WO2022142530A1 - 一种工业控制系统令牌调度时间自适应的方法 - Google Patents

一种工业控制系统令牌调度时间自适应的方法 Download PDF

Info

Publication number
WO2022142530A1
WO2022142530A1 PCT/CN2021/120688 CN2021120688W WO2022142530A1 WO 2022142530 A1 WO2022142530 A1 WO 2022142530A1 CN 2021120688 W CN2021120688 W CN 2021120688W WO 2022142530 A1 WO2022142530 A1 WO 2022142530A1
Authority
WO
WIPO (PCT)
Prior art keywords
token
scheduling
time
slave device
response time
Prior art date
Application number
PCT/CN2021/120688
Other languages
English (en)
French (fr)
Inventor
江竹轩
庞欣然
邵承启
钟珅
毛钦晖
Original Assignee
浙江中控技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江中控技术股份有限公司 filed Critical 浙江中控技术股份有限公司
Publication of WO2022142530A1 publication Critical patent/WO2022142530A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present application relates to the communication technology field of industrial control systems, and in particular, to a method for self-adapting token scheduling time in industrial control systems.
  • a typical industrial control system consists of a main frame and an extension frame.
  • the main frame and the extension frame are connected by optical fibers.
  • the main equipment determines the online status of the equipment through token scheduling.
  • the token scheduling system of the master device the maximum timeout waiting time for the token is set. If the device does not respond to the token reply frame after the maximum timeout waiting time, it means that the device is not online.
  • the master device marks the device and starts the next token scheduling. .
  • resource allocation in the field of wireless communication is usually based on whether there is data transmission and reception in the resource allocation period to adjust the resource allocation period, and there is no judgment on the actual node delay.
  • the delay caused by changing node distances is precisely adjusted.
  • the present application proposes a method for self-adapting token scheduling time in an industrial control system, which can flexibly adjust the token scheduling time automatically according to the rack structure and communication distance, and can avoid conflicts between devices, and realize real-time automatic adjustment of token scheduling time. Adjust the token scheduling time of each node to maximize communication efficiency.
  • a method for self-adapting token scheduling time of an industrial control system at least includes a main frame and an expansion frame connected by optical fiber communication, wherein the main frame is provided with a main device and a slave equipment, the expansion rack is provided with slave equipment, and the method for adapting the token scheduling time of the industrial control system specifically includes: S1.
  • Initialize preset parameters in the token scheduling table wherein the preset parameters in the token scheduling table at least include: The initial online status of each slave device and the initial value of the maximum scheduling response time; S2, the master device sends the token to the first slave device based on the sequence in the token scheduling table; S3, the master device is based on the maximum scheduling response time of the slave device.
  • step S3 specifically includes:
  • the master device receives the token or data returned by the slave device within the maximum scheduling response time, it means that the slave device is online and records the response time, and correspondingly updates the recorded response time to the token scheduling table. Maximum scheduling response time.
  • the method for adapting the token scheduling time of the industrial control system further includes: S5, the master device starts a new round of token sending, and repeats steps S2-S4.
  • step S1 the initial value of the maximum scheduling response time in the token scheduling table is calculated based on the cascade number of slave devices and the fiber distance.
  • T overtime T res +a ⁇ T retra ⁇ 2+T delay ⁇ 2;
  • T overtime is the initial value of the maximum scheduling response time
  • Tres is the response time of the slave device, which is a fixed value
  • the master device on the bus sends the token to the slave device in turn, and the slave device returns the token or data upstream, which can avoid bus data competition, update the maximum scheduling response time in time, and maximize the token scheduling efficiency;
  • the token scheduling time is automatically adjusted according to the change of the rack distance. For different rack distances, the maximum scheduling response time can be dynamically updated;
  • the response time obtained by the adaptive adjustment method is more accurate, and the cost of measurement and calculation can be reduced.
  • 1 is a rack topology diagram of an embodiment of the application
  • FIG. 2 is a schematic diagram of a token scheduling logic according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a transmission delay of an extended rack device according to an embodiment of the present application.
  • Token scheduling The centralized management method is adopted in the inter-rack communication, that is, the master device sends tokens to the slave devices on the bus in turn, and waits for a response or timeout before sending the next token, which solves the problem of multiple transactions on the bus. Each device competes for the right to use the bus, and effectively avoids the conflict on the bus.
  • Token scheduling table a table containing node online information and node timeout time.
  • the master device sends tokens in the order of the table, updates node information after completing one scheduling, and starts the next round from the first node after scheduling the last node. cycle.
