WO2022141529A1 - 馈电网络、天线、天线系统、基站及波束赋形方法 - Google Patents

馈电网络、天线、天线系统、基站及波束赋形方法 Download PDF

Info

Publication number
WO2022141529A1
WO2022141529A1 PCT/CN2020/142428 CN2020142428W WO2022141529A1 WO 2022141529 A1 WO2022141529 A1 WO 2022141529A1 CN 2020142428 W CN2020142428 W CN 2020142428W WO 2022141529 A1 WO2022141529 A1 WO 2022141529A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
phase
outputs
phase shifter
feeding network
Prior art date
Application number
PCT/CN2020/142428
Other languages
English (en)
French (fr)
Inventor
廖志强
肖伟宏
汪利标
谢国庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/142428 priority Critical patent/WO2022141529A1/zh
Priority to EP20967867.1A priority patent/EP4258476A4/en
Priority to CN202080108164.XA priority patent/CN116783777A/zh
Publication of WO2022141529A1 publication Critical patent/WO2022141529A1/zh
Priority to US18/344,513 priority patent/US20230352833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • H01Q3/38Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters the phase-shifters being digital

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a feeder network, an antenna including the feeder network, an antenna system including the antenna, a base station, and a beamforming method.
  • the base station antenna is the connection device between the mobile user terminal and the radio frequency front end of the wireless network, and is mainly used for cell coverage of wireless signals.
  • the base station antenna usually includes an array antenna, a feeding network and an antenna port.
  • the array antenna is composed of several independent arrays composed of radiating elements of different frequencies, and the radiating elements of each column transmit and receive or transmit radio frequency signals through their respective feeding networks.
  • the feeding network can realize different radiation beam directions through the transmission components, or connect with the calibration network to obtain the calibration signal required by the system. There may also be modules such as combiners and filters for extending performance between the feed network and the antenna port.
  • the base station antenna together with the transceiver (TRX) connected to it, constitutes the antenna system of the base station.
  • a remote radio unit (RRU) is used as an example of the TRX for description in the following.
  • the number of antenna ports of the base station antenna is matched with the number of ports of the RRU. For example, if an 8-port RRU is to be matched, that is, 8T8R RRU (representing an 8-port RRU, each port implements a transceiver function), the antenna port of the base station antenna The number also needs to be 8.
  • each column of dual-polarized antennas corresponds to two columns of antennas to achieve diversity reception, so each column of dual-polarized antennas needs to use two antenna ports.
  • an 8-port RRU that is, an 8T8R RRU, it can only match the base station antenna with 4 columns of dual-polarized antennas (corresponding to 8 antenna ports), but cannot match the 8-column dual-polarized antenna (corresponding to 8 antenna ports).
  • Base station antenna corresponding to 16 antenna ports).
  • the 4-column antenna is used for beam forming (BF)
  • the horizontal spacing of approximately 0.5 wavelengths needs to be maintained between each column to achieve beam forming, resulting in the width of the array antenna.
  • a 16-port RRU is used, that is, a 16T16R RRU, it can match 8 columns of dual-polarized antennas.
  • the beamforming gain is high, the cost of the RRU is also very high. Logically, the cost of the 8-port RRU is doubled, resulting in cost performance. insufficient.
  • the present application provides a feeder network, an antenna including the feeder network, an antenna system including the antenna, a base station, and a beamforming method, so as to realize more rows of antennas and fewer ports matching of the transceiver.
  • a first aspect of the present application provides a feeder network, the feeder network has one input and two outputs, and one of the two outputs includes a phase shifter; the phase shifter The device has a first working state, and the first working state means: among the phase differences of the two output signals, the phase differences of the signals of at least two frequency bands are different.
  • the feeding network can realize the correspondence of two columns of antennas to one antenna port, so that a transceiver (TRX) with fewer ports, such as a remote radio unit (RRU), can be used to adapt to a larger number of columns.
  • TRX transceiver
  • RRU remote radio unit
  • Antenna array that is, to achieve the matching of more columns of antennas and transceivers with fewer ports mentioned in the background art, thus solving the problem of how to achieve a larger signal coverage area at a lower cost mentioned in the background art. technical problem.
  • the carrier phases of different frequency bands are different, so that the spatial distribution of the beamforming corresponding to different frequency bands is different, and the spatial complementarity is formed, which increases the coverage of the beamforming in one time slot. space.
  • the improvement lies in that a phase shifter is added, and the phase shifter can make the corresponding two outputs have a phase difference, which is more conducive to the control of beamforming.
  • the different phase differences of the signals of the at least two frequency bands include: the phase difference of the signals of each frequency band changes with the change of the frequency of each frequency band.
  • the phase changes with the frequency correlation of the frequency band, and the phase of signals in different frequency bands (such as different sub-carriers corresponding to different frequency bands) can be different, so that the beamforming corresponding to different frequency bands is distributed differently in space, and the formation of space
  • the complementation of the above increases the coverage space of the beamforming.
  • the rate of change of the phase difference with the frequency of each frequency band is not less than 0.5.
  • the value of the rate of change should be such that when the antenna radiates another frequency band, the signal phase of this frequency band can be significantly different from the signal phase of the original frequency band, so that signals in different frequency bands (such as different subcarriers corresponding to different frequency bands) ) can be obviously complementary in space, and the value of 0.5 can meet this requirement.
  • the change rate may be the slope of an oblique line, or the slope of a polyline that is inclined as a whole.
  • the phase shifter further has a second working state, and the second working state causes the two outputs to have a set phase difference.
  • the working state of the phase shifter can realize beamforming with different directions in different time slots when switching between different time slots.
  • the spatial distribution of the beamforming in different time slots is different, and the spatial complementarity is formed, which increases the coverage space of the beamforming.
  • the phases of signals in different frequency bands eg, different subcarriers corresponding to different frequency bands
  • the phase shifter makes the set phase difference of the two outputs include: 0 degrees, 90 degrees or 180 degrees.
  • phase difference that the phase shifter makes the two outputs have.
  • the phase difference of signals in at least one of the frequency bands remains unchanged.
  • a second aspect of the present application provides an antenna, including an array antenna, an antenna port, and any one of the above-mentioned feeding networks;
  • the array antenna includes a plurality of radiating elements
  • Each output of each of the feeding networks is respectively connected to at least one radiating element in the array antenna;
  • Each input of each of the feeding networks is connected to an antenna port.
  • the number of antenna array columns of the antenna of the present application is more than the number of antenna ports, so that the TRX corresponding to the number of antenna ports, such as RRU, can be adapted, that is, an antenna array with more columns can be realized.
  • the antenna adapts to the RRU with fewer ports.
  • the technical problem of how to achieve a larger signal coverage area at a lower cost mentioned in the background art is solved.
  • the upper phase shifter of the feeding network of the present application is reduced by half, the cost is reduced, and the insertion loss is also reduced.
  • the improvement lies in that a phase shifter is added, and the phase shifter can be used to make the corresponding two outputs have a phase difference, which is more conducive to beamforming.
  • the antenna has the advantages described in the above-mentioned feeding network, which will not be repeated here.
  • the plurality of radiating elements of the array antenna constitute at least M rows of radiating elements
  • the two outputs of the nth feed network are respectively connected to the nth column of radiation elements and the (n+M/2)th column of radiation elements in the M columns of radiation elements
  • the phase shifter is included on one output connected to the (n+M/2)th column of radiation units; wherein, n ⁇ N, and n ⁇ N/2.
  • each feed network is carried out according to the above rules, and the output equivalent circuit of each feed network with a phase shifter is the same, so each feed network can use the same control
  • the method controls each beamforming, which is more convenient for the beamforming control.
  • a third aspect of the present application provides an antenna system, including a transceiver and any one of the above-mentioned antennas; each port of the transceiver is correspondingly connected to each of the antenna ports.
  • the transceiver includes a remote radio unit.
  • the antenna system has the advantages of the above-mentioned antennas, which will not be repeated here.
  • a fourth aspect of the present application provides a base station, comprising: a pole, the antenna described in any one of the above, or the antenna system described in any one of the above; the antenna is fixed on the pole.
  • the base station has the advantages of the above-mentioned antenna or antenna system, which will not be repeated here.
  • a fifth aspect of the present application provides a beamforming method based on the antenna described in the second aspect, including:
  • the phase difference of the signals of the at least two frequency bands radiated by the two channels is different.
  • the beamforming method uses the phase shifter to make the phase difference of the two output signals in a state of change, and changes with the change of the frequency of the frequency band, so that when the antenna is radiating sub-carriers in different frequency bands, the Due to the change of the phase difference of the subcarriers in different frequency bands, the corresponding different beamformings have different spatial distributions, and form spatial complementarity, which increases the coverage space of the beamforming.
  • the antenna of the present application doubles the number of antenna columns without increasing the RRU port, which is logically equivalent to an increase in the gain of the antenna bandwidth by 3dB.
  • the uplink is limited due to the time slot ratio, and only one state beam can be uploaded at each moment. If the user distribution is very uniform, only by combining two channels into one channel, It is impossible to achieve all-user connection, and further, the phase difference between the two outputs of the sub-carriers of each frequency band is in a state of change, so as to realize the change of the formed beam direction, so as to increase the spatial coverage of the beamforming and realize the connection of more users. enter. That is, when the distribution in the user space is uneven, the phase difference between the two outputs can be fixed at 0, 90, 180, or the phase difference is any one of the changing states. When the distribution in the user space is very uniform, use each The phase difference of the sub-carriers of the frequency band in the two outputs is the beam corresponding to the changing state, so that more users can be connected to the uplink.
  • TDD time division duplex
  • FIG. 1 is a schematic diagram of a first embodiment of a mobile communication system of the present application
  • FIG. 2 is a schematic diagram of a first embodiment of a base station of the present application
  • 3A is a schematic diagram of an arrangement of an array antenna and antenna ports provided by an embodiment of the present application.
  • 3B is a schematic diagram of a connection between a feeding network and an array antenna provided by an embodiment of the present application
  • phase shifter 4 is a schematic diagram of beam space coverage of different time slots when the phase shifter is in a non-X-degree phase state in an embodiment of the present application;
  • FIG. 5 is a schematic diagram of beam space coverage of two subcarriers with different phases in the same time slot when the phase shifter is in an X degree phase state in the embodiment of the present application;
  • 6A is a first schematic diagram of the phase of each frequency band subcarrier changing with frequency when the phase shifter is in an X-degree phase state in the embodiment of the present application;
  • 6B is a second schematic diagram of the phase of each frequency band subcarrier changing with frequency when the phase shifter is in an X-degree phase state in the embodiment of the present application;
  • 6C is a third schematic diagram of the phase of each frequency band subcarrier changing with frequency when the phase shifter is in an X-degree phase state in the embodiment of the present application;
  • FIG. 6D is a detailed schematic diagram corresponding to FIG. 6A in an embodiment of the present application.
  • 6E is a schematic diagram of the same phase of subcarriers in each frequency band when the phase shifter is in a non-X-degree phase state in the embodiment of the present application;
  • FIG. 7 is a schematic diagram of an equivalent circuit of a feeding network in an embodiment of the present application.
  • FIG. 8A is a schematic diagram of an antenna array in an embodiment of the present application.
  • FIG. 8B is a schematic diagram of the connection between the feeding network and the antenna array in the embodiment of the present application.
  • 9A is a beamforming diagram in the horizontal plane direction when the phase shifter makes the two outputs of the feeding network have a phase difference of 0 degrees in the embodiment of the present application;
  • 9B is a beamforming diagram in the horizontal plane direction when the phase shifter makes the two outputs of the feeding network have a phase difference of 90 degrees in the embodiment of the present application;
  • 9C is a beamforming diagram in the horizontal plane direction when the phase shifter in the embodiment of the present application makes the two outputs of the feeding network have a phase difference of 180 degrees;
  • 9D is a beamforming diagram in the horizontal plane direction when two subcarriers with different phases are formed when the phase shifter makes the two outputs of the feeding network have a phase difference of X degrees in the embodiment of the present application;
