WO2022141070A1 - 无线通信方法和终端设备 - Google Patents

无线通信方法和终端设备 Download PDF

Info

Publication number
WO2022141070A1
WO2022141070A1 PCT/CN2020/140914 CN2020140914W WO2022141070A1 WO 2022141070 A1 WO2022141070 A1 WO 2022141070A1 CN 2020140914 W CN2020140914 W CN 2020140914W WO 2022141070 A1 WO2022141070 A1 WO 2022141070A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
value
ntn
ntn cell
Prior art date
Application number
PCT/CN2020/140914
Other languages
English (en)
French (fr)
Inventor
李海涛
胡奕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080107048.6A priority Critical patent/CN116438862A/zh
Priority to PCT/CN2020/140914 priority patent/WO2022141070A1/zh
Priority to EP20967418.3A priority patent/EP4271107A4/en
Publication of WO2022141070A1 publication Critical patent/WO2022141070A1/zh
Priority to US18/213,321 priority patent/US20230337289A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18515Transmission equipment in satellites or space-based relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to a wireless communication method and a terminal device.
  • Non-Terrestrial Networks NTN
  • the carrier aggregation (Carrier Aggregation, CA) technology and the dual connectivity (Dual Connectivity, DC) technology can also consider NTN cells.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • the embodiments of the present application provide a wireless communication method and a terminal device, which can not only realize random access to an NTN cell, but also optimize the random access process, thereby reducing the power consumption of the terminal device.
  • a wireless communication method including:
  • the terminal device determines a first offset of the RAR time window for the random access response
  • the RAR time window is started
  • the terminal device monitors the RAR within the RAR time window on the primary cell or the primary and secondary cells.
  • a terminal device for executing the method in the above-mentioned first aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the first aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor for invoking and running a computer program from a memory, so that a device on which the chip is installed executes the method in the first aspect or its respective implementations.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in the above-mentioned first aspect or each of its implementations.
  • a computer program product comprising computer program instructions, the computer program instructions cause a computer to perform the method in the first aspect or each of the implementations thereof.
  • a computer program which, when run on a computer, causes the computer to execute the method of the above-mentioned first aspect or each of its implementations.
  • the random access process can be optimized, thereby reducing the power consumption of the terminal device.
  • 1 to 3 are schematic block diagrams of a system framework provided by an embodiment of the present application.
  • FIG. 4 and FIG. 5 respectively show schematic diagrams of NTN scenarios based on transparent-transmitting and re-transmitting satellites.
  • FIG. 6 and FIG. 7 are schematic structural diagrams of the discontinuous polymerization provided by the embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a CA under DC provided by an embodiment of the present application.
  • FIG. 9 to FIG. 12 are flow interaction diagrams of a random access process provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 14 and FIG. 15 are schematic relationship diagrams of the positional relationship between the first offset and the RAR time window provided by the embodiments of the present application.
  • FIG. 16 and FIG. 17 are schematic block diagrams of terminal devices provided by embodiments of the present application.
  • FIG. 18 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application only uses the communication system 100 for exemplary description, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LTE time division duplex (Time Division Duplex, TDD), universal mobile communication system (Universal mobile communication system) Mobile Telecommunication System, UMTS), 5G communication system (also known as New Radio (New Radio, NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • Universal mobile communication system Universal mobile communication system
  • Mobile Telecommunication System Universal mobile communication system
  • UMTS Universal mobile communication system
  • 5G communication system also known as New Radio (New Radio, NR) communication system
  • future communication systems etc.
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • An access network device may provide communication coverage for a particular geographic area, and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) device, Or a base station (gNB) in an NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolved Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, which includes, but is not limited to, a terminal device that adopts a wired or wireless connection with the network device 120 or other terminal devices.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, end devices in 5G networks or end devices in future evolved networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 may be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may further include a core network device 130 that communicates with the base station, and the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, an Access and Mobility Management Function (Access and Mobility Management Function). , AMF), another example, authentication server function (Authentication Server Function, AUSF), another example, user plane function (User Plane Function, UPF), another example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be an evolved packet core (Evolved Packet Core, EPC) device of an LTE network, for example, a session management function+a data gateway of the core network (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC evolved packet core
  • the SMF+PGW-C can simultaneously implement the functions that the SMF and the PGW-C can implement.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited in this embodiment of the present application.
  • the various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal equipment establishes an air interface connection with the access network equipment through the NR interface to transmit user plane data and control plane signaling; the terminal equipment can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment, such as the next generation wireless access base station (gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short); the access network equipment can establish a control plane signaling with the AMF through the NG interface 2 (N2 for short).
  • gNB next generation wireless access base station
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short)
  • the SMF establishes a control plane signaling connection; the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows one base station, one core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage area of each base station may include other numbers of terminals equipment, which is not limited in this embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 can function as a base station, and the terminal device 1101 and the satellite 1102 can communicate directly. Under the system architecture, satellite 1102 may be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • the terminal device 1201, the satellite 1202 and the base station 1203 are included.
  • the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed between the terminal device 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of the base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202 .
  • the base station 1203 may be referred to as a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • the network device 1203 may be the network device 120 in FIG. 1 .
  • satellite 1102 or satellite 1202 includes but is not limited to:
  • Satellites can use multiple beams to cover the ground. For example, a satellite can form dozens or even hundreds of beams to cover the ground. In other words, a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers to ensure satellite coverage and increase the system capacity of the entire satellite communication system.
  • the altitude range of LEO can be 500km to 1500km
  • the corresponding orbital period can be about 1.5 hours to 2 hours
  • the signal propagation delay of single-hop communication between users can generally be less than 20ms
  • the maximum satellite visibility time can be 20 minutes
  • LEO The signal propagation distance is short and the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the orbital height of GEO can be 35786km
  • the rotation period around the earth can be 24 hours
  • the signal propagation delay of single-hop communication between users can generally be 250ms.
  • FIG. 1 to FIG. 3 only illustrate systems to which the present application applies in the form of examples, and of course, the methods shown in the embodiments of the present application may also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and A and B exist independently B these three cases.
  • the character "/" in this document generally indicates that the related objects are an "or” relationship.
  • the "instruction" mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • Satellites can be divided into two types: transparent payload and regenerative payload.
  • transparent transmission satellite only the functions of radio frequency filtering, frequency conversion and amplification are provided, and only the transparent transmission of the signal is provided, and the waveform signal transmitted by it will not be changed.
  • regenerative repeater satellite in addition to the functions of radio frequency filtering, frequency conversion and amplification, it can also provide the functions of demodulation/decoding, routing/conversion, coding/modulation, and it has some or all of the functions of the base station.
  • one or more gateways may be included for communication between satellites and terminals.
  • FIG. 4 and FIG. 5 respectively show schematic diagrams of NTN scenarios based on transparent-transmitting and re-transmitting satellites.
  • the gateway and the satellite communicate through the feeder link, and the satellite and the terminal can communicate through the service link (service link).
  • the communication between the satellite and the satellite is through InterStar link
  • the communication between the gateway and the satellite is through the feeder link (Feeder link)
  • the communication between the satellite and the terminal can communicate through a service link.
  • the network In order to ensure the orthogonality of uplink transmission and avoid intra-cell interference, the network requires that the arrival times of signals from different UEs at the same time but with different frequency domain resources are basically aligned.
  • an uplink timing advance (Time Advance, TA) mechanism is introduced.
  • the uplink clock and downlink clock on the network side are the same, but there is an offset between the uplink clock and the downlink clock on the UE side, and different UEs have their own different uplink timing advance.
  • the network can control the time at which uplink signals from different UEs arrive at the network.
  • the network can configure a public TA for the terminal device.
  • the common TA may be determined based on the signal transmission delay between the perigee and the base station.
  • 5G also supports Carrier Aggregation (CA) technology, that is, through joint scheduling and use of resources on multiple Component Carriers (CC), the NR system can support larger bandwidths , so that a higher system peak rate can be achieved.
  • CA Carrier Aggregation
  • FIG. 6 and FIG. 7 are schematic structural diagrams of the discontinuous polymerization provided by the embodiments of the present application.
  • carrier discontinuous aggregation can be implemented.
  • the two component carriers are carrier A and carrier B, respectively, and carrier A and carrier B are discontinuous carriers.
  • Carrier A and carrier B each occupy 20 MHz of bandwidth, occupying a total of 40 MHz.
  • the five component carriers are carrier 1 to carrier 5, and carrier 1 to carrier 5 are continuous carriers. Each carrier occupies 20MHz of bandwidth, and a total of 100MHz of bandwidth is occupied.
  • PCC Primary Cell Component
  • PCC provides RRC signaling connection, Non-Access Stratum (NAS) function, security, etc.
  • the Physical Uplink Control Channel (PUCCH) exists on the PCC and only on the PCC.
  • a secondary carrier (Secondary Cell Component, SCC) only provides additional radio resources.
  • SCC and SCC are both called serving cells.
  • the standard stipulates that the aggregated carriers support up to 5, that is, the maximum bandwidth after aggregation is 100MHZ, and the aggregated carriers belong to the same base station. All aggregated carriers use the same Cell Radio Network Temporary Identity (C-RNTI), and the base station ensures that the C-RNTI does not collide in the cell where each carrier is located.
  • C-RNTI Cell Radio Network Temporary Identity
  • the aggregated carrier must have downlink and may not have uplink.
  • the primary carrier cell there must be the Physical Downlink Control Channel (PDCCH) and PUCCH of the cell, and only the primary carrier cell has PUCCH, and other secondary carrier cells may have PDCCH.
  • PDCH Physical Downlink Control Channel
  • the secondary cell has two states: active and inactive. Only when the secondary cell is in an active state, the terminal equipment can send and receive data on the secondary cell.
  • the secondary cell is configured through RRC dedicated signaling, and the initial configuration state is a deactivated state, in which data transmission and reception cannot be performed. Then, the secondary cell can be activated through the MAC CE to perform data transmission and reception. From the perspective of secondary cell configuration and activation delay, this architecture is not an optimal architecture. This delay reduces the efficiency of CA usage and radio resources, especially in small cell deployment scenarios. In a dense small cell deployment scenario, the signaling load of each secondary cell is also heavy, especially when each secondary cell needs to be configured separately. Therefore, the current CA architecture introduces additional delay, which limits the use of CA and reduces the gain of CA load sharing.
  • the terminal device can simultaneously monitor the PDCCH on the primary cell and one or more activated secondary cells, and perform data transmission and reception, thereby increasing the data transmission rate.
