WO2022142264A1 - 垃圾焚烧热值在线快速计算的方法 - Google Patents

垃圾焚烧热值在线快速计算的方法 Download PDF

Info

Publication number
WO2022142264A1
WO2022142264A1 PCT/CN2021/105882 CN2021105882W WO2022142264A1 WO 2022142264 A1 WO2022142264 A1 WO 2022142264A1 CN 2021105882 W CN2021105882 W CN 2021105882W WO 2022142264 A1 WO2022142264 A1 WO 2022142264A1
Authority
WO
WIPO (PCT)
Prior art keywords
calorific value
garbage
data
waste incineration
grate
Prior art date
Application number
PCT/CN2021/105882
Other languages
English (en)
French (fr)
Inventor
范典
Original Assignee
深圳市深能环保东部有限公司
深圳市能源环保有限公司
深圳市深能环保城市环境服务有限公司
潮州深能环保有限公司
桂林市深能环保有限公司
武汉深能环保新沟垃圾发电有限公司
单县深能环保有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市深能环保东部有限公司, 深圳市能源环保有限公司, 深圳市深能环保城市环境服务有限公司, 潮州深能环保有限公司, 桂林市深能环保有限公司, 武汉深能环保新沟垃圾发电有限公司, 单县深能环保有限公司 filed Critical 深圳市深能环保东部有限公司
Publication of WO2022142264A1 publication Critical patent/WO2022142264A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the field of garbage disposal, in particular to a method for online rapid calculation of the calorific value of garbage incineration.
  • Waste incineration power generation is the preferred method for rapid, large-scale and environmentally friendly disposal under the current technical conditions.
  • Pollutants from waste incineration power plants have a serious impact on the environment and human body.
  • Heavy metal ions, dioxins, toxic and harmful gases, etc. are difficult to be eliminated after entering the human body through the atmosphere, water and food chain, and will accumulate in human organs.
  • the limit of energy can cause acute or chronic poisoning of the human body, with teratogenic, mutagenic, carcinogenic toxicity, genotoxicity, mutagenic effects, and great harm to the human body and the environment.
  • waste-to-energy enterprises Since January 2019, the Ministry of Ecology and Environment has put forward new requirements for the data transmission of waste-to-energy enterprises.
  • the marking platform of waste-to-energy enterprises requires that the abnormal transmission data of pollutants be marked in real time, and the flue gas of the previous day is disclosed every day. Pollutant data and curve situation, so the waste-to-energy enterprises across the country have also raised the requirements for combustion control of waste incinerators to a new height, and the best solution to achieve low pollutant emissions is to control the boiler to operate under the best working conditions as much as possible. , and keep the load stable.
  • the calorific value of the garbage also known as the calorific value of the garbage.
  • Complete combustion means that the combustion products are carbon dioxide, water, slag and other stable substances that can no longer be burned. Its common unit: kilocalorie/kg (kcal/kg), it is difficult to carry out accurate statistics in large quantities due to the complex composition of garbage and the large uncertainty, and it is impossible to calculate the calorific value of combustibles like oil, coal, and gas-fired power plants. Precise analysis and calculation. It takes a lot of manpower and material resources to accurately know the calorific value of garbage from sampling to measurement and calculation.
  • the present invention provides a method for quickly calculating the calorific value of waste incineration online.
  • the grate temperature and the differential pressure of the air chamber are stored in the database, and the real-time data is input into the data model formula and compared with the historical data in the database, so that the calorific value of the garbage can be quickly analyzed and calculated, avoiding the tedious garbage sampling.
  • Sample preparation and because of the influence of sampling deviation on the measurement of calorific value, the calculated calorific value can stably represent the current average level of garbage entering the furnace, and the analysis and calculation results are more accurate.
  • it is possible to deeply understand the variation law of the calorific value of garbage in the region improve the efficiency of garbage incineration, and realize the treatment requirements for the harmlessness, reduction and recycling of solid waste.
  • the present invention provides a method for rapid online calculation of the calorific value of waste incineration, including:
  • first real-time data of the garbage pond includes temperature and humidity data and garbage fermentation time
  • the second real-time data includes the temperature of each section of the grate and the pressure difference in the air chamber;
  • the historical data in the large database includes the historical data of temperature and humidity of the garbage pond and the time of garbage fermentation, the historical data of the temperature of each section of the grate of the combustion chamber and the pressure difference data of the air chamber.
  • the process of collecting the first real-time data of the garbage pond includes: collecting the ambient temperature and ambient humidity data of the garbage pond and storing the ambient temperature and ambient humidity data in the database; collecting the fermentation time of garbage stacking and quantifying it digitally Tag statistics.
  • the digital quantified label statistics include dividing the space of the garbage pool into a plurality of grid areas, identifying each area, and making statistics on the garbage storage time in each area.
  • the process of collecting the second real-time data of the grate of each section of the combustion chamber includes: setting a temperature measuring device at the bottom of each section of the grate in the combustion chamber to collect temperature values, and setting the upper and lower parts of each section of the grate in the combustion chamber Differential pressure is measured at the sampling port, and the differential pressure of the air chamber of each section of the grate is calculated.
  • the historical data in the database is input into the data model formula for automatic comparison with the first real-time data and the second real-time data, and the process of analyzing and calculating the calorific value of waste incineration includes:
  • Collect the local area temperature value of each section of the grate and calculate the temperature change rate collect the local area air chamber pressure difference value of each section of the grate and analyze the change trend, combine the local area temperature value and temperature change of each section of the grate
  • the calorific value of waste incineration in the local area is calculated from the speed and the pressure difference value and change trend of the air chamber in the local area of each section of the grate.
  • the local area temperature value and temperature change rate of each section of the grate and the local area air chamber pressure difference and change trend of each section of the grate are compared with the historical data in the database, and the analysis and judgment are carried out. Indicate whether there is a combustion condition such as uneven combustion or waste burning in the combustion chamber.
