WO2022142840A1 - 电动工具及其控制方法 - Google Patents

电动工具及其控制方法 Download PDF

Info

Publication number
WO2022142840A1
WO2022142840A1 PCT/CN2021/131632 CN2021131632W WO2022142840A1 WO 2022142840 A1 WO2022142840 A1 WO 2022142840A1 CN 2021131632 W CN2021131632 W CN 2021131632W WO 2022142840 A1 WO2022142840 A1 WO 2022142840A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
switching device
braking
rotational speed
power
Prior art date
Application number
PCT/CN2021/131632
Other languages
English (en)
French (fr)
Inventor
冯继丰
范县成
郭增冰
Original Assignee
南京泉峰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011630174.8A external-priority patent/CN114765431B/zh
Priority claimed from CN202110370760.1A external-priority patent/CN115189595A/zh
Application filed by 南京泉峰科技有限公司 filed Critical 南京泉峰科技有限公司
Priority to EP21913582.9A priority Critical patent/EP4236060A4/en
Publication of WO2022142840A1 publication Critical patent/WO2022142840A1/zh
Priority to US18/318,241 priority patent/US20230283220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/76Driving mechanisms for the cutters
    • A01D34/78Driving mechanisms for the cutters electric
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop

Definitions

  • the present application relates to the technical field of electric tools, in particular to an electric tool and a control method thereof.
  • Self-propelled equipment is a commonly used large-scale garden power tool.
  • the high-current switch of the self-propelled equipment that is, the mechanical switch is generally arranged on the handle of the self-propelled equipment.
  • the high current switch has a large amount of electron radiation, which will cause the amount of electron radiation at the handle to exceed the standard.
  • the method of short-circuiting the three-phase windings is usually used for braking. The current is uncontrollable during braking, and the large current may damage the power device, and the energy is not effective during braking. Instead, it is converted into heat and consumed, resulting in a waste of energy.
  • the purpose of the present application is to provide a self-propelled device that meets the radiation requirements at the handle and has stable switching performance.
  • An electric tool comprising: a motor; a switch circuit for outputting a power-on signal or a power-off signal; a battery pack for providing power supply; a first switch device for controlling the power-on state of the motor; a second switch device for driving The motor rotates; a controller is electrically connected to at least the first switching device, the switching circuit and the second switching device; the controller is configured to: when the power-on signal is detected, control all The first switching device and the second switching device control the rotation of the motor in the first working mode; when the shutdown signal is detected, the first switching device and the second switching device are controlled to work in the second mode way to control the rotation of the motor.
  • the controller is configured to: when the power-on signal is detected, control the first switching device to be closed, and control the second switching device to be turned on after a first preset time, the battery
  • the package forms a first conduction loop with at least the first switching device, the motor and the second switching device; when the shutdown signal is detected, the second switching device is controlled to be disconnected, and the second switching device is controlled to be disconnected.
  • a switching device is turned off, and the second switching device is controlled to be turned on after a second preset time, and the motor at least forms a second switching device with the first switching device, the battery pack and the second switching device. conduction loop.
  • the first switching device includes a relay.
  • the battery pack outputs power supply electric energy to supply power to the motor; under the second conduction loop, the motor outputs power generation electric energy to charge the battery pack.
  • the second preset time period is greater than or equal to zero and less than or equal to the first preset time period.
  • the power-on signal or the power-off signal output by the switch circuit is transmitted to the controller by means of bus communication.
  • the power tool further includes: a driving circuit connected between the controller and the second switching device to control the conduction state and conduction frequency of the second switching device.
  • a control method of an electric tool includes a motor; a switch circuit for outputting a power-on signal or a power-off signal; a battery pack for providing a power supply; a first switch device for controlling the power-on state of the motor; a second switch device for driving The motor rotates; a controller is electrically connected to at least a first switching device, a switching circuit and a second switching device; the control method includes: when the power-on signal is detected, controlling the first switching device and the second switching device The switching device controls the rotation of the motor in a first working mode; when the shutdown signal is detected, the first switching device and the second switching device are controlled to control the rotation of the motor in a second working mode.
  • the method further includes: when the power-on signal is detected, controlling the first switching device to be closed, and controlling the second switching device to be turned on after a first preset time, the battery pack is at least A first conduction loop is formed with the first switching device, the motor and the second switching device; when the shutdown signal is detected, the second switching device is controlled to be disconnected, and the first switch is controlled The device is turned off, and the second switching device is controlled to be turned on after a second preset time, and the motor forms a second conduction with at least the first switching device, the battery pack and the second switching device loop.
  • the first switching device includes a relay.
  • An electric tool includes: a motor with a rotor and several stator windings; a braking element for outputting a braking command for braking the motor; a battery pack for providing power for driving the motor; an inverter circuit with several A semiconductor switching element is used to switch the energization state of the stator winding; a current detection unit is used to detect the phase current of the stator winding in the motor; a controller is at least connected with the braking element, the current detection unit and the inverse The controller is configured to: obtain the phase current of the stator winding, and estimate the rotor position of the motor according to the phase current; obtain the braking command output by the braking element, according to the The braking command and the rotor position control the conduction state of the switching element in the inverter circuit, so that the motor obtains the braking torque of reverse acceleration to implement torque braking.
  • the stator winding of the motor generates a braking current; the braking current flows into the battery pack to charge the battery pack.
  • the braking command includes a rotational speed reduction command for reducing the rotational speed of the motor, and the rotational speed reduction command can include several rotational speed gears, and different rotational speed gears correspond to different magnitudes of braking torque.
  • the controller is configured to: calculate the rotational speed of the motor according to the phase current of the stator winding; when the rotational speed is greater than or equal to a first rotational speed threshold, estimate the rotational speed of the stator winding based on the phase current back electromotive force, and estimate the rotor position of the motor according to the back electromotive force; when the rotational speed is less than or equal to a second rotational speed threshold, estimate the rotor position of the motor based on the high-frequency electrical signal loaded on the stator winding .
  • the controller is configured to: when the rotational speed is less than or equal to a second rotational speed threshold, output a high-frequency electrical signal on the stator winding of the motor, and obtain the stator winding based on the high frequency
  • the response signal output by the electrical signal; the rotor position of the motor is estimated according to the relative relationship between the response signal and the preset rotor position.
  • a voltage detection unit for detecting the bus voltage of the inverter circuit
  • the controller is configured to: obtain the bus voltage; when the bus voltage is greater than a preset voltage threshold, control the braking The element changes the control command so that the magnitude of the braking current is less than the set reverse charging current threshold.
  • a control method of an electric tool includes a motor having a rotor and a plurality of stator windings; a braking element for outputting a braking command for braking the motor; a battery pack for providing power for driving the motor; an inverter circuit, having several semiconductor switching elements to switch the energization state of the stator winding; a current detection unit for detecting the phase current of the stator winding in the motor; a controller, at least in conjunction with the braking element, the current The detection unit is connected to the inverter circuit; the control method includes: acquiring the phase current of the stator winding, and estimating the rotor position of the motor according to the phase current; acquiring the braking command output by the braking element , controlling the conduction state of the switching element in the inverter circuit according to the braking command and the rotor position, so that the motor obtains a braking torque for reverse acceleration to implement torque braking.
  • the stator winding of the motor generates a braking current; the braking current flows into the battery pack to charge the battery pack.
  • the braking command includes a rotational speed reduction command for reducing the rotational speed of the motor, and the rotational speed reduction command can include several rotational speed gears, and different rotational speed gears correspond to different magnitudes of braking torque.
  • the rotational speed of the motor is calculated according to the phase current of the stator winding; when the rotational speed is greater than or equal to a first rotational speed threshold, the back electromotive force of the stator winding is estimated based on the phase current, and according to the back electromotive force The electromotive force estimates the rotor position of the electric machine;
  • the rotor position of the electric machine is estimated based on the high frequency electrical signal loaded on the stator winding.
  • the output high-frequency electrical signal is loaded on the stator winding of the motor, and the response signal output by the stator winding based on the high-frequency electrical signal is obtained;
  • the relative relationship between the response signal and the preset rotor position estimates the rotor position of the electric machine.
  • the benefits of the present application are: to provide a power tool that can meet the radiation requirements at the handle and has stable switching performance, and can realize safe and rapid braking and can realize partial energy recovery during braking.
  • FIG. 1 is a schematic structural diagram of a lawn mower as an embodiment
  • FIG. 2 is a circuit block diagram of the lawn mower as an embodiment
  • FIG. 3 is a circuit diagram of a switch circuit in a lawn mower as an embodiment
  • FIG. 4 is a circuit diagram of a bus communication circuit in a lawn mower as an embodiment
  • FIG. 5 is a circuit diagram of a relay control circuit in a lawn mower as an embodiment
  • FIG. 6 is a circuit diagram of a drive circuit in a lawn mower as an embodiment
  • FIG. 7 is a flow chart for a lawnmower control method, as one embodiment
  • Figure 8 is a flow chart for a lawnmower control method, as one embodiment
  • FIG. 9 is a block circuit diagram of a lawn mower as an embodiment
  • FIG. 10 is a schematic diagram of a control state in a lawn mower as an embodiment
  • FIG. 11 is a schematic diagram of a power supply circuit of a battery pack in a lawn mower as an embodiment
  • FIG. 12 is a schematic diagram of a motor discharge circuit in a lawn mower as an embodiment