  • the PUCCH is on the primary cell; in addition, if the terminal device supports it, the network device can configure the PUCCH for at most one additional secondary cell in the same cell group (Cell Group), which is called a PUCCH secondary cell. That is, for the primary cell, there must be PDCCH and PUCCH of this cell, while for other secondary cells, there may be PDCCH, and only one of the secondary cells may have PUCCH.
  • Cell Group Cell Group
  • the PUCCH corresponding to the HARQ feedback of the terminal equipment is located in its own cell; for the PDSCH downlink transmission of other non-PUCCH secondary cells, the HARQ feedback of the terminal equipment corresponds to
  • the PUCCH support is semi-statically configured to be located in the PUCCH secondary cell or primary cell through RRC, and the relationship is unique.
  • cross-carrier scheduling (Cross-carrier Scheduling) is supported semi-statically through RRC, that is, for the PDSCH or PUSCH of the primary cell, the PDCCH that schedules it is also located on the primary cell; and for the PDSCH or PUSCH of a secondary cell, In addition to scheduling through its own PDCCH, it can also schedule through a PDCCH in the primary cell or other secondary cells, but for a specific secondary cell, the PDCCH that schedules its PDSCH or PUSCH transmission is unique.
  • DC can have multiple working modes, such as EN-DC (LTE-NR Dual Connectivity), NE-DC, 5GC-EN-DC, NR DC, etc.
  • EN-DC LTE-NR Dual Connectivity
  • NE-DC NE-DC
  • 5GC-EN-DC 5GC-EN-DC
  • NR DC NR DC
  • EN-DC the core network connected to the access network
  • 5GC 5GC
  • CG Cell Group
  • CG may be equivalent to a network node or a network device or the like.
  • FIG. 8 is a schematic structural diagram of a CA under DC provided by an embodiment of the present application.
  • the cell group of the terminal equipment may include a primary cell group (Master Cell Group, MCG) or a secondary cell group (Secondary Cell Group, SCG), and the primary cell group may include a primary cell (Primary Cell, PCell) and at least one secondary cell (Secondary Cell, SCell), for example, two secondary cells.
  • the secondary CG may include one primary secondary cell (Primary Secondary Cell, PSCell) and at least one secondary cell, for example, two secondary cells.
  • the random access will be described below.
  • the terminal device After the cell search process, the terminal device has achieved downlink synchronization with the cell, so the terminal device can receive downlink data. However, the terminal equipment can perform uplink transmission only when it obtains uplink synchronization with the cell.
  • the terminal equipment can establish a connection with the cell and obtain uplink synchronization through a random access procedure (Random Access Procedure, RAR). That is to say, through random access, the terminal device can obtain uplink synchronization, and obtain the unique identity assigned by the network device, that is, the Cell Radio Network Temporary Identity (C-RNTI). Therefore, the random access can be applied not only in the initial access, but also in the case where the user's uplink synchronization is lost.
  • RAR Random Access Procedure
  • the random access process in this embodiment of the present application may generally be triggered by one of the following types of trigger events:
  • the terminal device needs to reply with an Acknowledgement (ACK) or a Negative Acknowledgement (NACK).
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the terminal device requests other system information (Other System Information, OSI).
  • OSI System Information
  • the process of random access mainly has two forms, one is the contention based random access process (contention based RACH), which includes 4 steps; the other is the non-contention random access process (contention free RACH), in which Includes 2 steps.
  • contention based RACH contention based random access process
  • non-contention random access process contention free RACH
  • FIG. 9 is a flow interaction diagram of a contention-based random access procedure provided by an embodiment of the present application.
  • the random access procedure may include the following four steps:
  • Step 1 the terminal device sends Msg 1 to the base station.
  • the terminal device sends Msg 1 to the base station to tell the network device that the terminal device has initiated a random access request, and the Msg 1 carries a random access preamble (Random Access Preamble, RAP), or is called a random access preamble sequence, preamble sequence, preamble, etc.
  • RAP Random Access Preamble
  • the terminal device selects a preamble index and a PRACH resource for transmitting the preamble; then the terminal device transmits the preamble on the PRACH.
  • the network device will notify all terminal devices by broadcasting a system information block (System Information Block, SIB) on which time-frequency resources are allowed to transmit the preamble, for example, SIB2.
  • SIB System Information Block
  • the PRACH resource and preamble can be specified by the network device.
  • the network device can estimate the uplink timing (Timing) and the size of the grant (grant) required by the terminal to transmit Msg3 based on the preamble.
  • Step 2 the network device sends Msg 2 to the terminal device.
  • the network device After receiving the Msg 1 sent by the terminal device, the network device sends Msg 2, that is, a random access response (Random Access Response, RAR) message to the terminal device.
  • the Msg 2 may carry, for example, a time advance (Time Advance, TA), an uplink grant instruction such as the configuration of uplink resources, and a Temporary Cell-Radio Network Temporary Identity (TC-RNTI), etc.
  • TA Time Advance
  • TC-RNTI Temporary Cell-Radio Network Temporary Identity
  • the terminal device monitors the Physical Downlink Control Channel (PDCCH) within the random access response time window (ra-ResponseWindow) to receive the RAR message replied by the network device.
  • the RAR message may be scrambled using a corresponding random access radio network temporary identifier (Random Access Radio Network Temporary Identifier, RA-RNTI).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id
  • the RA-RNTI is related to the PRACH time-frequency resource used by the terminal device to send the Msg1.
  • Msg 2 may include RAR messages for multiple terminal devices, and the RAR messages of each terminal device may include the following information:
  • the subheader (subheader) of the RAR contains a backoff indication (BI), which is used to indicate the backoff time for retransmitting Msg1;
  • BI backoff indication
  • Random access preamble identifier in RAR (RAP Identify, RAPID: the preamble index received by the network response;
  • the RAR payload contains TAG, which is used to adjust the uplink timing
  • Uplink grant (UL grant): an uplink resource indication for scheduling Msg3;
  • Temporary Cell Radio Network Temporary Identifier used to scramble the PDCCH (initial access) of Msg4.
  • the terminal device does not receive the RAR message replied by the network device within the RAR time window, it is considered that this random access procedure has failed. If the terminal receives the PDCCH scrambled by RA-RNTI, and the preamble index (preamble index) carried in the RAR is the same as the index of the preamble sent by the terminal device through Msg 1, it is considered that the RAR has been successfully received. At this time, the terminal device The monitoring in the RAR time window can be stopped.
  • Step 3 the terminal device transmits Msg 3 on the resources scheduled by the network.
  • the terminal device After receiving the RAR message, the terminal device determines whether the RAR belongs to its own RAR message. For example, the terminal device can use the preamble identifier to check. After determining that it belongs to its own RAR message, the terminal device generates Msg 3 at the RRC layer. And send Msg 3 to the network device. The identification information of the terminal device needs to be carried.
  • Msg 3 may include different contents to perform scheduled transmission (Scheduled Transmission).
  • Msg 3 may include information such as user equipment identification (UE ID) and establishment cause (establishment cause); specifically, it may include an RRC connection request (RRC Connection Request) generated by the RRC layer, which carries at least the terminal.
  • UE ID user equipment identification
  • RRC Connection Request RRC Connection Request
  • the non-access stratum (Non-Access Stratum, NAS) identification information of the device may also carry, for example, the Serving-Temporary Mobile Subscriber Identity (S-TMSI) or random number of the terminal device.
  • S-TMSI Serving-Temporary Mobile Subscriber Identity
  • Msg 3 may include information such as a connected UE identity and an establishment cause; specifically, it may include an RRC connection re-establishment request (RRC Connection Re-establishment Request) generated by the RRC layer and does not carry Any NAS message can also carry, for example, a cell radio network temporary identifier (Cell Radio Network Temporary Identifier, C-RNTI) and protocol control information (Protocol Control Information, PCI).
  • RRC Connection Re-establishment Request RRC Connection Re-establishment Request
  • Any NAS message can also carry, for example, a cell radio network temporary identifier (Cell Radio Network Temporary Identifier, C-RNTI) and protocol control information (Protocol Control Information, PCI).
  • C-RNTI Cell Radio Network Temporary Identifier
  • PCI Protocol Control Information
  • Msg 3 may include an RRC handover complete message (RRC Handover Confirm) generated by the RRC layer and the C-RNTI of the terminal device, and may also carry, for example, a buffer status report (Buffer Status Report, BSR); for other triggers
  • RRC Handover Confirm RRC handover complete message
  • BSR Buffer Status Report
  • Step 4 the network device sends Msg 4 to the terminal device.
  • Msg4 has two functions, one is for contention conflict resolution, and the other is for the network device to transmit an RRC configuration message to the terminal device. There are two ways to resolve the contention conflict: one is that if the terminal device carries the C-RNTI in Msg3, then Msg4 is scheduled with the PDCCH scrambled by the C-RNTI. The other is that if the terminal device does not carry C-RNTI in Msg3, such as initial access, Msg4 uses TC-RNTI scrambled PDCCH scheduling, and the conflict resolution is that the UE receives the PDSCH of Msg4, by matching the CCCH in the PDSCH SDU.
  • the network device sends the Msg 4 to the terminal device, and the terminal device correctly receives the Msg 4 to complete the contention resolution (Contention Resolution).
  • the Msg 4 may carry the RRC connection establishment message.
  • the terminal device in step 3 will carry its own unique identification in Msg 3, such as C-RNTI or identification information from the core network (such as S-TMSI or a random number)
  • the network device in the contention resolution mechanism will The unique identification of the terminal device is carried in Msg 4 to designate the terminal device that wins the competition. And other terminal devices that do not win in the contention resolution will re-initiate random access.
  • FIG. 10 is a flow interaction diagram of a non-contention random access process provided by an embodiment of the present application. It should be noted that the random access procedure may include the first two steps in FIG. 9 (ie, step 1 and step 2 in FIG. 5 ). For details of Msg1 and Msg 2 in the non-contention random access process, reference may be made to the foregoing description of Msg 1 and Msg 2 in the contention-based random access process, and for brevity, they are not repeated here.
  • the random access procedure may include the following three steps:
  • Step 1 the network device sends a random access preamble assignment (RA Preamble assignment) message to the terminal device.
  • RA Preamble assignment a random access preamble assignment
  • Step 1 the terminal device sends Msg 1 to the network device.
  • the terminal device sends Msg 1 to the base station to inform the network device that the terminal device has initiated a random access request, and the Msg 1 carries a random access preamble.
  • Step 2 the network device sends Msg 2 to the terminal device.
  • the network device After receiving the Msg 1 sent by the terminal device, the network device sends Msg 2, that is, the RAR message, to the terminal device.
  • the Msg 2 may carry, for example, TA information, uplink grant instructions such as uplink resource configuration, and information such as TC-RNTI. If the terminal device does not receive the RAR message replied by the network device within the RAR time window, it is considered that this random access procedure has failed. If the terminal device successfully receives a RAR message, and the index of the preamble carried in the RAR message is the same as the index of the preamble sent by the terminal device through Msg 1, it is considered that the RAR has been successfully received, and the terminal device can stop the RAR at this time. The message is monitored.
  • the NR Rel-16 release introduces a two-step random access procedure to reduce latency and signaling overhead.
  • FIG. 11 is a schematic flow interaction diagram of a two-step random access provided by an embodiment of the present application.
  • the two-step random access may include:
  • the terminal device sends msgA to the network device, where msgA may include msg1 and msg3 of the 4-step RACH.
  • the terminal device receives the msgB sent by the network device, and the msgB may include msg2 and msg4 of the 4-step RACH.
  • the first and third steps in the 4-step RACH process are combined into the first step (message A) in the 2-step RACH process, and the second and fourth steps of the 4-step RACH are combined into 2 -step
  • the second step in the RACH procedure (message B). Therefore, in the first step in the 2-step RACH process, the terminal device needs to send the preamble and PUSCH.
  • msgA may include a preamble and an uplink data part (such as carried by PUSCH), wherein the uplink data part carries the identification information of the terminal device and/or the reason for the RRC request (that is, equivalent to the content of the existing MSG3) ;
  • msgB may include conflict resolution information, TA information, C-RNTI allocation information, etc., that is, a combination of information equivalent to the existing MSG2 and MSG4 information.
  • the terminal when the terminal has random access requirements, the terminal sends MsgA on the MsgA resources corresponding to the 2-step RACH process that appear periodically in the network configuration, that is, RACH Occasion and PUSCH Occasion. Then, the terminal monitors the RAR message (msgB) sent by the network within the RAR response window.
  • MsgA on the MsgA resources corresponding to the 2-step RACH process that appear periodically in the network configuration, that is, RACH Occasion and PUSCH Occasion.