  • the furnace of each section of the corresponding combustion chamber is regulated according to the calorific value of waste incineration and the combustion condition in the local area.
  • the speed of the exhaust and the air volume of the air chamber is regulated according to the calorific value of waste incineration and the combustion condition in the local area.
  • the historical data in the database is input into the data model formula for automatic comparison with the first real-time data and the second real-time data, and after analyzing and calculating the calorific value of waste incineration, it also includes: The calorific value of incineration is verified by reverse calculation.
  • the process of reverse calculation and verification of the calculated calorific value of waste incineration includes: collecting boiler steam operation parameters and calculating the calorific value absorbed by the boiler in a unit time to obtain the total calorific value absorbed by the boiler.
  • the total heat value absorbed by the boiler is compared with the heat value of waste incineration to verify whether the total heat value absorbed by the boiler is equal to the heat value of waste incineration.
  • the method further includes: calibrating and optimizing the data model formula according to the total heat value absorbed by the boiler and the heat value of waste incineration.
  • the present invention provides a method for rapid online calculation of the calorific value of waste incineration, including collecting the real-time temperature and humidity data and the waste fermentation time data of the waste pond, collecting each section of the combustion chamber The real-time temperature data of the grate and the pressure difference data of the air chamber; input the historical data in the database into the data model formula, the real-time temperature and humidity data and the garbage fermentation time data of the garbage pond, and collect the real-time temperature data and The air chamber pressure difference data is automatically compared, and the calorific value of garbage in a certain area can be quickly analyzed through big data statistics and data model formulas, and various influencing factors can be digitally quantified and various working conditions can be distinguished.
  • the speed of the grate and the opening of the fan can be directly regulated to achieve the best combustion working condition and ensure that the effect of waste incineration treatment and pollutant discharge indicators meet the requirements of relevant national standards.
  • the adjustment link entering the control system of the waste incinerator is more targeted, which improves the efficiency of waste incineration and realizes the treatment requirements for the harmlessness, reduction and recycling of solid waste.
  • Fig. 1 is the method flow chart of the present invention
  • Fig. 2 is a process flow diagram of an embodiment proposed by the present invention.
  • Fig. 3 is the application example of the waste calorific value analysis method proposed by the present invention in the actual site of a waste incineration power plant;
  • Fig. 4 is the best combustion condition area of the garbage obtained by the statistical analysis of the data model of the garbage calorific value analysis method of the present invention
  • Fig. 5 is the operating parameter curve of the boiler for 24 consecutive hours after the data model of the waste calorific value analysis is actually used for regulation in the present invention.
  • a method for quickly calculating the calorific value of waste incineration on-line includes:
  • the first real-time data of the garbage pond includes temperature and humidity data and garbage fermentation time; specifically, the ambient temperature and humidity data of the garbage pond where the garbage incineration power plant is located are collected and stored in the database.
  • the ambient temperature and humidity have a very direct and hard influence on the effect of garbage fermentation. The higher the temperature or the higher the humidity, the faster the garbage fermentation speed.
  • the garbage entering the waste incineration power plant will be stacked in different zones, and the time of garbage entering the site will be counted.
  • the optimal fermentation time of garbage in summer is about 5 days, when the calorific value of garbage is the highest, and the optimal fermentation time of garbage in winter needs to be extended. If the fermentation time is too short, the garbage will not be fully fermented, and the calorific value will be greatly reduced, which is not conducive to combustion; if the fermentation time is too long, the combustibles in the garbage will be fermented too vigorously and a large amount of biogas will be produced to volatilize and escape, and the calorific value of the remaining garbage will also be reduced. A lot and not good for burning. In short, there is an optimal range of time, and whether the fermentation time is too short or too long, the calorific value of the waste will be reduced. The effect of garbage fermentation is quantified and directly entered into the calculation of the calorific value of the garbage; through the statistics of historical big data in the same period, the data model can be optimized, and the correction parameters that are very close to the actual calorific value can be obtained.
  • the grate of each section of the combustion chamber is made of metal material, so the metal temperature is a very critical data in the waste incineration process.
  • the calorific value of incineration When the metal temperature of the grate in a certain section of the combustion chamber is too low, it indicates that the waste incineration cannot be fully burned, and the optimal combustion state cannot be achieved. When the metal temperature of a certain section of the grate in the combustion chamber is very high, the cause needs to be comprehensively judged. On the one hand, it may be that the calorific value of the garbage in this area is relatively high, and on the other hand, it may indicate that the distribution of the garbage is uneven.
  • the method for quickly calculating the calorific value of waste incineration on-line further includes collecting second real-time data of each section of the grate in the combustion chamber, and the second real-time data includes the temperature of each section of the grate and the pressure difference in the air chamber:
  • a temperature measurement device is provided at the bottom of each section of the grate of the incinerator, and the temperature at the bottom of each section of the grate can be measured through the temperature measurement device.
  • 2-3 temperature measuring points can be evenly arranged on each section of the grate according to the physical width of the grate, so that the combustion conditions of each section of the combustion chamber can be accurately reflected.
  • the sampling port for differential pressure measurement.
  • the differential pressure of the air chamber of the grate of each section is measured through the differential pressure measuring point at the location of each section of the grate, which accurately reflects the air distribution of the fans in each section of the incinerator.
