WO2022141173A1 - 气敏传感器的制备方法及气敏传感器 - Google Patents

气敏传感器的制备方法及气敏传感器 Download PDF

Info

Publication number
WO2022141173A1
WO2022141173A1 PCT/CN2020/141323 CN2020141323W WO2022141173A1 WO 2022141173 A1 WO2022141173 A1 WO 2022141173A1 CN 2020141323 W CN2020141323 W CN 2020141323W WO 2022141173 A1 WO2022141173 A1 WO 2022141173A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowire
zno
gas sensor
nanowires
branched
Prior art date
Application number
PCT/CN2020/141323
Other languages
English (en)
French (fr)
Inventor
卢红亮
杨佳赫
袁凯平
朱立远
Original Assignee
光华临港工程应用技术研发(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光华临港工程应用技术研发(上海)有限公司 filed Critical 光华临港工程应用技术研发(上海)有限公司
Publication of WO2022141173A1 publication Critical patent/WO2022141173A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the field of semiconductors, in particular to a preparation method of a gas sensor and a gas sensor.
  • H 2 S hydrogen sulfide gas
  • Gas sensors for detecting H 2 S usually include electrochemical gas sensors, catalytic combustion gas sensors, optical gas sensors, and chemiresistive gas sensors.
  • gas sensors based on micro-chemical resistance have attracted more and more attention in the fields of medicine, industry and food safety due to their advantages of low power consumption, low cost, high response, and small humidity effect.
  • gas sensors based on metal oxide semiconductor materials such as CuO, ZnO, Fe 2 O 3 , and WO 3 have good detection characteristics in detecting toxic or flammable gases in the air.
  • metal oxide semiconductor materials such as CuO, ZnO, Fe 2 O 3 , and WO 3
  • single-component metal oxide nanostructures often suffer from poor selectivity and slow response. Therefore, improving the sensing response and selectivity of metal oxides through noble metal doping, hierarchical structure construction, and construction of composite heterostructures with other metal oxide semiconductors has been a hot research topic.
  • the technical problem to be solved by the present invention is to improve the sensitivity of the gas sensitive sensor and reduce the difficulty of preparation, and to provide a preparation method of the gas sensitive sensor and the gas sensitive sensor.
  • the present invention provides a preparation method of a gas sensor, comprising: providing an ⁇ -Fe 2 O 3 nanowire; depositing a ZnO seed crystal layer on the surface of the ⁇ -Fe 2 O 3 nanowire, forming ⁇ -Fe 2 O 3 /ZnO core-shell nanowires; electrodepositing the ⁇ -Fe 2 O 3 /ZnO nanowires to form a gas-sensing sensor precursor; determining the ⁇ -Fe in the gas-sensing sensor precursor
  • the 2 O 3 /ZnO core-shell nanowires are branched to form a gas sensor based on the surface branched ZnO nanowire structure of a single ⁇ -Fe 2 O 3 nanowire.
  • the present invention also provides a gas sensor, which adopts a structure based on the surface branched ZnO nanowire of a single ⁇ -Fe 2 O 3 nanowire
  • the invention adopts the method of branching the nanowires after putting electrodes on the core-shell nanowires, combines the advantages of powder nanostructures and single nanostructures, and overcomes the problem that the electrodes on complex structures are easily punctured. difficulty.
  • the preparation process has strong repeatability and high yield, which is favorable for large-scale preparation.
  • the branched ZnO nanowire structure based on the surface of a single ⁇ -Fe 2 O 3 nanowire can effectively improve the response of gas sensors to H 2 S gas, and has the advantages of small integration, high specific surface area and excellent stability. sensitivity to gases.
  • FIG. 1 is a schematic diagram of steps of a method for preparing a gas sensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a scanning electron microscope of the ⁇ -Fe 2 O 3 nanowire according to an embodiment of the present invention.
  • FIG 3 is a schematic view of a scanning electron microscope of the ⁇ -Fe 2 O 3 /ZnO core-shell nanowire according to an embodiment of the present invention.
  • FIG. 4 is a scanning electron microscope schematic diagram of the ⁇ -Fe 2 O 3 /ZnO core-shell nanowire device and the branched ZnO nanowire structure on the surface of the ⁇ -Fe 2 O 3 nanowire according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the gas-sensing response of the ⁇ -Fe 2 O 3 nanowire surface branched ZnO nanowire and the ⁇ -Fe 2 O 3 /ZnO core-shell nanowire according to an embodiment of the present invention.