  • the MsgA in the two-step random access includes the preamble (Preamble) transmitted on the PRACH and the load information transmitted on the PUSCH.
  • the terminal device monitors the network side response within the configured window, If receiving the indication that the contention conflict is successfully resolved from the network, the terminal ends the random access procedure.
  • the msgB RAR response message in the 2-step RACH process may also carry multiple msgA response messages sent by multiple terminal devices.
  • it can be divided into the following types of messages: Success RAR (Success RAR): If the network device successfully receives the preamble and PUSCH information in msgA, the terminal feeds back a successful RAR, which can carry the TA command (command), C-RNTI , conflict resolution ID, etc.; fallback RAR (FallbackRAR): If the network device successfully detects the preamble part in the terminal msgA, but does not receive the PUSCH part correctly, the network can send a fallback RAR to the terminal, so that the terminal can fall back to In the traditional 4-step RACH process, after the terminal receives the fallback RAR, the terminal sends msg3 to the network.
  • FIG. 12 is a schematic flow interaction diagram of a fallback from two-step random access to four-step random access provided by an embodiment of the present application.
  • the terminal executes the transmission of Msg3 and monitors the contention conflict resolution result (ie Msg4). If the contention resolution is unsuccessful, the terminal continues the transmission of MsgA.
  • the msgB RAR response message may also carry other information, such as a Backoff Indicator (BI), which is used to indicate how to adjust the time parameter for retransmission of msgA when the terminal does not receive the RAR response message.
  • BI Backoff Indicator
  • a terminal device needs to initiate contention for random access on a licensed spectrum (licensed band), since multiple terminal devices may be configured with common PRACH resources, different terminal devices may compete for resources on the same PRACH resource.
  • PRACH occasion PRACH occasion
  • the network device may carry a backoff indicator (Backoff Indicator, BI) in the RAR message of Msg 2.
  • the terminal device in which the resource conflict has occurred can generate a random number based on the fallback indication, so that when the next PRACH resource arrives, it will be delayed according to the random number, thereby delaying the corresponding time to send Msg A, thus mitigating the occurrence of resource conflict to a certain extent.
  • the probability can be generated a random number based on the fallback indication, so that when the next PRACH resource arrives, it will be delayed according to the random number, thereby delaying the corresponding time to send Msg A, thus mitigating the occurrence of resource conflict to a certain extent. The probability.
  • the network device can know the time when the terminal device sends the preamble according to the RACH time-frequency resource used to receive the preamble from the terminal device, so as to determine the terminal device's Initial TA, and inform the terminal device through RAR.
  • the RACH process on the secondary cell only supports Contention free Random Access (CFRA) triggered by the base station.
  • CFRA Contention free Random Access
  • the terminal device After the terminal device sends the preamble, it will monitor the PDCCH within the RAR time window (RA Response window) to receive the RAR corresponding to the RA-RNTI. If no RAR reply from the network device is received within this RAR time window, it is considered that the random access procedure has failed.
  • RA Response window the RAR time window
  • the terminal device when the terminal device sends the preamble on the secondary cell, it needs to monitor Msg2 on the primary cell.
  • CA between TN and NTN
  • CA between NTN and NTN can be considered.
  • RTT between terminal equipment and network equipment in different TN and NTN cells of CA.
  • it is considered to introduce an offset for the start time of the RAR time window, and the offset is related to the RTT of the NTN cell. Based on this, the present application provides a solution for determining the offset after introducing the CA between the TN and the NTN and the CA between the NTN and the NTN.
  • FIG. 13 is a schematic flowchart of a wireless communication method 200 provided by an embodiment of the present application.
  • the method 200 may be performed by a terminal device.
  • the terminal device 110 shown in FIG. 1 the terminal device 110 shown in FIG. 1 .
  • the method 200 may include:
  • the terminal device determines a first offset of the RAR time window (window) for the random access response
  • the terminal device starts the RAR time window after sending the first offset after the preamble on the secondary cell
  • the terminal device monitors the RAR within the RAR time window on the primary cell or the primary and secondary cells.
  • the terminal device monitors the RAR within the RAR time window on the primary cell.
  • the terminal device monitors the RAR within the RAR time window on the primary cell, and if the secondary cell is in the SCG the secondary cell, the terminal device monitors the RAR within the RAR time window on the primary and secondary cell.
  • the random access process can be optimized, thereby reducing the power consumption of the terminal device.
  • the S310 may include:
  • the terminal device determines the first offset according to an estimated timing advance (timing advance, TA) value of the NTN cell of the first non-terrestrial communication network. For example, the terminal device determines half of the TA value of the first NTN cell as the first offset. Certainly, the terminal device may also determine 1/3 or 2/3 of the TA value of the first NTN cell as the first offset, which is not specifically limited in this embodiment of the present application.
  • TA timing advance
  • the TA value of the first NTN cell is the sum of the service link round-trip transmission time RTT value of the first NTN cell and the public TA of the first NTN cell.
  • the service link RTT value is determined by the Global Navigation Satellite System (Global Navigation Satellite System, GNSS) position of the terminal device and the ephemeris information of the satellite, and/or, the public TA value is broadcasted by the system message acquisition.
  • the method is applicable to carrier aggregation CA between the terrestrial communication network TN and NTN, and the primary cell, the secondary cell or the primary and secondary cell is the first NTN cell.
  • the terminal equipment may have multiple secondary cells, and the first NTN cell is a secondary cell involved in preamble transmission among the multiple secondary cells, or the first NTN cell is A secondary cell in the plurality of secondary cells that needs to start the RAR time window.
  • the terminal device may have multiple primary and secondary cells, and the first NTN cell is the primary and secondary cell that needs to monitor the RAR within the RAR time window among the multiple primary and secondary cells.
  • the S310 may include:
  • the terminal device determines the first offset according to a round trip transmission time (Round Trip Time, RTT) value of the first NTN cell. For example, the terminal device determines half of the RTT value of the first NTN cell as the first offset. Certainly, the terminal device may also determine 1/3 or 2/3 of the RTT value of the first NTN cell as the first offset, which is not specifically limited in this embodiment of the present application.
  • RTT Round Trip Time
  • the RTT value of the first NTN cell is the sum of the service link RTT value of the first NTN cell and the feeder link RTT value of the first NTN cell.
  • the service link RTT value is determined by the GNSS position of the terminal device and the ephemeris information of the satellites, and/or the feeder link RTT value is obtained by a system broadcast message.
  • the RTT value of the first NTN cell is the sum of the service link RTT value of the first NTN cell, the public TA value of the first NTN cell, and the compensation TA value of the first NTN cell .
  • the service link RTT value is determined by the global navigation satellite system GNSS position of the terminal device and the ephemeris information of the satellite, and/or, the public TA value is obtained by a system broadcast message, and/or, The compensation TA value is obtained through a system broadcast message.
  • the method is applicable to carrier aggregation CA between the terrestrial communication network TN and NTN, and the primary cell, the secondary cell or the primary and secondary cell is the first NTN cell.
  • the terminal equipment may have multiple secondary cells, and the first NTN cell is a secondary cell involved in preamble transmission among the multiple secondary cells, or the first NTN cell is A secondary cell in the plurality of secondary cells that needs to start the RAR time window.
  • the terminal device may have multiple primary and secondary cells, and the first NTN cell is the primary and secondary cell that needs to monitor the RAR within the RAR time window among the multiple primary and secondary cells.
  • the S310 may include:
  • the terminal device determines the first offset according to the estimated TA value of the second NTN cell and the estimated TA value of the third NTN cell. For example, the terminal device determines half of the sum of the TA value of the second NTN cell and the TA value of the third NTN cell as the first offset. Of course, the terminal device may also determine 1/3 or 2/3 of the sum of the TA value of the second NTN cell and the TA value of the third NTN cell as the first offset. This is not specifically limited in the application examples.
  • the TA value of the second NTN cell is the sum of the RTT value of the service link of the second NTN cell and the public TA of the second NTN cell, and/or the value of the third NTN cell.
  • the TA value is the sum of the serving link RTT value of the third NTN cell and the common TA of the third NTN cell.
  • the service link RTT value is determined by the GNSS position of the terminal device and the ephemeris information of the satellites, and/or the public TA value is obtained by a system broadcast message.
  • the method is applicable to carrier aggregation CA between NTN and NTN, the primary cell or the primary secondary cell is the second NTN cell, and the secondary cell is the third NTN cell.
  • the terminal device may have multiple secondary cells, and the third NTN cell is a secondary cell involved in preamble transmission among the multiple secondary cells, or the third NTN cell is A secondary cell in the plurality of secondary cells that needs to start the RAR time window.
  • the terminal device may have multiple primary and secondary cells, and the second NTN cell is a primary and secondary cell that needs to monitor the RAR within the RAR time window among the multiple primary and secondary cells.
  • the S310 may include:
  • the terminal device determines the first offset according to the RTT value of the second NTN cell and the RTT value of the third NTN cell. For example, the terminal device determines half of the sum of the RTT value of the second NTN cell and the RTT value of the third NTN cell as the first offset.
  • the terminal device may also determine 1/3 or 2/3 of the sum of the RTT value of the second NTN cell and the RTT value of the third NTN cell as the first offset, which is implemented in this application. This example is not specifically limited.
  • the RTT value of the second NTN cell is the sum of the service link RTT value of the second NTN cell and the feeder link RTT value of the second NTN cell; and/or, the third The RTT value of the NTN cell is the sum of the serving link RTT value of the third NTN cell and the feeder link RTT value of the third NTN cell.
  • the service link RTT value is determined by the GNSS position of the terminal device and the ephemeris information of the satellites, and/or the feeder link RTT value is obtained by a system broadcast message.
  • the RTT value of the second NTN cell is the sum of the service link RTT value of the second NTN cell, the public TA value of the second NTN cell, and the compensation TA value of the second NTN cell and/or, the RTT value of the third NTN cell is the difference between the serving link RTT value of the third NTN cell, the public TA value of the third NTN cell, and the compensation TA value of the third NTN cell and.
  • the service link RTT value is determined by the global navigation satellite system GNSS position of the terminal device and the ephemeris information of the satellite, and/or, the public TA value is obtained by a system broadcast message, and/or, The compensation TA value is obtained through a system broadcast message.
  • the method is applicable to carrier aggregation CA between NTN and NTN, the primary cell or the primary secondary cell is the second NTN cell, and the secondary cell is the third NTN cell.
  • the terminal device may have multiple secondary cells, and the third NTN cell is a secondary cell involved in preamble transmission among the multiple secondary cells, or the third NTN cell is A secondary cell in the plurality of secondary cells that needs to start the RAR time window.
  • the terminal device may have multiple primary and secondary cells, and the second NTN cell is a primary and secondary cell that needs to monitor the RAR within the RAR time window among the multiple primary and secondary cells.
  • the random access process can be optimized, thereby reducing the The power consumption of the end device.
  • the terminal device can correctly receive the RAR in the CA scenario between the TN and the NTN and between the NTN and the NTN, and at the same time, the purpose of saving power of the terminal is achieved.
  • This embodiment is applicable to the CA scenario between TN and NTN.
  • FIG. 14 is a schematic relationship diagram of the positional relationship between the first offset and the RAR time window provided by the embodiment of the present application.
  • the connected terminal device receives the RRC reconfiguration message sent by the network device, and configures one or more secondary cells, where the CA configuration can be:
  • the primary cell is a TN cell and the secondary cell is an NTN cell;
  • the primary cell is an NTN cell
  • the secondary cell is a TN cell
  • the terminal equipment receives the PDCCH signaling (order) sent by the network equipment, and triggers the terminal equipment to initiate a random access procedure on the secondary cell; after the terminal equipment sends the preamble on the secondary cell, it starts the RAR time window after the first offset.
  • the terminal equipment sends the preamble on the secondary cell, it starts the RAR time window after the first offset.