  • the local area temperature value of each section of the grate can be collected and the temperature change rate can be calculated.
  • the change rate is combined with the pressure difference value and change trend of the air chamber in the local area of each section of the grate, so that the calorific value of waste incineration in the local area can be calculated more accurately.
  • the value and rate of change of the temperature in this local area should be used to determine the calorific value of the garbage.
  • the above data is input into the data model formula and compared with the historical data in the database, so that the calorific value of waste incineration can be quickly calculated and analyzed. It is judged whether the combustion chamber has a combustion condition such as uneven combustion or burning of waste.
  • the first real-time data is a fixed value
  • the numerical value and change rate of the local temperature, and the numerical value and change trend of the differential pressure of the wind chamber are the change values.
  • the control furnace can be guided according to the calorific value of waste incineration and the combustion condition in the local area.
  • the precise control of parameters such as the speed of the exhaust and the air distribution of each fan can maintain the combustion condition of the incinerator in an optimal working state.
  • the historical data in the database is input into the data model formula to automatically compare with the first real-time data and the second real-time data, and after analyzing and calculating the waste incineration calorific value, the method further includes: comparing the calculated waste incineration heat value. Carry out reverse calculation and verification of the value of the boiler. Specifically, collect the operating parameters of the boiler steam and calculate the calorific value absorbed by the boiler in a unit time to obtain the total calorific value absorbed by the boiler, and compare the total calorific value absorbed by the boiler with the calorific value of waste incineration.
  • the boiler steam operation parameters include: main steam flow, main steam temperature, main feed water flow, main feed water temperature and steam drum pressure and other parameters.
  • the calorific value absorbed by the boiler in unit time can be calculated more accurately, and the generated calorific value can be Reverse calculation is performed, that is, the data model formula is calibrated and optimized according to the total heat value absorbed by the boiler and the heat value of waste incineration, and the heat value of the input waste in the corresponding time period can be verified.
  • the data model formula can be carried out. Long-term optimization; in this way, the results of analysis and calculation are more accurate.
  • it is possible to deeply understand the variation law of the calorific value of garbage in the region improve the efficiency of garbage incineration, and realize the treatment requirements for the harmlessness, reduction and recycling of solid waste.
  • the total heat absorbed by the boiler H 1 the total heat value generated by the waste x the efficiency of the boiler
  • a and B are the corresponding conversion correction coefficients
  • the total calorific value of garbage should be equal to the calorific value calculated backward through the total heat absorbed by the boiler, so the accurate total calorific value of garbage in a period of time can be obtained, and then the data model formula can be further calibrated and optimization.
  • the garbage calorific value of the data model the reversely calculated garbage calorific value in the same time period (that is, calculated by the total heat absorbed by the boiler), because the pipe resistance of the boiler is basically constant, the steam drum pressure is positively related to the main steam flow, and the boiler absorbs The total heat can also be derived from the drum pressure.
  • Fig. 3 is an application example of the method for analyzing the calorific value of waste proposed by the present invention in an actual site of a waste incineration power plant.
  • the measurement data of boiler steam flow, pressure, grate temperature, etc. mentioned in this embodiment are reflected in FIG. 3 , and the grate temperature in the table in the lower left corner of the figure is the grate of the 1st to 5th stage of the combustion chamber, respectively. Actual grate temperature measurements on the left and right sides of the .
  • the differential pressures of the air chambers listed in the upper part of Figure 3 are the differential pressures of the air chambers on the left and right sides of the 1st to 4th stages of the combustion chamber respectively.
  • the 5th stage of the grate is the garbage burning section, the upper part is slag, and there is almost no unburned gas. There is no primary air inlet in this area, and the differential pressure in the air chamber is very low, so it is not necessary to measure.
  • FIG. 4 is the area of the optimal combustion condition of the garbage obtained by the statistical analysis of the data model of the garbage calorific value analysis method in this embodiment.
  • the area selected by the black solid line box in the picture is the best combustion area for garbage, and the best combustion conditions can be obtained by adjusting and controlling the garbage combustion conditions within this area.
  • FIG. 5 is a graph of the operating parameters of the boiler for 24 consecutive hours after the data model of the waste calorific value analysis is actually used for regulation in this embodiment.
  • the calorific value of garbage in a certain area can be quickly analyzed, and various influencing factors can be quantified digitally. optimum combustion conditions. It can be seen from Figure 5 that the boiler steam flow parameters are stable, the steam drum pressure is stable and can be adjusted quickly and sensitively following the instructions of the operator.
  • the waste entering the waste incineration power plant will be stacked in different zones, and the time when the waste enters the site will be counted.
  • the effect of waste fermentation is quantified and directly entered into the calculation of the target calorific value of the waste; through the historical big data statistics of the same period, the data model can be calculated Carry out optimization to obtain correction parameters that are very close to the actual calorific value.
  • the calorific value absorbed by the boiler in unit time can be calculated more accurately, and the heat generated by the boiler can be calculated accurately.
  • the value can be reversely calculated, that is, the data model formula can be calibrated and optimized according to the total calorific value absorbed by the boiler and the calorific value of waste incineration, and the calorific value of the input waste in the corresponding time period can also be verified, so that the analysis and calculation results are more accurate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Fluid Mechanics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Mechanical Engineering (AREA)
  • Incineration Of Waste (AREA)