  • the maximum scheduling response time is the token scheduling time adapted to the token scheduling table, which can be optimized as the system acquires real-time conditions.
  • the application environment of this application is the inter-rack communication of the industrial controller system.
  • Different racks are distributed in different physical locations, which are divided into main racks and extension racks in turn.
  • the extension racks include local extension racks and remote extension racks.
  • the main rack and the expansion rack are connected by optical fiber communication. Its structure is shown in Figure 1.
  • the controller located in the scheduling position of the main rack is the master device, which sends data packets to the bus periodically, and the other devices passively receive and respond to the data packets are slave devices.
  • FIG. 2 it is a schematic flowchart of the method for self-adapting the token scheduling time of the industrial control system of the present embodiment, and the specific implementation is as follows:
  • S1 initialize the preset parameters in the token scheduling table, wherein the preset parameters in the token scheduling table at least include the initial online status of each slave device and the initial value of the maximum scheduling response time;
  • the initialization process mainly sets the initial parameters in the token scheduling table, including configuring the online status of each slave device and the initial value of the maximum scheduling response time of each node.
  • the initial value of the maximum scheduling response time is calculated with reference to the model shown in FIG. 3 .
  • the maximum scheduling response time mainly depends on the slave device response time Tres , the intra-rack data bus transmission time T in , the cascaded device forwarding time T retra and the one-way optical fiber transmission delay time T delay .
  • Tres is the corresponding time of the slave device, which is a fixed value.
  • T in depends on the position of the device on the rack.
  • the forwarding time of cascaded devices, Tretra , and the one-way fiber transmission delay time, T delay depend on The number of cascaded devices and the length of the transmission fiber.
  • the length of the optical fiber from the extension rack to the main rack is L km
  • the refractive index of the optical fiber is denoted as ⁇
  • the conduction velocity of the optical fiber is then there are
  • the signal transmission speed on the rack can be approximated as the speed of light
  • the length of the slave device from the master device/cascading device is recorded as l km
  • the data bus transmission time in the rack Since L is more than two orders of magnitude higher than 1, the intra-rack data bus transmission time T in can be ignored.
  • the number of cascaded stages of slave devices is denoted as N
  • the forwarding time of a single device is denoted as M
  • T overtime T res +a ⁇ T retra ⁇ 2+T delay ⁇ 2.
  • Optional margin factor a 1+10%.
  • the master device sends the token to the first slave device based on the sequence in the token scheduling table.
  • the master device on the main rack starts sending tokens to the slave device on the main rack or the first slave device on the expansion rack according to the order in the token schedule, and then waits for the slave device to reply.
  • the master device first sends the token to the slave device on the master rack.
  • the master device updates the token scheduling table based on the response of the slave device within the maximum scheduling response time, which specifically includes:
  • the master device receives the token or data returned by the slave device within the maximum scheduling response time, it means that the slave device is online and records the response time, and correspondingly updates the recorded response time to the token scheduling table. Maximum scheduling response time.
  • the slave device information in the token scheduling table is updated every time the token scheduling is completed. If the maximum scheduling response time of the slave device is too long, the information in the token scheduling table cannot be updated in time, which will affect the overall efficiency of sending and receiving data. Therefore, the real-time update of the maximum scheduling response time after each token scheduling can make Communication efficiency is maximized.
  • the master device repeats step S3 for the next slave device, so that the information in the token scheduling table of the corresponding device is updated. Only when the master device gets a response, or a timeout response, will the token be sent to the next device, which solves the problem of multiple devices on the bus competing for the right to use the bus, and effectively avoids conflicts on the bus.
  • the token scheduling for all slave devices is completed according to the sequence in the token scheduling table, thereby updating the corresponding information of all slave devices in the token scheduling table.
  • the master device starts a new round of token sending, and repeats steps S2-S4.
  • the master device After the last round of token scheduling is completed, that is, the master device completes the token scheduling of the last slave device in the token scheduling table, and starts from the first slave device in the token scheduling table to perform token scheduling, so as to timely dynamic Update to improve communication efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Small-Scale Networks (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Abstract