  • the TA value estimated by the terminal equipment is equal to the sum of the service link (service link) RTT value and the common TA (common TA) value.
  • the service link RTT value can be calculated and obtained through the Global Navigation Satellite System (Global Navigation Satellite System, GNSS) position of the terminal device and the ephemeris information of the satellite, and the public TA value can be obtained through system message broadcasting.
  • GNSS Global Navigation Satellite System
  • the RTT value is the sum of the service link RTT value and the feeder link RTT value.
  • the service link RTT value can be obtained by calculating the GNSS position of the terminal device and the ephemeris information of the satellite where the corresponding NTN cell is located.
  • the feeder link RTT value can be obtained through broadcast signaling.
  • the RTT value is the sum of the serving link RTT value and the common TA value and the compensation TA value.
  • the service link RTT value can be obtained by calculating the GNSS position of the terminal device and the ephemeris information of the satellite where the corresponding NTN cell is located.
  • the common TA value can be obtained through broadcast signaling.
  • the compensation TA value can be obtained through broadcast signaling.
  • the terminal device in the CA between the terrestrial communication network (Terrestrial Network, TN) and the non-terrestrial communication network (Non Terrestrial Network, NTN), after the terminal device sends the preamble on the secondary cell (Secondary Cell, SCell), it sends Half of the NTN cell timing advance (timing advance, TA) value estimated by the terminal device or half of the NTN cell round trip transmission time (Round Trip Time, RTT) value is used as the first offset value of the RAR time window start time.
  • timing advance timing advance
  • RTT Round Trip Time
  • This embodiment is applicable to a CA scenario between NTNs and NTNs.
  • FIG. 14 is a schematic relationship diagram of the positional relationship between the first offset and the RAR time window provided by the embodiment of the present application.
  • the connected terminal device receives the RRC reconfiguration message sent by the network device, and configures one or more secondary cells, where the CA configuration may be: the primary cell is an NTN cell, and the secondary cell is also an NTN cell.
  • the terminal equipment receives the PDCCH signaling (order) sent by the network equipment, and triggers the terminal equipment to initiate a random access procedure on the secondary cell; after the terminal equipment sends the preamble on the secondary cell, it starts the RAR time window after the first offset value.
  • the terminal equipment receives the PDCCH signaling (order) sent by the network equipment, and triggers the terminal equipment to initiate a random access procedure on the secondary cell; after the terminal equipment sends the preamble on the secondary cell, it starts the RAR time window after the first offset value.
  • the estimated TA value is equal to the sum of the service link (service link) RTT value and the common TA (common TA) value. That is, TA1 is equal to the sum of the serving link RTT1 value and the common TA1 value.
  • TA2 is equal to the sum of the serving link RTT2 value and the common TA2 value.
  • the service link RTT value can be calculated and obtained through the GNSS position of the terminal device and the ephemeris information of the satellite where the corresponding NTN cell is located, and the public TA value of the corresponding NTN cell can be obtained through system message broadcasting.
  • RTT1+RTT2 Half of the RTT value of two NTN cells (primary cell and secondary cell), ie (RTT1+RTT2)/2. Specifically, it can include the following two sub-schemes:
  • the RTT value is the sum of the service link RTT value and the feeder link RTT value.
  • the service link RTT value can be obtained by calculating the GNSS position of the terminal device and the ephemeris information of the satellite where the corresponding NTN cell is located.
  • the feeder link RTT value of the corresponding NTN cell can be obtained through broadcast signaling.
  • the RTT value is the sum of the serving link RTT value and the common TA value and the compensation TA value.
  • the service link RTT value can be obtained by calculating the GNSS position of the terminal device and the ephemeris information of the satellite where the corresponding NTN cell is located.
  • the public TA value of the corresponding NTN cell can be obtained through broadcast signaling.
  • the compensation TA value of the corresponding NTN cell can be obtained through broadcast signaling.
  • the terminal device calculates half of the sum of the TA values of the two NTN cells estimated by the terminal device or the RTT value of the two NTN cells.
  • the half of the sum is used as the first offset value at the start time of the RAR time window.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • the term "and/or" is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this document generally indicates that the related objects are an "or" relationship.
  • FIG. 16 is a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 may include:
  • a determining unit 310 configured to determine a first offset of the RAR time window for the random access response
  • a starting unit 320 configured to start the RAR time window after the first offset after the preamble is sent on the secondary cell
  • the monitoring unit 330 is configured to monitor the RAR within the RAR time window on the primary cell or the primary and secondary cells.
  • the determining unit 310 is specifically configured to:
  • the first offset is determined according to the estimated timing advance TA value of the NTN cell of the first non-terrestrial communication network.
  • the determining unit 310 is specifically configured to:
  • the timing advance of the first NTN cell is determined to be half of the TA value as the first offset.
  • the TA value of the first NTN cell is the sum of the service link round trip transmission time RTT value of the first NTN cell and the common TA of the first NTN cell.
  • the service link RTT value is determined through the GNSS position of the terminal device and the ephemeris information of the satellites, and/or the public TA value is obtained through a system broadcast message .
  • the determining unit 310 is specifically configured to:
  • the first offset is determined according to the round-trip transmission time RTT value of the first NTN cell.
  • the determining unit 310 is specifically configured to:
  • Half of the round-trip transmission time RTT value of the first NTN cell is determined as the first offset.
  • the RTT value of the first NTN cell is a sum of the service link RTT value of the first NTN cell and the feeder link RTT value of the first NTN cell.
  • the service link RTT value is determined by the GNSS position of the terminal device and the ephemeris information of the satellites, and/or the feeder link RTT value is broadcast by the system message acquisition.
  • the RTT value of the first NTN cell is the serving link RTT value of the first NTN cell, the public TA value of the first NTN cell, and the RTT value of the first NTN cell. Compensate the sum of the TA values.
  • the service link RTT value is determined through the GNSS position of the terminal device and the ephemeris information of the satellites, and/or the public TA value is obtained through a system broadcast message , and/or, the compensation TA value is obtained through a system broadcast message.
  • the method is applicable to carrier aggregation CA between terrestrial communication networks TN and NTN, and the primary cell, the secondary cell or the primary and secondary cell is the first NTN cell.
  • the determining unit 310 is specifically configured to:
  • the terminal device determines the first offset according to the estimated TA value of the second NTN cell and the estimated TA value of the third NTN cell.
  • the determining unit 310 is specifically configured to:
  • a half of the sum of the TA value of the second NTN cell and the TA value of the third NTN cell is determined as the first offset.
  • the TA value of the second NTN cell is the sum of the serving link RTT value of the second NTN cell and the public TA of the second NTN cell
  • the The TA value of the third NTN cell is the sum of the serving link RTT value of the third NTN cell and the common TA of the third NTN cell.
  • the service link RTT value is determined through the GNSS position of the terminal device and the ephemeris information of the satellites, and/or the public TA value is obtained through a system broadcast message .
  • the determining unit 310 is specifically configured to:
  • the first offset is determined according to the RTT value of the second NTN cell and the RTT value of the third NTN cell.
  • the determining unit 310 is specifically configured to:
  • a half of the sum of the RTT value of the second NTN cell and the RTT value of the third NTN cell is determined as the first offset.
  • the RTT value of the second NTN cell is the sum of the serving link RTT value of the second NTN cell and the feeder link RTT value of the second NTN cell; and/or , the RTT value of the third NTN cell is the sum of the service link RTT value of the third NTN cell and the feeder link RTT value of the third NTN cell.
  • the service link RTT value is determined by the GNSS position of the terminal device and the ephemeris information of the satellites, and/or the feeder link RTT value is broadcast by the system message acquisition.
  • the RTT value of the second NTN cell is the serving link RTT value of the second NTN cell, the public TA value of the second NTN cell, and the RTT value of the second NTN cell.
  • the RTT value of the third NTN cell is the serving link RTT value of the third NTN cell, the common TA value of the third NTN cell, and the third NTN cell The sum of the compensated TA values.
  • the service link RTT value is determined through the GNSS position of the terminal device and the ephemeris information of the satellites, and/or the public TA value is obtained through a system broadcast message , and/or, the compensation TA value is obtained through a system broadcast message.
  • the method is applicable to carrier aggregation CA between NTN and NTN, the primary cell or the primary secondary cell is the second NTN cell, and the secondary cell is the second NTN cell Three NTN cells.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 300 shown in FIG. 16 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the terminal device 300 are respectively for the purpose of realizing the method shown in FIG. 13 .
  • the corresponding processes in each of the methods are not repeated here.
  • the steps of the method embodiments in the embodiments of the present application may be completed by hardware integrated logic circuits in the processor and/or instructions in the form of software, and the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit and the communication unit referred to above may be implemented by a processor and a transceiver, respectively.
  • FIG. 17 is a schematic structural diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 may include a processor 410 .
  • the processor 410 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the terminal device 400 may further include a memory 420 .
  • the memory 420 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 410 .
  • the processor 410 may call and run a computer program from the memory 420 to implement the methods in the embodiments of the present application.
  • the memory 420 may be a separate device independent of the processor 410 , or may be integrated in the processor 410 .
  • the terminal device 400 may further include a transceiver 430 .
  • the processor 410 may control the transceiver 430 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include antennas, and the number of the antennas may be one or more.
  • each component in the terminal device 400 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the terminal device 400 may be the terminal device of the embodiments of the present application, and the terminal device 400 may implement the corresponding processes implemented by the terminal device in each method of the embodiments of the present application.
  • the terminal device 400 may correspond to the terminal device 300 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application, which is not repeated here for brevity.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 18 is a schematic structural diagram of a chip 500 according to an embodiment of the present application.
  • the chip 500 includes a processor 510 .
  • the processor 510 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 500 may further include a memory 520 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 510 .
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the chip 500 may further include an input interface 530 .
  • the processor 510 may control the input interface 530 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 500 may further include an output interface 540 .
  • the processor 510 may control the output interface 540 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip 500 can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods in the embodiments of the present application, and can also implement the various methods in the embodiments of the present application.
  • the corresponding process implemented by the terminal device in FIG. 1 is not repeated here.
  • each component in the chip 500 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs comprising instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform the methods of the method embodiments .
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program When the computer program is executed by a computer, it enables the computer to perform the method of the method embodiment.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program runs on the computer, the computer program is implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • an embodiment of the present application also provides a communication system
  • the communication system may include the above-mentioned terminal equipment and network equipment to form a communication system as shown in FIG. 1 , which is not repeated here for brevity.
  • system and the like in this document may also be referred to as “network management architecture” or “network system” and the like.
  • a software functional unit If implemented in the form of a software functional unit and sold or used as a stand-alone product, it may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法和终端设备。所述方法包括:终端设备确定针对随机接入响应RAR时间窗的第一偏移量;所述终端设备在辅小区上发送完前导码后的第一偏移量后,启动所述RAR时间窗;所述终端设备在主小区或主辅小区上,监听所述RAR时间窗内的RAR。通过在第一偏移量后启动所述RAR时间窗,能够优化随机接入过程,进而降低终端设备的功耗。

