WO2022142049A1 - 地图构建方法及装置、设备、存储介质、计算机程序产品 - Google Patents
地图构建方法及装置、设备、存储介质、计算机程序产品 Download PDFInfo
- Publication number
- WO2022142049A1 WO2022142049A1 PCT/CN2021/092114 CN2021092114W WO2022142049A1 WO 2022142049 A1 WO2022142049 A1 WO 2022142049A1 CN 2021092114 W CN2021092114 W CN 2021092114W WO 2022142049 A1 WO2022142049 A1 WO 2022142049A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- key frame
- image
- map
- frame image
- newly registered
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims abstract description 61
- 238000004590 computer program Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 78
- 238000005070 sampling Methods 0.000 claims description 94
- 238000005457 optimization Methods 0.000 claims description 20
- 230000015654 memory Effects 0.000 claims description 17
- 230000006870 function Effects 0.000 claims description 14
- 102000002067 Protein Subunits Human genes 0.000 claims 1
- 108010001267 Protein Subunits Proteins 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 21
- 230000003190 augmentative effect Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 238000000265 homogenisation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/74—Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30244—Camera pose
Definitions
- the present disclosure relates to, but is not limited to, the field of computer vision, and in particular, to a map construction method and apparatus, device, storage medium, computer program product, and computer program.
- 3D reconstruction technology has broad application prospects in the fields of cultural relics protection, positioning and navigation, scene roaming, augmented reality, and industrial measurement.
- Three-dimensional reconstruction methods can be divided into two categories: incremental reconstruction methods and global reconstruction methods.
- Embodiments of the present disclosure provide a map construction method and apparatus, device, storage medium, computer program product, and computer program, which can be implemented as follows:
- An embodiment of the present disclosure provides a map construction method, the method is executed by an electronic device, and the method includes: determining whether the newly registered image belongs to a key frame according to an association feature between a newly registered image and an existing key frame image image; each time a new map point is added to the constructed three-dimensional map based on the newly determined key frame image.
- the determining whether the newly registered image belongs to the key frame image according to the association feature between the newly registered image and the existing key frame image includes: determining whether the newly registered image belongs to the existing key frame image The loopback frame corresponding to the key frame image; if the newly registered image belongs to the loopback frame corresponding to the existing key frame image, it is determined that the new registered image belongs to the key frame image.
- the determining whether the newly registered image belongs to the key frame image according to the association feature between the newly registered image and the existing key frame image includes: when the newly registered image does not belong to the existing key frame image In the case of the loopback frame corresponding to the key frame image, determine the total number of target feature points included in the newly registered image; wherein, the target feature points are those with corresponding map points on the constructed three-dimensional map. feature points; if the total number of the target feature points is less than a preset number, it is determined that the newly registered image belongs to the key frame image.
- the determining whether the new registered image belongs to the key frame image according to the association feature between the new registered image and the existing key frame image includes: respectively determining that the camera is collecting the new registered image and the first When a key frame image is used, the first coordinate and the second coordinate in the world coordinate system; wherein, the first key frame image is the key frame whose acquisition time is closest to the newly registered image among the existing key frame images image; determining a first distance value between the first coordinate and the second coordinate; determining that the newly registered image belongs to the key frame image if the first distance value satisfies the preset distance requirement .
- the preset distance requirement includes satisfying the corresponding relationship with the target distance value; the method further includes: in the existing key frame images, respectively determining two adjacent camera acquisition time When a key frame image is taken, the third coordinate and the fourth coordinate in the world coordinate system; the second distance value between the third coordinate and the fourth coordinate is determined; the second distance value is determined according to the second distance value. target distance value.
- the determining whether the newly registered image belongs to the key frame image according to the association feature between the newly registered image and the existing key frame image includes: determining the newly registered image and the first key frame image
- the first key frame image is the key frame image whose acquisition time is closest to the newly registered image among the existing key frame images; when the image parallax is greater than the preset parallax , and determine that the newly registered image belongs to the key frame image.
- the step of adding a new map point to the constructed three-dimensional map based on the newly determined key frame image each time includes: performing a step on the feature points included in the newly determined key frame image. Sampling to obtain multiple sampling points; on the constructed three-dimensional map, new map points are generated according to the multiple sampling points.
- the sampling of the newly determined feature points included in the key frame image to obtain a plurality of sampling points includes: among the newly determined feature points included in the key frame image, determining A second feature point that does not match the map point on the constructed three-dimensional map; on the newly determined key frame image, sampling the second feature point to obtain the plurality of sampling points.
- sampling the second feature point on the newly determined key frame image to obtain the plurality of sampling points includes: on the newly determined key frame image, According to the preset sampling radius, a plurality of sampling regions are divided; the second feature points included in each sampling region are uniformly sampled to obtain the plurality of sampling points.
- performing uniform sampling on the second feature points included in each sampling area to obtain the plurality of sampling points includes: sampling the same number of the second feature points in each sampling area For the second feature point, obtain the plurality of sampling points whose total number satisfies the preset interval range.
- the method further includes: optimizing the constructed three-dimensional map according to the at least one second key frame image.
- the method further includes: using the key frame image newly determined each time as the second key frame image; or using multiple key frame images determined in multiple times as multiple first key frame images Two keyframe images.
- the optimizing the constructed three-dimensional map according to at least one second key frame image includes: determining that at least one map point on the constructed three-dimensional map is in each second key frame The corresponding weight value in the image; based on the corresponding weight value of the at least one map point in each second key frame image, determine the loss function corresponding to the constructed three-dimensional map; determine the camera that minimizes the loss function Pose parameters; based on the camera pose parameters, update the at least one map point on the constructed three-dimensional map.
- the determining a weight value corresponding to at least one map point on the constructed three-dimensional map in each second key frame image includes: at least one map point on the constructed three-dimensional map. Among the map points, determine a first map point that does not have a corresponding feature point and a second map point that has a corresponding feature point in the current second key frame image; determine that the first map point is in the current second key frame image. The corresponding weight value in the frame image is 0, and it is determined that the weight value corresponding to the second map point in the current second key frame image is proportional to the target value.
- the method further includes: in the existing key frame images, determining the total number of third key frame images; wherein the second map point exists on the third key frame images corresponding feature points; based on the total number of the third key frame images, determine the target value corresponding to the second map point.
- the method further includes: determining the feature points included in each key frame image in the existing key frame images; using any two key frame images in the existing key frame images as a group image pairs, match the feature points of any group of image pairs, and determine the matching result; according to the matching results, after sorting the multiple groups of image pairs in a pre-specified order, the order is based on different image pairs.
- Reconstruction initialization build a three-dimensional map based on the initialization image pairs that are successfully reconstructed and initialized in the multiple groups of image pairs.
- An embodiment of the present disclosure provides an apparatus for constructing a map, the apparatus includes: a first determination part configured to determine whether the newly registered image belongs to a key frame image according to an association feature between a newly registered image and an existing key frame image ;
- the map update part is configured to add new map points on the constructed three-dimensional map each time based on the newly determined key frame image.
- Embodiments of the present disclosure provide a computer-readable storage medium, where the storage medium stores a computer program, and the computer program is configured to execute part or all of the steps of the map construction method described in the embodiments of the present disclosure.
- An embodiment of the present disclosure provides a map construction device, including: a processor; a memory configured to store executable instructions of the processor; wherein the processor is configured to call the executable instructions stored in the memory to achieve Part or all of the steps of the map construction method described in the embodiments of the present disclosure.
- An embodiment of the present disclosure provides a computer program product, the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and when the computer program is read and executed by a computer, the Some or all of the steps of the described map construction method.
- the embodiments of the present disclosure provide a computer program, the computer program includes computer-readable codes, and when the computer-readable codes are read and executed by a computer, the method for implementing the map construction method described in the embodiments of the present disclosure is realized. some or all of the steps.
- a key frame image may be selected from the newly registered image according to the association feature between the newly registered image and the existing key frame image, and each time based on the newly determined key frame image, a key frame image may be displayed on the constructed three-dimensional map. Add new map points.
