WO2022138911A1 - HUMAN ANTI-SARS-CoV2 VIRUS ANITBODY - Google Patents

HUMAN ANTI-SARS-CoV2 VIRUS ANITBODY Download PDF

Info

Publication number
WO2022138911A1
WO2022138911A1 PCT/JP2021/048176 JP2021048176W WO2022138911A1 WO 2022138911 A1 WO2022138911 A1 WO 2022138911A1 JP 2021048176 W JP2021048176 W JP 2021048176W WO 2022138911 A1 WO2022138911 A1 WO 2022138911A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
seq
sars
amino acid
acid sequence
Prior art date
Application number
PCT/JP2021/048176
Other languages
French (fr)
Japanese (ja)
Inventor
長▲崎▼洋司
健 石井
康司 小檜山
輝人 安居
武春 南谷
亮太 大坪
亘 神谷
Original Assignee
国立大学法人 東京大学
国立研究開発法人医薬基盤・健康・栄養研究所
国立大学法人群馬大学
長▲崎▼洋司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, 国立研究開発法人医薬基盤・健康・栄養研究所, 国立大学法人群馬大学, 長▲崎▼洋司 filed Critical 国立大学法人 東京大学
Publication of WO2022138911A1 publication Critical patent/WO2022138911A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • C07K16/1003Severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2 or Covid-19]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins

Definitions

  • a recombinant antibody or a recombinant antibody derivative for neutralizing the infection of the virus, or infection with SARS-CoV2 virus containing such an antibody is medium.
  • a pharmaceutical composition for reconciliation With respect to providing a pharmaceutical composition for reconciliation.
  • SARS-CoV2 invades cells through receptors on the surface of human cells, replicates using enzymes derived from viral genes (RNA polymerases that do not exist in humans), and (3) human cells. It is amplified in infected individuals by repeating the cycle of making proteins and enzymes inside, proliferating, and (4) going out of cells and spreading to other normal cells. In addition, it is known that when it becomes severe, it causes an excessive immune reaction called a cytokine storm and causes severe respiratory failure called acute respiratory distress syndrome (ARDS).
  • ARDS acute respiratory distress syndrome
  • remdesivir is an antiviral drug that was originally under development as a therapeutic drug for Ebola hemorrhagic fever, but it is expected to have the effect of inhibiting RNA polymerase and suppressing viral replication, and SARS-has already been developed in the United States, Europe, and Asia. Its use for CoV2 infection was urgently approved (Non-Patent Document 1). However, the interim results of clinical trials conducted by the World Health Organization (WHO) and its affiliated organizations reported in the latter half of 2020 have not demonstrated improvement effects such as case fatality rate, and side effects. It is said that there are problems with the possibility and the burden on the medical field.
  • WHO World Health Organization
  • Avigan is an antiviral drug originally approved for new influenza, and is expected to have the effect of inhibiting RNA polymerase and suppressing viral replication.
  • Teratogenicity both female and male may have an adverse effect on the fetus when taken orally
  • Non-Patent Document 2 Verifies efficacy and safety.
  • Non-Patent Document 4 Such serum therapy or plasma therapy using serum or plasma collected from a patient in the convalescent period from SARS-CoV2 virus infection is a serum from blood provided by a patient who has recovered after being infected with SARS-CoV2 virus. Alternatively, it is a classic treatment of preparing serum and administering it to patients infected with the SARS-CoV2 virus. This treatment method is based on the premise that an antibody (neutralizing antibody) that inhibits SARS-CoV2 virus infection is present in the blood of patients who have recovered from SARS-CoV2 virus infection.
  • an antibody neutralizing antibody
  • the present invention is a recombinant antibody or recombinant antibody that can be used for the treatment of SARS-CoV2 virus infection by neutralizing SARS-CoV2 virus infection that is amplified in vivo by SARS-CoV2 virus infection. It is an object of the present invention to provide a recombinant antibody derivative or a pharmaceutical composition containing one or a plurality of such antibodies.
  • the inventors of the present invention have found a plurality of cells that produce antibodies against SARS-CoV2 virus from individuals who have been infected and recovered with SARS-CoV2 virus in the past, and converted them into SARS-CoV2 virus.
  • the above-mentioned problems can be solved by producing an antibody or an antibody derivative which has a binding property and has an action of suppressing the amplification of SARS-CoV2 virus or neutralizing the infection of SARS-CoV2 virus. showed that.
  • the present application provides the following aspects in order to solve the above-mentioned problems: [1] An antibody or antibody derivative that does not contain blood-derived components and has a binding property to the spike protein constituting the SARS-CoV2 virus and has an effect of neutralizing the infection of the SARS-CoV2 virus; [2] The antibody or antibody derivative according to [1], wherein the antibody is a human antibody; [3] The antibody or antibody derivative according to [1] or [2] produced by genetic recombination; [4] The antibody derivative is selected from humanized antibody variants selected from humanized antibodies, chimeric antibodies, polyvalent antibodies, and multispecific antibodies or functional fragments thereof, [1] to [3].
  • Heavy chains contain complementarity determining regions, CDR1 (GFTFRNYA, SEQ ID NO: 1), CDR2 (IWYDGSNK, SEQ ID NO: 2), CDR3 (ARDQGFGDNYYYYGMDV, SEQ ID NO: 3).
  • the light chain comprises the complementarity determining regions, CDR1 (ALPKEY, SEQ ID NO: 4), CDR2 (KDS, SEQ ID NO: 5), CDR3 (QLADSSMHYVV, SEQ ID NO: 6).
  • the light chain variable region VL domain is CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), And contains amino acid sequences containing substitutions, insertions, or deletions of one or several amino acids in parts other than CDR3 (SEQ ID NO: 6).
  • the light chain is Amino acid sequence of SEQ ID NO: 10 or amino acid sequence of SEQ ID NO: 10 other than CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), and CDR3 (SEQ ID NO: 6) Of the amino acid sequence containing substitutions, insertions, or deletions of one or several amino acids in a portion, or the amino acid sequence of SEQ ID NO: 11, or the amino acid sequence of SEQ ID NO: 11, CDR1 (SEQ ID NO: 4) ), CDR2 (SEQ ID NO: 5), and amino acid sequences containing substitutions, insertions, or deletions of one or several amino acids in parts other than CDR3 (SEQ ID NO: 6).
  • FIG. 1 is a diagram showing the results of examining whether or not the SARS-CoV2 virus-reactive clone obtained in Example 1 has neutralizing activity against infection of cells with the SARS-CoV2 virus.
  • FIG. 2 is a diagram showing the confirmed results of the reactivity of the purified recombinant 7G7.1 antibody with the SARS-CoV2 virus spike protein.
  • FIG. 3 is a diagram showing the results of examining the neutralizing activity of SARS-CoV2 virus infection in vitro of the purified recombinant 7G7.1 antibody.
  • FIG. 4 is a diagram showing the results of ELISA in which the reactivity of the purified recombinant 7G7.2 antibody to the SARS-CoV2 virus spike protein was confirmed.
  • FIG. 1 is a diagram showing the results of examining whether or not the SARS-CoV2 virus-reactive clone obtained in Example 1 has neutralizing activity against infection of cells with the SARS-CoV2 virus.
  • FIG. 2 is a diagram
  • FIG. 5-1 is a diagram showing the results of surface plasmon resonance (SPR) confirming the binding affinity of the purified recombinant 7G7.1 antibody and 7G7.2 antibody to the SARS-CoV2 virus spike protein.
  • FIG. 5-2 is a diagram showing the results of surface plasmon resonance (SPR) in which the binding affinity of the control antibody to the SARS-CoV2 virus spike protein was confirmed.
  • FIG. 6 is a diagram showing the results of examining the neutralizing activity of SARS-CoV2 virus infection in vitro of the purified recombinant 7G7.2 antibody in comparison with the 7G7.1 antibody.
  • FIG. 7 is a diagram showing that the purified recombinant 7G7.2 antibody significantly suppresses SARS-CoV2 infection and has neutralizing activity against SARS-CoV2 in vivo.
  • FIG. 8 is a diagram showing the analysis results of the binding region of the SARS-CoV2 virus spike protein of the purified recombinant 7G7.2 antibody.
  • the present invention in one embodiment, is an antibody or antibody that does not contain a blood-derived component and has a binding property to a spike protein constituting the SARS-CoV2 virus and has an action of neutralizing the infection of the SARS-CoV2 virus.
  • Derivatives can be provided.
  • the present invention relates to an individual infected with or suspected of being infected with SARS-CoV2 virus by suppressing the amplification of SARS-CoV2 virus in the body or neutralizing the infection with SARS-CoV2 virus. It can be used to prevent and treat the new coronavirus infection (COVID-19) caused by viral infection.
  • the antibody or antibody derivative used in the present invention is intended to solve various problems (particularly, infectivity problems and immunity problems) peculiar to blood preparations used in serum therapy and plasma therapy. Does not contain pathogens such as hepatitis B virus, hepatitis C virus, and human immunodeficiency virus (HIV) contained in blood (which may be mixed in blood preparations), and is contained in blood. It is characterized by the absence of blood-derived components that may cause immune abnormalities in the administered individual, such as antigenic proteins and antibodies that bind to human proteins.
  • pathogens such as hepatitis B virus, hepatitis C virus, and human immunodeficiency virus (HIV) contained in blood (which may be mixed in blood preparations), and is contained in blood. It is characterized by the absence of blood-derived components that may cause immune abnormalities in the administered individual, such as antigenic proteins and antibodies that bind to human proteins.
  • a recombinant antibody that can be prepared by recombinantly expressing the antibody protein using the DNA defining the antibody protein obtained from the immortalized cell can be used.
  • the antibody in the present invention is an antibody-producing cell by obtaining and immortalizing a cell clone that produces an antibody against the SARS-CoV2 virus from the blood of an individual that has been infected and recovered with the SARS-CoV2 virus in the past. Obtained by obtaining immortalized cells derived from the above, and selecting those having an action of suppressing the amplification of SARS-CoV2 virus or neutralizing the infection of SARS-CoV2 virus in vivo from the immortalized antibody-producing cells. be able to.
  • mRNA from an immortalized antibody-producing cell having the effect of suppressing the amplification of SARS-CoV2 virus selected by the method described above or neutralizing the infection of SARS-CoV2 virus according to a well-known method. It is also possible to prepare as a recombinant antibody by obtaining a DNA sequence defining an antibody protein through the acquisition of the antibody and the preparation of cDNA and expressing it in a mammalian expression system containing no blood-derived component via a vector. ..
  • derivatives of these antibodies can also be used.
  • a humanized antibody variant selected from a humanized antibody, a chimeric antibody, a polyvalent antibody, and a multispecific antibody or a functional fragment thereof can be used. Yes, but not limited to these.
  • the functional fragment for example, F (ab') 2 can be used, but the functional fragment is not limited thereto.
  • Derivatives of these antibodies can be produced according to a method well known in the art after the antibody is obtained.
  • the antibody or antibody derivative obtained by the above-mentioned method has binding property to SARS-CoV2 virus, but in the present invention, among those having binding property to SARS-CoV2 virus. Further, screening is performed based on having an action of suppressing amplification of SARS-CoV2 virus or neutralizing infection of SARS-CoV2 virus, and an antibody or antibody derivative having the neutralizing action is provided. do.
  • the SARS-CoV2 virus-derived antigen targeted by the antibody or derivative thereof is one or a combination of enveloped protein, membrane protein, nucleocapsid protein, and spike protein, which are constituents of SARS-CoV2 virus. May be. It is preferable to use a protein (for example, envelope protein, spike protein) existing (that is, exposed on the surface) outside the SARS-CoV-2 virus to which the antibody or its derivative is easily bound as an antigen.
  • a protein for example, envelope protein, spike protein
  • the proteins constituting the SARS-CoV-2 virus that can be targeted by the antibody or its derivative in the present invention are obtained based on the complete genomic sequence of the SARS-CoV-2 virus already registered in the public database. It is something that can be done.
  • the SARS-CoV-2 virus reference genome sequence NC_045512 registered in the NCBI RefSeq database is used from the viewpoint of representativeness, and the SARS-CoV-2 virus specified based on this reference genome sequence is used. It is preferable to use the proteins constituting the above.
  • the antibody or antibody derivative of the present invention binds to the above-mentioned SARS-CoV-2 virus-derived antigen, and as a result, suppresses infection / amplification of SARS-CoV2 virus or neutralizes SARS-CoV2 virus infection. Anything that has such an action can be used to achieve the object of the present invention. Since the antibody or antibody derivative of the present invention is intended to be used as a therapeutic agent for SARS-CoV2 virus, it is required to have such an action.
  • an antibody or antibody derivative causes cells that can cause infection with SARS-CoV2 virus (eg, VERO cells) to be infected with SARS-CoV2 virus in vitro in the presence of the antibody or antibody derivative. It can be identified by whether or not SARS-CoV2 virus infection suppression is observed in cells.
  • SARS-CoV2 virus eg, VERO cells
  • blood can be collected from an individual who has been infected with the SARS-CoV2 virus in the past and recovered, and an antibody against the SARS-CoV2 virus obtained from the blood can be used.
  • cells producing an antibody that binds to the above-mentioned SARS-CoV2 virus-derived antigen are collected from an individual that has been infected with the SARS-CoV2 virus in the past and recovered as described above ⁇ antibody or antibody derivative>.
  • the obtained antibody or antibody derivative the action of suppressing the amplification of SARS-CoV2 virus or neutralizing the infection of SARS-CoV2 virus was investigated as described above ⁇ Action of antibody or derivative thereof>. As a result, a plurality of antibodies and cells producing the antibodies were obtained.
  • Heavy chain complementarity determining regions including CDR1 (GFTFRNYA, SEQ ID NO: 1), CDR2 (IWYDGSNK, SEQ ID NO: 2), CDR3 (ARDQGFGDNYYYYGMDV, SEQ ID NO: 3) Contains light chain complementarity determining regions, CDR1 (ALPKEY, SEQ ID NO: 4), CDR2 (KDS, SEQ ID NO: 5), CDR3 (QLADSSMHYVV, SEQ ID NO: 6); Antibodies or derivatives thereof can be provided.
  • CDR1 GFTFRNYA, SEQ ID NO: 1
  • CDR2 IWYDGSNK, SEQ ID NO: 2
  • CDR3 ARDQGFGDNYYYYGMDV, SEQ ID NO: 3
  • Antibodies or derivatives thereof can be provided.
  • the heavy chain variable region VH domain is the amino acid sequence of SEQ ID NO: 7 or the amino acid sequence of SEQ ID NO: 7, CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), and CDR3 (.
  • the light chain variable region VL domain is the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8, CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), and CDR3 (.
  • ⁇ 7G7.1 clone Of the amino acid sequence of SEQ ID NO: 9 or the amino acid sequence of SEQ ID NO: 9, the heavy chain is CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), and CDR3 (SEQ ID NO: 1). Contains an amino acid sequence containing one or several amino acid substitutions (eg, conservative substitutions), insertions, or deletions in portions other than 3), and the light chain is the amino acid sequence of SEQ ID NO: 10, or SEQ.
  • containing an amino acid sequence containing a conservative substitution insertion, or deletion, Antibodies or antibody derivatives, and 7G7.2 clones (replacement of the constant region of the light chain Ig ⁇ chain of the 7G7.1 clone with the constant region of the Igk chain):
  • the heavy chain is CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), and CDR3 (SEQ ID NO: 1).
  • the present invention provides, in one embodiment, a pharmaceutical composition comprising the antibody or antibody derivative described above for suppressing amplification of SARS-CoV2 virus or neutralizing SARS-CoV2 virus infection. Can be done.
  • This pharmaceutical composition is intended as an antiviral drug against SARS-CoV2 virus or for the purpose of preventing and treating the onset of symptoms caused by SARS-CoV2 virus in individuals infected with or suspected of being infected with SARS-CoV2 virus. And can be used.
  • this pharmaceutical composition is a risk factor (for example, hepatitis B virus) that may be contaminated in blood preparations.
  • Hepatitis C virus viruses such as human immunodeficiency virus (HIV), and blood-derived components that may cause immune abnormalities in administered individuals such as antigenic proteins and antibodies that bind to human proteins
  • HIV human immunodeficiency virus
  • the pharmaceutical composition in the present invention may contain one type of the above-mentioned antibody or antibody derivative, or may contain a plurality of types.
  • Example 1 Isolation of antibody using modified EBV method
  • a cell clone that produces an antibody against SARS-CoV2 virus was obtained by the EBV method using Epstein-Barr virus (EBV), and there. Experiments were performed with the aim of isolating the antibody from.
  • EBV Epstein-Barr virus
  • EBV is a dsDNA virus belonging to the subfamily Gammaherpesvirinae and is involved in various cancers. It is known to mainly infect B cells, and when human B cells are infected with EBV in vitro, the B cells can proliferate continuously and transform into immortalized human lymphoblastoid cells (LCL).
  • LCL immortalized human lymphoblastoid cells
  • Negatively selected cells were harvested and incubated with EBV (B95-8 strain) at 37 ° C. for 1 hour. After incubation, cells were collected by centrifugation and suspended in LCL culture medium. 200 ⁇ L of this cell suspension (10 4 cells / well) was inoculated on a 96-well plate (U-bottom delta: NUNC) and then cultured for 2 weeks to differentiate into immortalized human lymphoblast-like cells (LCL). Was done.
  • the LCL culture medium used in this example is 15% FBS (SIGMA), L-glutamine (GIBCO), Penicillin / streptomycin (Nacalai tesque), Sodium Pyruvate (Nacalai tesque), 2-Mercaptoethanol (GIBCO), Non-essential.
  • RPMI medium Nacalai tesque containing amino acids (GIBCO), K3 (GeneDesign), cyclosporin (Novartis Pharma), and various additives was used. The same operation was performed twice.
  • SARS-CoV2 virus spike protein SARS-CoV2 Spike ECD protein (GenScript)
  • SARS-CoV2 Spike ECD protein GenScript
  • 50 ⁇ L / well of LCL culture supernatant which may contain anti-SARS-CoV2 virus IgG was added to carry out an antigen-antibody binding reaction.
  • Goat Anti-Human IgG-AP (SouthernBiotech) was used as the secondary antibody, and Phosphatase substrate (SIGMA) was used as the color-developing substrate, and the absorbances at 405 nm and 650 nm were measured.
  • Example 2 In vitro functional analysis (SARS-CoV2 virus infection neutralization experiment using Vero cells) In this example, an experiment was conducted for the purpose of analyzing the in vitro function and the in vivo function of the SARS-CoV2 virus-reactive clone obtained in Example 1.
  • the SARS-CoV2 virus spike protein is thought to play a central role in binding to receptors on the surface of target cells and subsequent cell invasion. Therefore, it is considered that inhibition of binding of the peplomer protein to the receptor on the cell surface is important for the neutralizing activity of SARS-CoV2 virus infection. Therefore, among the clones obtained in Example 1, in Example 1. It was investigated whether the obtained 28 SARS-CoV2 virus-reactive clones had the activity of neutralizing the infection of SARS-CoV2 virus into cells.
  • Vero cells (1 x 10 5 cells / ml) were prepared with cell culture medium D10 (DMEM (High Glucose), 10% FBS, penicillin / streptomycin added) per well, and each was placed on a 96-well plate. 100 ⁇ L was dispensed, 1 ⁇ 10 4 cells were seeded and cultured at 37 ° C. in a 5% CO 2 atmosphere for 18 to 20 hours.
  • D10 DMEM (High Glucose), 10% FBS, penicillin / streptomycin added
  • cell culture medium R15 (RPMI1640, 15% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, non-) was added to 30 ⁇ L of the LCL culture supernatant for each of the 28 clones obtained in Example 1.
  • 1 ⁇ L of 1 ⁇ 10 5 TCID 50 / mL SARS-CoV2 virus suspension was added so that the infected MOI was 0.01, and the total volume was 101 ⁇ L.
  • the virus resuspension was incubated at 37 ° C. for 1 hour.
  • Vero cell culture remove culture D10 (100 ⁇ L), add the total amount of virus resuspension (101 ⁇ L) for each of the 28 clones, and incubate for 1 hour at 37 ° C. in a 5% CO 2 atmosphere. , Cells were infected with SARS-CoV2 virus. Then, the virus resuspension was removed, 100 ⁇ L of cell culture medium D1 (DMEM (High Glucose), 1% FBS, penicillin / streptomycin added) was added, and the cells were cultured at 37 ° C. in a 5% CO 2 atmosphere for 3 days. ..
  • DMEM High Glucose
  • FBS penicillin / streptomycin added
  • Example 1 After 3 days, the cell culture solution D1 was removed, 100 ⁇ L of 10% neutral buffered formaldehyde solution was added and fixed, CPE (cytopathic effect) was observed, and the SARS-CoV2 virus-reactive clone obtained in Example 1 was observed. Was examined whether SARS-CoV2 virus has neutralizing activity against cell infection. CPE was determined by counting the number of dead cells.
  • FIGS. 1A and 1B The screening of this example was performed in two parts, and the results of each are shown in FIGS. 1A and 1B.
  • 7 clones of 7G7.1, # 8, # 10, # 18, # 20, # 26, and # 28 were neutralized against infection.
  • the sum activity was positive (Fig. 1).
  • Example 3 Functional analysis of recombinant antibody
  • the antibody gene was cloned for one clone found to have neutralizing activity against infection of SARS-CoV2 virus cells in Example 2.
  • An experiment was conducted for the purpose of producing a recombinant antibody.
  • RNA was directly extracted from the LCL prepared in Example 1 without producing a hybridoma, and an antibody was obtained by the RT-PCR method using the RNA. Gene cloning was performed.
  • the antibody genes (heavy chain, light chain) of 7G7,1 clones among the clones that showed neutralizing activity against infection in Example 2 in the in vitro functionality test of Example 2 (2-1) were cloned.
  • An expression vector was constructed. That is, total RNA was extracted from the LCL of the 7G7.1 clone using miRNeasy Microkit (QIAGEN) according to the attached protocol.
  • SMART cDNA Library Construction Kit capable of amplifying 5'full-length cDNA using the total RNA extracted from the above method as a template for isolating the heavy chain IgG1 gene and the light chain IgL gene of the antibody gene.
  • a reverse transcription reaction was carried out according to the attached protocol to prepare cDNA.
  • PCRs (1st PCR, 2nd PCR) were performed using KODFX (TOYOBO).
  • 1st PCR 1 ⁇ l of cDNA reverse transcribed from each LCL was used as a template, and the following forward and reverse primers (Primer1) and reverse primer (Primer2) were used as primers, and after 2 minutes at 94 ° C, “98 ° C. 10 seconds, 55 ° C., 30 seconds, 68 ° C., 2 minutes] for 35 cycles, and finally 68 ° C., 3 minutes.
  • PCR reaction For 2nd PCR, 0.5 ⁇ l of the extension product of 1st PCR was used as a template, and the following forward and reverse primers (Primer3) and reverse primer (Primer4) were used as primers. After 2 minutes at 94 ° C, “98” The PCR reaction was carried out by 35 cycles of ° C. for 10 seconds, 60 ° C. for 30 seconds, 68 ° C. for 2 minutes, and finally at 68 ° C. for 3 minutes.
  • the PCR sample was subjected to QIAquick Purification Kit (QIAGEN), and unreacted primers and enzymes were removed to obtain a purified product.
  • QIAquick Purification Kit QIAGEN
  • the purified PCR purified product was treated with a restriction enzyme, separated and purified by agarose gel electrophoresis, and then incorporated into a vector.
  • the pQEFIP vector (a retroviral vector in which the CMV promoter is replaced with the human EF1alpha promoter with pQCXIP (TAKARA) as the backbone) is used for the preparation of the vector containing the heavy chain gene, and the pQEFIN vector is used for the preparation of the vector containing the light chain gene.
  • a retrovirus vector in which the CMV promoter was replaced with the human EF1alpha promoter with pQCXIN (TAKARA) as the backbone was used.
  • the PCR product was incorporated into the vector using Ligation high (TOYOBO) to transform competent cells (DH-5alpha: Nippon Gene).
  • plasmid was extracted using NucleoSpin Plasmad EasyPure (MACHEREY-NAGEL) according to the attached protocol.
  • ExpiFectamine 293 reagent and heavy and light chain plasmids (15 ⁇ g each) were mixed with 1.5 mL of Opti-MEM I (gibco) and allowed to stand at room temperature for 5 minutes. After standing, the two solutions were combined and allowed to stand at room temperature for 20 minutes, and added to 4.5 to 5.5 ⁇ 10 6 cells / mL (30 mL) of cells cultured in a 125 mL flask (Corning), and swirled (37 ° C., 8% CO 2 ).
  • Recombinant antibody expressed by the expression system using Expi293F cells was purified using Protein G affinity chromatography (GE Hitrap protein GHP (1 mL)).
  • control antibody a human-derived antibody isolated by the inventors was used.
  • Vero cells (1 x 10 5 cells / ml) were prepared with cell culture medium D10 (DMEM (High Glucose), 10% FBS, penicillin / streptomycin added) per well, and each was placed on a 96-well plate. 100 ⁇ L was dispensed, 1 ⁇ 10 4 cells were seeded and cultured at 37 ° C. in a 5% CO 2 atmosphere for 18 to 20 hours.
  • D10 DMEM (High Glucose), 10% FBS, penicillin / streptomycin added
  • the cell culture solution D1 (DMEM (High Glucose), 1% FBS, penicillin / streptomycin) was adjusted to 10, 3, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0 ⁇ g / mL. Addition) was used to prepare 250 ⁇ L of each concentration solution. To this, 25 ⁇ L of SARS-CoV2 virus suspension introduced with a 1 ⁇ 10 5 TCID 50 / mL luciferase gene was added so as to have an infectious MOI of 0.1, and the total volume was 275 ⁇ L. The virus resuspension was incubated at 37 ° C. for 1 hour.
  • culture medium D10 was removed, 100 ⁇ L of virus resuspension was added, and the cells were cultured for 1 hour in a 5% CO 2 atmosphere at 37 ° C., and the cells were infected with SARS-CoV2 virus. Then, the virus resuspension was removed, 100 ⁇ L of cell culture medium D1 (DMEM (High Glucose), 1% FBS, penicillin / streptomycin added) was added, and the cells were cultured at 37 ° C. in a 5% CO 2 atmosphere for 24 hours. ..
  • DMEM High Glucose
  • FBS penicillin / streptomycin added
  • the cell culture solution D1 was removed, and 50 ⁇ L of Passive lysis buffer was added to lyse the infected cells. 25 ⁇ L of infected cell lysate and 25 ⁇ L of substrate solution were mixed, and the luminescence of luciferase was measured. There is a positive correlation between luminescence intensity and viral infection.
  • 7G7.1 antibody can reduce virus-induced cell infection to 50% or less at a concentration of 0.01 ⁇ g / ml, and dose-dependently reduce virus-induced cell infection at higher concentrations. Revealed.
  • Example 4 Modification and functional analysis of recombinant 7G7.1 antibody
  • an experiment was conducted for the purpose of modifying the recombinant 7G7.1 antibody produced in Example 3 and confirming its activity.
  • the 7G7.1 antibody obtained in Example 3 (3-1) has IgG1 for the heavy chain and Ig ⁇ for the light chain. However, it was decided to modify the constant region of the light chain Ig ⁇ by replacing it with that of Igk. That is, for the heavy chain, the plasmid obtained in (3-1) above is used as it is, and for the light chain, the constant region of the Ig ⁇ gene contained in the Ig ⁇ plasmid obtained in (3-1) is used. A modified antibody was prepared by substituting the specified portion with a separately prepared portion of the Igk constant region.
  • the fragment containing the human Igk constant region was PCR-amplified (using TOYOBO KOD plus neo) (reaction conditions: 94 ° C for 2 minutes). ⁇ [98 °C ⁇ 10 seconds, 58 °C ⁇ 30 seconds, 68 °C ⁇ 4.5 minutes] ⁇ 30 cycles ⁇ 68 °C ⁇ 5 minutes).
  • the 7G7.1 antibody Ig ⁇ 2 light chain expression plasmid vector prepared in Example 3 (3-1) was used as a template, and the following primers were used to make the 7G7.1 antibody light chain (Ig ⁇ 2) variable.
  • PCR-amplified fragment containing region using TOYOBO KOD plus neo (Reaction conditions: 94 ° C for 2 minutes ⁇ [98 ° C for 10 seconds, 58 ° C for 30 seconds, 68 ° C for 30 seconds] ⁇ 30 cycles ⁇ 68 °C ⁇ 3 minutes).
  • Each of the two PCR products (human Igk constant region and variable region of 7G7.1 antibody (Ig ⁇ 2)) obtained in the above step was treated with the restriction enzyme DpnI (NEB) at 37 ° C for 30 minutes and agarose gel. After separation by gel electrophoresis, DNA was extracted from the gel.
  • DpnI restriction enzyme
  • the obtained two types of DNA were mixed and treated with NEBuilder HiFi DNA Assembly Master Mix (NEB) at 50 ° C for 15 minutes, and each fragment was bound.
  • This bound DNA was transformed into Escherichia coli according to a conventional method to obtain a single colony, and a 7G7.2 light chain expression plasmid vector was obtained.
  • the heavy chain expression plasmid vector obtained by the method of Example 3 (3-1) and the light chain expression plasmid vector obtained by the above method were used.
  • the recombinant antibody was expressed and purified in the same manner as in Example (3-2). Specifically, these expression plasmid vectors were transiently co-transfected into Expi293F cells (Thermo Fisher Scientific) using the Expi293 Expression System (Thermo Fisher Scientific) to express and secrete recombinant antibodies. ..
  • the obtained modified antibody is hereinafter referred to as 7G7.2 antibody.
  • Biacore T200 (Cytiva) was used for SPR analysis, and the operation of the equipment and the preparation of experimental reagents followed the Biacore T200 version 2 Japanese instruction manual.
  • PBS-T (1 x Phsophate Buffered Saline, 0.05% Tween 20) was prepared as a running buffer, filtered through a 0.22 ⁇ m filter before use, and the running buffer was used at room temperature in all the following steps.
  • CM5 sensor chip the metal of Series Sensor Chip CM5 (Cytiva) (hereinafter referred to as CM5 sensor chip).
  • the primary antibody was immobilized on a thin film substrate by an amine coupling method (AmineCouplingKit, Cytiva). That is, Anti-Human IgG (Fc) antibody (primary antibody, 0.5 mg / mL) was diluted to 25 ⁇ g / mL using the Immobilization buffer that is an accessory of Human Antibody Capture Kit, and the amount of primary antibody immobilized on the substrate.
  • Diluted Anti-Human IgG (Fc) antibody was sent onto the substrate at a flow rate of 10 ⁇ L / min for 360 seconds so that the amount of antibody per flow cell was approximately 10,000 RU (Response unit), and the primary antibody was immobilized on the substrate. ..
  • test antibodies 7G7.1 antibody, 7G7.2 antibody and control antibody
  • 7G7.1 antibody 1.0 ⁇ g / mL
  • 7G7.2 antibody 0.8 ⁇ g / mL
  • Control antibody 0.8 ⁇ g / mL
  • Each test antibody was immobilized on the primary antibody on the substrate at a flow rate of 30 ⁇ L / min, an analysis temperature of 25 ° C., and a ligand immobilization time of 60 seconds.
  • the immobilization conditions are such that the antibody concentration and the liquid feeding time are adjusted so that the amount of antibody immobilized on the substrate is about 150 RU.
  • an antigen protein SARS-CoV2 Spike protein (ECD, His & Flag Tag)
  • ECD ECD, His & Flag Tag
  • GenScript, Z03481 (135 kDa) adjusted to 0.625 nM, 1.25 nM, 2.5 nM, 5 nM, 10 nM, 20 nM, 40 nM, 80 nM in order, and the antibody addition time: 240 seconds
  • SPR measurement was performed with an analysis dissociation time of 900 seconds.
  • a Regeneration solution (3 M MgCl 2 ) was sent to remove each test antibody immobilized on the CM5 sensor chip substrate.
  • Rmax is the theoretical maximum amount of antigen bound to an antibody.
  • the antigen protein (SARS-CoV2 Spike protein) bound to 7G7.1 antibody and 7G7.2 antibody with almost the same affinity (KD values of 2.04 nM and 1.55 nM, respectively) (Table 5) (Fig. 5).
  • KD values 2.04 nM and 1.55 nM, respectively
  • Table 5 Each parameter shown in this table was calculated using the 1: 1 binding model of Biacore T200 Evaluation Software ver.2.0 based on the results shown in FIGS. 1 to 3.
  • the KD value of antibodies used as pharmaceuticals is about 10 -9 to 10 -10 M, indicating that these antibodies have sufficient affinity as anti-human SARS-CoV2 antibodies.
  • Rmax (a parameter indicating the reaction when the maximum amount of antigen protein is bound to the test antibody immobilized on the CM5 sensor chip substrate) is almost the same value for the 7G7.1 antibody and the 7G7.2 antibody (the parameter showing the reaction when the antigen protein is bound to the maximum amount). It was 164.1 RU and 151.3 RU, respectively), whereas it was about 1/10 (15.24 RU) of the control antibody used as a comparative control (Table 5), so the 7G7.1 antibody and 7G7.2 antibody were It was shown to have a high affinity for the antigenic protein compared to the negative control.
  • the 7G7.2 antibody is less active than the 7G7.1 antibody, it reduces viral infection of cells to less than 50% at a concentration of 0.03 ⁇ g / ml, much more than the 7G7.1 antibody. It was clarified that the infection of cells by the virus can be reduced in a dose-dependent manner even at the concentration.
  • modified antibody 7G7.2 antibody (4-5) In vivo functional analysis of modified antibody 7G7.2 antibody The above 7G7.2 antibody was subjected to a luciferase assay to examine the neutralizing activity of SARS-CoV2 virus infection to cells.
  • the SARS-CoV2 virus spike protein is thought to play a central role in binding to receptors on the surface of target cells and subsequent cell invasion. Therefore, it is considered that inhibition of binding of the peplomer protein to the receptor on the cell surface is important for the neutralizing activity of SARS-CoV2 virus infection. Therefore, among the clones obtained in Example 1, in Example 1. It was investigated whether the obtained SARS-CoV2 virus-reactive clone had the activity of neutralizing infection with SARS-CoV2 virus.
  • RNA 1 mL of TRIzol Reagent (Thermo Fisher Scientific) was added to the separated lung tissue and physically crushed using a bead-type crusher to extract RNA.
  • the amount of RNA per sample was 10 ng, and the measurement was performed by the real-time one-step RT-PCR method using the TaqMan probe according to the Pathogen Detection Manual 2019-nCoV (National Institute of Infectious Diseases).
  • the separated lung tissue was weighed, 0.5 mL PBS was added, and the tissue was physically crushed using a bead crusher, and the supernatant was collected after centrifugation. The supernatant was diluted 500-fold and further diluted 10-fold in 7 steps.
  • the day before, 1 ⁇ 10 4 cells were seeded in 100 ⁇ L of cell culture medium D10 (DMEM (High Glucose), 10% FBS, penicillin / streptomycin added) per well on a 96-well plate, and 37 ° C, 5% CO 2 atmosphere. Vero cells cultured under 18 to 20 hours were prepared.
  • D10 DMEM (High Glucose), 10% FBS, penicillin / streptomycin added
  • Cells were prepared in 4 wells for each sample, and 50 ⁇ L of serially diluted lung tissue disruption solution was added to Vero cell culture medium and cultured at 37 ° C. in a 5% CO 2 atmosphere for 4 days. The cytopathic effect in each well was observed and TCID50 / g was calculated. The Behrens-Karber method was used for the calculation.
  • Example 5 Determination of binding region of modified 7G7.2 antibody
  • an experiment was conducted to determine the binding region of the purified 7G7.2 antibody prepared in Example 4 above.
  • SARS-CoV2 Spike protein Extra Cellular Domain (ECD) (13 to 1208 amino acids), S1 (13 to 685 amino acids), S2 (686 to 1208 amino acids), N-terminal Domain (NTD) (13 to 318 amino acids), Receptor About BindingDomain (RBD) (319-541 amino acids), NTD + RBD (13-541 amino acids), S1 ⁇ RBD (fusion protein of 13-318 amino acids and 542-685 amino acids), S1 (542-685) (542-685 amino acids)
  • the DNA sequence in which the Flag-6 ⁇ His tag protein was fused to the C-terminal was amplified by the PCR method, introduced into the pFastBacBip vector, and cloned. These cloning vectors were introduced into insect cells Sf9 cells, and the culture supernatant was collected to collect the antigen.
  • Bovine serum albumin (BSA) was used as the antigen for negative control.
  • 7G7.2 antibody is Extra Cellular Domain (ECD) (13 to 1208 amino acids), S1 (13 to 685 amino acids), S1 ⁇ RBD (fusion protein of 13 to 318 amino acids and 542 to 685 amino acids), NTD + RBD (13 to 541 amino acids).
  • ECD Extra Cellular Domain
  • S1 13 to 685 amino acids
  • S1 ⁇ RBD fusion protein of 13 to 318 amino acids and 542 to 685 amino acids
  • NTD + RBD 13 to 541 amino acids
  • Example 6 Sequence analysis of recombinant antibody
  • sequence analysis of two types of antibodies recombinant 7G7.1 antibody obtained in Example 3 and recombinant 7G7.2 antibody variant obtained in Example 4 The purpose was to do.
  • the DNA sequences of the vectors for expressing the respective antibodies of the recombinant 7G7.1 antibody and the 7G7.2 variant antibody were analyzed, and the amino acid sequences were identified based on the DNA sequences. Both the 7G7.1 antibody and the 7G7.2 antibody have the same heavy chain variable region and light chain variable region.
  • each antibody was as follows: ⁇ 7G7.1 clone: Heavy IgG1 chain (SEQ ID NO: 9) (underlined in VH region (SEQ ID NO: 7)); MEFGLSWVFLVALLRGVQC QVQLVESGGGVVQPGRSLRLSCIASGFTFRNYAMYWVRQAPGKGLEWVAVIWYDGSNKFYTDSVKGRFTISRDNSKNSLYLQMNSLRAEDTAVYFCARDQGFGDNYYYYGMDVWGQGTTVTVSS ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK
  • CDR1 to CDR3 are underlined
  • VH chain (SEQ ID NO: 7) (CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), CDR3 (SEQ ID NO: 3) are underlined): QVQLVESGGGVVQPGRSLRLSCIAS GFTFRNYA MYWVRQAPGKGLEWVAV IWYDGSNK FYTDSVKGRFTISRDNSKNSLYLQMNSLRAEDTAVYFC ARDQGFGDNYYYYGMDV WGQGTTVTVSS VL chain (SEQ ID NO: 8) (CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), CDR3 (SEQ ID NO: 6) are underlined): SYELTQPPSV
  • CDR1 GFTFRNYA, SEQ ID NO: 1
  • CDR2 IWYDGSNK, SEQ ID NO: 2)
  • CDR3 ARDQGFGDNYYYYGMDV, SEQ ID NO: 3
  • CDR1 ALPKEY, SEQ ID NO: 4
  • CDR2 KDS, SEQ ID NO: 5
  • CDR3 QLADSSMHYVV, SEQ ID NO: 6
  • Amino acid sequence of heavy chain variable region VH domain of 7G7.1 antibody and 7G7.2 antibody SEQ ID NO: 7
  • Amino acid sequence of light chain variable region VL domain of 7G7.1 antibody and 7G7.2 antibody SEQ ID NO: 8 7G7.1 antibody and 7G7.2 antibody heavy chain full-length amino acid sequence: SEQ ID NO: 9 7G7.1 antibody light chain full length amino acid sequence: SEQ ID NO: 10 7G7.2 antibody light chain full length amino acid sequence: SEQ ID NO: 11
  • Primer sequence used in Example 4 (4-1): SEQ ID NO: 19 to SEQ ID NO: 22

Abstract

The present invention addresses the problem of providing a recombinant antibody, a recombinant antibody derivative, or a drug composition including one or more of such antibodies which can be used to treat SARS-CoV2 virus infection by neutralizing infection by a SARS-CoV2 virus amplified inside the body due to a SARS-CoV2 virus infection. As a result of rigorous examination, the inventors of the present invention have discovered a plurality of cells that produce antibodies against the SARS-CoV2 virus from bodies which have been infected with and recovered from the SARS-CoV2 virus in the past, and have shown that the aforementioned problem can be solved by making, from the aforementioned cells, antibodies or antibody derivatives that have the ability to bind to one or more SARS-CoV2 viruses and have the action of suppressing amplification of the SARS-CoV2 virus or neutralizing SARS-CoV2 virus infection.