  • Figure 13 is a flow chart for a lawnmower control method, as one embodiment
  • Figure 14 is a schematic diagram of a control circuit for a lawnmower as an embodiment.
  • the self-propelled equipment in the present application may include automatic cleaning equipment, automatic watering equipment, automatic snow plows and other equipment that can be controlled to travel.
  • a lawn mower is used as an example for description.
  • the lawn mower 100 includes a body 101 , a battery pack 102 , a handle 103 , a self-propelled operation switch 104 , a driving wheel 105 and a cutting attachment 106 .
  • the battery pack 102 can be composed of a group of battery cells as a power supply.
  • the battery cells can be connected in series to form a single power supply branch to form a 1P battery pack.
  • the handle 103 is for the user to operate the lawn mower.
  • the self-propelled operating switch 104 may be the handle switch shown in FIG. 1 , or may be a key switch or other types of electronic switches.
  • the self-propelled device when the user presses the self-propelled operation switch 104, the self-propelled device enters the driving state, and when the self-propelled operation switch 104 is released, the self-propelled device enters the braking state.
  • the driving wheel 105 travels under the driving of the motor and drives the traveling wheel to travel.
  • the driving wheel 105 and the cutting attachment 106 such as the cutting blade, may be driven by the same motor, or may be driven by different motors.
  • FIG. 2 it may include a motor 201, a switch circuit 202, a battery pack 203, a first switch device 204, a controller 205, a booster circuit 206, a drive circuit 207, a power conversion module 208, Inductance element L1, second switching device Q1, protection capacitor C1 and diode D1.
  • the motor 201 is a DC brushless motor, and has a positive terminal M+ and a negative terminal M-.
  • the switch circuit 202 at least includes a pull-up resistor R1 , a voltage divider resistor R2 , a signal output terminal SW, a protection capacitor C, a diode D0 and the self-operated switch 104 .
  • the self-propelled operation switch 104 is pressed and closed, the voltage at node n is low, and the signal output terminal SW outputs a low-level digital signal 0.
  • the self-propelled operation switch 104 is turned off, the voltage at node n is If it is high, a high-level digital signal 1 is output from the signal output terminal SW.
  • the switch circuit 202 outputs a low-level signal 0 to represent a power-on signal, that is, the device enters a driving state, and outputs a high-level signal 1 to represent a shutdown signal, that is, the device enters a braking state.
  • the switch circuit 202 shown in FIG. 3 also includes a signal transmission control chip U3, one pin of the signal transmission control chip U3 is connected to the signal output terminal SW to receive the switch signal, and a pin BUSY is used as a state detection lead. pin to determine if the signaling bus is free. It can be understood that the signal transmission control chip U3 transmits the switch signal to the controller 205 only when it is detected that the bus is in an idle state, otherwise it does not transmit the switch signal.
  • the switch signal output by the switch circuit 202 may be transmitted to the controller 205 by means of bus communication.
  • the bus communication circuit shown in FIG. 4 mainly includes six communication lines L1 to L6 corresponding to six interfaces 1 to 6 of the signal output port J2 , a switch chip U2 , and a bus state detection circuit 209 .
  • the switch signal is transmitted to the switch chip U2 based on the input terminal TXD, and is output through its pins A and B after being processed by the switch chip U2.
  • L6 is connected to the power supply, L3 is grounded, L1 is used as a wake-up line, L2 is a bus state detection line, and L4 and L5 are switch signal receiving lines, which are connected to the output pins A and B of the switch chip U2.
  • the bus state detection circuit 209 includes at least switching elements Q11 and Q12, a first pull-up resistor R25 and a second pull-up resistor R16.
  • the first pull-up resistor R25 is connected in series with the switching element Q11, and the second pull-up resistor R16 is connected in series with the switching element Q12.
  • the bus state output interface BUSY which transmits the current bus state to the signal transmission control chip U3 in the switch circuit.
  • the first switching device 204 may be a relay or other types of controllable electronic components, such as transistors, triodes, MOSFETs, analog switches, solid state relays, and the like.
  • the second switching device Q1 may be a driving switch such as a controllable semiconductor power device (eg FET, BJT, IGBT, etc.) or any other type of solid state switch such as an insulated gate bipolar transistor (IGBT), bipolar junction Transistor (BJT), etc.
  • a controllable semiconductor power device eg FET, BJT, IGBT, etc.
  • IGBT insulated gate bipolar transistor
  • BJT bipolar junction Transistor
  • the relay control circuit shown in FIG. 5 includes a relay 204, a controller 205 and a relay control module 210.
  • the relay 204 includes five pins, specifically contacts 1, 4, and 5, and the output ends 2 and 3 of the iron core. .
  • the contacts 1, 4, and 5 of the relay correspond to the external contacts COM, NO, NC respectively.
  • a voltage divider diode D20 is connected in parallel between the output ends 2 and 3 of the iron core.
  • the anode of the diode D20 is connected to the bases of the switching elements Q18 and Q18.
  • Connect voltage divider resistors R15 and R16 Connect voltage divider resistors R15 and R16.
  • the input end of the voltage dividing resistor R15 is connected to the controller 205 to receive a control signal output by the controller for controlling the pull-in state of the relay.
  • the contacts 1 and 5 are in a connected state; only when the iron core is energized, the pins 1 and 4 are pulled in and the relay is turned on. Therefore, when the switching element Q18 is turned on, the 2 and 3 pins are energized, that is, the iron core is energized, the contacts 1 and 4 are pulled together, that is, the contacts COM and NO are turned on, and the relay 204 is in a conducting state; when the switching element Q18 is turned off , 2 and 3 pins are not energized, when the contact COM is connected with NC, the relay 204 is in a disconnected state.
  • the controller 205 can control the conduction state of the switching element Q18 according to the switching signal output by the switching circuit 202, thereby controlling the connection state of the relay contacts. Specifically, when the controller 205 detects the power-on signal, the controller 205 controls the switching element Q18 to be turned on so that the contacts COM and NO of the relay are closed; when the controller 205 detects the power-off signal, the controller 205 controls the switching element Q18 to be turned off to make the relay contact COM Connect with NC.
  • the boost circuit 206 includes a switching element Q2 , a capacitor C2 and a diode D2 , and can boost the electric energy output by the battery pack to supply power to the motor 201 .
  • the drive circuit 207 includes a drive chip U4 and a peripheral circuit of the drive chip, the drive chip can enhance the drive signal output by the controller 205 to control the conduction state and conduction frequency of the second switching device Q1, thereby The rotation speed of the motor 201 is controlled.
  • the PWM control signal output by the controller 205 is enhanced by the driving chip U4 and then output PWM_gate to drive the conduction frequency and conduction state of the second switching device Q1.
  • the peripheral circuits of the driving chip U4 are not described in detail on the basis of not affecting the understanding of the driving circuit 207 .
  • the power conversion module 208 can convert the power supplied by the battery pack into the power supplied by the switch circuit 202 .
  • the positive pole M+ of the motor is connected to the COM contact of the relay 204
  • the negative pole M- of the motor is connected to the drain of the second switching device Q1 .
  • the controller 205 is at least electrically connected to the switching circuit 202, the relay 204 and the second switching device Q1, and the controller 205 can obtain the switching signal output by the switching circuit 202, and determine the working state of the device, such as the driving state or braking, accordingly. state. Furthermore, in different working states, the controller 205 can control the relay 204 and the second switching device Q1 to control the rotation of the motor in different working modes.
  • the controller 205 can control the relay 204 and the second switching device Q1 to control the rotation of the motor in the first working mode; in the braking state, the controller 205 can control the relay 204 and the second switching device Q1 in the second working mode. Control motor rotation.
  • the working mode of the relay 204 and the second switching device Q1 mainly refers to the working mode formed by the combination of different conduction sequences and conduction states of the two.
  • the above-mentioned first working mode refers to the working mode in which the relay 204 is turned on first, and the second switching device Q1 is turned on after the first preset time.
  • the second working mode refers to the working mode in which the second switching device Q1 is turned off first, the relay 204 is then turned off, and the second switching device Q1 is turned on after a second preset time period.
  • the above-mentioned second preset time period is greater than or equal to zero and less than or equal to the first preset time period.
  • controller 205 controls the motor to rotate according to the detected switch signal as follows:
  • the process of controlling the rotation of the motor in the driving state the self-propelled operation switch 104 is pressed, the switch circuit 202 outputs a low-level data signal 0 to represent the power-on signal, and the signal transmission control chip U3 in the switch circuit 202 detects that the bus is idle, communicate through the bus
  • the power-on signal is output to the controller 205 in the manner of .
  • the controller 205 turns on the switching element Q18 in the control circuit of the relay 204, so that the contacts COM and NO of the relay 204 are connected, and controls the second switching element Q1 to turn on after the first preset time period. Therefore, the battery pack 203, the relay 204, the motor 201 and the second switching device Q1 form a first conduction loop LD.
  • the battery pack 203 outputs power to supply power to the motor, and the direction of the power supply current is shown by the arrow in FIG. 2, and the motor 201 starts to rotate. , and then drive the equipment to walk. It can be understood that the battery pack 203 and the protection capacitor C1 form a charging circuit LC1 (not shown) to charge the protection capacitor C1.
  • the process of controlling the rotation of the motor in the braking state the self-propelled operation switch 104 is released, the switch circuit 202 outputs a high-level data signal 1 to represent the shutdown signal, and when the signal transmission control chip U3 in the switch circuit 202 detects that the bus is idle, it passes the bus
  • the shutdown signal is output to the controller 205 by means of communication.
  • the controller 205 controls the second switching device Q1 to turn off, and controls the switching element Q18 in the relay control circuit to turn off, so that the contacts COM and NC of the relay 204 are connected.
  • the controller 205 controls the second switching device Q1 to be turned on again, so that the motor 201 forms a second conduction loop LC2 with at least the second switching device Q1, the inductance element L, the diode D1 and the battery pack 203, and the motor 201 outputs the generated electric energy.
  • the battery pack 203 Charges the battery pack 203. That is to say, in the second conduction loop LC2, the motor 201 acts as a generator before the motor speed drops to zero, and the energy generated by the rotation can be recovered to the battery pack 203, that is, the charging current is output from the motor 201 to charge the battery pack 203. Therefore, during the braking process of the motor, partial energy recovery is realized, and the output electric energy of the battery pack is saved.