提供了一种工业控制系统令牌调度时间自适应的方法,具体包括:S1、初始化令牌调度表中预设参数,其中令牌调度表中预设参数至少包括各个从设备的初始在线情况和最大调度响应时间初始值;S2、主设备基于令牌调度表中的顺序发送令牌至第一个从设备;S3、主设备基于最大调度响应时间内从设备的响应情况更新令牌调度表;S4、基于令牌调度表依次发送令牌至下一个从设备,并重复执行步骤S3,直至完成令牌调度表中所有令牌调度。

Description

一种工业控制系统令牌调度时间自适应的方法
相关申请
本申请要求2020年12月29日申请的,申请号为202011595975.5,发明名称为“一种工业控制系统令牌调度时间自适应的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及工业控制系统的通信技术领域,特别是涉及一种工业控制系统令牌调度时间自适应的方法。
背景技术
典型工业控制系统由主机架与扩展机架组成,主机架与扩展机架间使用光纤进行通信连接,主设备通过令牌调度来确定设备的在线状态。在主设备令牌调度系统中,设置有令牌最大超时等待时间,设备超过最大超时等待时间未响应令牌回复帧,则代表该设备不在线,主设备标记该设备并启动下一次令牌调度。
目前,面向无线通信领域的资源分配,通常是基于为资源分配周期内是否有数据收发来调整资源分配周期,并无对实际节点延时情况的判断,周期调整方式也是基于固定规则,无法对实际变化的节点距离产生的延时做出精确调整。
发明内容
本申请为了克服以上技术的不足,提出了一种工业控制系统令牌调度时间自适应的方法,可灵活地根据机架结构、通信距离自动调整令牌调度时间,并可避免设备间冲突,实时调整每个节点的令牌调度时间,达到通信效率最大化。
为此,本申请提出的一种工业控制系统令牌调度时间自适应的方法,所述工业控制系统至少包括通过光纤通讯连接的主机架和扩展机架,其中主机架上设有主设备和从设备,扩展机架上设有从设备,所述工业控制系统令牌调度时间自适应的方法具体包括:S1、初始化令牌调度表中预设参数,其中令牌调度表中预设参数至少包括各个从设备的初始在线情况和最大调度响应时间初始值;S2、主设备基于令牌调度表中的顺序发送令牌至第一个从设备;S3、主设备基于最大调度响应时间内从设备的响应情况更新令牌调度表;S4、基 于令牌调度表依次发送令牌至下一个从设备,并重复执行步骤S3,直至完成令牌调度表中所有令牌调度。
进一步的,步骤S3具体包括:
S31、若主设备在最大调度响应时间内,未收到从设备的回复令牌或者数据,则更新令牌调度表中的从设备在线情况为离线;
S32、若主设备在最大调度响应时间内,接收到从设备返回的令牌或者数据,则表示该从设备在线且记录该响应时间,并将记录的响应时间对应更新为令牌调度表中的最大调度响应时间。
进一步的,工业控制系统令牌调度时间自适应的方法还包括:S5、主设备开启新一轮令牌发送,重复执行步骤S2-S4。
进一步的,步骤S1中,所述令牌调度表中的最大调度响应时间初始值基于从设备级联级数和光纤距离计算得到。
进一步的,所述最大调度响应时间初始值的计算公式如下:
T overtime=T res+a×T retra×2+T delay×2;
其中,T overtime为最大调度响应时间初始值;T res为从设备响应时间,为定值;级联设备转发时间T retra=M×(N+1),M为单个设备转发时间,N为从设备的级联级数;a为计算级联设备转发时间的裕量系数;单向光纤传输延时时间
Figure PCTCN2021120688-appb-000001
L为扩展机架距离主机架的光纤长度,长度单位为km,τ为光纤折射率;光纤传导速率为
Figure PCTCN2021120688-appb-000002
本申请的有益效果是:
1、总线上主设备采用令牌依次发送到从设备,从设备上行返回令牌或数据,能够避免总线数据竞争,及时更新最大调度响应时间,做到令牌调度效率最大化;
2、随机架距离变化自动调整令牌调度时间,对于不同的机架距离,可动态更新最大调度响应时间;
3、对于实际系统的计算所得最大调度响应时间,自适应调整的方式获得的响应时间更精确,而且能减少测量和计算的开销。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的机架拓扑图;
图2为本申请实施例的令牌调度逻辑示意图;
图3为本申请实施例的扩展机架设备传输时延示意图。
具体实施方式
为了便于本领域人员更好的理解本申请,下面结合附图和具体实施例对本申请做进一步详细说明,下述仅是示例性的不限定本申请的保护范围。