- the embodiment of the present disclosure reduces the redundancy of image data in the process of incremental reconstruction of the three-dimensional map, simplifies the reconstruction scale, and improves the reconstruction efficiency.
- the newly registered image belongs to the loopback frame corresponding to the existing key frame image
- the newly registered image belongs to the key frame image.
- the loopback frame corresponding to the existing key frame image is regarded as a relatively important key frame image, which improves the accuracy of map reconstruction and facilitates the protection of the map reconstruction scene.
- the total number of target feature points included in the newly registered image can be determined on the constructed three-dimensional map.
- the target feature point is a feature point that has a corresponding map point on the constructed three-dimensional map.
- the first coordinate and the second coordinate in the world coordinate system when the camera collects the newly registered image and the first key frame image can be respectively determined, wherein the first key frame image is an existing key frame image A keyframe image that is closest to the acquisition time of the newly registered image.
- a first distance value between the first coordinate and the second coordinate may be determined, and if the first distance value meets a preset distance requirement, it may be determined that the newly registered image belongs to the keyframe image.
- whether the newly registered image belongs to the key frame image may be determined according to the position in the world coordinate system when the camera collects the newly registered image and the first key frame image. The redundancy of image data during the incremental reconstruction of the three-dimensional map is reduced, the reconstruction scale is simplified, and the reconstruction efficiency is improved.
- the third and fourth coordinates in the world coordinate system can be determined according to the existing key frame images when the camera collects two adjacent key frame images, so as to determine the third and fourth coordinates The second distance value between.
- the target distance value is determined according to the second distance value.
- the embodiment of the present disclosure can control the insertion frequency of key frame images by adjusting the relationship between the first distance value and the target distance value, reduce the redundancy of image data in the process of incremental reconstruction of the 3D map, simplify the reconstruction scale, and improve the reconstruction efficiency .
- whether the newly registered image belongs to the key frame image may also be determined according to the image parallax between the newly registered image and the first key frame image whose acquisition time is closest among the existing key frame images. Make full use of the temporal structure of the input registration image, and determine the key frame image under the condition of ensuring the connectivity of the scene. Each time, a new map point can be added to the constructed 3D map according to the newly determined key frame image. The redundancy of image data during the incremental reconstruction of the three-dimensional map is reduced, the reconstruction scale is simplified, and the reconstruction efficiency is improved.
- the feature points included in the newly determined key frame image may be sampled to obtain multiple sampling points.
- new map points are generated according to multiple sampling points.
- uniform sampling is performed for the second feature point that has no corresponding map point on the constructed three-dimensional map, and by adjusting the sampling radius, the sampling point can be controlled. total number. In this way, it is possible to reduce the over-concentration of image features, reduce the complexity of subsequent optimization, and improve reconstruction efficiency.
- the constructed three-dimensional map may be optimized according to at least one second key frame image.
- the key frame image newly determined each time may be used as the second key frame image, so as to perform local optimization on the constructed three-dimensional map after each new determination of the key frame image.
- multiple key frame images determined multiple times may also be used as multiple second key frame images to perform global optimization on the constructed three-dimensional map. The optimization complexity is reduced and the reconstruction accuracy is improved.
- At least one map point on the constructed three-dimensional map can be determined, and whether there is a corresponding feature point in each second key frame image.
- the weight value corresponding to the first map point in the current second key frame image is 0, and it is determined that there is a corresponding feature point.
- the corresponding weight value in the current second key frame image is proportional to the target value.
- the total number of third key frame images may be determined in the existing key frame images, and the target value may be determined according to the total number of third key frame images.
- FIG. 1 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure
- FIG. 2 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure
- FIG. 3 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure
- FIG. 4 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure
- FIG. 5 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure
- FIG. 6 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure.
- FIG. 7 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure.
- FIG. 8 is a schematic diagram of a scenario of uniformly sampling second feature points according to an embodiment of the present disclosure.
- FIG. 9 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure.
- FIG. 10 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure.
- FIG. 11 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure.
- FIG. 12 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure.
- FIG. 13 is a schematic diagram of an implementation flowchart of a map construction method provided by an embodiment of the present disclosure
- 14A is a schematic diagram of a scenario for determining a baseline provided by an embodiment of the present disclosure.
- FIG. 14B is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure.
- FIG. 15 is a schematic diagram of the composition and structure of a map construction apparatus provided by an embodiment of the present disclosure.
- FIG. 16 is a schematic structural diagram of a map construction device provided by an embodiment of the present disclosure.
- first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
- word “if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining.”
- the incremental reconstruction method can achieve higher reconstruction accuracy when reconstructing a small-scale scene.
- the reconstruction efficiency drops sharply, and at the same time, because of the frame-by-frame registration method of the incremental reconstruction process, the large scene reconstruction will cause drift.
- the global reconstruction can directly estimate the camera pose through the scene graph, and only needs to perform a global adjustment process, which is suitable for the task of large-scale scene reconstruction.
- the global reconstruction is sensitive to matching noise and is not fully optimized, so the robustness and accuracy of the reconstruction are degraded.
- FIG. 1 is a schematic diagram of an implementation flow of a map construction method provided by an embodiment of the present disclosure.
- the method may be executed by an electronic device, and the electronic device may be a terminal device or a server or other processing device, wherein the terminal device It can be User Equipment (UE), mobile device, user terminal, terminal, cellular phone, cordless phone, Personal Digital Assistant (PDA), handheld device, computing device, vehicle-mounted device, wearable device, etc.
- the server can be a physical server, a virtual machine, a cloud server, a server cluster, and the like.
- the method may be implemented by a processor invoking computer-readable instructions stored in a memory. As shown in Figure 1, the method may include the following steps:
- step 101 it is determined whether the newly registered image belongs to the key frame image according to the association feature between the newly registered image and the existing key frame image.
- the newly registered image is an image newly acquired by the camera each time during the moving process.
- the key frame images are relatively important images screened from the newly registered images according to the time sequence from front to back.
- 3D map reconstruction can be performed based on the key frame images.
- step 102 new map points are added to the constructed three-dimensional map each time based on the newly determined key frame image.
- the constructed three-dimensional map is a three-dimensional map constructed after performing three-dimensional reconstruction and initialization based on an existing key frame image. After each new key frame image is determined, according to the feature points included in the newly determined key frame image, a new three-dimensional map point is added to the constructed three-dimensional map by the method of three-dimensional point matching, so as to realize the reconstruction of the three-dimensional map. .
- the key frame image can be selected from the newly registered image according to the association feature between the newly registered image and the existing key frame image, and each time based on the newly determined key frame image, an image is added to the constructed three-dimensional map. New map points.
- the embodiment of the present disclosure reduces the redundancy of image data in the process of incremental reconstruction of the three-dimensional map, simplifies the reconstruction scale, and improves the reconstruction efficiency.
- At least one of the following manners may be used to determine whether the newly registered image belongs to a key frame image.
- whether the newly registered image belongs to the key frame image is determined according to whether the newly registered image belongs to the loopback frame corresponding to the existing key frame image.
- step 101 may include:
- step 101-11 it is determined whether the newly registered image belongs to the loopback frame corresponding to the existing key frame image.
- the loopback frame refers to an image obtained by shooting a scene again after a certain period of time after shooting the scene.
- the loopback frame is to ensure the accuracy of scene reconstruction. Therefore, loop closure frames are important in the 3D reconstruction process.
- the newly registered image is not based on the degree of matching of the image features between the newly registered image and the existing key frame image, and the number of registered images spaced between the new registered image and the existing key frame image. It belongs to the loopback frame corresponding to the existing keyframe image.
- the matching degree of the image features between the newly registered image and the existing key frame image exceeds the preset matching degree, and the number of registered images in the interval exceeds the preset number of images, it can be considered that the newly registered image belongs to the existing key frame
- the loopback frame corresponding to the image
- steps 101-12 in the case that the newly registered image belongs to the loopback frame corresponding to the existing key frame image, it is determined that the newly registered image belongs to the key frame image.