  • step S10 providing an ⁇ -Fe 2 O 3 nanowire
  • step S11 in the ⁇ -Fe 2 O 3 nanowire
  • a ZnO seed layer is deposited on the surface of the ⁇ -Fe 2 O 3 /ZnO core-shell nanowire
  • step S12 electrode deposition is performed on the ⁇ -Fe 2 O 3 /ZnO nanowire to form a gas sensor precursor
  • step S13 branching the ⁇ -Fe 2 O 3 /ZnO core-shell nanowires in the gas sensor precursor to form a gas sensor based on the branched ZnO nanowire structure on the surface of a single ⁇ -Fe 2 O 3 nanowire .
  • Step S10 providing an ⁇ -Fe 2 O 3 nanowire.
  • the ⁇ -Fe 2 O 3 nanowires are prepared by calcining foamed iron in a muffle furnace.
  • the preparation method is further as follows: ultrasonically clean foam iron sheets (10 ⁇ 10 ⁇ 0.25mm) with a purity of 99.99% in ethanol and deionized water respectively, and then put them into a muffle furnace for calcination; At room temperature, the surface of the iron foam after taking out was bright red, that is, ⁇ -Fe 2 O 3 nanowires were obtained.
  • the ⁇ -Fe 2 O 3 nanowire has a length of 10-15 ⁇ m and a diameter of 100-130 nm.
  • FIG. 2 is a schematic view of a scanning electron microscope of the ⁇ -Fe 2 O 3 nanowire according to an embodiment of the present invention. Images of the ⁇ -Fe 2 O 3 nanowires at different magnifications are provided.
  • a ZnO seed crystal layer is deposited on the surface of the ⁇ -Fe 2 O 3 nanowires to form ⁇ -Fe 2 O 3 /ZnO core-shell nanowires.
  • the deposition of the ZnO seed layer adopts the method of atomic layer deposition.
  • DEZ diethylzinc
  • deionized water is selected as the oxygen source
  • the reaction temperature is set at 180-220°C.
  • FIG. 3 is a scanning electron microscope schematic diagram of the ⁇ -Fe 2 O 3 /ZnO core-shell nanowires according to an embodiment of the present invention, providing the ⁇ -Fe 2 O 3 /ZnO core-shell nanowires under different magnifications image.
  • the thickness of the ZnO seed layer is 20 nm.
  • a large amount of ⁇ -Fe 2 O 3 nanowires and nanowires are provided, and step S11 is completed, and a ZnO seed layer is deposited; and then a large amount of ⁇ -Fe 2 O 3 /ZnO core-shell is formed
  • One of the nanowires is selected for subsequent electrode deposition and branching steps.
  • the selection process is further as follows: dispersing the ⁇ -Fe 2 O 3 /ZnO core-shell nanowires in ethanol, ultrasonication, centrifugation and concentration to form a solution; dropping the solution on the prepared marking sheet; Observe the marking sheet with an optical microscope to find a suitable ⁇ -Fe 2 O 3 /ZnO nanowire and mark the position.
  • step S12 electrode deposition is performed on the ⁇ -Fe 2 O 3 /ZnO nanowire to form a gas sensor precursor.
  • the electrode deposition method adopts a physical vapor deposition method. Electron beam lithography and physical vapor deposition were used to attach electrodes to the ⁇ -Fe 2 O 3 /ZnO nanowires at suitable positions. The electrode deposition thickness was 10 nm for the metal Cr layer and 70 nm for the metal Au layer. After peeling off with acetone, a single Root ⁇ -Fe 2 O 3 /ZnO core-shell nanowires.
  • Step S13 branching the ⁇ -Fe 2 O 3 /ZnO core-shell nanowires in the gas sensor precursor to form a gas sensor based on the branched ZnO nanowire structure on the surface of a single ⁇ -Fe 2 O 3 nanowire sensor.
  • the branching method adopts a hydrothermal method, and the precursors of the hydrothermal growth are 6.25mmol/L zinc nitrate and hexamethylenetetramine The mixed solution of HMT in an equimolar ratio, the growth temperature was 80 °C, and the growth time was 5 h. After completion, rinse with deionized water and dry to obtain a gas sensor based on the branched ZnO nanowire structure on the surface of a single ⁇ -Fe 2 O 3 nanowire.