令牌调度:在机架间通信中采用集中管理的方法,即通过主设备依次给总线上的从设备发送令牌,等待响应或超时后再发送下一个令牌的方法,解决了总线上多个设备竞争总线使用权问题,并有效避免了总线上的冲突。
令牌调度表:包含节点在线信息和节点超时时间的表格,主设备按照表格顺序进行令牌发送,完成一次调度后更新节点信息,调度完最后一个节点后从第一个节点开始进行下一轮循环。
最大调度响应时间:最大调度响应时间是与令牌调度表适配的令牌调度时间,可以随着系统获取实时的状况优化。
首先本申请应用的环境为工业控制器系统的机架间通信,不同机架分布在不同的物理位置,依次分为主机架和扩展机架,扩展机架又包括本地扩展机架和远程扩展机架,主机架和扩展机架之间通过光纤通讯连接。其结构如图1所示。位于主机架调度位置的控制器为主设备,按周期向总线上发送数据包,其他被动接收数据包并作出响应的为从设备。主机架上设有主设备和从设备,扩展机架上均是从设备。
如图2所示,为本实施例的工业控制系统令牌调度时间自适应的方法的流程示意图,具体实施方式如下:
S1、初始化令牌调度表中预设参数,其中令牌调度表中预设参数至少包括各个从设备的初始在线情况和最大调度响应时间初始值;
初始化的过程主要设置令牌调度表中的初始参数,包括配置各个从设备的在线情况,以及各个节点的最大调度响应时间的初始值。
其中最大调度响应时间初始值参照图3所示的模型进行计算。最大调度响应时间主要取决于从设备响应时间T res、机架内数据总线传输时间T in、级联设备转发时间T retra以及单向光纤传输延时时间T delay。对于同样的控制器,T res为从设备相应时间,是一个定值,T in取决于设备在机架上的位置,级联设备转发时间T retra和单向光纤传输延时时间T delay取决于级联设备个数和传输光纤长度。
假定扩展机架距离主机架的光纤长度为L km,光纤折射率记为τ,光纤传导速率为
Figure PCTCN2021120688-appb-000003
则有
Figure PCTCN2021120688-appb-000004
在机架上的信号传输速度可近似认为光速,从设备离主设备/级联设备的长度记为l km,则机架内数据总线传输时间
Figure PCTCN2021120688-appb-000005
由于L比l高两个数量级以上,故机架内数据总线传输时间T in可以被忽略。从设备的级联级数记为N,单个设备转发时间记为M,级联设备转发时间T retra=M×(N+1),在本实施例中,在计算转发延迟转发时间时加入一定的裕量。则T overtime=T res+a×T retra×2+T delay×2。可选裕量系数a=1+10%。
S2、主设备基于令牌调度表中的顺序发送令牌至第一个从设备。
主机架上的主设备开始根据令牌调度表中的顺序发送令牌给主机架上的从设备或扩展机架上的第一个从设备,然后等待从设备回复。
本实施例的工业控制系统令牌调度时间自适应的方法,主设备先发送令牌至主机架上的从设备。
S3、主设备基于最大调度响应时间内从设备的响应情况更新令牌调度表,具体包括:
S31、若主设备在最大调度响应时间内,未收到从设备的回复令牌或者数据,则更新令牌调度表中的设备在线情况为离线;
S32、若主设备在最大调度响应时间内,接收到从设备返回的令牌或者数据,则表示该从设备在线且记录该响应时间,并将记录的响应时间对应更新为令牌调度表中的最大调度响应时间。
每完成一次令牌调度就会更新令牌调度表中的从设备信息。若从设备的最大调度响应时间过长,则不能及时进行令牌调度表中信息的更新,会影响整体收发数据的效率,所以每一次令牌调度后对最大调度响应时间的实时更新,可以使通讯效率最大化。
S4、基于令牌调度表依次发送令牌至下一个从设备,并重复执行步骤S3,直至完成令牌调度表中所有令牌调度。
主设备对下一个从设备重复执行步骤S3,从而使对应的设备在令牌调度表中的信息进行更新。只有主设备得到响应,或者是超时响应,才会向下一个设备发送令牌,解决了总线上多个设备竞争总线使用权问题,并有效避免了总线上的冲突。按照令牌调度表中的顺序完成对所有从设备的令牌调度,从而更新了所有从设备在令牌调度表中对应的信息。
S5、主设备开启新一轮令牌发送,重复执行步骤S2-S4。
上一轮令牌调度完成之后,即主设备完成令牌调度表中最后一个从设备的令牌调度,又从令牌调度表的第一个从设备开始,进行令牌调度,从而及时的动态更新,提高通信效率。
以上仅描述了本申请的基本原理和优选实施方式,本领域人员可以根据上述描述做出许多变化和改进,这些变化和改进应该属于本申请的保护范围。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (5)