- the loop closure frame is directly used as the key frame image, and the three-dimensional map reconstruction can be performed subsequently according to the key frame image.
- the loopback frame is regarded as a relatively important key frame image, which improves the accuracy of map reconstruction and facilitates the protection of the map reconstruction scene.
- step 101 may include:
- steps 101-21 if the newly registered image does not belong to the loop closure frame corresponding to the existing key frame image, the total number of target feature points included in the newly registered image is determined.
- a three-dimensional point matching method may be used to determine that each feature point included in the newly registered image is in the Whether there is a corresponding map point on the constructed three-dimensional map, if there is a corresponding map point, the feature point is the target feature point.
- the embodiment of the present disclosure can determine the total number of target feature points included in the newly registered image.
- steps 101-22 when the total number of the target feature points is less than a preset number, it is determined that the newly registered image belongs to the key frame image.
- the preset number may be a positive integer greater than zero, such as 300.
- the total number of target feature points included in the newly registered image can be determined on the constructed three-dimensional map.
- the target feature point is a feature point that has a corresponding map point on the constructed three-dimensional map.
- step 101 may include:
- steps 101-31 respectively determine the first coordinate and the second coordinate in the world coordinate system when the camera acquires the new registration image and the first key frame image.
- the position of the camera in the world coordinate system should not move very far. Therefore, the first coordinates and the second coordinates in the world coordinate system of the camera when the new registration image and the first key frame image are acquired can be determined respectively.
- the first key frame image is a key frame image whose acquisition time is closest to the newly registered image among the existing key frame images, that is, the first key frame image is a key frame image whose acquisition time is closest to the newly registered image.
- the first coordinate and the second coordinate can be represented by the pose of the camera in the world coordinate system.
- random sample consistency Random Sample Consensus, RANSAC
- Perspective-n-Points Perspective-n-Points
- P3P P3P algorithm estimates the pose of the camera in the world coordinate system when the new registration image is collected, so as to determine the first coordinate.
- the second coordinate in the world coordinate system can also be determined when the camera captures the first key frame image.
- a first distance value between the first coordinate and the second coordinate is determined.
- the first distance value between the two may be calculated in the world coordinate system.
- step 101-33 in the case that the first distance value meets the preset distance requirement, it is determined that the newly registered image belongs to the key frame image.
- the preset distance requirement may include, but is not limited to, satisfying a corresponding relationship with the target distance value, and the corresponding relationship may include, but is not limited to, the product relationship between the target distance value and a preset value greater than 0.
- the average value of the second distance values between the four coordinates is used as the target distance value.
- the target distance value It can be represented by the following formula 1-1:
- C k represents the coordinates of the camera in the world coordinate system when the k-th key frame image is collected
- f(k) represents the key frame image index closest to the k-th key frame image acquisition time
- K is the existing key
- the total number of frame images, k is an integer greater than 1.
- C k+1 represents the first coordinate in the world coordinate system when the camera collects a new registered image
- f(k+1) represents the index of the first key frame image
- the first key frame image is the existing key frame
- C f(k+1) represents the second coordinate in the world coordinate system when the camera collects the first key frame image
- ⁇ is a preset multiple greater than 0.
- the insertion frequency of key frame images can be controlled by adjusting ⁇ .
- ⁇ When ⁇ ⁇ 1, formula 1-2 becomes a monotonically increasing function, and the interval between key frame images will become larger and larger.
- ⁇ the insertion frequency of key frame images can be kept in a fixed range.
- ⁇ may be located in the interval range of [0.8, 1].
- the third method can be implemented independently, or the newly registered image can be determined according to the camera moving distance value on the basis of determining that the newly registered image does not belong to the loopback frame corresponding to the existing key frame image in the above steps 101-11. Whether the image is a keyframe image.
- the insertion frequency of key frame images can be controlled by adjusting the preset multiple, which is beneficial to reduce the redundancy of image data in the process of incremental reconstruction of the 3D map, simplify the reconstruction scale, and improve the reconstruction efficiency.
- step 101 may include:
- steps 101-41 the image parallax between the newly registered image and the first key frame image is determined.
- the first key frame image is the key frame image whose acquisition time is closest to the newly registered image among the existing key frame images.
- Image parallax refers to the directional difference produced by observing the same target from two different points, which can generally be measured by the parallax angle, that is, the corresponding angle determined when viewing two different points from the same target.
- a map point may be selected from the constructed three-dimensional map, and the map point has a corresponding feature point on both the newly registered image and the first key frame image.
- steps 101-42 in the case that the image parallax is greater than a preset parallax, it is determined that the newly registered image belongs to the key frame image.
- the preset disparity may be determined according to verification, and may be, for example, a value greater than or equal to zero.
- the fourth method can be implemented independently, or in the above steps 101-11, on the basis that it is determined that the newly registered image does not belong to the loopback frame corresponding to the existing key frame image, it can be determined according to the image parallax whether the newly registered image is not. is a keyframe image.
- the camera moving distance value satisfies the preset distance requirement, and the image parallax with the first key frame image is greater than the preset parallax In the case of , it is determined that the newly registered image belongs to the key frame image.
- step 102 may include:
- step 102-1 sampling the newly determined feature points included in the key frame image to obtain a plurality of sampling points.
- uniform sampling may be performed on the feature points included in each newly determined key frame image, so as to reduce the situation that the image features are too concentrated, and obtain multiple sampling points.
- step 102-2 on the constructed three-dimensional map, a new map point is generated according to the plurality of sampling points.
- a new map point is generated on the constructed three-dimensional map by matching multiple sampling points with three-dimensional points.
- step 102-1 may include:
- step 201 among the newly determined feature points included in the key frame image, a second feature point that does not match the map points on the constructed three-dimensional map is determined.
- the newly determined key frame image includes a plurality of feature points, and it can be determined whether each feature point has a matching map point on the constructed map, and if there is a matching map point, the The feature point is taken as the first feature point, otherwise the feature point is taken as the second feature point.
- the existing key frame images include image 1 and image 2, wherein the first feature points 82 in images 1 and 2 have matching map points 81 in the existing three-dimensional map.
- the newly determined key frame image is image 3.
- the feature point corresponds to the first feature point 82 .
- the second feature point 83 corresponds to the second feature point 83 .
- step 202 the second feature point is sampled on the newly determined key frame image to obtain the plurality of sample points.
- a second feature point that does not match the map point on the constructed three-dimensional map may be determined, and subsequent sampling is performed based on the second feature point, so as to generate
- the new map points reduce the generation of map points that duplicate the existing map points, and have high usability.
- steps 102-12 may include:
- step 301 on the newly determined key frame image, a plurality of sampling regions are divided according to a preset sampling radius.
- the preset sampling radius may be divided according to the needs of the total number of sampling points. When the total number is large, the preset sampling radius can be reduced. On the contrary, the preset sampling radius can be increased, so that multiple sampling areas can be divided on the newly determined key frame image. For example, as shown in Figure 8, in image 3 can be divided into sampling area 1, sampling area 2 and sampling area 3.
- step 302 the second feature points included in each sampling area are uniformly sampled to obtain the plurality of sampling points.
- the second feature points may be uniformly sampled in each sampling area, and the same number of the second feature points may be sampled to obtain the plurality of sampling points whose total number satisfies the preset interval range.
- the preset area range can be any integer between [900, 2000].
- sampling regions 1 and 2 For example, as shown in FIG. 8 , assuming that one second feature point is sampled in each sampling region, only one second feature point is retained in sampling regions 1 and 2 .
- the second feature point that is closer to the center of the sampling area may be retained. Since there is only one second feature point in the sampling area 3, the second feature point is retained.
- uniform sampling can be performed for the second feature points that have no corresponding map points on the constructed three-dimensional map, and the total number of sampling points can be controlled by adjusting the sampling radius. It reduces the over-concentration of image features, reduces the complexity of subsequent optimization, and improves reconstruction efficiency.