Description

ヒト抗SARS-CoV2ウイルス抗体Human anti-SARS-CoV2 virus antibody
 本発明は、SARS-CoV2ウイルス感染に感染した個体中で、当該ウイルスの感染を中和するための組換え抗体または組換え抗体誘導体、あるいはそのような抗体を含むSARS-CoV2ウイルスの感染を中和するための医薬組成物を提供することに関する。 In the present invention, in an individual infected with SARS-CoV2 virus infection, a recombinant antibody or a recombinant antibody derivative for neutralizing the infection of the virus, or infection with SARS-CoV2 virus containing such an antibody is medium. With respect to providing a pharmaceutical composition for reconciliation.
 2019年から2020年にかけて新型コロナウイルス、SARS-CoV2ウイルスの感染による新型コロナウイルス感染症COVID-19が確認されてからこれまで、日本国内において、195,880人の感染者、うち2,873人の死亡者、アメリカ合衆国において、17,655,591人の感染者、うち316,159人の死亡者、全世界まで広げると、76,288,108人の感染者、うち1,685,650人の死亡者という統計になっている(2020年12月20日現在の厚労省公式発表による)。 Since the confirmation of the new coronavirus infection COVID-19 due to infection with the new coronavirus and SARS-CoV2 virus from 2019 to 2020, 195,880 infected people, of which 2,873 have died, in Japan. In the United States, 17,655,591 infected people, of which 316,159 died, and worldwide, 76,288,108 infected people, of which 1,685,650 died (thickness as of December 20, 2020). According to the official announcement by the Ministry of Labor).
 SARS-CoV2は、(1)ヒトの細胞表面のレセプターを通して細胞内に侵入し、(2)ウイルス遺伝子由来の酵素(ヒトには存在しないRNAポリメラーゼ)を用いて複製し、(3)ヒトの細胞内でタンパク質や酵素を作って増殖し、(4)細胞外に出て他の正常な細胞に広がる、というサイクルを繰り返すことで、感染個体内で増幅される。また、重症化すると、サイトカインストームと呼ばれる過剰な免疫反応を起こしたり、急性呼吸窮迫症候群(ARDS)という重度の呼吸不全を起こしたりすることが知られている。 SARS-CoV2 invades cells through receptors on the surface of human cells, replicates using enzymes derived from viral genes (RNA polymerases that do not exist in humans), and (3) human cells. It is amplified in infected individuals by repeating the cycle of making proteins and enzymes inside, proliferating, and (4) going out of cells and spreading to other normal cells. In addition, it is known that when it becomes severe, it causes an excessive immune reaction called a cytokine storm and causes severe respiratory failure called acute respiratory distress syndrome (ARDS).
 SARS-CoV2ウイルスに対してすでに使用が承認されている抗ウイルス薬や現在も開発が進められている抗ウイルス薬の多くは、このウイルスの(1)侵入、(2)複製、(3)増殖、(4)拡散の過程のいずれかをターゲットとしている。 Many of the antiviral drugs that have already been approved for use against the SARS-CoV2 virus and are still under development are (1) invasion, (2) replication, and (3) proliferation of this virus. , (4) Target one of the diffusion processes.
 例えば、レムデシビルは、もともとはエボラ出血熱の治療薬として開発中であった抗ウイルス薬であるが、RNAポリメラーゼを阻害し、ウイルスの複製を抑制する効果が期待され、既に米国と欧州、アジアでSARS-CoV2感染に対する使用が緊急的に承認された(非特許文献1)。しかしながら、2020年後半に報告された世界保健機関(WHO)とその関係協力機関が実施している臨床試験の中間結果には、致死率などの改善効果は実証されておらず、また、副作用の可能性や医療現場の負担の問題があるとされている。 For example, remdesivir is an antiviral drug that was originally under development as a therapeutic drug for Ebola hemorrhagic fever, but it is expected to have the effect of inhibiting RNA polymerase and suppressing viral replication, and SARS-has already been developed in the United States, Europe, and Asia. Its use for CoV2 infection was urgently approved (Non-Patent Document 1). However, the interim results of clinical trials conducted by the World Health Organization (WHO) and its affiliated organizations reported in the latter half of 2020 have not demonstrated improvement effects such as case fatality rate, and side effects. It is said that there are problems with the possibility and the burden on the medical field.
 また、アビガンは、もともと、新型インフルエンザに対して承認された抗ウイルス薬であり、RNAポリメラーゼを阻害し、ウイルスの複製を抑制する効果が期待される薬剤である。この薬剤は、副作用として、催奇形性(女性・男性ともに、内服した際に胎児に悪影響を及ぼす可能性がある)等が明らかになっており、使用に際して制限があったが、2020年後半において、日本では有効性や安全性の検証が進められているが(非特許文献2)、明確な有効性が認められないという報告も出されている。 Avigan is an antiviral drug originally approved for new influenza, and is expected to have the effect of inhibiting RNA polymerase and suppressing viral replication. Teratogenicity (both female and male may have an adverse effect on the fetus when taken orally) has been clarified as a side effect of this drug, and there were restrictions on its use, but in the latter half of 2020 In Japan, verification of efficacy and safety is underway (Non-Patent Document 2), but there are reports that no clear efficacy is recognized.
 抗ウイルス薬以外には、COVID-19の重症例における肺炎の症状の緩和を目的とした薬の適用も検討されており、デキサメタゾンやアクテムラなどが有望視されている。しかしこれらの薬はSARS-CoV2感染を阻止するために使用するものではなく、対症療法的に使用されるものと考えられている。 In addition to antiviral drugs, the application of drugs aimed at alleviating the symptoms of pneumonia in severe cases of COVID-19 is being considered, and dexamethasone and actemra are promising. However, these drugs are not intended to be used to prevent SARS-CoV2 infection, but are thought to be used symptomatically.
 一方、SARS-CoV2ウイルスに対するワクチンの開発も進んできており、すでに一部で承認申請まで行われる段階まで来ている。SARS-CoV2ウイルスは、スパイクタンパク質が細胞のACE2受容体に結合して細胞に感染し、細胞外から消えるため、このスパイクタンパク質のACE2結合部位を認識する抗体は、感染の中和能を発揮できる場合が多いと考えられている。しかしながら、SARS-CoV2ウイルス感染からの回復者の血液中に存在するSARS-CoV2ウイルスに対する抗体を測定した結果、多くの回復者において、回復後数か月以内に血液中からIgG抗体が消失しているという報告もあり(非特許文献3)、ワクチンの効果が持続的なものかについては議論があるところである。 On the other hand, the development of vaccines against SARS-CoV2 virus is also progressing, and some of them have already reached the stage of application for approval. Since the SARS-CoV2 virus infects cells by binding the spike protein to the ACE2 receptor of the cell and disappears from the outside of the cell, an antibody that recognizes the ACE2 binding site of this spike protein can exert the ability to neutralize the infection. It is believed that there are many cases. However, as a result of measuring the antibody against SARS-CoV2 virus present in the blood of those who recovered from SARS-CoV2 virus infection, in many recoverers, IgG antibody disappeared from the blood within a few months after recovery. There is also a report that there is (Non-Patent Document 3), and there is debate as to whether the effect of the vaccine is sustained.
 これらの開発とは異なる治療方法の開発の流れとして、2020年3月ころから、中国、シンガポール、韓国、米国で少数の患者に回復期血漿の投与が行われ、有効性が示唆されたことが報告されてきた。同じ考え方に基づいて、日本においても、COVID-19回復者血漿を用いた治療についての安全性と有効性の検討が始まっている(非特許文献4)。このような、SARS-CoV2ウイルス感染からの回復期患者から採取される血清または血漿を利用する血清療法または血漿療法は、SARS-CoV2ウイルスに感染後、回復した患者から提供された血液から、血清または血漿を調製して、SARS-CoV2ウイルスに感染した患者に投与するという古典的な治療法である。SARS-CoV2ウイルス感染から回復した患者の血中には、SARS-CoV2ウイルスの感染を阻害する抗体(中和抗体)が存在するという前提に立った治療法である。 As a flow of development of treatment methods different from these developments, convalescent plasma was administered to a small number of patients in China, Singapore, South Korea, and the United States from around March 2020, suggesting its effectiveness. It has been reported. Based on the same idea, studies on the safety and efficacy of treatment using COVID-19 recoverer plasma have begun in Japan (Non-Patent Document 4). Such serum therapy or plasma therapy using serum or plasma collected from a patient in the convalescent period from SARS-CoV2 virus infection is a serum from blood provided by a patient who has recovered after being infected with SARS-CoV2 virus. Alternatively, it is a classic treatment of preparing serum and administering it to patients infected with the SARS-CoV2 virus. This treatment method is based on the premise that an antibody (neutralizing antibody) that inhibits SARS-CoV2 virus infection is present in the blood of patients who have recovered from SARS-CoV2 virus infection.
 しかしながら、血清療法や血漿療法を採用するためには、SARS-CoV2ウイルスに感染後、回復した患者から提供された血液が必要であり、血液原料の不足から安定供給の問題が生じており、また血液製剤に特有な安全性の問題が存在している。 However, in order to adopt serum therapy or plasma therapy, blood provided by a patient who has recovered after being infected with the SARS-CoV2 virus is required, and there is a problem of stable supply due to a shortage of blood raw materials. There are safety issues specific to blood products.
 本発明は、SARS-CoV2ウイルスへの感染により生体内で増幅するSARS-CoV2ウイルスの感染を中和し、SARS-CoV2ウイルスへの感染の治療のために使用することができる、組換え抗体または組換え抗体誘導体、あるいはそのような抗体を1または複数種類含む医薬組成物を提供することを課題とする。 The present invention is a recombinant antibody or recombinant antibody that can be used for the treatment of SARS-CoV2 virus infection by neutralizing SARS-CoV2 virus infection that is amplified in vivo by SARS-CoV2 virus infection. It is an object of the present invention to provide a recombinant antibody derivative or a pharmaceutical composition containing one or a plurality of such antibodies.
 本発明の発明者らは、鋭意検討を行った結果、過去にSARS-CoV2ウイルスに感染し回復した個体からSARS-CoV2ウイルスに対する抗体を産生する複数の細胞を見出し、それらからSARS-CoV2ウイルスに対して結合性を有し、SARS-CoV2ウイルスの増幅を抑制しまたはSARS-CoV2ウイルスの感染を中和する作用を有する、抗体または抗体誘導体を作製することで、上記課題を解決することができることを示した。 As a result of diligent studies, the inventors of the present invention have found a plurality of cells that produce antibodies against SARS-CoV2 virus from individuals who have been infected and recovered with SARS-CoV2 virus in the past, and converted them into SARS-CoV2 virus. On the other hand, the above-mentioned problems can be solved by producing an antibody or an antibody derivative which has a binding property and has an action of suppressing the amplification of SARS-CoV2 virus or neutralizing the infection of SARS-CoV2 virus. showed that.
 より具体的には、本件出願は、前述した課題を解決するため、以下の態様を提供する:
[1] SARS-CoV2ウイルスを構成するスパイクタンパク質に対して結合性を有し、SARS-CoV2ウイルスの感染を中和する作用を有する、血液由来成分を含まない、抗体または抗体誘導体;
[2] 抗体がヒト抗体である、[1]に記載の抗体または抗体誘導体;
[3] 遺伝子組換えにより製造される、[1]または[2]に記載の抗体または抗体誘導体;
[4] 抗体誘導体が、ヒト化抗体、キメラ抗体、多価抗体、および多重特異性抗体から選択されるヒト型抗体改変体またはその機能的断片から選択される、[1]~[3]のいずれかに記載の抗体または抗体誘導体;
[5] 機能的断片が、F(ab')2である、[4]に記載の抗体または抗体誘導体;
[6] 重鎖が、相補性決定領域、CDR1(GFTFRNYA、SEQ ID NO: 1)、CDR2(IWYDGSNK、SEQ ID NO: 2)、CDR3(ARDQGFGDNYYYYGMDV、SEQ ID NO: 3)を含み、
 軽鎖が、相補性決定領域、CDR1(ALPKEY、SEQ ID NO: 4)、CDR2(KDS、SEQ ID NO: 5)、CDR3(QLADSSMHYVV、SEQ ID NO: 6)を含む、
[1]~[5]のいずれかに記載の抗体または抗体誘導体;
[7] 重鎖可変領域VHドメインが、SEQ ID NO: 7のアミノ酸配列、またはSEQ ID NO: 7のアミノ酸配列のうち、CDR1(SEQ ID NO: 1)、CDR2(SEQ ID NO: 2)、およびCDR3(SEQ ID NO: 3)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列を含む、[1]~[6]のいずれかに記載の抗体または抗体誘導体;
[8] 軽鎖可変領域VLドメインが、SEQ ID NO: 8のアミノ酸配列、またはSEQ ID NO: 8のアミノ酸配列のうち、CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、およびCDR3(SEQ ID NO: 6)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列を含む、
[1]~[7]のいずれかに記載の抗体または抗体誘導体;
[9] 重鎖が、SEQ ID NO: 9のアミノ酸配列、またはSEQ ID NO: 9のアミノ酸配列のうち、CDR1(SEQ ID NO: 1)、CDR2(SEQ ID NO: 2)、およびCDR3(SEQ ID NO: 3)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列を含む、[1]~[8]のいずれかに記載の抗体または抗体誘導体;
[10] 軽鎖が、
 SEQ ID NO: 10のアミノ酸配列、またはSEQ ID NO: 10のアミノ酸配列のうち、CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、およびCDR3(SEQ ID NO: 6)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列、または
 SEQ ID NO: 11のアミノ酸配列、またはSEQ ID NO: 11のアミノ酸配列のうち、CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、およびCDR3(SEQ ID NO: 6)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列、
を含む、[1]~[9]のいずれかに記載の抗体または抗体誘導体;
[11] [1]~[10]のいずれかに記載の抗体または抗体誘導体を含む、SARS-CoV2ウイルスの感染を中和するための医薬組成物;
[12] 他の抗体または抗体誘導体と組み合わせて含む、[11]に記載の医薬組成物。
More specifically, the present application provides the following aspects in order to solve the above-mentioned problems:
[1] An antibody or antibody derivative that does not contain blood-derived components and has a binding property to the spike protein constituting the SARS-CoV2 virus and has an effect of neutralizing the infection of the SARS-CoV2 virus;
[2] The antibody or antibody derivative according to [1], wherein the antibody is a human antibody;
[3] The antibody or antibody derivative according to [1] or [2] produced by genetic recombination;
[4] The antibody derivative is selected from humanized antibody variants selected from humanized antibodies, chimeric antibodies, polyvalent antibodies, and multispecific antibodies or functional fragments thereof, [1] to [3]. The antibody or antibody derivative according to any of the above;
[5] The antibody or antibody derivative according to [4], wherein the functional fragment is F (ab') 2.
[6] Heavy chains contain complementarity determining regions, CDR1 (GFTFRNYA, SEQ ID NO: 1), CDR2 (IWYDGSNK, SEQ ID NO: 2), CDR3 (ARDQGFGDNYYYYGMDV, SEQ ID NO: 3).
The light chain comprises the complementarity determining regions, CDR1 (ALPKEY, SEQ ID NO: 4), CDR2 (KDS, SEQ ID NO: 5), CDR3 (QLADSSMHYVV, SEQ ID NO: 6).
The antibody or antibody derivative according to any one of [1] to [5];
[7] Of the amino acid sequence of SEQ ID NO: 7 or the amino acid sequence of SEQ ID NO: 7, the heavy chain variable region VH domain is CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), And the antibody or antibody according to any one of [1] to [6], which comprises an amino acid sequence containing substitution, insertion, or deletion of one or several amino acids in a portion other than CDR3 (SEQ ID NO: 3). Derivatives;
[8] Of the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8, the light chain variable region VL domain is CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), And contains amino acid sequences containing substitutions, insertions, or deletions of one or several amino acids in parts other than CDR3 (SEQ ID NO: 6).
The antibody or antibody derivative according to any one of [1] to [7];
[9] Of the amino acid sequence of SEQ ID NO: 9 or the amino acid sequence of SEQ ID NO: 9, the heavy chain is CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), and CDR3 (SEQ). ID NO: The antibody or antibody derivative according to any one of [1] to [8], which comprises an amino acid sequence containing substitution, insertion, or deletion of one or several amino acids in a portion other than 3);
[10] The light chain is
Amino acid sequence of SEQ ID NO: 10 or amino acid sequence of SEQ ID NO: 10 other than CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), and CDR3 (SEQ ID NO: 6) Of the amino acid sequence containing substitutions, insertions, or deletions of one or several amino acids in a portion, or the amino acid sequence of SEQ ID NO: 11, or the amino acid sequence of SEQ ID NO: 11, CDR1 (SEQ ID NO: 4) ), CDR2 (SEQ ID NO: 5), and amino acid sequences containing substitutions, insertions, or deletions of one or several amino acids in parts other than CDR3 (SEQ ID NO: 6).
The antibody or antibody derivative according to any one of [1] to [9], which comprises.
[11] A pharmaceutical composition for neutralizing SARS-CoV2 virus infection, which comprises the antibody or antibody derivative according to any one of [1] to [10];
[12] The pharmaceutical composition according to [11], which comprises in combination with another antibody or antibody derivative.
 SARS-CoV2ウイルスに対するこれまでの血清療法または血漿療法の場合には、ヒトの血液から作製される抗SARS-CoV2ウイルス抗体を含む血清または血漿を投与するが、血液製剤特有の種々の問題が存在している。本発明の組換え抗体または組換え抗体誘導体を使用することにより、血液製剤に起因する問題点をすべて解消することができる。また、これらの抗体は、研究用試薬、診断薬等としても使用することができる。 In the case of conventional serum or plasma therapy for SARS-CoV2 virus, serum or plasma containing anti-SARS-CoV2 virus antibody produced from human blood is administered, but there are various problems peculiar to blood products. is doing. By using the recombinant antibody or recombinant antibody derivative of the present invention, all the problems caused by blood products can be solved. In addition, these antibodies can also be used as research reagents, diagnostic agents and the like.
図1は、実施例1で得られたSARS-CoV2ウイルス反応性クローンがSARS-CoV2ウイルスの細胞への感染に対して中和活性を有するか否かを検討した結果を示す図である。FIG. 1 is a diagram showing the results of examining whether or not the SARS-CoV2 virus-reactive clone obtained in Example 1 has neutralizing activity against infection of cells with the SARS-CoV2 virus. 図2は、精製リコンビナント7G7.1抗体のSARS-CoV2ウイルススパイクタンパク質への反応性の確認した結果を示す図である。FIG. 2 is a diagram showing the confirmed results of the reactivity of the purified recombinant 7G7.1 antibody with the SARS-CoV2 virus spike protein. 図3は、精製リコンビナント7G7.1抗体のin vitroにおけるSARS-CoV2ウイルス感染の中和活性を検討した結果を示す図である。FIG. 3 is a diagram showing the results of examining the neutralizing activity of SARS-CoV2 virus infection in vitro of the purified recombinant 7G7.1 antibody. 図4は、精製リコンビナント7G7.2抗体のSARS-CoV2ウイルススパイクタンパク質への反応性の確認したELISAの結果を示す図である。FIG. 4 is a diagram showing the results of ELISA in which the reactivity of the purified recombinant 7G7.2 antibody to the SARS-CoV2 virus spike protein was confirmed. 図5-1は、精製リコンビナント7G7.1抗体および7G7.2抗体のSARS-CoV2ウイルススパイクタンパク質への結合親和性を確認した表面プラズモン共鳴(SPR)の結果を示す図である。FIG. 5-1 is a diagram showing the results of surface plasmon resonance (SPR) confirming the binding affinity of the purified recombinant 7G7.1 antibody and 7G7.2 antibody to the SARS-CoV2 virus spike protein. 図5-2は、対照抗体のSARS-CoV2ウイルススパイクタンパク質への結合親和性を確認した表面プラズモン共鳴(SPR)の結果を示す図である。FIG. 5-2 is a diagram showing the results of surface plasmon resonance (SPR) in which the binding affinity of the control antibody to the SARS-CoV2 virus spike protein was confirmed. 図6は、精製リコンビナント7G7.2抗体のin vitroにおけるSARS-CoV2ウイルス感染の中和活性を、7G7.1抗体と比較して検討した結果を示す図である。FIG. 6 is a diagram showing the results of examining the neutralizing activity of SARS-CoV2 virus infection in vitro of the purified recombinant 7G7.2 antibody in comparison with the 7G7.1 antibody. 図7は、精製リコンビナント7G7.2抗体が、有意にSARS-CoV2感染を抑制し、生体内(in vivo)において、SARS-CoV2に対して中和活性を有することを示す図である。FIG. 7 is a diagram showing that the purified recombinant 7G7.2 antibody significantly suppresses SARS-CoV2 infection and has neutralizing activity against SARS-CoV2 in vivo. 図8は、精製リコンビナント7G7.2抗体のSARS-CoV2ウイルススパイクタンパク質の結合領域の解析結果を示す図である。FIG. 8 is a diagram showing the analysis results of the binding region of the SARS-CoV2 virus spike protein of the purified recombinant 7G7.2 antibody.
 本発明は、一態様において、SARS-CoV2ウイルスを構成するスパイクタンパク質に対して結合性を有し、SARS-CoV2ウイルスの感染を中和する作用を有する、血液由来成分を含まない、抗体または抗体誘導体を提供することができる。この発明は、SARS-CoV2ウイルスに感染した個体または感染が疑われる個体に対して、体内におけるSARS-CoV2ウイルスの増幅を抑制しあるいはSARS-CoV2ウイルスの感染を中和することにより、SARS-CoV2ウイルスの感染により発生する新型コロナウイルス感染症(COVID-19)を予防、治療するために使用することができる。 The present invention, in one embodiment, is an antibody or antibody that does not contain a blood-derived component and has a binding property to a spike protein constituting the SARS-CoV2 virus and has an action of neutralizing the infection of the SARS-CoV2 virus. Derivatives can be provided. The present invention relates to an individual infected with or suspected of being infected with SARS-CoV2 virus by suppressing the amplification of SARS-CoV2 virus in the body or neutralizing the infection with SARS-CoV2 virus. It can be used to prevent and treat the new coronavirus infection (COVID-19) caused by viral infection.
 <抗体または抗体誘導体>
 本発明において使用する抗体または抗体誘導体は、血清療法や血漿療法で使用される血液製剤に特有の種々の問題(特に、感染性の問題、免疫性の問題)を解決することを目的とするため、血液中に含まれる(血液製剤に混入する危険性がある)B型肝炎ウイルス、C型肝炎ウイルス、ヒト免疫不全ウイルス(HIV)などのウイルスなどの病原体を含まず、また血液中に含まれる抗原性タンパク質やヒトタンパク質と結合する抗体といった、投与された個体に免疫異常を生じさせる危険性のある血液由来成分を含まないことを特徴とする。
<Antibody or antibody derivative>
The antibody or antibody derivative used in the present invention is intended to solve various problems (particularly, infectivity problems and immunity problems) peculiar to blood preparations used in serum therapy and plasma therapy. Does not contain pathogens such as hepatitis B virus, hepatitis C virus, and human immunodeficiency virus (HIV) contained in blood (which may be mixed in blood preparations), and is contained in blood. It is characterized by the absence of blood-derived components that may cause immune abnormalities in the administered individual, such as antigenic proteins and antibodies that bind to human proteins.
 血液由来成分を含まない抗体として、抗体産生細胞に由来する不死化細胞を、血液由来成分を含まない条件下で取得し、その細胞から血液由来成分を含まない培養条件下で調製される抗体や、上記不死化細胞から取得した抗体タンパク質を規定するDNAを使用して組換え的に抗体タンパク質を発現させて調製することができる組換え抗体を使用することができる。 As an antibody that does not contain blood-derived components, an antibody prepared by obtaining immortalized cells derived from antibody-producing cells under conditions that do not contain blood-derived components and from the cells under culture conditions that do not contain blood-derived components. , A recombinant antibody that can be prepared by recombinantly expressing the antibody protein using the DNA defining the antibody protein obtained from the immortalized cell can be used.