  1. 一种工业控制系统令牌调度时间自适应的方法,所述工业控制系统至少包括通过光纤通讯连接的主机架和扩展机架,其中所述主机架上设有主设备和从设备,所述扩展机架上设有从设备,其特征在于,所述工业控制系统令牌调度时间自适应的方法包括:
    S1、初始化令牌调度表中预设参数,其中所述令牌调度表中预设参数至少包括各个从设备的初始在线情况和最大调度响应时间初始值;
    S2、所述主设备基于所述令牌调度表中的顺序发送令牌至第一个从设备;
    S3、所述主设备基于所述最大调度响应时间内所述从设备的响应情况更新所述令牌调度表;
    S4、基于所述令牌调度表依次发送令牌至下一个从设备,并重复执行步骤S3,直至完成所述令牌调度表中所有令牌调度。
  2. 根据权利要求1所述的工业控制系统令牌调度时间自适应的方法,其特征在于,步骤S3包括:
    S31、若所述主设备在所述最大调度响应时间内,未收到所述从设备的回复令牌或者数据,则更新所述令牌调度表中的从设备在线情况为离线;
    S32、若所述主设备在所述最大调度响应时间内,接收到所述从设备返回的令牌或者数据,则表示该从设备在线且记录该响应时间,并将记录的响应时间对应更新为所述令牌调度表中的最大调度响应时间。
  3. 根据权利要求1所述的工业控制系统令牌调度时间自适应的方法,其特征在于,还包括:
    S5、所述主设备开启新一轮令牌发送,重复执行步骤S2-S4。
  4. 根据权利要求1所述的工业控制系统令牌调度时间自适应的方法,其特征在于,步骤S1中,所述令牌调度表中的所述最大调度响应时间初始值基于从设备级联级数和光纤距离计算得到。
  5. 根据权利要求4所述的工业控制系统令牌调度时间自适应的方法,其特征在于,所述最大调度响应时间初始值的计算公式如下:
    T overtime=T res+a×T retra×2+T delay×2;
    其中,T overtime为所述最大调度响应时间初始值;T res为从设备响应时间,为定值;级联设备转发时间T retra=M×(N+1),M为单个设备转发时间,N为从设备的级联级数;a为计算级联设备转发时间的裕量系数;单向光纤传输延时时间
    Figure PCTCN2021120688-appb-100001
    L为所述扩 展机架距离所述主机架的光纤长度,长度单位为km,τ为光纤折射率。
PCT/CN2021/120688 2020-12-29 2021-09-26 一种工业控制系统令牌调度时间自适应的方法 WO2022142530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011595975.5 2020-12-29
CN202011595975.5A CN112711235B (zh) 2020-12-29 2020-12-29 一种工业控制系统令牌调度时间自适应的方法