  • FIG. 4 is a scanning electron microscope schematic diagram of the ⁇ -Fe 2 O 3 /ZnO core-shell nanowire device and the branched ZnO nanowire structure on the surface of the ⁇ -Fe 2 O 3 nanowire according to an embodiment of the present invention.
  • Figure a in the upper left corner is the scanning electron microscope schematic diagram of the ⁇ -Fe 2 O 3 /ZnO core-shell nanowire device;
  • Figure b-d is the branched ZnO nanowire structure on the surface of the ⁇ -Fe 2 O 3 nanowire Schematic diagram of scanning electron microscope at different magnifications.
  • the gas sensor according to an embodiment of the present invention can be obtained, and the gas sensor adopts a structure based on the surface branched ZnO nanowire of a single ⁇ -Fe 2 O 3 nanowire.
  • the surface branched ZnO nanowire of the single ⁇ -Fe 2 O 3 nanowire has a length of 3-4 ⁇ m and a diameter of 250 nm. It can accurately test the trace concentration of hydrogen sulfide gas.
  • FIG. 5 is a schematic diagram of the gas-sensing response of the ⁇ -Fe 2 O 3 nanowire surface branched ZnO nanowire and the ⁇ -Fe 2 O 3 /ZnO core-shell nanowire according to an embodiment of the present invention.
  • Figure a in the upper left corner is the gas-sensing response diagram of the branched ZnO nanowires on the surface of ⁇ -Fe 2 O 3 nanowires obtained by a specific embodiment of the present invention
  • Figure b in the upper right corner is the ⁇ -Fe 2 O 3 nanowires
  • Figure c in the lower left corner is a schematic diagram of the dynamic response of ⁇ -Fe 2 O 3 /ZnO core-shell nanowires at 5 ppm at 300 °C
  • Figure d is a schematic diagram of the selectivity of the branched ZnO nanowires on the surface of ⁇ -Fe 2 O 3 nanowires to five gases, including: hydrogen sulfide (H 2 S), ammonia (NH 3 ), acetone (CH 3 OCH 3 ) ), nitrogen dioxide (NO 2 ) and methane (CH 4 ).
  • the present invention utilizes the energy band structure between the n-type semiconductor ⁇ -Fe 2 O 3 and ZnO, thereby utilizing the synergistic effect between the composite heterostructures and finally improving the gas sensitivity. sex.
  • the ⁇ -Fe 2 O 3 nanowires grown in the present invention already have high specific surface area, and the branched ZnO nanowires further improve the specific surface area of the material and the gas adsorption capacity.
  • the invention adopts the method of branching the nanowires after putting electrodes on the core-shell nanowires, combines the advantages of powder nanostructures and single nanostructures, and overcomes the problem that the electrodes on complex structures are easily punctured. difficulty.
  • the preparation process has strong repeatability and high yield, which is favorable for large-scale preparation.
  • the branched ZnO nanowire structure based on the surface of a single ⁇ -Fe 2 O 3 nanowire can effectively improve the response of gas sensors to H 2 S gas, and has the advantages of small integration, high specific surface area and excellent stability. sensitivity to gases.
  • Atomic layer deposition system was used to deposit a ZnO film on the surface of each ⁇ -Fe 2 O 3 nanowire on the iron foam with ⁇ -Fe 2 O 3 nanowires to provide a seed layer for the subsequent branching of the nanowires .
  • Chromium/gold was deposited on the surface of the marking sheet by a physical vapor deposition system (PVD), and then peeled off with acetone, and the photolithography and electrode growth effects were observed under an optical microscope.
  • PVD physical vapor deposition system
  • the labeling sheet is hydrothermally branched into the ZnO nanowire structure, rinsed with deionized water and dried after completion, to obtain a gas sensor based on the branched ZnO nanowire structure on the surface of a single ⁇ -Fe 2 O 3 nanowire sensor.
  • the concentration of the solution dropped on the marking sheet should not be too high, and it can be judged from the color, which is light red.