  • the controller 205 may control the relay 204 to turn off immediately after controlling the second switching device Q1 to turn off, or control the relay to turn off after a third preset time period.
  • the third preset time period is greater than or equal to 0 and less than or equal to the above-mentioned first preset time period.
  • the relay can switch the conduction state when there is no current in the circuit, avoiding the relay caused by high current.
  • the arc damage will cause the relay to fail, so that the lawn mower has stable switching performance; at the same time, it avoids the problem of excessive electromagnetic radiation caused by the use of high-current mechanical switches for motor control.
  • any working mode that is different from the above-mentioned first working mode and second working mode and can enable the relay 204 to switch in a no-current state is within the protection scope of the present application.
  • the control method of the motor in the lawn mower will be described below with reference to FIG. 7 , and the method includes the following steps:
  • the second switching device when the shutdown signal is detected, the second switching device is controlled to be turned off, the first switching device is controlled to be turned off, and the second switching device is controlled to be turned on after a second preset time.
  • the motor 301 is a brushless DC motor.
  • the switch circuit 302 is mainly used to output a signal for controlling the power on and off of the tool. Specifically, for the structure of the switch circuit 302, reference may be made to the switch circuit shown in FIG. 3, and details are not described herein again. In addition, the communication mode between the switch circuit 302 and the controller 305 may also refer to the bus communication circuit shown in FIG. 4 , which will not be repeated here.
  • the inverter circuit 304 is electrically connected to the three-phase stator winding of the motor 301.
  • the conduction state of the switching element in the inverter circuit is switched, the conduction state of the corresponding stator winding will also be switched, so that the rotation state of the motor, such as the rotational speed or The direction of rotation or torque, etc. will also change.
  • the inverter circuit 304 includes six switching elements Q1 , Q2 , Q3 , Q4 , Q5 , and Q6 . Each gate terminal of the switching element is electrically connected to the controller 305 for receiving a control signal from the controller 305 .
  • each switching element is connected to the stator windings A, B, C of the electric machine 301 .
  • the switching elements Q1-Q6 receive control signals from the controller 305 to change their respective conduction states, thereby changing the current loaded by the battery pack 303 on the stator windings of the motor 301 .
  • the inverter circuit 304 may be a three-phase bridge driver circuit including six controllable semiconductor power devices (eg, FETs, BJTs, IGBTs, etc.), each phase bridge circuit including a high-side switching element and a low-side switching element .
  • the above switching elements can also be any other types of solid state switches, such as insulated gate bipolar transistors (IGBTs), bipolar junction transistors (BJTs) and the like.
  • Q1, Q3, and Q5 are defined as high-side switching elements of each phase bridge
  • Q2, Q4, and Q6 are defined as low-side switching elements of each phase bridge.
  • the high-side switching element and the low-side switching element of each phase bridge circuit are connected to the same phase winding.
  • the switching elements Q1 and Q2 are connected to the first phase winding A
  • the switching elements Q3 and Q4 are connected to the second phase winding B
  • the switching elements Q5 and Q6 are connected to the third phase winding C.
  • the three-phase windings A, B, and C of the brushless motor are connected to the battery pack 303 through a bridge composed of six switching elements Q1-Q6.
  • the controller 305 controls the high-side switching element to be turned on, the corresponding low-side switching element is turned off. That is to say, in the present application, the three groups of switching elements are in complementary conduction mode, that is, when the high-side switching element is turned on, the corresponding low-side switching element is turned off, and when the low-side switch is turned on, the corresponding high-side switch is turned off, so that the There is no floating phase in the stator winding in this application.
  • the current detection unit 306 is used to detect the phase current of the stator winding in the motor in real time.
  • the controller 305 can estimate the position of the electronic rotor through the acquired phase currents of the stator windings.
  • the controller 305 can also calculate the rotational speed of the motor according to the phase current, and specifically can estimate the rotational speed of the motor according to the relevant parameters of the phase current, such as the frequency.
  • the voltage detection unit 307 is used for real-time detection of the bus voltage in the control circuit.
  • the controller 305 compares the data of the bus voltage with the preset voltage threshold, and when the bus voltage is greater than or equal to the voltage threshold, the controller 305 can control the braking element to change the control command so that the magnitude of the braking current is smaller than the set reverse charging current threshold. . Therefore, the components in the control circuit can be prevented from being damaged by a large reverse charging current.
  • the control circuit of the lawn mower is a FOC double closed-loop control circuit, which has a speed regulation system with an inner current loop and an outer speed loop.
  • the inner current loop is nested in the outer speed loop
  • the output of the speed regulator is a given current
  • the current inner loop actually controls the motor torque.
  • the motor stator current is decomposed into excitation component current id * and torque component current i q * .
  • set the excitation current given value id * to 0, set the desired motor running speed to the given value n * of the speed loop, and input the output value of the speed loop after passing through the PID regulator as the current loop rotation
  • the given value i q * of the moment component is set.
  • the outputs of i d * and i q * through the PID regulator are ud , u q . u d and u q output PWM wave to the inverter drive end after park inverse transformation and SVPWM modulation, and the inverter outputs three-phase currents ia , ib , ic for motor control.
  • the controller can control the inverter circuit to change the conduction state to change the current output by the motor, so that the current i q that can reverse charge the battery pack is less than the reverse charging current threshold.
  • the controller 305 can calculate the rotor position by using different methods according to the different speeds. For example, when the rotational speed is greater than or equal to the first rotational speed threshold, the back electromotive force of the electronic winding can be estimated through the obtained phase current, and then the rotor position of the motor can be estimated according to the back electromotive force. Among them, the method of calculating the rotor position according to the back electromotive force has already been used maturely, and will not be described in detail here. For another example, when the rotational speed is less than or equal to the second rotational speed threshold, the controller may estimate the rotor position based on the high-frequency electrical signal loaded on the stator winding.
  • the first rotational speed threshold is greater than the second rotational speed threshold.
  • the controller 305 can output a high-frequency electrical signal to be loaded on the three-phase stator winding of the motor, and obtain a response signal output by the stator winding based on the above-mentioned high-frequency electrical signal.
  • the so-called response signal can be a high-frequency amplitude. high frequency phase current signal.
  • the controller may estimate the rotor position according to the relative relationship between the response signal and the preset rotor position. For example, the controller may estimate the rotor position based on the relative relationship between the high frequency amplitude of the response signal and the preset rotor position.
  • the component of the high-frequency response signal on the quadrature axis has a correlation with the rotor position error, when the amplitude of the high-frequency response signal converges to zero, the corresponding preset rotor position will also converge and Get the real rotor position.
  • the direction of the position of the rotor is defined as the straight axis, and the direction perpendicular to the straight axis is defined as the quadrature axis.
  • the controller 305 controls the conduction state of the switch element in the inverter circuit 304 according to the detected power-on signal and the estimated rotor, so that the motor obtains a driving torque to drive the cutting blade to cut grass or make the driving wheel walk .
  • the controller 305 detects the power-on signal output by the switch circuit 302, it can change the conduction state of the switch element in the inverter circuit 304 in combination with the current rotor position, so that the motor 301 can obtain the reverse acceleration braking torque to implement Torque braking.
  • the direction of the braking torque is opposite to the direction of the driving torque, that is, the braking torque is a reverse torque.
  • the controller 305 can control the inverter circuit to change the conduction state according to the braking command output by the braking element and the estimated rotor position, so that the motor obtains the braking torque for acceleration in the direction.
  • the above braking command includes a speed reduction command for reducing the motor speed
  • the speed reduction command can include several speed gears, and different speed gears correspond to different magnitudes of braking torque. That is to say, when braking by the braking element, the motor obtains the braking torque of reverse acceleration, and the speed is reduced, but the speed may be reduced to a small value or to zero.
  • the motor can coast until the speed is zero after the motor speed is reduced to a certain value. It is understandable that when the motor obtains the braking torque for real-time braking, the speed of the motor drops rapidly, but the rotation direction of the motor does not change.
  • the motor under the action of the braking torque, the motor generates a braking current in the stator winding that accelerates the motor in the opposite direction, and the braking current flows out from the motor side to the battery pack to charge the battery pack, so as to achieve Part of the energy is recovered while the motor is braking quickly.
  • the switching element in the inverter circuit has six conduction states, and different conduction states correspond to different signal combinations output by the controller.
  • the six driving states are the corresponding six signal combinations under the six conduction modes.
  • the corresponding relationship between the conduction states and signal combinations of the switching elements in the specific inverter circuit is shown in Table 1:
  • the three-phase stator windings of the motor are turned on under any signal combination, that is, the three-phase windings do not have floating phases during the motor driving and braking process.
  • the flow of current in the three-phase windings is not easy to describe in a motor in which the three-phase windings are all turned on.
  • the inflow or outflow of the three-phase current in the motor is only represented by the current flow on the busbar in the circuit. Exemplarily, as shown in FIG.
  • the rapid braking of the motor is realized by the anti-torque braking motor with a large reverse acceleration, and the braking current generated by the motor during the braking process charges the battery pack, realizing part of the energy Recycling reduces energy waste during braking.
  • the control method of the motor braking in the lawn mower will be described below with reference to FIG. 13 , and the method includes the following steps:
  • the above braking command includes a speed reduction command for reducing the motor speed
  • the speed reduction command can include several speed gears, and different speed gears correspond to different magnitudes of braking torque.