Publications (1)

Publication Number Publication Date
WO2022142530A1 true WO2022142530A1 (zh) 2022-07-07

Family

ID=75546467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120688 WO2022142530A1 (zh) 2020-12-29 2021-09-26 一种工业控制系统令牌调度时间自适应的方法

Country Status (2)

Country Link
CN (1) CN112711235B (zh)
WO (1) WO2022142530A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112711235B (zh) * 2020-12-29 2022-05-10 浙江中控技术股份有限公司 一种工业控制系统令牌调度时间自适应的方法
CN114124399B (zh) * 2021-10-22 2024-04-16 杭州安恒信息安全技术有限公司 数据接入方法、装置和计算机设备
CN117278639B (zh) * 2023-11-21 2024-01-30 浙江国利信安科技有限公司 基于确定性网络的通信时间调度的方法、设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303497A (zh) * 1998-05-26 2001-07-11 陶氏化学公司 采用实时调度逻辑和时间确定结构的分布式计算环境
US20020178250A1 (en) * 2001-05-22 2002-11-28 Haartsen Jacobus C. Method and apparatus for token distribution
US7165252B1 (en) * 1999-06-21 2007-01-16 Jia Xu Method of scheduling executions of processes with various types of timing properties and constraints
CN101536422A (zh) * 2005-09-29 2009-09-16 费希尔-罗斯蒙德系统公司 将信号测量与网络上的通信设备相关联的方法
CN101729231A (zh) * 2009-12-03 2010-06-09 北京和利时系统工程有限公司 分布式控制系统中工业以太网
EP2498455A1 (en) * 2011-03-10 2012-09-12 Deutsche Telekom AG Method and system to coordinate the communication channel access in a technology independent way in order to improve channel efficiency and to provide QoS guarantees
CN103823780A (zh) * 2014-03-03 2014-05-28 东南大学 一种实时现场总线控制调度方法
CN112711235A (zh) * 2020-12-29 2021-04-27 浙江中控技术股份有限公司 一种工业控制系统令牌调度时间自适应的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285784A (ja) * 2005-04-01 2006-10-19 Canon Inc スケジューリングシステム及び方法
CN101075945B (zh) * 2006-05-19 2011-06-08 中国科学院沈阳自动化研究所 实时以太网确定性通信方法
CN100574278C (zh) * 2006-12-26 2009-12-23 华为技术有限公司 流量限制技术中刷新令牌桶的方法及装置
CN101483546B (zh) * 2008-12-15 2011-06-15 哈尔滨工业大学 一种用于组建基于Profibus协议的PLC网络的方法
CN101841461B (zh) * 2010-02-11 2012-05-30 北京星网锐捷网络技术有限公司 一种控制令牌桶更新的方法和装置
AU2015100136A4 (en) * 2015-01-12 2015-03-12 Macau University Of Science And Technology Optimal Buffer Space Configuration and Scheduling for Single-Arm Multi-cluster Tools
CN106992941A (zh) * 2017-03-14 2017-07-28 浙江工业大学 一种基于互联网实时监控系统的数据包调度方法
CN109245981B (zh) * 2018-10-25 2021-06-22 浙江中控技术股份有限公司 一种现场总线通讯的调度方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303497A (zh) * 1998-05-26 2001-07-11 陶氏化学公司 采用实时调度逻辑和时间确定结构的分布式计算环境
US7165252B1 (en) * 1999-06-21 2007-01-16 Jia Xu Method of scheduling executions of processes with various types of timing properties and constraints
US20020178250A1 (en) * 2001-05-22 2002-11-28 Haartsen Jacobus C. Method and apparatus for token distribution
CN101536422A (zh) * 2005-09-29 2009-09-16 费希尔-罗斯蒙德系统公司 将信号测量与网络上的通信设备相关联的方法
CN101729231A (zh) * 2009-12-03 2010-06-09 北京和利时系统工程有限公司 分布式控制系统中工业以太网
EP2498455A1 (en) * 2011-03-10 2012-09-12 Deutsche Telekom AG Method and system to coordinate the communication channel access in a technology independent way in order to improve channel efficiency and to provide QoS guarantees
CN103823780A (zh) * 2014-03-03 2014-05-28 东南大学 一种实时现场总线控制调度方法
CN112711235A (zh) * 2020-12-29 2021-04-27 浙江中控技术股份有限公司 一种工业控制系统令牌调度时间自适应的方法