Description

无线通信方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法和终端设备。
背景技术
在新无线(New Radio,NR)系统中,考虑采用非地面通信网络(Non-Terrestrial Networks,NTN)向用户提供通信服务。
在引入NTN之后,载波聚合(Carrier Aggregation,CA)技术和双连接(Dual Connectivity,DC)技术也可以考虑NTN小区。但是,由于NNT中卫星与地面的距离较大,终端设备与卫星之间的信号传输时延也较大,因此,终端设备不能采用地面通信网络(Terrestrial Networks,TN)的随机接入方式接入NTN小区。因此,如何实现NTN小区的随机接入是一项亟需解决的问题。
发明内容
本申请实施例提供一种无线通信方法和终端设备,不仅能够实现NTN小区的随机接入,还能够优化随机接入过程,进而降低终端设备的功耗。
第一方面,提供了一种无线通信方法,包括:
终端设备确定针对随机接入响应RAR时间窗的第一偏移量;
所述终端设备在辅小区上发送完前导码后的第一偏移量后,启动所述RAR时间窗;
所述终端设备在主小区或主辅小区上,监听所述RAR时间窗内的RAR。
第二方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于以上技术方案,通过在第一偏移量后启动所述RAR时间窗,能够优化随机接入过程,进而降低终端设备的功耗。
附图说明
图1至图3是本申请实施例提供的系统框架的示意框图。
图4和图5分别示出了基于透传转发卫星和再生转发卫星的NTN场景的示意图。
图6和图7是本申请实施例提供的非连续聚合的示意性结构图。
图8是本申请实施例提供的DC下的CA的示意性结构图。
图9至图12是本申请实施例提供的随机接入过程的流程交互图。
图13是本申请实施例提供的无线通信方法的示意性流程图。
图14和图15是本申请实施例提供的第一偏移量和RAR时间窗的位置关系的示意性关系图。
图16和图17是本申请实施例提供的终端设备的示意性框图。
图18是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图2为本申请实施例提供的另一种通信系统的架构示意图。
如图2所示,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图2所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图3为本申请实施例提供的另一种通信系统的架构示意图。
如图3所示,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以 进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图3所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。所述网络设备1203可以是图1中的网络设备120。
应理解,上述卫星1102或卫星1202包括但不限于:
低地球轨道(Low-Earth Orbit,)LEO卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。卫星可采用多波束覆盖地面,例如,一颗卫星可以形成几十甚至数百个波束来覆盖地面。换言之,一个卫星波束可以覆盖直径几十至上百公里的地面区域,以保证卫星的覆盖以及提升整个卫星通信系统的系统容量。
作为示例,LEO的高度范围可以为500km~1500km,相应轨道周期约可以为1.5小时~2小时,用户间单跳通信的信号传播延迟一般可小于20ms,最大卫星可视时间可以为20分钟,LEO的信号传播距离短且链路损耗少,对用户终端的发射功率要求不高。GEO的轨道高度可以35786km,围绕地球旋转周期可以24小时,用户间单跳通信的信号传播延迟一般可为250ms。
需要说明的是,图1至图3只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
卫星从其提供的功能上可以分为透传转发(transparent payload)和再生转发(regenerative payload)两种。对于透传转发卫星,只提供无线频率滤波,频率转换和放大的功能,只提供信号的透明转发,不会改变其转发的波形信号。对于再生转发卫星,除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能,其具有基站的部分或者全部功能。
在NTN中,可以包括一个或多个网关(Gateway),用于卫星和终端之间的通信。
图4和图5分别示出了基于透传转发卫星和再生转发卫星的NTN场景的示意图。
如图4所示,对于基于透传转发卫星的NTN场景,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。如图5所示,对于基于再生转发卫星的NTN场景,卫星和卫星之间通过星间(InterStar link)进行通信,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。
为了保证上行传输的正交性,避免小区内(intra-cell)干扰,网络要求来自同一时刻但不同频域资源的不同UE的信号到达网络的时间基本上是对齐的。为了保证网络侧的时间同步,引入了上行定时提前(Time Advance,TA)的机制。网络侧的上行时钟和下行时钟是相同的,而UE侧的上行时钟和下行时钟之间有偏移,并且不同UE有各自不同的上行定时提前量。网络通过适当地控制每个UE的偏移,可以控制来自不同UE的上行信号到达网络的时间。对于离网络较远的UE,由于有较大的传输时延,就要比离网络较近的UE提前发送上行数据。在NTN场景中,由于终端和网络之间的信号传输时延较大,为了便于终端完成初始随机接入,网络可以给终端设备配置公共TA。可选地,该公共TA可以是基于近地点与基站之间的信号传输时延确定的。
为了满足高速率的需求,5G中也支持载波聚合(Carrier Aggregation,CA)技术,即通过联合调度和使用多个成员载波(Component Carrier,CC)上的资源,使得NR系统可以支持更大的带宽,从而能够实现更高的系统峰值速率。
图6和图7是本申请实施例提供的非连续聚合的示意性结构图。
如图6所示,可以实现载波非连续聚合,两个成员载波分别为载波A和载波B,且载波A与载波B为非连续性载波,载波A与载波B各占20MHz带宽,共占用40MHz带宽;如图7所示,也可以实现载波连续聚合,五个成员载波分别为载波1至载波5,且载波1至载波5为连续性载波,每个载波占20MHz带宽,共占用100MHz带宽。
在NR CA中,主载波(Primary Cell Component,PCC)有且只有一个,PCC提供RRC信令连接,非接入层(Non-Access Stratum,NAS)功能,安全等。物理上行控制信道(Physical Uplink Control  Channel,PUCCH)在PCC上且只在PCC上存在。辅载波(Secondary Cell Component,SCC)只提供额外的无线资源。PCC和SCC同称为服务小区。标准上还规定聚合的载波最多支持5个,即聚合后的最大带宽为100MHZ,并且聚合载波属于同一个基站。所有的聚合载波使用相同的小区无线网络临时标识符(Cell Radio Network Temporary Identity,C-RNTI),基站实现保证C-RNTI在每个载波所在的小区不发生冲突。由于支持不对称载波聚合和对称载波聚合两种,所以要求聚合的载波一定有下行,可以没有上行。而且对于主载波小区来说一定有本小区的物理下行控制信道(Physical Downlink Control Channel,PDCCH)和PUCCH,而且只有主载波小区有PUCCH,其他辅载波小区可能有PDCCH。
辅小区有激活和非激活两种状态。只有当辅小区处于激活状态时,终端设备才可以在这个辅小区上进行数据的发送和接收。辅小区通过RRC专用信令进行配置,初始配置的状态为去激活状态,该状态下不能进行数据收发。然后通过MAC CE进行辅小区的激活才能进行数据收发。从辅小区配置和激活的时延的角度看,这个架构不是一个最优的架构。而这个时延又降低了CA使用和无线资源的效率,特别是小小区部署场景。在密集小小区部署场景,每个辅小区的信令负荷也很大,特别是每个辅小区需要单独配置情况下。因此当前CA架构引入了额外的延迟,限制了CA的使用,降低了CA负荷分担的增益。
终端设备可以同时在主小区和激活的一个或者多个辅小区上监听PDCCH,并进行数据的发送和接收,从而提升数据传输速率。而PUCCH在主小区上;此外,如果终端设备支持,网络设备可以在同一小区组(Cell Group)中为至多一个额外的辅小区配置PUCCH,该辅小区称为PUCCH辅小区。即,对于主小区来说一定有本小区的PDCCH和PUCCH,而对于其他辅小区来说,可能有PDCCH,仅可能在其中一个辅小区上有PUCCH。
在当前NR中,对于主小区和PUCCH辅小区的PDSCH下行传输,终端设备的HARQ feedback对应的PUCCH位于其自身小区;而对于其他的non-PUCCH辅小区的PDSCH下行传输,终端设备的HARQ feedback对应的PUCCH支持通过RRC半静态地配置为位于PUCCH辅小区或者主小区,且关系唯一。
当前NR中,支持通过RRC半静态地配置跨载波调度(Cross-carrier Scheduling),即对于主小区的PDSCH或PUSCH,调度其的PDCCH也位于主小区上;而对于一个辅小区的PDSCH或PUSCH,除了可以通过其自身的PDCCH调度之外,也可以通过主小区或其他辅小区中的某一个PDCCH调度,但对于某个特定辅小区来说,调度其PDSCH或PUSCH传输的PDCCH是唯一的。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间tight interworking的工作模式,即DC技术。
DC可以有多种工作模式,例如EN-DC(LTE-NR Dual Connectivity),NE-DC,5GC-EN-DC,NR DC等。对于EN-DC,接入网连接的核心网是EPC,而其他DC模式,接入网连接的核心网是5GC。从双连接(Dual Connection,DC)角度来说,多个小区组(Cell Group,CG)可以为同一个终端设备服务,小区组和终端设备之间可以进行复制数据的传输。可选地,在本申请的一些实施例中,CG可以等同于网络节点或网络设备等。
图8是本申请实施例提供的DC下的CA的示意性结构图。
如图8所示,DC下,终端设备的小区组可包括主小区组(Master Cell Group,MCG)或者辅小区组(Secondary Cell Group,SCG),主小区组可包括一个主小区(Primary Cell,PCell)和至少一个辅小区(Secondary Cell,SCell),例如两个辅小区。辅CG可包括一个主辅小区(Primary Secondary Cell,PSCell)和至少一个辅小区,例如两个辅小区。
下面对随机接入进行说明。
在小区搜索过程之后,终端设备已经与小区取得了下行同步,因此终端设备能够接收下行数据。但终端设备只有与小区取得上行同步,才能进行上行传输。终端设备可以通过随机接入过程(Random Access Procedure,RAR)与小区建立连接并取得上行同步。也就是说,通过随机接入,终端设备可以获得上行同步,并且获得网络设备为其分配的唯一的标识即小区无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI)。因此,随机接入不仅可以应用在初始接入中,也可以应用在用户上行同步丢失的情况下。
可选地,本申请实施例的随机接入过程通常可以由以下几类触发事件之一触发:
(1)初始接入(initial access)。
(2)切换(handover)。
(3)RRC连接重建(RRC Connection Re-establishment)。
(4)RRC连接态下,下行数据到达时,上行处于“不同步”状态。
此时,下行数据到达后终端设备需要回复应答(Acknowledgement,ACK)或否定应答(Negative Acknowledgement,NACK)。
(5)RRC连接态下,上行数据到达时,上行处于“不同步”状态。
(6)RRC连接态下,没有可用的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源用于调度请求(Scheduling Request,SR)传输。此时,可以允许已经处于上行同步状态的终端设备使用随机接入信道(Random Access Channel,RACH)来替代SR的作用。
(7)终端设备由RRC非激活态(RRC_INACTIVE)向激活态(RRC_ACTIVE)过渡。
(8)终端设备请求其他系统信息(Other System Information,OSI)。
(9)终端设备波束失败恢复(beam failure recovery)。
随机接入的过程主要有两种形式,一种是基于竞争的随机接入过程(contention based RACH),其中包括4个步骤;另一种是非竞争的随机接入过程(contention free RACH),其中包括2个步骤。
为了便于理解,下面将结合图9至图12简单介绍随机接入过程。
图9是本申请实施例提供的基于竞争的随机接入过程的流程交互图。
如图9所示,该随机接入流程可以包括以下四个步骤:
步骤1,终端设备向基站发送Msg 1。
终端设备向基站发送Msg 1,以告诉网络设备该终端设备发起了随机接入请求,该Msg 1中携带随机接入前导码(Random Access Preamble,RAP),或称为随机接入前导序列、前导序列、前导码等。具体而言,终端设备选择前导码索引(index)和用于发送前导码的PRACH资源;然后该终端设备在PRACH上传输前导码。其中,网络设备会通过广播系统信息系统信息块(System Information Block,SIB)来通知所有的终端设备,允许在哪些个时频资源上传输前导码,例如,SIB2。如果是基于非竞争的随机接入,PRACH资源和前导码可以由网络设备指定。网络设备基于前导码可以估计上行定时(Timing)和终端传输Msg3所需要的授权(grant)大小。
步骤2,网络设备向终端设备发送Msg 2。
网络设备在接收到终端设备发送的Msg 1后,向终端设备发送Msg 2,即随机接入响应(Random Access Response,RAR)消息。该Msg 2中例如可以携带时间提前量(Time Advance,TA)、上行授权指令例如上行资源的配置、以及临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identity,TC-RNTI)等。
终端设备则在随机接入响应时间窗(ra-ResponseWindow)内监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),以用于接收网络设备回复的RAR消息。该RAR消息可以使用相应的随机访问无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)进行加扰。RA-RNTI的计算如下:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id
其中,RA-RNTI跟终端设备发送Msg1所使用的PRACH时频资源有关。
可选的,Msg 2中可以包括针对多个终端设备的RAR消息,每一个终端设备的RAR消息中可以包括以下信息:
RAR的子头(subheader)中包含回退指示(BI),用于指示重传Msg1的回退时间;
RAR中的随机接入前导码标识(RAP Identify,RAPID:网络响应收到的前导码索引;
RAR的payload中包含了TAG,用于调整上行定时;
上行授权(UL grant):用于调度Msg3的上行资源指示;以及
临时小区无线网络临时标识(temporary Cell Radio Network Temporary Identifier,TC-RNTI):用于加扰Msg4的PDCCH(初始接入)。
如果终端设备在该RAR时间窗内没有接收到网络设备回复的RAR消息,则认为此次随机接入过程失败。如果终端接收到RA-RNTI加扰的PDCCH,并且RAR中携带的前导码索引(preamble index)与终端设备通过Msg 1发送的前导码的索引相同时,则认为成功接收了RAR,此时终端设备就可以停止RAR时间窗内的监听了。
步骤3,终端设备在网络调度的资源上传输Msg 3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码标识进行核对,在确定是属于自己的RAR消息后,终端设备在RRC层产生Msg 3,并向网络设备发送Msg 3。其中需要携带终端设备的标识信息等。
具体地,针对不同的随机接入触发事件,Msg 3可以包括不同的内容,以进行调度传输(Scheduled Transmission)。例如,对于初始接入的场景,Msg 3可以包括用户设备标识(UE ID)和建立原因 (establishment cause)等信息;具体可以包括RRC层生成的RRC连接请求(RRC Connection Request),其中至少携带终端设备的非接入层(Non-Access Stratum,NAS)标识信息,还可以携带例如终端设备的服务临时移动用户标识(Serving-Temporary Mobile Subscriber Identity,S-TMSI)或随机数等。又例如,对于连接重建场景,Msg 3可以包括可以包括连接态UE标识和建立原因(establishment cause)等信息;具体可以包括RRC层生成的RRC连接重建请求(RRC Connection Re-establishment Request)且不携带任何NAS消息,此外还可以携带例如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)和协议控制信息(Protocol Control Information,PCI)等。又例如,对于切换场景,Msg 3可以包括RRC层生成的RRC切换完成消息(RRC Handover Confirm)和终端设备的C-RNTI,还可携带例如缓冲状态报告(Buffer Status Report,BSR);对于其它触发事件例如上/下行数据到达的场景,Msg 3至少需要包括终端设备的C-RNTI。