  • the precursor of the hydrothermal growth is a mixed solution of 6.25mmol/L zinc nitrate and hexamethylenetetramine HMT in an equimolar ratio, the growth temperature is 80°C, and the growth time is 5h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种气敏传感器的制备方法,包括:步骤S10,提供一α-Fe 2O 3纳米线;步骤S11,在α-Fe 2O 3纳米线的表面沉积ZnO籽晶层,形成α-Fe 2O 3/ZnO核壳纳米线;步骤S12,对α-Fe 2O 3/ZnO纳米线进行电极沉积,形成气敏传感器前驱体;步骤S13,对气敏传感器前驱体中α-Fe 2O 3/ZnO核壳纳米线进行枝化,形成基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构的气敏传感器。该方法采用在给核壳纳米线搭上电极后再进行纳米线枝化的方法,结合了粉体纳米结构和单根纳米结构的优势,克服了在复杂结构上搭盖电极容易被戳破的困难,制备工艺可重复性强,成品率高,有利于规模化制备,有效地提高气敏传感器对H 2S气体响应,且具有利于小型集成化、高比表面积以及优良稳定性等优点,提升了对气体的敏感性。

Description

气敏传感器的制备方法及气敏传感器 技术领域
本发明涉及半导体领域,尤其涉及一种气敏传感器的制备方法及气敏传感器。
背景技术
易燃易爆气体的检测在生活和工业中变得愈发重要,迫切的需要一种气体传感器来进行快速、准确地检测。其中硫化氢气体(H 2S)是一种剧毒、无色、易燃的气体,具有像臭鸡蛋一样粘稠的稠度。检测H 2S的气体传感器通常包括电化学气体传感器、催化燃烧气体传感器、光学气体传感器和化学电阻式气体传感器等。其中,基于微化学电阻式气体传感器以其低功耗、低成本、高响应、湿度效应小等优点,越来越受到医学、工业和食品安全领域的关注。
现有技术中,基于金属氧化物半导体材料CuO、ZnO、Fe 2O 3、WO 3等气体传感器在检测空气中有毒或可燃气体方面具有良好的检测特性。然而,单一组分的金属氧化物纳米结构往往存在选择性差、响应慢等缺点。因此,通过贵金属掺杂、多级结构构建和与其他金属氧化物半导体构建复合异质结构来提高金属氧化物的传感响应和选择性一直是人们研究的热点。
随着电子鼻在医学、军事等领域的发展,不仅对气体传感器提出了高灵敏度、高选择性的要求,更是要求可以实现较高的集成化,在器件尺寸大大缩小的基础上,可以实现对多种气体的同时检测,这就提出了基于单根米线气体传感器的想法。所以在单根纳米线的基础上,可以对纳米线的结构进行进一步优化,对电子鼻的发展具有重要意义。
发明内容
本发明所要解决的技术问题是提高气敏传感器的敏感度并且降低制备难度,提供一种气敏传感器的制备方法及气敏传感器。
为了解决上述问题,本发明提供了一种气敏传感器的制备方法,包括:提供一α-Fe 2O 3纳米线;在所述α-Fe 2O 3纳米线的表面沉积ZnO籽晶层,形成α-Fe 2O 3/ZnO核壳纳米线;对所述α-Fe 2O 3/ZnO纳米线进行电极沉积,形成气敏传感器前驱体;对所述气敏传感器前驱体中α-Fe 2O 3/ZnO核壳纳米线进行枝 化,形成基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构的气敏传感器。
为了解决上述问题,本发明还提供了一种气敏传感器,采用基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构
本发明采用在给核壳纳米线搭上电极后再进行纳米线枝化的方法,结合了粉体纳米结构和单根纳米结构的优势,克服了在复杂结构上搭盖电极容易被戳破的困难。制备工艺可重复性强,成品率高,有利于规模化制备。基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构可以有效地提高气敏传感器对H 2S气体响应,且具有利于小型集成化、高比表面积以及优良稳定性等优点,提升了对气体的敏感性。
附图说明
附图1为本发明一种实施方式所述气敏传感器制备方法步骤示意图。
附图2为本发明一种实施方式所述α-Fe 2O 3纳米线的扫描电镜示意图。
附图3为本发明一种实施方式所述α-Fe 2O 3/ZnO核壳纳米线的扫描电镜示意图。
附图4为本发明一种实施方式所述的α-Fe 2O 3/ZnO核壳纳米线器件和α-Fe 2O 3纳米线表面枝化ZnO纳米线结构的扫描电镜示意图。
附图5为本发明一种实施方式所述的α-Fe 2O 3纳米线表面枝化ZnO纳米线、α-Fe 2O 3/ZnO核壳纳米线的气敏响应示意图。
具体实施方式
下面结合附图对本发明提供的一种气敏传感器的制备方法及气敏传感器的具体实施方式做详细说明。
附图1为本发明一种实施方式所述气敏传感器制备方法步骤示意图,包括:步骤S10,提供一α-Fe 2O 3纳米线;步骤S11,在所述α-Fe 2O 3纳米线的表面沉积ZnO籽晶层,形成α-Fe 2O 3/ZnO核壳纳米线;步骤S12,对所述α-Fe 2O 3/ZnO纳米线进行电极沉积,形成气敏传感器前驱体;步骤S13,对所述气敏传感器前驱体中α-Fe 2O 3/ZnO核壳纳米线进行枝化,形成基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构的气敏传感器。