Abstract

提供一种电动工具及其控制方法,该工具包括电机(201);电池包(203),提供供电电源;开关电路(202),输出开机信号或者关机信号;第一开关器件(204),用以控制电机的上电状态;第二开关器件(Q1),用以驱动电机转动;控制器(205),至少与第一开关器件(204)、开关电路(202)和第二开关器件(Q1)电连接;控制器(205)被配置为:在检测到开机信号时,控制第一开关器件(204)和第二开关器件(Q1)以第一工作方式控制电机转动;在检测到关机信号时,控制第一开关器件(204)和第二开关器件(Q1)以第二工作方式控制电机转动。

Description

电动工具及其控制方法
本申请要求在2020年12月30日提交中国专利局、申请号为202011630174.8的中国专利申请的优先权,要求在2021年04月07日提交中国专利局、申请号为202110370760.1的中国专利申请的优先权,该两件申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动工具技术领域,具体涉及一种电动工具及其控制方法。
背景技术
自行走设备是一种常用的大型园林电动工具。为了方便操作,自行走设备的大电流开关即机械开关一般设置在自行走设备的把手上。然而大电流开关具有较大的电子辐射,会造成把手处的电子辐射量超标。另外,在电动工具的制动过程中通常采用三相绕组短接的方法制动,该方法制动时电流不可控,较大的电流可能会损坏功率器件,并且制动时能量并没有得到有效利用,而是转化为热量消耗掉,造成能量的浪费。
发明内容
为解决相关技术的不足,本申请的目的在于提供一种满足把手处辐射要求且具有稳定开关机性能的自行走设备。
为了实现上述目标,本申请采用如下的技术方案:
一种电动工具,包括:电机;开关电路,输出开机信号或者关机信号;电池包,提供供电电源;第一开关器件,用以控制所述电机的上电状态;第二开关器件,用以驱动所述电机转动;控制器,至少与所述第一开关器件、所述开关电路和所述第二开关器件电连接;所述控制器被配置为:在检测到所述开机信号时,控制所述第一开关器件和所述第二开关器件以第一工作方式控制所述电机转动;在检测到所述关机信号时,控制所述第一开关器件和所述第二开关器件以第二工作方式控制所述电机转动。
进一步的,所述控制器被配置为:在检测到所述开机信号时,控制所述第一开关器件闭合,并在第一预设时间后控制所述第二开关器件导通,所述电池包至少与所述第一开关器件、所述电机和所述第二开关器件构成第一导通回路;在检测到所述关机信号时,控制所述第二开关器件断开,控制所述第一开关器 件断开,并在第二预设时间后控制所述第二开关器件导通,所述电机至少与所述第一开关器件、所述电池包和所述第二开关器件构成第二导通回路。
进一步的,所述第一开关器件包括继电器。
进一步的,在所述第一导通回路下,所述电池包输出供电电能为所述电机供电;在所述第二导通回路下,所述电机输出发电电能为所述电池包充电。
进一步的,所述第二预设时间段大于或等于零且小于或等于所述第一预设时间段。
进一步的,所述开关电路输出的开机信号或关机信号通过总线通信的方式传输至所述控制器。
进一步的,所述电动工具还包括:驱动电路,连接在所述控制器和所述第二开关器件之间,以控制所述第二开关器件的导通状态和导通频率。
一种电动工具的控制方法,所述电动工具包括电机;输出开机信号或者关机信号的开关电路;提供供电电源的电池包;第一开关器件,控制电机的上电状态;第二开关器件,驱动电机转动;控制器,至少与第一开关器件、开关电路和第二开关器件电连接;所述控制方法包括:在检测到所述开机信号时,控制所述第一开关器件和所述第二开关器件以第一工作方式控制所述电机转动;在检测到所述关机信号时,控制所述第一开关器件和所述第二开关器件以第二工作方式控制所述电机转动。
进一步的,所述方法还包括:在检测到所述开机信号时,控制所述第一开关器件闭合,并在第一预设时间后控制所述第二开关器件导通,所述电池包至少与所述第一开关器件、所述电机和所述第二开关器件构成第一导通回路;在检测到所述关机信号时,控制所述第二开关器件断开,控制所述第一开关器件断开,并在第二预设时间后控制所述第二开关器件导通,所述电机至少与所述第一开关器件、所述电池包和所述第二开关器件构成第二导通回路。
进一步的,所述第一开关器件包括继电器。
一种电动工具,包括:电机,具有转子和若干定子绕组;制动元件,用以输出制动电机的制动指令;电池包,用以提供驱动所述电机的电源;逆变电路,具有若干半导体开关元件以切换所述定子绕组的通电状态;电流检测单元,用于检测所述电机中定子绕组的相电流;控制器,至少与所述制动元件、所述电流检测单元和所述逆变电路连接;所述控制器被配置为:获取所述定子绕组的相电流,并根据所述相电流估算所述电机的转子位置;获取所述制动元件输出的制动指令,根据所述制动指令和所述转子位置控制所述逆变电路中开关元件的导通状态,使所述电机获得反向加速的制动转矩以实施转矩制动。
进一步的,在所述制动转矩的作用下,所述电机的定子绕组产生制动电流;所述制动电流流入所述电池包为所述电池包充电。
进一步的,所述制动指令包括降低所述电机的转速的转速降低指令,所述转速降低指令能够包括若干个转速档位,不同转速档位对应不同大小的制动转矩。
进一步的,所述控制器被配置为:根据所述定子绕组的相电流计算所述电机的转速;在所述转速大于或等于第一转速阈值时,基于所述相电流估算所述定子绕组的反电动势,并根据所述反电动势估算所述电机的转子位置;在所述转速小于或等于第二转速阈值时,基于加载在所述定子绕组上的高频电信号估算所述电机的转子位置。
进一步的,所述控制器被配置为:在所述转速小于或等于第二转速阈值时,输出高频电信号加载在所述电机的定子绕组上,并获取所述定子绕组基于所述高频电信号输出的响应信号;根据所述响应信号与预设转子位置的相对关系,估算所述电机的转子位置。
还包括:电压检测单元,用于检测所述逆变电路的母线电压;所述控制器被配置为:获取所述母线电压;在所述母线电压大于预设电压阈值时,控制所述制动元件改变控制指令,以使所述制动电流的大小小于设定的反充电流阈值。
一种电动工具的控制方法,所述电动工具包括具有转子和若干定子绕组的电机;制动元件,用以输出制动电机的制动指令;电池包,用以提供驱动所述电机的电源;逆变电路,具有若干半导体开关元件以切换所述定子绕组的通电状态;电流检测单元,用于检测所述电机中定子绕组的相电流;控制器,至少与所述制动元件、所述电流检测单元和所述逆变电路连接;所述控制方法包括:获取所述定子绕组的相电流,并根据所述相电流估算所述电机的转子位置;获取所述制动元件输出的制动指令,根据所述制动指令和所述转子位置控制所述逆变电路中开关元件的导通状态,使所述电机获得反向加速的制动转矩以实施转矩制动。
进一步的,在所述制动转矩的作用下,所述电机的定子绕组产生制动电流;所述制动电流流入所述电池包为所述电池包充电。
进一步的,所述制动指令包括降低所述电机的转速的转速降低指令,所述转速降低指令能够包括若干个转速档位,不同转速档位对应不同大小的制动转矩。
进一步的,根据所述定子绕组的相电流计算所述电机的转速;在所述转速大于或等于第一转速阈值时,基于所述相电流估算所述定子绕组的反电动势, 并根据所述反电动势估算所述电机的转子位置;
在所述转速小于或等于第二转速阈值时,基于加载在所述定子绕组上的高频电信号估算所述电机的转子位置。
进一步的,在所述转速小于或等于第二转速阈值时,输出高频电信号加载在所述电机的定子绕组上,并获取所述定子绕组基于所述高频电信号输出的响应信号;根据所述响应信号与预设转子位置的相对关系,估算所述电机的转子位置。
本申请的有益之处在于:提供了一种能够满足把手处辐射要求且具有稳定开关机性能的电动工具,且能够实现安全快速制动且在制动时能实现部分能量回收。
附图说明
图1是作为一种实施方式的割草机的结构示意图;
图2是作为一种实施方式的割草机的电路框图;
图3是作为一种实施方式的割草机中开关电路的电路图;
图4是作为一种实施方式的割草机中总线通信电路图;
图5是作为一种实施方式的割草机中继电器控制电路图;
图6是作为一种实施方式的割草机中驱动电路的电路图;
图7是作为一种实施方式的用于割草机控制方法的流程图;
图8是作为一种实施方式的用于割草机控制方法的流程图;
图9是作为一种实施方式的割草机的电路框图;
图10是作为一种实施方式的割草机中控制状态示意图图;
图11是作为一种实施方式的割草机中电池包供电回路示意图;
图12是作为一种实施方式的割草机中电机放电回路示意图;
图13是作为一种实施方式的用于割草机控制方法的流程图;
图14是作为一种实施方式的用于割草机控制电路示意图。
具体实施方式
以下结合附图和具体实施例对本申请作具体的介绍。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
需要说明的是,本申请中的自行走设备可以包括自动清洁设备、自动浇灌设备、自动扫雪机等可通过操控行走的设备。在本申请中以割草机为例进行说明。