步骤4,网络设备向终端设备发送Msg 4。
Msg4有两个作用,一个是用于竞争冲突解决,第二是网络设备向终端设备传输RRC配置消息。竞争冲突解决有以下两种方式:一种是如果终端设备在Msg3中携带了C-RNTI,则Msg4用C-RNTI加扰的PDCCH调度。另一种是如果终端设备在Msg3中没有携带C-RNTI,比如是初始接入,则Msg4用TC-RNTI加扰的PDCCH调度,冲突的解决是UE接收Msg4的PDSCH,通过匹配PDSCH中的CCCH SDU。具体地,网络设备向终端设备发送Msg 4,终端设备正确接收Msg 4完成竞争解决(Contention Resolution)。例如在RRC连接建立过程中,Msg 4中可以携带RRC连接建立消息。由于步骤3中的终端设备会在Msg 3中携带自己唯一的标识,例如C-RNTI或来自核心网的标识信息(比如S-TMSI或一个随机数),从而网络设备在竞争解决机制中,会在Msg 4中携带终端设备的唯一标识以指定竞争中胜出的终端设备。而其它没有在竞争解决中胜出的终端设备将重新发起随机接入。
图10是本申请实施例提供的非竞争的随机接入过程的流程交互图。需要说明的是,该随机接入流程可以包括图9中的前两个步骤(即图5中的步骤1和步骤2)。非竞争的随机接入过程中的Msg1和Msg 2,具体可以参考前述对基于竞争的随机接入过程中的Msg 1和Msg 2的描述,为了简洁,这里不再赘述。
如图10所示,该随机接入流程可以包括以下三个步骤:
步骤0,网络设备向终端设备发送随机接入前导码分配(RA Preamble assignment)消息。
步骤1,终端设备向网络设备发送Msg 1。
终端设备向基站发送Msg 1,以向网络设备告知该终端设备发起了随机接入请求,该Msg 1中携带随机接入前导码。
步骤2,网络设备向终端设备发送Msg 2。
网络设备在接收到终端设备发送的Msg 1后,向终端设备发送Msg 2即RAR消息。该Msg 2中例如可以携带TA信息、上行授权指令例如上行资源的配置、以及TC-RNTI等信息。如果终端设备在该RAR时间窗内没有接收到网络设备回复的RAR消息,则认为此次随机接入过程失败。如果终端设备成功地接收到一个RAR消息,且该RAR消息中携带的前导码索引与终端设备通过Msg 1发送的前导码的索引相同,则认为成功接收了RAR,此时终端设备就可以停止RAR消息的监听了。
此外,NR Rel-16版本引入了两步随机接入过程,以降低时延同时减小信令开销。
图11是本申请实施例提供的两步随机接入的示意性流程交互图。
如图11所示,两步随机接入可包括:
S310,终端设备向网络设备发送msgA,msgA可包含4步RACH的msg1和msg3。
S320,终端设备接收网络设备发送的msgB,msgB可包含4步RACH的msg2和msg4。
换言之,将4-step RACH过程中的第一步和第三步合并为2-step RACH过程中的第一步(消息A),将4-step RACH的第二步和第四步合并为2-step RACH过程过程中的第二步(消息B)。因此,在2-step RACH过程中的第一步中,终端设备需要发送前导码和PUSCH。例如,对于msgA,其可包含前导码以及上行数据部分(如通过PUSCH承载),其中上行数据部分承载终端设备的标识信息和/或RRC请求的原因(也即等效于现有MSG3的内容);而msgB中可包含冲突解决信息以及TA信息、C-RNTI的分配信息等,也即是包含等效于现有MSG2和MSG4信息部分信息的合并。
在2-step RACH过程中,当终端有随机接入需求时,终端在网络配置的周期出现的2-step RACH过程对应的MsgA资源,即RACH Occasion和PUSCH Occasion上发送MsgA。然后,终端在RAR响应窗口内监听网络发送的RAR消息(msgB)。
简言之,两步随机接入中的MsgA包含在PRACH上传输的前导码(Preamble)和在PUSCH上传输的负载信息,在MsgA传输后,终端设备在配置的窗口内监听网络侧的响应,如果收到网络下发的竞争冲突解决成功的指示,则终端结束随机接入过程。
需要说明的是,2-step RACH过程中的msgB RAR响应消息也可以携带针对多个终端设备发送的多个msgA的响应消息。例如,可以分为如下几种类型的消息:成功RAR(SuccessRAR):如果网络设备成功接收了msgA中的preamble和PUSCH信息,则终端反馈成功RAR,其中可携带TA命令(command),C-RNTI,冲突解决ID等;回退RAR(FallbackRAR):如果网络设备成功检测到终端msgA中的前导码部分,但未接收正确其中PUSCH部分,网络可以向终端发送回退RAR,使得终端可以回退到传统4-step RACH过程中,终端收到回退RAR后,终端向网络发送msg3。
图12是本申请实施例提供的从两步随机接入回退到四步随机接入的示意性流程交互图。如图12所示,如果在MsgB中收到回退指示,则终端执行Msg3的传输并监听竞争冲突解决结果(即Msg4),如果竞争解决不成功,终端继续MsgA的传输。
需要注意的是,msgB RAR响应消息也可以携带其他信息,如回退指示(Backoff Indicator,BI),用于指示终端没有收到RAR响应消息的情况下,如何调整重传msgA的时间参数。当终端设备需要在授权频谱(licensed band)上发起竞争随机接入时,由于多个终端设备可能配置了公共的PRACH资源,不同终端设备可能会在相同的PRACH资源上竞争资源。当发生资源冲突时,比如多个终端设备选择了相同的PRACH时机(PRACH occasion)。这种情况下,网络设备可以在Msg 2的RAR消息中携带一个回退指示(Backoff Indicator,BI)。发生了资源冲突的终端设备可以基于该回退指示产生一个随机数,从而在下一次PRACH资源到来时,按照该随机数进行延迟,从而延迟相应时间发送Msg A,因而在一定程度上缓解发生资源冲突的概率。
从以上随机接入的过程可以看出,随机接入的主要目的就是终端与小区取得上行同步。在随机接入过程中,网络设备根据接收来自终端设备的前导码所使用的RACH时频资源就可以知道终端设备发送前导码的时刻,从而根据前导码的发送时刻和接收时刻确定该终端设备的初始TA,并通过RAR中告知终端设备。
截止目前,针对载波聚合(Carrier Aggregation,CA)场景,辅小区上的RACH过程只支持基站触发的基于非竞争的随机接入(Contention free Random Access,CFRA)。终端设备发送了前导码之后,将在RAR时间窗(RA Response window)内监听PDCCH,以接收对应RA-RNTI的RAR。如果在此RAR时间窗内没有接收到网络设备回复的RAR,则认为此次随机接入过程失败。
但是,终端设备在辅小区上发送前导码,却需要在主小区上监听Msg2。
关于NTN,截止目前,并没有专门针对CA进行讨论。考虑到透明转发的卫星场景,在实际部署时,为了提高终端的传输速率,可以考虑TN和NTN之间的CA,以及NTN和NTN之间的CA。然而,CA的不同TN和NTN小区的终端设备与网络设备之间的RTT可能存在明显的差异。为了达到终端节能的目的,本申请实施例中,考虑针对RAR时间窗的启动时刻引入一个偏移量,所述偏移量和NTN小区的RTT相关。基于此,本申请在引入TN和NTN之间的CA以及NTN和NTN之间的CA后,提供了一种确定偏移量的方案。
图13是本申请实施例提供的无线通信方法200的示意性流程图。所述方法200可由终端设备执行。例如,图1所示的终端设备110。
如图13所示,所述方法200可包括:
S310,终端设备确定针对随机接入响应RAR时间窗(window)的第一偏移量;
S320,所述终端设备在辅小区上发送完前导码后的第一偏移量后,启动所述RAR时间窗;
S330,所述终端设备在主小区或主辅小区上,监听所述RAR时间窗内的RAR。
例如,针对CA场景,所述终端设备在所述主小区上监听所述RAR时间窗内的RAR。
再如,针对DC下的CA场景,若所述辅小区为MCG中的辅小区,所述终端设备在所述主小区上监听所述RAR时间窗内的RAR,若所述辅小区为SCG中的辅小区,所述终端设备在所述主辅小区上监听所述RAR时间窗内的RAR。
基于以上技术方案,通过在第一偏移量后启动所述RAR时间窗,能够优化随机接入过程,进而降低终端设备的功耗。
在本申请的一些实施例中,所述S310可包括:
所述终端设备根据预估的第一非地面通信网络NTN小区的定时提前(timing advance,TA)值,确定所述第一偏移量。例如,所述终端设备将所述第一NTN小区的TA值的一半,确定为所述第一偏移量。当然,所述终端设备也可以将所述第一NTN小区的TA值的1/3或2/3,确定为所述第一偏移量,本申请实施例对此不作具体限定。
可选的,所述第一NTN小区的TA值为所述第一NTN小区的服务链路往返传输时间RTT值与所述第一NTN小区的公共TA的和。可选的,所述服务链路RTT值通过所述终端设备的全球导航卫星系统(Global Navigation Satellite System,GNSS)位置和卫星的星历信息确定,和/或,所述公共 TA值通过系统广播消息获取。可选的,所述方法适用于地面通信网络TN和NTN之间的载波聚合CA,所述主小区、所述辅小区或所述主辅小区为所述第一NTN小区。
需要说明的是,在CA场景下,终端设备可能存在多个辅小区,所述第一NTN小区为所述多个辅小区中的涉及前导码发送的辅小区,或所述第一NTN小区为所述多个辅小区中需要启动所述RAR时间窗的辅小区。类似的,所述终端设备可能存在多个主辅小区,所述第一NTN小区是所述多个主辅小区中需要监听RAR时间窗内的RAR的主辅小区。
在本申请的一些实施例中,所述S310可包括:
所述终端设备根据第一NTN小区的往返传输时间(Round Trip Time,RTT)值,确定所述第一偏移量。例如,所述终端设备将所述第一NTN小区的RTT值的一半,确定为所述第一偏移量。当然,所述终端设备也可以将所述第一NTN小区的RTT值的1/3或2/3,确定为所述第一偏移量,本申请实施例对此不作具体限定。
可选的,所述第一NTN小区的RTT值为所述第一NTN小区的服务链路RTT值与所述第一NTN小区的馈线链路RTT值的和。可选的,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述馈线链路RTT值通过系统广播消息获取。可选的,所述第一NTN小区的RTT值为所述第一NTN小区的服务链路RTT值、所述第一NTN小区的公共TA值以及所述第一NTN小区的补偿TA值的和。可选的,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取,和/或,所述补偿TA值通过系统广播消息获取。可选的,所述方法适用于地面通信网络TN和NTN之间的载波聚合CA,所述主小区、所述辅小区或所述主辅小区为所述第一NTN小区。
需要说明的是,在CA场景下,终端设备可能存在多个辅小区,所述第一NTN小区为所述多个辅小区中的涉及前导码发送的辅小区,或所述第一NTN小区为所述多个辅小区中需要启动所述RAR时间窗的辅小区。类似的,所述终端设备可能存在多个主辅小区,所述第一NTN小区是所述多个主辅小区中需要监听RAR时间窗内的RAR的主辅小区。
在本申请的一些实施例中,所述S310可包括:
所述终端设备根据预估的第二NTN小区的TA值与预估的第三NTN小区的TA值,确定所述第一偏移量。例如,所述终端设备将所述第二NTN小区的TA值与所述第三NTN小区的TA值的和的一半,确定为所述第一偏移量。当然,所述终端设备也可以将所述第二NTN小区的TA值与所述第三NTN小区的TA值的和的1/3或2/3,确定为所述第一偏移量,本申请实施例对此不作具体限定。
可选的,所述第二NTN小区的TA值为所述第二NTN小区的服务链路RTT值与所述第二NTN小区的公共TA的和,和/或,所述第三NTN小区的TA值为所述第三NTN小区的服务链路RTT值与所述第三NTN小区的公共TA的和。可选的,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取。可选的,所述方法适用于NTN和NTN之间的载波聚合CA,所述主小区或所述主辅小区为所述第二NTN小区,所述辅小区为所述第三NTN小区。
需要说明的是,在CA场景下,终端设备可能存在多个辅小区,所述第三NTN小区为所述多个辅小区中的涉及前导码发送的辅小区,或所述第三NTN小区为所述多个辅小区中需要启动所述RAR时间窗的辅小区。类似的,所述终端设备可能存在多个主辅小区,所述第二NTN小区是所述多个主辅小区中需要监听RAR时间窗内的RAR的主辅小区。
在本申请的一些实施例中,所述S310可包括:
所述终端设备根据第二NTN小区的RTT值与第三NTN小区的RTT值,确定所述第一偏移量。例如,所述终端设备将第二NTN小区的RTT值与第三NTN小区的RTT值的和的一半,确定为所述第一偏移量。当然,所述终端设备也可以将所述第二NTN小区的RTT值与第三NTN小区的RTT值的和的1/3或2/3,确定为所述第一偏移量,本申请实施例对此不作具体限定。
可选的,所述第二NTN小区的RTT值为所述第二NTN小区的服务链路RTT值与所述第二NTN小区的馈线链路RTT值的和;和/或,所述第三NTN小区的RTT值为所述第三NTN小区的服务链路RTT值与所述第三NTN小区的馈线链路RTT值的和。可选的,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述馈线链路RTT值通过系统广播消息获取。可选的,所述第二NTN小区的RTT值为所述第二NTN小区的服务链路RTT值、所述第二NTN小区的公共TA值以及所述第二NTN小区的补偿TA值的和;和/或,所述第三NTN小区的RTT值为所述第三NTN小区的服务链路RTT值、所述第三NTN小区的公共TA值以及所述第三NTN小区的补偿TA值的和。可选的,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取,和/或,所述 补偿TA值通过系统广播消息获取。可选的,所述方法适用于NTN和NTN之间的载波聚合CA,所述主小区或所述主辅小区为所述第二NTN小区,所述辅小区为所述第三NTN小区。
需要说明的是,在CA场景下,终端设备可能存在多个辅小区,所述第三NTN小区为所述多个辅小区中的涉及前导码发送的辅小区,或所述第三NTN小区为所述多个辅小区中需要启动所述RAR时间窗的辅小区。类似的,所述终端设备可能存在多个主辅小区,所述第二NTN小区是所述多个主辅小区中需要监听RAR时间窗内的RAR的主辅小区。
综上所述,本申请实施例中,在辅小区的RACH过程中通过引入第一偏移量,并在第一偏移量后启动所述RAR时间窗,能够优化随机接入过程,进而降低终端设备的功耗。特别是,使得TN和NTN之间以及NTN和NTN之间的CA场景下终端设备能够正确接收RAR,同时达到终端省电的目的。
下面结合具体实施例对本申请的方案进行说明。
实施例1:
本实施例适用于TN和NTN之间的CA场景。
图14是本申请实施例提供的第一偏移量和RAR时间窗的位置关系的示意性关系图。
如图14所示,连接态终端设备接收网络设备发送的RRC重配置消息,配置一个或多个辅小区,其中,CA配置可以是:
a)主小区是TN小区,辅小区是NTN小区;或者
b)主小区是NTN小区,辅小区是TN小区。
终端设备接收网络设备发送的PDCCH信令(order),触发终端设备在辅小区发起随机接入过程;终端设备在辅小区上发送完前导码后,在第一偏移量后启动RAR时间窗。其中,第一偏移量的取值有以下几种方案:
方案一:
终端设备预估的NTN小区(主小区或辅小区)的TA值的一半,所述终端设备预估的TA值等于服务链路(service link)RTT值和公共TA(common TA)值的和。其中,服务链路RTT值可以通过终端设备的全球导航卫星系统(Global Navigation Satellite System,GNSS)位置和卫星的星历信息计算获取,公共TA值通过系统消息广播获取。
方案二:
NTN小区(主小区或辅小区)的RTT值的一半,具体有可以包括如下两个子方案:
子方案1:
RTT值为服务链路RTT值与馈线链路(Feeder link)RTT值的和。服务链路RTT值可以通过终端设备的GNSS位置和对应的NTN小区所在卫星的星历信息计算获取。馈线链路RTT值可通过广播信令获取。
子方案2:
RTT值为服务链路RTT值与公共TA值以及补偿TA值的和。服务链路RTT值可以通过终端设备的GNSS位置和对应的NTN小区所在卫星的星历信息计算获取。公共TA值可通过广播信令获取。补偿TA值可通过广播信令获取。
本实施例中,地面通信网络(Terrestrial Network,TN)和非地面通信网络(Non Terrestrial Network,NTN)之间的CA,终端设备在辅小区(Secondary Cell,SCell)上发送完前导码后,将终端设备预估的NTN小区定时提前(timing advance,TA)值的一半或者NTN小区往返传输时间(Round Trip Time,RTT)值的一半作为RAR时间窗启动时刻的第一偏移值。
实施例2:
本实施例适用于NTN和NTN之间的CA场景。
图14是本申请实施例提供的第一偏移量和RAR时间窗的位置关系的示意性关系图。