 すなわち、一態様において、本発明における抗体は、過去にSARS-CoV2ウイルスに感染し回復した個体の血液から、SARS-CoV2ウイルスに対する抗体を産生する細胞クローンを取得・不死化することにより抗体産生細胞に由来する不死化細胞を得て、その不死化抗体産生細胞からin vivoにおいてSARS-CoV2ウイルスの増幅を抑制しまたはSARS-CoV2ウイルスの感染を中和する作用を有するものを選択することにより得ることができる。 That is, in one embodiment, the antibody in the present invention is an antibody-producing cell by obtaining and immortalizing a cell clone that produces an antibody against the SARS-CoV2 virus from the blood of an individual that has been infected and recovered with the SARS-CoV2 virus in the past. Obtained by obtaining immortalized cells derived from the above, and selecting those having an action of suppressing the amplification of SARS-CoV2 virus or neutralizing the infection of SARS-CoV2 virus in vivo from the immortalized antibody-producing cells. be able to.
 また別の一態様において、上述した方法により選択されたSARS-CoV2ウイルスの増幅を抑制しまたはSARS-CoV2ウイルスの感染を中和する作用を有する不死化抗体産生細胞から、周知の方法に従って、mRNAの取得、cDNAの作成を経て、抗体タンパク質を規定するDNA配列を取得し、ベクターを介して、血液由来成分を含まない哺乳動物発現系において発現させることにより、組換え抗体として調製することもできる。 In yet another embodiment, mRNA from an immortalized antibody-producing cell having the effect of suppressing the amplification of SARS-CoV2 virus selected by the method described above or neutralizing the infection of SARS-CoV2 virus according to a well-known method. It is also possible to prepare as a recombinant antibody by obtaining a DNA sequence defining an antibody protein through the acquisition of the antibody and the preparation of cDNA and expressing it in a mammalian expression system containing no blood-derived component via a vector. ..
 本発明においては、これらの抗体の誘導体を使用することもできる。本発明において使用することができる抗体誘導体としては、例えば、ヒト化抗体、キメラ抗体、多価抗体、および多重特異性抗体から選択されるヒト型抗体改変体またはその機能的断片を使用することができるが、これらには限定されない。このうち、機能的断片としては、例えば、F(ab')2を使用することができるが、これらには限定されない。 In the present invention, derivatives of these antibodies can also be used. As the antibody derivative that can be used in the present invention, for example, a humanized antibody variant selected from a humanized antibody, a chimeric antibody, a polyvalent antibody, and a multispecific antibody or a functional fragment thereof can be used. Yes, but not limited to these. Of these, as the functional fragment, for example, F (ab') 2 can be used, but the functional fragment is not limited thereto.
 これらの抗体の誘導体は、抗体が得られたのち、当該技術分野において周知の方法に従って作製することができる。 Derivatives of these antibodies can be produced according to a method well known in the art after the antibody is obtained.
 上述した方法により取得した抗体または抗体誘導体は、SARS-CoV2ウイルスに対して結合性を有するものであるが、本発明においては、このようなSARS-CoV2ウイルスに対して結合性を有するものの中から、さらにSARS-CoV2ウイルスの増幅を抑制しまたはSARS-CoV2ウイルスの感染を中和する作用を有することに基づいてスクリーニングを行い、当該中和作用を有する抗体または抗体誘導体を提供することを特徴とする。 The antibody or antibody derivative obtained by the above-mentioned method has binding property to SARS-CoV2 virus, but in the present invention, among those having binding property to SARS-CoV2 virus. Further, screening is performed based on having an action of suppressing amplification of SARS-CoV2 virus or neutralizing infection of SARS-CoV2 virus, and an antibody or antibody derivative having the neutralizing action is provided. do.
 後述する実施例においても実際に取得した抗体を複数種類示しているが、これらに限定されるわけではない。 Although a plurality of types of antibodies actually obtained are shown in the examples described later, the present invention is not limited to these.
 <抗体またはその誘導体が標的とするSARS-CoV2ウイルス由来抗原>
 抗体またはその誘導体が標的とするSARS-CoV2ウイルス由来抗原は、SARS-CoV2ウイルスの構成成分であるエンベロープタンパク質、メンブレンタンパク質、ヌクレオカプシドタンパク質、スパイクタンパク質のいずれか1つであるかまたは複数の組み合わせであってもよい。抗体またはその誘導体が結合しやすいSARS-CoV-2ウイルスの外部に存在する(すなわち、表面に露出している)タンパク質(例えば、エンベロープタンパク質、スパイクタンパク質)を抗原とすることが好ましい。
<SARS-CoV2 virus-derived antigen targeted by the antibody or its derivative>
The SARS-CoV2 virus-derived antigen targeted by the antibody or derivative thereof is one or a combination of enveloped protein, membrane protein, nucleocapsid protein, and spike protein, which are constituents of SARS-CoV2 virus. May be. It is preferable to use a protein (for example, envelope protein, spike protein) existing (that is, exposed on the surface) outside the SARS-CoV-2 virus to which the antibody or its derivative is easily bound as an antigen.
 本発明において抗体またはその誘導体が標的とすることができるSARS-CoV-2ウイルスを構成するタンパク質は、すでに公的データベースに登録されているSARS-CoV-2ウイルスの完全ゲノム配列に基づいて取得することができるものである。本発明においては、代表性の観点から、NCBI RefSeqデータベースに登録されているSARS-CoV-2ウイルスの参照ゲノム配列NC_045512を使用し、この参照ゲノム配列に基づいて特定されるSARS-CoV-2ウイルスを構成するタンパク質を使用することが好ましい。 The proteins constituting the SARS-CoV-2 virus that can be targeted by the antibody or its derivative in the present invention are obtained based on the complete genomic sequence of the SARS-CoV-2 virus already registered in the public database. It is something that can be done. In the present invention, the SARS-CoV-2 virus reference genome sequence NC_045512 registered in the NCBI RefSeq database is used from the viewpoint of representativeness, and the SARS-CoV-2 virus specified based on this reference genome sequence is used. It is preferable to use the proteins constituting the above.
 <抗体または抗体誘導体の作用>
 本発明の抗体または抗体誘導体は、上述したSARS-CoV-2ウイルス由来抗原に結合するものであって、結果としてSARS-CoV2ウイルスの感染・増幅を抑制しまたはSARS-CoV2ウイルスの感染を中和する作用を有するものであれば、本発明の目的の達成のために使用することができる。本発明の抗体または抗体誘導体は、SARS-CoV2ウイルス治療薬として使用することを目的としていることから、かかる作用を有することが求められる。
<Action of antibody or antibody derivative>
The antibody or antibody derivative of the present invention binds to the above-mentioned SARS-CoV-2 virus-derived antigen, and as a result, suppresses infection / amplification of SARS-CoV2 virus or neutralizes SARS-CoV2 virus infection. Anything that has such an action can be used to achieve the object of the present invention. Since the antibody or antibody derivative of the present invention is intended to be used as a therapeutic agent for SARS-CoV2 virus, it is required to have such an action.
 抗体または抗体誘導体の上記作用は、in vitroにおいて抗体または抗体誘導体の存在下、SARS-CoV2ウイルスへの感染を引き起こすことができる細胞(例えば、VERO細胞など)にSARS-CoV2ウイルスを感染させ、当該細胞細胞においてSARS-CoV2ウイルスの感染抑制がみられるかどうかにより特定することができる。 The above action of an antibody or antibody derivative causes cells that can cause infection with SARS-CoV2 virus (eg, VERO cells) to be infected with SARS-CoV2 virus in vitro in the presence of the antibody or antibody derivative. It can be identified by whether or not SARS-CoV2 virus infection suppression is observed in cells.
 <本発明の抗体の例>
 本発明においては、過去にSARS-CoV2ウイルスに感染し回復した個体から血液を採取し、その中から得られたSARS-CoV2ウイルスに対する抗体を使用することができる。具体的には、過去にSARS-CoV2ウイルスに感染し回復した個体から、前述したSARS-CoV2ウイルス由来抗原に対して結合する抗体を産生する細胞を上述の<抗体または抗体誘導体>の通り採取し、得られた抗体または抗体誘導体に関して上述の<抗体またはその誘導体の作用>の通りSARS-CoV2ウイルスの増幅を抑制しまたはSARS-CoV2ウイルスの感染を中和する作用を調べた。その結果、複数の抗体およびその抗体を産生する細胞が得られた。
<Example of antibody of the present invention>
In the present invention, blood can be collected from an individual who has been infected with the SARS-CoV2 virus in the past and recovered, and an antibody against the SARS-CoV2 virus obtained from the blood can be used. Specifically, cells producing an antibody that binds to the above-mentioned SARS-CoV2 virus-derived antigen are collected from an individual that has been infected with the SARS-CoV2 virus in the past and recovered as described above <antibody or antibody derivative>. As for the obtained antibody or antibody derivative, the action of suppressing the amplification of SARS-CoV2 virus or neutralizing the infection of SARS-CoV2 virus was investigated as described above <Action of antibody or derivative thereof>. As a result, a plurality of antibodies and cells producing the antibodies were obtained.
 そのような中で、実施例において検討を行った具体的なものとして、
 重鎖の相補性決定領域、CDR1(GFTFRNYA、SEQ ID NO: 1)、CDR2(IWYDGSNK、SEQ ID NO: 2)、CDR3(ARDQGFGDNYYYYGMDV、SEQ ID NO: 3)を含み、
 軽鎖の相補性決定領域、CDR1(ALPKEY、SEQ ID NO: 4)、CDR2(KDS、SEQ ID NO: 5)、CDR3(QLADSSMHYVV、SEQ ID NO: 6)を含む;
抗体またはこれらの抗体誘導体を提供することができる。
Under such circumstances, as a concrete example examined in the examples,
Heavy chain complementarity determining regions, including CDR1 (GFTFRNYA, SEQ ID NO: 1), CDR2 (IWYDGSNK, SEQ ID NO: 2), CDR3 (ARDQGFGDNYYYYGMDV, SEQ ID NO: 3)
Contains light chain complementarity determining regions, CDR1 (ALPKEY, SEQ ID NO: 4), CDR2 (KDS, SEQ ID NO: 5), CDR3 (QLADSSMHYVV, SEQ ID NO: 6);
Antibodies or derivatives thereof can be provided.
 このような抗体または抗体誘導体としては:
 重鎖可変領域VHドメインが、SEQ ID NO: 7のアミノ酸配列、またはSEQ ID NO: 7のアミノ酸配列のうち、CDR1(SEQ ID NO: 1)、CDR2(SEQ ID NO: 2)、およびCDR3(SEQ ID NO: 3)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列を含む抗体または抗体誘導体、
 軽鎖可変領域VLドメインが、SEQ ID NO: 8のアミノ酸配列、またはSEQ ID NO: 8のアミノ酸配列のうち、CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、およびCDR3(SEQ ID NO: 6)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列を含む抗体または抗体誘導体、
として表すこともできる。
Such antibodies or antibody derivatives include:
The heavy chain variable region VH domain is the amino acid sequence of SEQ ID NO: 7 or the amino acid sequence of SEQ ID NO: 7, CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), and CDR3 (. An antibody or antibody derivative containing an amino acid sequence comprising substitution (eg, conservative substitution), insertion, or deletion of one or several amino acids in a portion other than SEQ ID NO: 3).
The light chain variable region VL domain is the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8, CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), and CDR3 (. An antibody or antibody derivative containing an amino acid sequence comprising a substitution (eg, conservative substitution), insertion, or deletion of one or several amino acids in a portion other than SEQ ID NO: 6).
It can also be expressed as.
 本明細書の以下の実施例において、具体的な抗体として、
・7G7.1クローン:
 重鎖が、SEQ ID NO: 9のアミノ酸配列、またはSEQ ID NO: 9のアミノ酸配列のうち、CDR1(SEQ ID NO: 1)、CDR2(SEQ ID NO: 2)、およびCDR3(SEQ ID NO: 3)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列を含み、および
 軽鎖が、SEQ ID NO: 10のアミノ酸配列、またはSEQ ID NO: 10のアミノ酸配列のうち、CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、およびCDR3(SEQ ID NO: 6)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列を含む、
抗体または抗体誘導体、および
・7G7.2クローン(7G7.1クローンの軽鎖Igλ鎖の定常領域をIgk鎖定常領域で置き換えたもの):
 重鎖が、SEQ ID NO: 9のアミノ酸配列、またはSEQ ID NO: 9のアミノ酸配列のうち、CDR1(SEQ ID NO: 1)、CDR2(SEQ ID NO: 2)、およびCDR3(SEQ ID NO: 3)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列を含み、および
 軽鎖が、SEQ ID NO: 11のアミノ酸配列、またはSEQ ID NO: 11のアミノ酸配列のうち、CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、およびCDR3(SEQ ID NO: 6)以外の部分において1または数個のアミノ酸の置換(例えば、保存的置換)、挿入、または欠失を含むアミノ酸配列を含む、
抗体または抗体誘導体を作製した。
In the following examples herein, as a specific antibody,
・ 7G7.1 clone:
Of the amino acid sequence of SEQ ID NO: 9 or the amino acid sequence of SEQ ID NO: 9, the heavy chain is CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), and CDR3 (SEQ ID NO: 1). Contains an amino acid sequence containing one or several amino acid substitutions (eg, conservative substitutions), insertions, or deletions in portions other than 3), and the light chain is the amino acid sequence of SEQ ID NO: 10, or SEQ. Substitution of one or several amino acids in the amino acid sequence of ID NO: 10 other than CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), and CDR3 (SEQ ID NO: 6). For example, containing an amino acid sequence containing a conservative substitution), insertion, or deletion,
Antibodies or antibody derivatives, and 7G7.2 clones (replacement of the constant region of the light chain Igλ chain of the 7G7.1 clone with the constant region of the Igk chain):
Of the amino acid sequence of SEQ ID NO: 9 or the amino acid sequence of SEQ ID NO: 9, the heavy chain is CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), and CDR3 (SEQ ID NO: 1). Contains an amino acid sequence containing one or several amino acid substitutions (eg, conservative substitutions), insertions, or deletions in portions other than 3), and the light chain is the amino acid sequence of SEQ ID NO: 11, or SEQ. Substitution of one or several amino acids in the amino acid sequence of ID NO: 11 other than CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), and CDR3 (SEQ ID NO: 6). For example, containing an amino acid sequence containing a conservative substitution), insertion, or deletion,
Antibodies or antibody derivatives were made.
 <医薬組成物>
 本発明においては、一態様において、これまでに説明した抗体または抗体誘導体を含む、SARS-CoV2ウイルスの増幅を抑制しまたはSARS-CoV2ウイルスの感染を中和するための医薬組成物を提供することができる。この医薬組成物は、SARS-CoV2ウイルスに感染した個体または感染が疑われる個体に対して、SARS-CoV2ウイルスに対する抗ウイルス薬として、あるいはSARS-CoV2ウイルスにより生じる症状の発現を予防、治療する目的で、使用することができる。
<Pharmaceutical composition>
The present invention provides, in one embodiment, a pharmaceutical composition comprising the antibody or antibody derivative described above for suppressing amplification of SARS-CoV2 virus or neutralizing SARS-CoV2 virus infection. Can be done. This pharmaceutical composition is intended as an antiviral drug against SARS-CoV2 virus or for the purpose of preventing and treating the onset of symptoms caused by SARS-CoV2 virus in individuals infected with or suspected of being infected with SARS-CoV2 virus. And can be used.
 この医薬組成物に含まれる本発明の抗体または抗体誘導体は血液原料に由来しないものであることから、この医薬組成物は、血液製剤に混入する危険性があるリスク因子(例えば、B型肝炎ウイルス、C型肝炎ウイルス、ヒト免疫不全ウイルス(HIV)などのウイルスなどの病原体、抗原性タンパク質やヒトタンパク質と結合する抗体などの投与された個体に免疫異常を生じさせる危険性のある血液由来成分)を含まないことを特徴とする。 Since the antibody or antibody derivative of the present invention contained in this pharmaceutical composition is not derived from a blood raw material, this pharmaceutical composition is a risk factor (for example, hepatitis B virus) that may be contaminated in blood preparations. , Hepatitis C virus, viruses such as human immunodeficiency virus (HIV), and blood-derived components that may cause immune abnormalities in administered individuals such as antigenic proteins and antibodies that bind to human proteins) It is characterized by not including.
 本発明における医薬組成物には、上述した抗体または抗体誘導体を1種類含んでいてもよいし、複数種類含んでいてもよい。 The pharmaceutical composition in the present invention may contain one type of the above-mentioned antibody or antibody derivative, or may contain a plurality of types.
 以下、実施例を挙げて本発明を具体的に示す。下記に示す実施例はいかなる方法によっても本発明を限定するものではない。 Hereinafter, the present invention will be specifically shown with reference to examples. The examples shown below do not limit the invention in any way.
 実施例1:改変EBV法を用いた抗体の単離
 本実施例においては、エプスタイン・バー・ウイルス(EBV)を用いるEBV法により、SARS-CoV2ウイルスに対する抗体を産生する細胞クローンを取得し、そこから抗体を単離することを目的として実験を行った。
Example 1: Isolation of antibody using modified EBV method In this example, a cell clone that produces an antibody against SARS-CoV2 virus was obtained by the EBV method using Epstein-Barr virus (EBV), and there. Experiments were performed with the aim of isolating the antibody from.
 EBVは、ガンマヘルペスウイルス亜科に属するdsDNAウイルスであり、様々な癌に関わっている。主にB細胞に感染することが知られており、ヒトB細胞にEBVをin vitroで感染させると、B細胞は持続増殖して不死化ヒトリンパ芽球様細胞(LCL)に形質転換することが知られている。 EBV is a dsDNA virus belonging to the subfamily Gammaherpesvirinae and is involved in various cancers. It is known to mainly infect B cells, and when human B cells are infected with EBV in vitro, the B cells can proliferate continuously and transform into immortalized human lymphoblastoid cells (LCL). Are known.
 (1-1)PBMCの単離とLCLへの分化
 過去にSARS-CoV2ウイルスに感染し回復したドナー(n=1)より血液を採取し(国立病院機構九州医療センターより入手)、Lymphoprep(Abbott Diagnostics Technologies AS)を用いて末梢血単核球(PBMC、リンパ球・単球)を採取した。細胞懸濁液に対してAnti-human IgM 磁気ビーズ(Miltenyi)を加えて除去することでネガティブセレクションし、IgMを細胞表面に発現していない細胞を採取した。
(1-1) Isolation of PBMCs and differentiation into LCL Blood was collected from donors (n = 1) who had recovered from SARS-CoV2 virus infection in the past (obtained from the National Hospital Organization Kyushu Medical Center), and Lymphoprep (Abbott). Peripheral blood mononuclear cells (PBMC, lymphocytes / monocytes) were collected using Diagnostics Technologies AS). Negative selection was performed by adding Anti-human IgM magnetic beads (Miltenyi) to the cell suspension and removing the cells, and cells not expressing IgM on the cell surface were collected.
 ネガティブセレクションした細胞を回収し、EBV(B95-8株)とともに、37℃にて、1時間、インキュベートした。インキュベート後、遠心して細胞を回収し、LCL培養培地に懸濁した。この細胞懸濁液を200μLずつ(104 cells / well)、96穴プレート(U底 delta: NUNC)に播種した後に、2週間培養を行い、不死化ヒトリンパ芽球様細胞(LCL)への分化を行った。 Negatively selected cells were harvested and incubated with EBV (B95-8 strain) at 37 ° C. for 1 hour. After incubation, cells were collected by centrifugation and suspended in LCL culture medium. 200 μL of this cell suspension (10 4 cells / well) was inoculated on a 96-well plate (U-bottom delta: NUNC) and then cultured for 2 weeks to differentiate into immortalized human lymphoblast-like cells (LCL). Was done.
 本実施例で使用するLCL培養培地として、15%FBS(SIGMA)、L-glutamine(GIBCO)、Penicillin/streptomycin(Nacalai tesque)、Sodium Pyruvate(Nacalai tesque)、2-Mercaptoethanol(GIBCO)、Non-essential amino acids(GIBCO)、K3(GeneDesign)、シクロスポリン(ノバルティスファーマ)、各種添加物を添加したRPMI培地(Nacalai tesque)を使用した。同様の操作を2回行った。 The LCL culture medium used in this example is 15% FBS (SIGMA), L-glutamine (GIBCO), Penicillin / streptomycin (Nacalai tesque), Sodium Pyruvate (Nacalai tesque), 2-Mercaptoethanol (GIBCO), Non-essential. RPMI medium (Nacalai tesque) containing amino acids (GIBCO), K3 (GeneDesign), cyclosporin (Novartis Pharma), and various additives was used. The same operation was performed twice.
 (1-2)SARS-CoV2ウイルス反応性クローンのスクリーニング
 SARS-CoV2ウイルスのスパイクタンパク質(SARS-CoV2 Spike ECD protein(GenScript社))1μg/mLをELISA用96穴プレートに50μL/wellで添加し固相化し、LCLの培養上清(抗SARS-CoV2ウイルスIgGを含む可能性があるもの)を50μL/well添加して、抗原-抗体の結合反応を行った。この後、2次抗体としてGoat Anti-Human IgG-AP(SouthernBiotech)、発色基質としてPhosphatase substrate(SIGMA)を用い、405 nmおよび650 nmの吸光度を測定した。
(1-2) Screening for SARS-CoV2 virus-reactive clones Add 1 μg / mL of SARS-CoV2 virus spike protein (SARS-CoV2 Spike ECD protein (GenScript)) to a 96-well plate for ELISA at 50 μL / well and solidify. After symmetry, 50 μL / well of LCL culture supernatant (which may contain anti-SARS-CoV2 virus IgG) was added to carry out an antigen-antibody binding reaction. After that, Goat Anti-Human IgG-AP (SouthernBiotech) was used as the secondary antibody, and Phosphatase substrate (SIGMA) was used as the color-developing substrate, and the absorbances at 405 nm and 650 nm were measured.
 この結果、1回目のスクリーニングでは10クローン、2回目のスクリーニングでは18クローンで、合計28クローンが、SARS-CoV2ウイルススパイクタンパク質に対して結合性を有する抗体を産生するクローンとして得られた。 As a result, 10 clones in the first screening and 18 clones in the second screening, a total of 28 clones were obtained as clones producing an antibody having binding to the SARS-CoV2 virus spike protein.
 実施例2:in vitroにおける機能解析(Vero細胞を用いたSARS-CoV2ウイルス感染中和実験)
 本実施例においては、実施例1で得られたSARS-CoV2ウイルス反応性クローンのin vitroにおける機能およびin vivoにおける機能を解析することを目的として実験を行った。
Example 2: In vitro functional analysis (SARS-CoV2 virus infection neutralization experiment using Vero cells)
In this example, an experiment was conducted for the purpose of analyzing the in vitro function and the in vivo function of the SARS-CoV2 virus-reactive clone obtained in Example 1.
 SARS-CoV2ウイルスのスパイクタンパク質は標的細胞表面にある受容体への結合およびそれに引き続く細胞侵入に中心的な役割を果たしていると考えられている。そのため、細胞表面の受容体へのスパイクタンパク質の結合阻害がSARS-CoV2ウイルスの感染の中和活性に重要であると考えられることから、実施例1で得られたクローンのうち、実施例1で得られた28クローンのSARS-CoV2ウイルス反応性クローンが、SARS-CoV2ウイルスの細胞への感染を中和する活性を有するか否かについて検討した。 The SARS-CoV2 virus spike protein is thought to play a central role in binding to receptors on the surface of target cells and subsequent cell invasion. Therefore, it is considered that inhibition of binding of the peplomer protein to the receptor on the cell surface is important for the neutralizing activity of SARS-CoV2 virus infection. Therefore, among the clones obtained in Example 1, in Example 1. It was investigated whether the obtained 28 SARS-CoV2 virus-reactive clones had the activity of neutralizing the infection of SARS-CoV2 virus into cells.
 感染実験1日前、Vero細胞(1×105個/ml)を1ウェルあたり細胞培養液D10(DMEM(High Glucose)、10%FBS、ペニシリン/ストレプトマイシン添加)にて調製し、96ウェルプレートに各100μL分注して、1×104個の細胞を播種し、37℃、5%CO2雰囲気下で18から20時間培養した。 One day before the infection experiment, Vero cells (1 x 10 5 cells / ml) were prepared with cell culture medium D10 (DMEM (High Glucose), 10% FBS, penicillin / streptomycin added) per well, and each was placed on a 96-well plate. 100 μL was dispensed, 1 × 10 4 cells were seeded and cultured at 37 ° C. in a 5% CO 2 atmosphere for 18 to 20 hours.