步骤S10,提供一α-Fe 2O 3纳米线。在本发明的一个具体实施方式中,所 述α-Fe 2O 3纳米线采用在马弗炉中煅烧泡沫铁的方法制备。所述制备方法进一步是:用纯度为99.99%的泡沫铁片(10×10×0.25mm)分别在乙醇和去离子水中超声清洗,然后放入马弗炉中煅烧;煅烧结束后,自然冷却至室温,取出来后的泡沫铁表面呈亮红色,即得到了α-Fe 2O 3纳米线。所述α-Fe 2O 3纳米线长度为10~15μm,直径为100~130nm。
附图2为本发明一种实施方式所述α-Fe 2O 3纳米线的扫描电镜示意图。提供了所述α-Fe 2O 3纳米线在不同放大倍数下图像。
步骤S11,在所述α-Fe 2O 3纳米线的表面沉积ZnO籽晶层,形成α-Fe 2O 3/ZnO核壳纳米线。在本发明的一个具体实施方式中,所述沉积ZnO籽晶层采用原子层沉积的方法。在本发明的一个具体实施方式中,选择DEZ(二乙基锌)作为锌源,去离子水作为氧源,设定反应温度为180~220℃。
附图3为本发明一种实施方式所述α-Fe 2O 3/ZnO核壳纳米线的扫描电镜示意图,提供了所述α-Fe 2O 3/ZnO核壳纳米线在不同放大倍数下图像。在本发明的一个具体实施方式中,所述ZnO籽晶层的厚度为20nm。
在本发明的一个具体实施方式中,提供大量的α-Fe 2O 3纳米线纳米线,并完成步骤S11,沉积ZnO籽晶层;再从形成的大量α-Fe 2O 3/ZnO核壳纳米线中选择一个进行后续的沉积电极及枝化步骤。所述选择的过程进一步是:将所述α-Fe 2O 3/ZnO核壳纳米线在乙醇中分散,经过超声、离心、浓缩,形成溶液;将所述溶液滴在准备好的标记片上;用光学显微镜观察所述标记片寻找一合适的α-Fe 2O 3/ZnO纳米线并标记位置。
步骤S12,对所述α-Fe 2O 3/ZnO纳米线进行电极沉积,形成气敏传感器前驱体。在本发明的一个具体实施方式中,所述电极沉积方法采用物理气相沉积方法。采用电子束光刻和物理气相沉积对合适位置的所述α-Fe 2O 3/ZnO纳米线搭上电极,电极沉积厚度为金属Cr层10nm,金属Au层70nm,经丙酮剥离后即得到单根α-Fe 2O 3/ZnO核壳纳米线。
步骤S13,对所述气敏传感器前驱体中α-Fe 2O 3/ZnO核壳纳米线进行枝化, 形成基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构的气敏传感器。在本发明的一个具体实施方式中在本发明的一个具体实施方式中,所述枝化方法采用水热法,水热生长的前驱体为6.25mmol/L的硝酸锌和六亚甲基四胺HMT等摩尔配比的混合溶液,生长温度为80℃,生长时间为5h。完成后用去离子水冲洗并烘干,得到基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构的气敏传感器。
附图4为本发明一种实施方式所述的α-Fe 2O 3/ZnO核壳纳米线器件和α-Fe 2O 3纳米线表面枝化ZnO纳米线结构的扫描电镜示意图。其中,左上角的图a为所述α-Fe 2O 3/ZnO核壳纳米线器件扫描电镜示意图;图b-图d为所述α-Fe 2O 3纳米线表面枝化ZnO纳米线结构在不同放大倍数下的扫描电镜示意图。
上述步骤实施完毕后,即可获得本发明一种实施方式所述的气敏传感器,所述气敏传感器采用基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构。在本发明的一个具体实施方式中,所述单根α-Fe 2O 3纳米线表面枝化ZnO纳米线长度为3-4μm,直径为250nm。能够精确测试硫化氢气体的微量浓度。
附图5为本发明一种实施方式所述的α-Fe 2O 3纳米线表面枝化ZnO纳米线、α-Fe 2O 3/ZnO核壳纳米线的气敏响应示意图。
左上角的图a为本发明的一个具体实施方式得到的α-Fe 2O 3纳米线表面枝化ZnO纳米线的气敏响应图;右上角的图b为所述α-Fe 2O 3纳米线表面枝化ZnO纳米线在300℃下5ppm时的动态响应示意图;左下角的图c为α-Fe 2O 3/ZnO核壳纳米线在300℃下5ppm时的动态响应示意图;右下角的图d为α-Fe 2O 3纳米线表面枝化ZnO纳米线对五种气体响应的选择性示意图,包括:硫化氢(H 2S)、氨气(NH 3)、丙酮(CH 3OCH 3)、二氧化氮(NO 2)和甲烷(CH 4)。
比于单一α-Fe 2O 3纳米线结构,本发明利用n型半导体α-Fe 2O 3与ZnO之间的能带结构,从而利用复合异质结构之间的协同效应,最终提高气体敏感性。
本发明生长的α-Fe 2O 3纳米线本身已具有高的比表面积,而在此基础上枝 化ZnO纳米线更进一步提高了材料的比表面积,更进一步提高对气体的吸附能力。本发明采用在给核壳纳米线搭上电极后再进行纳米线枝化的方法,结合了粉体纳米结构和单根纳米结构的优势,克服了在复杂结构上搭盖电极容易被戳破的困难。制备工艺可重复性强,成品率高,有利于规模化制备。基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构可以有效地提高气敏传感器对H 2S气体响应,且具有利于小型集成化、高比表面积以及优良稳定性等优点,提升了对气体的敏感性。
以下结合具体工艺场景给出上述技术方案的一个实施例。
(1)将清洗超声过的泡沫铁放入马弗炉中煅烧,煅烧结束后,自然冷却至室温,取出来后的泡沫铁表面呈亮红色,即得到了α-Fe 2O 3纳米线。