  • FIG. 10 is a flowchart of a beamforming method in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an antenna with a phase shifter according to prior art one
  • Fig. 12 is the schematic diagram that the BUTLER network of prior art two is connected with the antenna;
  • FIG. 13 is a schematic diagram illustrating whether an antenna port and an RRU port are matched in the background art.
  • Array antenna An antenna system that works through a feeding network is composed of several identical radiating elements arranged according to certain geometric rules.
  • Radio Remote Unit It is a device that converts baseband optical signals into radio frequency signals at the remote end.
  • BBU Baseband Unit
  • the inherent frequency band (frequency bandwidth) of the original electrical signal without modulation (spectrum shifting and transformation) sent by the source is called the basic frequency band, or baseband for short; BBU is the processing Generic term for device modules of baseband signals.
  • Power divider Also known as power divider, it is a device that divides the energy of one input signal into two or multiple outputs of equal or unequal energy, and can also synthesize the energy of multiple signals in turn. One output can also be called a combiner at this time.
  • Combiner It is a device that combines multiple signal energy into one output; as above, the power divider can be used as a combiner when it is used in reverse.
  • phase shifter is to make the phase from the input signal of the device to the output signal change in some way to realize the change in the beamforming pattern (ie the antenna pattern).
  • the phase shifter in the embodiment of the present application may adopt a digital phase shifter.
  • the 4 phase states are 0 degree, 90 degree, 180 degree, and X degree phase state.
  • the phase shifter in an X-degree phase state is referred to as the first working state of the phase shifter
  • the phase shifter in a non-X-degree phase state (eg, in a state of 0 degrees, 90 degrees, and 180 degrees) is referred to as a phase shifter.
  • the second working state of the phase device is to make the phase from the input signal of the device to the output signal change in some way to realize the change in the beamforming pattern (ie the antenna pattern).
  • the phase shifter in the embodiment of the present application may adopt a digital phase shifter.
  • the 4 phase states are 0 degree, 90 degree, 180 degree, and X degree phase state.
  • Feeding network It can be used to beamform the transmitted signal, including changing the beam width, shape and beam pointing of the beam.
  • the feed network includes a vertical dimension feed network and a horizontal dimension feed network.
  • Each column of the array antenna corresponds to a feeding network with multiple vertical dimensions, which feeds each radiating element group arranged vertically in the column, which can be used to form a beamforming diagram of the horizontal plane (the beamforming diagram shown in Figure 9A is Fig. 8A shows the five groups of radiation elements in the first column and the five groups of radiation elements in the fifth column of the antenna array, when the phase difference corresponding to the two columns is 0, the beamforming diagrams formed).
  • Each output of the feed network in the horizontal dimension is connected to each column of antennas, and each input is connected to each of the antenna ports. Since the feeding network in the horizontal dimension involves the number of antenna ports, the feeding networks in the embodiments of the present application all refer to the feeding network in the horizontal dimension unless otherwise specified.
  • BUTLER network It is a feeder network.
  • Working frequency band that is, the working frequency range.
  • the working frequency band is divided into different frequency bands, and each frequency band corresponds to a sub-carrier.
  • the working frequency band of 100 megabits is divided into 5 frequency bands per 20 megabits. , corresponding to 5 subcarriers respectively.
  • FIG. 11 shows an antenna with a phase shifter.
  • each input in the feed network 111 is converted into two outputs, and each output is connected to the antenna array 113 through the phase shifter 112 .
  • the first problem in the prior art is: since each output is provided with a phase shifter 112, the entire system is relatively complex; on the other hand, the number of phase shifters 112 is large, resulting in high overall loss.
  • one channel is converted into two channels of output and output by a phase shifter, the phase difference between the two channels of output is a phase difference that does not change with the frequency, that is, the signal of the antenna connected to the two channels of output changes when the frequency band changes. , the phase difference of the sub-carriers of the two outputs in each frequency band does not change accordingly.
  • a BUTLER network In the patent application with the international publication number WO103855A2 and the invention name as antenna and base station, a BUTLER network is provided.
  • the structure of the BUTLER network shown in FIG. 12 there are two input ports and four output ports, which are used to connect with the array antenna.
  • the first and third ports of the output ports of the BUTLER network are connected, and the second and third Four-port connection.
  • the BUTLER network can realize the connection of two input ports and four output ports.
  • each input port needs to send signals to two sub-networks that convert from one channel to two channels, and each sub-network that converts one channel to two channels does not have a phase shifter.
  • the present application proposes an improved antenna scheme, which uses a feed network with one input to two outputs to connect two columns of the array antenna, thereby reducing the number of antenna ports by half.
  • a phase shifter is set on one of the two outputs of the feeding network, which can be used to adjust the phase difference of the two outputs, and the phase difference includes at least two states, and in one of the states, the two outputs
  • the phase difference of the signals of each frequency band changes with the frequency of the two outputs corresponding to each frequency band, so that when the frequency bands of the two antenna signals corresponding to the two outputs change, the phase of the signal also changes, thereby generating beams with different directions. Carry out spatial coverage to increase the coverage space of the cellular sector.
  • the antennas provided in the embodiments of the present application are suitable for mobile communication systems, and the mobile communication systems here include but are not limited to: Global System of Mobile communication (GSM) system, Code Division Multiple Access (Code Division Multiple Access, CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (Long Term Evolution, LTE) system, LTE Frequency Division Duplex (Frequency Division) Duplex, FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, future The fifth generation (5th Generation, 5G) system or the new wireless (New Radio, NR) and so on.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE Frequency Division Duplex Frequency Division Duplex
  • FDD Frequency
  • the antenna provided in this embodiment of the present application may be applied to the wireless network system shown in FIG. 1 , where the antenna may be applied to a base station subsystem (Base Station Subsystem, BBS), a terrestrial radio access network (UMTS terrestrial radio access network, UTRAN), Universal Mobile Telecommunications System (UMTS) or Evolved Universal Terrestrial Radio Access (E-UTRAN), which is used for cell coverage of wireless signals and realizes user equipment (User Equipment, UE) ) and the radio frequency terminal of the wireless network.
  • BBS Base Station Subsystem
  • UMTS terrestrial radio access network UTRAN
  • UMTS Universal Mobile Telecommunications System
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • the antenna involved in this embodiment may be located in a wireless access network device to implement signal transmission and reception.
  • the radio access network equipment may include, but is not limited to, the base station shown in FIG. 2 .
  • the base station may be a base station (Base Transceiver Station, BTS) in a GSM or CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station (Evolutional NodeB, eNB, or eNB) in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • Evolutional NodeB, eNB, or eNB evolved base station
  • the eNodeB can also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the base station can be a relay station, an access point, a vehicle-mounted device, a wearable device, and a base station in the future 5G network Or a base station in a future evolved PLMN network, for example, a new wireless base station, which is not limited in the embodiments of the present application.
  • the base station can provide wireless cell signal coverage and serve terminal equipment with one or more cells.
  • a possible structure of the base station may include an antenna 210 , a transceiver (TRX) 230 and a baseband unit (BBU) 250 , and the antenna 210 and the transceiver 230 may be installed on a pole 270 .
  • the transceiver 230 is connected to the antenna port of the antenna 210, so that the antenna port can be used to receive the signal to be sent sent by the transceiver 230 and radiate the signal to be sent by the radiation unit of the antenna 210, or transmit the received signal received by the radiation unit. to transceiver 230.
  • the TRX may be a remote radio unit (RRU).
  • the BBU can be used to process the baseband optical signal to be sent and transmit it to the RRU, or to receive the baseband signal transmitted by the RRU (that is, the baseband signal obtained by the RRU's conversion of the received radio frequency signal received by the antenna during the signal reception process) and process it.
  • the RRU can convert the baseband optical signal to be transmitted sent by the BBU into a radio frequency signal to be sent (including performing necessary signal processing on the baseband signal, such as signal amplification, etc.), after which the RRU can send the radio frequency signal to be sent to the
  • the antenna enables the radio frequency signal to be radiated through the antenna, or the RRU can receive the received radio frequency signal transmitted by the antenna through the antenna port, convert it into a received baseband signal and send it to the BBU.
  • Antennas may include array antennas, feed networks, and antenna ports.
  • the array antenna can be composed of several radiating elements arranged in rows and columns for receiving and/or radiating radio waves; there is at least one feeding network, and the output end of each feeding network is used to feed each column of radiating elements in the array antenna.
  • a phase shifter can be set on one output of the feeder network to change the radiation direction of the radiation beam of the array antenna and realize beamforming of the transmitted signal; the input end of each feeder network is connected to the antenna port to form a transceiver channel, wherein each antenna port corresponds to a transceiver channel, and the antenna port can be connected to the corresponding port of the TRX.
  • the radiating element of the array antenna can be a single dipole element, a dual-polarized dipole element, a patch radiating element, a ring radiating element, and the like.
  • the feeding network provided by an embodiment of the present application has one input and two outputs, and one of the two outputs includes a phase shifter; the phase shifter has a first working state, and the first working state It means that: among the phase differences of the two output signals, the phase differences of the signals of at least two frequency bands are different.
  • the phase shifter also has a second working state, and the second working state makes the two outputs have a set phase difference.
  • the feeding network can realize that two columns of antennas correspond to one antenna port, so that a transceiver (TRX) with fewer ports, such as a remote radio unit (RRU), can be used to adapt to an antenna array with a large number of columns. That is, the matching of more columns of antennas and transceivers with fewer ports mentioned in the background art is realized, thereby solving the technical problem of how to realize a larger signal coverage area at a lower cost mentioned in the background art. Wherein, when the phase shifter is in the second working state, the spatial distribution of beamforming in different time slots can be realized.
  • TRX transceiver
  • RRU remote radio unit
  • the phase shifter When the phase shifter is in the first working state, it can be realized that in one time slot, due to the different carrier phases of different frequency bands, the beamforming corresponding to different frequency bands is distributed differently in space, and the spatial complementarity is formed, which increases the The coverage space of beamforming in one time slot further increases the coverage space of beamforming in multiple time slots.
  • the phase differences of the signals of at least two frequency bands are different, including: the phase difference of the signals of each frequency band changes with the change of the frequency of each frequency band, and some or There are various modes of the phase difference in all single frequency bands, for example, several situations shown in FIG. 6A-FIG. 6D, which will be described in detail later.
  • the structure of the antenna according to an embodiment of the present application will be further described in detail.
  • the structure of the feeding network according to an embodiment of the present application will be further described in detail.
  • the antenna provided by this embodiment includes an array antenna, a feeding network and an antenna port.
  • the array antenna includes a plurality of radiating elements forming an array, and each column has a plurality of radiating elements.
  • each feeding network has one input and two outputs.
  • the feed network may further include a power divider connecting the one input and the two outputs.
  • Each input of each feeding network is connected to each antenna port of the antenna to form a transceiver channel, and the antenna port can be connected to the corresponding port of the TRX.
  • Each output of each feeding network is connected to each row of radiating elements, as detailed below:
  • Each output of each of the feeding networks is respectively connected to at least one radiating element in the array antenna.
  • the plurality of radiating elements of the array antenna include multiple columns of radiating elements, and the number of columns may be greater than or equal to M, where M is a natural number; in this embodiment, the number of columns is M.
  • the two outputs of the nth feeding network are respectively connected to the radiating element of the nth column and the radiating element of the (n+M/2)th column, which can also be understood as shown in FIG.
  • the radiating element is symmetrical with the center line of the M columns of radiating elements
  • the nth feeding network connects the radiating element in the nth column and the radiating element in the nth column after the center line, where n ⁇ N, and n ⁇ N/2.