- the above method may further include:
- step 103 the constructed three-dimensional map is optimized according to at least one second key frame image.
- each time a newly determined key frame image may be used as a second key frame image, and each time a new key frame image is determined, local optimization of the three-dimensional map is performed.
- the three-dimensional map can also be globally optimized by using the plurality of key frame images determined in multiple times as the plurality of second key frame images.
- step 103 may include:
- step 103-1 a weight value corresponding to at least one map point on the constructed three-dimensional map in each second key frame image is determined.
- the weight value corresponding to each map point in each second key frame image may be determined according to whether each map point has a corresponding feature point on each second key frame image.
- step 103-2 a loss function corresponding to the constructed three-dimensional map is determined based on the corresponding weight value of the at least one map point in each of the second key frame images.
- the loss function f(*) can be represented by the following formulas 1-3:
- n is the total number of existing key frame images
- m is the total number of map points included in the constructed 3D map
- K is the camera internal parameter, generally pre-calibrated
- R i and T i are the camera
- the corresponding rotation matrix and translation vector when the i-th key frame image is collected can generally be determined by the camera pose.
- X j is the jth map point on the constructed 3D map.
- x j is the feature point corresponding to the jth map point on the key frame image.
- v ij is the weight value of the feature point corresponding to the j th map point on the ith key frame image.
- step 103-3 the camera pose parameters that minimize the loss function are determined.
- the purpose of the above local or global optimization is to reduce the value of the function f(*).
- the camera pose parameters include but are not limited to Ri and T i in the above formulas 1-3 .
- step 103-4 the at least one map point on the constructed three-dimensional map is updated based on the camera pose parameter.
- the camera pose parameters corresponding to each map point on the constructed three-dimensional map can be re-determined, so that the map points on the constructed three-dimensional map are updated based on the re-determined camera pose parameters, Realize global optimization or local optimization of the constructed 3D map.
- step 103-1 may include:
- step 401 among at least one map point on the constructed three-dimensional map, determine a first map point that does not have a corresponding feature point and a second map point that has a corresponding feature point in the current second key frame image map point.
- at least one map point on the constructed three-dimensional map needs to be determined in each second key frame image whether there is a corresponding feature point. Thereby, a first map point that does not have a corresponding feature point on the current second key frame image, and a second map point that has a corresponding feature point are obtained.
- the number of the second key frame image is 1, it is necessary to determine whether the 5 map points have corresponding feature points on the second key frame image. In the case where the number of the second key frames is 3, it is necessary to respectively determine whether the five map points have corresponding feature points on the three second key frame images.
- step 402 the weight value corresponding to the first map point in the current second key frame image is determined to be 0, and the corresponding weight value of the second map point in the current second key frame image is determined.
- the weight value is proportional to the target value.
- the first map point does not have a corresponding feature point in the current second key frame image, and the corresponding weight value of the first map point in the current second key frame image is 0.
- the second map point has a corresponding feature point on the current second key frame image, and the corresponding weight value of the second map point in the current second key frame image is proportional to a target value, and can increase with the increase of the target value .
- the total number of third key frame images is determined.
- the key frame image can be used as the third key frame image, and the embodiment of the present disclosure can determine the corresponding key frame image according to the total number of third key frame images.
- the total number of third key frame images can be directly used as the target value.
- the current second key frame image includes two second map points, map point 1 and map point 2, that is, map point 1 and map point 2 are maps with corresponding feature points on the current second key frame image point.
- map point 1 has corresponding feature points on 3 key frame images
- map point 2 has corresponding feature points on 4 key frame images.
- the target value corresponding to map point 1 is 3, and the target value corresponding to map point 2 is 4.
- the corresponding weight value of map point 1 on the current second key frame image is smaller than that of map point 2 on the current second key frame image. corresponding weight value.
- the value of the weight value v ij of the map point on the constructed three-dimensional map can be determined by the following formula 1-4:
- ⁇ can be 20, and D(X j ) is the target value corresponding to the map point X j .
- the total number of third key frame images may be determined in the existing key frame images, so that the target value is determined according to the total number of third key frame images.
- the weight value corresponding to the map point on the constructed three-dimensional map in the current second key frame image increases as the total number of third key frame images corresponding to the map point increases, so that the reconstructed map is more accurate.
- the three-dimensional map reconstruction can be initialized based on the existing key frame images, so as to construct a three-dimensional map, and after a new key frame image is determined, new map points can be added to the constructed three-dimensional map.
- the process of reconstruction initialization and building a 3D map may include the following steps:
- step 501 the feature points included in each key frame image in the existing key frame images are determined.
- the most reasonable image pair can be determined, and a 3D map can be constructed according to the initialized image pair. Add new map points to the constructed 3D map.
- the Scale-Invariant Feature Transform (SIFT) method can be used to extract image features from each key frame image in the existing key frame images, and determine each key frame image. Multiple feature points are included, and the descriptors corresponding to the feature points are calculated.
- SIFT Scale-Invariant Feature Transform
- step 502 any two key frame images in the existing key frame images are regarded as a group of image pairs, and feature points of any group of image pairs are matched to determine a matching result.
- any two key frame images in the existing key frame images form a set of image pairs
- the Approximate Nearest Neighbor (ANN) algorithm can be used to perform feature point analysis on any set of image pairs. match to get the matching result.
- the matching result includes but is not limited to the number of feature point matching.
- step 503 according to the matching result, after sorting the multiple sets of image pairs in a pre-specified order, the three-dimensional map reconstruction initialization is performed based on different image pairs in sequence.
- the ordering may be performed in a pre-specified order according to the number of feature point matching. For example, sort in descending order of the number of feature point matches.
- the sorting may also be performed in combination with the distribution of the feature points, for example, according to the order of the matching number of feature points from high to low, and the distribution of feature points from scattered to concentrated. For the multiple sets of image pairs obtained after sorting, try to reconstruct and initialize sequentially from front to back.
- a three-dimensional map is constructed based on the initialized image pairs that are successfully initialized among the plurality of sets of image pairs.
- the baseline of the current group of image pairs can be determined, and when the baseline is within the preset baseline range, the current group of image pairs is used as the initialization image pair, and the initialization process is successful.
- the preset baseline range can be obtained according to the empirical value, and it cannot be too large or too small.
- the camera pose of the camera in the world coordinate system can be determined according to each image, so as to obtain the optical center coordinates of the camera.
- a set of images The pair can determine two optical center coordinates O1 and O2.
- the coordinate values of the feature points in the space coordinate system can also be respectively based on the image pair matching. For example, the coordinate value of the matching feature points on the image pair in FIG.
- connection between P and O1 The line and the connecting line between P and O2 form an included angle 141, and the median value of the included angles corresponding to all matching feature points in the current image pair can be used as the baseline corresponding to the current image pair.
- a three-dimensional map may be constructed based on the initialization image whose reconstruction is initialized successfully.
- the three-dimensional map reconstruction and initialization can be performed based on the existing key frame images, which improves the efficiency of the initialization process, is simple to implement, and has high usability.
- the map construction method provided by the embodiments of the present disclosure can be applied to 3D modeling scenarios in the fields of 3D modeling, augmented reality, image processing, photography, games, animation, film and television, e-commerce, education, real estate, home decoration, and the like.
- a user uploads a video sequence to the cloud, and the cloud backend can realize fast and efficient 3D model reconstruction based on the map construction method provided by the embodiment of the present disclosure, and timely feedback the reconstruction result to the user;
- Vision-based high-precision map construction can be realized, and the constructed map can be applied to augmented reality navigation;
- vision-based dense map and model construction can be realized, and the constructed dense map and model can be applied It is used in augmented reality tours, digitization of cultural relics, scene roaming, building ranging and other scenarios.
- An embodiment of the present application provides a map construction method, which uses an incremental reconstruction method to construct a map according to an input image or video sequence.