如图14所示,连接态终端设备接收网络设备发送的RRC重配置消息,配置一个或多个辅小区,其中,CA配置可以是:主小区是NTN小区,辅小区也是NTN小区。终端设备接收网络设备发送的PDCCH信令(order),触发终端设备在辅小区发起随机接入过程;终端设备在辅小区上发送完前导码后,在第一偏移值后启动RAR时间窗。其中,第一偏移值的取值有以下几种方案:
方案一:
终端设备预估的两个NTN小区(主小区和辅小区)的TA值求和的一半,即(TA1+TA2)/2。所述预估TA值等于服务链路(service link)RTT值和公共TA(common TA)值的和。即,TA1等于服务链路RTT1值和公共TA1值的和。TA2等于服务链路RTT2值和公共TA2值的和。其中,服务链路RTT值可以通过终端设备的GNSS位置和对应NTN小区所在的卫星的星历信息计算获取,对应 NTN小区的公共TA值通过系统消息广播获取。
方案二:
两个NTN小区(主小区和辅小区)的RTT值的一半,即(RTT1+RTT2)/2。具体可包括如下两个子方案:
子方案1:
RTT值为服务链路RTT值与馈线链路RTT值的求和。服务链路RTT值可以通过终端设备的GNSS位置和对应的NTN小区所在的卫星的星历信息计算获取。对应的NTN小区的馈线链路RTT值可通过广播信令获取。
子方案2:
RTT值为服务链路RTT值与公共TA值以及补偿TA值的求和。服务链路RTT值可以通过终端设备的GNSS位置和对应的NTN小区所在的卫星的星历信息计算获取。对应的NTN小区的公共TA值可通过广播信令获取。对应的NTN小区的补偿TA值可通过广播信令获取。
本实施例中,对于NTN和NTN之间的CA,终端设备在辅小区上发送完前导码后,将终端设备预估的两个NTN小区的TA值的和的一半或两个NTN小区RTT值的和的一半作为RAR时间窗启动时刻的第一偏移值。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下文结合图16至图18,详细描述本申请的装置实施例。
图16是本申请实施例的终端设备300的示意性框图。
如图9所示,所述终端设备300可包括:
确定单元310,用于确定针对随机接入响应RAR时间窗的第一偏移量;
启动单元320,用于在辅小区上发送完前导码后的第一偏移量后,启动所述RAR时间窗;
监听单元330,用于在主小区或主辅小区上,监听所述RAR时间窗内的RAR。
在本申请的一些实施例中,所述确定单元310具体用于:
根据预估的第一非地面通信网络NTN小区的定时提前TA值,确定所述第一偏移量。
在本申请的一些实施例中,所述确定单元310具体用于:
将所述第一NTN小区的定时提前TA值的一半,确定为所述第一偏移量。
在本申请的一些实施例中,所述第一NTN小区的TA值为所述第一NTN小区的服务链路往返传输时间RTT值与所述第一NTN小区的公共TA的和。
在本申请的一些实施例中,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取。
在本申请的一些实施例中,所述确定单元310具体用于:
根据第一NTN小区的往返传输时间RTT值,确定所述第一偏移量。
在本申请的一些实施例中,所述确定单元310具体用于:
将所述第一NTN小区的往返传输时间RTT值的一半,确定为所述第一偏移量。
在本申请的一些实施例中,所述第一NTN小区的RTT值为所述第一NTN小区的服务链路RTT值与所述第一NTN小区的馈线链路RTT值的和。
在本申请的一些实施例中,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述馈线链路RTT值通过系统广播消息获取。
在本申请的一些实施例中,所述第一NTN小区的RTT值为所述第一NTN小区的服务链路RTT值、所述第一NTN小区的公共TA值以及所述第一NTN小区的补偿TA值的和。
在本申请的一些实施例中,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取,和/或,所述补偿TA值 通过系统广播消息获取。
在本申请的一些实施例中,所述方法适用于地面通信网络TN和NTN之间的载波聚合CA,所述主小区、所述辅小区或所述主辅小区为所述第一NTN小区。
在本申请的一些实施例中,所述确定单元310具体用于:
所述终端设备根据预估的第二NTN小区的TA值与预估的第三NTN小区的TA值,确定所述第一偏移量。
在本申请的一些实施例中,所述确定单元310具体用于:
将所述第二NTN小区的TA值与所述第三NTN小区的TA值的和的一半,确定为所述第一偏移量。
在本申请的一些实施例中,所述第二NTN小区的TA值为所述第二NTN小区的服务链路RTT值与所述第二NTN小区的公共TA的和,和/或,所述第三NTN小区的TA值为所述第三NTN小区的服务链路RTT值与所述第三NTN小区的公共TA的和。
在本申请的一些实施例中,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取。
在本申请的一些实施例中,所述确定单元310具体用于:
根据第二NTN小区的RTT值与第三NTN小区的RTT值,确定所述第一偏移量。
在本申请的一些实施例中,所述确定单元310具体用于:
将第二NTN小区的RTT值与第三NTN小区的RTT值的和的一半,确定为所述第一偏移量。
在本申请的一些实施例中,所述第二NTN小区的RTT值为所述第二NTN小区的服务链路RTT值与所述第二NTN小区的馈线链路RTT值的和;和/或,所述第三NTN小区的RTT值为所述第三NTN小区的服务链路RTT值与所述第三NTN小区的馈线链路RTT值的和。
在本申请的一些实施例中,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述馈线链路RTT值通过系统广播消息获取。
在本申请的一些实施例中,所述第二NTN小区的RTT值为所述第二NTN小区的服务链路RTT值、所述第二NTN小区的公共TA值以及所述第二NTN小区的补偿TA值的和;和/或,所述第三NTN小区的RTT值为所述第三NTN小区的服务链路RTT值、所述第三NTN小区的公共TA值以及所述第三NTN小区的补偿TA值的和。
在本申请的一些实施例中,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取,和/或,所述补偿TA值通过系统广播消息获取。
在本申请的一些实施例中,所述方法适用于NTN和NTN之间的载波聚合CA,所述主小区或所述主辅小区为所述第二NTN小区,所述辅小区为所述第三NTN小区。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图16所示的终端设备300可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备300中的各个单元的前述和其它操作和/或功能分别为了实现图13中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图17是本申请实施例的终端设备400示意性结构图。
如图17所示,所述终端设备400可包括处理器410。
其中,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图17,终端设备400还可以包括存储器420。
其中,该存储器420可以用于存储指示信息,还可以用于存储处理器410执行的代码、指令等。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
请继续参见图17,终端设备400还可以包括收发器430。
其中,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该终端设备400中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该终端设备400可为本申请实施例的终端设备,并且该终端设备400可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的终端设备400可对应于本申请实施例中的终端设备300,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图18是根据本申请实施例的芯片500的示意性结构图。
如图18所示,所述芯片500包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图18,所述芯片500还可以包括存储器520。
其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
请继续参见图18,所述芯片500还可以包括输入接口530。
其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
请继续参见图18,所述芯片500还可以包括输出接口540。
其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片500可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法实施例的方法。可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法实施例的方法。可选的,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
此外,本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备确定针对随机接入响应RAR时间窗的第一偏移量;
    所述终端设备在辅小区上发送完前导码后的第一偏移量后,启动所述RAR时间窗;
    所述终端设备在主小区或主辅小区上,监听所述RAR时间窗内的RAR。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定针对随机接入响应RAR时间窗的第一偏移量,包括:
    所述终端设备根据预估的第一非地面通信网络NTN小区的定时提前TA值,确定所述第一偏移量。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据预估的第一非地面通信网络NTN小区的定时提前TA值,确定所述第一偏移量,包括:
    所述终端设备将所述第一NTN小区的定时提前TA值的一半,确定为所述第一偏移量。
  4. 根据权利要求2所述的方法,其特征在于,所述第一NTN小区的TA值为所述第一NTN小区的服务链路往返传输时间RTT值与所述第一NTN小区的公共TA的和。
  5. 根据权利要求4所述的方法,其特征在于,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取。
  6. 根据权利要求1所述的方法,其特征在于,所述终端设备确定针对随机接入响应RAR时间窗的第一偏移量,包括:
    所述终端设备根据第一NTN小区的往返传输时间RTT值,确定所述第一偏移量。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据第一NTN小区的往返传输时间RTT值,确定所述第一偏移量,包括:
    所述终端设备将所述第一NTN小区的往返传输时间RTT值的一半,确定为所述第一偏移量。
  8. 根据权利要求6所述的方法,其特征在于,所述第一NTN小区的RTT值为所述第一NTN小区的服务链路RTT值与所述第一NTN小区的馈线链路RTT值的和。
  9. 根据权利要求8所述的方法,其特征在于,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述馈线链路RTT值通过系统广播消息获取。
  10. 根据权利要求6所述的方法,其特征在于,所述第一NTN小区的RTT值为所述第一NTN小区的服务链路RTT值、所述第一NTN小区的公共TA值以及所述第一NTN小区的补偿TA值的和。
  11. 根据权利要求10所述的方法,其特征在于,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取,和/或,所述补偿TA值通过系统广播消息获取。
  12. 根据权利要求2至11中任一项所述的方法,其特征在于,所述方法适用于地面通信网络TN和NTN之间的载波聚合CA,所述主小区、所述辅小区或所述主辅小区为所述第一NTN小区。
  13. 根据权利要求1所述的方法,其特征在于,所述终端设备确定针对随机接入响应RAR时间窗的第一偏移量,包括:
    所述终端设备根据预估的第二NTN小区的TA值与预估的第三NTN小区的TA值,确定所述第一偏移量。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备根据预估的第二NTN小区的TA值与预估的所述第三NTN小区的TA值,确定所述第一偏移量,包括:
    所述终端设备将所述第二NTN小区的TA值与所述第三NTN小区的TA值的和的一半,确定为所述第一偏移量。
  15. 根据权利要求13所述的方法,其特征在于,所述第二NTN小区的TA值为所述第二NTN小区的服务链路RTT值与所述第二NTN小区的公共TA的和,和/或,所述第三NTN小区的TA值为所述第三NTN小区的服务链路RTT值与所述第三NTN小区的公共TA的和。
  16. 根据权利要求15所述的方法,其特征在于,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取。
  17. 根据权利要求1所述的方法,其特征在于,所述终端设备确定针对随机接入响应RAR时间窗的第一偏移量,包括:
    所述终端设备根据第二NTN小区的RTT值与第三NTN小区的RTT值,确定所述第一偏移量。
  18. 根据权利要求17所述的方法,其特征在于,所述终端设备根据第二NTN小区的RTT值与第三NTN小区的RTT值,确定所述第一偏移量,包括:
    所述终端设备将第二NTN小区的RTT值与第三NTN小区的RTT值的和的一半,确定为所述第 一偏移量。
  19. 根据权利要求17所述的方法,其特征在于,所述第二NTN小区的RTT值为所述第二NTN小区的服务链路RTT值与所述第二NTN小区的馈线链路RTT值的和;和/或,所述第三NTN小区的RTT值为所述第三NTN小区的服务链路RTT值与所述第三NTN小区的馈线链路RTT值的和。
  20. 根据权利要求19所述的方法,其特征在于,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述馈线链路RTT值通过系统广播消息获取。
  21. 根据权利要求17所述的方法,其特征在于,所述第二NTN小区的RTT值为所述第二NTN小区的服务链路RTT值、所述第二NTN小区的公共TA值以及所述第二NTN小区的补偿TA值的和;和/或,所述第三NTN小区的RTT值为所述第三NTN小区的服务链路RTT值、所述第三NTN小区的公共TA值以及所述第三NTN小区的补偿TA值的和。
  22. 根据权利要求21所述的方法,其特征在于,所述服务链路RTT值通过所述终端设备的全球导航卫星系统GNSS位置和卫星的星历信息确定,和/或,所述公共TA值通过系统广播消息获取,和/或,所述补偿TA值通过系统广播消息获取。
  23. 根据权利要求13至22中任一项所述的方法,其特征在于,所述方法适用于NTN和NTN之间的载波聚合CA,所述主小区或所述主辅小区为所述第二NTN小区,所述辅小区为所述第三NTN小区。
  24. 一种终端设备,其特征在于,包括:
    确定单元,用于确定针对随机接入响应RAR时间窗的第一偏移量;
    启动单元,用于在辅小区上发送完前导码后的第一偏移量后,启动所述RAR时间窗;
    监听单元,用于在主小区或主辅小区上,监听所述RAR时间窗内的RAR。
  25. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至23中任一项所述的方法。
  26. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至23中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至23中任一项所述的方法。
  29. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
PCT/CN2020/140914 2020-12-29 2020-12-29 无线通信方法和终端设备 WO2022141070A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080107048.6A CN116438862A (zh) 2020-12-29 2020-12-29 无线通信方法和终端设备
PCT/CN2020/140914 WO2022141070A1 (zh) 2020-12-29 2020-12-29 无线通信方法和终端设备
EP20967418.3A EP4271107A4 (en) 2020-12-29 2020-12-29 RADIOCOMMUNICATION METHOD AND TERMINAL DEVICE
US18/213,321 US20230337289A1 (en) 2020-12-29 2023-06-23 Wireless communication method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140914 WO2022141070A1 (zh) 2020-12-29 2020-12-29 无线通信方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/213,321 Continuation US20230337289A1 (en) 2020-12-29 2023-06-23 Wireless communication method and terminal device