  • the radiating elements in the first column and the radiating elements in the first column after the neutral line are connected through the first feeding network; the radiating elements in the second column and the radiating elements in the second column after the neutral line are connected through the second feeding network , when the number of columns of radiating elements of the array antenna is greater than 4, and so on.
  • the two outputs of the nth feeding network are not necessarily connected to the two columns of radiating elements according to the above rules, and it is also possible that the two outputs are connected to any two columns of radiation elements, or the two outputs are located in the above On both sides of the center line, the two outputs are connected to any two columns of radiating elements located on both sides of the center line.
  • the two outputs are connected to any two columns of radiating elements located on both sides of the center line.
  • one of the two outputs of the feeding network includes a phase shifter; the phase shifter makes the two outputs have a phase difference.
  • the phase shifters are all arranged on the outputs of the feeding networks corresponding to the radiating elements in the above (n+M/2) columns, so as to facilitate beamforming control.
  • the reason for setting the phase shifter is: because the distance between the first column of radiation elements and the first column of radiation elements after the center line is far greater than one wavelength, and when it is greater than one wavelength, beamforming is difficult (usually less than half a wavelength).
  • the speed of the phase shifter can be switched at the transmission time interval (Transmission Time Interval, TTI) level, that is, it can be switched in the time slot, and the beam can be changed in different time slots through the phase shifter, that is, in different time slots.
  • TTI Transmission Time Interval
  • any spatial distribution of users is not limited, and multiple beams can be used in multiple time slots to ensure full coverage of users.
  • the number of time slots is limited (in order to use resources reasonably, the asymmetric setting in which downlink resources are larger than uplink resources is usually adopted, so the allocation of uplink time slots will be limited. :2, or 4:1), which may result in the inability to use time slots for beam coverage.
  • Figure 4 shows that due to the limited number of time slots, using each uplink time slot can only form the one shown in Figure 4.
  • the uplink time slot is configured with two time slots
  • the left picture and the right picture in Fig. 4 are the first time slot and the second time slot of the two time slots, respectively
  • the overall coverage of the beams of the two time slots that is, the coverage of the superimposed beams of the two time slots
  • a time refers to the total time formed by the upper and lower time slots. Simultaneous access to the network.
  • the phase shifter of the present application also makes the phase difference of the two outputs of the feeding network include at least two states, and one of the states is referred to as the X corresponding to the phase shifter in the present application.
  • the phase difference is the first working state. In this state, the phase difference of each sub-carrier of the two outputs changes with the frequency of the frequency band where each sub-carrier is located, that is, the phase difference is in a changing state. In this way, in the uplink time slot, and the phase shifter is in the phase state of X degrees, as shown in Figure 5, under the same time slot, the phase difference of each subcarrier of the two outputs in different frequency bands is different.
  • the beam directions formed by the two outputs in different frequency bands are different, forming a beam with complementary spatial coverage. That is, under the same time slot, the beam coverage of different directions formed by different frequency bands solves the problem of uplink spatial coverage. Furthermore, in another time slot, beamforming can also be performed in the above manner, so that the spatial coverage in different time slots is also more dense.
  • phase shifter When the phase shifter is in the phase state of X degrees, under the same time slot, one channel with the phase shifter will output multiple sub-carriers with different phases, and different sub-carriers correspond to different sub-carriers.
  • Frequency bands that is, each sub-carrier corresponding to the two outputs of each frequency band has different phase differences, so that the beams formed by the two outputs of each frequency band have different directions, and the beams of these frequency bands constitute the The overall beam, so its spatial coverage is more dense.
  • the curve of the rate of change of the phase difference with the frequency of the two outputs of the feeding network may be a straight line or an approximate straight line with a slope not equal to 0.
  • the rate of change ( The absolute value of the corresponding straight line (that is, the slope) is greater than 0.
  • the absolute value may be not less than 0.5, preferably greater than 0.8.
  • 6A , 6B and 6C are schematic diagrams showing the change of the phase of the sub-carriers in each frequency band with the frequency when the phase shifter is in an X-degree phase state. Since the phase of the output of the other channel of the two outputs does not change, the change of the phase difference of the subcarriers in each frequency band of the two outputs can also be referred to FIGS. 6A-C .
  • FIG. 6A and 6B respectively show two cases where K is a positive slope and a negative slope
  • FIG. 6C shows a graph similar to that of FIG. 6A
  • the X-degree phase state corresponds to a curve that changes with frequency. From the frequency f1 to the frequency f2, the phase of each sub-carrier with one output of the phase shifter gradually increases, and the corresponding phase difference between the two outputs is from 0 degrees. Gradually rising to 180 degrees, Fig. 6A, Fig. 6B, Fig. 6C only schematically show two sub-carriers at both ends of the working frequency band. Schematic diagram shown in Figure 6D.
  • K should be such that when the corresponding antenna radiates another frequency band, the sub-carrier phase of this frequency band can be significantly different from the sub-carrier phase of the original frequency band, so that the beamforming of sub-carriers in different frequency bands can be spatially
  • ⁇ K ⁇ >0.5 can be set, that is, the phase difference needs to be greater than 45 degrees (phase difference) in a sub-band of 90M (frequency difference), and the corresponding beamforming at this time There is a good complementarity in space.
  • FIGS. 6A-6D vary with the frequency of each frequency band
  • FIGS. 6A and 6C respectively show that the phases of the sub-carriers in a single frequency band can vary (in the figure It is not difficult to understand the two cases that the slope of the curve is not 0) and the same (the phase difference of the corresponding two outputs is unchanged).
  • the phase in the frequency band is constant, and the two parts can be crossed and combined arbitrarily.
  • Figure 7 is a schematic diagram of the equivalent circuit of a feeding network; the power divider is divided into two outputs L1 and L2, wherein the lengths of the L1 and L2 transmission lines are almost the same, and L2 will pass through a phase shifter, and the phase shifter includes at least two states
  • the equivalent transmission line length of one of the states is less than 1 wavelength (the phase shifter can be in 0, 90 or 180 degrees phase state at this time), and the other state (the phase shifter is in the X degree phase state at this time)
  • the equivalent transmission line length is greater than 1 wavelength, and the transmission line longer than 1 wavelength realizes the function of changing the phase difference of L1 and L2 after the power divider with frequency.
  • each feeder network when each feeder network is connected to each column of radiating elements according to the above-mentioned rules, the output equivalent circuit of each feeder network with a phase shifter is the same, so each feeder network can use the same control method to control The control of each beamforming is more convenient for the control of beamforming.
  • the phase shifter makes another state of the phase difference of the two outputs of the feeding network to be the set state of the phase difference, also known as the phase shifter in the non-X degree phase state, or the second working state.
  • the fixed phase state can be 0 degrees, 90 degrees, and 180 degrees. In this state, the phase shifter performs the 0-degree, 90-degree or 180-degree phase switching in different time slots to realize different beams in different time slots (as shown in FIG. 9A , FIG. 9B and FIG.
  • the phase of the multiple sub-carriers corresponding to the multiple frequency bands in the output of the one with a phase shifter is the same, that is, the two outputs
  • the sub-carrier phase difference of each frequency band is a fixed value (such as all 0 degrees, or all 90 degrees, or all 180 degrees), and does not change with the change of frequency.
  • the two outputs of one of the feeding networks are used to connect two columns of the array antenna, so that the number of antenna ports can be reduced by half.
  • the number of RRU ports is not increased when the number of columns is more), so that the antenna coverage is increased, and the system cost is not significantly increased.
  • the spatial coverage of the beam is also increased through the X-degree phase state of the above-mentioned phase shifter, especially the spatial coverage during uplink is increased, and the access rate of the user is improved.
  • the present application also provides an antenna system, including a TRX and the above-mentioned antenna; a port of the TRX is connected to each antenna port.
  • the TRX may be an RRU.
  • the present application also provides a base station, comprising: a pole, the above-mentioned antenna or the above-mentioned antenna system, wherein the antenna is fixed on the pole.
  • the number of antenna ports is 8 to match the 8T8R RRU.
  • the array antenna is 8*10 dual-polarized radiation units, that is, there are 8 columns of dual-polarized radiation units, and each column has 10 dual-polarized radiation units, and each column of dual-polarized radiation units corresponds to every two polarized radiation units of the antenna.
  • antenna ports in the vertical dimension of a single column of the array antenna, every two radiating elements form a group, thus forming 8 groups horizontally and 5 groups vertically, and the entire array antenna has a total of 40 groups.
  • Each feed network can be used to form beamforming in the horizontal plane.
  • the connection modes of each feeding network are specifically: the first row of the horizontal dimension has 8 horizontal groups, wherein the first group is paired with the fifth group, the second group is paired with the sixth group, and the third group is paired with the fifth group. Seven groups are paired, and the fourth group is paired with the eighth group.
  • the pairing refers to connecting with the same power divider.
  • phase shifter is set on one output of a group of connected feeding networks in each pairing group; the phase shifter is 2 bits, so that there can be 4 phase states, which are 0, 90, 180, X in this embodiment
  • the feed network is provided with the output of the phase shifter.
  • the phase leads or lags by 0 degrees, 90 degrees, 180 degrees or X degrees.
  • the first column and the fifth column paired group in this embodiment are taken as an example to describe the beamforming situation:
  • Figures 9A, 9B, and 9C correspond to the beamforming diagrams in the horizontal plane direction when the phase shifters are switched to make the radiation element groups in the first and fifth columns form phases of 0, 90, and 180 degrees, respectively.
  • the coordinates are the frequency, and the ordinate is the amplitude value.
  • the phase shifter is in a non-X-degree phase state, that is, when the phase shifter is in a set value, which can be referred to as the second working state for the convenience of description.
  • each column is vertically divided into 5 groups, and the 5 groups of radiation elements in the first column are the same as
  • the phase shifter is set to work in the second working state, so that the phase difference between the antennas in the first column and the fifth column is 0 degree phase difference.
  • the beamforming pattern is changed as shown in FIG. 9B . It can be seen that when the phase shifter works in the second working state, coverage of multiple beams under multiple time slots can be achieved.
  • Figure 9D corresponds to when the phase shifter is switched to the X-degree phase state, in one time slot, when the first column and the fifth column of radiating elements form a waveform, the phase difference of each sub-carrier in different frequency bands in the working frequency band is different, and it varies with The sub-carriers with different phase differences form beams with different directions in each frequency band, and then each beam in all frequency bands forms an overall beam in the time slot.
  • the example of FIG. 9D is exactly: in one time slot, the five groups of radiation elements in the first column and the five groups of radiation elements in the fifth column radiate the waveform of the first frequency band, and the subcarriers of the first frequency band are made by the phase shifter.
  • the phase is 0 degrees, forming the beamforming diagram in the horizontal plane shown in FIG. 9A.
  • the five groups of radiation elements in the first column and the five groups of radiation elements in the fifth column radiate the waveform of the second frequency band.
  • the sub-carriers of the two frequency bands are 180 degrees, forming the beamforming diagram in the horizontal plane shown in FIG. 9C , so the beamforming diagrams formed by the two frequency bands under the time slot are shown in FIG. 9D , which are the ones in FIGS. 9A and 9C Overlay of beamforming patterns.
  • the spatial complementarity difference in the time slot can be generated by each sub-carrier with different phase differences corresponding to different frequency bands in the same time slot.
  • beam which increases the space covered by the beam.
  • the overall beam coverage space ie, the superposition of the beam coverage of each uplink time slot
  • the present application also correspondingly provides a beamforming method based on the above antenna, as shown in FIG. 10 , including the following steps:
  • S10 Make the radiation unit connected to the two outputs of a feeding network radiate signals of at least two frequency bands; and make the two radiated signals of at least two frequency bands through the phase shifter included in one of the outputs
  • the phase difference is different, that is, the phase shifter can be in a phase state of X degrees, that is, the phase shifter is in the first working state.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual connection or direct connection or communication connection may be through some interfaces, indirect connection or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

