过的数据采集车辆上报的感知数据的优先 级。
  32. 如权利要求25-29任一项所述的装置,其特征在于,所述第一车辆为未注册过的数据采集车辆,所述发送模块,具体用于:向所述服务器侧发送注册请求消息,所述注册请求消息中包括所述车辆类型指示信息。
  33. 一种数据处理装置,其特征在于,包括存储器和至少一个处理器;
    所述存储器用于存储计算机程序,所述处理器执行所述计算机程序,以使所述数据处理装置实现如权利要求1-8中任意一项所述的方法。
  34. 一种数据处理装置,其特征在于,包括存储器和至少一个处理器;
    所述存储器用于存储计算机程序,所述处理器执行所述计算机程序,以使所述数据处理装置实现如权利要求9-16中任意一项所述的方法。
  35. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被处理器执行时,实现权利要求1-8任一项所述的方法。
  36. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被处理器执行时,实现权利要求9-16任一项所述的方法。
PCT/CN2021/132811 2020-12-31 2021-11-24 数据处理方法、装置及计算机可读存储介质 WO2022142886A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21913628.0A EP4261707A4 (en) 2020-12-31 2021-11-24 DATA PROCESSING METHOD AND DEVICE AND COMPUTER-READABLE STORAGE MEDIUM
US18/344,552 US20230351053A1 (en) 2020-12-31 2023-06-29 Data Processing Method and Apparatus, and Computer-Readable Storage Medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011644482.6 2020-12-31
CN202011644482 2020-12-31
CN202110404844.2A CN114691800A (zh) 2020-12-31 2021-04-15 数据处理方法、装置及计算机可读存储介质
CN202110404844.2 2021-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,552 Continuation US20230351053A1 (en) 2020-12-31 2023-06-29 Data Processing Method and Apparatus, and Computer-Readable Storage Medium

Publications (1)

Publication Number Publication Date
WO2022142886A1 true WO2022142886A1 (zh) 2022-07-07

Family

ID=82136471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132811 WO2022142886A1 (zh) 2020-12-31 2021-11-24 数据处理方法、装置及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230351053A1 (zh)
EP (1) EP4261707A4 (zh)
CN (1) CN114691800A (zh)
WO (1) WO2022142886A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067439A1 (zh) * 2022-09-30 2024-04-04 维沃移动通信有限公司 数据集生成方法、信息发送方法、装置及相关设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117793705A (zh) * 2024-02-26 2024-03-29 中电科网络安全科技股份有限公司 一种高精度地图数据传输方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811482A (zh) * 2015-04-01 2015-07-29 广东小天才科技有限公司 终端数据分类存储方法及系统
CN109547518A (zh) * 2017-09-22 2019-03-29 比亚迪股份有限公司 信息推送方法、推送服务器及信息推送系统
CN109872412A (zh) * 2017-12-01 2019-06-11 通用汽车环球科技运作有限责任公司 车载众包感测系统中的选择性感测机构的方法和设备
US20200201890A1 (en) * 2018-12-21 2020-06-25 Here Global B.V. Method, apparatus, and computer program product for building a high definition map from crowd sourced data
CN111582641A (zh) * 2020-04-02 2020-08-25 长沙理工大学 一种车联网面向众包服务的任务分配方法及系统
CN111740952A (zh) * 2020-05-13 2020-10-02 南斗六星系统集成有限公司 一种车辆监管平台数据管理方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020005665T5 (de) * 2020-01-24 2023-03-09 Mitsubishi Electric Corporation Steuervorrichtung, mobiles Objekt, Verwaltungsserver, Basisstation, Kommunikationssystem undKommunikationsverfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811482A (zh) * 2015-04-01 2015-07-29 广东小天才科技有限公司 终端数据分类存储方法及系统
CN109547518A (zh) * 2017-09-22 2019-03-29 比亚迪股份有限公司 信息推送方法、推送服务器及信息推送系统
CN109872412A (zh) * 2017-12-01 2019-06-11 通用汽车环球科技运作有限责任公司 车载众包感测系统中的选择性感测机构的方法和设备
US20200201890A1 (en) * 2018-12-21 2020-06-25 Here Global B.V. Method, apparatus, and computer program product for building a high definition map from crowd sourced data
CN111582641A (zh) * 2020-04-02 2020-08-25 长沙理工大学 一种车联网面向众包服务的任务分配方法及系统
CN111740952A (zh) * 2020-05-13 2020-10-02 南斗六星系统集成有限公司 一种车辆监管平台数据管理方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261707A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067439A1 (zh) * 2022-09-30 2024-04-04 维沃移动通信有限公司 数据集生成方法、信息发送方法、装置及相关设备

Also Published As

Publication number Publication date
US20230351053A1 (en) 2023-11-02
EP4261707A4 (en) 2024-04-24
EP4261707A1 (en) 2023-10-18
CN114691800A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
EP3629059B1 (en) Sharing classified objects perceived by autonomous vehicles
WO2020258277A1 (zh) 一种智能驾驶车辆让行方法、装置及车载设备
US20210163021A1 (en) Redundancy in autonomous vehicles
US11333762B2 (en) Merging data from multiple LiDAR devices
US10048700B1 (en) Generating state information for autonomous vehicles
WO2022142886A1 (zh) 数据处理方法、装置及计算机可读存储介质
KR102549270B1 (ko) 차량용 프로세서의 안전한 부트
KR102454490B1 (ko) 디바이스 프로비저닝 및 인증
US10960886B2 (en) Traffic light estimation
CN110782705A (zh) 用于自动驾驶车辆控制的通信方法、装置、设备及存储介质
US11143515B2 (en) Method for the generation of a merged free-space map, electronic control device and storage medium
KR102476931B1 (ko) LiDAR 정보와 카메라 정보의 병합
US20230322259A1 (en) Inclusion And Use Of Safety and Confidence Information Associated With Objects In Autonomous Driving Maps
WO2019131075A1 (ja) 送信装置、点群データ収集システムおよびコンピュータプログラム
WO2020157722A1 (en) Merging data from multiple lidar devices
US11535112B2 (en) Managing power of electronic devices on a vehicle
US11513488B2 (en) Controlling power of electronic devices on a vehicle
US20220410904A1 (en) Information processing device, information processing system and information processing method
US20230199450A1 (en) Autonomous Vehicle Communication Gateway Architecture
US20240071229A1 (en) Systems and methods for identifying vehicles to communicate safety messages
WO2022194001A1 (zh) 一种车辆管理方法及通信装置
DK180220B1 (en) Sharing classified objects perceived by autonomous vehicles
WO2023122586A1 (en) Autonomous vehicle communication gateway architecture
KR20230100591A (ko) 지역특성지도의 반영이 용이한 자율주행 시스템 및 자율주행 지원 방법
KR20230033557A (ko) 자율 주행 차량 사후 동작 설명 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913628

Country of ref document: EP

Effective date: 20230712

NENP Non-entry into the national phase

Ref country code: DE