- it is decided whether to register the latest image or video as a keyframe based on the number of map points observed in the latest image or video, as well as the distance and image disparity between the latest image or video and the nearest keyframe image image, and uniformly sample the image features of each newly registered key frame image to reduce the scale of map points, reduce the complexity of subsequent optimization, and improve reconstruction efficiency.
- FIG. 14B is a schematic diagram of the implementation flow of a map construction method provided by an embodiment of the present disclosure.
- the map construction method provided by the embodiment of the present application mainly includes the following processes: reconstruction initialization 141 , key frame selection 142, feature uniformization 143, local/global optimization adjustment 144.
- the implementation process of each process is described below:
- Reconstruction initialization The incremental reconstruction process can be started through the reconstruction initialization, and the quality of the reconstruction initialization greatly affects the robustness of the reconstruction.
- the length of the baseline between image pairs, feature matching and distribution of feature points should be considered during reconstruction initialization.
- the image pairs can be sorted according to the number of image matching points in the image pairs and the distribution of image feature points, and then each image pair is initialized. When the baseline between the image pairs is within a reasonable range, it can be determined that the image pair is initialized successfully. .
- Key frame selection refers to the selection of key frame images in the incremental reconstruction process.
- the key frame selection considers the following three aspects: a) the number of visible map points in the image; b) the image and the nearest key frame 3) The image disparity between the image and the nearest key frame.
- the number of map points visible in the image reflects the similarity of the scene.
- the adjacent frames of the image and the loopback frame can observe similar scenes with the image, so the loopback frame may not be considered, and the key frame image is limited to be determined only based on the adjacent frames of the image.
- the current image can be registered as a key frame image.
- the current image can be registered as a key frame image.
- Image parallax is mainly used to deal with the problem that the camera stays in a certain position for a long time, resulting in too small parallax between the collected images, resulting in poor quality of the reconstructed 3D map.
- Feature homogenization improves the problem of over-concentration of image features, reduces the complexity of global optimization, and improves computing efficiency.
- Feature points without map observations can be uniformly sampled.
- the sampling radius is reduced; otherwise, the sampling radius is increased until the number of sampled feature points is within a reasonable range (such as 900 ⁇ 2000).
- the time series structure information of the input data is fully utilized, and the key frame images of the image sequence or the video sequence are extracted under the condition of ensuring the continuity of the corresponding scene of the image/video sequence, which can reduce the data Redundancy, simplifying the operation scale, and greatly improving the reconstruction efficiency;
- the image feature homogenization operation it can reduce the over-concentration of features, reduce the complexity of optimizing the 3D map, and reduce the probability of image misregistration, Therefore, the accuracy and efficiency of map reconstruction can be improved;
- the map points generated by the map construction method provided by the embodiments of the present disclosure require less storage space, which is convenient for map storage and transmission.
- the reconstruction efficiency of the map construction method provided by the embodiment of the present disclosure can be improved by more than 5 times in a large scene.
- the present disclosure also provides device embodiments.
- FIG. 15 is a schematic structural diagram of a map construction device provided by an embodiment of the present disclosure, and the device includes:
- the first determining part 610 is configured to determine whether the newly registered image belongs to the key frame image according to the association feature between the newly registered image and the existing key frame image;
- the map update part 620 is configured to add new map points on the constructed three-dimensional map based on the newly determined key frame image each time.
- the first determination part includes: a third determination sub-part, configured to determine the newly registered image when the newly registered image does not belong to the loop closure frame corresponding to the existing key frame image The total number of target feature points included in the image; wherein, the target feature points are feature points that have corresponding map points on the constructed three-dimensional map; the fourth determination subsection is configured to When the total number of points is less than the preset number, it is determined that the newly registered image belongs to the key frame image.
- the first determining part includes: a fifth determining sub-part, configured to respectively determine the first coordinates and the second coordinate; wherein, the first key frame image is the key frame image whose acquisition time is closest to the newly registered image among the existing key frame images; the sixth determination subsection is configured to determine the first coordinate the first distance value between the second coordinate and the second coordinate; the seventh determination subsection is configured to determine that the newly registered image belongs to the key frame image under the condition that the first distance value meets the preset distance requirement .
- the preset distance requirement includes satisfying the corresponding relationship with the target distance value; the apparatus further includes: a second determining part configured to determine the camera respectively in the existing key frame image the third and fourth coordinates in the world coordinate system when collecting two temporally adjacent key frame images; the third determining part is configured to determine the third coordinate between the third coordinate and the fourth coordinate Two distance values; a fourth determination part, configured to determine the target distance value according to the second distance value.
- the first determining part includes: an eighth determining sub-part configured to determine an image parallax between the newly registered image and a first key frame image; wherein the first key frame image is Among the existing key frame images, the acquisition time is closest to the key frame image of the newly registered image; the ninth determination sub-section is configured to determine that the newly registered image belongs to a situation where the parallax of the image is greater than a preset parallax. the keyframe image.
- the map update part includes: an acquisition sub-section, configured to sample the newly determined feature points included in the key frame image to obtain a plurality of sampling points; a generation sub-section, configured to On the constructed three-dimensional map, new map points are generated according to the plurality of sampling points.
- the obtaining sub-section includes: a first determining unit configured to determine, among the newly determined feature points included in the key frame image, that are different from map points on the constructed three-dimensional map a matched second feature point; an acquiring unit configured to sample the second feature point on the newly determined key frame image to obtain the plurality of sampling points.
- the acquiring unit includes: an area dividing subunit, configured to divide a plurality of sampling areas on the newly determined key frame image according to a preset sampling radius; an acquiring subunit, configured to The second feature points included in the sampling regions are uniformly sampled to obtain the plurality of sampling points.
- the obtaining subunit is further configured to sample the same number of the second feature points in each sampling area, and obtain the plurality of sampling points whose total number satisfies a preset interval range.
- the apparatus further includes: a map optimization part configured to optimize the constructed three-dimensional map according to the at least one second key frame image.
- the apparatus further includes: a fifth determination part, configured to use the key frame image newly determined each time as the second key frame image; or a sixth determination part, configured to The secondly determined multiple key frame images are used as multiple second key frame images.
- the map optimization part includes: a tenth determination sub-part, configured to determine a weight value corresponding to at least one map point on the constructed three-dimensional map in each second key frame image;
- the eleventh determination subsection is configured to determine the loss function corresponding to the constructed three-dimensional map based on the corresponding weight value of the at least one map point in each of the second key frame images;
- the twelfth determination subsection is configured to In order to determine the camera pose parameter that minimizes the loss function;
- a thirteenth determination subsection is configured to update the at least one map point on the constructed three-dimensional map based on the camera pose parameter.
- the tenth determination subsection includes: a second determination unit configured to determine, in at least one map point on the constructed three-dimensional map, that there is no corresponding current second key frame image The first map point of the feature point and the second map point with the corresponding feature point; the third determination unit is configured to determine that the weight value corresponding to the first map point in the current second key frame image is 0 , determining that the weight value corresponding to the second map point in the current second key frame image is proportional to the target value.
- the apparatus further includes: a seventh determination part configured to determine the total number of third key frame images in the existing key frame images; wherein the second map point is in the There are corresponding feature points on the third key frame image; an eighth determining part is configured to determine the target value corresponding to the second map point based on the total number of the third key frame images.
- the apparatus further includes: a ninth determination part, configured to determine the feature points included in each key frame image in the existing key frame images; a matching part, configured to determine the existing key frame images Any two key frame images in the frame image are used as a group of image pairs, and the feature points of any group of image pairs are matched to determine the matching result; the map reconstruction initialization part is configured to, according to the matching result, perform matching for multiple groups of image pairs. After the image pairs are sorted in a pre-specified order, the three-dimensional map is reconstructed and initialized sequentially based on different image pairs; the map construction part is configured to construct a three-dimensional map based on the initialized image pairs that have been successfully reconstructed and initialized in the multiple groups of image pairs.