Abstract

本申请提供了馈电网络、天线、天线系统、基站及波束赋形方法。天线包括阵列天线、馈电网络及天线端口;阵列天线包括多个辐射单元;各馈电网络的各路输出分别与阵列天线中的至少一辐射单元连接;各馈电网络的各路输入与天线端口连接。每个馈电网络具有一路输入和两路输出,且两路输出的其中一路上包含移相器;移相器具有第一工作状态,第一工作状态是指:所述两路输出信号的相位差中,至少两个频段的信号的相位差不同,从而可以使每个频段下对应的波束赋形在空间上分布不同,且形成空间上的互补,增大了波束赋形的覆盖空间。

Description

馈电网络、天线、天线系统、基站及波束赋形方法 技术领域
本申请涉及无线通信技术领域,尤其涉及一种馈电网络、包括该馈电网络的天线、包括该天线的天线系统、基站及波束赋形方法。
背景技术
基站天线是移动用户终端与无线网络射频前端间的衔接设备,主要用于进行无线信号的小区覆盖。基站天线通常包括阵列天线、馈电网络与天线端口。其中阵列天线由不同频率辐射单元所组成的若干独立阵列构成,各列的辐射单元通过各自的馈电网络传递接收或发射射频信号。馈电网络可以通过传动部件实现不同辐射波束指向,或者与校准网络连接以获取系统所需的校准信号。馈电网络与天线端口间还可能存在合路器、滤波器等用于扩展性能的模块。
基站天线、与其连接的收发信机(TRX)一同构成基站的天线系统。后面以射频拉远单元(RRU)作为TRX的例子进行说明。基站天线的天线端口数与RRU的端口数进行匹配安装,例如,如果要匹配8端口的RRU,即8T8R RRU(表示8个端口RRU,每个端口实现一收发功能),则基站天线的天线端口数也需要是8个。
当基站天线的阵列天线采用了双极化天线单元时,每列双极化天线对应两列天线实现分集接收,因此每列双极化天线需要使用两个天线端口。如图13所示的示意图中,当使用8端口RRU时,即8T8R RRU,则只能匹配4列双极化天线(对应8个天线端口)的基站天线,无法匹配8列双极化天线(对应16个天线端口)的基站天线。由于4列双极化天线的口径比较小,4列天线做波束赋形(beam forming,BF)时,由于各列间需要保持近似0.5波长的水平间距以便实现波束赋形,导致了阵列天线宽度受限,增益不足,覆盖能力受限。而如果使用16端口RRU时,即16T16R RRU,可以匹配8列双极化天线,虽然波束赋形增益很高,但RRU成本也很高,逻辑上相比8端口RRU成本增加一倍,导致性价比不足。
由上可以看出,对于基站天线来说,为了提升信号覆盖区域,需要大口径的单面天线,也即,需要具有更多列双极化天线的基站天线。但另一方面,考虑到成本问题,RRU的端口数又要尽量的少。因此,如何将具有较多列天线、即较多天线端口的基站天线,与较少端口的收发信机进行匹配,以实现在成本较低情况下较大的信号覆盖区域,是本申请所要解决的技术问题。
发明内容
鉴于现有技术的以上问题,本申请提供一种馈电网络、包括该馈电网络的天线、包括该天线的天线系统、基站及波束赋形方法,以能实现较多列天线与较少端口的收发信机的匹配。
为达到上述目的,本申请第一方面提供了一种馈电网络,所述馈电网络具有一路 输入和两路输出,且所述两路输出的其中一路上包含移相器;所述移相器具有第一工作状态,所述第一工作状态是指:所述两路输出信号的相位差中,至少两个频段的信号的相位差不同。
由上,该馈电网络可实现将两列天线对应到一个天线端口,从而,可以用较少端口的收发信机(TRX),如射频拉远单元(RRU),适配列数较多的天线阵列,即实现背景技术中提到的较多列天线与较少端口的收发信机的匹配,从而解决了背景技术中提到的如何在成本较低情况下实现较大的信号覆盖区域的技术问题。并且,可以实现在一个时隙下,不同频段载波相位不同,使得不同频段对应的波束赋形在空间上分布不同,且形成空间上的互补,增大了一个时隙下的波束赋形的覆盖空间。
并且,相对于现有技术一的馈电网络,对应相同的天线列数时,本申请的馈电网络上移相器减少了一半,成本及插损均实现了降低。相对于现有技术二,改进之处在于增加了移相器,可以通过移相器使对应的两路输出具有相位差,更利于波束赋形的控制。
作为第一方面的一种可能的实现方式,所述至少两个频段的信号的相位差不同包括:各频段的信号的相位差随各频段频率的变化而变化。
由上,使得相位随频段频率相关而变化,可以实现不同频段的信号(如不同频段对应的不同子载波)的相位不同,从而使得不同频段对应的波束赋形在空间上分布不同,且形成空间上的互补,增大了波束赋形的覆盖空间。
作为第一方面的一种可能的实现方式,所述相位差随各频段频率变化的变化率不小于0.5。
其中,变化率的取值的大小,应使天线辐射另一频段时,该频段的信号相位能与原频段信号相位有明显区别,以使得不同频段下的信号(如不同频段对应的不同子载波)的波束赋形在空间上能较明显的形成互补,该0.5的取值可符合该要求。在本申请具体实施方式中,该变化率可以为一斜线的斜率,或整体呈倾斜的多折线的斜率。
作为第一方面的一种可能的实现方式,所述移相器还具有第二工作状态,所述第二工作状态使所述两路输出具有的设定的相位差。
该移相器的该工作状态,可以实现在不同时隙切换时,在不同的时隙下形成不同指向的波束赋形。不同时隙下的波束赋形在空间上分布不同,且形成空间上的互补,增大了波束赋形的覆盖空间。其中,该工作状态下,一个时隙下的不同频段的信号(如不同频段对应的不同子载波)的相位是相同的。
作为第一方面的一种可能的实现方式,所述移相器使两路输出的所述设定的相位差包括:0度、90度或180度。
其中,上述为所述移相器使所述两路输出具有的相位差的具体可选值。
作为第一方面的一种可能的实现方式,各频段中的至少一个频段内的信号的相位差不变。
由上,实现了各频段中的全部或部分频段,在单个频段内的两路输出信号的相位差不变,从而形成了整体上各频段的两路输出的信号相位差随各频段频率变化,但其中的一个或多个的单个频段内,所述两路输出的信号相位差可不变。
本申请第二方面提供了一种天线,包括阵列天线、天线端口和上述任一所述馈电 网络;
所述阵列天线包括多个辐射单元;
各所述馈电网络的各路输出分别与阵列天线中的至少一辐射单元连接;
各所述馈电网络的各路输入与天线端口连接。
由上可以看出,通过馈电网络,本申请天线的天线阵列列数要多于天线端口数,从而可以适配对应天线端口数的TRX,如RRU,即实现了具有更多列的天线阵列的天线适配端口比较少的RRU。从而解决了背景技术中提到的如何在成本较低情况下实现较大的信号覆盖区域的技术问题。另一方面,相对于现有技术一的馈电网络,对应相同的天线列数时,本申请的馈电网络上移相器减少了一半,成本降低了,且插损也降低了。相对于现有技术二,改进之处在于增加了移相器,可以通过移相器使对应的两路输出具有相位差,更利于波束赋形。并且该天线具有上述馈电网络所述的各优点,对此不再赘述。
作为第二方面的一种可能的实现方式,所述阵列天线的所述多个辐射单元构成至少M列辐射单元;
N个所述馈电网络的M路输出分别连接M列辐射单元;其中,M=2N,且N>1。
作为第二方面的一种可能的实现方式,第n个馈电网络的两路输出分别连接所述M列辐射单元中的第n列辐射单元和第(n+M/2)列辐射单元,且,连接所述第(n+M/2)列辐射单元的一路输出上包含所述移相器;其中,n∈N,且n≤N/2。
由上,通过上述规则进行各馈电网络与天线阵列的各列辐射单元的连接,各馈电网络的具有移相器的一路输出等效电路是相同的,因此各馈电网络可以采用同一控制方法进行各波束赋形的控制,更加便于波束赋形的控制。
本申请第三方面提供了一种天线系统,包括收发信机和上述任一所述的天线;所述收发信机的各端口与各所述天线端口对应连接。
作为第三方面的一种可能的实现方式,所述收发信机包括射频拉远单元。
由上,该天线系统具有上述天线的优点,对此不再赘述。
本申请第四方面提供了一种基站,包括:抱杆、上述任一项所述的天线或上述任一所述的天线系统;所述天线固定在所述抱杆上。
由上,该基站具有上述天线或天线系统的优点,对此不再赘述。
本申请第五方面提供了一种基于上述第二方面所述的天线的波束赋形方法,包括:
使连接在一馈电网络两路输出上的辐射单元,辐射至少两个频段的信号;
且通过其中一路输出上包含的移相器,使所述两路辐射的至少两个频段的信号的相位差不同。
由上,该波束赋形方法通过移相器使所述两路输出的信号具有的相位差为变化状态,且随频段频率的变化进行变化,从而当天线在辐射不同频段的子载波时,则不同频段的子载波由于所述相位差的变化,对应的不同波束赋形在空间上分布不同,且形成空间上的互补,增大了波束赋形的覆盖空间。
进一步的,对本申请的有益效果总结后,还包括:
天线侧收益:本申请的天线,相比背景技术来说,实现了在不增加RRU端口的情况下将天线列数增加了一倍,即逻辑上相当于天线带宽的增益上增加了3dB。