请参考图1所示的割草机的结构图,割草机100包括机身101、电池包102、把手103、自走操作开关104、驱动轮105以及切割附件106。其中,电池包102作为供电电源可由一组电池单元组成,例如,可将电池单元串联成单一电源支路,形成1P电池包。把手103供用户操作割草机。自走操作开关104可以是图1所示手柄开关也可以是按键开关或者其他类型的电子开关等。其中,用户按下自走操作开关104时自行走设备进入驱动状态,松开自走操作开关104自行走设备进入制动状态。驱动轮105在电机的驱动下行走并带动行走轮行走。其中,驱动轮105和切割附件106例如切割刀片可被同一电机驱动,也可被不同的电机驱动。
参考图2所示的割草机的电路框图,可以包括电机201、开关电路202、电池包203、第一开关器件204、控制器205、升压电路206、驱动电路207、电源转换模块208、电感元件L1、第二开关器件Q1、保护电容C1以及二极管D1。
在本实施例中,电机201,为直流无刷电动机,具有正极端口M+和负极端口M-。
在一个实施例中,开关电路202,如图3所示至少包括上拉电阻R1、分压电阻R2、信号输出端SW、保护电容C、二极管D0和上述自走操作开关104。具体的,在自走操作开关104被按压闭合时,节点n处的电压为低,由信号输出端SW输出低电平数字信号0,在自走操作开关104断开时,节点n处的电压为高,由信号输出端SW输出高电平数字信号1。通常,开关电路202输出低电平信号0代表开机信号即设备进入驱动状态,输出高电平信号1代表关机信号即设备进入制动状态。可选的,图3所示的开关电路202中还包括信号传输控制芯片U3,信号传输控制芯片U3的一个引脚接信号输出端SW用来接收开关机信号,一个引脚BUSY作为状态检测引脚,以确定信号传输总线是否空闲。可以理解的是,信号传输控制芯片U3只有在检测到总线为空闲状态时,才传输开关信号至控制器205,否则不传输开关机信号。
在一个实施例中,开关电路202输出的开关信号可以通过总线通信的方式传输至控制器205。如图4所示的总线通信电路,主要包括六条通信线路L1至L6对应信号输出端口J2的1至6六个接口、开关芯片U2、总线状态检测电路209。其中,开关信号在基于输入端TXD传输至开关芯片U2,经开关芯片U2处理后通过其引脚A,B输出。通信线路中L6接入电源、L3接地、L1作为唤醒线路、L2为总线状态检测线路、L4和L5为开关信号接收线路,与开关芯片 U2的输出引脚A,B连接。总线状态检测电路209至少包括开关元件Q11和Q12,第一上拉电阻R25和第二上拉电阻R16。其中第一上拉电阻R25和开关元件Q11串联,第二上拉电阻R16和开关元件Q12串联。总线状态输出接口BUSY,该接口将当前总线的状态传输至开关电路中的信号传输控制芯片U3。其他分压电阻等在不影响理解总线状态检测电路的基础上不再一一介绍。具体的,当使能端T_EN为高电平时,开关元件Q11导通,开关元件Q12不导通,节点12处为高电压,从而输出接口BUSY输出代表高电平的数据信号1;当使能端T_EN为低电平时,开关元件Q11不导通,开关元件Q12导通,节点12处为低电压,从而输出接口BUSY输出代表低电平的数据信号0。在BUSY输出高电平时,总线处于忙状态,BUSY输出低电平时,总线处于空闲状态。可以理解的是,在BUSY为低电平总线处于空闲状态时,来自信号传输控制芯片U3的开关机信号经由开关芯片U2和总线以及信号输出端口J2传输至控制器205。相应的,控制器205中也存在与信号输出端口J2对应的接收端口(未示出)。
需要说明的是,本申请只是示例性的给出芯片引脚及其外围电路,不应局限于所给出的示例电路。其他任何能实现上述功能的电路连接均在本申请的保护范围内。
在本申请实施例中,第一开关器件204可以是继电器也可以是其他类型的可控电子元器件,例如晶体管、三极管、MOSFET、模拟开关、固态继电器等。第二开关器件Q1可以是一个驱动开关,例如可控半导体功率器件(例如FET,BJT,IGBT等)或者是任何其他类型的固态开关,例如绝缘栅双极型晶体管(IGBT),双极结型晶体管(BJT)等。
如图5所示的继电器控制电路中包括继电器204、控制器205和继电器控制模块210,继电器204包括五个引脚,具体为触点1,4,5,和铁芯的输出端2和3。继电器的触点1,4,5分别对应外接触点COM、NO、NC,铁芯的输出端2和3之间并联一分压二极管D20,二极管D20的阳极连接开关元件Q18,Q18的基极连接分压电阻R15和R16。分压电阻R15的输入端连接控制器205以接收控制器输出的控制继电器吸合状态的控制信号。具体的,在继电器的铁芯未上电时,触点1,5处于连接状态;只有在铁芯通电时,引脚才由1,4才吸合,继电器导通。从而,开关元件Q18导通时,2,3引脚通电即铁芯通电,触点1和4吸合即触点COM和NO导通,继电器204处于导通状态;在开关元件Q18断开时,2,3引脚不通电,触点COM与NC连接时,继电器204处于断开状态。从而控制器205可以根据开关电路202输出的开关机信号控制开关元件Q18的导通状态,从而控制继电器触点的连接状态。具体的,控制器205在检测到开机信号时,控制开关元件Q18导通使继电器的触点COM和NO吸合;控制器205在检测到关机信号时控制开关元件Q18断开使继电器触点COM与NC连接。
升压电路206,如图2所示包括开关元件Q2、电容C2以及二极管D2,能将电池包输出的电能升压后为电机201供电。
驱动电路207,如图6所示包括驱动芯片U4和驱动芯片的外围电路,该驱动芯片可以增强控制器205输出的驱动信号,以控制第二开关器件Q1的导通状态和导通频率,从而控制电机201的转速。例如,控制器205输出的PWM控制信号经驱动芯片U4增强后输出PWM_gate以驱动第二开关器件Q1的导通频率和导通状态。其中,驱动芯片U4的外围电路在不影响理解驱动电路207的基础上不做详述。
电源转换模块208可将电池包的供电电能转化为开关电路202供电的电能。
具体实现中,在图2所示的电路中,电机的正极M+与继电器204的COM触点连接,电机的负极M-与第二开关器件Q1的漏极连接。控制器205至少与开关电路202、继电器204以及第二开关器件Q1电连接,控制器205可以获取开关电路202输出的开关信号,并据此确定设备所处的工作状态,例如驱动状态或制动状态。进而在不同的工作状态下,控制器205可以控制继电器204和第二开关器件Q1以不同的工作方式控制电机转动。具体的,在驱动状态下,控制器205可以控制继电器204和第二开关器件Q1以第一工作方式控制电机转动;在制动状态下,控制继电器204和第二开关器件Q1以第二工作方式控制电机转动。其中,继电器204和第二开关器件Q1的工作方式主要是指二者不同导通顺序和导通状态的组合形成的工作方式。上述第一工作方式是指继电器204先导通,并在第一预设时间后第二开关器件Q1导通的工作方式。第二工作方式是指第二开关器件Q1先断开,继电器204紧接着断开,并在第二预设时间段后第二开关器件Q1导通的工作方式。特别的,上述第二预设时间段大于或等于零且小于或等于第一预设时间段。
在本申请中,控制器205根据检测到的开关信号控制电机转动的过程如下:
驱动状态下控制电机转动的过程:自走操作开关104被按下,开关电路202输出低电平数据信号0代表开机信号,开关电路202中信号传输控制芯片U3检测到总线空闲时,通过总线通信的方式输出开机信号至控制器205。控制器205使继电器204控制电路中的开关元件Q18导通,从而继电器204的触点COM和NO连接,并在第一预设时间段后,控制第二开关器件Q1导通。从而电池包203与继电器204、电机201和第二开关器件Q1构成第一导通回路LD,电池包203输出供电电能为电机供电,且供电电流方向如图2中箭头所示,电机201开始转动,进而带动设备行走。可以理解的是,电池包203和保护电容C1构成充电回路LC1(未示出),以为保护电容C1充电。
制动状态下控制电机转动的过程:自走操作开关104被松开,开关电路202 输出高电平数据信号1代表关机信号,开关电路202中信号传输控制芯片U3检测到总线空闲时,通过总线通信的方式输出关机信号至控制器205。控制器205控制第二开关器件Q1断开,并控制继电器控制电路中的开关元件Q18断开,使继电器204的触点COM和NC连接。进一步的,控制器205控制第二开关器件Q1再次导通,使电机201至少与第二开关器件Q1、电感元件L、二极管D1和电池包203构成第二导通回路LC2,电机201输出发电电能为电池包203充电。也就是说,在第二导通回路LC2中,电机转速降至零之前电机201相当于发电机,转动产生的能量可回收至电池包203即从电机201输出充电电流为电池包203充电。从而,在电机制动过程中,实现了部分能量回收,节省了电池包的输出电能。
在一个实施例中,控制器205控制第二开关器件Q1断开后可以立即控制继电器204断开或者在第三预设时间段后控制继电器断开。其中,第三预设时间段大于或等于0且小于或等于上述第一预设时间段。