- a ninth determination part configured to determine the feature points included in each key frame image in the existing key frame images
- a matching part configured to determine the existing key frame images Any two key frame images in the frame image are used as a group of image pairs, and the feature points of any group of image pairs are matched
- a "part" may be a part of a circuit, a part of a processor, a part of a program or software, etc., of course, a unit, a module or a non-modularity.
- Embodiments of the present disclosure further provide a computer-readable storage medium, where the computer storage medium may be a volatile storage medium or a non-volatile storage medium; the storage medium stores a computer program, and the computer program is configured to execute any one of the above Some or all of the steps in the map construction method of .
- embodiments of the present disclosure provide a computer program product, the computer program product comprising a non-transitory computer-readable storage medium storing a computer program, and when the computer program is read and executed by a computer, Part or all of the steps of any one of the above-mentioned map construction methods are implemented.
- the computer program product can be specifically implemented by hardware, software or a combination thereof.
- the computer program product is embodied as a computer storage medium, and in some embodiments, the computer program product is embodied as a software product, such as a software development kit (Software Development Kit, SDK) and the like.
- An embodiment of the present disclosure further provides a computer program, the computer program includes computer-readable codes, and when the computer-readable codes are read and executed by a computer, a part of any one of the map construction methods described above is implemented or all steps.
- An embodiment of the present disclosure further provides a map construction device, including: a processor; a memory configured to store executable instructions of the processor; wherein the processor is configured to call the executable instructions stored in the memory to implement any of the above Some or all of the steps of a map construction method described in an item.
- FIG. 16 is a schematic diagram of a hardware structure of a map construction device according to an embodiment of the present disclosure.
- the map construction device 710 includes a processor 711 , and may further include an input device 712 , an output device 713 and a memory 714 .
- the input device 712, the output device 713, the memory 714 and the processor 711 are connected to each other through a bus.
- Memory includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read only memory (EPROM), or portable Read-only memory (compact disc read-only memory, CD-ROM), which is used to store related instructions and data.
- RAM random access memory
- ROM read-only memory
- EPROM erasable programmable read only memory
- CD-ROM compact disc read-only memory
- Input means are used for inputting data and/or signals, and output means are used for outputting data and/or signals.
- the output device and the input device can be independent devices or an integral device.
- the processor may include one or more processors, such as one or more central processing units (CPUs).
- processors such as one or more central processing units (CPUs).
- CPUs central processing units
- the CPU may be a single-core CPU, or a Multi-core CPU.
- Memory is used to store program codes and data for network devices.
- the processor is configured to call the program code and data in the memory to execute the steps in the above method embodiments.
- the processor is configured to call the program code and data in the memory to execute the steps in the above method embodiments.
- the processor is configured to call the program code and data in the memory to execute the steps in the above method embodiments.
- the description in the method embodiment please refer to the description in the method embodiment.
- Figure 16 only shows a simplified design of a map building device.
- the map construction device may also include other necessary elements, including but not limited to any number of input/output devices, processors, controllers, memories, etc., and all map construction devices that can implement the embodiments of the present disclosure All fall within the protection scope of the present disclosure.
- the embodiments of the present disclosure provide a map construction method and apparatus, device, storage medium, computer program product, and computer program, wherein the method includes: determining the whether the newly registered image belongs to a key frame image; each time a new map point is added to the constructed three-dimensional map based on the newly determined key frame image.
- the reconstruction of the three-dimensional map can be realized, and the redundancy of image data in the process of incremental reconstruction of the three-dimensional map can be reduced, the reconstruction scale can be simplified, and the reconstruction efficiency can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Graphics (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (36)