系统侧收益:在时分双工(TDD)系统中,上行由于时隙配比原因受限,每个时刻只能上传一个状态波束,如果用户分布非常均匀,仅通过两路合为一路的方式,无法实现全用户连接,而进一步通过各频段的子载波在两路输出的相位差为变化状态,实现形成的波束指向的变化,来增大波束赋形的空间覆盖,以实现更多用户的接入。即,当为用户空间上分布不均匀时,可以用两路输出相位差为固定的0、90、180或相位差为变化状态中的任意一种,当用户空间上分布很均匀时,使用各频段的子载波在两路输出的相位差为变化状态对应的波束,则可以实现更多用户的上行接入。
本申请的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
以下参照附图来进一步说明本申请的各个特征和各个特征之间的联系。附图均为示例性的,一些特征并不以实际比例示出,并且一些附图中可能省略了本申请所涉及领域的惯常的且对于本申请非必要的特征,或是额外示出了对于本申请非必要的特征,附图所示的各个特征的组合并不用以限制本申请。另外,在本说明书全文中,相同的附图标记所指代的内容也是相同的。具体的附图说明如下:
图1是本申请移动通信系统的第一实施例的示意图;
图2是本申请基站的第一实施例的示意图;
图3A是本申请实施例提供的阵列天线与天线端口的排列示意图;
图3B是本申请实施例提供的馈电网络与阵列天线连接的示意图;
图4是本申请实施例中移相器处于非X度相位状态时,不同时隙的波束空间覆盖的示意图;
图5是本申请实施例中移相器处于X度相位状态时,同一时隙时的相位不同的两子载波的波束空间覆盖的示意图;
图6A是本申请实施例中为移相器处于X度相位状态时,各频段子载波的相位随频率变化的第一示意图;
图6B是本申请实施例中为移相器处于X度相位状态时,各频段子载波的相位随频率变化的第二示意图;
图6C是本申请实施例中移相器处于X度相位状态时,各频段子载波的相位随频率变化的第三示意图;
图6D是本申请实施例中对应图6A的详细的示意图;
图6E是本申请实施例中移相器处于非X度相位状态时,各频段子载波的相位相同的示意图;
图7是本申请实施例中的馈电网络的等效电路示意图;
图8A是本申请实施例中的天线阵列示意图;
图8B是本申请实施例中的馈电网络与天线阵列连接的示意图;
图9A是本申请实施例中移相器使馈电网络两路输出为0度相位差时水平面方向的波束赋形图;
图9B是本申请实施例中移相器使馈电网络两路输出为90度相位差时水平面方向的波束赋形图;
图9C是本申请实施例中移相器使馈电网络两路输出为180度相位差时水平面方向的波束赋形图;
图9D是本申请实施例中移相器使馈电网络两路输出为X度相位差时形成相位不同的两个子载波时的水平面方向的波束赋形图;
图10为本申请实施例中的波束赋形方法的流程图;
图11是现有技术一的具有移相器的天线示意图;
图12是现有技术二的BUTLER网络与天线连接的示意图;
图13为背景技术中的天线端口与RRU端口是否匹配的示意图。
具体实施方式
说明书和权利要求书中的词语“第一、第二、第三等”或模块A、模块B、模块C等类似用语,仅用于区别类似的对象,不代表针对对象的特定排序,可以理解地,在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
在以下的描述中,所涉及的表示步骤的标号,如S110、S120……等,并不表示一定会按此步骤执行,在允许的情况下可以互换前后步骤的顺序,或同时执行。
说明书和权利要求书中使用的术语“包括”不应解释为限制于其后列出的内容;它不排除其它的元件或步骤。因此,其应当诠释为指定所提到的所述特征、整体、步骤或部件的存在,但并不排除存在或添加一个或更多其它特征、整体、步骤或部件及其组群。因此,表述“包括装置A和B的设备”不应局限为仅由部件A和B组成的设备。
本说明书中提到的“一个实施例”或“实施例”意味着与该实施例结合描述的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在本说明书各处出现的用语“在一个实施例中”或“在实施例中”并不一定都指同一实施例,但可以指同一实施例。此外,在一个或多个实施例中,能够以任何适当的方式组合各特定特征、结构或特性,如从本公开对本领域的普通技术人员显而易见的那样。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。如有不一致,以本说明书中所说明的含义或者根据本说明书中记载的内容得出的含义为准。另外,本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
为了准确地对本申请中的技术内容进行叙述,以及为了准确地理解本申请,在对具体实施方式进行说明之前先对本说明书中所使用的术语给出如下的解释说明或定义。
1、阵列天线:由若干相同的辐射单元按一定几何规律排列组成通过馈电网络进行工作的天线系统。
2、射频拉远单元(Radio Remote Unit,RRU):是在远端将基带光信号转成射频信号放大的装置。
3、基带单元(Base band Unit,BBU):信源发出的没有经过调制(进行频谱搬移和变换)的原始电信号所固有的频带(频率带宽),称为基本频带,简称基带;BBU是处理基带信号的器件模块的总称。
4、功分器(Power divider):也称为功率分配器,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。
5、合路器:是将多路信号能量合成一路输出的器件;如上,功分器反过来用时可作为合路器使用。
6、移相器:移相器是使得从该器件的输入信号到输出口信号的相位可以通过某种方式进行变化,实现在波束赋形图(即天线方向图)的变化。本申请的实施例中的移相器可采用数字移相器。为2bit的数字移相器时,支持4种相位状态,本申请中该4中相位状态为0度、90度、180度、X度相位状态。本申请中将移相器处于X度相位状态称为移相器的第一工作状态,将移相器处于非X度相位状态(如处于0度、90度、180度的状态)称为移相器的第二工作状态。具体将在后文详述。
7、馈电网络:可用于对传输的信号进行波束赋形,包括改变波束的波束宽度、形状和波束指向。馈电网络包括垂直维度的馈电网络和水平维度的馈电网络。
阵列天线每列对应有多个垂直维度的馈电网络,为该列中纵向排列的各辐射单元组馈电,可用于形成水平面的波束赋形图(如图9A所示波束赋形图,为图8A示出的天线阵列的第一列的五组辐射单元与第五列的五组辐射单元,在该两列对应的相位差为0时,所形成的波束赋形图)。
水平维度的馈电网络的每路输出连接每列天线,每路输入与天线端口的每个端口连接。由于水平维度的馈电网络涉及天线端口数量,故,在未明确指出的情况下,本申请实施例中的馈电网络均指水平维度的馈电网络。
8、BUTLER网络:是一种馈电网络。
9、工作频段:即工作的频率范围,本申请中工作频段被分划分为不同的各频段,每个频段对应一子载波,例如100兆的工作频段以每20兆为单位划分为5个频段,分别对应5个子载波。
下面,首先对现有技术进行分析:
现有技术一:如图11示出了具有移相器的天线,该天线结构中,其馈电网络111中的每路输入转两路输出,每路输出经过移相器112连接天线阵列113。现有技术一存在的问题是:由于每路输出都设置有移相器112,整个系统比较复杂;另一方面,移相器112的数量较多,导致整体损耗高。另外,该技术中一路转为两路输出、并经移相器输出后,两路输出间的相位差是一个随频率不变的相位差,即该两路输出所连天线的信号当频段变化时,各频段下两路输出的子载波的相位差并不随之改变。
现有技术二:国际公布号为WO103855A2、发明名称为天线及基站的专利申请中,提供了一种BUTLER网络。如图12示出的该BUTLER网络的结构中,输入端口有两个,输出端口有四个,用于与阵列天线连接,该BUTLER网络输出端口的第一与第三端口连接,第二与第四端口连接。该BUTLER网络可以实现两个输入端口与四个输出端口的连接。该结构中,每一个输入端口都需要向两个一路转两路的子网络发送信号,并且每个一路转两路的子网络未设置移相器,因此,该技术中,一路转两路后对应的两路输出,也不存在随频率改变的相位差,即该两路输出所连天线的载波当频段发生 变化时,各频段下两路输出的各子载波的相位差并不随之改变。
基于现有技术,本申请提出了改进的天线的方案,利用一路输入转两路输出的馈电网络连接阵列天线的其中两列,实现天线端口数减半。并且,在馈电网络的所述两路输出中的一路设置移相器,可用来调节所述两路输出的相位差,该相位差至少包含两个状态,且其中一个状态中,两路输出的各频段的信号的相位差随着两路输出对应各频段的频率变化,从而可以实现两路输出对应的两列天线信号频段变化时,信号的相位也发生了变化,进而产生不同指向的波束进行空间覆盖,增加了蜂窝扇区的覆盖空间。