在上述实施例中,通过控制继电器和驱动开关以不同的导通顺序和导通时间间隔控制电机转动,使继电器在电路中无电流的情况下进行导通状态切换,避免了大电流导致的继电器拉弧损伤,使继电器失效,从而使割草机具备稳定的开关机性能;同时避免了采用大电流机械开关进行电机控制导致的电磁辐射超标的问题。
在本申请中,任何区别于上述第一工作方式和第二工作方式且能使继电器204在无电流状态下切换的工作方式,均在本申请的保护范围内。
下面将结合图7说明割草机中电机的控制方法,该方法包括如下步骤:
S101,获取开机信号或关机信号。
S102,在检测到开机信号时,控制第一开关器件和第二开关器件以第一工作方式控制电机转动。
S103,在检测到关机信号时,控制第一开关器件和第二开关器件以第二工作方式控制电机转动。
在一个实施例中,如图8所示给出了割草机中电机的另一种控制方法,具体步骤如下:
S201,获取开机信号或关机信号。
S202,在检测到开机信号时,控制第一开关器件闭合,并在第一预设时间后控制第二开关器件导通。
S203,在检测到关机信号时,控制第二开关器件断开,控制第一开关器件 断开,并在第二预设时间后控制第二开关器件导通。
参考图9所示的割草机的电路框图,可以包括电机301、开关电路302、电池包303、逆变电路304、控制器305、电流检测单元306和电压检测单元307。
其中,电机301,为无刷直流电动机。
开关电路302,主要用于输出控制工具开关机的信号。具体的,开关电路302的结构可以参见图3所示的开关电路,此处不再赘述。另外,开关电路302与控制器305之间的通信方式也可以参照图4所示的总线通信电路,此处不再赘述。
逆变电路304,与电机301的三相定子绕组电性连接,逆变电路中开关元件的导通状态切换时,相应的定子绕组的通电状态也会切换,从而电机的转动状态,例如转速或者转动方向或者转矩等也会发生变化。在一个实施例中,如图9所示,逆变电路304包括六个开关元件Q1、Q2、Q3、Q4、Q5、Q6。开关元件的每个栅极端与控制器305电性连接,用于接收来自控制器305的控制信号。每个开关元件的漏极或源极与电机301的定子绕组A、B、C连接。开关元件Q1-Q6接收来自控制器305的控制信号改变各自的导通状态,从而改变电池包303加载在电机301的定子绕组上的电流。在一个实施例中,逆变电路304可以是包括六个可控半导体功率器件(例如FET,BJT,IGBT等)的三相桥驱动器电路,每相桥电路包括高侧开关元件和低侧开关元件。可以理解的是,上述开关元件也可以是任何其他类型的固态开关,例如绝缘栅双极型晶体管(IGBT),双极结型晶体管(BJT)等。
在一个实施例中,定义Q1、Q3、Q5为每相电桥的高侧开关元件,Q2、Q4、Q6为每相电桥的低侧开关元件。每相桥电路的高侧开关元件和低侧开关元件连接与同一相绕组。开关元件Q1和Q2与第一相绕组A连接,开关元件Q3和Q4与第二相绕组B连接,开关元件Q5和Q6与第三相绕组C连接。无刷电机的三相绕组A、B、C通过六个开关元件Q1~Q6组成的电桥与电池包303相连接。特别的,控制器305控制高侧开关元件导通时,与其对应的低侧开关元件断开。也就是说,在本申请中,三组开关元件为互补导通方式即高侧开关元件导通时相应的低侧开关元件就截止,低侧开关导通时相应的高侧开关截止,从而在本申请中定子绕组不存在浮空相。
电流检测单元306,用以实时检测电机中定子绕组的相电流。控制器305通过获取到的定子绕组的相电流可以估算电子转子的位置。特别的,控制器305还可以根据相电流计算电机的转速,具体的可以根据相电流的相关参数例如频率等估算电机转速。
电压检测单元307,用以实时检测控制电路中母线电压的大小。控制器305通过获取母线电压的数据与预设的电压阈值进行比较,在母线电压大于或等于电压阈值时,能够控制制动元件改变控制指令使得制动电流的大小小于设定的反充电流阈值。从而,能够避免控制电路中元器件被较大的反充电电流损坏。
在一个实施例中,如图14所示,割草机的控制电路为FOC双闭环控制电路,具有电流内环和转速外环的调速系统。电流内环嵌套在转速外环内,转速调节器输出为给定电流,电流内环实际上控制的是电机扭矩。具体的,将电机定子电流分解为励磁分量电流i d *与转矩分量电流i q *。通常情况下,将励磁电流给定值i d *设定为0,将期望电机运行的转速设置为转速环的给定值n *,转速环输入经PID调节器后的输出值作为电流环转矩分量的给定值i q *。i d *与i q *经PID调节器的输出为u d、u q。u d与u q经过park逆变换及SVPWM调制后输出PWM波到逆变器驱动端,经逆变器输出为电机控制的三相电流i a、i b、i c。在本实施例中,控制器可以在母线电压大于电压阈值时,控制逆变电路改变导通状态从而改变电机输出的电流,使得能为电池包反向充电的电流i q小于反充电流阈值。
在一种实现方式中,控制器305在根据相电流确定电机转速后,可以根据转速的不同采用不同的方法计算转子位置。例如,在转速大于或等于第一转速阈值时,可以通过获取到的相电流估算电子绕组的反电动势,进而根据反电动势估算电机的转子位置。其中,根据反电动势计算转子位置的方法已具有成熟的应用,此处不再详述。再如,在转速小于或等于第二转速阈值时,控制器可以基于加载在定子绕组上的高频电信号估算转子位置。其中第一转速阈值大于第二转速阈值。具体实现中,控制器305可以输出高频电信号以加载在电机的三相定子绕组上,并获取定子绕组基于上述高频电信号输出的响应信号,所谓的响应信号可以是具有高频幅值的高频相电流信号。进一步的,控制器可以根据响应信号与预设转子位置的相对关系,估算转子位置。例如控制器可以根据响应信号的高频幅值与预设转子位置的相对关系,估算转子位置。需要说明的是,由于高频响应信号在交轴上的分量与转子位置误差具有相关性,因此在高频响应信号的幅值收敛到零的情况下,相应的预设转子位置也将收敛而得到真实的转子位置。在本申请中,将转子所在位置的方向定义为直轴,垂直于直轴的方向定义为交轴。
在一个实施例中,控制器305根据检测到的开机信号以及估算的转子控制逆变电路304中开关元件的导通状态,使电机获得驱动转矩,以驱动切割刀片割草或者使驱动轮行走。另外,控制器305在检测到开关电路302输出的开机信号时,可以结合当前的转子位置改变逆变电路304中的开关元件的导通状态,使电机301获得反向加速制动转矩以实施转矩制动。其中,制动转矩的方向与驱动转矩的方向相反,即制动转矩为反转矩。
在一个实施例中,控制器305可以根据制动元件输出的制动指令和估算的转子位置控制逆变电路改变导通状态,使电机获得方向加速的制动转矩。特别的,上述制动指令包括降低电机转速的转速降低指令,而转速降低指令能够包括若干个转速档位,不同转速档位对应不同大小的制动转矩。也就是说,通过制动元件制动时,电机获得反向加速的制动转矩,转速降低,但转速可能会降低至某一较小的值或者降为零。若制动指令包含的制动档位是将电机转速降为某一较小值,则电机转速降为某一值后可以滑行直至转速为零。可以理解的是,电机获得制动转矩实时制动时,电机转速快速下降,但电机转动方向并不变。
在本申请中,电机在制动转矩的作用下,在定子绕组中产生使电机反向加速的制动电流,该制动电流从电机侧流出至电池包,以为电池包充电,从而在实现电机快速制动的同时实现了部分能量的回收。
在本申请中,逆变电路中的开关元件具有六种导通状态,不同导通状态对应控制器输出的不同信号组合,参考图10所示的扇形图表示一个电周期内,逆变电路在六种驱动状态即六种导通方式下对应的六种信号组合,具体的逆变电路中开关元件的导通状态和信号组合的对应关系如表1所示:
表1
信号组合 导通开关元件
(1,1,0) Q1Q3Q6
(1,0,0) Q1Q4Q6
(1,0,1) Q1Q4Q5
(0,0,1) Q2Q4Q5
(0,1,1) Q2Q3Q5
(0,1,0) Q2Q3Q6
需要说明的是,在本申请中,电机的三相定子绕组在任一信号组合下均导通,也就是说,三相绕组在电机驱动和制动过程中不存在浮空相。在三相绕组均导通工作的电机中电流在三相绕组中的流通过程不易描述,下面仅以电路中母线上的电流流向表征电机中三相电流的流入或流出。示例性的,如图11所示, 电机在驱动转矩的作用下,逆变电路中开关元件Q1、Q3、Q6导通,相应的开关元件Q2、Q4、Q5截止,母线中电流流向是从电池包的正极端子BAT+流出进入电机以给电机供电;如图12所示,电机在制动转矩的作用下,逆变电路中开关元件Q2、Q4、Q5导通,相应的开关元件Q1、Q3、Q6截止,母线中电流流向是从电池包的正极端子BAT+流入电池包即为电池包充电。
在本申请实施例中,通过反转矩制动电机以较大的反向加速度实现了电机的快速制动,同时在制动过程中电机产生的制动电流为电池包充电,实现了部分能量回收,降低了制动时的能量浪费。
下面将结合图13说明割草机中电机制动的控制方法,该方法包括如下步骤:
S301,获取电机中定子绕组的相电流,并根据相电流估算电机的转子位置。
S302,获取制动元件输出的制动指令。
S303,根据制动指令和转子位置控制逆变电路中开关元件的导通状态。
需要说明的是,上述制动指令包含降低电机转速的转速降低指令,而转速降低指令能够包括若干个转速档位,不同转速档位对应不同大小的制动转矩。