- 一种地图构建方法,所述方法由电子设备执行,包括:根据新注册图像与已有关键帧图像之间的关联特征,确定所述新注册图像是否属于关键帧图像;每次基于新确定的所述关键帧图像,在已构建的三维地图上增加新的地图点。
- 根据权利要求1所述的方法,其中,所述根据新注册图像与已有关键帧图像之间的关联特征,确定所述新注册图像是否属于关键帧图像,包括:确定所述新注册图像是否属于所述已有关键帧图像对应的回环帧;在所述新注册图像属于所述已有关键帧图像对应的回环帧的情况下,确定所述新注册图像属于所述关键帧图像。
- 根据权利要求1或2所述的方法,其中,所述根据新注册图像与已有关键帧图像之间的关联特征,确定所述新注册图像是否属于关键帧图像,包括:在所述新注册图像不属于所述已有关键帧图像对应的回环帧的情况下,确定所述新注册图像所包括的目标特征点的总数目;其中,所述目标特征点是在所述已构建的三维地图上存在对应的地图点的特征点;在所述目标特征点的总数目小于预设数目的情况下,确定所述新注册图像属于所述关键帧图像。
- 根据权利要求1-3任一项所述的方法,其中,所述根据新注册图像与已有关键帧图像之间的关联特征,确定所述新注册图像是否属于关键帧图像,包括:分别确定相机在采集所述新注册图像以及第一关键帧图像时,在世界坐标系中的第一坐标和第二坐标;其中,所述第一关键帧图像是所述已有关键帧图像中采集时间最接近所述新注册图像的关键帧图像;确定所述第一坐标和所述第二坐标之间的第一距离值;在所述第一距离值满足预设距离要求的情况下,确定所述新注册图像属于所述关键帧图像。
- 根据权利要求4所述的方法,其中,所述预设距离要求包括满足与目标距离值的对应关系;所述方法还包括:在所述已有关键帧图像中,分别确定所述相机在采集时间相邻的两张关键帧图像时,在世界坐标系中的第三坐标和第四坐标;确定所述第三坐标和所述第四坐标之间的第二距离值;根据所述第二距离值确定所述目标距离值。
- 根据权利要求1-5任一项所述的方法,其中,所述根据新注册图像与已有关键帧图像之间的关联特征,确定所述新注册图像是否属于关键帧图像,包括:确定所述新注册图像与第一关键帧图像之间的图像视差;其中,所述第一关键帧图像是所述已有关键帧图像中采集时间最接近所述新注册图像的关键帧图像;在所述图像视差大于预设视差的情况下,确定所述新注册图像属于所述关键帧图像。
- 根据权利要求1-6任一项所述的方法,其中,所述每次基于新确定的所述关键帧图像,在已构建的三维地图上增加新的地图点,包括:对新确定的所述关键帧图像所包括的特征点进行采样,获得多个采样点;在已构建的三维地图上,根据所述多个采样点生成新的地图点。
- 根据权利要求7所述的方法,其中,所述对新确定的所述关键帧图像所包括的特征点进行采样,获得多个采样点,包括:在新确定的所述关键帧图像所包括的特征点 中,确定与已构建的所述三维地图上的地图点不匹配的第二特征点;在新确定的所述关键帧图像上,对所述第二特征点进行采样,获得所述多个采样点。
- 根据权利要求8所述的方法,其中,所述在新确定的所述关键帧图像上,对所述第二特征点进行采样,获得所述多个采样点,包括:在新确定的所述关键帧图像上,根据预设采样半径,划分多个采样区域;对每个采样区域所包括的所述第二特征点进行均匀采样,获得所述多个采样点。
- 根据权利要求9所述的方法,其中,所述对每个采样区域所包括的所述第二特征点进行均匀采样,获得所述多个采样点,包括:在所述每个采样区域内采样相同数目的所述第二特征点,获得总数目满足预设区间范围的所述多个采样点。
- 根据权利要求1-10任一项所述的方法,其中,所述方法还包括:根据至少一张第二关键帧图像,对已构建的三维地图进行优化。
- 根据权利要求11所述的方法,其中,所述方法还包括:将每次新确定的所述关键帧图像作为所述第二关键帧图像;或将分多次确定的多张所述关键帧图像作为多张第二关键帧图像。
- 根据权利要求11或12所述的方法,其中,所述根据至少一张第二关键帧图像,对已构建的三维地图进行优化,包括:确定所述已构建的三维地图上的至少一个地图点在每张第二关键帧图像中对应的权重值;基于所述至少一个地图点在所述每张第二关键帧图像中对应的权重值,确定已构建的三维地图对应的损失函数;确定使得所述损失函数最小的相机位姿参数;基于所述相机位姿参数,更新所述已构建的三维地图上的所述至少一个地图点。
- 根据权利要求13所述的方法,其中,所述确定所述已构建的三维地图上的至少一个地图点在每张第二关键帧图像中对应的权重值,包括:在所述已构建的三维地图上的至少一个地图点中,确定在当前第二关键帧图像中不存在对应的特征点的第一地图点和存在对应的特征点的第二地图点;确定所述第一地图点在所述当前第二关键帧图像中对应的权重值为0,确定所述第二地图点在所述当前第二关键帧图像中对应的所述权重值与目标值成正比。
- 根据权利要求14所述的方法,其中,所述方法还包括:在所述已有关键帧图像中,确定第三关键帧图像的总数目;其中,所述第二地图点在所述第三关键帧图像上存在对应的特征点;基于所述第三关键帧图像的总数目,确定与所述第二地图点对应的所述目标值。
- 根据权利要求1-15任一项所述的方法,其中,所述方法还包括:确定所述已有关键帧图像中每张关键帧图像所包括的特征点;将所述已有关键帧图像中的任意两张关键帧图像作为一组图像对,对任意一组图像对的特征点进行匹配,确定匹配结果;根据所述匹配结果,对多组图像对按照预先指定的顺序排序后,顺序基于不同图像对进行三维地图的重建初始化;基于所述多组图像对中重建初始化成功的初始化图像对,构建三维地图。
- 一种地图构建装置,所述装置包括:第一确定部分,配置为根据新注册图像与已有关键帧图像之间的关联特征,确定所述新注册图像是否属于关键帧图像;地图更新部分,配置为每次基于新确定的所述关 键帧图像,在已构建的三维地图上增加新的地图点。
- 根据权利要求17所述的装置,其中,所述第一确定部分包括:第一确定子部分,配置为确定所述新注册图像是否属于所述已有关键帧图像对应的回环帧;第二确定子部分,配置为在所述新注册图像属于所述已有关键帧图像对应的回环帧的情况下,确定所述新注册图像属于所述关键帧图像。
- 根据权利要求17或18所述的装置,其中,所述第一确定部分包括:第三确定子部分,配置为在所述新注册图像不属于所述已有关键帧图像对应的回环帧的情况下,确定所述新注册图像所包括的目标特征点的总数目;其中,所述目标特征点是在所述已构建的三维地图上存在对应的地图点的特征点;第四确定子部分,配置为在所述目标特征点的总数目小于预设数目的情况下,确定所述新注册图像属于所述关键帧图像。
- 根据权利要求17-19中任一项所述的装置,其中,所述第一确定部分包括:第五确定子部分,配置为分别确定相机在采集所述新注册图像以及第一关键帧图像时,在世界坐标系中的第一坐标和第二坐标;其中,所述第一关键帧图像是所述已有关键帧图像中采集时间最接近所述新注册图像的关键帧图像;第六确定子部分,配置为确定所述第一坐标和所述第二坐标之间的第一距离值;第七确定子部分,配置为在所述第一距离值满足预设距离要求的情况下,确定所述新注册图像属于所述关键帧图像。
- 根据权利要求20所述的装置,其中,所述预设距离要求包括满足与目标距离值的对应关系;所述装置还包括:第二确定部分,配置为在所述已有关键帧图像中,分别确定所述相机在采集时间相邻的两张关键帧图像时,在世界坐标系中的第三坐标和第四坐标;第三确定部分,配置为确定所述第三坐标和所述第四坐标之间的第二距离值;第四确定部分,配置为根据所述第二距离值确定所述目标距离值。
- 根据权利要求17-21中任一项所述的装置,其中,所述第一确定部分包括:第八确定子部分,配置为确定所述新注册图像与第一关键帧图像之间的图像视差;其中,所述第一关键帧图像是所述已有关键帧图像中采集时间最接近所述新注册图像的关键帧图像;第九确定子部分,配置为在所述图像视差大于预设视差的情况下,确定所述新注册图像属于所述关键帧图像。
- 根据权利要求17-21中任一项所述的装置,其中,所述地图更新部分包括:获取子部分,配置为对新确定的所述关键帧图像所包括的特征点进行采样,获得多个采样点;生成子部分,配置为在已构建的三维地图上,根据所述多个采样点生成新的地图点。
- 根据权利要求23所述的装置,其中,所述获取子部分包括:第一确定单元,配置为在新确定的所述关键帧图像所包括的特征点中,确定与已构建的所述三维地图上的地图点不匹配的第二特征点;获取单元,配置为在新确定的所述关键帧图像上,对所述第二特征点进行采样,获得所述多个采样点。
- 根据权利要求24所述的装置,其中,所述获取单元包括:区域划分子单元,配置为在新确定的所述关键帧图像上,根据预设采样半径,划分多个采样区域;获取子单元,配置为对每个采样区域所包括的所述第二特征点进行均匀采样,获得所述多个采样点。
- 根据权利要求25所述的装置,其中,所述获取子单元还配置为在所述每个采 样区域内采样相同数目的所述第二特征点,获得总数目满足预设区间范围的所述多个采样点。
- 根据权利要求17-26中任一项所述的装置,其中,所述装置还包括:地图优化部分,配置为根据至少一张第二关键帧图像,对已构建的三维地图进行优化。
- 根据权利要求27所述的装置,其中,所述装置还包括:第五确定部分,配置为将每次新确定的所述关键帧图像作为所述第二关键帧图像;或第六确定部分,配置为将分多次确定的多张所述关键帧图像作为多张第二关键帧图像。
- 根据权利要求27或28所述的装置,其中,所述地图优化部分包括:第十确定子部分,配置为确定所述已构建的三维地图上的至少一个地图点在每张第二关键帧图像中对应的权重值;第十一确定子部分,配置为基于所述至少一个地图点在所述每张第二关键帧图像中对应的权重值,确定已构建的三维地图对应的损失函数;第十二确定子部分,配置为确定使得所述损失函数最小的相机位姿参数;第十三确定子部分,配置为基于所述相机位姿参数,更新所述已构建的三维地图上的所述至少一个地图点。
- 根据权利要求29所述的装置,其中,所述第十确定子部分包括:第二确定单元,配置为在所述已构建的三维地图上的至少一个地图点中,确定在当前第二关键帧图像中不存在对应的特征点的第一地图点和存在对应的特征点的第二地图点;第三确定单元,配置为确定所述第一地图点在所述当前第二关键帧图像中对应的权重值为0,确定所述第二地图点在所述当前第二关键帧图像中对应的所述权重值与目标值成正比。
- 根据权利要求30所述的装置,其中,所述装置还包括:第七确定部分,配置为在所述已有关键帧图像中,确定第三关键帧图像的总数目;其中,所述第二地图点在所述第三关键帧图像上存在对应的特征点;第八确定部分,配置为基于所述第三关键帧图像的总数目,确定与所述第二地图点对应的所述目标值。
- 根据权利要求17-31中任一项所述的装置,其中,所述装置还包括:第九确定部分,配置为确定所述已有关键帧图像中每张关键帧图像所包括的特征点;匹配部分,配置为将所述已有关键帧图像中的任意两张关键帧图像作为一组图像对,对任意一组图像对的特征点进行匹配,确定匹配结果;地图重建初始化部分,配置为根据所述匹配结果,对多组图像对按照预先指定的顺序排序后,顺序基于不同图像对进行三维地图的重建初始化;地图构建部分,配置为基于所述多组图像对中重建初始化成功的初始化图像对,构建三维地图。
- 一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-16任一项所述的地图构建方法。
- 一种地图构建设备,包括:处理器;用于存储所述处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器中存储的可执行指令,实现权利要求1-16中任一项所述的地图构建方法。
- 一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序被计算机读取并执行时,实现如权利要求1-16中任一项所述的地图构建方法。
- 一种计算机程序,包括计算机可读代码,在所述计算机可读代码被计算机读取并执行的情况下,实现如权利要求1-16中任一项所述的地图构建方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011599715.5A CN112614185B (zh) | 2020-12-29 | 2020-12-29 | 地图构建方法及装置、存储介质 |