下面结合附图对本发明实施例进行详细说明。首先,介绍本发明实施例提供的天线所应用的场景,之后,介绍本发明实施例提供的馈电网络及包括该馈电网络的天线的具体结构。
本申请实施例提供的天线适用于移动通信系统,这里的移动通信系统,包括但不限于:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
示例性的,本申请实施例提供的天线可以应用于如图1所示的无线网络系统,其中,天线可以应用于基站子系统(Base Station Subsystem,BBS)、陆地无线接入网(UMTS terrestrial radio access network,UTRAN),通用移动通信系统(UMTS)或者演进的陆地无线接入网(Evolved Universal Terrestrial Radio Access,E-UTRAN),用于进行无线信号的小区覆盖,实现用户设备(User Equipment,UE)与所述无线网络射频端之间的衔接。
本实施例涉及的天线可以位于无线接入网设备中,实现信号收发。具体来说,无线接入网设备可包括但不限于如图2所示的基站。所述基站可以是GSM或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该基站可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的基站或者未来演进的PLMN网络中的基站等,例如,新无线基站,本申请实施例并不限定。所述基站可以提供无线小区信号覆盖,并以一个或多个小区为终端设备服务。
如图2所示,基站的一种可能的结构可以包括天线210、收发信机(TRX)230和基带单元(BBU)250,天线210、收发信机230可以安装在抱杆270上。其中,收发信机230与天线210的天线端口连接,从而天线端口可用于接收收发信机230发送的待发送信号并由天线210的辐射单元辐射待发送信号,或将辐射单元接收的接收信 号发送至收发信机230。在图2的实施例中,TRX可以是射频拉远单元(RRU)。
BBU可用于对待发送的基带光信号进行处理并传输至RRU,或者接收RRU传输过来的接收基带信号(即信号接收过程中天线接收的接收射频信号经过RRU的转化处理得到的基带信号)并进行处理;RRU可将BBU发送的待传输的基带光信号转换成待发送射频信号(包括对基带信号进行必要的信号处理,如进行信号放大等),此后RRU可以将待发送射频信号通过天线端口发送至天线,使得射频信号通过天线进行辐射,或者,RRU可以接收天线通过天线端口传输过来的接收射频信号,将其转化为接收基带信号并发送至BBU。
天线可以包括阵列天线、馈电网络以及天线端口。阵列天线可以由按行列排列的若干辐射单元构成,用于接收和/或辐射无线电波;馈电网络为至少一个,各馈电网络的输出端用于对阵列天线中的每列辐射单元进行馈电,馈电网络的一路输出上可设置移相器,用于改变阵列天线辐射波束的辐射方向,实现对传输的信号的波束赋形;各馈电网络的输入端与天线端口连接,形成收发通道,其中每一个天线端口与一个收发通道对应,天线端口可连接至TRX的相应端口。
阵列天线的辐射单元可以为单偶极子单元、双极化偶极子单元、贴片辐射单元或圆环辐射单元等。
本申请一实施例提供的馈电网络具有一路输入和两路输出,且所述两路输出的其中一路上包含移相器;所述移相器具有第一工作状态,所述第一工作状态是指:所述两路输出信号的相位差中,至少两个频段的信号的相位差不同。所述移相器还具有第二工作状态,所述第二工作状态使所述两路输出具有的设定的相位差。
该馈电网络可实现将两列天线对应到一个天线端口,从而,可以用较少端口的收发信机(TRX),如射频拉远单元(RRU),适配列数较多的天线阵列,即实现背景技术中提到的较多列天线与较少端口的收发信机的匹配,从而解决了背景技术中提到的如何在成本较低情况下实现较大的信号覆盖区域的技术问题。其中,移相器处于第二工作状态时,可以实现不同时隙下波束赋形的空间分布。移相器处于第一工作状态时,则可以实现在一个时隙下,由于不同频段载波相位不同,使得不同频段对应的波束赋形在空间上分布不同,且形成空间上的互补,增大了一个时隙下的波束赋形的覆盖空间,进而更加增大了多个时隙的波束赋形的覆盖空间。
在一些实施例中,所述两路输出信号的相位差中,至少两个频段的信号的相位差不同,包括:各频段的信号的相位差随各频段频率的变化而变化,并且其中部分或全部单个频段内的所述相位差方式有多种,例如图6A-图6D所示的几种情况,具体将在后文详述。
下面,对本申请一实施例的天线的结构进一步详细介绍,在介绍该天线的过程中,同时对本申请一实施例的馈电网络的结构进一步进行详细介绍。
该实施例提供的天线包括阵列天线、馈电网络和天线端口。
其中,如图3A所示阵列天线包括形成阵列的若干辐射单元,每列具有多个辐射单元。
其中,如图3B所示的实施例中,包括至少一个馈电网络;每个馈电网络具有一路输入和两路输出。所述馈电网络还可包括连接所述一路输入和两路输出的功分器。
各馈电网络的各路输入与天线的各天线端口连接,形成收发通道,天线端口可连接至TRX的对应端口。各馈电网络的各路输出与各列辐射单元连接,下面详述:
各所述馈电网络的各路输出均分别与阵列天线中的至少一辐射单元相连。
在一些实施例中,所述阵列天线的所述多个辐射单元包括多列辐射单元,其列数可以大于等于M,该M为自然数;在本实施例中,列数为M。
其中N个所述馈电网络的M路输出分别连接M列辐射单元,为该M列辐射单元进行馈电;其中,M=2N,且N>2;
且,其中的第n个馈电网络的两路输出分别连接第n列的辐射单元和第(n+M/2)列的辐射单元,也可以参照图3A所示理解为,对于这M列辐射单元,以M列辐射单元的中线为对称,第n个馈电网络连接第n列的辐射单元和中线后第n列的辐射单元,其中,n∈N,且n≤N/2。进一步举例来说,通过第一馈电网络连接第一列的辐射单元和中线后第一列的辐射单元;通过第二馈电网络连接第二列的辐射单元和中线后第二列的辐射单元,当阵列天线的辐射单元的列数大于4时,以此类推。
在其他一些实施例中,第n个馈电网络的两路输出不一定按照上面规则连接两列辐射单元,还可能的方式是两路输出连接任意的两列辐射单元,或者两路输出位于上述中线两侧,两路输出连接任意的位于中线两侧的两列辐射单元。其中,按照上面规则连接两列辐射单元时,更便于对波束赋形的控制,其具体原因将在后面描述移相器的等效电路时,进一步进行说明。
如图3B所示,馈电网络的两路输出的其中一路包含移相器;所述移相器使所述两路输出具有相位差。在本实施例中,移相器均设置在上述(n+M/2)列的辐射单元对应的馈电网络的输出上,便于波束赋形的控制。设置该移相器的原因在于:由于第一列辐射单元和中线后第一列辐射单元之间的间距远远大于1个波长,而大于一个波长时,波束赋形比较困难(通常要小于半个波长才容易赋形),导致馈电网络的幅相设计所对应的各列辐射单元的波束,在水平面的覆盖能力难以完全覆盖蜂窝三扇区的一个区,而通过其中一路输出设置移相器,以产生不同的相位,从而使得各列单元波束相位不同,增大波束的覆盖面积。其中,移相器的速度可为传输时间间隔(Transmission Time Interval,TTI)级切换,即实现在时隙中可以切换,通过移相器使得波束在不同的时隙中可以变化,即在不同的时隙形成不同的波束,增大了整体的覆盖面积。
另外,由于下行时隙多,对于用户的任何空间分布都不受限,可以在多个时隙用多个波束,保证用户的全覆盖。但在上行时,时隙数量受限(为了合理利用资源,通常采用下行资源大于上行资源的不对称设置,故上行时隙的分配会受限制,例如下行、上行的时隙配比常为8:2,或4:1),可能导致无法利用时隙进行波束覆盖,此问题的示意图如图4所示,图4表示因时隙数量受限,使用各上行时隙只能形成图4中左图或右图的波束,例如,图4可以理解为上行时隙配置了两个时隙,图4的左图与右图分别为该两个时隙的第一时隙和第二时隙的波束覆盖情况,其两个时隙的波束整体覆盖范围(即两个时隙的波束叠加的覆盖范围)有限,会出现部分用户同一时刻(一个 时刻指上下时隙构成的总时间内)无法同时接入网络的情况。
基于图4示出的问题,本申请的所述移相器还使馈电网络的两路输出具有的相位差包含至少两个状态,且其中一个状态,本申请称为对应移相器的X度相位状态,即第一工作状态,该状态下,两路输出的各子载波相位差随着各子载波所在频段频率进行变化,即相位差为变化状态。这样在上行时隙时,且移相器为X度相位状态时,如图5示,同一个时隙下,在不同频段下、两路输出的各子载波的相位差是不同的,因此,两路输出在不同频段下所形成的波束指向是不同的,形成了空间覆盖互补的波束。也即,在同一时隙下,通过不同频段形成的不同指向的波束覆盖,解决了上行的空间覆盖问题。进而,在另一时隙下,同样可以采用上述方式进行波束赋形,从而,不同时隙下的空间覆盖也更加密集。