(2)将带有α-Fe 2O 3纳米线的泡沫铁用原子层沉积系统在每一根α-Fe 2O 3纳米线表面沉积ZnO薄膜,为后续纳米线的枝化提供籽晶层。
(3)将带有α-Fe 2O 3/ZnO核壳纳米线的泡沫铁放入乙醇中,经过超声、离心、浓缩,得到带有α-Fe 2O 3/ZnO核壳纳米线的淡红色乙醇溶液。
(4)将带有α-Fe 2O 3/ZnO核壳纳米线的乙醇溶液滴1~2滴在事先制备好的标记片上,轻轻晃动标记片让液滴布满整个标记片,并放在热板上等待乙醇挥发。
(5)将带有α-Fe 2O 3/ZnO核壳纳米线的标记片用光学显微镜观察纳米线在标记片上的分布,选中合适的纳米线,记下标记位置。
(6)在电脑上制版画图,给光学显微镜下选中的α-Fe 2O 3/ZnO核壳纳米线画上电极。
(7)给带有α-Fe 2O 3/ZnO核壳纳米线的标记片表面涂胶、前烘、电子束曝光(EBL)、显影和定影。
(8)用物理气相沉积系统(PVD)给标记片表面沉积铬/金后用丙酮剥离,光学显微镜下观察光刻和电极生长效果。
(9)将标记片经水热法枝化氧化锌纳米线结构,完成后用去离子水冲洗并烘干,得到基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构气敏传感器。
利用ALD对高深宽比表面均匀沉积的特点,滴在标记片上的溶液浓度尽量不要太高,从颜色判断即可,淡红色即可。滴1~2滴溶液在标记片即可,否则纳米线后期枝化后会出现粘连;PVD给标记片表面沉积铬/金的厚度为10/70nm。所述水热生长的前驱体为6.25mmol/L的硝酸锌和六亚甲基四胺HMT等摩尔配比的混合溶液,生长温度为80所述的,生长时间为5h。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种气敏传感器的制备方法,其特征在于,包括如下步骤:
    提供一α-Fe 2O 3纳米线;
    在所述α-Fe 2O 3纳米线的表面沉积ZnO籽晶层,形成α-Fe 2O 3/ZnO核壳纳米线;
    对所述α-Fe 2O 3/ZnO纳米线进行电极沉积,形成气敏传感器前驱体;
    对所述气敏传感器前驱体中α-Fe 2O 3/ZnO核壳纳米线进行枝化,形成基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构的气敏传感器。
  2. 根据权利要求1中所述的方法,其特征在于,所述α-Fe 2O 3纳米线采用在马弗炉中煅烧泡沫铁的方法制备。
  3. 根据权利要求1中所述的方法,其特征在于,所述沉积ZnO籽晶层采用原子层沉积的方法。
  4. 根据权利要求1中所述的方法,其特征在于,所述电极沉积方法采用物理气相沉积方法。
  5. 根据权利要求1中所述的方法,其特征在于,所述枝化方法采用水热法,水热生长的前驱体为6.25mmol/L的硝酸锌和六亚甲基四胺HMT等摩尔配比的混合溶液,生长温度为80℃,生长时间为5h。
  6. 一种气敏传感器,其特征在于,采用基于单根α-Fe 2O 3纳米线表面枝化ZnO纳米线结构。
  7. 根据权利要求7中所述的气敏传感器,其特征在于,所述单根α-Fe 2O 3纳米线表面枝化ZnO纳米线长度为3-4μm,直径为250nm。
PCT/CN2020/141323 2020-12-28 2020-12-30 气敏传感器的制备方法及气敏传感器 WO2022141173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011581380.4A CN112763549B (zh) 2020-12-28 2020-12-28 气敏传感器的制备方法及气敏传感器
CN202011581380.4 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022141173A1 true WO2022141173A1 (zh) 2022-07-07

Family

ID=75696252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141323 WO2022141173A1 (zh) 2020-12-28 2020-12-30 气敏传感器的制备方法及气敏传感器

Country Status (2)

Country Link
CN (1) CN112763549B (zh)
WO (1) WO2022141173A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114047230A (zh) * 2021-10-15 2022-02-15 光华临港工程应用技术研发(上海)有限公司 支化纳米线结构的气敏纳米材料、制备方法及其应用
CN114988457B (zh) * 2022-06-27 2023-06-23 上海复纯环保科技有限公司 基于α-Fe2O3纳米线异质外延ZnO@ZIF-8的微孔纳米材料、制备工艺及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167646A1 (en) * 2004-02-04 2005-08-04 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nanosubstrate with conductive zone and method for its selective preparation