Abstract

本发明公开了一种垃圾焚烧热值在线快速计算的方法,包括采集垃圾池的实时温湿度数据与垃圾发酵时间数据、采集燃烧室各段炉排的实时温度数据与风室压差数据;将数据库中的历史数据输入数据模型公式中与上述采集的实时数据自动进行对比,通过大数据统计和数据模型公式快速分析出某一区域垃圾热值,在快速分析出垃圾热值的支持下可直接对炉排速度、风机开度进行调控,实现最佳的燃烧工作状况,保证垃圾焚烧处理的效果和污染物排放指标符合国家相关标准要求。经过垃圾热值快速分析后,进入垃圾焚烧炉控制系统的调节环节更加有的放矢,提高了垃圾焚烧效率,实现了对垃圾固体废弃物无害化、减量化和资源化的处理要求。

Description

垃圾焚烧热值在线快速计算的方法 技术领域
本发明涉及垃圾处理领域,尤其涉及一种垃圾焚烧热值在线快速计算的方法。
背景技术
随着经济的发展、人口的增加和城市化进程的加快,生活垃圾废弃物产量日益增多。垃圾焚烧发电是目前技术条件下的快速、大批量、环保处置的首选方式。随着人们环保意识的增强,对于污染防治的要求也日益严格。垃圾焚烧电厂污染物对环境、人体都有严重的影响,重金属离子、二噁英、有毒有害气体等通过大气、水、食物链进入人体后很难排除,将在人体器官中累积,如果超过人体所能的限度,会造成人体急性或慢性中毒,具有致畸、致突变、致癌毒性、遗传毒性、致突变作用,对人体和环境危害极大。
2019年1月以来,生态环境部对垃圾发电企业的数据传输有了新的要求,垃圾发电企业端标记平台要求实时对污染物异常传输数据进行标记,同时每日公开前一日的各烟气污染物数据及曲线情况,因此全国各地垃圾发电企业对垃圾焚烧炉燃烧控制要求也上升到了新的高度,而实现低污染物排放的最佳解决手段就是控制锅炉尽可能在最佳工况下运行,并且保持负荷稳定。
燃烧一定质量的垃圾,经完全燃烧所能放出的热量称为垃圾的发热量,也称为垃圾的热值。完全燃烧是指燃烧产物为二氧化碳和水、渣等不能再进行燃烧的稳定物质。其常用单位:千卡/kg(kcal/kg),因垃圾成分复杂且有非常大的不确定性很难进行大批量精准统计,无法像燃油、燃煤、燃气电厂一样对可燃物热值进行精确分析和计算。若要精确知道垃圾的热值从采样到测量、计算需要耗费大量的人力物力进行,因工艺复杂、测量周期长、成本高等原因,导致垃圾焚烧电厂的垃圾热值统计和垃圾热值分析未能大规模应用。只能进行少量的零星采样测量,无法提供连续且可靠的数据,传统的采样和分析方法对垃圾焚烧电厂的运行和调节控制指导意义不大。
发明内容
针对上述技术中存在的不足之处,本发明提供一种垃圾焚烧热值在线快速计算的方法,通过将采集到的实时数据包括:垃圾池的环境温度、湿度数据、垃圾发酵时间、燃烧室各段炉排温度和风室差压等存入数据库中,并将实时数据输入数据模型公式中与数据库中的历史数据进行对比,这样就可以快速的分析计算出垃圾热值,避免了繁琐的垃圾取样制样,以及因为取样偏差对热值测量的影响,所计算出的热值能够稳定代表当前入炉垃圾的平均水平,分析计算的结果较为准确。同时,根据该计算结果能够深入了解区域的垃圾热值变化规律,提高了垃圾焚烧效率,实现了对垃圾固体废弃物无害化、减量化和资源化的处理要求。
为实现上述目的,本发明提供一种垃圾焚烧热值在线快速计算的方法,包括:
采集垃圾池的第一实时数据,所述第一实时数据包括温湿度数据与垃圾发酵时间;
采集燃烧室各段炉排的第二实时数据:所述第二实时数据包括各段炉排的温度与风室压差;
将数据库中的历史数据输入数据模型公式中与所述第一实时数据、所述第二实时数据自动进行对比,分析计算出垃圾焚烧热值;
所述大数据库中的历史数据包括历史垃圾池的温湿度与垃圾发酵时间数据、历史燃烧室各段炉排的温度与风室压差数据。
作为优选,所述采集垃圾池的第一实时数据的过程包括:采集垃圾池的环境温度、环境湿度数据并将环境温度、环境湿度数据存入数据库;采集垃圾堆放的发酵时间,并进行数字量化标签统计。
作为优选,所述数字量化标签统计包括将垃圾池的空间划分为多个网格区域,对每个区域进行标识,并对每个区域中的垃圾存放时间进行统计。
作为优选,其特征在于,采集燃烧室各段炉排的第二实时数据的过程包括:在燃烧室各段炉排底部设置温度测量装置采集温度值,在燃烧室各段炉排上、下部设置取样口进行差压测量,并计算出所述各段炉排的风室差压。
作为优选,将数据库中的历史数据输入数据模型公式中与所述第一实时数据、所述第二实时数据自动进行比对,分析计算出垃圾焚烧热值的过程包括:
采集所述各段炉排的局部区域温度值并计算温度变化速率,采集各段炉排局部区域风室压差值并分析变化趋势,结合所述各段炉排的局部区域温度值及温度变化速率和所述各段炉排局部区域风室压差值及变化趋势计算出所述局部区域的垃圾焚烧热值。
作为优选,结合所述各段炉排的局部区域温度值及温度变化速率和所述各段炉排局部区域风室压差值及变化趋势,与数据库中的历史数据进行比对,分析判断所述燃烧室是否发生燃烧不均或垃圾烧空等燃烧状况。
作为优选,分析计算出所述局部区域的垃圾焚烧热值和是否发生燃烧不均或垃圾烧空等燃烧状况之后,根据所述局部区域的垃圾焚烧热值和燃烧状况调控对应燃烧室各段炉排的速度与风室的配风量。