Claims (21)

  1. 一种电动工具,包括:
    电机;
    电池包,提供供电电源;
    开关电路,用以输出开机信号或者关机信号;
    第一开关器件,用以控制所述电机的上电状态;
    第二开关器件,用以驱动所述电机转动;
    控制器,至少与所述第一开关器件、所述开关电路和所述第二开关器件电连接;
    所述控制器被配置为:
    在检测到所述开机信号时,控制所述第一开关器件和所述第二开关器件以第一工作方式控制所述电机转动;
    在检测到所述关机信号时,控制所述第一开关器件和所述第二开关器件以第二工作方式控制所述电机转动。
  2. 根据权利要求1所述的电动工具,其中,
    所述控制器被配置为:
    在检测到所述开机信号时,控制所述第一开关器件闭合,并在第一预设时间后控制所述第二开关器件导通,所述电池包至少与所述第一开关器件、所述电机和所述第二开关器件构成第一导通回路;
    在检测到所述关机信号时,控制所述第二开关器件断开,控制所述第一开关器件断开,并在第二预设时间后控制所述第二开关器件导通,所述电机至少与所述第一开关器件、所述电池包和所述第二开关器件构成第二导通回路。
  3. 根据权利要求1所述的电动工具,其中,
    所述第一开关器件包括继电器。
  4. 根据权利要求2所述的电动工具,其中,
    在所述第一导通回路下,所述电池包输出供电电能为所述电机供电;
    在所述第二导通回路下,所述电机输出发电电能为所述电池包充电。
  5. 根据权利要求2所述的电动工具,其中,
    所述第二预设时间段大于或等于零且小于或等于所述第一预设时间段。
  6. 根据权利要求1所述的电动工具,其中,
    所述开关电路输出的开机信号或关机信号通过总线通信的方式传输至所述控制器。
  7. 根据权利要求1所述的电动工具,其中,
    还包括:
    驱动电路,连接在所述控制器和所述第二开关器件之间,以控制所述第二开关器件的导通状态和导通频率。
  8. 一种电动工具的控制方法,所述电动工具包括电机;输出开机信号或者关机信号的开关电路;提供供电电源的电池包;第一开关器件,控制电机的上电状态;第二开关器件,驱动电机转动;控制器,至少与第一开关器件、开关电路和第二开关器件电连接;所述控制方法包括:
    在检测到所述开机信号时,控制所述第一开关器件和所述第二开关器件以第一工作方式控制所述电机转动;
    在检测到所述关机信号时,控制所述第一开关器件和所述第二开关器件以第二工作方式控制所述电机转动。
  9. 根据权利要求8所述的方法,还包括:
    在检测到所述开机信号时,控制所述第一开关器件闭合,并在第一预设时间后控制所述第二开关器件导通,所述电池包至少与所述第一开关器件、所述电机和所述第二开关器件构成第一导通回路;
    在检测到所述关机信号时,控制所述第二开关器件断开,控制所述第一开关器件断开,并在第二预设时间后控制所述第二开关器件导通,所述电机至少与所述第一开关器件、所述电池包和所述第二开关器件构成第二导通回路。
  10. 根据权利要求9所述的方法,其中,
    所述第一开关器件包括继电器。
  11. 一种电动工具,包括:
    电机,具有转子和若干定子绕组;
    制动元件,用以输出制动电机的制动指令;
    电池包,用以提供驱动所述电机的电源;
    逆变电路,具有若干半导体开关元件以切换所述定子绕组的通电状态;
    电流检测单元,用于检测所述电机中定子绕组的相电流;
    控制器,至少与所述制动元件、所述电流检测单元和所述逆变电路连接;
    所述控制器被配置为:
    获取所述定子绕组的相电流,并根据所述相电流估算所述电机的转子位置;
    获取所述制动元件输出的制动指令,根据所述制动指令和所述转子位置控制所述逆变电路中开关元件的导通状态,使所述电机获得反向加速的制动转矩以实施转矩制动。
  12. 根据权利要求11所述的电动工具,其中,
    在所述制动转矩的作用下,所述电机的定子绕组产生制动电流;
    所述制动电流流入所述电池包为所述电池包充电。
  13. 根据权利要求11所述的电动工具,其中,
    所述制动指令包括降低所述电机的转速的转速降低指令,所述转速降低指令能够包括若干个转速档位,不同转速档位对应不同大小的制动转矩。
  14. 根据权利要求11所述的电动工具,其中,
    所述控制器被配置为:
    根据所述定子绕组的相电流计算所述电机的转速;
    在所述转速大于或等于第一转速阈值时,基于所述相电流估算所述定子绕组的反电动势,并根据所述反电动势估算所述电机的转子位置;
    在所述转速小于或等于第二转速阈值时,基于加载在所述定子绕组上的高频电信号估算所述电机的转子位置。
  15. 根据权利要求14所述的电动工具,其中,
    所述控制器被配置为:
    在所述转速小于或等于第二转速阈值时,输出高频电信号加载在所述电机的定子绕组上,并获取所述定子绕组基于所述高频电信号输出的响应信号;
    根据所述响应信号与预设转子位置的相对关系,估算所述电机的转子位置。
  16. 根据权利要求12所述的电动工具,还包括:
    电压检测单元,用于检测所述逆变电路的母线电压;
    所述控制器被配置为:
    获取所述母线电压;
    在所述母线电压大于预设电压阈值时,控制所述制动元件改变控制指令,以使所述制动电流的大小小于设定的反充电流阈值。
  17. 一种电动工具的控制方法,所述电动工具包括具有转子和若干定子绕组的电机;制动元件,用以输出制动电机的制动指令;电池包,用以提供驱动所述电机的电源;逆变电路,具有若干半导体开关元件以切换所述定子绕组的通电状态;电流检测单元,用于检测所述电机中定子绕组的相电流;控制器,至少与所述制动元件、所述电流检测单元和所述逆变电路连接;
    所述控制方法包括:
    获取所述定子绕组的相电流,并根据所述相电流估算所述电机的转子位置;
    获取所述制动元件输出的制动指令,根据所述制动指令和所述转子位置控制所述逆变电路中开关元件的导通状态,使所述电机获得反向加速的制动转矩以实施转矩制动。
  18. 根据权利要求17所述的方法,其中,
    在所述制动转矩的作用下,所述电机的定子绕组产生制动电流;
    所述制动电流流入所述电池包为所述电池包充电。
  19. 根据权利要求17所述的方法,其中,
    所述制动指令包括降低所述电机的转速的转速降低指令,所述转速降低指令能够包括若干个转速档位,不同转速档位对应不同大小的制动转矩。
  20. 根据权利要求17所述的方法,还包括:
    根据所述定子绕组的相电流计算所述电机的转速;
    在所述转速大于或等于第一转速阈值时,基于所述相电流估算所述定子绕组的反电动势,并根据所述反电动势估算所述电机的转子位置;
    在所述转速小于或等于第二转速阈值时,基于加载在所述定子绕组上的高频电信号估算所述电机的转子位置。
  21. 根据权利要求20所述的方法,还包括:
    在所述转速小于或等于第二转速阈值时,输出高频电信号加载在所述电机的定子绕组上,并获取所述定子绕组基于所述高频电信号输出的响应信号;
    根据所述响应信号与预设转子位置的相对关系,估算所述电机的转子位置。
PCT/CN2021/131632 2020-12-30 2021-11-19 电动工具及其控制方法 WO2022142840A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21913582.9A EP4236060A4 (en) 2020-12-30 2021-11-19 POWER TOOL AND CONTROL METHODS THEREFOR
US18/318,241 US20230283220A1 (en) 2020-12-30 2023-05-16 Power tool and control method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011630174.8 2020-12-30
CN202011630174.8A CN114765431B (zh) 2020-12-30 2020-12-30 自行走设备及其控制方法
CN202110370760.1 2021-04-07
CN202110370760.1A CN115189595A (zh) 2021-04-07 2021-04-07 电动工具及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/318,241 Continuation US20230283220A1 (en) 2020-12-30 2023-05-16 Power tool and control method therefor