CN101830509A (zh) * 2010-05-20 2010-09-15 武汉理工大学 一种β-AgVO3纳米线硫化氢气敏材料及其用于制作气敏传感器的方法
US8263002B1 (en) * 2008-05-16 2012-09-11 University Of Central Florida Research Foundation, Inc. Fabrication of ZnO nanorod-based hydrogen gas nanosensor
KR101621021B1 (ko) * 2014-11-28 2016-05-24 인하대학교 산학협력단 코어-쉘 나노와이어를 포함하는 센서 및 이의 제조방법
CN110589875A (zh) * 2019-09-17 2019-12-20 复旦大学 基于单层有序氧化锡纳米碗支化氧化锌纳米线结构的气敏纳米材料、制备工艺及其应用
CN111285409A (zh) * 2020-02-20 2020-06-16 复旦大学 基于单层有序氧化锡纳米碗支化氧化铁纳米棒结构的气敏纳米材料、制备工艺及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812357B1 (ko) * 2005-12-23 2008-03-11 한국과학기술연구원 초고감도 금속산화물 가스센서 및 그 제조방법
CN103337469B (zh) * 2013-06-15 2015-10-28 复旦大学 一种原位沉积阻挡层和籽晶层的系统和方法
CN106970117B (zh) * 2017-03-27 2019-11-12 东北大学 一种基于电极表面原位生长纳米ZnO的NO2传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167646A1 (en) * 2004-02-04 2005-08-04 Yissum Research Development Company Of The Hebrew University Of Jerusalem Nanosubstrate with conductive zone and method for its selective preparation
US8263002B1 (en) * 2008-05-16 2012-09-11 University Of Central Florida Research Foundation, Inc. Fabrication of ZnO nanorod-based hydrogen gas nanosensor
CN101830509A (zh) * 2010-05-20 2010-09-15 武汉理工大学 一种β-AgVO3纳米线硫化氢气敏材料及其用于制作气敏传感器的方法
KR101621021B1 (ko) * 2014-11-28 2016-05-24 인하대학교 산학협력단 코어-쉘 나노와이어를 포함하는 센서 및 이의 제조방법
CN110589875A (zh) * 2019-09-17 2019-12-20 复旦大学 基于单层有序氧化锡纳米碗支化氧化锌纳米线结构的气敏纳米材料、制备工艺及其应用
CN111285409A (zh) * 2020-02-20 2020-06-16 复旦大学 基于单层有序氧化锡纳米碗支化氧化铁纳米棒结构的气敏纳米材料、制备工艺及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG JIA-HE; YUAN KAI-PING; ZHU LI-YUAN; HANG CHENG-ZHOU; LI XIAO-XI; TAO JIA-JIA; MA HONG-PING; JIANG AN-QUAN; LU HONG-LIANG: "Facile synthesis of α-Fe2O3/ZnO core-shell nanowires for enhanced H2S sensing", SENSORS AND ACTUATORS B: CHEMICAL, vol. 307, 23 December 2019 (2019-12-23), NL , pages 1 - 10, XP085992258, ISSN: 0925-4005, DOI: 10.1016/j.snb.2019.127617 *

Also Published As

Publication number Publication date
CN112763549B (zh) 2022-11-25
CN112763549A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2022141173A1 (zh) 气敏传感器的制备方法及气敏传感器
Li et al. The combination of two-dimensional nanomaterials with metal oxide nanoparticles for gas sensors: a review
Wang et al. Core-double shell ZnO@ In2O3@ ZnO hollow microspheres for superior ethanol gas sensing