CN202011599715.5 | 2020-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022142049A1 true WO2022142049A1 (zh) | 2022-07-07 |
Family
ID=75249118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/092114 WO2022142049A1 (zh) | 2020-12-29 | 2021-05-07 | 地图构建方法及装置、设备、存储介质、计算机程序产品 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112614185B (zh) |
WO (1) | WO2022142049A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115655291A (zh) * | 2022-09-28 | 2023-01-31 | 重庆中科汽车软件创新中心 | 激光slam闭环建图的方法、装置、移动机器人、设备及介质 |
CN116958267A (zh) * | 2023-09-21 | 2023-10-27 | 腾讯科技(深圳)有限公司 | 位姿处理方法、装置、电子设备及存储介质 |
CN117953117A (zh) * | 2022-10-20 | 2024-04-30 | 滴图(北京)科技有限公司 | 用于场景重建的方法、装置、设备、存储介质和程序产品 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112614185B (zh) * | 2020-12-29 | 2022-06-21 | 浙江商汤科技开发有限公司 | 地图构建方法及装置、存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103247075A (zh) * | 2013-05-13 | 2013-08-14 | 北京工业大学 | 基于变分机制的室内环境三维重建方法 |
US20180040137A1 (en) * | 2015-09-17 | 2018-02-08 | Skycatch, Inc. | Generating georeference information for aerial images |
CN109816769A (zh) * | 2017-11-21 | 2019-05-28 | 深圳市优必选科技有限公司 | 基于深度相机的场景地图生成方法、装置及设备 |
CN110610520A (zh) * | 2019-08-29 | 2019-12-24 | 中德(珠海)人工智能研究院有限公司 | 一种基于双球幕相机的视觉定位方法及系统 |
CN111968129A (zh) * | 2020-07-15 | 2020-11-20 | 上海交通大学 | 具有语义感知的即时定位与地图构建系统及方法 |
CN112614185A (zh) * | 2020-12-29 | 2021-04-06 | 浙江商汤科技开发有限公司 | 地图构建方法及装置、存储介质 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103413322B (zh) * | 2013-07-16 | 2015-11-18 | 南京师范大学 | 序列视频关键帧提取方法 |
CN106846467B (zh) * | 2017-01-23 | 2020-05-05 | 阿依瓦(北京)技术有限公司 | 基于每个相机位置优化的实体场景建模方法和系统 |
CN107369183A (zh) * | 2017-07-17 | 2017-11-21 | 广东工业大学 | 面向mar的基于图优化slam的跟踪注册方法及系统 |
CN110276826A (zh) * | 2019-05-23 | 2019-09-24 | 全球能源互联网研究院有限公司 | 一种电网作业环境地图的构建方法及系统 |
CN111325842B (zh) * | 2020-03-04 | 2023-07-28 | Oppo广东移动通信有限公司 | 地图构建方法、重定位方法及装置、存储介质和电子设备 |
CN111795704B (zh) * | 2020-06-30 | 2022-06-03 | 杭州海康机器人技术有限公司 | 一种视觉点云地图的构建方法、装置 |
-
2020
- 2020-12-29 CN CN202011599715.5A patent/CN112614185B/zh active Active
-
2021
- 2021-05-07 WO PCT/CN2021/092114 patent/WO2022142049A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103247075A (zh) * | 2013-05-13 | 2013-08-14 | 北京工业大学 | 基于变分机制的室内环境三维重建方法 |
US20180040137A1 (en) * | 2015-09-17 | 2018-02-08 | Skycatch, Inc. | Generating georeference information for aerial images |
CN109816769A (zh) * | 2017-11-21 | 2019-05-28 | 深圳市优必选科技有限公司 | 基于深度相机的场景地图生成方法、装置及设备 |
CN110610520A (zh) * | 2019-08-29 | 2019-12-24 | 中德(珠海)人工智能研究院有限公司 | 一种基于双球幕相机的视觉定位方法及系统 |
CN111968129A (zh) * | 2020-07-15 | 2020-11-20 | 上海交通大学 | 具有语义感知的即时定位与地图构建系统及方法 |
CN112614185A (zh) * | 2020-12-29 | 2021-04-06 | 浙江商汤科技开发有限公司 | 地图构建方法及装置、存储介质 |
Non-Patent Citations (1)
Title |
---|
CUI, LIYANG: "Autonomous Robot Navigation System Based on Embedded Vision", MASTER THESIS, 1 May 2017 (2017-05-01), CN, pages 1 - 76, XP009538134 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115655291A (zh) * | 2022-09-28 | 2023-01-31 | 重庆中科汽车软件创新中心 | 激光slam闭环建图的方法、装置、移动机器人、设备及介质 |
CN117953117A (zh) * | 2022-10-20 | 2024-04-30 | 滴图(北京)科技有限公司 | 用于场景重建的方法、装置、设备、存储介质和程序产品 |
CN116958267A (zh) * | 2023-09-21 | 2023-10-27 | 腾讯科技(深圳)有限公司 | 位姿处理方法、装置、电子设备及存储介质 |
CN116958267B (zh) * | 2023-09-21 | 2024-01-12 | 腾讯科技(深圳)有限公司 | 位姿处理方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112614185B (zh) | 2022-06-21 |
CN112614185A (zh) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022142049A1 (zh) | 地图构建方法及装置、设备、存储介质、计算机程序产品 | |
WO2020259248A1 (zh) | 基于深度信息的位姿确定方法、装置、介质与电子设备 | |
JP2023540917A (ja) | 3次元再構成及び関連インタラクション、測定方法及び関連装置、機器 | |
WO2019205852A1 (zh) | 确定图像捕捉设备的位姿的方法、装置及其存储介质 | |
TWI745818B (zh) | 視覺定位方法、電子設備及電腦可讀儲存介質 | |
US20240046557A1 (en) | Method, device, and non-transitory computer-readable storage medium for reconstructing a three-dimensional model | |
WO2020259481A1 (zh) | 定位方法及装置、电子设备、可读存储介质 | |
CN112927363B (zh) | 体素地图构建方法及装置、计算机可读介质和电子设备 | |
CN109658445A (zh) | 网络训练方法、增量建图方法、定位方法、装置及设备 | |
CN111127524A (zh) | 一种轨迹跟踪与三维重建方法、系统及装置 | |
Irschara et al. | Towards wiki-based dense city modeling | |
WO2021136386A1 (zh) | 数据处理方法、终端和服务器 | |
CN111784776B (zh) | 视觉定位方法及装置、计算机可读介质和电子设备 | |
JP7280393B2 (ja) | 視覚位置決め方法、関連モデルの訓練方法及び関連装置並びに機器 | |
CN111833447A (zh) | 三维地图构建方法、三维地图构建装置及终端设备 | |
WO2022033111A1 (zh) | 图像信息提取方法、训练方法及装置、介质和电子设备 | |
CN111323024A (zh) | 定位方法及装置、设备、存储介质 | |
CN107610219B (zh) | 三维场景重构中几何线索感知的像素级点云稠密化方法 | |
CN114565728A (zh) | 地图构建方法、位姿确定方法及相关装置、设备 | |
Jung et al. | Efficient mobile AR technology using scalable recognition and tracking based on server-client model | |
WO2023221790A1 (zh) | 图像编码器的训练方法、装置、设备及介质 | |
CN109961103B (zh) | 特征提取模型的训练方法、图像特征的提取方法及装置 | |
CN114882106A (zh) | 位姿确定方法和装置、设备、介质 | |
US11127199B2 (en) | Scene model construction system and scene model constructing method | |
CN112270748A (zh) | 基于图像的三维重建方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21912810 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21912810 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.02.2024) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21912810 Country of ref document: EP Kind code of ref document: A1 |