作为优选,将数据库中的历史数据输入数据模型公式中与所述第一实时数据、所述第二实时数据自动进行比对,分析计算出垃圾焚烧热值之后,还包括:对计算出的垃圾焚烧热值进行反向推算验证。
作为优选,对计算出的垃圾焚烧热值进行反向推算验证的过程包括:采集锅炉蒸汽运行参数并对锅炉在单位时间内吸收到的热值进行计算得出锅炉吸收总热量值,将所述锅炉吸收总热量值与所述垃圾焚烧热值进行比较,验证锅炉吸收总热量值是否与垃圾焚烧热值相等。
作为优选,验证锅炉吸收总热量值是否与垃圾焚烧热值相等之后,还包括:根据所述锅炉吸收总热量值与垃圾焚烧热值对所述数据模型公式进行校准和优化。
本发明的有益效果是:与现有技术相比,本发明提供的一种垃圾焚烧热值在线快速计算的方法,包括采集垃圾池的实时温湿度数据与垃圾发酵时间数据、采集燃烧室各段炉排的实时温度数据与风室压差 数据;将数据库中的历史数据输入数据模型公式中与垃圾池的实时温湿度数据与垃圾发酵时间数据、采集燃烧室各段炉排的实时温度数据与风室压差数据自动进行比对,通过大数据统计和数据模型公式快速分析出某一区域垃圾热值,数字量化各种影响因素和区分各类工作状况变化,在快速分析出垃圾热值的支持下可直接对炉排速度、风机开度进行调控,实现最佳的燃烧工作状况,保证垃圾焚烧处理的效果和污染物排放指标符合国家相关标准要求。经过垃圾热值快速分析后,进入垃圾焚烧炉控制系统的调节环节更加有的放矢,提高了垃圾焚烧效率,实现了对垃圾固体废弃物无害化、减量化和资源化的处理要求。
附图说明
图1是本发明的方法流程图;
图2是本发明提出的一个实施例的工艺流程图;
图3是本发明提出的垃圾热值分析方法在某垃圾焚烧发电厂实际现场的应用范例;
图4是本发明垃圾热值分析方法的数据模型统计分析出的垃圾最佳燃烧工况区域;
图5是本发明采用垃圾热值分析的数据模型实际用于调控后锅炉连续24小时的运行参数曲线。
具体实施方式
为了更清楚地表述本发明,下面结合附图对本发明作进一步地描述。
请参阅图1和图2,本发明的一种垃圾焚烧热值在线快速计算的方法,包括:
采集垃圾池的第一实时数据,第一实时数据包括温湿度数据与垃圾发酵时间;具体的,将垃圾焚烧发电厂所在地的垃圾池的环境温度、湿度数据进行采集并存入数据库中,不同的环境温度、湿度对垃圾发酵的效果有非常直接的硬性影响,温度越高或者湿度越大垃圾发酵的速度越快,将进入垃圾焚烧发电厂的垃圾进行分区堆放,并对垃圾进场时间进行统计,将垃圾池中垃圾的堆放发酵时间分为0-15天,加入数字量化标签统计,例如通过对垃圾存放区域进行规划,将垃圾池内的空间划分为多个网格区域,并赋予不同区域不同的代码标示(例如:划分为A、B、C、D、E、F六个区域),每天的进厂垃圾存放在不同的网格区域内就能很好进行区分和存放时间统计;
通过数据库统计,夏季垃圾的最佳发酵时间大约为5天左右,此时的垃圾热值最高,冬季垃圾的最佳发酵时间需有所加长。发酵时间过短将导致垃圾不能充分发酵,热值会降低很多而且不利于燃烧;发酵时间过长将导致垃圾中的可燃物发酵过于剧烈并产生大量沼气挥发逃逸,剩余的垃圾热值也会降低很多而且不利于燃烧。简而言之,时间有一个最佳范围,无论发酵时间过短或过长,垃圾热值均会减少。垃圾发酵的效果被数字量化后直接进入垃圾热值计算;通过历史同期大数据统计,能够对数据模型进行优化,得到十分贴近实际热值的修正参数。
燃烧室各段炉排都是由金属材质制成,因此金属温度是垃圾焚烧过程中一个非常关键的数据,垃圾焚烧料层铺在炉排上的燃烧经热传导的温度可以较精确的反应出垃圾焚烧产生的热值。当燃烧室某段炉 排金属温度太低时,表明垃圾焚烧无法充分燃烧,无法达到最佳燃烧状态,污染物排放量会明显增大,同时未燃尽垃圾量也会增多。当燃烧室某段炉排金属温度很高时,产生的原因需要综合判断,一方面可能是该区域的垃圾热值比较高,另一方面可能表明该处垃圾的分布不均,例如炉排某段区域垃圾分布非常薄会导致该区域炉排上、下部之间风室差压很小(即炉排风阻很低),较低的风阻会引起该处风力加大,在风力作用下就会导致该区域猛烈燃烧,但这样的高温情况不会持久,超温区域因燃烧迅猛而燃料烧空,引起该区域垃圾燃料耗尽而熄火,同时燃料耗尽又会加剧该区域的漏风,温度会快速下降。最佳的燃烧状况是维持在一个最佳的炉排金属温度范围内,保持垃圾燃烧稳定且持久。
本发明的一种垃圾焚烧热值在线快速计算的方法,还包括采集燃烧室各段炉排的第二实时数据,第二实时数据包括各段炉排的温度与风室压差:
采集燃烧室各段炉排的温度时,应当选取适当位置,本实施例中,在焚烧炉各段炉排底部设有温度测量装置,通过温度测量装置能够对各段炉排底部的温度进行测量。一般情况下可以依据炉排的物理宽度在各段炉排上均匀布置2—3个温度测点,就可以精确反应出燃烧室各段的燃烧情况。
采集燃烧室各段炉排风室压差时,在焚烧炉各段炉排上、下部选取适当位置布置取样口进行差压测量。通过各段炉排所处位置的差压测点测量出该段炉排的风室差压,精确的反应出焚烧炉各段的风机配风情况。更优的,可以采集各段炉排的局部区域温度值并计算温度变化速率,采集各段炉排局部区域风室压差值并分析变化趋势,将各段炉排的局部区域温度值及温度变化速率和各段炉排局部区域风室压差值及变化趋势相结合,这样就可以更加准确的计算出局部区域的垃圾焚烧热值。