上述过程也可以参见图6D所示进行介绍,移相器处于X度相位状态时,在同一时隙下,具有移相器的一路会输出具有不同相位的多个子载波,且不同子载波对应不同频段,也即,对应各个频段两路输出的各子载波具有不同的相位差,从而在各个频段两路输出所形成的各个波束具有不同的指向,这些各个频段的波束构成了该时隙下的整体波束,从而其空间覆盖更为密集。
在一些实施例中,馈电网络的两路输出的所述相位差随着频率的变化率的曲线可为沿一斜率不为0的直线或近似直线,在本实施例中所述变化率(对应直线即为斜率)的绝对值大于0,可选的该绝对值可为不小于0.5,较佳的大于0.8。如图6A、图6B、图6C示出了移相器处于X度相位状态时,各频段子载波的相位随频率变化的示意图。由于两路输出中另一路的输出的相位不变化,因此两路输出的各频段子载波相位差的变化,也可以参照图6A-图C。
图6A、图6B分别示出了为K为正斜率和负斜率两种情况,图6C示出了与图6A相近的曲线图。所述X度相位状态,对应一条随着频率变化的曲线,从f1频率到f2频率,具有移相器的一路输出的各子载波的相位逐渐上升,对应的两路输出相位差值从0度逐渐上升到180度,图6A、图6B、图6C中仅示意性的示出了工作频段两端的两子载波,该两子载波之间的、随频率变化相位变化的其他各子载波可参见图6D所示的示意图。就该图6A、图6B,定义了一个相位和频率相关的斜率K,K=(相位2-相位1)/(频率2-频率1),前者的单位是deg,后者的单位是MHz;并定义斜率K的绝对值∣K∣,即对K取正值。K取值的大小,应使对应的天线辐射另一频段时,该频段的子载波相位能与原频段子载波相位有明显区别,以使得不同频段下的子载波的波束赋形在空间上能形成互补,本申请的一实施例中,可设置∣K∣﹥0.5,即需要在一个90M的子频段内(频率差)相位差需要大于45度(相位差),此时对应的波束赋形在空间上有较好的互补。
另外需要说明的是,图6A-图6D示出的各频段的子载波相位随各频段频率变化,且图6A、图6C分别示出了在其中的单个频段子载波内相位可变化(图中曲线斜率不为0)与不变(对应的两路输出的相位差不变)的两种情况不难理解,也可以是部分单个频段的子载波内,所述相位为变化,而另一部分单个频段内所述相位为不变,且这两部分可以任意交叉、组合。
为了更好地理解X度相位,参见图7进一步进行详细解释。图7是一馈电网络 的等效电路示意图;功分器后分成两路输出L1和L2,其中L1和L2传输线长度几乎相同,L2会经过一个移相器,移相器包括至少两个状态以上,其中一个状态的等效传输线长度小于1个波长(此时移相器可为0度、90度或180度相位状态),另外一个状态(此时移相器为X度相位状态)的等效传输线长度大于1个波长,大于1波长的传输线实现功分器后L1和L2两路的相位差的随频率变化的功能。另外,当各个馈电网络按照上面提到的规律连接各列辐射单元时,各馈电网络的具有移相器的一路输出等效电路是相同的,因此各馈电网络可以采用同一控制方法进行各波束赋形的控制,更加便于波束赋形的控制。
移相器使馈电网络的两路输出具有的相位差的另一个状态为相位差的设定状态,也称为移相器处于非X度相位状态,或称为第二工作状态,该设定的相位状态可为0度、90度、180度。在该状态下,移相器在不同的时隙下进行所述0度、90度或180度相位的切换,实现不同时隙下的不同的波束(如图9A、图9B和图9C所示),而在同一个时隙下,如图6E所示,具有移相器的一路,其输出的在工作频段内的多个频段所对应的多个子载波的相位是相同的,即两路输出的各频段的子载波相位差是定值(如都是0度、或都是90度,或都是180度),不随频率的变化而变化。
由上,通过上述天线结构,利用其中一馈电网络的两输出连接阵列天线的其中两列,可实现天线端口数的减半,也即,本申请解决了当天线口径较大(即阵列天线的列数较多)时并未增加RRU端口数,使得天线覆盖增加的同时,未使得系统成本明显提高。并且,也通过上述移相器的X度相位状态,增大了波束的空间覆盖,尤其是增大了上行时的空间覆盖,提高了用户的接入率。
本申请还提供了一种天线系统,包括TRX和上述的天线;所述TRX的端口与各天线端口连接。其中,在本实施例中,TRX可以为RRU。
相应的,本申请还提供了一种基站,包括:抱杆、上述天线或上述天线系统,其中天线固定在所述抱杆上。
下面提供了天线的一具体实施方式,如图8A所示,该具体实施方式中,天线端口数为8个,以匹配8T8R RRU。本实施方式中阵列天线为8*10双极化辐射单元,即有8列双极化辐射单元,且每列10个双极化辐射单元,且每一列双极化辐射单元对应天线的每两个天线端口。其中,阵列天线单列垂直维度上,每两个辐射单元组成一组,从而构成水平8组,垂直切分5组,整个阵列天线共40组,其中垂直一列的5组天线通过对应的垂直维度的各馈电网络可用于形成水平面的波束赋形。
如图8B所示,各馈电网络连接方式具体为:水平维度的第一行水平8组,其中,第一组与第五组结对,第二组与第六组结对,第三组与第七组结对,第四组与第八组结对。其中,所述的结对指的是与同一个功分器相连接。
每一个结对组中有一组连接的馈电网络的一路输出上设置有移相器;所述移相器为2bit,从而可以有4个相位状态,本实施方式中为0、90、180、X度相位状态,馈电网络设置有移相器的该路输出,相比没有设置移相器的输出,相位超前或者滞后0度、90度、180度或X度。
下面,对本实施方式中第一列和第五列结对组为例,对波束赋形情况进行说明:
图9A、图9B、图9C分别对应移相器切换使第一列、第五列的辐射单元组形成0度、90度和180度相位时,水平面方向的波束赋形图,其中图中横坐标为频率,纵坐标为幅度值。上述是移相器处于非X度相位状态,即处于一设定值时,为便于描述可称为第二工作状态。
以第一列、第五列的辐射单元组形成0度对水平面方向波束赋形图的成型进行说明:如图8A所示每列垂直切分为5组,第一列的5组辐射单元与第五列5组的辐射单元,在第一列与第五列相位差为0度时,形成所述水平面方向的波束赋形图。此时移相器设置为工作于第二工作状态,使得第一列与第五列天线之间的相位差为0度相位差。当第一列与第五列辐射单元在下个时隙切换到90度相位差时,波束赋形图则改变为图9B所示。可见,移相器工作于第二工作状态时,可实现多个时隙下的多个波束的覆盖。
图9D对应移相器切换到X度相位状态时,在一个时隙下,第一列与第五列辐射单元形成波形时,在工作频段内的不同频段的各子载波相位差不同,是随着频段的变化而变化,相位差不同的各子载波形成了各频段下的指向不同的波束,进而所有频段的各波束形成该时隙下的整体波束。这里,图9D的示例恰好是:在一个时隙下,第一列的五组辐射单元与第五列的五组辐射单元辐射第一频段波形,通过移相器使得该第一频段的子载波相位为0度,形成图9A示出的水平面方向波束赋形图,同时,第一列的五组辐射单元与第五列的五组辐射单元辐射第二频段波形,通过移相器使得该第二频段的子载波为180度,形成图9C示出的水平面方向波束赋形图,从而该时隙下两个频段所形成的波束赋形图如图9D所示,为图9A与图9C的波束赋形图的叠加图。
由图9D可以看出,当移相器切换到X度相位状态时,可通过同一时隙下的、对应不同频段的不同相位差的各子载波,可以产生该时隙下的空间互补的不同波束,增大了波束覆盖的空间。这样在上面提到的用户上行接入的情况下,由于每个时隙下的波束覆盖空间均增大了,因此整体波束覆盖空间(即上行各个时隙的波束覆盖范围的叠加)进一步增大,可以同时满足用户极限分布情形下的同时接入。
本申请还相应的提供了一种基于上述天线的波束赋形方法,如图10所述,包括如下步骤:
S10:使连接在一馈电网络两路输出上的辐射单元,辐射至少两个频段的信号;且通过其中一路输出上包含的移相器,使所述两路辐射的至少两个频段的信号的相位差不同,即该移相器可处于X度相位状态,即移相器处于第一工作状态。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的连接或直接连接或通信连接可以是通过一些接口,装置或单元的间接连接或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
注意,上述仅为本申请的较佳实施例及所运用的技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请的构思的情况下,还可以包括更多其他等效实施例,均属于本申请的保护范畴。