Publications (1)

Publication Number Publication Date
WO2022141070A1 true WO2022141070A1 (zh) 2022-07-07

Family

ID=82258766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140914 WO2022141070A1 (zh) 2020-12-29 2020-12-29 无线通信方法和终端设备

Country Status (4)

Country Link
US (1) US20230337289A1 (zh)
EP (1) EP4271107A4 (zh)
CN (1) CN116438862A (zh)
WO (1) WO2022141070A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031239A1 (en) * 2022-08-08 2024-02-15 Apple Inc. System and method for ue location verification in non-terrestrial network (ntn)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230045529A1 (en) * 2021-08-05 2023-02-09 Ofinno, Llc Switching Between Two-Step and Four-Step Random Access Procedures in Non-Terrestrial Networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194018A1 (zh) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 随机接入方法、装置及用户设备、存储介质
WO2018196092A1 (zh) * 2017-04-25 2018-11-01 华为技术有限公司 一种随机接入方法和装置
CN111972030A (zh) * 2019-03-14 2020-11-20 韩国电子通信研究院 用于在通信系统中控制终端接入的方法
CN112075107A (zh) * 2020-07-31 2020-12-11 北京小米移动软件有限公司 随机接入方法和装置、配置指示方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10785739B2 (en) * 2017-08-10 2020-09-22 Ofinno, Llc Beam indication in RACH

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194018A1 (zh) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 随机接入方法、装置及用户设备、存储介质
WO2018196092A1 (zh) * 2017-04-25 2018-11-01 华为技术有限公司 一种随机接入方法和装置
CN111972030A (zh) * 2019-03-14 2020-11-20 韩国电子通信研究院 用于在通信系统中控制终端接入的方法
CN112075107A (zh) * 2020-07-31 2020-12-11 北京小米移动软件有限公司 随机接入方法和装置、配置指示方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4271107A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031239A1 (en) * 2022-08-08 2024-02-15 Apple Inc. System and method for ue location verification in non-terrestrial network (ntn)

Also Published As

Publication number Publication date
EP4271107A1 (en) 2023-11-01
EP4271107A4 (en) 2024-01-24
CN116438862A (zh) 2023-07-14
US20230337289A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
CN108462998B (zh) 用于随机接入的基站、用户设备和方法
US20220159732A1 (en) Random access method and device
US20230337289A1 (en) Wireless communication method and terminal device
WO2021016773A1 (zh) 监听随机接入响应的方法、终端设备、网络设备及存储介质
US20230119893A1 (en) Wireless communication method and terminal device
CN114503711B (zh) 激活时段确认方法及装置
WO2021142807A1 (zh) 两步随机接入msg a资源的配置方法及相关装置
EP4207873A1 (en) Network slicing information processing method, terminal device, and network device
WO2021128309A1 (zh) 随机接入的方法和终端设备
US20230217503A1 (en) Random access method and terminal device
US20220124824A1 (en) Method for random access and communication device
US20230042104A1 (en) Wireless communication method, terminal device, and network device
US20220086921A1 (en) Method and device for random access
WO2022205223A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2022116093A1 (zh) 无线通信方法和设备
WO2023097504A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2022120842A1 (zh) Ntn网络中定时提前的预补偿方法、终端设备和网络设备
WO2023133885A1 (zh) 无线通信的方法和终端设备
WO2024119317A1 (zh) 无线通信的方法和终端设备
WO2024119496A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
US20240155692A1 (en) Communication method, terminal device and network device
WO2023097421A1 (zh) 信息上报方法、装置、设备、存储介质及程序产品
WO2023082114A1 (zh) 通信方法及装置
WO2021184335A1 (zh) 一种小区切换方法、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020967418

Country of ref document: EP

Effective date: 20230725

NENP Non-entry into the national phase

Ref country code: DE