 感染実験当日に、実施例1で得られた28クローンそれぞれについてのLCL培養上清30μLに対して、細胞培養液R15(RPMI1640、15%FBS、2 mM L-グルタミン、1 mMピルビン酸ナトリウム、非必須アミノ酸、2-メルカプトメタノール、ペニシリン/スプレプマイシ添加)を70μL添加し、全量100μLにした。そこに、感染MOI 0.01になるように1×105 TCID50/mLのSARS-CoV2ウイルス懸濁液を1μL添加し、全量101μLとした。このウイルス再懸濁液を37℃で1時間インキュベーションした。 On the day of the infection experiment, cell culture medium R15 (RPMI1640, 15% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, non-) was added to 30 μL of the LCL culture supernatant for each of the 28 clones obtained in Example 1. (Essential amino acid, 2-mercaptomethanol, penicillin / sprepmaici added) was added in an amount of 70 μL to make a total volume of 100 μL. To this, 1 μL of 1 × 10 5 TCID 50 / mL SARS-CoV2 virus suspension was added so that the infected MOI was 0.01, and the total volume was 101 μL. The virus resuspension was incubated at 37 ° C. for 1 hour.
 Vero細胞培養物において、培養液D10(100μL)を取り除き、代わりに28クローンそれぞれについてのウイルス再懸濁液の全量(101μL)を添加し、37℃、5%CO2雰囲気下で1時間培養し、細胞にSARS-CoV2ウイルスを感染させた。その後、ウイルス再懸濁液を取り除き、細胞培養液D1(DMEM(High Glucose)、1%FBS、ペニシリン/ストレプトマイシン添加)100μLを添加して、37℃、5%CO2雰囲気下で3日間培養した。 In Vero cell culture, remove culture D10 (100 μL), add the total amount of virus resuspension (101 μL) for each of the 28 clones, and incubate for 1 hour at 37 ° C. in a 5% CO 2 atmosphere. , Cells were infected with SARS-CoV2 virus. Then, the virus resuspension was removed, 100 μL of cell culture medium D1 (DMEM (High Glucose), 1% FBS, penicillin / streptomycin added) was added, and the cells were cultured at 37 ° C. in a 5% CO 2 atmosphere for 3 days. ..
 3日後に、細胞培養液D1を取り除き、10%中性緩衝ホルムアルデヒド液100μLを添加して固定し、CPE(細胞変性効果)を観察し、実施例1で得られたSARS-CoV2ウイルス反応性クローンがSARS-CoV2ウイルスの細胞への感染に対して中和活性を有するか否かを検討した。CPEは死細胞数をカウントすることで判断した。 After 3 days, the cell culture solution D1 was removed, 100 μL of 10% neutral buffered formaldehyde solution was added and fixed, CPE (cytopathic effect) was observed, and the SARS-CoV2 virus-reactive clone obtained in Example 1 was observed. Was examined whether SARS-CoV2 virus has neutralizing activity against cell infection. CPE was determined by counting the number of dead cells.
 本実施例のスクリーニングは2回にわけて行い、それぞれの結果を図1Aおよび図1Bとして示す。その結果、28クローンのSARS-CoV2ウイルススパイクタンパク質への結合抗体のうち、7G7.1、#8、#10、#18、#20、#26、#28の7クローンの抗体が、感染に対する中和活性が陽性であった(図1)。 The screening of this example was performed in two parts, and the results of each are shown in FIGS. 1A and 1B. As a result, of the 28 clones of antibodies bound to the SARS-CoV2 virus spike protein, 7 clones of 7G7.1, # 8, # 10, # 18, # 20, # 26, and # 28 were neutralized against infection. The sum activity was positive (Fig. 1).
 実施例3:組換え抗体の機能解析
 この実施例においては、実施例2においてSARS-CoV2ウイルスの細胞への感染に対して中和活性を有すると判明した1クローンに関して、抗体遺伝子のクローニングを行い、組換え抗体を作製することを目的として実験を行った。
Example 3: Functional analysis of recombinant antibody In this example, the antibody gene was cloned for one clone found to have neutralizing activity against infection of SARS-CoV2 virus cells in Example 2. , An experiment was conducted for the purpose of producing a recombinant antibody.
 (3-1)抗体遺伝子の取得
 本実施例においては、実施例1で作製したLCLから、ハイブリドーマの作成を行わずに、直接的にRNAを抽出し、これを用いたRT-PCR法により抗体遺伝子のクローニングを行った。
(3-1) Acquisition of antibody gene In this example, RNA was directly extracted from the LCL prepared in Example 1 without producing a hybridoma, and an antibody was obtained by the RT-PCR method using the RNA. Gene cloning was performed.
 実施例2(2-1)のin vitro機能性試験で実施例2において感染に対する中和活性が示されたクローンのうちの7G7,1クローンの抗体遺伝子(重鎖、軽鎖)のクローニングを行い、発現ベクターを構築した。すなわち、7G7.1クローンのLCLから、miRNeasy Micro kit(QIAGEN)を用い、添付プロトコールに従って、total RNAの抽出を行った。 The antibody genes (heavy chain, light chain) of 7G7,1 clones among the clones that showed neutralizing activity against infection in Example 2 in the in vitro functionality test of Example 2 (2-1) were cloned. , An expression vector was constructed. That is, total RNA was extracted from the LCL of the 7G7.1 clone using miRNeasy Microkit (QIAGEN) according to the attached protocol.
 抗体遺伝子の重鎖IgG1遺伝子、および、軽鎖IgL遺伝子を単離するために、上記の方法より抽出したtotal RNAを鋳型として、5’全長cDNAの増幅が可能なSMART cDNA Library Construction Kit(TAKARA)を用いて、添付プロトコールに従い逆転写反応を行い、cDNAを作製した。 SMART cDNA Library Construction Kit (TAKARA) capable of amplifying 5'full-length cDNA using the total RNA extracted from the above method as a template for isolating the heavy chain IgG1 gene and the light chain IgL gene of the antibody gene. A reverse transcription reaction was carried out according to the attached protocol to prepare cDNA.
 上記の方法により合成したcDNAを鋳型として、KOD FX(TOYOBO)を用いて2回のPCR(1st PCR、2nd PCR)を行った。1st PCRは、各LCLから逆転写したcDNA 1μlを鋳型として、プライマーとして以下のフォワードプライマー(Primer 1)およびリバースプライマー(Primer 2)を使用して、94℃・2分間の後、「98℃・10秒、55℃・30秒、68℃・2分]を35サイクル、最後に68℃・3分の反応でPCR反応を行った。 Using the cDNA synthesized by the above method as a template, two PCRs (1st PCR, 2nd PCR) were performed using KODFX (TOYOBO). In 1st PCR, 1 μl of cDNA reverse transcribed from each LCL was used as a template, and the following forward and reverse primers (Primer1) and reverse primer (Primer2) were used as primers, and after 2 minutes at 94 ° C, “98 ° C. 10 seconds, 55 ° C., 30 seconds, 68 ° C., 2 minutes] for 35 cycles, and finally 68 ° C., 3 minutes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 2nd PCRは、1st PCRの伸長生成物0.5μlを鋳型として使用し、プライマーとして以下のフォワードプライマー(Primer 3)およびリバースプライマー(Primer 4)を使用して、94℃・2分間の後、「98℃・10秒、60℃・30秒、68℃・2分]を35サイクル、最後に68℃・3分の反応でPCR反応を行った。 For 2nd PCR, 0.5 μl of the extension product of 1st PCR was used as a template, and the following forward and reverse primers (Primer3) and reverse primer (Primer4) were used as primers. After 2 minutes at 94 ° C, “98” The PCR reaction was carried out by 35 cycles of ° C. for 10 seconds, 60 ° C. for 30 seconds, 68 ° C. for 2 minutes, and finally at 68 ° C. for 3 minutes.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 PCRサンプルは、QIAquick Purification Kit(QIAGEN)に供し、未反応プライマーおよび酵素の除去を行い、精製物を得た。 The PCR sample was subjected to QIAquick Purification Kit (QIAGEN), and unreacted primers and enzymes were removed to obtain a purified product.
 精製したPCR精製物を制限酵素処理し、アガロースゲル電気泳動により分離、精製した後、ベクターに組み込んだ。重鎖遺伝子を含むベクター調製のためにはpQEFIP vector(pQCXIP(TAKARA)をバックボーンとしてCMVプロモーターをヒトEF1 alphaプロモーターに置き換えたレトロウイルスベクター)を、軽鎖遺伝子を含むベクター調製のためにはpQEFIN vector(pQCXIN(TAKARA)をバックボーンとしてCMVプロモーターをヒトEF1 alphaプロモーターに置き換えたレトロウイルスベクター)をそれぞれ使用した。Ligation high(TOYOBO)を使用してPCR生成物をベクターに組み込み、コンピテントセル(DH-5alpha:ニッポンジーン)を形質転換させた。 The purified PCR purified product was treated with a restriction enzyme, separated and purified by agarose gel electrophoresis, and then incorporated into a vector. The pQEFIP vector (a retroviral vector in which the CMV promoter is replaced with the human EF1alpha promoter with pQCXIP (TAKARA) as the backbone) is used for the preparation of the vector containing the heavy chain gene, and the pQEFIN vector is used for the preparation of the vector containing the light chain gene. (A retrovirus vector in which the CMV promoter was replaced with the human EF1alpha promoter with pQCXIN (TAKARA) as the backbone) was used. The PCR product was incorporated into the vector using Ligation high (TOYOBO) to transform competent cells (DH-5alpha: Nippon Gene).
 アンピシリン含有LB液体培地中で培養した大腸菌から、NucleoSpin Plasmid EasyPure(MACHEREY-NAGEL)を用いて、添付プロトコールに従い、プラスミドの抽出を行った。 From Escherichia coli cultured in ampicillin-containing LB liquid medium, plasmid was extracted using NucleoSpin Plasmad EasyPure (MACHEREY-NAGEL) according to the attached protocol.
 (3-2)リコンビナント抗体の発現
 実施例3(3-1)の方法で得られた重鎖、軽鎖の発現プラスミドベクターを、Expi293 Expression System(Thermo Fisher Scientific)を用いてExpi 293F細胞(Thermo Fisher Scientific)に一過性にコトランスフェクションし、リコンビナント抗体の発現、分泌を行った。
(3-2) Expression of recombinant antibody Expi 293F cells (Thermo) using the heavy chain and light chain expression plasmid vectors obtained by the method of Example 3 (3-1) using the Expi 293 Expression System (Thermo Fisher Scientific). Fisher Scientific) was transiently co-transfected to express and secrete recombinant antibody.
 ExpiFectamine 293試薬80μLと重鎖と軽鎖のプラスミド(各15μg)を、それぞれ1.5 mLのOpti-MEM I(gibco)と混合し、5分間室温で静置した。静置後、2つの溶液を合わせ室温で20分間静置し、125 mLフラスコ(Corning)で培養した4.5~5.5×106 cells / mL(30 mL)の細胞に加えて旋回培養(37℃、8%CO2)した。18~20時間培養後、Expi Fectamine 293 Transfection Enhancer 1 50μLとExpi Fectamine 293 Transfection Enhancer 2 1.5 mLを加えて5~6日旋回培養した。 80 μL of ExpiFectamine 293 reagent and heavy and light chain plasmids (15 μg each) were mixed with 1.5 mL of Opti-MEM I (gibco) and allowed to stand at room temperature for 5 minutes. After standing, the two solutions were combined and allowed to stand at room temperature for 20 minutes, and added to 4.5 to 5.5 × 10 6 cells / mL (30 mL) of cells cultured in a 125 mL flask (Corning), and swirled (37 ° C., 8% CO 2 ). After culturing for 18 to 20 hours, 50 μL of Expi Fectamine 293 Transfection Enhancer 1 and 1.5 mL of Expi Fectamine 293 Transfection Enhancer 2 were added, and the cells were swirled for 5 to 6 days.
 Expi 293F細胞を用いた発現系により発現させたリコンビナント抗体は、Protein Gアフィニティークロマトグラフィー(GE Hitrap protein GHP(1 mL))を使用して精製した。 Recombinant antibody expressed by the expression system using Expi293F cells was purified using Protein G affinity chromatography (GE Hitrap protein GHP (1 mL)).
 (3-3)精製リコンビナント7G7.1抗体のSARS-CoV2ウイルススパイクタンパク質への反応性の確認
 精製リコンビナント抗体のSARS-CoV2ウイルススパイクタンパク質への反応性の検討のために、前述の(1-2)と同様の方法を用いてELISAを行った。SARS-CoV2ウイルススパイクタンパク質への反応性の検討は、1μg/mLのSARS-CoV2ウイルスのスパイクタンパク質(SARS-CoV2 Spike ECD protein(GenScript社))を96穴プレートに50μL/wellでコートした96穴ELISA用プレートを使用し、1次抗体として精製リコンビナント抗体を0.001、0.01、0.1、1、10μg/mLで添加し、2次抗体としてGoat Anti-Human IgG-APを用いた。なお、ネガティブコントロールとしては、発明者らが単離したヒト由来抗体(以下、コントロール抗体という)を使用した。
(3-3) Confirmation of reactivity of purified recombinant 7G7.1 antibody to SARS-CoV2 virus spike protein In order to examine the reactivity of purified recombinant antibody to SARS-CoV2 virus spike protein, the above-mentioned (1-2) ) Was used for ELISA. To examine the reactivity to SARS-CoV2 virus spike protein, 96 holes coated with 1 μg / mL SARS-CoV2 virus spike protein (SARS-CoV2 Spike ECD protein (GenScript)) at 50 μL / well on a 96-well plate. Using a plate for ELISA, purified recombinant antibody was added at 0.001, 0.01, 0.1, 1, 10 μg / mL as the primary antibody, and Goat Anti-Human IgG-AP was used as the secondary antibody. As the negative control, a human-derived antibody (hereinafter referred to as a control antibody) isolated by the inventors was used.
 結果を図2に示す。この図において示されるように、精製リコンビナント7G7.1抗体は、SARS-CoV2ウイルススパイクタンパク質に対して用量依存的に結合することが確認された。 The result is shown in figure 2. As shown in this figure, it was confirmed that the purified recombinant 7G7.1 antibody binds to the SARS-CoV2 virus spike protein in a dose-dependent manner.
 (3-4)精製リコンビナント7G7.1抗体のin vitroにおける機能解析
 実施例2のVero細胞を用いたSARS-CoV2ウイルス感染中和実験でSARS-CoV2ウイルスの感染阻害活性が認められた精製7G7.1抗体について、ルシフェラーゼアッセイを行い、細胞へのSARS-CoV2ウイルス感染の中和活性を検討した。
(3-4) In vitro functional analysis of purified recombinant 7G7.1 antibody Purified 7G7. Infection inhibitory activity of SARS-CoV2 virus was confirmed in the SARS-CoV2 virus infection neutralization experiment using Vero cells of Example 2. A luciferase assay was performed on one antibody to examine the neutralizing activity of SARS-CoV2 virus infection in cells.
 感染実験1日前、Vero細胞(1×105個/ml)を1ウェルあたり細胞培養液D10(DMEM(High Glucose)、10%FBS、ペニシリン/ストレプトマイシン添加)にて調製し、96ウェルプレートに各100μL分注して、1×104個の細胞を播種し、37℃、5%CO2雰囲気下で18から20時間培養した。 One day before the infection experiment, Vero cells (1 x 10 5 cells / ml) were prepared with cell culture medium D10 (DMEM (High Glucose), 10% FBS, penicillin / streptomycin added) per well, and each was placed on a 96-well plate. 100 μL was dispensed, 1 × 10 4 cells were seeded and cultured at 37 ° C. in a 5% CO 2 atmosphere for 18 to 20 hours.
 感染実験当日に、精製抗体を10、3、1、0.3、0.1、0.03、0.01、0.003、0μg/mLになるように、細胞培養液D1(DMEM(High Glucose)、1%FBS、ペニシリン/ストレプトマイシン添加)を使って、各濃度の溶液を各250μLずつ調製した。そこに、感染MOI 0.1になるように1×105 TCID50/mLルシフェラーゼ遺伝子を導入したSARS-CoV2ウイルス懸濁液を25μLずつ添加し、全量275μLとした。このウイルス再懸濁液を37℃で1時間インキュベーションした。 On the day of the infection experiment, the cell culture solution D1 (DMEM (High Glucose), 1% FBS, penicillin / streptomycin) was adjusted to 10, 3, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0 μg / mL. Addition) was used to prepare 250 μL of each concentration solution. To this, 25 μL of SARS-CoV2 virus suspension introduced with a 1 × 10 5 TCID 50 / mL luciferase gene was added so as to have an infectious MOI of 0.1, and the total volume was 275 μL. The virus resuspension was incubated at 37 ° C. for 1 hour.
 Vero細胞培養物において、培養液D10を取り除き、ウイルス再懸濁液を100μL添加し、37℃、5%CO2雰囲気下で1時間培養し、細胞にSARS-CoV2ウイルスを感染させた。その後、ウイルス再懸濁液を取り除き、細胞培養液D1(DMEM(High Glucose)、1%FBS、ペニシリン/ストレプトマイシン添加)100μLを添加して、37℃、5%CO2雰囲気下で24時間培養した。 In Vero cell culture, culture medium D10 was removed, 100 μL of virus resuspension was added, and the cells were cultured for 1 hour in a 5% CO 2 atmosphere at 37 ° C., and the cells were infected with SARS-CoV2 virus. Then, the virus resuspension was removed, 100 μL of cell culture medium D1 (DMEM (High Glucose), 1% FBS, penicillin / streptomycin added) was added, and the cells were cultured at 37 ° C. in a 5% CO 2 atmosphere for 24 hours. ..
 24時間後に、細胞培養液D1を取り除き、Passive lysis bufferを50μL添加し、感染細胞を溶解させた。感染細胞溶解液25μLと基質液25μLを混合し、ルシフェラーゼの発光を測定した。発光強度とウイルス感染には正の相関関係が認められる。 After 24 hours, the cell culture solution D1 was removed, and 50 μL of Passive lysis buffer was added to lyse the infected cells. 25 μL of infected cell lysate and 25 μL of substrate solution were mixed, and the luminescence of luciferase was measured. There is a positive correlation between luminescence intensity and viral infection.
 結果を図3に示す。7G7.1抗体は、0.01μg/mlの濃度において、ウイルスによる細胞の感染を50%以下にまで低下させ、それ以上の濃度においても用量依存的にウイルスによる細胞の感染を低下させることができることを明らかにした。 The results are shown in Figure 3. 7G7.1 antibody can reduce virus-induced cell infection to 50% or less at a concentration of 0.01 μg / ml, and dose-dependently reduce virus-induced cell infection at higher concentrations. Revealed.
 実施例4:リコンビナント7G7.1抗体の改変と機能解析
 本実施例においては、実施例3で作製されたリコンビナント7G7.1抗体を改変し、その活性を確認することを目的として実験を行った。
Example 4: Modification and functional analysis of recombinant 7G7.1 antibody In this example, an experiment was conducted for the purpose of modifying the recombinant 7G7.1 antibody produced in Example 3 and confirming its activity.
(4-1)7G7.1抗体の改変(7G7.2)とリコンビナント抗体の発現
 実施例3(3-1)で得られた7G7.1抗体は、重鎖がIgG1、軽鎖がIgλであることが明らかになったが、このうちの軽鎖Igλの定常領域を、Igkのものに置換することにより改変することとした。すなわち、重鎖については上述の(3-1)で得られたプラスミドをそのまま使用し、軽鎖については(3-1)で得られたIgλのプラスミドに含まれるIgλ遺伝子の内、定常領域を規定する部分を、別途調製したIgk定常領域を規定する部分と置換して、改変抗体を作製した。
(4-1) Modification of 7G7.1 antibody (7G7.2) and expression of recombinant antibody The 7G7.1 antibody obtained in Example 3 (3-1) has IgG1 for the heavy chain and Igλ for the light chain. However, it was decided to modify the constant region of the light chain Igλ by replacing it with that of Igk. That is, for the heavy chain, the plasmid obtained in (3-1) above is used as it is, and for the light chain, the constant region of the Igλ gene contained in the Igλ plasmid obtained in (3-1) is used. A modified antibody was prepared by substituting the specified portion with a separately prepared portion of the Igk constant region.
 ヒトIgk発現プラスミドベクター(自家調製品)を鋳型として、以下のプライマーを使用して、ヒトIgk定常領域を含むフラグメントをPCR増幅した(TOYOBO KOD plus neoを使用)(反応条件:94℃・2分→[98℃・10秒、58℃・30秒、68℃・4.5分]×30サイクル→68℃・5分)。 Using the human Igk expression plasmid vector (self-prepared product) as a template, the fragment containing the human Igk constant region was PCR-amplified (using TOYOBO KOD plus neo) (reaction conditions: 94 ° C for 2 minutes). → [98 ℃ ・ 10 seconds, 58 ℃ ・ 30 seconds, 68 ℃ ・ 4.5 minutes] × 30 cycles → 68 ℃ ・ 5 minutes).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 これに対して、実施例3(3-1)で作製された7G7.1抗体Igλ2軽鎖発現プラスミドベクターを鋳型として、以下のプライマーを使用して、7G7.1抗体軽鎖(Igλ2)の可変領域を含むフラグメントをPCR増幅した(TOYOBO KOD plus neoを使用)(反応条件:94℃・2分→[98℃・10秒、58℃・30秒、68℃・30秒]×30サイクル→68℃・3分)。 On the other hand, the 7G7.1 antibody Igλ2 light chain expression plasmid vector prepared in Example 3 (3-1) was used as a template, and the following primers were used to make the 7G7.1 antibody light chain (Igλ2) variable. PCR-amplified fragment containing region (using TOYOBO KOD plus neo) (Reaction conditions: 94 ° C for 2 minutes → [98 ° C for 10 seconds, 58 ° C for 30 seconds, 68 ° C for 30 seconds] × 30 cycles → 68 ℃ ・ 3 minutes).
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 上述した工程で得られた2種類のPCR産物(ヒトIgk定常領域および7G7.1抗体(Igλ2)の可変領域)のそれぞれを、制限酵素Dpn I(NEB)により37℃で30分間処理し、アガロースゲル電気泳動により分離した後、ゲルよりDNAを抽出した。 Each of the two PCR products (human Igk constant region and variable region of 7G7.1 antibody (Igλ2)) obtained in the above step was treated with the restriction enzyme DpnI (NEB) at 37 ° C for 30 minutes and agarose gel. After separation by gel electrophoresis, DNA was extracted from the gel.
 得られた2種類のDNAを混合し、NEBuilder HiFi DNA Assembly Master Mix(NEB)により50℃にて15分間処理し、各フラグメントを結合した。この結合したDNAを、常法に従い、大腸菌にトランスフォームし、単一コロニーを得て、7G7.2軽鎖発現プラスミドベクターを取得した。 The obtained two types of DNA were mixed and treated with NEBuilder HiFi DNA Assembly Master Mix (NEB) at 50 ° C for 15 minutes, and each fragment was bound. This bound DNA was transformed into Escherichia coli according to a conventional method to obtain a single colony, and a 7G7.2 light chain expression plasmid vector was obtained.
 実施例3(3-1)の方法で得られた重鎖の発現プラスミドベクター、および上記の方法で得られた軽鎖の発現プラスミドベクター(Igλ2定常領域をIgk定常領域により置換したもの)を、実施例(3-2)と同様にして、リコンビナント抗体を発現、精製した。具体的には、これらの発現プラスミドベクターを、Expi293 Expression System(Thermo Fisher Scientific)を用いてExpi 293F細胞(Thermo Fisher Scientific)に一過性にコトランスフェクションし、リコンビナント抗体の発現、分泌を行った。得られた改変体抗体を、以下においては7G7.2抗体と呼ぶ。 The heavy chain expression plasmid vector obtained by the method of Example 3 (3-1) and the light chain expression plasmid vector obtained by the above method (Igλ2 constant region replaced with Igk constant region) were used. The recombinant antibody was expressed and purified in the same manner as in Example (3-2). Specifically, these expression plasmid vectors were transiently co-transfected into Expi293F cells (Thermo Fisher Scientific) using the Expi293 Expression System (Thermo Fisher Scientific) to express and secrete recombinant antibodies. .. The obtained modified antibody is hereinafter referred to as 7G7.2 antibody.
(4-2)7G7.1抗体および7G7.2抗体の抗原への結合強度の解析
 上記(4-1)において得られた7G7.2抗体の抗原への結合強度を、7G7.1抗体の抗原への結合強度と比較することにより、SARS-CoV2ウイルススパイクタンパク質への反応性を確認した。結合強度の比較は、実施例3(3-3)において記載したELISA法と同様にELISA法により測定した。なお、ネガティブコントロールとしては、コントロール抗体を使用した。
(4-2) Analysis of the binding strength of the 7G7.1 antibody and the 7G7.2 antibody to the antigen The binding strength of the 7G7.2 antibody obtained in (4-1) above to the antigen is determined by the antigen of the 7G7.1 antibody. Responsiveness to SARS-CoV2 virus spike protein was confirmed by comparison with the binding strength to SARS-CoV2 virus spike protein. The comparison of the bond strength was measured by the ELISA method in the same manner as the ELISA method described in Example 3 (3-3). As a negative control, a control antibody was used.
 結果を図4に示す。この図において示されるように、7G7.2抗体の場合にも、7G7.1抗体の場合と同様、用量依存的な抗原への結合が見られることが確認された。 The results are shown in Fig. 4. As shown in this figure, it was confirmed that the 7G7.2 antibody also showed dose-dependent binding to the antigen as in the case of the 7G7.1 antibody.
(4-3)7G7.1抗体および7G7.2抗体の表面プラズモン共鳴(Surface plasmon resonance: SPR)による親和性解析
 本実施例において得られた7G7.1抗体および7G7.2抗体の抗原への結合親和性を表面プラズモン共鳴(Surface plasmon resonance、以下SPR)解析により確認した。ネガティブコントロールとしては、コントロール抗体を使用した。
(4-3) Affinity analysis of 7G7.1 antibody and 7G7.2 antibody by surface plasmon resonance (SPR) Binding of 7G7.1 antibody and 7G7.2 antibody obtained in this example to antigen Affinity was confirmed by surface plasmon resonance (SPR) analysis. As a negative control, a control antibody was used.
 SPR解析にはBiacore T200(Cytiva)を使用し、機器の操作および実験試薬の準備はBiacore T200 version2 日本語取扱説明書に従った。 Biacore T200 (Cytiva) was used for SPR analysis, and the operation of the equipment and the preparation of experimental reagents followed the Biacore T200 version 2 Japanese instruction manual.