Publications (1)

Publication Number Publication Date
WO2022142840A1 true WO2022142840A1 (zh) 2022-07-07

Family

ID=82260184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131632 WO2022142840A1 (zh) 2020-12-30 2021-11-19 电动工具及其控制方法

Country Status (3)

Country Link
US (1) US20230283220A1 (zh)
EP (1) EP4236060A4 (zh)
WO (1) WO2022142840A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020107128A1 (en) * 2018-11-30 2020-06-04 Ats Automation Tooling Systems Inc. System and method for electric motor control in a manufacturing environment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192027A (ja) * 1991-11-22 1993-08-03 Sawafuji Electric Co Ltd 電動式芝刈り機
JP2000197204A (ja) * 1998-12-28 2000-07-14 Kokusan Denki Co Ltd 電動車両の回生制動制御方法
CN201541473U (zh) * 2009-11-13 2010-08-11 苏州宝时得电动工具有限公司 割草机
JP2011147375A (ja) * 2010-01-20 2011-08-04 Ryobi Ltd 作業機及び作業機の制御方法
CN106532794A (zh) * 2015-09-14 2017-03-22 南京德朔实业有限公司 电动工具及其控制电路
CN107000184A (zh) * 2014-11-28 2017-08-01 日立工机株式会社 电动工具
CN107969125A (zh) * 2015-08-27 2018-04-27 德克萨斯仪器股份有限公司 用于电动马达的再生制动控制器
CN109150063A (zh) * 2017-06-27 2019-01-04 创科(澳门离岸商业服务)有限公司 具有能量回收功能的电动工具
CN111384771A (zh) * 2018-12-26 2020-07-07 株式会社牧田 电动作业机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192027A (ja) * 1991-11-22 1993-08-03 Sawafuji Electric Co Ltd 電動式芝刈り機
JP2000197204A (ja) * 1998-12-28 2000-07-14 Kokusan Denki Co Ltd 電動車両の回生制動制御方法
CN201541473U (zh) * 2009-11-13 2010-08-11 苏州宝时得电动工具有限公司 割草机
JP2011147375A (ja) * 2010-01-20 2011-08-04 Ryobi Ltd 作業機及び作業機の制御方法
CN107000184A (zh) * 2014-11-28 2017-08-01 日立工机株式会社 电动工具
CN107969125A (zh) * 2015-08-27 2018-04-27 德克萨斯仪器股份有限公司 用于电动马达的再生制动控制器
CN106532794A (zh) * 2015-09-14 2017-03-22 南京德朔实业有限公司 电动工具及其控制电路
CN109150063A (zh) * 2017-06-27 2019-01-04 创科(澳门离岸商业服务)有限公司 具有能量回收功能的电动工具
CN111384771A (zh) * 2018-12-26 2020-07-07 株式会社牧田 电动作业机

Also Published As

Publication number Publication date
EP4236060A4 (en) 2024-05-15
US20230283220A1 (en) 2023-09-07
EP4236060A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
CN107124124B (zh) 一种电机三相定子绕组主动短路系统以及方法
CN110474580B (zh) 一种起动发电系统功率变换器及其控制方法
US20210257947A1 (en) Driving device for rotating electric machine
WO2022142840A1 (zh) 电动工具及其控制方法
CN101873078A (zh) 一种可控整流装置以及使用该整流装置的电动机
CN103872960A (zh) 基于软件死区补偿的矢量控制器
EP3731402A1 (en) Power tool and control method for the same
CN111769780B (zh) 一种电机控制器的控制方法、装置及汽车
CN108494311B (zh) 一种电流源逆变器控制的电机相电流尖峰消除方法
CN113193795B (zh) 一种电子调速器智能同步整流系统及其控制方法
JP3763291B2 (ja) ハイブリッド車の駆動装置の制御方法
CN114765431B (zh) 自行走设备及其控制方法
CN209844866U (zh) 一种断路器电动底盘车系统和电动汽车
CN110336497B (zh) 直流起动发电一体化功率变换器及其控制方法
EP4307555A1 (en) Power tool
CN107896515B (zh) 伺服电动机控制装置
CN214506865U (zh) 一种sto控制和驱动电路
CN115189595A (zh) 电动工具及其控制方法
CN104410335A (zh) 智能型小功率电机控制器的控制电路和控制方法
CN220359057U (zh) 一种驱动电机系统、车辆动力系统及车辆
JP2010166681A (ja) 交流機制御装置
CN109600093B (zh) 控制系统及控制方法
CN217362937U (zh) 电机制动电路
CN213937783U (zh) 一种采用无传感器双环启动技术的永磁同步电机控制系统
CN215072218U (zh) 电机驱动模块及自动行走设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913582

Country of ref document: EP

Effective date: 20230522

NENP Non-entry into the national phase

Ref country code: DE