在本实施例中,由于并不能简单的通过某段炉排温度的高低、某处炉排风室差压的大小来判断垃圾的热值,因此应该通过该局部区域温度的数值和变化速率,结合该区域风室差压的数值和变化趋势,以及第一实时数据,将上述数据输入数据模型公式中与将数据库中的历史数据进行对比,这样就能够快速计算出垃圾焚烧热值,并分析判断所述燃烧室是否发生燃烧不均或垃圾烧空等燃烧状况。其中,第一实时数据为定值,局部区域温度的数值和变化速率、风室差压的数值和变化趋势为变化值。
在本实施例中,分析计算出所述局部区域的垃圾焚烧热值和是否发生燃烧不均或垃圾烧空等燃烧状况之后,根据所述局部区域的垃圾焚烧热值和燃烧状况可以指导控制炉排的速度、各风机的配风量等参数的精准调控,实现将焚烧炉的燃烧状况维持在一个最佳的工作状态中。
在本实施例中,将数据库中的历史数据输入数据模型公式中与第一实时数据、第二实时数据自动进行对比,分析计算出垃圾焚烧热值之后,还包括:对计算出的垃圾焚烧热值进行反向推算验证,具体的,采集锅炉蒸汽运行参数并对锅炉在单位时间内吸收到的热值进行计算得出锅炉吸收总热量值,将锅炉吸收总热量值与垃圾焚烧热值进行比较,验证锅炉吸收总热量值是否与分析计算出的垃圾焚烧热值相等;锅炉蒸汽运行参数包括:主蒸汽流量、主汽温度、主给水流量、主给水温度和汽包压力等参数。
通过对锅炉的主蒸汽流量、主汽温度、主给水流量、主给水温度、汽包压力参数进行采集,可以将 锅炉在单位时间内吸收到的热值进行比较精确的计算,产生的热值可进行反向推算,即根据锅炉吸收总热量值与垃圾焚烧热值对数据模型公式进行校准和优化,还能够对相应时间段的投入垃圾热值进行验证,通过数据库统计,可以对数据模型公式进行长期优化;这样分析计算的结果较为准确。同时,根据该计算结果能够深入了解区域的垃圾热值变化规律,提高了垃圾焚烧效率,实现了对垃圾固体废弃物无害化、减量化和资源化的处理要求。
具体的,
锅炉吸收总热量H 1=垃圾产生总热值x锅炉效率
锅炉吸收总热量H 1=A x主蒸汽流量x主汽温度+B x主给水流量x主给水温度+热损失
其中:A、B为相应的转换修正系数
根据热量守恒原理:垃圾的总热值应该与通过锅炉吸收总热量反向推算出的热值相等,故可以得到一个时间段内精确的垃圾总热值,进而可以对数据模型公式进行进一步的校准和优化。
具体的,数据模型垃圾热值=同时间段反向推算的垃圾热值(即通过锅炉吸收总热量进行计算)因锅炉的管道阻力基本恒定,汽包压力与主蒸汽流量正向相关,锅炉吸收总热量也可采用汽包压力进行推导计算。
图3是本发明提出的垃圾热值分析方法在某垃圾焚烧发电厂实际现场的应用范例。本实施例中所提到的锅炉蒸汽流量、压力、炉排温度等的测量数据在图3中有所体现,在图中左下角表格内的炉排温度分别为燃烧室1~5段炉排的左、右侧的实际炉排温度测量值。图3中上部所列风室差压分别为燃烧室1~4段炉排左右两侧的风室差压,因第5段炉排为垃圾燃烬段,其上部为炉渣,几乎没有未燃烬的垃圾,该区域未设计布置一次风进风口,风室差压很低,故可不进行测量。
图4是本实施例中垃圾热值分析方法的数据模型统计分析出的垃圾最佳燃烧工况区域。画面中的黑实线框选出的区域为垃圾的最佳燃烧区域,将垃圾燃烧工况调整控制在该区域范围内可以获得最佳的燃烧工况。
图5是本实施例采用垃圾热值分析的数据模型实际用于调控后锅炉连续24小时的运行参数曲线。通过大数据统计和数据模型公式快速分析出某一区域垃圾热值,数字量化各种影响因素,在快速分析出垃圾热值的支持下直接对炉排速度、风室的配风进行调控,实现最佳的燃烧工况。从图5中可看出,锅炉蒸汽流量参数稳定,汽包压力稳定且跟随运行人员指令调节迅速灵敏,机组在满负荷区域运行,垃圾燃烧稳定且持久,实现了很好的垃圾焚烧效果。
本发明的优势在于:
1、将进入垃圾焚烧发电厂的垃圾进行分区堆放,并对垃圾进场时间进行统计,垃圾发酵的效果被数字量化后直接进入垃圾目标热值计算;通过历史同期大数据统计,能够对数据模型进行优化,得到十分贴近实际热值的修正参数。
2、采集各段炉排局部区域风室压差值并分析变化趋势,将各段炉排的局部区域温度值及温度变化速率和各段炉排局部区域风室压差值及变化趋势相结合,这样就可以更加准确的计算出局部区域的垃圾焚烧热值;与数据库中的历史数据进行比对,分析判断所述燃烧室是否发生燃烧不均或垃圾烧空等燃烧状况。根据所述局部区域的垃圾焚烧热值和燃烧状况调控对应燃烧室各段炉排的速度与风室的配风量。
3、通过对锅炉的主蒸汽流量、主汽温度、主给水流量、主给水温度、汽包压力参数进行采集,可以将锅炉在单位时间内吸收到的热值进行比较精确的计算,产生的热值可进行反向推算,即根据锅炉吸收总热量值与垃圾焚烧热值对数据模型公式进行校准和优化,还能够对相应时间段的投入垃圾热值进行验证,这样分析计算的结果较为准确。
以上公开的仅为本发明的几个具体实施例,但是本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (10)