 ランニングバッファーとして、PBS-T(1×Phsophate Buffered Saline、0.05%Tween 20)を作成し、使用前に0.22μmのフィルターでろ過し、以下のすべての工程においてランニングバッファーは常温で使用した。 PBS-T (1 x Phsophate Buffered Saline, 0.05% Tween 20) was prepared as a running buffer, filtered through a 0.22 μm filter before use, and the running buffer was used at room temperature in all the following steps.
 一次抗体としてAnti-Human IgG (Fc) antibody(0.5 mg/mL)を使用し、Human Antibody Capture Kit(Cytiva)を使用して、Series S Sensor Chip CM5(Cytiva)(以下、CM5センサーチップ)の金属薄膜基板上に、アミンカップリング法(Amine Coupling Kit、Cytiva)により一次抗体を固定化させた。すなわち、Anti-Human IgG (Fc) antibody(一次抗体、0.5 mg/mL)を、Human Antibody Capture Kitの付属品であるImmobilization bufferを用いて25μg/mLに希釈し、基板上の一次抗体固定化量が1フローセルあたり約10,000 RU(Response unit)となるように、希釈したAnti-Human IgG (Fc) antibodyを流速10μL/minで360秒間基板上へ送液し、基板上に一次抗体を固定化した。 Using Anti-Human IgG (Fc) antibody (0.5 mg / mL) as the primary antibody and Human Antibody Capture Kit (Cytiva), the metal of Series Sensor Chip CM5 (Cytiva) (hereinafter referred to as CM5 sensor chip). The primary antibody was immobilized on a thin film substrate by an amine coupling method (AmineCouplingKit, Cytiva). That is, Anti-Human IgG (Fc) antibody (primary antibody, 0.5 mg / mL) was diluted to 25 μg / mL using the Immobilization buffer that is an accessory of Human Antibody Capture Kit, and the amount of primary antibody immobilized on the substrate. Diluted Anti-Human IgG (Fc) antibody was sent onto the substrate at a flow rate of 10 μL / min for 360 seconds so that the amount of antibody per flow cell was approximately 10,000 RU (Response unit), and the primary antibody was immobilized on the substrate. ..
 3種の被検抗体(7G7.1抗体、7G7.2抗体およびコントロール抗体)を以下の濃度:
7G7.1抗体:1.0μg/mL
7G7.2抗体:0.8μg/mL
コントロール抗体:0.8μg/mL
となるようにランニングバッファーに溶解し、流速30μL/min、解析温度25℃、リガンド固定化時間:60秒にて基板上の一次抗体に対してそれぞれの被検抗体を固定化した。この固定化条件は、基板上への抗体固定化量が約150 RUとなるように抗体濃度および送液時間を調整したものである。
Three types of test antibodies (7G7.1 antibody, 7G7.2 antibody and control antibody) at the following concentrations:
7G7.1 antibody: 1.0 μg / mL
7G7.2 antibody: 0.8 μg / mL
Control antibody: 0.8 μg / mL
Each test antibody was immobilized on the primary antibody on the substrate at a flow rate of 30 μL / min, an analysis temperature of 25 ° C., and a ligand immobilization time of 60 seconds. The immobilization conditions are such that the antibody concentration and the liquid feeding time are adjusted so that the amount of antibody immobilized on the substrate is about 150 RU.
 次に、3種の抗体(7G7.1抗体、7G7.2抗体およびコントロール抗体)を固定化した基板上に、ランニングバッファーに溶解した抗原タンパク質(SARS-CoV2 Spike protein(ECD, His & Flag Tag))(GenScript、Z03481)(135 kDa)を0.625 nM、1.25 nM、2.5 nM、5 nM、10 nM、20 nM、40 nM、80 nMの濃度で調整し、順番にアナライト添加時間:240秒、アナライト解離時間:900秒でSPR測定を実施した。それぞれの濃度の抗原タンパク質についてのSPR測定を終了するごとに、Regeneration solution(3 M MgCl2)を送液して、CM5センサーチップ基板上に固定化されたそれぞれの被検抗体を除去した。 Next, an antigen protein (SARS-CoV2 Spike protein (ECD, His & Flag Tag)) dissolved in a running buffer on a substrate on which three types of antibodies (7G7.1 antibody, 7G7.2 antibody and control antibody) were immobilized. ) (GenScript, Z03481) (135 kDa) adjusted to 0.625 nM, 1.25 nM, 2.5 nM, 5 nM, 10 nM, 20 nM, 40 nM, 80 nM in order, and the antibody addition time: 240 seconds, SPR measurement was performed with an analysis dissociation time of 900 seconds. After each SPR measurement for each concentration of antigen protein was completed, a Regeneration solution (3 M MgCl 2 ) was sent to remove each test antibody immobilized on the CM5 sensor chip substrate.
 結果を以下の表5および図5に示す。KDは、抗体親和性を評価するためのパラメータであり、結合速度定数kaと解離速度定数kdから算出される(KD=kd/ka)。Rmaxは、抗体に対する抗原の理論的な最大結合量である。 The results are shown in Table 5 and Fig. 5 below. KD is a parameter for evaluating antibody affinity and is calculated from the binding rate constant ka and the dissociation rate constant kd (KD = kd / ka). Rmax is the theoretical maximum amount of antigen bound to an antibody.
 抗原タンパク質(SARS-CoV2 Spike protein)は、7G7.1抗体および7G7.2抗体に対してほぼ同じ親和性(それぞれ2.04 nM、1.55 nMのKD値)(表5)で結合した(図5)。なお、この表で示される各パラメータは図1~図3の結果をもとに、Biacore T200 Evaluation Software ver.2.0の1:1結合モデルを用いて算出したものである。一般的に、医薬品として用いられる抗体のKD値は10-9~10-10 M程度であることから、これらの抗体は抗ヒトSARS-CoV2抗体として十分な親和性を有することが示された。 The antigen protein (SARS-CoV2 Spike protein) bound to 7G7.1 antibody and 7G7.2 antibody with almost the same affinity (KD values of 2.04 nM and 1.55 nM, respectively) (Table 5) (Fig. 5). Each parameter shown in this table was calculated using the 1: 1 binding model of Biacore T200 Evaluation Software ver.2.0 based on the results shown in FIGS. 1 to 3. In general, the KD value of antibodies used as pharmaceuticals is about 10 -9 to 10 -10 M, indicating that these antibodies have sufficient affinity as anti-human SARS-CoV2 antibodies.
 他方で、Rmax(CM5センサーチップ基板上に固定化した被検抗体に抗原タンパク質が最大量結合したときの反応を示すパラメータ)は、7G7.1抗体および7G7.2抗体ではほぼ同程度の値(それぞれ164.1 RU、151.3 RU)であったのに対し、比較対照としたコントロール抗体では約1/10程度(15.24 RU)であったことから(表5)、7G7.1抗体および7G7.2抗体は陰性コントロールと比較して、抗原タンパク質に対し高い親和性を有することが示された。 On the other hand, Rmax (a parameter indicating the reaction when the maximum amount of antigen protein is bound to the test antibody immobilized on the CM5 sensor chip substrate) is almost the same value for the 7G7.1 antibody and the 7G7.2 antibody (the parameter showing the reaction when the antigen protein is bound to the maximum amount). It was 164.1 RU and 151.3 RU, respectively), whereas it was about 1/10 (15.24 RU) of the control antibody used as a comparative control (Table 5), so the 7G7.1 antibody and 7G7.2 antibody were It was shown to have a high affinity for the antigenic protein compared to the negative control.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(4-4)精製リコンビナント7G7.2抗体のin vitroにおける機能解析
 上記(4-1)で作製された精製7G7.2抗体について、ルシフェラーゼアッセイを行い、細胞へのSARS-CoV2ウイルス感染の中和活性を検討した。中和活性の測定は、精製7G7.2抗体を精製7G7.1抗体の代わりに使用した以外は実施例3(3-4)と同様の方法によりルシフェラーゼアッセイを行うことにより検討した。
(4-4) In vitro functional analysis of purified recombinant 7G7.2 antibody The purified 7G7.2 antibody prepared in (4-1) above was subjected to a luciferase assay to neutralize SARS-CoV2 virus infection in cells. The activity was examined. The measurement of the neutralizing activity was examined by performing a luciferase assay by the same method as in Example 3 (3-4) except that the purified 7G7.2 antibody was used instead of the purified 7G7.1 antibody.
 結果を図6に示す。7G7.2抗体は、7G7.1抗体よりは活性が低いものの、7G7.1抗体と同様に、0.03μg/mlの濃度において、ウイルスによる細胞の感染を50%以下にまで低下させ、それ以上の濃度においても用量依存的にウイルスによる細胞の感染を低下させることができることを明らかにした。 The results are shown in Fig. 6. Although the 7G7.2 antibody is less active than the 7G7.1 antibody, it reduces viral infection of cells to less than 50% at a concentration of 0.03 μg / ml, much more than the 7G7.1 antibody. It was clarified that the infection of cells by the virus can be reduced in a dose-dependent manner even at the concentration.
 (4-5)改変抗体7G7.2抗体のin vivoにおける機能解析
 上記の7G7.2抗体について、ルシフェラーゼアッセイを行い、細胞へのSARS-CoV2ウイルス感染の中和活性を検討した。
(4-5) In vivo functional analysis of modified antibody 7G7.2 antibody The above 7G7.2 antibody was subjected to a luciferase assay to examine the neutralizing activity of SARS-CoV2 virus infection to cells.
 SARS-CoV2ウイルスのスパイクタンパク質は標的細胞表面にある受容体への結合およびそれに引き続く細胞侵入に中心的な役割を果たしていると考えられている。そのため、細胞表面の受容体へのスパイクタンパク質の結合阻害がSARS-CoV2ウイルスの感染の中和活性に重要であると考えられることから、実施例1で得られたクローンのうち、実施例1で得られたSARS-CoV2ウイルス反応性クローンが、SARS-CoV2ウイルスへの感染を中和する活性を有するか否かについて検討した。 The SARS-CoV2 virus spike protein is thought to play a central role in binding to receptors on the surface of target cells and subsequent cell invasion. Therefore, it is considered that inhibition of binding of the peplomer protein to the receptor on the cell surface is important for the neutralizing activity of SARS-CoV2 virus infection. Therefore, among the clones obtained in Example 1, in Example 1. It was investigated whether the obtained SARS-CoV2 virus-reactive clone had the activity of neutralizing infection with SARS-CoV2 virus.
 実験動物として、3週齢オスのシリアンハムスターSlc:Syrian(SLC)を用いた。感染実験直前に、動物用イソフルラン(MSD Animal Health)を用いて吸入麻酔を行った。その後、4 mg/kgの組換えヒト抗SARS-CoV2抗体7G7.2抗体、もしくはネガティブコントロール抗体を静注投与した。 As an experimental animal, a 3-week-old male Syrian hamster Slc: Syrian (SLC) was used. Immediately before the infection experiment, inhalation anesthesia was performed using isoflurane for animals (MSD Animal Health). Then, 4 mg / kg of recombinant human anti-SARS-CoV2 antibody 7G7.2 antibody or negative control antibody was administered intravenously.
 続いて、103 TICD50/20μLのSARS-CoV2懸濁液を経鼻投与した。経鼻感染後4日目に、解剖し、肺を採取した。肺の一部をウイルスコピー数測定用とTCID50測定用に分取した。 Subsequently, 10 3 TICD 50/20 μL SARS-CoV2 suspension was nasally administered. On the 4th day after nasal infection, the lungs were dissected and the lungs were collected. A part of the lung was separated for virus copy count measurement and TCID50 measurement.
 ウイルスコピー数については、分取した肺組織にTRIzol Reagent(Thermo Fisher Scientific)を1 mL加え、ビーズ式破砕機を用いて物理的に破砕し、RNAを抽出した。1サンプルあたりRNAの量を10 ngとして、病原体検出マニュアル2019-nCoV(国立感染症研究所)に従い、TaqManプローブを用いたリアルタイムone-step RT-PCR法により測定した。 Regarding the number of virus copies, 1 mL of TRIzol Reagent (Thermo Fisher Scientific) was added to the separated lung tissue and physically crushed using a bead-type crusher to extract RNA. The amount of RNA per sample was 10 ng, and the measurement was performed by the real-time one-step RT-PCR method using the TaqMan probe according to the Pathogen Detection Manual 2019-nCoV (National Institute of Infectious Diseases).
 一方、TCID50については、分取した肺組織を計量し、0.5 mL PBSを加え、ビーズ式破砕機を用いて物理的に破砕し、遠心分離後上清を回収した。上清を500倍希釈し、さらに10倍ずつ7段階希釈を行なった。前日に、1ウェルあたり細胞培養液D10(DMEM(High Glucose)、10%FBS、ペニシリン/ストレプトマイシン添加)100μL中に1×104個、96ウェルプレートに播種し、37℃、5%CO2雰囲気下で18から20時間培養したVero細胞を準備した。1サンプルに対して4ウェルずつ細胞を用意し、段階希釈した肺組織破砕液を50 μLずつVero細胞培養液中に添加し、37℃、5%CO2雰囲気下で4日間培養した。それぞれのウェルにおける細胞変性効果を観察し、TCID50/gを算出した。計算にはBehrens-Karber法を用いた。 On the other hand, for TCID50, the separated lung tissue was weighed, 0.5 mL PBS was added, and the tissue was physically crushed using a bead crusher, and the supernatant was collected after centrifugation. The supernatant was diluted 500-fold and further diluted 10-fold in 7 steps. The day before, 1 × 10 4 cells were seeded in 100 μL of cell culture medium D10 (DMEM (High Glucose), 10% FBS, penicillin / streptomycin added) per well on a 96-well plate, and 37 ° C, 5% CO 2 atmosphere. Vero cells cultured under 18 to 20 hours were prepared. Cells were prepared in 4 wells for each sample, and 50 μL of serially diluted lung tissue disruption solution was added to Vero cell culture medium and cultured at 37 ° C. in a 5% CO 2 atmosphere for 4 days. The cytopathic effect in each well was observed and TCID50 / g was calculated. The Behrens-Karber method was used for the calculation.
 結果を図7に示す。ウイルスコピー数とTCID50測定結果から、ネガティブコントロール抗体投与群と比較して、7G7.2抗体投与群は有意にSARS-CoV2感染を抑制した。この結果から、7G7.2抗体は、生体内(in vivo)においても、SARS-CoV2に対して中和活性を有することが示された。 The results are shown in Fig. 7. From the virus copy count and TCID50 measurement results, the 7G7.2 antibody-administered group significantly suppressed SARS-CoV2 infection compared to the negative control antibody-administered group. From this result, it was shown that the 7G7.2 antibody has a neutralizing activity against SARS-CoV2 even in vivo.
 実施例5:改変7G7.2抗体の結合領域の決定
 本実施例において、上記実施例4で作製された精製7G7.2抗体について、結合領域を決定するための実験を行った。
Example 5: Determination of binding region of modified 7G7.2 antibody In this example, an experiment was conducted to determine the binding region of the purified 7G7.2 antibody prepared in Example 4 above.
 SARS-CoV2 Spikeタンパク質のExtra Cellular Domain(ECD)(13~1208アミノ酸)、S1(13~685アミノ酸)、S2(686~1208アミノ酸)、N-terminal Domain(NTD)(13~318アミノ酸)、Receptor Binding Domain(RBD)(319~541アミノ酸)、NTD+RBD(13~541アミノ酸)、S1ΔRBD(13~318アミノ酸と542~685アミノ酸の融合タンパク質)、S1(542-685)(542~685アミノ酸)について、C末端にFlag-6×Hisタグタンパク質を融合したDNA配列をPCR法により増幅し、pFastBac Bipベクターに導入し、クローニングを行なった。これらクローニングベクターを昆虫細胞Sf9細胞に遺伝子導入し、培養上清を回収して抗原を採取した。ネガティブコントロールの抗原として、ウシ血清アルブミン(BSA)を使用した。 SARS-CoV2 Spike protein Extra Cellular Domain (ECD) (13 to 1208 amino acids), S1 (13 to 685 amino acids), S2 (686 to 1208 amino acids), N-terminal Domain (NTD) (13 to 318 amino acids), Receptor About BindingDomain (RBD) (319-541 amino acids), NTD + RBD (13-541 amino acids), S1ΔRBD (fusion protein of 13-318 amino acids and 542-685 amino acids), S1 (542-685) (542-685 amino acids) The DNA sequence in which the Flag-6 × His tag protein was fused to the C-terminal was amplified by the PCR method, introduced into the pFastBacBip vector, and cloned. These cloning vectors were introduced into insect cells Sf9 cells, and the culture supernatant was collected to collect the antigen. Bovine serum albumin (BSA) was used as the antigen for negative control.
 これらの培養上清を10倍希釈し、ELISA用96ウェルプレートの各ウェルに50μLずつ添加し、固相化した。次に、ブロッキング後、1μg/mL組換えヒト抗SARS-CoV2抗体7G7.2抗体もしくはネガティブコントロール抗体8A7抗体を50μLずつ添加した。2次抗体としてGoat Anti-Human IgG-Apを用いて、基質を反応させ、405 nmの吸光度を測定した。 These culture supernatants were diluted 10-fold, 50 μL was added to each well of a 96-well plate for ELISA, and the cells were solid-phased. Next, after blocking, 50 μL of 1 μg / mL recombinant human anti-SARS-CoV2 antibody 7G7.2 antibody or negative control antibody 8A7 antibody was added. Goat Anti-Human IgG-Ap was used as a secondary antibody, the substrate was reacted, and the absorbance at 405 nm was measured.
 結果を図8に示す。7G7.2抗体は、Extra Cellular Domain(ECD)(13~1208アミノ酸)、S1(13~685アミノ酸)、S1ΔRBD(13~318アミノ酸と542~685アミノ酸の融合タンパク質)、NTD+RBD(13~541アミノ酸)に対して結合することが示され、これらの結果から、7G7.2抗体はスパイクタンパク質のS1ドメイン、特にNTDドメインに結合する可能性が高いことが示された。 The results are shown in Fig. 8. 7G7.2 antibody is Extra Cellular Domain (ECD) (13 to 1208 amino acids), S1 (13 to 685 amino acids), S1ΔRBD (fusion protein of 13 to 318 amino acids and 542 to 685 amino acids), NTD + RBD (13 to 541 amino acids). These results indicate that the 7G7.2 antibody is likely to bind to the S1 domain of the spike protein, especially the NTD domain.
 実施例6:組換え抗体の配列解析
 本実施例は、実施例3で得られたリコンビナント7G7.1抗体および実施例4で得られたリコンビナント7G7.2抗体改変体の2種類の抗体の配列解析を行うことを目的とした。
Example 6: Sequence analysis of recombinant antibody In this example, sequence analysis of two types of antibodies, recombinant 7G7.1 antibody obtained in Example 3 and recombinant 7G7.2 antibody variant obtained in Example 4 The purpose was to do.
 リコンビナント7G7.1抗体および7G7.2改変体抗体のそれぞれの抗体を発現するためのベクターのDNA配列を解析し、それに基づいてアミノ酸配列を特定した。なお、7G7.1抗体と7G7.2抗体は、いずれも同一の重鎖可変領域および軽鎖可変領域を有している。それぞれの抗体のアミノ酸配列は以下の通りであった:
・7G7.1クローン:
 重鎖IgG1鎖(SEQ ID NO: 9)(VH領域(SEQ ID NO: 7)に下線を引いた);
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCIASGFTFRNYAMYWVRQAPGKGLEWVAVIWYDGSNKFYTDSVKGRFTISRDNSKNSLYLQMNSLRAEDTAVYFCARDQGFGDNYYYYGMDVWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHEALHNHYTQKSLSLSPGK
 軽鎖Igλ2鎖(SEQ ID NO: 10)(VL領域(SEQ ID NO: 8)に下線を引いた):
MAWIPLLLPLLTLCTGSEASYELTQPPSVSVSPGQTARISCSGDALPKEYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCQLADSSMHYVVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
・7G7.2クローン(7G7.1クローンの軽鎖Igλ鎖の定常領域をIgk鎖定常領域で置き換えたもの):
 重鎖IgG1鎖(SEQ ID NO: 9);
 軽鎖(7G7.1クローンの軽鎖Igλ鎖の定常領域をIgk鎖定常領域で置き換えたもの)(SEQ ID NO: 11)(VL領域(SEQ ID NO: 8)に下線を引いた):
MAWIPLLLPLLTLCTGSEASYELTQPPSVSVSPGQTARISCSGDALPKEYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCQLADSSMHYVVFGGGTKLTVLRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC。
The DNA sequences of the vectors for expressing the respective antibodies of the recombinant 7G7.1 antibody and the 7G7.2 variant antibody were analyzed, and the amino acid sequences were identified based on the DNA sequences. Both the 7G7.1 antibody and the 7G7.2 antibody have the same heavy chain variable region and light chain variable region. The amino acid sequence of each antibody was as follows:
・ 7G7.1 clone:
Heavy IgG1 chain (SEQ ID NO: 9) (underlined in VH region (SEQ ID NO: 7));
MEFGLSWVFLVALLRGVQC QVQLVESGGGVVQPGRSLRLSCIASGFTFRNYAMYWVRQAPGKGLEWVAVIWYDGSNKFYTDSVKGRFTISRDNSKNSLYLQMNSLRAEDTAVYFCARDQGFGDNYYYYGMDVWGQGTTVTVSS ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHEALHNHYTQKSLSLSPGK
Light chain Igλ 2 chain (SEQ ID NO: 10) (underlined in VL region (SEQ ID NO: 8)):
MAWIPLLLPLLTLCTGSEA SYELTQPVSVSPGQTARISCSGDALPKEYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCQLADSSMHYVVFGGGTKLTVL GQPKAAPSVTLFPPSSEELQAKS
7G7.2 clone (replacement of the constant region of the light chain Igλ chain of the 7G7.1 clone with the constant region of the Igk chain):
Heavy chain IgG1 chain (SEQ ID NO: 9);
Light chain (7G7.1 clone light chain Igλ chain constant region replaced with Igk chain constant region) (SEQ ID NO: 11) (VL region (SEQ ID NO: 8) underlined):
MAWIPLLLPLLTLCTGSEA SYELTQPPSVSPGQTARISCSGDALPKEYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCQLADSSMHYVVFGGGTKLTVL RTVAAPSVFIFPPSDEQLKSGTASVVC
 これらの配列を解析した結果、それぞれのクローンの重鎖および軽鎖の可変領域のうちの相補性決定領域(CDR1~CDR3)はそれぞれ以下の通りであることが確認された:
・7G7.1クローンおよび7G7.2クローン:
 VH鎖(SEQ ID NO: 7)(CDR1(SEQ ID NO: 1)、CDR2(SEQ ID NO: 2)、CDR3(SEQ ID NO: 3)に下線を引いた):
QVQLVESGGGVVQPGRSLRLSCIASGFTFRNYAMYWVRQAPGKGLEWVAVIWYDGSNKFYTDSVKGRFTISRDNSKNSLYLQMNSLRAEDTAVYFCARDQGFGDNYYYYGMDVWGQGTTVTVSS
 VL鎖(SEQ ID NO: 8)(CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、CDR3(SEQ ID NO: 6)に下線を引いた):
SYELTQPPSVSVSPGQTARISCSGDALPKEYAYWYQQKPGQAPVLVIYKDSERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYCQLADSSMHYVVFGGGTKLTVL。
As a result of analyzing these sequences, it was confirmed that the complementarity determining regions (CDR1 to CDR3) among the variable regions of the heavy chain and the light chain of each clone are as follows:
・ 7G7.1 clone and 7G7.2 clone:
VH chain (SEQ ID NO: 7) (CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), CDR3 (SEQ ID NO: 3) are underlined):
QVQLVESGGGVVQPGRSLRLSCIAS GFTFRNYA MYWVRQAPGKGLEWVAV IWYDGSNK FYTDSVKGRFTISRDNSKNSLYLQMNSLRAEDTAVYFC ARDQGFGDNYYYYGMDV WGQGTTVTVSS
VL chain (SEQ ID NO: 8) (CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), CDR3 (SEQ ID NO: 6) are underlined):
SYELTQPPSVSVSPGQTARISCSGD ALPKEY AYWYQQKPGQAPVLVIY KDS ERPSGIPERFSGSSSGTTVTLTISGVQAEDEADYYC QLADSSMHYVV FGGGTKLTVL.
 SARS-CoV2ウイルスに対するこれまでの血清療法または血漿療法の場合には、ヒトの血液から作製される抗SARS-CoV2ウイルス抗体を含む血清または血漿を投与するが、血液製剤特有の種々の問題が存在している。本発明の組換え抗体または組換え抗体誘導体を使用することにより、血液製剤に起因する問題点をすべて解消することができる。また、これらの抗体は、研究用試薬、診断薬等としても使用することができる。 In the case of conventional serum or plasma therapy for SARS-CoV2 virus, serum or plasma containing anti-SARS-CoV2 virus antibody produced from human blood is administered, but there are various problems peculiar to blood products. is doing. By using the recombinant antibody or recombinant antibody derivative of the present invention, all the problems caused by blood products can be solved. In addition, these antibodies can also be used as research reagents, diagnostic agents and the like.
7G7.1抗体および7G7.2抗体の重鎖の相補性決定領域:CDR1(GFTFRNYA、SEQ ID NO: 1)、CDR2(IWYDGSNK、SEQ ID NO: 2)、およびCDR3(ARDQGFGDNYYYYGMDV、SEQ ID NO: 3)
7G7.1抗体および7G7.2抗体の軽鎖の相補性決定領域:CDR1(ALPKEY、SEQ ID NO: 4)、CDR2(KDS、SEQ ID NO: 5)、およびCDR3(QLADSSMHYVV、SEQ ID NO: 6)
7G7.1抗体および7G7.2抗体の重鎖可変領域VHドメインのアミノ酸配列:SEQ ID NO: 7
7G7.1抗体および7G7.2抗体の軽鎖可変領域VLドメインのアミノ酸配列:SEQ ID NO: 8
7G7.1抗体および7G7.2抗体の重鎖全長のアミノ酸配列:SEQ ID NO: 9
7G7.1抗体の軽鎖全長のアミノ酸配列:SEQ ID NO: 10
7G7.2抗体の軽鎖全長のアミノ酸配列:SEQ ID NO: 11
実施例3(3-1)で使用したプライマー配列:SEQ ID NO: 12~SEQ ID NO: 18
実施例4(4-1)で使用したプライマー配列:SEQ ID NO: 19~SEQ ID NO: 22
7G7.1 and 7G7.2 antibody heavy chain complementarity determining regions: CDR1 (GFTFRNYA, SEQ ID NO: 1), CDR2 (IWYDGSNK, SEQ ID NO: 2), and CDR3 (ARDQGFGDNYYYYGMDV, SEQ ID NO: 3) )
Complementarity determining regions of the light chains of 7G7.1 and 7G7.2 antibodies: CDR1 (ALPKEY, SEQ ID NO: 4), CDR2 (KDS, SEQ ID NO: 5), and CDR3 (QLADSSMHYVV, SEQ ID NO: 6). )
Amino acid sequence of heavy chain variable region VH domain of 7G7.1 antibody and 7G7.2 antibody: SEQ ID NO: 7
Amino acid sequence of light chain variable region VL domain of 7G7.1 antibody and 7G7.2 antibody: SEQ ID NO: 8
7G7.1 antibody and 7G7.2 antibody heavy chain full-length amino acid sequence: SEQ ID NO: 9
7G7.1 antibody light chain full length amino acid sequence: SEQ ID NO: 10
7G7.2 antibody light chain full length amino acid sequence: SEQ ID NO: 11
Primer sequence used in Example 3 (3-1): SEQ ID NO: 12 to SEQ ID NO: 18
Primer sequence used in Example 4 (4-1): SEQ ID NO: 19 to SEQ ID NO: 22