Also Published As

Publication number Publication date
CN112711235B (zh) 2022-05-10
CN112711235A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2022142530A1 (zh) 一种工业控制系统令牌调度时间自适应的方法
US11063850B2 (en) Slave-to-master data and out-of-sequence acknowledgements on a daisy-chained bus
US5535214A (en) Timely processing of transmission and reception requests in a multi-node communication network
US9197576B2 (en) Method and apparatus for allocating and prioritizing data transmission
US20110289133A1 (en) Node processing device and its processing method
JP6265058B2 (ja) ネットワーク伝送システム、そのマスタノード、スレーブノード
US9703732B2 (en) Interface apparatus and memory bus system
CN113271264B (zh) 一种时间敏感网络的数据流传输方法和装置
US7123614B2 (en) Method and device for communicating between a first and a second network
CN113347048B (zh) 自适应调整网络组态的方法、节点设备和存储介质
CN109245981B (zh) 一种现场总线通讯的调度方法及系统
CN103019859A (zh) 一种对服务请求调度的方法和系统
CN112054968A (zh) 面向大规模时间敏感网络的调度方法、装置及电子设备
CN101771598A (zh) 一种实时以太网通信调度方法
CN110474845A (zh) 流表项淘汰方法及相关装置
CN113765825B (zh) 一种链式业务流调度的规划方法和系统架构
CN110492960A (zh) 基于以太网的同步通信方法
JPH0652900B2 (ja) マルチマスター通信バス
JP4998507B2 (ja) ネットワーク装置
CN111711704A (zh) 一种基于应答轮询协议的数据采集方法及装置
CN104468404B (zh) 一种缓冲区配置方法及装置
CN103618681A (zh) 一种弹性的网络带宽控制方法及其系统
CN113783798B (zh) 数据传输方法及系统、边缘服务设备
CN109525315A (zh) 基于时间触发的光纤通道网络端系统
WO2015064857A1 (ko) 설비 제어 망에서 확률 모델을 활용한 능동 수동 데이터 수집 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913275

Country of ref document: EP

Kind code of ref document: A1