  1. 一种垃圾焚烧热值在线快速计算的方法,其特征在于,包括:
    采集垃圾池的第一实时数据,所述第一实时数据包括温湿度数据与垃圾发酵时间;
    采集燃烧室各段炉排的第二实时数据:所述第二实时数据包括各段炉排的温度与风室压差;
    将数据库中的历史数据输入数据模型公式中与所述第一实时数据、所述第二实时数据自动进行对比,分析计算出垃圾焚烧热值;
    所述大数据库中的历史数据包括历史垃圾池的温湿度与垃圾发酵时间数据、历史燃烧室各段炉排的温度与风室压差数据。
  2. 根据权利要求1所述的垃圾焚烧热值在线快速计算的方法,其特征在于,所述采集垃圾池的第一实时数据的过程包括:采集垃圾池的环境温度、环境湿度数据并将环境温度、环境湿度数据存入数据库;采集垃圾堆放的发酵时间,并进行数字量化标签统计。
  3. 根据权利要求2所述的垃圾焚烧热值在线快速计算的方法,其特征在于,所述数字量化标签统计包括将垃圾池的空间划分为多个网格区域,对每个区域进行标识,并对每个区域中的垃圾存放时间进行统计。
  4. 根据权利要求1所述的垃圾焚烧热值在线快速计算的方法,其特征在于,采集燃烧室各段炉排的第二实时数据的过程包括:在燃烧室各段炉排底部设置温度测量装置采集温度值,在燃烧室各段炉排上、下部设置取样口进行差压测量,并计算出所述各段炉排的风室差压。
  5. 根据权利要求1所述的垃圾焚烧热值在线快速计算的方法,其特征在于,将数据库中的历史数据输入数据模型公式中与所述第一实时数据、所述第二实时数据自动进行比对,分析计算出垃圾焚烧热值的过程包括:
    采集所述各段炉排的局部区域温度值并计算温度变化速率,采集各段炉排局部区域风室压差值并分析变化趋势,结合所述各段炉排的局部区域温度值及温度变化速率和所述各段炉排局部区域风室压差值及变化趋势计算出所述局部区域的垃圾焚烧热值。
  6. 根据权利要求5所述的垃圾焚烧热值在线快速计算的方法,其特征在于,结合所述各段炉排的局部区域温度值及温度变化速率和所述各段炉排局部区域风室压差值及变化趋势,与数据库中的历史数据进行比对,分析判断所述燃烧室是否发生燃烧不均或垃圾烧空等燃烧状况。
  7. 根据权利要求5所述的垃圾焚烧热值在线快速计算的方法,其特征在于,分析计算出所述局部区域的垃圾焚烧热值和是否发生燃烧不均或垃圾烧空等燃烧状况之后,根据所述局部区域的垃圾焚烧热值和燃烧状况调控对应燃烧室各段炉排的速度与风室的配风量。
  8. 根据权利要求1所述的垃圾焚烧热值在线快速计算的方法,其特征在于,将数据库中的历史数据输入数据模型公式中与所述第一实时数据、所述第二实时数据自动进行对比,分析计算出垃圾焚烧热值之后,还包括:对计算出的垃圾焚烧热值进行反向推算验证。
  9. 根据权利要求8所述的垃圾焚烧热值在线快速计算的方法,其特征在于,对计算出的垃圾焚烧热值进行反向推算验证的过程包括:采集锅炉蒸汽运行参数并对锅炉在单位时间内吸收到的热值进行计算得出锅炉吸收总热量值,将所述锅炉吸收总热量值与所述垃圾焚烧热值进行比较,验证锅炉吸收总热量值是否与垃圾焚烧热值相等。
  10. 根据权利要求9所述的垃圾焚烧热值在线快速计算的方法,其特征在于,验证锅炉吸收总热量值是否与垃圾焚烧热值相等之后,还包括:根据所述锅炉吸收总热量值与垃圾焚烧热值对所述数据模型公式进行校准和优化。
PCT/CN2021/105882 2020-12-31 2021-07-13 垃圾焚烧热值在线快速计算的方法 WO2022142264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011641021.3A CN112818509A (zh) 2020-12-31 2020-12-31 垃圾焚烧热值在线快速计算的方法
CN202011641021.3 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142264A1 true WO2022142264A1 (zh) 2022-07-07