Lou et al. Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors
Li et al. Visible light assisted NO2 sensing at room temperature by CdS nanoflake array
Wang et al. Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the influence of petal thickness on gas-sensing properties
Forleo et al. Synthesis and gas sensing properties of ZnO quantum dots
Abdullah et al. High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique
Xue et al. ZnO branched p-CuxO@ n-ZnO heterojunction nanowires for improving acetone gas sensing performance
Gonzalez-Chavarri et al. ZnO nanoneedles grown on chip for selective NO2 detection indoors
US8324703B2 (en) Approach to contacting nanowire arrays using nanoparticles
Alagh et al. PdO and PtO loaded WS2 boosts NO2 gas sensing characteristics at room temperature
CN110589875B (zh) 基于单层有序氧化锡纳米碗支化氧化锌纳米线结构的气敏纳米材料、制备工艺及其应用
Zhu et al. Gallium oxide for gas sensor applications: A comprehensive review
Cao et al. Hedgehog-like Bi 2 S 3 nanostructures: a novel composite soft template route to the synthesis and sensitive electrochemical immunoassay of the liver cancer biomarker
Liu et al. A highly sensitive label-free electrochemical immunosensor based on an aligned GaN nanowires array/polydopamine heterointerface modified with Au nanoparticles
Wang et al. P-type gas-sensing behavior of Ga2O3/Al2O3 nanocomposite with high sensitivity to NOx at room temperature
Nanda et al. Growth-temperature dependent unpassivated oxygen bonds determine the gas sensing abilities of chemical vapor deposition-grown CuO thin films
Ma et al. Facile synthesis of ZnO morphological evolution with tunable growth habits: Achieving superior gas-sensing properties of hemispherical ZnO/Au heterostructures for triethylamine
Li et al. Strain control of a no gas sensor based on Ga-doped ZnO epilayers
Tang et al. Enhanced organic gas sensor based on Cerium-and Au-doped ZnO nanowires via low temperature one-pot synthesis
KR20130086859A (ko) 코어-쉘 구조의 산화갈륨-산화아연 나노로드, 이의 제조방법 및 이를 이용한 가스센서
Hu et al. CuO surface doped In2O3/CeO2 nanofibers for ppb-ppm level carbon monoxide gas detection in low-temperature
Ding et al. Control of MoOx nanostructures by flame vapor deposition process
Yao et al. Towards one key to one lock: Catalyst modified indium oxide nanoparticle thin film sensor array for selective gas detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21/11/2023)