Claims (13)

  1. 一种馈电网络,其特征在于:
    所述馈电网络具有一路输入和两路输出,且所述两路输出的其中一路上包含移相器;所述移相器具有第一工作状态,所述第一工作状态是指:所述两路输出信号的相位差中,至少两个频段的信号的相位差不同。
  2. 根据权利要求1所述的馈电网络,其特征在于,所述至少两个频段的信号的相位差不同包括:各频段的信号的相位差随各频段频率的变化而变化。
  3. 根据权利要求2所述的馈电网络,其特征在于,所述相位差随各频段频率变化的变化率不小于0.5。
  4. 根据权利要求2或3所述的馈电网络,其特征在于,所述移相器还具有第二工作状态,所述第二工作状态使所述两路输出具有的设定的相位差。
  5. 根据权利要求4所述的馈电网络,其特征在于,所述设定的相位差包括:0度、90度或180度。
  6. 根据权利要求1或2所述的馈电网络,其特征在于,各频段中的至少一个频段内的所述信号的相位差不变。
  7. 一种天线,其特征在于,包括阵列天线、天线端口和至少一个权利要求1-6任一所述馈电网络;
    所述阵列天线包括多个辐射单元;
    各所述馈电网络的各路输出分别与阵列天线中的至少一辐射单元连接;
    各所述馈电网络的各路输入与天线端口连接。
  8. 根据权利要求7所述的天线,其特征在于,
    所述阵列天线的所述多个辐射单元构成至少M列辐射单元;
    N个所述馈电网络的M路输出分别连接M列辐射单元;其中,M=2N,且N>1。
  9. 根据权利要求8所述的天线,其特征在于,
    第n个馈电网络的两路输出分别连接所述M列辐射单元中的第n列辐射单元和第(n+M/2)列辐射单元,且,连接所述第(n+M/2)列辐射单元的一路输出上包含所述移相器;其中,n∈N,且n≤N/2。
  10. 一种天线系统,其特征在于,包括收发信机和权利要求7-9任一所述的天线;
    所述收发信机的各端口与各所述天线端口对应连接。
  11. 根据权利要求10所述的天线系统,其特征在于,所述收发信机包括射频拉远单元。
  12. 一种基站,其特征在于,包括:抱杆、权利要求7-9任一项所述的天线或权利要求10-11任一所述的天线系统;
    所述天线固定在所述抱杆上。
  13. 一种基于权利要求7-9所述天线的波束赋形方法,其特征在于,包括:
    使连接在一馈电网络两路输出上的辐射单元,辐射至少两个频段的信号;
    且通过其中一路输出上包含的移相器,使所述两路辐射的至少两个频段的信号的相位差不同。
PCT/CN2020/142428 2020-12-31 2020-12-31 馈电网络、天线、天线系统、基站及波束赋形方法 WO2022141529A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/142428 WO2022141529A1 (zh) 2020-12-31 2020-12-31 馈电网络、天线、天线系统、基站及波束赋形方法
EP20967867.1A EP4258476A4 (en) 2020-12-31 2020-12-31 POWER NETWORK, ANTENNA, ANTENNA SYSTEM, BASE STATION AND BEAM FORMING METHOD
CN202080108164.XA CN116783777A (zh) 2020-12-31 2020-12-31 馈电网络、天线、天线系统、基站及波束赋形方法
US18/344,513 US20230352833A1 (en) 2020-12-31 2023-06-29 Feed network, antenna, antenna system, base station and beam forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142428 WO2022141529A1 (zh) 2020-12-31 2020-12-31 馈电网络、天线、天线系统、基站及波束赋形方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,513 Continuation US20230352833A1 (en) 2020-12-31 2023-06-29 Feed network, antenna, antenna system, base station and beam forming method

Publications (1)

Publication Number Publication Date
WO2022141529A1 true WO2022141529A1 (zh) 2022-07-07

Family

ID=82260136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142428 WO2022141529A1 (zh) 2020-12-31 2020-12-31 馈电网络、天线、天线系统、基站及波束赋形方法

Country Status (4)

Country Link
US (1) US20230352833A1 (zh)
EP (1) EP4258476A4 (zh)
CN (1) CN116783777A (zh)
WO (1) WO2022141529A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003855A1 (en) 1999-07-13 2001-01-18 Zicherman, Joeseph, B. Method and apparatus for deacidification of papers and books
US20080291110A1 (en) * 2007-05-24 2008-11-27 Huawei Technologies Co., Ltd. Feed Network Device, Antenna Feeder Subsystem, and Base Station System
CN104993880A (zh) * 2015-05-27 2015-10-21 武汉虹信通信技术有限责任公司 基于能量和相位的基站天线互调参数化分析方法
CN105552484A (zh) * 2016-02-25 2016-05-04 信维创科通信技术(北京)有限公司 一种小型化宽带威尔金森功分移相器
CN111817009A (zh) * 2020-07-28 2020-10-23 武汉虹信科技发展有限责任公司 双频馈电网络及天线

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113906632B (zh) * 2019-06-03 2023-11-17 华为技术有限公司 一种天线及基站
WO2022110203A1 (zh) * 2020-11-30 2022-06-02 华为技术有限公司 基站天线和基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003855A1 (en) 1999-07-13 2001-01-18 Zicherman, Joeseph, B. Method and apparatus for deacidification of papers and books
US20080291110A1 (en) * 2007-05-24 2008-11-27 Huawei Technologies Co., Ltd. Feed Network Device, Antenna Feeder Subsystem, and Base Station System
CN104993880A (zh) * 2015-05-27 2015-10-21 武汉虹信通信技术有限责任公司 基于能量和相位的基站天线互调参数化分析方法
CN105552484A (zh) * 2016-02-25 2016-05-04 信维创科通信技术(北京)有限公司 一种小型化宽带威尔金森功分移相器
CN111817009A (zh) * 2020-07-28 2020-10-23 武汉虹信科技发展有限责任公司 双频馈电网络及天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4258476A4

Also Published As

Publication number Publication date
US20230352833A1 (en) 2023-11-02
EP4258476A1 (en) 2023-10-11
CN116783777A (zh) 2023-09-19
EP4258476A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
CN106788642B (zh) 一种用于实际宽带大规模mimo系统的混合预编码设计方法
US9118361B2 (en) Phased array antenna system with multiple beam
KR102039535B1 (ko) 무선 자원 할당 방법 및 장치
US8891647B2 (en) System and method for user specific antenna down tilt in wireless cellular networks
CN109980362B (zh) 一种天线装置及波束状态切换方法
US8594735B2 (en) Conformal antenna array
WO2017063132A1 (zh) 多扇区mimo有源天线系统和通信设备
CN105322987A (zh) 无线网络装置与无线网络控制方法
WO2020020107A1 (zh) 一种基站天线、切换开关和基站设备
WO2018040020A1 (zh) 调节天线信号功率的方法及基站
CN112583455B (zh) 一种信号处理方法以及基站
CN110380763A (zh) 收发方向图非互易全数字波束成形天线阵列及其实现方法
EP3472942A1 (en) Flexible analog architecture for sectorization
KR20230149782A (ko) 무선 송수신 장치 및 그의 빔 형성 방법
CN110661074B (zh) 4t4r对称天线系统及多输入多输出功率均衡方法
EP2822100B1 (en) Transceiver module, antenna, base station and signal reception method
Blandino et al. Multi-user frequency-selective hybrid MIMO demonstrated using 60 GHz RF modules
WO2022141529A1 (zh) 馈电网络、天线、天线系统、基站及波束赋形方法
EP3130038B1 (en) Antenna arrangement
US10425214B2 (en) Method and apparatus for millimeter-wave hybrid beamforming to form subsectors
CN116349091A (zh) 一种基站天线及基站设备
Zhang et al. Towards 5th generation cellular mobile networks
Ghosh Massive MIMO for the new radio: Overview and performance
KR102588806B1 (ko) 편파 빔들의 시간적/공간적 분리와 채널 비-가역성 보정을 위한 방법 및 이를 이용한 다중 빔 안테나 장치
CN213878438U (zh) 实现波束的空间-极化分离的天线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967867

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080108164.X

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023012884

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020967867

Country of ref document: EP

Effective date: 20230707

ENP Entry into the national phase

Ref document number: 112023012884

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230627

NENP Non-entry into the national phase

Ref country code: DE