Family

ID=75856446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105882 WO2022142264A1 (zh) 2020-12-31 2021-07-13 垃圾焚烧热值在线快速计算的方法

Country Status (2)

Country Link
CN (1) CN112818509A (zh)
WO (1) WO2022142264A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113467392A (zh) * 2021-06-18 2021-10-01 中国大唐集团科学技术研究院有限公司中南电力试验研究院 一种燃煤锅炉开环燃烧控制优化方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112818509A (zh) * 2020-12-31 2021-05-18 深圳市深能环保东部有限公司 垃圾焚烧热值在线快速计算的方法
CN113551531A (zh) * 2021-07-23 2021-10-26 中国恩菲工程技术有限公司 反应炉自动控制系统和反应炉状态监控装置
CN113761454B (zh) * 2021-08-18 2024-01-26 苏州西热节能环保技术有限公司 一种基于不确定度的垃圾热值测试系统及优化方法
CN113901381B (zh) * 2021-11-17 2024-03-12 西安热工研究院有限公司 两炉一机生活垃圾焚烧发电厂垃圾焚烧量的实时计算方法
CN113946789B (zh) * 2021-11-17 2024-03-12 西安热工研究院有限公司 一种实时计算四炉三机垃圾焚烧发电厂垃圾焚烧量的方法
CN113901382B (zh) * 2021-11-19 2024-03-26 西安热工研究院有限公司 三炉两机生活垃圾焚烧发电项目实时垃圾焚烧量的计算方法
CN115358152B (zh) * 2022-08-26 2023-04-07 绍兴市再生能源发展有限公司 垃圾焚烧气体控制与反馈调节系统和方法
CN116146983B (zh) * 2023-01-13 2023-11-14 华中科技大学 用于燃煤锅炉掺烧负荷调变的固废自适应热解系统及方法
CN116400003B (zh) * 2023-03-07 2023-11-28 浙江中检海德标准技术有限公司 建筑材料燃烧实验系统及燃烧分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864797A (zh) * 2016-04-01 2016-08-17 浙江大学 循环流化床生活垃圾焚烧锅炉入炉热值实时预测系统及方法
CN106292600A (zh) * 2016-08-30 2017-01-04 北京京城环保股份有限公司 一种多远程垃圾坑数据采集、记录系统
CN108224446A (zh) * 2017-12-31 2018-06-29 北京工业大学 一种垃圾焚烧过程的自动燃烧优化决策方法
CN112818509A (zh) * 2020-12-31 2021-05-18 深圳市深能环保东部有限公司 垃圾焚烧热值在线快速计算的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864797A (zh) * 2016-04-01 2016-08-17 浙江大学 循环流化床生活垃圾焚烧锅炉入炉热值实时预测系统及方法
CN106292600A (zh) * 2016-08-30 2017-01-04 北京京城环保股份有限公司 一种多远程垃圾坑数据采集、记录系统
CN108224446A (zh) * 2017-12-31 2018-06-29 北京工业大学 一种垃圾焚烧过程的自动燃烧优化决策方法
CN112818509A (zh) * 2020-12-31 2021-05-18 深圳市深能环保东部有限公司 垃圾焚烧热值在线快速计算的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113467392A (zh) * 2021-06-18 2021-10-01 中国大唐集团科学技术研究院有限公司中南电力试验研究院 一种燃煤锅炉开环燃烧控制优化方法
CN113467392B (zh) * 2021-06-18 2024-03-26 中国大唐集团科学技术研究院有限公司中南电力试验研究院 一种燃煤锅炉开环燃烧控制优化方法

Also Published As

Publication number Publication date
CN112818509A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2022142264A1 (zh) 垃圾焚烧热值在线快速计算的方法
CN110991756B (zh) 基于ts模糊神经网络的mswi炉膛温度预测方法
CN103148473B (zh) 一种基于co的电站锅炉优化运行方法及系统
Kristensen et al. Development and test of small-scale batch-fired straw boilers in Denmark
JP5996762B1 (ja) 廃棄物の燃焼制御方法およびこれを適用した燃焼制御装置
Malaťák et al. Heat-emission analysis of small combustion equipments for biomass
Sornek et al. Study of clean combustion of wood in a stove-fireplace with accumulation
CN113266843A (zh) 一种燃煤锅炉燃烧优化方法、系统及装置
CN109611813A (zh) 一种锅炉能效在线监测方法及系统
WO2019154248A1 (zh) 一种焚烧炉内生活垃圾组分实时检测装置和方法
CN105605609A (zh) 一种火电厂锅炉燃烧氧量优化方法
Vitázek et al. Effects on concentration of selected gaseous emissions at biomass combustion
CN111445142B (zh) 一种燃料掺烧评价方法、系统及装置
Kirsanovs et al. Experimental study on optimisation of the burning process in a small scale pellet boiler due to air supply improvement.
JP5452906B2 (ja) 燃焼炉の燃焼制御システムおよびその燃焼制御方法
Zlateva et al. Analysis of combustion efficiency at boilers operating on different fuels
CN113266833B (zh) 一种垃圾焚烧炉的燃烧优化方法、系统及装置
JPH0240410A (ja) 都市ごみ焼却炉の自動燃焼制御方法
Holubčík et al. Impact of the wood geometric parameters on the particulate matter production in small heat source
Urbaniak et al. Analysis of the possibility of burning and co-firing oats in automatic solid fuel boilers
Rikker et al. Features and problems of environmental pollution from decentralized heating systems (on the example of Chita)
CN213746741U (zh) 一种生活垃圾焚烧设备的智能烟风控制系统
CN114791102B (zh) 一种基于动态运行数据分析的燃烧优化控制方法
Trojanowski et al. Results of the 2018 Wood Stove Design Challenge
Paulrud et al. Emission factors and emissions from residential biomass combustion in Sweden

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913017

Country of ref document: EP

Kind code of ref document: A1