Claims (12)

  1.  SARS-CoV2ウイルスを構成するスパイクタンパク質に対して結合性を有し、SARS-CoV2ウイルスの感染を中和する作用を有する、血液由来成分を含まない、抗体または抗体誘導体。 An antibody or antibody derivative that does not contain blood-derived components and has a binding property to the spike protein constituting the SARS-CoV2 virus and has an effect of neutralizing the infection of the SARS-CoV2 virus.
  2.  抗体がヒト抗体である、請求項1に記載の抗体または抗体誘導体。 The antibody or antibody derivative according to claim 1, wherein the antibody is a human antibody.
  3.  遺伝子組換えにより製造される、請求項1または2に記載の抗体または抗体誘導体。 The antibody or antibody derivative according to claim 1 or 2, which is produced by genetic recombination.
  4.  抗体誘導体が、ヒト化抗体、キメラ抗体、多価抗体、および多重特異性抗体から選択されるヒト型抗体改変体またはその機能的断片から選択される、請求項1~3のいずれか1項に記載の抗体または抗体誘導体。 13. The antibody or antibody derivative described.
  5.  機能的断片が、F(ab')2である、請求項4に記載の抗体または抗体誘導体。 The antibody or antibody derivative according to claim 4, wherein the functional fragment is F (ab') 2.
  6.  重鎖の相補性決定領域、CDR1(GFTFRNYA、SEQ ID NO: 1)、CDR2(IWYDGSNK、SEQ ID NO: 2)、CDR3(ARDQGFGDNYYYYGMDV、SEQ ID NO: 3)を含み、
     軽鎖の相補性決定領域、CDR1(ALPKEY、SEQ ID NO: 4)、CDR2(KDS、SEQ ID NO: 5)、CDR3(QLADSSMHYVV、SEQ ID NO: 6)を含む、
    請求項1~5のいずれか1項に記載の抗体または抗体誘導体。
    Heavy chain complementarity determining regions, including CDR1 (GFTFRNYA, SEQ ID NO: 1), CDR2 (IWYDGSNK, SEQ ID NO: 2), CDR3 (ARDQGFGDNYYYYGMDV, SEQ ID NO: 3)
    Contains light chain complementarity determining regions, CDR1 (ALPKEY, SEQ ID NO: 4), CDR2 (KDS, SEQ ID NO: 5), CDR3 (QLADSSMHYVV, SEQ ID NO: 6),
    The antibody or antibody derivative according to any one of claims 1 to 5.
  7.  重鎖可変領域VHドメインが、SEQ ID NO: 7のアミノ酸配列、またはSEQ ID NO: 7のアミノ酸配列のうち、CDR1(SEQ ID NO: 1)、CDR2(SEQ ID NO: 2)、およびCDR3(SEQ ID NO: 3)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列を含む、
    請求項1~6のいずれか1項に記載の抗体または抗体誘導体。
    The heavy chain variable region VH domain is the amino acid sequence of SEQ ID NO: 7 or the amino acid sequence of SEQ ID NO: 7, CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), and CDR3 (. SEQ ID NO: Contains an amino acid sequence containing substitutions, insertions, or deletions of one or several amino acids in parts other than 3).
    The antibody or antibody derivative according to any one of claims 1 to 6.
  8.  軽鎖可変領域VLドメインが、SEQ ID NO: 8のアミノ酸配列、またはSEQ ID NO: 8のアミノ酸配列のうち、CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、およびCDR3(SEQ ID NO: 6)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列を含む、
    請求項1~7のいずれか1項に記載の抗体または抗体誘導体。
    The light chain variable region VL domain is the amino acid sequence of SEQ ID NO: 8 or the amino acid sequence of SEQ ID NO: 8, CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), and CDR3 (. SEQ ID NO: Contains an amino acid sequence containing substitutions, insertions, or deletions of one or several amino acids in parts other than 6).
    The antibody or antibody derivative according to any one of claims 1 to 7.
  9.  重鎖が、SEQ ID NO: 9のアミノ酸配列、またはSEQ ID NO: 9のアミノ酸配列のうち、CDR1(SEQ ID NO: 1)、CDR2(SEQ ID NO: 2)、およびCDR3(SEQ ID NO: 3)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列を含む、
    請求項1~8のいずれか1項に記載の抗体または抗体誘導体。
    Of the amino acid sequence of SEQ ID NO: 9 or the amino acid sequence of SEQ ID NO: 9, the heavy chain is CDR1 (SEQ ID NO: 1), CDR2 (SEQ ID NO: 2), and CDR3 (SEQ ID NO: 1). Contains an amino acid sequence containing substitutions, insertions, or deletions of one or several amino acids in parts other than 3).
    The antibody or antibody derivative according to any one of claims 1 to 8.
  10.  軽鎖が、
     SEQ ID NO: 10のアミノ酸配列、またはSEQ ID NO: 10のアミノ酸配列のうち、CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、およびCDR3(SEQ ID NO: 6)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列、または
     SEQ ID NO: 11のアミノ酸配列、またはSEQ ID NO: 11のアミノ酸配列のうち、CDR1(SEQ ID NO: 4)、CDR2(SEQ ID NO: 5)、およびCDR3(SEQ ID NO: 6)以外の部分において1または数個のアミノ酸の置換、挿入、または欠失を含むアミノ酸配列、
    を含む、請求項1~9のいずれか1項に記載の抗体または抗体誘導体。
    The light chain
    Amino acid sequence of SEQ ID NO: 10 or amino acid sequence of SEQ ID NO: 10 other than CDR1 (SEQ ID NO: 4), CDR2 (SEQ ID NO: 5), and CDR3 (SEQ ID NO: 6) Of the amino acid sequence containing substitutions, insertions, or deletions of one or several amino acids in a portion, or the amino acid sequence of SEQ ID NO: 11, or the amino acid sequence of SEQ ID NO: 11, CDR1 (SEQ ID NO: 4) ), CDR2 (SEQ ID NO: 5), and amino acid sequences containing substitutions, insertions, or deletions of one or several amino acids in parts other than CDR3 (SEQ ID NO: 6).
    The antibody or antibody derivative according to any one of claims 1 to 9, which comprises.
  11.  請求項1~10のいずれか1項に記載の抗体または抗体誘導体を含む、SARS-CoV2ウイルスの感染を中和するための医薬組成物。 A pharmaceutical composition for neutralizing SARS-CoV2 virus infection, which comprises the antibody or antibody derivative according to any one of claims 1 to 10.
  12.  他の抗体または抗体誘導体と組み合わせて含む、請求項11に記載の医薬組成物。
     

     
    The pharmaceutical composition according to claim 11, which comprises in combination with another antibody or antibody derivative.


PCT/JP2021/048176 2020-12-25 2021-12-24 HUMAN ANTI-SARS-CoV2 VIRUS ANITBODY WO2022138911A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020216173A JP2024022702A (en) 2020-12-25 2020-12-25 Human anti-SARS-CoV2 virus antibody
JP2020-216173 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138911A1 true WO2022138911A1 (en) 2022-06-30

Family

ID=82158073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048176 WO2022138911A1 (en) 2020-12-25 2021-12-24 HUMAN ANTI-SARS-CoV2 VIRUS ANITBODY

Country Status (2)

Country Link
JP (1) JP2024022702A (en)
WO (1) WO2022138911A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHI XIANGYANG, YAN RENHONG, ZHANG JUN, ZHANG GUANYING, ZHANG YUANYUAN, HAO MENG, ZHANG ZHE, FAN PENGFEI, DONG YUNZHU, YANG YILONG,: "A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 369, no. 6504, 7 August 2020 (2020-08-07), US , pages 650 - 655, XP055850542, ISSN: 0036-8075, DOI: 10.1126/science.abc6952 *
LIU LIHONG; WANG PENGFEI; NAIR MANOJ S.; YU JIAN; RAPP MICAH; WANG QIAN; LUO YANG; CHAN JASPER F.-W.; SAHI VINCENT; FIGUEROA AMIR;: "Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 584, no. 7821, 22 July 2020 (2020-07-22), London, pages 450 - 456, XP037223585, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2571-7 *
VOSS WILLIAM N., HOU YIXUAN J., JOHNSON NICOLE V., KIM JIN EYUN, DELIDAKIS GEORGE, HORTON ANDREW P., BARTZOKA FOTEINI, PARESI CHEL: "Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma", BIORXIV, 21 December 2020 (2020-12-21), pages 1 - 38, XP055876858, Retrieved from the Internet <URL:https://www.biorxiv.org/content/10.1101/2020.12.20.423708v1.full.pdf> [retrieved on 20220107], DOI: 10.1101/2020.12.20.423708 *

Also Published As

Publication number Publication date
JP2024022702A (en) 2024-02-21

Similar Documents

Publication Publication Date Title
Gagne et al. mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron
WO2022022445A1 (en) Antibody that specifically binds to coronavirus or antigen-binding fragment thereof
Li et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies
Gorman et al. Fab and Fc contribute to maximal protection against SARS-CoV-2 following NVX-CoV2373 subunit vaccine with Matrix-M vaccination
Beaudoin-Bussières et al. A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection
Piepenbrink et al. Therapeutic activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters
Gagne et al. Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung
Zhang et al. Vaccination to induce antibodies blocking the CX3C-CX3CR1 interaction of respiratory syncytial virus G protein reduces pulmonary inflammation and virus replication in mice
Ye et al. Antibody-dependent cell-mediated cytotoxicity epitopes on the hemagglutinin head region of pandemic H1N1 influenza virus play detrimental roles in H1N1-infected mice
CN115710311A (en) Antibodies or antigen-binding fragments thereof to coronaviruses
Haslwanter et al. A combination of receptor-binding domain and N-terminal domain neutralizing antibodies limits the generation of SARS-CoV-2 spike neutralization-escape mutants
Bahrami et al. Genetic and pathogenic characterization of SARS-CoV-2: a review
CA2703667A1 (en) Anti-rsv g protein antibodies
Baral et al. Treatment and prevention strategies for the COVID 19 pandemic: a review of immunotherapeutic approaches for neutralizing SARS-CoV-2
JP7475366B2 (en) Diagnosis and treatment of chronic inflammation and viral infections
Beeraka et al. The current status and challenges in the development of vaccines and drugs against severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2)
TW202132349A (en) Human monoclonal antibodies of novel coronavirus and uses thereof
Ullah et al. The Fc-effector function of COVID-19 convalescent plasma contributes to SARS-CoV-2 treatment efficacy in mice
Zhao et al. Discovery of a prefusion respiratory syncytial virus F-specific monoclonal antibody that provides greater in vivo protection than the murine precursor of palivizumab
Jahun et al. Leaked genomic and mitochondrial DNA contribute to the host response to noroviruses in a STING-dependent manner
Li et al. Uncovering a conserved vulnerability site in SARS‐CoV‐2 by a human antibody
Vishwakarma et al. Severe acute respiratory syndrome coronavirus 2 spike protein based novel epitopes induce potent immune responses in vivo and inhibit viral replication in vitro
Rahmani et al. Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids
Ji et al. Preclinical characterization of amubarvimab and romlusevimab, a pair of non-competing neutralizing monoclonal antibody cocktail, against SARS-CoV-2
Beaudoin-Bussières et al. An anti-SARS-CoV-2 non-neutralizing antibody with Fc-effector function defines a new NTD epitope and delays neuroinvasion and death in K18-hACE2 mice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21911048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP