WO2022138715A1 - Load capacity rate measuring device, system, method, and program - Google Patents

Load capacity rate measuring device, system, method, and program Download PDF

Info

Publication number
WO2022138715A1
WO2022138715A1 PCT/JP2021/047556 JP2021047556W WO2022138715A1 WO 2022138715 A1 WO2022138715 A1 WO 2022138715A1 JP 2021047556 W JP2021047556 W JP 2021047556W WO 2022138715 A1 WO2022138715 A1 WO 2022138715A1
Authority
WO
WIPO (PCT)
Prior art keywords
voxels
voxel
unit
data
invalid
Prior art date
Application number
PCT/JP2021/047556
Other languages
French (fr)
Japanese (ja)
Inventor
悟己 上野
教之 青木
真則 高岡
研二 河野
ゆり 安達
Original Assignee
日本電気通信システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気通信システム株式会社 filed Critical 日本電気通信システム株式会社
Priority to JP2022571549A priority Critical patent/JP7491615B2/en
Publication of WO2022138715A1 publication Critical patent/WO2022138715A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2020-216527 (filed on December 25, 2020), and all the contents of the application are incorporated in this document by citation. It shall be.
  • the present invention relates to a floor area ratio measuring device, a system, a method, and a program.
  • containers including box-shaped loading platforms such as van bodies and wing bodies
  • the loading volume ratio is 100. I try to transport it in a state close to%. At the time of unloading, all the cargo is moved from the container to the inner warehouse at the truck berth so that the loading volume ratio is 0%. Furthermore, the loaded floor area ratio is measured visually by the driver, and the measured load capacity ratio is reported from the driver to the manager.
  • the floor area ratio is 100% for standby vehicles. It is desirable to be able to guide the position of the preceding vehicle near by in advance.
  • the point cloud data (three-dimensional data) photographed or scanned by the photographing units (cameras, sensors) at a plurality of points is used to load the luggage. It is conceivable to apply a technique for recognizing volume.
  • Patent Documents 1 to 4 only recognize the shape, edge, and dimensions of the luggage in the front row that can be photographed, and the condition of the entire luggage in the container (particularly, the condition of the luggage in a place where photography cannot be performed). May not be recognized accurately.
  • a main object of the present invention is to contribute to suppressing the discrepancy between the measured load capacity and the actual load capacity of the load on a volume basis without using a plurality of image pickup units even if the load is close to the photographing unit. It is to provide loading volume ratio measuring devices, systems, methods, and programs that can be used.
  • the loading volume ratio measuring device acquires a group of points in the designated monitoring area in which the area where the measurement object is loaded in the predetermined space is present in the photographing data obtained by photographing the predetermined space by the photographing unit.
  • a voxel having a predetermined number of points or more in the point group is valid.
  • a voxelized unit configured to create voxelized array data, a photographing unit mounting position information relating to a position where the photographing unit is attached, an image angle information relating to an image angle of the photographing unit, the monitoring area, and the like. And, based on the voxel side length, in the voxel grid in the array data, the blind spot invalid voxel position information related to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit is calculated.
  • the obstacle in the foreground hides the object to be measured behind and hides the occlusion.
  • Estimated sequence data that estimates the effective voxels in the state where the portion is excluded is created, and when the predetermined conditions are satisfied, all the blind spot invalid voxels in the left-right direction or the downward direction of the frontmost effective voxels in the estimated sequence data.
  • An array processing unit configured to create loading array data that enables the valid voxels and enables all the invalid voxels in the depth direction of all the valid voxels after the activation to the valid voxels.
  • the loading volume ratio calculation unit configured to calculate the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area. And.
  • the loaded floor area ratio measuring system includes a photographing unit configured to output imaging data obtained by photographing a predetermined space, and a loaded floor area ratio measuring device according to the first viewpoint.
  • the loading volume ratio measuring method is a loading volume ratio measuring method for measuring the loading volume ratio using hardware resources, and is in the predetermined space among the photographing data obtained by photographing the predetermined space by the photographing unit.
  • the blind spot invalid voxel relating to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit in the voxel grid in the array data.
  • the occlusion part where the obstacle in the foreground hides the measurement object behind and makes it invisible is excluded.
  • Estimated sequence data that estimates the valid voxels of the state is created, and when a predetermined condition is satisfied, all the blind spot invalid voxels in the left-right direction or the downward direction of the previous valid voxels in the estimated sequence data are used as valid voxels.
  • the monitoring area is based on the step of creating the loading array data in which all the invalid voxels in the depth direction of all the enabled and enabled voxels are enabled in the valid voxels, and the loading array data. Includes a step of calculating the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume of the inside.
  • the program according to the fourth viewpoint is a program for causing hardware resources to execute a process of measuring the load capacity ratio, and the measurement target is loaded in the predetermined space among the shooting data taken by the photographing unit in the predetermined space.
  • the score of the point group is predetermined.
  • all the blind spot invalid voxels located in the left-right direction or the downward direction of the front valid voxel in the estimated sequence data are enabled and valid as valid voxels.
  • the process of calculating the loaded volume ratio which is the ratio of the volume of the measured object loaded in the monitoring area, is performed by the hardware resource.
  • the program can be recorded on a storage medium that can be read by a computer.
  • the storage medium may be a non-transient such as a semiconductor memory, a hard disk, a magnetic recording medium, or an optical recording medium.
  • the program is input to a computer device via an input device or an external communication interface, stored in a storage device, drives a processor according to a predetermined step or process, and steps the processing result including an intermediate state as necessary.
  • Each can be displayed via a display device, or can communicate with the outside via a communication interface.
  • Computer devices for that purpose typically include, for example, a processor, a storage device, an input device, a communication interface, and, if necessary, a display device that can be connected to each other by a bus.
  • the first to fourth viewpoints even if there is a load in a close distance to the photographing unit, it is possible to suppress the discrepancy between the measured load capacity and the actual load capacity on a volume basis without using a plurality of photographing units. Can contribute to.
  • FIG. 3A is a view seen from the arrow D1 of FIG.
  • FIG. 3A and FIG. It is a figure seen from the arrow view D2 of.
  • (A) is a view seen from the arrow view D1 of FIG. 3 (A)
  • (B) is an arrow of FIG. 3 (A).
  • the view seen from the view D2, (C) is the view seen from the arrow view D3 of FIG. 3 (A).
  • FIG. 5 is an image diagram of a second example schematically showing a flow from photographing of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment to voxel interpolation.
  • FIG. 3 is an image diagram of a third example schematically showing a flow from photographing of the loaded floor area ratio measuring device in the loaded floor area ratio measuring system according to the first embodiment to voxel interpolation. It is a flowchart which schematically shows the operation of the loading volume ratio measuring apparatus in the loading volume ratio measuring system which concerns on Embodiment 1.
  • FIG. 5 is an image diagram of a second example schematically showing a flow from photographing of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment to voxel interpolation.
  • FIG. 3 is an image diagram of a third example schematically showing a flow from photographing of the loaded floor area ratio measuring device in the loaded floor area ratio measuring system according to the first embodiment to voxel interpolation. It is a flowchart which schematic
  • FIG. It is a flowchart which schematically showed the detailed operation of the step A7 of FIG. 11 of the loading volume ratio measuring apparatus in the loading volume ratio measuring system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows typically the structure of the loading volume ratio measuring apparatus which concerns on Embodiment 2. It is a block diagram which shows the structure of a hardware resource schematically.
  • the program is executed via the computer device, the computer device comprises, for example, a processor, a storage device, an input device, a communication interface, and a display device as needed, and the computer device is in the device or through the communication interface. It is configured to be able to communicate with external devices (including computers) regardless of whether it is wired or wireless.
  • FIG. 1 is a block diagram schematically showing the configuration of the loaded floor area ratio measurement system according to the first embodiment.
  • FIG. 2 is a block diagram schematically showing the configuration of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment.
  • the floor area ratio measurement system 1 is a system that measures (measures) the floor area ratio (or the load capacity) of the luggage 20 (measurement target) in the container 11 (corresponding to the monitoring area) of the truck 10 (Fig.). 1).
  • the floor area ratio measurement system 1 can be used to manage transportation in the transportation field by truck, aircraft, ship, etc., or in the factory field.
  • the loaded floor area ratio measuring system 1 has a configuration in which the photographing unit 300 and the loaded floor area ratio measuring device 200 are communicably connected via the network 400.
  • the loaded floor area ratio measuring device 200 measures the loaded floor area ratio of the luggage 20 in the container 11 of the truck 10 based on the photographed data (100 in FIG. 2) photographed by the photographing unit 300.
  • the loaded floor area ratio measuring system 1 quantifies the loaded floor area ratio according to the loading status or the unloading status of the luggage 20 of the container 11.
  • the loaded floor area ratio measuring system 1 displays the measured numerical value of the loaded floor area ratio together with visualization information (see FIG. 7) that visualizes the photographing data 100.
  • the photographing unit 300 is a functional unit that senses and photographs the surface of the luggage 20 in the container 11 of the truck 10 (see FIG. 1).
  • the photographing unit 300 is connected to the loaded floor area ratio measuring device 200 via a network 400 so that wireless communication is possible (wired communication is also possible).
  • the photographing unit 300 outputs the photographing data (100 in FIG. 2) of the luggage 20 toward the loading floor area ratio measuring device 200.
  • the shooting data 100 is point cloud data (three-dimensional data) drawn with a point cloud (three-dimensional coordinates of a large number of points).
  • the photographing unit 300 can be selected according to the environmental conditions such as the photographing distance, the angle of view, indoor / outdoor, and the presence / absence of sunshine required for measuring the loaded floor area ratio, and the customer's request.
  • the photographing unit 300 for example, a stereo camera, a ToF (Time of Flight) camera, 3D-LIDAR (Threee Dimensions-Laser Imaging Detection and Ringing), or the like can be used.
  • the photographing unit 300 is attached to a position where the luggage 20 in the container 11 of the truck 10 can be photographed (can be installed), for example, for attaching to the container 11 or for loading and unloading the luggage between the truck 10 and the warehouse. It can be attached to the ceiling or wall surface of a truck berth that is in contact with the truck 10. If one unit can cover the monitoring area, one photographing unit 300 may be used, and if the monitoring area has a plurality of locations or a plurality of directions, there may be a plurality of units.
  • the network 400 is a wired or wireless communication network that communicably connects between the photographing unit 300 and the loaded floor area ratio measuring device 200.
  • a communication network such as PAN (Personal Area Network), LAN (Local Area Network), MAN (Metropolitan Area Network), WAN (Wide Area Network), GAN (Global Area Network) can be used. ..
  • the loaded floor area ratio measuring device 200 is a device that measures the loaded floor area ratio of the luggage 20 in the container 11 of the truck 10 based on the photographing data 100 of the predetermined space photographed by the photographing unit 300 (see FIGS. 1 and 2). ).
  • the loaded floor area ratio means the ratio (percentage) of the volume of the loaded luggage 20 to the total volume in the container 11.
  • the loaded floor area ratio measuring device 200 has a function of visualizing the luggage 20 in the container 11.
  • the loaded floor area ratio measuring device 200 is used by an observer.
  • a device (computer device) having a functional unit (for example, a processor, a storage device, an input device, a communication interface, and a display device) constituting the computer can be used.
  • the loaded floor area ratio measuring device 200 for example, hardware resources such as a computer, a personal computer, a notebook personal computer, and a tablet terminal can be used.
  • the load volume ratio measuring device 200 realizes a pretreatment unit 210, a load volume management unit 220, a result generation unit 230, and an interface unit 240 by executing a predetermined program (software).
  • the pre-processing unit 210 is a functional unit that performs predetermined pre-processing (here, format conversion and noise removal) on the photographing data 100 from the photographing unit (300 in FIG. 1) (see FIG. 2).
  • the preprocessing unit 210 preprocesses the imaging data 100 from the imaging unit (300 in FIG. 1), and preprocesses the preprocessed imaging data 100 into the monitoring area designation unit 221 of the loading volume management unit 220 and the interface unit 240. Is output to the display unit 242 of.
  • the preprocessing unit 210 includes a format conversion unit 211 and a noise removal unit 212.
  • the format conversion unit 211 is a functional unit that converts the format of the photographing data 100, which differs depending on the type of the photographing unit (300 in FIG. 1), into a common format that can be commonly used in the loaded floor area ratio measuring device 200 (see FIG. 2).
  • the format conversion unit 211 outputs the converted common format shooting data 100 toward the noise removal unit 212.
  • the noise removing unit 212 is a functional unit that removes noise (point cloud unnecessary for measurement) from the point cloud in the shooting data 100 from the format conversion unit 211 (see FIG. 2).
  • the noise removing unit 212 outputs the noise-removed shooting data 100 toward the monitoring area designation unit 221 of the loading volume management unit 220 and the display unit 242 of the interface unit 240.
  • Examples of the noise removing method include smoothing processing, filtering (for example, moving average filtering processing, median filtering processing, etc.), outlier removal processing (for example, outlier removal processing by chi-square test), and the like.
  • the loading volume management unit 220 is a functional unit that manages the loading volume of the load (20 in FIG. 1) in the container (11 in FIG. 1) (see FIG. 2).
  • the loading volume management unit 220 creates and created the loading arrangement data 112 based on the shooting data 100 from the noise removing unit 212 of the preprocessing unit 210 and the operation information from the operation unit 241 of the interface unit 240.
  • the loading arrangement data 112 is output to the loading volume ratio calculation unit 232 and the voxel visualization unit 233 of the result generation unit 230.
  • the loading volume management unit 220 includes a monitoring area designation unit 221, a voxelization unit 222, an array processing unit 223, an array data group storage unit 224, an angle of view occlusion voxel calculation unit 225, and an imaging unit specification data storage unit. 226 and.
  • the monitoring area designation unit 221 is a monitoring area (for example, a space in the container 11) designated by the user using the operation unit 241 of the interface unit 240 in the shooting data 100 from the noise removal unit 212 of the preprocessing unit 210. ) Is a functional unit that acquires a point cloud (see FIG. 2).
  • the monitoring area means an area for monitoring a change in the loading volume of the luggage 20 (measurement object), and the luggage 20 (measurement object) in the predetermined space among the shooting data obtained by shooting the predetermined space by the photographing unit 300.
  • the monitoring area designation unit 221 outputs the point cloud in the monitoring area of the acquired shooting data 100 toward the voxelization unit 222.
  • the voxelization unit 222 is a functional unit that creates array data 111 in which the point cloud in the monitoring area of the shooting data 100 acquired by the monitoring area designation unit 221 is voxelized (processed into a voxel composed of cubes) (). See Figure 2).
  • the voxel-forming unit 222 uses the operation unit 241 of the interface unit 240 to convert the monitoring area of the shooting data 100 acquired by the monitoring area designation unit 221 into a voxel side length (one side of the voxel related to the cube). Create a virtual voxel grid (three-dimensional array of voxels) divided by voxels of length).
  • the voxel side length can be suppressed from an error by appropriately adopting a length sufficiently smaller than the minimum dimension of the luggage 20.
  • the point cloud in the monitoring area of the shooting data 100 acquired by the monitoring area designation unit 221 is mainly only the part on the shooting unit 300 side (front side) of the luggage 20 (the point cloud is dense) due to the problem of resolution.
  • the part that has become blank) is acquired, and the part in the back direction becomes blank (the part where the point cloud is sparse or absent). Therefore, the voxel-forming unit 222 can use voxels in the created voxel grid in which the number of points in the monitoring area of the photographing data 100 is a predetermined number (for example, three) or more (FIG.
  • the array data 111 may be associated with each voxel not only with binary information indicating whether each voxel is valid or invalid in the voxel grid, but also with information related to the score of the point cloud existing in each voxel, and is present in each voxel. Information on the volume according to the score of the point cloud may be associated with each voxel.
  • the voxelization unit 222 outputs the created array data 111 to the array processing unit 223.
  • the array processing unit 223 is a functional unit that performs voxel array processing based on the array data 111 (see FIG. 2).
  • the array processing unit 223 acquires sequence data 111 from the voxelization unit 222, and acquires blind spot invalid voxel position information from the angle of view occlusion voxel calculation unit 225. Based on the acquired sequence data 111 and blind spot invalid voxel position information, the array processing unit 223 arranges for the interval time at intervals of the interval time specified by the user using the operation unit 241 of the interface unit 240.
  • An array data group 110 is created by arranging the data 111 in chronological order and associating them with each other.
  • the array processing unit 223 stores the created array data group 110 in the array data group storage unit 224.
  • the array processing unit 223 compares each array data 111 of the array data group 110 stored in the array data group storage unit 224, so that an obstacle (worker, trolley, luggage in the middle of loading, etc.) in front is behind. Estimated sequence data for estimating the effective box cell in a state where the occlusion portion that hides and hides the loaded luggage 20 in the above is created for each sequence data group 110.
  • the positions in the left-right direction (for example, the X-axis direction) and the vertical direction (for example, the Y-axis direction) are compared between the sequence data 111 in one sequence data group 110. If there are effective boxels that are the same and are at different positions in the front-back direction (for example, in the Z-axis direction) or at the same position, the innermost part of those effective boxels (the positions in the left-right direction and the up-down direction are the same and the front-back direction is the same). You can select the effective boxel in the innermost part).
  • the specific position is concerned. If the number of valid voxels in a specific position is larger than the number of invalid voxels, the voxel in the specific position can be regarded as a valid voxel.
  • estimation sequence data may be created not only by comparison between the sequence data 111, but also by using labeling, machine learning, or the like.
  • the sequence processing unit 223 may hold the created estimated sequence data.
  • the array processing unit 223 creates the loading array data 112 based on the retained estimation array data.
  • the blind spot invalid voxel position information from the angle occlusion voxel calculation unit 225 is also referred to.
  • the blind spot invalid voxel is estimated based on the condition such as whether the blind spot invalid voxel exists in the voxel grid in the past or present sequence data up to the portion tangent to the occlusion portion which becomes the blind spot.
  • the estimated blind spot invalid voxel is enabled (interpolated) into a valid voxel if a predetermined condition is satisfied. For example, if the part with the valid voxel in the past data is the invalid voxel and the valid voxel does not exist on the depth side in the direction away from the shooting unit 300, the blind spot invalid voxel on the front side that cannot be shot is enabled. do. It also activates all invalid voxels beneath valid voxels that appear to be floating in the air.
  • the load is usually loaded from the left and right wall sides, so if there is an effective voxel in the front central part and there is a blind spot invalid voxel in the left and right direction, the left and right direction Enable all blind spot disabled voxels.
  • the point cloud in the monitoring area of the photographing data 100 acquired by the monitoring area designation unit 221 is mainly only the sensor side (front side) portion of the luggage 20 (the point cloud is dense). Since the part in the back direction is blank (the part where the point cloud is sparse or absent), it is necessary to interpolate the part in the back direction. Therefore, as one method of interpolation of the portion in the back direction, the array processing unit 223 is all located on the back side (the same position in the left-right direction and the up-down direction and the back side in the front-back direction) from the effective voxel in the estimated array data. It is possible to interpolate so that the voxels of are uniformly valid voxels. The interpolation here is based on the premise that the luggage 20 is basically not packed with a gap.
  • the array processing unit 223 is an invalid voxel in the latest estimated voxel data for the voxel at a specific position, but is a valid voxel in the past estimated voxel data. If so, it can be interpolated so that the voxel at the specific position is a valid voxel.
  • the sequence processing unit 223 is a valid voxel in the latest estimated sequence data for the voxel at a specific position but is an invalid voxel in the past estimated sequence data, a new baggage 20 is added. As, a valid voxel can be selected for the voxel at the specific position.
  • the array processing unit 223 assumes that the luggage 20 still exists and at the specific position. You can select valid voxels for voxels. Further, when the latest estimated sequence data and the past estimated sequence data are both invalid voxels for the voxel at the specific position, the array processing unit 223 considers that the baggage 20 does not exist from the beginning and determines that the specific position. You can select invalid voxels for voxels in. It should be noted that another method of interpolating the portion in the back direction may be performed in combination with one method of interpolation of the portion in the back direction.
  • the arrangement processing unit 223 outputs the created loading arrangement data 112 to the loading volume ratio calculation unit 232 and the voxel visualization unit 233 of the result generation unit 230.
  • the arrangement processing unit 223 may hold the created loading arrangement data 112 and use the held loading arrangement data 112 when creating a new loading arrangement data 112.
  • the array data group storage unit 224 is a functional unit that stores the array data group 110 created by the array processing unit 223 in chronological order (see FIG. 2).
  • the array data group storage unit 224 writes or reads the array data group 110 according to the operation of the array processing unit 223.
  • the angle of view occlusion voxel calculation unit 225 is a functional unit that calculates the position of invalid voxels in the occlusion portion caused by the angle of view of the shooting unit 300.
  • the angle of view occlusion voxel calculation unit 225 acquires the imaging unit specification data 113 (imaging unit mounting position information and angle of view information) from the photographing unit specification data storage unit 226.
  • the angle of view occlusion voxel calculation unit 225 acquires the monitoring area and voxel side length specified by the user by using the operation unit 241 of the interface unit 240.
  • the angle of view occlusion voxel calculation unit 225 is an occlusion that becomes a blind spot of the imaging unit 300 in the voxel grid in the array data 111 based on the acquired imaging unit mounting position information, angle of view information, monitoring area, and voxel side length.
  • the position information (blind spot invalid voxel position information) of the invalid voxel (see FIG. 6) whose portion cannot be visualized is calculated.
  • the angle of view occlusion voxel calculation unit 225 outputs the calculated blind spot invalid voxel position information to the array data group storage unit 224.
  • the photographing unit specification data storage unit 226 is a functional unit that stores the photographing unit specification data 113 (see FIG. 2).
  • the photographing unit specification data storage unit 226 reads out the photographing unit specification data 113 according to the operation of the angle of view occlusion voxel calculation unit 225.
  • the imaging unit specification data 113 is preset data, and includes imaging unit mounting position information and image angle information.
  • the photographing unit mounting position information is information relating to the position where the photographing unit 300 is attached.
  • the photographing unit mounting position information can be, for example, information related to the coordinates to which the photographing unit 300 in the container 11 is attached.
  • the angle of view information is information related to the horizontal angle of view, the vertical angle of view, and the swing angle (angle of the optical axis) of the photographing unit 300.
  • the result generation unit 230 is a functional unit that generates a result regarding the floor area ratio in chronological order based on the load arrangement data 112 from the arrangement processing unit 223 of the load volume management unit 220 (see FIG. 2).
  • the result generation unit 230 includes a warning value designation unit 231, a load floor area ratio calculation unit 232, and a voxel visualization unit 233.
  • the warning value specifying unit 231 is a functional unit that designates a warning value specified by the user using the operation unit 241 of the interface unit 240 to the loading floor area ratio calculation unit 232 or the voxel visualization unit 233 (FIG. 2). reference).
  • the warning value is a threshold value of the condition for giving a warning. For example, when the warning value specifying unit 231 warns when the loaded floor area ratio is "90%" or more (for example, contacting a waiting vehicle of a truck berth), the warning value specifying unit 231 calculates the warning value related to "90%". Designated for unit 232.
  • the warning value specifying unit 231 warns when the change in height between the front luggage 20 and the back luggage 20 in the container 11 is “2 m” or more (for example, prevention of cargo collapse in the container 11). If so, the warning value related to "2m" is specified for the voxel visualization unit 233.
  • the loading floor area ratio calculation unit 232 is a functional unit that calculates the loading volume ratio based on the loading arrangement data 112 from the arrangement processing unit 223 of the loading volume management unit 220 (see FIG. 2).
  • the loaded floor area ratio calculation unit 232 calculates the loaded floor area ratio in the process in which the cargo 20 is loaded in order from the back side of the container 11 or in the process in which the cargo 20 is unloaded in order from the front side.
  • the loading volume ratio can be calculated, for example, by calculating the ratio (percentage) of the number of effective voxels to the total number of voxels (whether valid or invalid voxels) in the loading arrangement data 112.
  • the loaded floor area ratio calculation unit 232 outputs the calculated information related to the loaded floor area ratio to the display unit 242.
  • the loading volume ratio calculation unit 232 displays warning display information for the calculated loading. It is output to the display unit 242 together with the information related to the floor area ratio.
  • the loading capacity ratio is 100%.
  • the voxel visualization unit 233 is a functional unit that creates visualization information that visualizes effective voxels based on the loading arrangement data 112 from the arrangement processing unit 223 of the loading volume management unit 220 (see FIG. 2).
  • the voxel visualization unit 233 creates visualization information in which grid lines are drawn on the image of the loading array data 112 in order to visualize effective voxels. This makes it possible to visualize the loading status that cannot be confirmed only by the point cloud.
  • the voxel visualization unit 233 outputs the created visualization information to the display unit 242.
  • the voxel visualization unit 233 When the voxel visualization unit 233 has a portion of the created visualization information that is equal to or greater than the warning value (for example, height change of 2 m) specified by the warning value specification unit 231, the voxel visualization unit 233 displays the warning display information as the created visualization information. And output to the display unit 242.
  • the warning value for example, height change of 2 m
  • the interface unit 240 is a functional unit that exchanges information between the user and the loaded floor area ratio measuring device 200 (see FIG. 2).
  • the interface unit 240 has an operation unit 241 and a display unit 242.
  • the operation unit 241 is a functional unit that receives user operations (see FIG. 2).
  • the user inputs the data (for example, characters, numbers, positions, areas, etc.) input by operating the operation unit 241 (for example, keyboard operation, mouse click operation, touch panel tap operation, etc.) to the loading volume management unit 220. It is output to the monitoring area designation unit 221, the voxelization unit 222, the arrangement processing unit 223, the angle angle occlusion voxel calculation unit 225, or the warning value designation unit 231 of the result generation unit 230.
  • the operation unit 241 designates the monitoring area to the monitoring area designation unit 221 by the operation of the user.
  • the operation unit 241 instructs the voxelization unit 222 of the voxel side length by the user's operation.
  • the operation unit 241 instructs the array processing unit 223 of the interval time by the operation of the user.
  • the operation unit 241 designates the monitoring area and the voxel side length to the angle of view occlusion voxel calculation unit 225 (the same designation as the designation to the monitoring area designation unit 221 and the voxelization unit 222) by the user's operation.
  • the operation unit 241 designates a warning value to the warning value designating unit 231 by the user's operation.
  • the operation unit 241 instructs the start / end of the entire processing in this configuration function by the operation of the user.
  • the display unit 242 is a functional unit that displays various types of information (see FIG. 2).
  • the display unit 242 displays the shooting data 100 after preprocessing from the noise removing unit 212 of the preprocessing unit 210.
  • the display unit 242 displays the loaded floor area ratio and warning display information from the loaded floor area ratio calculation unit 232 of the result generation unit 230.
  • the display unit 242 displays the visualization information and the warning display information from the voxel visualization unit 233 of the result generation unit 230.
  • As a method of displaying the warning display information for example, the background color can be changed or blinked.
  • the information displayed on the display unit 242 may be output by voice using a speaker, printed by a printer, or transmitted and output to another terminal.
  • FIG. 3A and 3B are image views schematically showing a shooting range of a photographing unit
  • FIG. 3A is a perspective view
  • FIG. 3B is a view seen from the arrow D1 of FIG. 3A
  • FIG. 3C is a view. It is a figure seen from the arrow view D2 of 3 (A).
  • 4A and 4B are image views schematically showing an example of a situation in which a baggage in a container is photographed by a photographing unit
  • FIG. 4A is a view seen from arrow D1 of FIG. 3A
  • FIG. 4B is a diagram.
  • FIG. 5A and 5B are image views of an example of a point cloud when the luggage in the container is photographed by the photographing unit
  • FIG. 5A is a view seen from the arrow D1 of FIG. 3A
  • FIG. A is a view seen from the arrow D2 of FIG. 3 (C)
  • (C) is a view seen from the arrow D3 of FIG. 3 (A).
  • FIG. 6 is an image diagram viewed from the arrow D2 of FIG. 3A, which schematically shows a range that can be visualized from an image image taken by the photographing unit.
  • FIG. 6 is an image diagram viewed from the arrow D2 of FIG. 3A, which schematically shows a range that can be visualized from an image image taken by the photographing unit.
  • FIG. 7 is an image diagram schematically showing a change in the visualization information of the baggage that can be visualized by the photographing unit in the process of loading the baggage in the container.
  • 8 to 10 are image diagrams schematically showing a flow from photographing of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment to voxel interpolation.
  • the photographing unit 300 has an angle of view (horizontal angle of view and vertical angle of view) in the horizontal direction and the vertical direction as a specification, and photographs a rectangular or elliptical angle of view within each continuous plane toward the depth direction. (See FIGS. 3A to 3C). It is some LIDAR that the angle of view range is elliptical.
  • the photographing unit 300 measures the distance from the photographing unit 300 to the shield if there is a shield (not shown) between the photographing unit 300 and the measurement target unit (not shown), and is located behind the shield. The object to be measured is not photographed.
  • the angle of view range of the photographing unit 300 becomes narrower as it gets closer to the photographing unit 300.
  • FIGS. 4A and 4B When the shooting unit 300 reaches a certain close distance (several tens of centimeters to 1 m depending on the model), shooting becomes impossible.
  • the photographing unit 300 is used in a narrow space such as inside the container 11 of a truck, there may be a case where only a narrow range can be photographed depending on the amount of loading (see FIGS. 4A and 4B).
  • FIG. 4A the portion close to the side surface of the container 11 on the left and right sides of the photographing unit 300 becomes an occlusion (shielding area), and the portion close to the side surface of the container 11 on the left and right sides as shown in FIGS. 5A and 5C is a point. It will be a point cloudless occlusion.
  • FIG. 4 (B) the portion near the bottom surface of the container 11 is an occlusion
  • FIGS. 5 (B) and 5 (C) the portion near the bottom surface of the container 11 is an occlusion without a point cloud.
  • the visible range that can be visualized by voxelizing the image data (point cloud) taken by the photographing unit 300 is as shown in FIG.
  • the valid voxels that can be activated by the voxelization unit (222 in FIG. 2) are within the visible range, and the invalid voxels that are not activated are outside the visible range.
  • the vertical angle of view is specialized, but the horizontal angle of view is also taken into consideration when processing.
  • the visible range of FIG. 6 is within the monitoring area designated by the monitoring area designation unit (221 of FIG. 2).
  • Such a visualizeable range includes the mounting position and swing angle (position relative to the monitoring area and the angle of the optical axis) of the photographing unit 300, and the minimum imageable distance peculiar to the photographing unit 300 to be used. It can be calculated from the elements of the angle of view and the blind spot and the non-photographable area in the voxel grid can also be calculated from the same element.
  • FIG. 7 shows an example of changes in the visualization information of the luggage that can be visualized by the photographing unit in the process of loading the luggage in the container.
  • the luggage in the back of the container which is not affected by the angle of view of the shooting unit 300, can be estimated and interpolated from the past data, but the closer the luggage is to the front, the more the portion that cannot be photographed (the luggage that cannot be visualized in FIG. 7). (Equivalent to 20b) increases, estimation interpolation cannot be performed from past data, and the deviation from the actual load capacity becomes large.
  • FIGS. 8 to 10 interpolation is performed to enable invalid voxels that satisfy predetermined conditions.
  • the image pickup unit 300 photographs the luggage 20 in the container 11, and the photographed data is used as a diagram.
  • the point cloud as shown in 8 (B), 9 (B), and 10 (B) is acquired.
  • sequence data is created with the voxel at the position where the point cloud is located as an effective voxel, and the voxels of the created sequence data are as shown in FIGS. 8 (C), 9 (C), and 10 (C). Create projection array data projected from the front side to the back.
  • FIGS. 9 (C) and 9 (D) the invalid voxel under the effective voxel in the back is not activated at this stage and is in front. Enables invalid voxels under the previous valid voxels in.
  • how much the front direction of the invalid voxel in the blind spot is valid is determined by checking the time series data on the plane of the loading progress direction and determining the progress increment in the front direction per unit time.
  • the range that cannot be shot is grasped, and invalid voxels that satisfy the predetermined conditions are enabled (interpolated). If the part with cargo (the part where the point cloud can be acquired) disappears in the past data and the point cloud does not exist on the depth side in the direction away from the shooting unit 300, the luggage is placed on the front side where shooting is not possible. Judge as a thing. In addition, it is determined that the luggage does not float in the air (a point cloud can be obtained above), or that the luggage exists in the downward direction of the portion where the luggage is determined to be placed. It is necessary to link the top, bottom, left, and right of the photographing unit 300 with the top, bottom, left, and right of the real world. Further, from the viewpoint of preventing the load from collapsing, the load is usually loaded from the left and right wall sides, so if there is a load in the central portion, it is determined that the load also exists in the left and right directions.
  • FIG. 11 is a flowchart illustrating the operation of the loaded floor area ratio measuring device in the loaded floor area ratio measuring system according to the first embodiment. Please refer to FIGS. 1 and 2 for the components of the loaded floor area ratio measuring system and the loaded floor area ratio measuring device.
  • the operation unit 241 of the interface unit 240 of the load floor area ratio measuring device 200 sets the parameters by the user's operation (step A1).
  • the monitoring area is specified in the monitoring area specification unit 221
  • the voxel side length is specified in the voxelization unit 222
  • the interval time for associating the array data 111 is specified in the array processing unit 223, and the angle occlusion voxel calculation.
  • the monitoring area and voxel side length are designated to the unit 225
  • the warning value (loading volume ratio, change in height of luggage) is specified to the warning value designating unit 231.
  • the monitoring area is specified for the entire area that needs to be measured, for example, according to the internal dimensions of the container.
  • the designation of the monitoring area and the voxel side length to the angle of view occlusion voxel calculation unit 225 is the same as the designation of the monitoring area and the voxel side length to the monitoring area designation unit 221 and the voxelization unit 222.
  • step A1 After step A1 or when the loaded floor area ratio has changed (YES in step A12), the format conversion unit 211 of the preprocessing unit 210 of the loaded floor area ratio measuring device 200 has the imaging data 100 (3) from the imaging unit 300. Dimensional point cloud) is sequentially acquired (step A2). Here, it is assumed that the photographing unit 300 photographs the entire area inside the container 11 of the truck 10.
  • the format conversion unit 211 converts the format of the shooting data 100 into a common format that can be commonly used in the loaded floor area ratio measuring device 200 (step A3).
  • the noise removing unit 212 of the preprocessing unit 210 of the loaded floor area ratio measuring device 200 removes noise (point cloud unnecessary for measurement) from the point cloud in the shooting data 100 from the format conversion unit 211 (step). A4).
  • the monitoring area designation unit 221 of the loading volume management unit 220 of the loading volume ratio measuring device 200 determines a point cloud existing in the monitoring area designated by the operation unit 241 of the photographing data 100 from the noise removing unit 212. Acquire (step A5).
  • the boxing unit 222 of the loading volume management unit 220 of the loading volume ratio measuring device 200 creates an array data 111 in which the point cloud in the monitoring area of the photographing data 100 acquired by the monitoring area designation unit 221 is voxelized.
  • Step A6 the boxing unit 222 of the loading volume management unit 220 of the loading volume ratio measuring device 200 creates an array data 111 in which the point cloud in the monitoring area of the photographing data 100 acquired by the monitoring area designation unit 221 is voxelized.
  • array data 111 in which voxels having a predetermined number or more of points in the monitoring area of the data 100 are used as valid voxels and voxels having less than a predetermined number of points in the point group are used as invalid voxels.
  • the angle of view occlusion voxel calculation unit 225 of the loaded floor area ratio measuring device 200 calculates the blind spot invalid voxel position information (position information of the invalid voxel that cannot be visualized in the occlusion portion that becomes the blind spot of the photographing unit 300) (step). A7).
  • the blind spot invalid voxel position information the monitoring area and voxel side length designated by the operation unit 241 and the imaging unit specification data 113 (photographing unit specification data 113 (photographing unit mounting position) acquired from the photographing unit specification data storage unit 226). Based on the information and the angle of view information), the position information of the blind spot invalid voxel in the voxel grid divided by the voxel of the voxel side length in the management area is calculated.
  • the arrangement processing unit 223 of the loading volume management unit 220 of the loading volume ratio measuring device 200 has a plurality of time-series array data 111 from the voxelization unit 222 and a blind spot invalid voxel position from the angle occlusion voxel calculation unit 225.
  • the loading array data 112 interpolated so that the invalid voxels of the occlusion portion (including the portion that becomes a blind spot, the shadow of an object, etc.) satisfying a predetermined condition is an effective voxel is created (step A8).
  • step A7 will be described later.
  • the array data 111 from the box cell conversion unit 222 is arranged in time series for each interval time interval specified by the operation unit 241.
  • the associated sequence data group 110 is created, the created sequence data group 110 is stored in the sequence data group storage unit 224, and the occlusion part is excluded by comparing each sequence data 111 of the stored sequence data group 110.
  • Estimated sequence data that estimates the valid boxels in the above state is created for each sequence data group 110, and based on the valid boxels of the created estimated sequence data, invalid boxels (blind spots) in the downward direction, the left-right direction, and the back direction are created.
  • the loading array data 112 with (including invalid boxels) enabled (interpolated) is created.
  • the load volume ratio calculation unit 232 of the result generation unit 230 of the load volume ratio measuring device 200 calculates the load volume ratio based on the load arrangement data 112 from the arrangement processing unit 223 of the load volume management unit 220 (step). A9).
  • the load volume ratio calculation unit 232 of the result generation unit 230 of the load volume ratio measuring device 200 calculates the load volume ratio based on the load arrangement data 112 from the arrangement processing unit 223 of the load volume management unit 220 (step). A9).
  • the load volume ratio calculation unit 232 of the result generation unit 230 of the load volume ratio measuring device 200 calculates the load volume ratio based on the load arrangement data 112 from the arrangement processing unit 223 of the load volume management unit 220 (step). A9).
  • the voxel visualization unit 233 of the result generation unit 230 of the load volume ratio measuring device 200 creates visualization information that visualizes effective voxels based on the load arrangement data 112 from the arrangement processing unit 223 of the load volume management unit 220.
  • Step A10 When creating the visualization information, it is determined whether or not there is a change in height equal to or higher than the warning value specified by the warning value specifying unit 231 in the created visualization information.
  • grid lines can be drawn on the image of the loading array data 112.
  • step A10 may be performed at the same time as step A9, or may be performed before step A9.
  • the display unit 242 of the interface unit 240 of the load floor area ratio measuring device 200 is the load volume ratio from the load volume ratio calculation unit 232 (warning display information when the determination result is a load volume ratio equal to or higher than the warning value).
  • the visualization information from the boxel visualization unit 233 (warning display information when the determination result has a change in height equal to or greater than the warning value) is displayed (step A11).
  • the displayed value of the loaded floor area ratio is stored in the loaded floor area ratio measuring device 200.
  • the loaded floor area ratio measuring device 200 determines whether or not the value of the loaded floor area ratio displayed this time has changed from the value of the loaded floor area ratio displayed last time (step A12).
  • the change in the value of the loaded floor area ratio can be regarded as no change when there is no change a predetermined number of times (for example, three times). If there is a change in the value of the loaded floor area ratio (YES in step A12), the process returns to step A2. If there is no change in the value of the loaded floor area ratio (NO in step A12), the process ends.
  • FIG. 12 is a flowchart illustrating the detailed operation of step A7 of FIG. 11 of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment.
  • the arrangement processing unit 223 of the loading volume management unit 220 of the loading volume ratio measuring device 200 enters the monitoring area in the plurality of time-series array data 111 from the boxing unit 222. It is determined whether or not a valid voxel exists (step B1). If there is no valid voxel in the monitoring area (NO in step B1), the process proceeds to step B9.
  • the sequence processing unit 223 hides the measurement target behind the obstacle in the foreground based on the plurality of sequence data 111 in the time series. Estimated sequence data that estimates the effective voxels in a state where the obscured occlusion part is excluded is created, and the effective voxels in the created estimated sequence data are projected onto a two-dimensional plane (for example, FIGS. 8 (C) and 9 (for example). C), see FIG. 10 (C)) (step B2).
  • step B2 the array processing unit 223 determines whether or not the entire region of the projected two-dimensional plane is an effective voxel (step B3). If the entire area of the two-dimensional plane is a valid voxel (YES in step B3), the process proceeds to step B8.
  • the array processing unit 223 reads the past data of the array data group 110 from the array data group storage unit 224 and refers to it (step B4).
  • step B4 the sequence processing unit 223 uses the blind spot invalid voxel position information calculated in step A7 to be within a predetermined distance from the previous valid voxel of the past data, and the front of the three-dimensional voxel in the current sequence data 111. It is determined whether or not there is a blind spot invalid voxel on the same surface as the effective voxel of (step B5). If there is no blind spot invalid voxel within a predetermined distance from the previous valid voxel of the past data (NO in step B5), the process proceeds to step B8.
  • the sequence processing unit 223 moves the voxel in the left-right direction of the front valid voxel of the three-dimensional box cell in the current sequence data 111. Enable all existing blind spot invalid voxels into valid voxels (step B6).
  • step B6 the sequence processing unit 223 validates all the blind spot invalid voxels below the front valid voxels of the 3D voxels in the current sequence data 111 (including the valid voxels activated in step B6). Activate for voxels (step B7).
  • sequence processing Part 223 activates all invalid voxels in the depth direction of the front valid voxels (including the valid voxels activated in steps B6 and B7) in the current sequence data 111 to the valid voxels (the valid voxels). Step B8), and then proceed to step A9 in FIG.
  • the sequence processing unit 223 determines whether or not there is an effective voxel outside the monitoring area in the plurality of time-series sequence data 111 from the box cell conversion unit 222. Is determined (step B9).
  • step B9 If there is an effective voxel outside the monitoring area (YES in step B9), or if there is no loading of luggage (NO in step B12), the array processing unit 223 determines that there is no loading of luggage in the monitoring area. (Step B10), and then proceed to step A9 in FIG.
  • the sequence processing unit 223 reads the past data of the sequence data group 110 from the sequence data group storage unit 224 and refers to it (step B11).
  • step B11 the array processing unit 223 determines whether or not there is a load in the monitoring area in the past data of the array data group 110 (step B12). If no luggage is loaded (NO in step B12), the process proceeds to step B10.
  • the array processing unit 223 activates the invalid voxels of the three-dimensional voxels in the current array data 111 corresponding to the valid voxels for the past data (step B13).
  • the array processing unit 223 refers to the past data and determines whether or not the state in which no valid voxel exists continues for a predetermined time or longer (step B14).
  • step B14 When the state in which the effective voxels do not exist continues for a predetermined time or longer (YES in step B14), the array processing unit 223 determines that the entire monitoring area has been loaded (step B15), and then, in FIG. 11, FIG. Proceed to step A9.
  • step B14 If the absence of valid voxels has not continued for a predetermined time or longer (NO in step B14), the sequence processing unit 223 determines that the load may be being loaded in the monitoring area (step B16), and then , Proceed to step A9 in FIG.
  • the point cloud of the monitoring area of the photographing data 100 photographed by the photographing unit 300 is voxelized, and all the blind spot invalid voxels in the left-right direction and below the front effective voxel in the monitoring area are activated.
  • the measured loading capacity of the luggage on a volume basis without using multiple imaging units It can contribute to suppressing the discrepancy between the actual load capacity and the actual load capacity. This can contribute to accurately recognizing the situation of the entire luggage while automatically monitoring the loaded floor area ratio.
  • occlusion caused by the specifications of the photographing unit 300 can be removed, and it can be applied even when a plurality of photographing units 300 are installed and a blind spot occurs, so that the photographing unit 300 can be installed close to the truck. Even if the photographing unit 300 is installed in the container, more appropriate visualization of the loading becomes possible, so that the flexibility (flexibility, flexibility) of the installation location of the photographing unit 300 is enhanced.
  • the loading volume and the loading volume ratio are quantitatively visualized for the cargo 20 that is sequentially loaded from the back of the container 11 toward the front, or conversely, the cargo 20 that is sequentially unloaded from the front. Can be done. As a result, it is possible to provide data that can be easily determined by the observer in real time, without depending on the individual determination of the personnel who load the cargo 20.
  • the influence on the result due to a temporary occlusion factor such as a person who is working generated by using only one shooting unit 300. Can be reduced.
  • the amount of calculation can be reduced by converting the point cloud of the monitoring area of the photographing data 100 into voxels (converting the data at any time into an array of voxels divided by a unit grid). Interpolation processing of sparse data and estimation processing of missing parts due to occlusion can be simplified, and high-speed calculation can be performed.
  • FIG. 13 is a block diagram schematically showing the configuration of the loaded floor area ratio measuring device according to the second embodiment.
  • the loaded floor area ratio measuring device 200 is a device that measures the loaded floor area ratio of the object to be measured in the monitoring area.
  • the loading floor area ratio measuring device 200 includes a monitoring area designation unit 221, a voxelization unit 222, an angle of view occlusion voxel calculation unit 225, and an arrangement processing unit 223.
  • the monitoring area designation unit 221 acquires a point cloud in the designated monitoring area in which the area where the measurement object is loaded in the predetermined space is present in the photographing data 100 obtained by photographing the predetermined space by the photographing unit (not shown). It is configured to do.
  • the voxelization unit 222 creates array data 111 in which voxels having a predetermined number or more of point clouds among the voxels in the voxel grid obtained by dividing the monitoring area by voxels having a voxel side length specified in advance are used as effective voxels. It is configured to do.
  • the angle of view occlusion voxel calculation unit 225 is based on the imaging unit mounting position information related to the position where the photographing unit (not shown) is attached, the angle of view information related to the angle of view of the photographing unit, the monitoring area, and the voxel side length. Therefore, in the voxel grid in the array data 111, the blind spot invalid voxel position information 114 related to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit is calculated.
  • the array processing unit 223 is in a state of excluding the occlusion portion in which the obstacle in the foreground hides the measurement object in the background and makes it invisible based on the plurality of array data 111 within the interval time specified in advance. It is configured to create estimated sequence data that estimates valid voxels.
  • the sequence processing unit 223 activates all blind spot invalid voxels in the left-right direction or downward direction of the foremost effective voxel in the estimated sequence data as effective voxels, and all after activation, when a predetermined condition is satisfied. It is configured to create loading sequence data 112 in which all invalid voxels in the depth direction of the valid voxels of the above are enabled as valid voxels.
  • the floor area ratio calculation unit 232 is configured to calculate the floor area ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area, based on the loading arrangement data 112. There is.
  • the point cloud of the monitoring area of the photographing data 100 photographed by the photographing unit is converted into voxels, and when a predetermined condition is satisfied, all the points in the left-right direction or the downward direction of the frontmost effective voxel in the monitoring area.
  • the loaded floor area ratio measuring device can be configured by so-called hardware resources (information processing device, computer), and one having the configuration illustrated in FIG. 14 can be used.
  • the hardware resource 1000 includes a processor 1001, a memory 1002, a network interface 1003, and the like, which are interconnected by an internal bus 1004.
  • the hardware resource 1000 may include hardware (eg, an input / output interface) (not shown).
  • the number of units such as the processor 1001 included in the apparatus is not limited to the example of FIG. 14, and for example, a plurality of processors 1001 may be included in the hardware resource 1000.
  • a CPU Central Processing Unit
  • MPU Micro Processor Unit
  • GPU Graphics Processing Unit
  • RAM RandomAccessMemory
  • ROM ReadOnlyMemory
  • HDD HardDiskDrive
  • SSD SolidStateDrive
  • LAN Local Area Network
  • network adapter for example, a network adapter, a network interface card, or the like
  • network interface card for example, a LAN (Local Area Network) card, a network adapter, a network interface card, or the like can be used.
  • the function of the hardware resource 1000 is realized by the above-mentioned processing module.
  • the processing module is realized, for example, by the processor 1001 executing a program stored in the memory 1002.
  • the program can be downloaded via a network or updated using a storage medium in which the program is stored.
  • the processing module may be realized by a semiconductor chip. That is, the function performed by the processing module may be realized by executing the software on some hardware.
  • a monitoring area designation unit configured to acquire a point cloud in which a region in which a measurement object is loaded in the predetermined space is located in a designated monitoring region among shooting data captured by the imaging unit in a predetermined space.
  • the voxels having a predetermined number of points in the point cloud are used as effective voxels to create array data.
  • the voxel grid in the array data based on the imaging unit mounting position information related to the position where the imaging unit is attached, the angle of view information related to the angle of view of the imaging unit, the monitoring area, and the voxel side length.
  • the angle of view occlusion voxel calculation unit configured to calculate the blind spot invalid voxel position information related to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit.
  • the sequence processing unit is configured to create the estimated sequence data when a valid voxel exists in the monitored region in the plurality of sequence data.
  • the loaded floor area ratio measuring device according to Appendix 1.
  • the sequence processing unit projects the effective voxels in the estimated sequence data onto a two-dimensional plane, and under the predetermined condition, when the valid voxels do not exist in a part of the two-dimensional plane, the estimated sequence data All the blind spot invalid voxels located in the left-right direction or downward direction of the foremost effective voxel are configured to be activated as effective voxels.
  • the loaded floor area ratio measuring device according to Appendix 1 or 2.
  • the sequence processing unit activates all the downward blind spot invalid voxels into effective voxels, and then activates all the invalid voxels in the depth direction of all the activated effective voxels into effective voxels. Is configured to The loaded floor area ratio measuring device according to Appendix 4.
  • the array processing unit creates the loading array data, as the predetermined condition, when there is no blind spot invalid voxel within a predetermined distance from the position of the previous effective voxel in the past data, the array processing unit of all the effective voxels.
  • Appendix 9 It is a loading floor area ratio measurement method that measures the floor area ratio using hardware resources.
  • a step of acquiring a point cloud in the designated monitoring area where the area where the measurement object is loaded in the predetermined space is among the shooting data taken by the photographing unit in the predetermined space.
  • the voxel grid in the array data based on the imaging unit mounting position information related to the position where the imaging unit is attached, the angle of view information related to the angle of view of the imaging unit, the monitoring area, and the voxel side length.
  • the blind spot invalid voxel position information related to the position of the blind spot invalid voxel that cannot be visualized in the occlusion portion that becomes the blind spot of the photographing unit.
  • Processing to acquire a point cloud in the designated monitoring area where the area where the measurement object is loaded in the predetermined space is among the shooting data taken by the shooting unit in the predetermined space.
  • a process of creating array data using a voxel having a predetermined number or more of points in the point cloud as an effective voxel is performed.
  • the voxel grid in the array data based on the imaging unit mounting position information related to the position where the imaging unit is attached, the angle of view information related to the angle of view of the imaging unit, the monitoring area, and the voxel side length.
  • the process of creating loading array data with all invalid voxels in the depth direction of all the valid voxels enabled for valid voxels and Based on the loading arrangement data, a process of calculating the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area, To let the hardware resource execute program.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This load capacity rate measuring device: acquires a point group existing in a monitored area; creates array data in which voxels, among voxels in a voxel grid obtained by dividing the monitored area into voxels having a voxel side length, in which at least a prescribed number of points from the point group are present are defined as valid voxels; calculates blind spot invalid voxel position information on the basis of imaging unit attachment position information, angle of view information relating to an imaging unit, the monitored area, and the voxel side length; creates estimated array data obtained by estimating valid voxels in a state in which an occlusion part, in which an obstacle at the front is hiding a measurement target object to the rear, has been removed, on the basis of the plurality of items of array data; and, if a prescribed condition is satisfied, sets all blind spot invalid voxels to the left and right or below the frontmost valid voxel in the estimated array data to be valid voxels.

Description

積載容積率計測装置、システム、方法、及び、プログラムFloor area ratio measuring device, system, method, and program
 [関連出願についての記載]
 本発明は、日本国特許出願:特願2020-216527号(2020年12月25日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、積載容積率計測装置、システム、方法、及び、プログラムに関する。
[Description of related applications]
The present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2020-216527 (filed on December 25, 2020), and all the contents of the application are incorporated in this document by citation. It shall be.
The present invention relates to a floor area ratio measuring device, a system, a method, and a program.
 一部の運輸会社では、輸送効率を向上させるために、トラックバースにてコンテナ(バンボディ、ウィングボディ等の箱型荷台を含む)に奥側から手前側に順次荷積みを行って積載容積率100%に近い状態で輸送を行うようにしている。また、荷降ろしのときは、トラックバースにてコンテナから内倉庫に全ての荷物を移動させ、積載容積率0%の状態にするようにしている。さらに、積載容積率は運転手の目視によって計測され、計測された積載容量率を運転手から管理者に報告するようにしている。 In some transportation companies, in order to improve transportation efficiency, containers (including box-shaped loading platforms such as van bodies and wing bodies) are sequentially loaded from the back side to the front side at the truck berth, and the loading volume ratio is 100. I try to transport it in a state close to%. At the time of unloading, all the cargo is moved from the container to the inner warehouse at the truck berth so that the loading volume ratio is 0%. Furthermore, the loaded floor area ratio is measured visually by the driver, and the measured load capacity ratio is reported from the driver to the manager.
 しかしながら、積載容積率の目視による計測では、個人差が生じやすく、正確な値を把握することは難しい。また、先行車両で荷物の積み込みが行われているときに、トラックバースには別の待機車両が存在する場合があり、先行車両の積載容積率の報告は当該先行車両の荷物の積み込みが完了した後の出発直前であるため、待機車両の移動開始は先行車両の出発後となり、広大なトラックバースにおいては積載容積率の報告がタイムロスの原因となる。 However, it is difficult to grasp an accurate value because individual differences are likely to occur in the visual measurement of the loaded floor area ratio. In addition, when the cargo is being loaded by the preceding vehicle, another waiting vehicle may exist in the truck berth, and the report of the loaded floor area ratio of the preceding vehicle has completed the loading of the luggage of the preceding vehicle. Since it is just before the departure after the departure, the movement of the waiting vehicle starts after the departure of the preceding vehicle, and the report of the loaded floor area ratio causes a time loss in the vast truck berth.
 これらの事象から、積載容積率を自動的に監視することによって、積載容積率の計測による個人差や、計測された積載容積率の報告の手間をなくし、待機車両に対し積載容積率100%に近くになった先行車両の位置を事前に案内できるようにすることが望まれる。 By automatically monitoring the floor area ratio from these events, it is possible to eliminate individual differences due to the measurement of the floor area ratio and the trouble of reporting the measured floor area ratio, and the floor area ratio is 100% for standby vehicles. It is desirable to be able to guide the position of the preceding vehicle near by in advance.
 積載容積率を自動的に監視する技術として、特許文献1~4のように複数の地点の撮影部(カメラ、センサ)で撮影又は走査された点群データ(3次元データ)を用いて荷物の容積を認識する技術を応用することが考えられる。 As a technique for automatically monitoring the load volume ratio, as in Patent Documents 1 to 4, the point cloud data (three-dimensional data) photographed or scanned by the photographing units (cameras, sensors) at a plurality of points is used to load the luggage. It is conceivable to apply a technique for recognizing volume.
特許第6577687号公報Japanese Patent No. 6577767 特許第6511681号公報Japanese Patent No. 6511681 特開2020-60451号公報Japanese Unexamined Patent Publication No. 2020-60451 特開2017-175483号公報Japanese Unexamined Patent Publication No. 2017-175483
 以下の分析は、本願発明者により与えられる。 The following analysis is given by the inventor of the present application.
 しかしながら、特許文献1~4に記載の技術では、荷物の容積を認識するのに複数台の撮影部が必要なため、複数台の撮影部を使用すると撮影部を設置するためのスペースが増加し、コンテナ内の荷物が置けないスペースが増加し、経済性が悪くなる可能性がある。また、複数台の撮影部を使用しても、撮影部のスペックや設置位置によっては、互いの撮影部の死角を補えない可能性がある。 However, in the techniques described in Patent Documents 1 to 4, since a plurality of photographing units are required to recognize the volume of the luggage, if a plurality of photographing units are used, the space for installing the photographing units increases. , The space in the container where luggage cannot be placed increases, which may reduce economic efficiency. Further, even if a plurality of photographing units are used, it may not be possible to compensate for the blind spots of each other depending on the specifications and installation positions of the photographing units.
 また、特許文献1~4に記載の技術では、撮影可能な最前列の荷物の形状、エッジ、寸法を認識するに留まり、コンテナ内の荷物全体の状況(特に、撮影できない箇所の荷物の状況)を正確に認識することができない可能性がある。 Further, the techniques described in Patent Documents 1 to 4 only recognize the shape, edge, and dimensions of the luggage in the front row that can be photographed, and the condition of the entire luggage in the container (particularly, the condition of the luggage in a place where photography cannot be performed). May not be recognized accurately.
 また、特許文献1~4に記載の技術では、最低でも点群データが画角内で多少なりとも取得できることが前提であるため、撮影部の至近距離まで荷物が迫ると撮影できなくなり、撮影部の至近距離での荷物の状況を正確に認識することができない可能性がある。つまり、点群データを撮影する3Dセンサのような撮影部は、非点群データを撮影するアナログカメラやデジタルカメラ等とは異なり、ToF(Time of Flight)やステレオといった測距のための仕組みの制約により、数十cm~1mの近距離は仕様上、撮影できない。特に、複数台の撮影部があると、撮影部の至近距離まで荷物が迫ることが起こりやすくなり、1つの撮影部の死角部分を他の撮影部で補えなくなり、撮影部の至近距離での荷物の状況を正確に認識することができない可能性が高まる。 Further, in the techniques described in Patent Documents 1 to 4, since it is premised that at least point cloud data can be acquired within the angle of view, it becomes impossible to take a picture when a baggage approaches a close distance to the taking part, and the taking part cannot be taken. It may not be possible to accurately recognize the status of luggage at close range. In other words, unlike analog cameras and digital cameras that shoot non-point cloud data, a shooting unit such as a 3D sensor that shoots point cloud data has restrictions on the mechanism for distance measurement such as ToF (Time of Flight) and stereo. Therefore, it is not possible to shoot at a short distance of several tens of centimeters to 1 m due to the specifications. In particular, if there are multiple shooting units, it is easy for luggage to approach the shooting unit at a close distance, and the blind spots of one shooting unit cannot be covered by the other shooting units, so luggage at a close distance to the shooting unit. It is more likely that you will not be able to accurately recognize the situation.
 さらに、特許文献3に記載の技術では、センサの至近距離に荷物がある場合、センサの死角部分にある荷物を一律補間しているので、センサから最も至近距離にある荷物及びその周辺の荷物が同じ面になり、ありえない荷物を補間して荷物の積載量を計測してしまい、計測積載量と実積載量との乖離が大きくなる可能性がある。 Further, in the technique described in Patent Document 3, when the baggage is in the close distance of the sensor, the baggage in the blind spot portion of the sensor is uniformly interpolated, so that the baggage in the closest distance from the sensor and the baggage in the vicinity thereof are uniformly interpolated. On the same side, the load capacity of the load is measured by interpolating the impossible load, and there is a possibility that the difference between the measured load capacity and the actual load capacity will increase.
 本発明の主な課題は、撮影部の至近距離に荷物があっても、撮影部を複数台用いないで容積ベースでの荷物の計測積載量と実積載量との乖離を抑えることに貢献することができる積載容積率計測装置、システム、方法、及び、プログラムを提供することである。 A main object of the present invention is to contribute to suppressing the discrepancy between the measured load capacity and the actual load capacity of the load on a volume basis without using a plurality of image pickup units even if the load is close to the photographing unit. It is to provide loading volume ratio measuring devices, systems, methods, and programs that can be used.
 第1の視点に係る積載容積率計測装置は、所定空間を撮影部で撮影した撮影データのうち前記所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得するように構成された監視領域指定部と、前記監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、前記点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データを作成するように構成されたボクセル化部と、前記撮影部が取り付けられた位置に係る撮影部取付位置情報、前記撮影部の画角に係る画角情報、前記監視領域、及び、前記ボクセル辺長に基づいて、前記配列データ内の前記ボクセルグリッドにおいて、前記撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報を計算するように構成された画角オクルージョンボクセル計算部と、予め指定されたインターバル時間内にある複数の前記配列データに基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、所定の条件を満たす場合に、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するように構成された配列処理部と、前記積載配列データに基づいて、前記監視領域内の全容積に対する前記監視領域内に積載された前記計測対象物の容積の割合である積載容積率を算出するように構成された積載容積率算出部と、を備える。 The loading volume ratio measuring device according to the first viewpoint acquires a group of points in the designated monitoring area in which the area where the measurement object is loaded in the predetermined space is present in the photographing data obtained by photographing the predetermined space by the photographing unit. Among the voxels in the voxel grid obtained by dividing the monitoring area by the voxel of the voxel side length specified in advance and the monitoring area designation unit configured to do so, a voxel having a predetermined number of points or more in the point group is valid. A voxelized unit configured to create voxelized array data, a photographing unit mounting position information relating to a position where the photographing unit is attached, an image angle information relating to an image angle of the photographing unit, the monitoring area, and the like. And, based on the voxel side length, in the voxel grid in the array data, the blind spot invalid voxel position information related to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit is calculated. Based on the angle occlusion voxel calculation unit configured in, and the plurality of said sequence data within the predetermined interval time, the obstacle in the foreground hides the object to be measured behind and hides the occlusion. Estimated sequence data that estimates the effective voxels in the state where the portion is excluded is created, and when the predetermined conditions are satisfied, all the blind spot invalid voxels in the left-right direction or the downward direction of the frontmost effective voxels in the estimated sequence data. An array processing unit configured to create loading array data that enables the valid voxels and enables all the invalid voxels in the depth direction of all the valid voxels after the activation to the valid voxels. Based on the loading arrangement data, the loading volume ratio calculation unit configured to calculate the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area. And.
 第2の視点に係る積載容積率計測システムは、所定空間を撮影した撮影データを出力するように構成された撮影部と、前記第1の視点に係る積載容積率計測装置と、を備える。 The loaded floor area ratio measuring system according to the second viewpoint includes a photographing unit configured to output imaging data obtained by photographing a predetermined space, and a loaded floor area ratio measuring device according to the first viewpoint.
 第3の視点に係る積載容積率計測方法は、ハードウェア資源を用いて積載容積率を計測する積載容積率計測方法であって、所定空間を撮影部で撮影した撮影データのうち前記所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得するステップと、前記監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、前記点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データを作成するステップと、前記撮影部が取り付けられた位置に係る撮影部取付位置情報、前記撮影部の画角に係る画角情報、前記監視領域、及び、前記ボクセル辺長に基づいて、前記配列データ内の前記ボクセルグリッドにおいて、前記撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報を計算するステップと、予め指定されたインターバル時間内にある複数の前記配列データに基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、所定の条件を満たす場合に、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するステップと、前記積載配列データに基づいて、前記監視領域内の全容積に対する前記監視領域内に積載された前記計測対象物の容積の割合である積載容積率を算出するステップと、を含む。 The loading volume ratio measuring method according to the third viewpoint is a loading volume ratio measuring method for measuring the loading volume ratio using hardware resources, and is in the predetermined space among the photographing data obtained by photographing the predetermined space by the photographing unit. Of the voxels in the voxel grid, the step of acquiring a point group in which the area where the measurement object is loaded exists in the specified monitoring area and the voxels in which the monitoring area is divided by voxels having a predetermined voxel side length. A step of creating array data using voxels having a predetermined number of points or more as effective voxels, imaging unit mounting position information related to the position where the photographing unit is attached, and an image angle related to the image angle of the photographing unit. Based on the information, the monitoring area, and the voxel side length, the blind spot invalid voxel relating to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit in the voxel grid in the array data. Based on the step of calculating the position information and the plurality of said sequence data within the predetermined interval time, the occlusion part where the obstacle in the foreground hides the measurement object behind and makes it invisible is excluded. Estimated sequence data that estimates the valid voxels of the state is created, and when a predetermined condition is satisfied, all the blind spot invalid voxels in the left-right direction or the downward direction of the previous valid voxels in the estimated sequence data are used as valid voxels. The monitoring area is based on the step of creating the loading array data in which all the invalid voxels in the depth direction of all the enabled and enabled voxels are enabled in the valid voxels, and the loading array data. Includes a step of calculating the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume of the inside.
 第4の視点に係るプログラムは、積載容積率を計測する処理をハードウェア資源に実行させるプログラムであって、所定空間を撮影部で撮影した撮影データのうち前記所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得する処理と、前記監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、前記点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データを作成する処理と、前記撮影部が取り付けられた位置に係る撮影部取付位置情報、前記撮影部の画角に係る画角情報、前記監視領域、及び、前記ボクセル辺長に基づいて、前記配列データ内の前記ボクセルグリッドにおいて、前記撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報を計算する処理と、予め指定されたインターバル時間内にある複数の前記配列データに基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、所定の条件を満たす場合に、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成する処理と、前記積載配列データに基づいて、前記監視領域内の全容積に対する前記監視領域内に積載された前記計測対象物の容積の割合である積載容積率を算出する処理と、を前記ハードウェア資源に実行させる。 The program according to the fourth viewpoint is a program for causing hardware resources to execute a process of measuring the load capacity ratio, and the measurement target is loaded in the predetermined space among the shooting data taken by the photographing unit in the predetermined space. Of the voxels in the voxel grid in which the monitoring area is divided by the voxels having the specified voxel side length and the process of acquiring the point group existing in the specified monitoring area, the score of the point group is predetermined. Processing to create array data using a number of voxels as effective voxels, imaging unit mounting position information related to the position where the imaging unit is attached, image angle information related to the image angle of the imaging unit, the monitoring area, And, based on the voxel side length, in the voxel grid in the array data, the process of calculating the blind spot invalid voxel position information related to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit. And, based on the plurality of said sequence data within the predetermined interval time, the effective voxel in the state where the obstacle in the foreground hides the measurement object behind and hides the occlusion part is estimated. When the estimated sequence data is created and the predetermined conditions are satisfied, all the blind spot invalid voxels located in the left-right direction or the downward direction of the front valid voxel in the estimated sequence data are enabled and valid as valid voxels. The process of creating loading sequence data in which all invalid voxels in the depth direction of all the valid voxels after conversion are enabled for valid voxels, and the process of creating the loading sequence data for the total volume in the monitoring area based on the loading sequence data. The process of calculating the loaded volume ratio, which is the ratio of the volume of the measured object loaded in the monitoring area, is performed by the hardware resource.
 なお、プログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。記憶媒体は、半導体メモリ、ハードディスク、磁気記録媒体、光記録媒体等の非トランジェント(non-transient)なものとすることができる。また、本開示では、コンピュータプログラム製品として具現することも可能である。プログラムは、コンピュータ装置に入力装置又は外部から通信インタフェイスを介して入力され、記憶装置に記憶されて、プロセッサを所定のステップないし処理に従って駆動させ、必要に応じ中間状態を含めその処理結果を段階毎に表示装置を介して表示することができ、あるいは通信インタフェイスを介して、外部と交信することができる。そのためのコンピュータ装置は、一例として、典型的には互いにバスによって接続可能なプロセッサ、記憶装置、入力装置、通信インタフェイス、及び必要に応じ表示装置を備える。 The program can be recorded on a storage medium that can be read by a computer. The storage medium may be a non-transient such as a semiconductor memory, a hard disk, a magnetic recording medium, or an optical recording medium. Further, in the present disclosure, it is also possible to embody it as a computer program product. The program is input to a computer device via an input device or an external communication interface, stored in a storage device, drives a processor according to a predetermined step or process, and steps the processing result including an intermediate state as necessary. Each can be displayed via a display device, or can communicate with the outside via a communication interface. Computer devices for that purpose typically include, for example, a processor, a storage device, an input device, a communication interface, and, if necessary, a display device that can be connected to each other by a bus.
 前記第1~4の視点によれば、撮影部の至近距離に荷物があっても、撮影部を複数台用いないで容積ベースでの荷物の計測積載量と実積載量との乖離を抑えることに貢献することができる。 According to the first to fourth viewpoints, even if there is a load in a close distance to the photographing unit, it is possible to suppress the discrepancy between the measured load capacity and the actual load capacity on a volume basis without using a plurality of photographing units. Can contribute to.
実施形態1に係る積載容積率計測システムの構成を模式的に示したブロック図である。It is a block diagram which shows typically the structure of the loading volume ratio measurement system which concerns on Embodiment 1. 実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の構成を模式的に示したブロック図である。It is a block diagram which shows typically the structure of the loading volume ratio measuring apparatus in the loading volume ratio measuring system which concerns on Embodiment 1. FIG. 撮影部の撮影可能範囲を模式的に示したイメージ図であり、(A)は斜視図、(B)は図3(A)の矢視D1から見た図、(C)は図3(A)の矢視D2から見た図である。It is an image diagram schematically showing the imageable range of the photographing unit, (A) is a perspective view, (B) is a view seen from the arrow D1 of FIG. 3 (A), and (C) is a view of FIG. 3 (A). It is a figure seen from the arrow view D2 of. コンテナ内の荷物を撮影部で撮影する状況の一例を模式的に示したイメージ図であり、(A)は図3(A)の矢視D1から見た図、(B)は図3(A)の矢視D2から見た図である。It is an image diagram schematically showing an example of a situation in which a baggage in a container is photographed by a photographing unit. FIG. 3A is a view seen from the arrow D1 of FIG. 3A, and FIG. It is a figure seen from the arrow view D2 of. コンテナ内の荷物を撮影部で撮影したときの点群の一例のイメージ図であり、(A)は図3(A)の矢視D1から見た図、(B)は図3(A)の矢視D2から見た図、(C)は図3(A)の矢視D3から見た図である。It is an image diagram of an example of a point cloud when the luggage in the container is photographed by the photographing unit, (A) is a view seen from the arrow view D1 of FIG. 3 (A), and (B) is an arrow of FIG. 3 (A). The view seen from the view D2, (C) is the view seen from the arrow view D3 of FIG. 3 (A). 撮影部で撮影された画像データから可視化することが可能な範囲を模式的に示した図3(A)の矢視D2から見たイメージ図である。It is an image diagram seen from the arrow view D2 of FIG. 3A schematically showing the range that can be visualized from the image data taken by the photographing unit. コンテナ内の荷物を積載する過程での撮影部の可視化可能な荷物の可視化情報の変化を模式的に示したイメージ図である。It is an image diagram schematically showing the change of the visualization information of the baggage that can be visualized by the photographing unit in the process of loading the baggage in the container. 実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の撮影からボクセル補間までの流れを模式的に示した第1例のイメージ図である。It is an image diagram of the 1st example which schematically showed the flow from the photographing of the loading volume ratio measuring apparatus in the loading volume ratio measuring system which concerns on Embodiment 1 to voxel interpolation. 実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の撮影からボクセル補間までの流れを模式的に示した第2例のイメージ図である。FIG. 5 is an image diagram of a second example schematically showing a flow from photographing of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment to voxel interpolation. 実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の撮影からボクセル補間までの流れを模式的に示した第3例のイメージ図である。FIG. 3 is an image diagram of a third example schematically showing a flow from photographing of the loaded floor area ratio measuring device in the loaded floor area ratio measuring system according to the first embodiment to voxel interpolation. 実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の動作を模式的に示したフローチャート図である。It is a flowchart which schematically shows the operation of the loading volume ratio measuring apparatus in the loading volume ratio measuring system which concerns on Embodiment 1. FIG. 実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の図11のステップA7の詳細な動作を模式的に示したフローチャート図である。It is a flowchart which schematically showed the detailed operation of the step A7 of FIG. 11 of the loading volume ratio measuring apparatus in the loading volume ratio measuring system which concerns on Embodiment 1. FIG. 実施形態2に係る積載容積率計測装置の構成を模式的に示したブロック図である。It is a block diagram which shows typically the structure of the loading volume ratio measuring apparatus which concerns on Embodiment 2. ハードウェア資源の構成を模式的に示したブロック図である。It is a block diagram which shows the structure of a hardware resource schematically.
 以下、実施形態について図面を参照しつつ説明する。なお、本出願において図面参照符号を付している場合は、それらは、専ら理解を助けるためのものであり、図示の態様に限定することを意図するものではない。また、下記の実施形態は、あくまで例示であり、本発明を限定するものではない。また、以降の説明で参照する図面等のブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。さらに、本願開示に示す回路図、ブロック図、内部構成図、接続図などにおいて、明示は省略するが、入力ポート及び出力ポートが各接続線の入力端及び出力端のそれぞれに存在する。入出力インタフェイスも同様である。プログラムはコンピュータ装置を介して実行され、コンピュータ装置は、例えば、プロセッサ、記憶装置、入力装置、通信インタフェイス、及び必要に応じ表示装置を備え、コンピュータ装置は、通信インタフェイスを介して装置内又は外部の機器(コンピュータを含む)と、有線、無線を問わず、交信可能に構成される。 Hereinafter, embodiments will be described with reference to the drawings. It should be noted that the reference numerals to the drawings in the present application are provided solely for the purpose of assisting understanding, and are not intended to be limited to the illustrated embodiments. Further, the following embodiments are merely examples, and do not limit the present invention. Further, the connecting line between blocks such as drawings referred to in the following description includes both bidirectional and unidirectional. The one-way arrow schematically shows the flow of the main signal (data), and does not exclude bidirectionality. Further, in the circuit diagram, block diagram, internal configuration diagram, connection diagram, etc. shown in the disclosure of the present application, although not explicitly stated, an input port and an output port exist at the input end and the output end of each connection line, respectively. The same applies to the input / output interface. The program is executed via the computer device, the computer device comprises, for example, a processor, a storage device, an input device, a communication interface, and a display device as needed, and the computer device is in the device or through the communication interface. It is configured to be able to communicate with external devices (including computers) regardless of whether it is wired or wireless.
[実施形態1]
 実施形態1に係る積載容積率計測システムについて図面を用いて説明する。図1は、実施形態1に係る積載容積率計測システムの構成を模式的に示したブロック図である。図2は、実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の構成を模式的に示したブロック図である。
[Embodiment 1]
The loaded floor area ratio measurement system according to the first embodiment will be described with reference to the drawings. FIG. 1 is a block diagram schematically showing the configuration of the loaded floor area ratio measurement system according to the first embodiment. FIG. 2 is a block diagram schematically showing the configuration of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment.
 積載容積率計測システム1は、トラック10のコンテナ11内(監視領域内に相当)の荷物20(計測対象物)の積載容積率(積載容積でも可)を計測(測定)するシステムである(図1参照)。積載容積率計測システム1は、トラック、航空機、船舶等による運輸分野や、ファクトリ分野での輸送を管理するのに用いることができる。積載容積率計測システム1では、撮影部300と積載容積率計測装置200とがネットワーク400を介して通信可能に接続された構成となっている。積載容積率計測システム1では、積載容積率計測装置200が撮影部300で撮影された撮影データ(図2の100)に基づいてトラック10のコンテナ11内の荷物20の積載容積率を計測する。積載容積率計測システム1は、コンテナ11の荷物20の積み込み状況、或いは、降ろし状況に応じて積載容積率を数値化する。積載容積率計測システム1は、計測された積載容積率の数値を、撮影データ100を可視化した可視化情報(図7参照)とともに表示する。 The floor area ratio measurement system 1 is a system that measures (measures) the floor area ratio (or the load capacity) of the luggage 20 (measurement target) in the container 11 (corresponding to the monitoring area) of the truck 10 (Fig.). 1). The floor area ratio measurement system 1 can be used to manage transportation in the transportation field by truck, aircraft, ship, etc., or in the factory field. The loaded floor area ratio measuring system 1 has a configuration in which the photographing unit 300 and the loaded floor area ratio measuring device 200 are communicably connected via the network 400. In the loaded floor area ratio measuring system 1, the loaded floor area ratio measuring device 200 measures the loaded floor area ratio of the luggage 20 in the container 11 of the truck 10 based on the photographed data (100 in FIG. 2) photographed by the photographing unit 300. The loaded floor area ratio measuring system 1 quantifies the loaded floor area ratio according to the loading status or the unloading status of the luggage 20 of the container 11. The loaded floor area ratio measuring system 1 displays the measured numerical value of the loaded floor area ratio together with visualization information (see FIG. 7) that visualizes the photographing data 100.
 撮影部300は、トラック10のコンテナ11内の荷物20の表面をセンシングして撮影する機能部である(図1参照)。撮影部300は、ネットワーク400を介して積載容積率計測装置200と無線通信可能(有線通信でも可)に接続されている。撮影部300は、荷物20を撮影した撮影データ(図2の100)を積載容積率計測装置200に向けて出力する。なお、撮影データ100は、点群(多数の点の3次元座標)で描画された点群データ(3次元データ)である。撮影部300は、積載容積率の計測に必要な撮影距離、画角、屋内外、日照の有無などの環境条件や顧客要望に応じて選択することができる。また、撮影部300には、各種メーカーから販売されている製品を用いることができる。撮影部300として、例えば、ステレオカメラ、ToF(Time of Flight)カメラ、3D-LIDAR(Three Dimensions - Laser Imaging Detection and Ranging)等を用いることができる。撮影部300は、トラック10のコンテナ11内の荷物20を撮影できる位置に取り付けられ(設置でも可)、例えば、コンテナ11に取り付けたり、トラック10と倉庫との間で荷物の積み下ろしをするためにトラック10と接車するトラックバースの天井や壁面に取り付けたりすることができる。撮影部300は、1台で監視領域をカバーできれば1台あればよく、監視領域が複数箇所又は複数方向である場合は複数台あってもよい。 The photographing unit 300 is a functional unit that senses and photographs the surface of the luggage 20 in the container 11 of the truck 10 (see FIG. 1). The photographing unit 300 is connected to the loaded floor area ratio measuring device 200 via a network 400 so that wireless communication is possible (wired communication is also possible). The photographing unit 300 outputs the photographing data (100 in FIG. 2) of the luggage 20 toward the loading floor area ratio measuring device 200. The shooting data 100 is point cloud data (three-dimensional data) drawn with a point cloud (three-dimensional coordinates of a large number of points). The photographing unit 300 can be selected according to the environmental conditions such as the photographing distance, the angle of view, indoor / outdoor, and the presence / absence of sunshine required for measuring the loaded floor area ratio, and the customer's request. Further, products sold by various manufacturers can be used for the photographing unit 300. As the photographing unit 300, for example, a stereo camera, a ToF (Time of Flight) camera, 3D-LIDAR (Three Dimensions-Laser Imaging Detection and Ringing), or the like can be used. The photographing unit 300 is attached to a position where the luggage 20 in the container 11 of the truck 10 can be photographed (can be installed), for example, for attaching to the container 11 or for loading and unloading the luggage between the truck 10 and the warehouse. It can be attached to the ceiling or wall surface of a truck berth that is in contact with the truck 10. If one unit can cover the monitoring area, one photographing unit 300 may be used, and if the monitoring area has a plurality of locations or a plurality of directions, there may be a plurality of units.
 ネットワーク400は、撮影部300と積載容積率計測装置200との間を通信可能に接続する有線又は無線の通信網である。ネットワーク400には、例えば、PAN(Personal Area Network)、LAN(Local Area Network)、MAN(Metropolitan Area Network)、WAN(Wide Area Network)、GAN(Global Area Network)等の通信網を用いることができる。 The network 400 is a wired or wireless communication network that communicably connects between the photographing unit 300 and the loaded floor area ratio measuring device 200. For the network 400, for example, a communication network such as PAN (Personal Area Network), LAN (Local Area Network), MAN (Metropolitan Area Network), WAN (Wide Area Network), GAN (Global Area Network) can be used. ..
 積載容積率計測装置200は、撮影部300で撮影された所定空間の撮影データ100に基づいてトラック10のコンテナ11内の荷物20の積載容積率を計測する装置である(図1、図2参照)。ここで、積載容積率とは、コンテナ11内の全容積に対する積載された荷物20の容積の割合(百分率)をいう。積載容積率計測装置200は、コンテナ11内の荷物20を可視化する機能を有する。積載容積率計測装置200は、監視者によって使用される。積載容積率計測装置200は、コンピュータを構成する機能部(例えば、プロセッサ、記憶装置、入力装置、通信インタフェイス、及び表示装置)を有する装置(コンピュータ装置)を用いることができる。積載容積率計測装置200として、例えば、計算機、パーソナルコンピュータ、ノート型パーソナルコンピュータ、タブレット端末等のハードウェア資源を用いることができる。積載容積率計測装置200は、所定のプログラム(ソフトウェア)を実行することによって、前処理部210と、積載容積管理部220と、結果生成部230と、インタフェイス部240と、を実現する。 The loaded floor area ratio measuring device 200 is a device that measures the loaded floor area ratio of the luggage 20 in the container 11 of the truck 10 based on the photographing data 100 of the predetermined space photographed by the photographing unit 300 (see FIGS. 1 and 2). ). Here, the loaded floor area ratio means the ratio (percentage) of the volume of the loaded luggage 20 to the total volume in the container 11. The loaded floor area ratio measuring device 200 has a function of visualizing the luggage 20 in the container 11. The loaded floor area ratio measuring device 200 is used by an observer. As the loaded floor area ratio measuring device 200, a device (computer device) having a functional unit (for example, a processor, a storage device, an input device, a communication interface, and a display device) constituting the computer can be used. As the loaded floor area ratio measuring device 200, for example, hardware resources such as a computer, a personal computer, a notebook personal computer, and a tablet terminal can be used. The load volume ratio measuring device 200 realizes a pretreatment unit 210, a load volume management unit 220, a result generation unit 230, and an interface unit 240 by executing a predetermined program (software).
 前処理部210は、撮影部(図1の300)からの撮影データ100に対して所定の前処理(ここでは、フォーマット変換、ノイズ除去)を行う機能部である(図2参照)。前処理部210は、撮影部(図1の300)からの撮影データ100を前処理し、前処理された撮影データ100を積載容積管理部220の監視領域指定部221、及び、インタフェイス部240の表示部242に向けて出力する。前処理部210は、フォーマット変換部211と、ノイズ除去部212と、を有する。 The pre-processing unit 210 is a functional unit that performs predetermined pre-processing (here, format conversion and noise removal) on the photographing data 100 from the photographing unit (300 in FIG. 1) (see FIG. 2). The preprocessing unit 210 preprocesses the imaging data 100 from the imaging unit (300 in FIG. 1), and preprocesses the preprocessed imaging data 100 into the monitoring area designation unit 221 of the loading volume management unit 220 and the interface unit 240. Is output to the display unit 242 of. The preprocessing unit 210 includes a format conversion unit 211 and a noise removal unit 212.
 フォーマット変換部211は、撮影部(図1の300)の種類によって異なる撮影データ100のフォーマットを、積載容積率計測装置200において共通に使える共通フォーマットに変換する機能部である(図2参照)。フォーマット変換部211は、変換された共通フォーマットの撮影データ100を、ノイズ除去部212に向けて出力する。 The format conversion unit 211 is a functional unit that converts the format of the photographing data 100, which differs depending on the type of the photographing unit (300 in FIG. 1), into a common format that can be commonly used in the loaded floor area ratio measuring device 200 (see FIG. 2). The format conversion unit 211 outputs the converted common format shooting data 100 toward the noise removal unit 212.
 ノイズ除去部212は、フォーマット変換部211からの撮影データ100における点群の中からノイズ(計測に不要な点群)を除去する機能部である(図2参照)。ノイズ除去部212は、ノイズが除去された撮影データ100を積載容積管理部220の監視領域指定部221、及び、インタフェイス部240の表示部242に向けて出力する。ノイズ除去方法として、例えば、平滑化処理、フィルタリング(例えば、移動平均フィルタ処理、メディアンフィルタ処理など)、外れ値除去処理(例えば、カイの二乗検定による外れ値除去処理)などが挙げられる。 The noise removing unit 212 is a functional unit that removes noise (point cloud unnecessary for measurement) from the point cloud in the shooting data 100 from the format conversion unit 211 (see FIG. 2). The noise removing unit 212 outputs the noise-removed shooting data 100 toward the monitoring area designation unit 221 of the loading volume management unit 220 and the display unit 242 of the interface unit 240. Examples of the noise removing method include smoothing processing, filtering (for example, moving average filtering processing, median filtering processing, etc.), outlier removal processing (for example, outlier removal processing by chi-square test), and the like.
 積載容積管理部220は、コンテナ(図1の11)内の荷物(図1の20)の積載容積を管理する機能部である(図2参照)。積載容積管理部220は、前処理部210のノイズ除去部212からの撮影データ100、及び、インタフェイス部240の操作部241からの操作情報に基づいて積載配列データ112を作成し、作成された積載配列データ112を結果生成部230の積載容積率算出部232及びボクセル可視化部233に向けて出力する。積載容積管理部220は、監視領域指定部221と、ボクセル化部222と、配列処理部223と、配列データ群格納部224と、画角オクルージョンボクセル計算部225と、撮影部諸元データ格納部226と、を備える。 The loading volume management unit 220 is a functional unit that manages the loading volume of the load (20 in FIG. 1) in the container (11 in FIG. 1) (see FIG. 2). The loading volume management unit 220 creates and created the loading arrangement data 112 based on the shooting data 100 from the noise removing unit 212 of the preprocessing unit 210 and the operation information from the operation unit 241 of the interface unit 240. The loading arrangement data 112 is output to the loading volume ratio calculation unit 232 and the voxel visualization unit 233 of the result generation unit 230. The loading volume management unit 220 includes a monitoring area designation unit 221, a voxelization unit 222, an array processing unit 223, an array data group storage unit 224, an angle of view occlusion voxel calculation unit 225, and an imaging unit specification data storage unit. 226 and.
 監視領域指定部221は、前処理部210のノイズ除去部212からの撮影データ100のうち、インタフェイス部240の操作部241を用いてユーザによって指定された監視領域(例えば、コンテナ11内の空間)に存在する点群を取得する機能部である(図2参照)。ここで、監視領域とは、荷物20(計測対象物)の積載容積の変化を監視する領域をいい、撮影部300で所定空間を撮影した撮影データのうち当該所定空間において荷物20(計測対象物)が積載される領域である。監視領域指定部221は、取得された撮影データ100の監視領域内の点群をボクセル化部222に向けて出力する。 The monitoring area designation unit 221 is a monitoring area (for example, a space in the container 11) designated by the user using the operation unit 241 of the interface unit 240 in the shooting data 100 from the noise removal unit 212 of the preprocessing unit 210. ) Is a functional unit that acquires a point cloud (see FIG. 2). Here, the monitoring area means an area for monitoring a change in the loading volume of the luggage 20 (measurement object), and the luggage 20 (measurement object) in the predetermined space among the shooting data obtained by shooting the predetermined space by the photographing unit 300. ) Is the area where it is loaded. The monitoring area designation unit 221 outputs the point cloud in the monitoring area of the acquired shooting data 100 toward the voxelization unit 222.
 ボクセル化部222は、監視領域指定部221で取得された撮影データ100の監視領域内の点群をボクセル化(立方体で構成されるボクセルに加工)した配列データ111を作成する機能部である(図2参照)。ボクセル化部222は、監視領域指定部221で取得された撮影データ100の監視領域を、インタフェイス部240の操作部241を用いてユーザによって指定されたボクセル辺長(立方体に係るボクセルの一辺の長さ)のボクセルで分割された仮想的なボクセルグリッド(ボクセルが3次元配列したもの)を作成する。なお、ボクセル辺長は、荷物20の最小の寸法よりも十分小さい長さを適宜採用することで誤差を抑えることができる。ここで、監視領域指定部221で取得された撮影データ100の監視領域内の点群は、解像度の問題から、主に荷物20の撮影部300側(手前側)部分のみ(点群が密になった部分)が取得され、奥方向にある部分は空白(点群が疎又は無になった部分)となる。そのため、ボクセル化部222は、作成されたボクセルグリッドのうち、撮影データ100の監視領域内の点群の点数が所定数(例えば3つ)以上存在するボクセルを有効ボクセル(図8(C)、図9(C)、図10(C)の有効ボクセル参照)とし、点群の点数が所定数未満のボクセルを無効ボクセル(図8(C)、図9(C)、図10(C)の無効ボクセル参照)とした配列データ111を作成する。有効ボクセルは、図7の「可視化情報」の塗りつぶし部分のボクセルに相当する。なお、配列データ111は、ボクセルグリッドにおける各ボクセルが有効か無効かの2値情報だけでなく、各ボクセルに存在する点群の点数に係る情報を各ボクセルに関連付けてもよく、各ボクセルに存在する点群の点数に応じた容積に係る情報を各ボクセルに関連付けてもよい。ボクセル化部222は、作成された配列データ111を配列処理部223に向けて出力する。 The voxelization unit 222 is a functional unit that creates array data 111 in which the point cloud in the monitoring area of the shooting data 100 acquired by the monitoring area designation unit 221 is voxelized (processed into a voxel composed of cubes) (). See Figure 2). The voxel-forming unit 222 uses the operation unit 241 of the interface unit 240 to convert the monitoring area of the shooting data 100 acquired by the monitoring area designation unit 221 into a voxel side length (one side of the voxel related to the cube). Create a virtual voxel grid (three-dimensional array of voxels) divided by voxels of length). It should be noted that the voxel side length can be suppressed from an error by appropriately adopting a length sufficiently smaller than the minimum dimension of the luggage 20. Here, the point cloud in the monitoring area of the shooting data 100 acquired by the monitoring area designation unit 221 is mainly only the part on the shooting unit 300 side (front side) of the luggage 20 (the point cloud is dense) due to the problem of resolution. The part that has become blank) is acquired, and the part in the back direction becomes blank (the part where the point cloud is sparse or absent). Therefore, the voxel-forming unit 222 can use voxels in the created voxel grid in which the number of points in the monitoring area of the photographing data 100 is a predetermined number (for example, three) or more (FIG. 8C). Refer to the valid voxels in FIGS. 9 (C) and 10 (C), and invalid voxels with voxels having a point group score less than a predetermined number (see FIGS. 8 (C), 9 (C), and 10 (C)). Create the array data 111 as (see invalid voxels). The effective voxel corresponds to the filled voxel of the “visualization information” in FIG. 7. The array data 111 may be associated with each voxel not only with binary information indicating whether each voxel is valid or invalid in the voxel grid, but also with information related to the score of the point cloud existing in each voxel, and is present in each voxel. Information on the volume according to the score of the point cloud may be associated with each voxel. The voxelization unit 222 outputs the created array data 111 to the array processing unit 223.
 配列処理部223は、配列データ111に基づいてボクセルの配列処理を行う機能部である(図2参照)。配列処理部223は、ボクセル化部222から配列データ111を取得し、画角オクルージョンボクセル計算部225から死角無効ボクセル位置情報を取得する。配列処理部223は、取得した配列データ111及び死角無効ボクセル位置情報に基づいて、インタフェイス部240の操作部241を用いてユーザによって指定されたインターバル時間の間隔ごとに、当該インターバル時間分の配列データ111を時系列に配列して関連付けた配列データ群110を作成する。配列処理部223は、作成された配列データ群110を配列データ群格納部224に格納する。 The array processing unit 223 is a functional unit that performs voxel array processing based on the array data 111 (see FIG. 2). The array processing unit 223 acquires sequence data 111 from the voxelization unit 222, and acquires blind spot invalid voxel position information from the angle of view occlusion voxel calculation unit 225. Based on the acquired sequence data 111 and blind spot invalid voxel position information, the array processing unit 223 arranges for the interval time at intervals of the interval time specified by the user using the operation unit 241 of the interface unit 240. An array data group 110 is created by arranging the data 111 in chronological order and associating them with each other. The array processing unit 223 stores the created array data group 110 in the array data group storage unit 224.
 配列処理部223は、配列データ群格納部224に格納された配列データ群110の各配列データ111を比較することで、手前にある障害物(作業者、台車、積み込み途中の荷物など)が背後にある積み込み済みの荷物20を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを配列データ群110ごとに作成する。 The array processing unit 223 compares each array data 111 of the array data group 110 stored in the array data group storage unit 224, so that an obstacle (worker, trolley, luggage in the middle of loading, etc.) in front is behind. Estimated sequence data for estimating the effective box cell in a state where the occlusion portion that hides and hides the loaded luggage 20 in the above is created for each sequence data group 110.
 ここで、推定配列データの作成では、例えば、1つの配列データ群110における配列データ111間で比較して、左右方向(例えば、X軸方向)及び上下方向(例えば、Y軸方向)の位置が同じで、かつ、前後方向(例えば、Z軸方向)の異なる位置又は同じ位置に有効ボクセルがある場合にそれらの有効ボクセルの中の最奥(左右方向及び上下方向の位置が同じで前後方向の最奥)にある有効ボクセルを選択することができる。 Here, in the creation of the estimated sequence data, for example, the positions in the left-right direction (for example, the X-axis direction) and the vertical direction (for example, the Y-axis direction) are compared between the sequence data 111 in one sequence data group 110. If there are effective boxels that are the same and are at different positions in the front-back direction (for example, in the Z-axis direction) or at the same position, the innermost part of those effective boxels (the positions in the left-right direction and the up-down direction are the same and the front-back direction is the same). You can select the effective boxel in the innermost part).
 また、推定配列データの作成では、例えば、1つの配列データ群110における配列データ111間で比較して、特定の位置のボクセルで無効ボクセルの数が有効ボクセルの数より多いときは当該特定の位置のボクセルを無効ボクセルとし、特定の位置のボクセルで有効ボクセルの数が無効ボクセルの数より多いときは当該特定の位置のボクセルを有効ボクセルとすることができる。 Further, in the creation of estimated sequence data, for example, when the number of invalid voxels in a voxel at a specific position is larger than the number of valid voxels in comparison between the sequence data 111 in one sequence data group 110, the specific position is concerned. If the number of valid voxels in a specific position is larger than the number of invalid voxels, the voxel in the specific position can be regarded as a valid voxel.
 なお、推定配列データの作成は、配列データ111間の比較だけでなく、ラベリングや機械学習等を用いて行ってもよい。配列処理部223は、作成された推定配列データを保持するようにしてもよい。 Note that the estimation sequence data may be created not only by comparison between the sequence data 111, but also by using labeling, machine learning, or the like. The sequence processing unit 223 may hold the created estimated sequence data.
 配列処理部223は、保持された推定配列データに基づいて積載配列データ112を作成する。 The array processing unit 223 creates the loading array data 112 based on the retained estimation array data.
 ここで、積載配列データ112の作成では、従来の配列データ111および過去データを参照するための配列データ群110に加え、画角オクルージョンボクセル計算部225からの死角無効ボクセル位置情報をも参照して死角となるオクルージョン部分の無効ボクセル(死角無効ボクセル)を推定する。死角無効ボクセルの推定は、死角となるオクルージョン部分に接する部分まで過去あるいは現在の配列データにおけるボクセルグリッド中に死角無効ボクセルが存在しているかなどの条件に基づいて行う。推定された死角無効ボクセルは、所定の条件を満たす場合には、有効ボクセルに有効化(補間)する。例えば、過去データで有効ボクセルがある部分が無効ボクセルとなっており、かつ、撮影部300から離れる方向の奥行き側にも有効ボクセルが存在しない場合は、撮影できない手前側の死角無効ボクセルを有効化する。また、空中に浮遊しているように見える有効ボクセルの真下にあるすべての無効ボクセルを有効化する。さらに、荷崩れ防止の観点から、通常、荷物の積み込みは左右壁側から実施されるため、最前の中央部分に有効ボクセルがあり、かつ、その左右方向に死角無効ボクセルがあれば、左右方向のすべての死角無効ボクセルを有効化する。 Here, in the creation of the loading array data 112, in addition to the conventional array data 111 and the array data group 110 for referring to the past data, the blind spot invalid voxel position information from the angle occlusion voxel calculation unit 225 is also referred to. Estimate the invalid voxels (blind spot invalid voxels) of the occlusion part that becomes the blind spot. The blind spot invalid voxel is estimated based on the condition such as whether the blind spot invalid voxel exists in the voxel grid in the past or present sequence data up to the portion tangent to the occlusion portion which becomes the blind spot. The estimated blind spot invalid voxel is enabled (interpolated) into a valid voxel if a predetermined condition is satisfied. For example, if the part with the valid voxel in the past data is the invalid voxel and the valid voxel does not exist on the depth side in the direction away from the shooting unit 300, the blind spot invalid voxel on the front side that cannot be shot is enabled. do. It also activates all invalid voxels beneath valid voxels that appear to be floating in the air. Furthermore, from the viewpoint of preventing the load from collapsing, the load is usually loaded from the left and right wall sides, so if there is an effective voxel in the front central part and there is a blind spot invalid voxel in the left and right direction, the left and right direction Enable all blind spot disabled voxels.
 また、積載配列データ112の作成では、監視領域指定部221で取得された撮影データ100の監視領域内の点群は、主に荷物20のセンサ側(手前側)部分のみ(点群が密になった部分)が取得され、奥方向にある部分は空白(点群が疎又は無になった部分)となるため、奥方向にある部分を補間する必要がある。そこで、奥方向にある部分の補間の1つの方法として、配列処理部223は、推定配列データにおける有効ボクセルから奥側(左右方向及び上下方向の位置が同じで前後方向の奥側)にあるすべてのボクセルを一律に有効ボクセルにするように補間することができる。ここでの補間は、荷物20は基本的に隙間をあけて詰められることはないことを前提としている。 Further, in the creation of the loading arrangement data 112, the point cloud in the monitoring area of the photographing data 100 acquired by the monitoring area designation unit 221 is mainly only the sensor side (front side) portion of the luggage 20 (the point cloud is dense). Since the part in the back direction is blank (the part where the point cloud is sparse or absent), it is necessary to interpolate the part in the back direction. Therefore, as one method of interpolation of the portion in the back direction, the array processing unit 223 is all located on the back side (the same position in the left-right direction and the up-down direction and the back side in the front-back direction) from the effective voxel in the estimated array data. It is possible to interpolate so that the voxels of are uniformly valid voxels. The interpolation here is based on the premise that the luggage 20 is basically not packed with a gap.
 また、奥方向にある部分の補間の別の方法として、配列処理部223は、特定の位置のボクセルについて最新の推定配列データで無効ボクセルになっているが過去の推定配列データで有効ボクセルになっているときは、当該特定の位置のボクセルについて有効ボクセルとするように補間することができる。なお、配列処理部223は、特定の位置のボクセルについて最新の推定配列データで有効ボクセルになっているが過去の推定配列データで無効ボクセルになっているときは、新たな荷物20が追加されたとして、当該特定の位置のボクセルについて有効ボクセルを選択することができる。また、配列処理部223は、特定の位置のボクセルについて最新の推定配列データと過去の推定配列データとがともに有効ボクセルになっているときは、荷物20が存在したままとして、当該特定の位置のボクセルについて有効ボクセルを選択することができる。さらに、配列処理部223は、特定の位置のボクセルについて最新の推定配列データと過去の推定配列データとがともに無効ボクセルになっているときは、荷物20が元から存在しないとして、当該特定の位置のボクセルについて無効ボクセルを選択することができる。なお、上記の奥方向にある部分の補間の別の方法は、上記の奥方向にある部分の補間の1つの方法と組み合わせて実施してもよい。 Further, as another method of interpolation of the portion in the back direction, the array processing unit 223 is an invalid voxel in the latest estimated voxel data for the voxel at a specific position, but is a valid voxel in the past estimated voxel data. If so, it can be interpolated so that the voxel at the specific position is a valid voxel. In addition, when the sequence processing unit 223 is a valid voxel in the latest estimated sequence data for the voxel at a specific position but is an invalid voxel in the past estimated sequence data, a new baggage 20 is added. As, a valid voxel can be selected for the voxel at the specific position. Further, when the latest estimated sequence data and the past estimated sequence data are both valid voxels for the voxel at the specific position, the array processing unit 223 assumes that the luggage 20 still exists and at the specific position. You can select valid voxels for voxels. Further, when the latest estimated sequence data and the past estimated sequence data are both invalid voxels for the voxel at the specific position, the array processing unit 223 considers that the baggage 20 does not exist from the beginning and determines that the specific position. You can select invalid voxels for voxels in. It should be noted that another method of interpolating the portion in the back direction may be performed in combination with one method of interpolation of the portion in the back direction.
 配列処理部223は、作成された積載配列データ112を結果生成部230の積載容積率算出部232及びボクセル可視化部233に向けて出力する。配列処理部223は、作成された積載配列データ112を保持し、新たな積載配列データ112を作成するときに、保持された積載配列データ112を用いるようにしてもよい。 The arrangement processing unit 223 outputs the created loading arrangement data 112 to the loading volume ratio calculation unit 232 and the voxel visualization unit 233 of the result generation unit 230. The arrangement processing unit 223 may hold the created loading arrangement data 112 and use the held loading arrangement data 112 when creating a new loading arrangement data 112.
 配列データ群格納部224は、配列処理部223で作成された配列データ群110を時系列に格納する機能部である(図2参照)。配列データ群格納部224は、配列処理部223の動作に応じて、配列データ群110の書き込み又は読み出しを行う。 The array data group storage unit 224 is a functional unit that stores the array data group 110 created by the array processing unit 223 in chronological order (see FIG. 2). The array data group storage unit 224 writes or reads the array data group 110 according to the operation of the array processing unit 223.
 画角オクルージョンボクセル計算部225は、撮影部300の画角によって生ずるオクルージョン部分の無効ボクセルの位置を計算する機能部である。画角オクルージョンボクセル計算部225は、撮影部諸元データ格納部226から撮影部諸元データ113(撮影部取付位置情報及び画角情報)を取得する。画角オクルージョンボクセル計算部225は、インタフェイス部240の操作部241を用いてユーザによって指定された監視領域及びボクセル辺長を取得する。画角オクルージョンボクセル計算部225は、取得した撮影部取付位置情報、画角情報、監視領域、及び、ボクセル辺長に基づいて、配列データ111内のボクセルグリッドにおいて、撮影部300の死角となるオクルージョン部分の視覚化不能な無効ボクセル(図6参照)の位置情報(死角無効ボクセル位置情報)を計算する。画角オクルージョンボクセル計算部225は、計算された死角無効ボクセル位置情報を配列データ群格納部224に向けて出力する。 The angle of view occlusion voxel calculation unit 225 is a functional unit that calculates the position of invalid voxels in the occlusion portion caused by the angle of view of the shooting unit 300. The angle of view occlusion voxel calculation unit 225 acquires the imaging unit specification data 113 (imaging unit mounting position information and angle of view information) from the photographing unit specification data storage unit 226. The angle of view occlusion voxel calculation unit 225 acquires the monitoring area and voxel side length specified by the user by using the operation unit 241 of the interface unit 240. The angle of view occlusion voxel calculation unit 225 is an occlusion that becomes a blind spot of the imaging unit 300 in the voxel grid in the array data 111 based on the acquired imaging unit mounting position information, angle of view information, monitoring area, and voxel side length. The position information (blind spot invalid voxel position information) of the invalid voxel (see FIG. 6) whose portion cannot be visualized is calculated. The angle of view occlusion voxel calculation unit 225 outputs the calculated blind spot invalid voxel position information to the array data group storage unit 224.
 撮影部諸元データ格納部226は、撮影部諸元データ113を格納する機能部である(図2参照)。撮影部諸元データ格納部226は、画角オクルージョンボクセル計算部225の動作に応じて撮影部諸元データ113の読み出しを行う。撮影部諸元データ113は、予め設定されたデータであり、撮影部取付位置情報及び画角情報を含む。撮影部取付位置情報は、撮影部300が取り付けられた位置に係る情報である。撮影部取付位置情報として、例えば、コンテナ11内の撮影部300が取り付けられた座標に係る情報とすることができる。画角情報は、撮影部300の水平画角、垂直画角、及び、振り角(光軸の角度)に係る情報である。 The photographing unit specification data storage unit 226 is a functional unit that stores the photographing unit specification data 113 (see FIG. 2). The photographing unit specification data storage unit 226 reads out the photographing unit specification data 113 according to the operation of the angle of view occlusion voxel calculation unit 225. The imaging unit specification data 113 is preset data, and includes imaging unit mounting position information and image angle information. The photographing unit mounting position information is information relating to the position where the photographing unit 300 is attached. The photographing unit mounting position information can be, for example, information related to the coordinates to which the photographing unit 300 in the container 11 is attached. The angle of view information is information related to the horizontal angle of view, the vertical angle of view, and the swing angle (angle of the optical axis) of the photographing unit 300.
 結果生成部230は、積載容積管理部220の配列処理部223からの積載配列データ112に基づいて積載容積率に関する結果を時系列に生成する機能部である(図2参照)。結果生成部230は、警告値指定部231と、積載容積率算出部232と、ボクセル可視化部233と、を有する。 The result generation unit 230 is a functional unit that generates a result regarding the floor area ratio in chronological order based on the load arrangement data 112 from the arrangement processing unit 223 of the load volume management unit 220 (see FIG. 2). The result generation unit 230 includes a warning value designation unit 231, a load floor area ratio calculation unit 232, and a voxel visualization unit 233.
 警告値指定部231は、インタフェイス部240の操作部241を用いてユーザによって指定された警告値を、積載容積率算出部232又はボクセル可視化部233に対して指定する機能部である(図2参照)。ここで、警告値は、警告を行う条件の閾値である。例えば、警告値指定部231は、積載容積率が「90%」以上のときに警告(例えば、トラックバースの待機車両への連絡)する場合は「90%」に係る警告値を積載容積率算出部232に対して指定する。また、警告値指定部231は、コンテナ11内の手前の荷物20と奥側の荷物20との高さの変化が「2m」以上のときに警告(例えば、コンテナ11内での荷崩れ防止)する場合は「2m」に係る警告値をボクセル可視化部233に対して指定する。 The warning value specifying unit 231 is a functional unit that designates a warning value specified by the user using the operation unit 241 of the interface unit 240 to the loading floor area ratio calculation unit 232 or the voxel visualization unit 233 (FIG. 2). reference). Here, the warning value is a threshold value of the condition for giving a warning. For example, when the warning value specifying unit 231 warns when the loaded floor area ratio is "90%" or more (for example, contacting a waiting vehicle of a truck berth), the warning value specifying unit 231 calculates the warning value related to "90%". Designated for unit 232. Further, the warning value specifying unit 231 warns when the change in height between the front luggage 20 and the back luggage 20 in the container 11 is "2 m" or more (for example, prevention of cargo collapse in the container 11). If so, the warning value related to "2m" is specified for the voxel visualization unit 233.
 積載容積率算出部232は、積載容積管理部220の配列処理部223からの積載配列データ112に基づいて積載容積率を算出する機能部である(図2参照)。積載容積率算出部232は、コンテナ11の奥側から順に荷物20が積み込まれていく過程、或いは、手前から順に荷物20が降ろされていく過程の積載容積率を算出する。積載容積率は、例えば、積載配列データ112における全ボクセル数(有効ボクセルか無効ボクセルかは不問)に対する有効ボクセル数の割合(百分率)を算出することにより算出することができる。積載容積率算出部232は、算出された積載容積率に係る情報を表示部242に向けて出力する。積載容積率算出部232は、算出された積載容積率が、警告値指定部231から指定された警告値(例えば、積載容積率90%)以上のときは、警告表示情報を、算出された積載容積率に係る情報とともに表示部242に向けて出力する。なお、荷物20の形状が不定形であるなどのようにコンテナ11内の高さを考慮することが不適切な場合、つまり、荷物20の上方に空間があっても、コンテナ11の床面全面が荷物20で占有された場合は、積載容積率100%とみなしてもよい。 The loading floor area ratio calculation unit 232 is a functional unit that calculates the loading volume ratio based on the loading arrangement data 112 from the arrangement processing unit 223 of the loading volume management unit 220 (see FIG. 2). The loaded floor area ratio calculation unit 232 calculates the loaded floor area ratio in the process in which the cargo 20 is loaded in order from the back side of the container 11 or in the process in which the cargo 20 is unloaded in order from the front side. The loading volume ratio can be calculated, for example, by calculating the ratio (percentage) of the number of effective voxels to the total number of voxels (whether valid or invalid voxels) in the loading arrangement data 112. The loaded floor area ratio calculation unit 232 outputs the calculated information related to the loaded floor area ratio to the display unit 242. When the calculated floor area ratio is equal to or greater than the warning value (for example, 90% of the floor area ratio) specified by the warning value designation unit 231, the loading volume ratio calculation unit 232 displays warning display information for the calculated loading. It is output to the display unit 242 together with the information related to the floor area ratio. When it is inappropriate to consider the height inside the container 11 such as when the shape of the luggage 20 is irregular, that is, even if there is a space above the luggage 20, the entire floor surface of the container 11 is covered. If is occupied by the luggage 20, it may be considered that the loading capacity ratio is 100%.
 ボクセル可視化部233は、積載容積管理部220の配列処理部223からの積載配列データ112に基づいて有効ボクセルを可視化した可視化情報を作成する機能部である(図2参照)。ボクセル可視化部233は、有効ボクセルを可視化するために、積載配列データ112のイメージにグリッド線を描画した可視化情報を作成する。これにより、点群だけでは確認できない積載状況を可視化することができる。ボクセル可視化部233は、作成された可視化情報を表示部242に向けて出力する。ボクセル可視化部233は、作成された可視化情報において、警告値指定部231から指定された警告値(例えば、高さ変化2m)以上の箇所があるときは、警告表示情報を、作成された可視化情報とともに表示部242に向けて出力する。 The voxel visualization unit 233 is a functional unit that creates visualization information that visualizes effective voxels based on the loading arrangement data 112 from the arrangement processing unit 223 of the loading volume management unit 220 (see FIG. 2). The voxel visualization unit 233 creates visualization information in which grid lines are drawn on the image of the loading array data 112 in order to visualize effective voxels. This makes it possible to visualize the loading status that cannot be confirmed only by the point cloud. The voxel visualization unit 233 outputs the created visualization information to the display unit 242. When the voxel visualization unit 233 has a portion of the created visualization information that is equal to or greater than the warning value (for example, height change of 2 m) specified by the warning value specification unit 231, the voxel visualization unit 233 displays the warning display information as the created visualization information. And output to the display unit 242.
 インタフェイス部240は、ユーザと積載容積率計測装置200との間の情報のやりとりを行う機能部である(図2参照)。インタフェイス部240は、操作部241と、表示部242と、を有する。 The interface unit 240 is a functional unit that exchanges information between the user and the loaded floor area ratio measuring device 200 (see FIG. 2). The interface unit 240 has an operation unit 241 and a display unit 242.
 操作部241は、ユーザの操作を受ける機能部である(図2参照)。ユーザは、操作部241を操作(例えば、キーボード操作、マウスのクリック操作、タッチパネルのタップ操作等)することにより入力されたデータ(例えば、文字、数字、位置、領域等)を積載容積管理部220の監視領域指定部221、ボクセル化部222、配列処理部223、又は、画角オクルージョンボクセル計算部225、若しくは、結果生成部230の警告値指定部231に向けて出力する。操作部241は、ユーザの操作により、監視領域指定部221への監視領域の指定を行う。操作部241は、ユーザの操作により、ボクセル化部222へのボクセル辺長の指示を行う。操作部241は、ユーザの操作により、配列処理部223へのインターバル時間の指示を行う。操作部241は、ユーザの操作により、画角オクルージョンボクセル計算部225への監視領域及びボクセル辺長の指定(監視領域指定部221及びボクセル化部222への指定と同じ指定)を行う。操作部241は、ユーザの操作により、警告値指定部231への警告値の指定を行う。操作部241は、ユーザの操作により、本構成機能における全体処理の開始・終了を指示する。 The operation unit 241 is a functional unit that receives user operations (see FIG. 2). The user inputs the data (for example, characters, numbers, positions, areas, etc.) input by operating the operation unit 241 (for example, keyboard operation, mouse click operation, touch panel tap operation, etc.) to the loading volume management unit 220. It is output to the monitoring area designation unit 221, the voxelization unit 222, the arrangement processing unit 223, the angle angle occlusion voxel calculation unit 225, or the warning value designation unit 231 of the result generation unit 230. The operation unit 241 designates the monitoring area to the monitoring area designation unit 221 by the operation of the user. The operation unit 241 instructs the voxelization unit 222 of the voxel side length by the user's operation. The operation unit 241 instructs the array processing unit 223 of the interval time by the operation of the user. The operation unit 241 designates the monitoring area and the voxel side length to the angle of view occlusion voxel calculation unit 225 (the same designation as the designation to the monitoring area designation unit 221 and the voxelization unit 222) by the user's operation. The operation unit 241 designates a warning value to the warning value designating unit 231 by the user's operation. The operation unit 241 instructs the start / end of the entire processing in this configuration function by the operation of the user.
 表示部242は、各種情報を表示する機能部である(図2参照)。表示部242は、前処理部210のノイズ除去部212からの前処理後の撮影データ100を表示する。表示部242は、結果生成部230の積載容積率算出部232からの積載容積率、警告表示情報を表示する。表示部242は、結果生成部230のボクセル可視化部233からの可視化情報、警告表示情報を表示する。警告表示情報の表示の仕方として、例えば、背景の色を変化又は点滅させることができる。なお、表示部242で表示される情報は、スピーカを用いて音声出力してもよく、プリンタで印刷してもよく、他の端末に送信出力してもよい。 The display unit 242 is a functional unit that displays various types of information (see FIG. 2). The display unit 242 displays the shooting data 100 after preprocessing from the noise removing unit 212 of the preprocessing unit 210. The display unit 242 displays the loaded floor area ratio and warning display information from the loaded floor area ratio calculation unit 232 of the result generation unit 230. The display unit 242 displays the visualization information and the warning display information from the voxel visualization unit 233 of the result generation unit 230. As a method of displaying the warning display information, for example, the background color can be changed or blinked. The information displayed on the display unit 242 may be output by voice using a speaker, printed by a printer, or transmitted and output to another terminal.
 次に、撮影部の仕様から生じる死角となるオクルージョン部分の補間について、図面を用いて説明する。図3は、撮影部の撮影可能範囲を模式的に示したイメージ図であり、(A)は斜視図、(B)は図3(A)の矢視D1から見た図、(C)は図3(A)の矢視D2から見た図である。図4は、コンテナ内の荷物を撮影部で撮影する状況の一例を模式的に示したイメージ図であり、(A)は図3(A)の矢視D1から見た図、(B)は図3(A)の矢視D2から見た図である。図5は、コンテナ内の荷物を撮影部で撮影したときの点群の一例のイメージ図であり、(A)は図3(A)の矢視D1から見た図、(B)は図3(A)の矢視D2から見た図、(C)は図3(A)の矢視D3から見た図である。図6は、撮影部で撮影された画像イメージから可視化することが可能な範囲を模式的に示した図3(A)の矢視D2から見たイメージ図である。図7は、コンテナ内の荷物を積載する過程での撮影部の可視化可能な荷物の可視化情報の変化を模式的に示したイメージ図である。図8~図10は、実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の撮影からボクセル補間までの流れを模式的に示したイメージ図である。 Next, the interpolation of the occlusion part, which is a blind spot caused by the specifications of the photographing unit, will be explained using drawings. 3A and 3B are image views schematically showing a shooting range of a photographing unit, FIG. 3A is a perspective view, FIG. 3B is a view seen from the arrow D1 of FIG. 3A, and FIG. 3C is a view. It is a figure seen from the arrow view D2 of 3 (A). 4A and 4B are image views schematically showing an example of a situation in which a baggage in a container is photographed by a photographing unit, FIG. 4A is a view seen from arrow D1 of FIG. 3A, and FIG. 4B is a diagram. It is a figure seen from the arrow view D2 of 3 (A). 5A and 5B are image views of an example of a point cloud when the luggage in the container is photographed by the photographing unit, FIG. 5A is a view seen from the arrow D1 of FIG. 3A, and FIG. A is a view seen from the arrow D2 of FIG. 3 (C), and (C) is a view seen from the arrow D3 of FIG. 3 (A). FIG. 6 is an image diagram viewed from the arrow D2 of FIG. 3A, which schematically shows a range that can be visualized from an image image taken by the photographing unit. FIG. 7 is an image diagram schematically showing a change in the visualization information of the baggage that can be visualized by the photographing unit in the process of loading the baggage in the container. 8 to 10 are image diagrams schematically showing a flow from photographing of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment to voxel interpolation.
 撮影部300は、仕様として水平方向及び垂直方向に画角(水平画角及び垂直画角)を有し、奥行き方向に向かう連続した各平面内で長方形又は楕円形の画角範囲内を撮影する(図3(A)~(C)参照)。画角範囲が楕円形となるのは、一部のLIDARである。撮影部300は、撮影部300と計測対象部(図示せず)との間に遮蔽物(図示せず)があれば撮影部300から遮蔽物までの距離を測定し、遮蔽物より奥にある計測対象物は撮影されない。撮影部300の画角範囲は、撮影部300に近づけば近づくほど狭い範囲になる。撮影部300は、ある至近距離(機種によるが数十cm~1m)になると、撮影不能になる。トラックのコンテナ11内という狭い空間で撮影部300を使用した場合、荷積みの量によって狭い範囲しか撮影できなくなるケースが発生する(図4(A)、(B)参照)。図4(A)では撮影部300の左右側のコンテナ11側面に近い部分がオクルージョン(遮蔽領域)となり、図5(A)、(C)のように左右側のコンテナ11側面に近い部分で点群のないオクルージョンとなる。図4(B)ではコンテナ11底面に近い部分がオクルージョンとなり、図5(B)、(C)のようにコンテナ11底面に近い部分で点群のないオクルージョンとなる。 The photographing unit 300 has an angle of view (horizontal angle of view and vertical angle of view) in the horizontal direction and the vertical direction as a specification, and photographs a rectangular or elliptical angle of view within each continuous plane toward the depth direction. (See FIGS. 3A to 3C). It is some LIDAR that the angle of view range is elliptical. The photographing unit 300 measures the distance from the photographing unit 300 to the shield if there is a shield (not shown) between the photographing unit 300 and the measurement target unit (not shown), and is located behind the shield. The object to be measured is not photographed. The angle of view range of the photographing unit 300 becomes narrower as it gets closer to the photographing unit 300. When the shooting unit 300 reaches a certain close distance (several tens of centimeters to 1 m depending on the model), shooting becomes impossible. When the photographing unit 300 is used in a narrow space such as inside the container 11 of a truck, there may be a case where only a narrow range can be photographed depending on the amount of loading (see FIGS. 4A and 4B). In FIG. 4A, the portion close to the side surface of the container 11 on the left and right sides of the photographing unit 300 becomes an occlusion (shielding area), and the portion close to the side surface of the container 11 on the left and right sides as shown in FIGS. 5A and 5C is a point. It will be a point cloudless occlusion. In FIG. 4 (B), the portion near the bottom surface of the container 11 is an occlusion, and as shown in FIGS. 5 (B) and 5 (C), the portion near the bottom surface of the container 11 is an occlusion without a point cloud.
 撮影部300で撮影された画像データ(点群)のボクセル化によって可視化可能な可視化可能範囲は図6のようになる。ボクセル化部(図2の222)で有効化されうる有効ボクセルは可視化可能範囲内にあり、有効化されることがない無効ボクセルは可視化可能範囲外にある。図6の例では垂直画角に特化しているが、水平画角も考慮して処理される。図6の可視化可能範囲は、監視領域指定部(図2の221)に指定された監視領域内にある。このような視覚化可能範囲は、撮影部300の取り付け位置及び振り角(監視領域との相対的な位置、及び、光軸の角度)、並びに、使用する撮影部300の特有の撮影可能最低距離及び画角の要素から計算でき、ボクセルグリッドにおける死角や撮影不可能領域も同じ要素から計算することができる。 The visible range that can be visualized by voxelizing the image data (point cloud) taken by the photographing unit 300 is as shown in FIG. The valid voxels that can be activated by the voxelization unit (222 in FIG. 2) are within the visible range, and the invalid voxels that are not activated are outside the visible range. In the example of FIG. 6, the vertical angle of view is specialized, but the horizontal angle of view is also taken into consideration when processing. The visible range of FIG. 6 is within the monitoring area designated by the monitoring area designation unit (221 of FIG. 2). Such a visualizeable range includes the mounting position and swing angle (position relative to the monitoring area and the angle of the optical axis) of the photographing unit 300, and the minimum imageable distance peculiar to the photographing unit 300 to be used. It can be calculated from the elements of the angle of view and the blind spot and the non-photographable area in the voxel grid can also be calculated from the same element.
 コンテナ内の荷物を積載する過程での撮影部の可視化可能な荷物の可視化情報の変化の一例を図7に示す。撮影部300の画角の影響がないコンテナの奥の荷物は過去データからの推定補間を行うことができるが、荷物が手前にあるほど、撮影できていない部分(図7の視覚化不能な荷物20bに相当)が多くなり、過去データから推定補間ができなくなり、実積載量との乖離が大きくなる。 FIG. 7 shows an example of changes in the visualization information of the luggage that can be visualized by the photographing unit in the process of loading the luggage in the container. The luggage in the back of the container, which is not affected by the angle of view of the shooting unit 300, can be estimated and interpolated from the past data, but the closer the luggage is to the front, the more the portion that cannot be photographed (the luggage that cannot be visualized in FIG. 7). (Equivalent to 20b) increases, estimation interpolation cannot be performed from past data, and the deviation from the actual load capacity becomes large.
 そこで、図8~図10のように所定の条件を満たす無効ボクセルを有効化する補間を行う。図8~図10では、まず、図8(A)、図9(A)、図10(A)のように撮影部300でコンテナ11内の荷物20を撮影し、撮影された撮影データから図8(B)、図9(B)、図10(B)のような点群を取得する。次に、当該点群がある位置のボクセルを有効ボクセルとした配列データを作成し、作成された配列データのボクセルを、図8(C)、図9(C)、図10(C)のように正面側から奥方向に投射した投射配列データを作成する。次に、投射配列データにおいて、死角となる無効ボクセルの直上の各★印(図10(C)では各×印を含む)をつけた有効ボクセルと同じ面にある無効ボクセルを、図8(D)、図9(D)、図10(D)のように有効化する。ただし、図9(C)(D)のように奥の有効ボクセルの下であってその手前に有効ボクセルがある場合、奥の有効ボクセルの下の無効ボクセルはこの段階では有効化せず、手前の最前の有効ボクセルの下の無効ボクセルを有効化する。なお、死角にある無効ボクセルの手前方向をどれだけ有効にするかは、荷積み進捗方向の平面で時系列データを確認し、単位時間あたりの手前方向への進捗増分などから判断する。 Therefore, as shown in FIGS. 8 to 10, interpolation is performed to enable invalid voxels that satisfy predetermined conditions. 8 to 10, first, as shown in FIGS. 8 (A), 9 (A), and 10 (A), the image pickup unit 300 photographs the luggage 20 in the container 11, and the photographed data is used as a diagram. The point cloud as shown in 8 (B), 9 (B), and 10 (B) is acquired. Next, sequence data is created with the voxel at the position where the point cloud is located as an effective voxel, and the voxels of the created sequence data are as shown in FIGS. 8 (C), 9 (C), and 10 (C). Create projection array data projected from the front side to the back. Next, in the projection sequence data, the invalid voxels on the same surface as the valid voxels marked with a star (including each x mark in FIG. 10C) directly above the invalid voxels that serve as blind spots are shown in FIG. 8 (D). ), FIG. 9 (D), and FIG. 10 (D). However, if there is an effective voxel under the effective voxel in the back and in front of it as shown in FIGS. 9 (C) and 9 (D), the invalid voxel under the effective voxel in the back is not activated at this stage and is in front. Enables invalid voxels under the previous valid voxels in. In addition, how much the front direction of the invalid voxel in the blind spot is valid is determined by checking the time series data on the plane of the loading progress direction and determining the progress increment in the front direction per unit time.
 まとめると、撮影部300のスペック上の画角から、撮影できない範囲を把握し、所定の条件を満たす無効ボクセルを有効化(補間)する。過去データで積荷がある部分(点群が取得できている部分)が消失し、撮影部300から離れる方向の奥行き側にも点群が存在しない場合は、撮影できない手前側に荷物が置かれたものと判定する。また、荷物は空中に浮遊しない(上方で点群を取得できた)、あるいは、荷物が置かれていると判定された部分の下方向には荷物が存在すると判定する。なお、撮影部300の上下左右と実世界の上下左右は紐づける必要がある。さらに、荷崩れ防止の観点から、通常、荷物の積み込みは左右壁側から実施されるため、中央部分に荷物があれば、左右方向にも荷物が存在すると判定する。 In summary, from the angle of view on the specifications of the shooting unit 300, the range that cannot be shot is grasped, and invalid voxels that satisfy the predetermined conditions are enabled (interpolated). If the part with cargo (the part where the point cloud can be acquired) disappears in the past data and the point cloud does not exist on the depth side in the direction away from the shooting unit 300, the luggage is placed on the front side where shooting is not possible. Judge as a thing. In addition, it is determined that the luggage does not float in the air (a point cloud can be obtained above), or that the luggage exists in the downward direction of the portion where the luggage is determined to be placed. It is necessary to link the top, bottom, left, and right of the photographing unit 300 with the top, bottom, left, and right of the real world. Further, from the viewpoint of preventing the load from collapsing, the load is usually loaded from the left and right wall sides, so if there is a load in the central portion, it is determined that the load also exists in the left and right directions.
 実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の動作について図面を用いて説明する。図11は、実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の動作を模式的に示したフローチャート図である。なお、積載容積率計測システム及び積載容積率計測装置の構成部については図1及び図2を参照されたい。 The operation of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment will be described with reference to the drawings. FIG. 11 is a flowchart illustrating the operation of the loaded floor area ratio measuring device in the loaded floor area ratio measuring system according to the first embodiment. Please refer to FIGS. 1 and 2 for the components of the loaded floor area ratio measuring system and the loaded floor area ratio measuring device.
 まず、積載容積率計測装置200のインタフェイス部240の操作部241は、ユーザの操作により、パラメータを設定する(ステップA1)。パラメータの設定では、監視領域指定部221への監視領域の指定、ボクセル化部222へのボクセル辺長の指定、配列処理部223への配列データ111を関連付けるインターバル時間の指定、画角オクルージョンボクセル計算部225への監視領域及びボクセル辺長の指定、警告値指定部231への警告値(積載容積率、荷物の高さ変化)の指定などが行われる。なお、監視領域の指定は、例えばコンテナの内寸に合わせた、計測が必要な領域全体を指定する。また、画角オクルージョンボクセル計算部225への監視領域及びボクセル辺長の指定は、監視領域指定部221及びボクセル化部222への監視領域及びボクセル辺長の指定と同じである。 First, the operation unit 241 of the interface unit 240 of the load floor area ratio measuring device 200 sets the parameters by the user's operation (step A1). In the parameter settings, the monitoring area is specified in the monitoring area specification unit 221, the voxel side length is specified in the voxelization unit 222, the interval time for associating the array data 111 is specified in the array processing unit 223, and the angle occlusion voxel calculation. The monitoring area and voxel side length are designated to the unit 225, and the warning value (loading volume ratio, change in height of luggage) is specified to the warning value designating unit 231. The monitoring area is specified for the entire area that needs to be measured, for example, according to the internal dimensions of the container. Further, the designation of the monitoring area and the voxel side length to the angle of view occlusion voxel calculation unit 225 is the same as the designation of the monitoring area and the voxel side length to the monitoring area designation unit 221 and the voxelization unit 222.
 ステップA1の後、又は、積載容積率が変化している場合(ステップA12のYES)、積載容積率計測装置200の前処理部210のフォーマット変換部211は、撮影部300から撮影データ100(3次元点群)を逐次取得する(ステップA2)。ここで、撮影部300は、トラック10のコンテナ11内全域を撮影しているものとする。 After step A1 or when the loaded floor area ratio has changed (YES in step A12), the format conversion unit 211 of the preprocessing unit 210 of the loaded floor area ratio measuring device 200 has the imaging data 100 (3) from the imaging unit 300. Dimensional point cloud) is sequentially acquired (step A2). Here, it is assumed that the photographing unit 300 photographs the entire area inside the container 11 of the truck 10.
 次に、フォーマット変換部211は、撮影データ100のフォーマットを、積載容積率計測装置200において共通に使える共通フォーマットに変換する(ステップA3)。 Next, the format conversion unit 211 converts the format of the shooting data 100 into a common format that can be commonly used in the loaded floor area ratio measuring device 200 (step A3).
 次に、積載容積率計測装置200の前処理部210のノイズ除去部212は、フォーマット変換部211からの撮影データ100における点群の中からノイズ(計測に不要な点群)を除去する(ステップA4)。 Next, the noise removing unit 212 of the preprocessing unit 210 of the loaded floor area ratio measuring device 200 removes noise (point cloud unnecessary for measurement) from the point cloud in the shooting data 100 from the format conversion unit 211 (step). A4).
 次に、積載容積率計測装置200の積載容積管理部220の監視領域指定部221は、ノイズ除去部212からの撮影データ100のうち、操作部241によって指定された監視領域に存在する点群を取得する(ステップA5)。 Next, the monitoring area designation unit 221 of the loading volume management unit 220 of the loading volume ratio measuring device 200 determines a point cloud existing in the monitoring area designated by the operation unit 241 of the photographing data 100 from the noise removing unit 212. Acquire (step A5).
 次に、積載容積率計測装置200の積載容積管理部220のボクセル化部222は、監視領域指定部221で取得された撮影データ100の監視領域内の点群をボクセル化した配列データ111を作成する(ステップA6)。ここで、配列データ111の作成では、監視領域を、操作部241によって指定されたボクセル辺長のボクセルで分割された仮想的なボクセルグリッドを作成し、作成されたボクセルグリッドにおけるボクセルのうち、撮影データ100の監視領域内の点群の点数が所定数以上存在するボクセルを有効ボクセルとし、点群の点数が所定数未満のボクセルを無効ボクセルとした配列データ111を作成することができる。 Next, the boxing unit 222 of the loading volume management unit 220 of the loading volume ratio measuring device 200 creates an array data 111 in which the point cloud in the monitoring area of the photographing data 100 acquired by the monitoring area designation unit 221 is voxelized. (Step A6). Here, in the creation of the array data 111, a virtual voxel grid in which the monitoring area is divided by the voxels having the voxel side length specified by the operation unit 241 is created, and the voxels in the created voxel grid are photographed. It is possible to create array data 111 in which voxels having a predetermined number or more of points in the monitoring area of the data 100 are used as valid voxels and voxels having less than a predetermined number of points in the point group are used as invalid voxels.
 次に、積載容積率計測装置200の画角オクルージョンボクセル計算部225は、死角無効ボクセル位置情報(撮影部300の死角となるオクルージョン部分の視覚化不能な無効ボクセルの位置情報)を計算する(ステップA7)。ここで、死角無効ボクセル位置情報の計算では、操作部241によって指定された監視領域及びボクセル辺長、並びに、撮影部諸元データ格納部226から取得した撮影部諸元データ113(撮影部取付位置情報及び画角情報)に基づいて、管理領域内のボクセル辺長のボクセルで分割されたボクセルグリッドにおける死角無効ボクセルの位置情報を計算する。 Next, the angle of view occlusion voxel calculation unit 225 of the loaded floor area ratio measuring device 200 calculates the blind spot invalid voxel position information (position information of the invalid voxel that cannot be visualized in the occlusion portion that becomes the blind spot of the photographing unit 300) (step). A7). Here, in the calculation of the blind spot invalid voxel position information, the monitoring area and voxel side length designated by the operation unit 241 and the imaging unit specification data 113 (photographing unit specification data 113 (photographing unit mounting position) acquired from the photographing unit specification data storage unit 226). Based on the information and the angle of view information), the position information of the blind spot invalid voxel in the voxel grid divided by the voxel of the voxel side length in the management area is calculated.
 次に、積載容積率計測装置200の積載容積管理部220の配列処理部223は、ボクセル化部222からの時系列の複数の配列データ111、画角オクルージョンボクセル計算部225からの死角無効ボクセル位置情報に基づいて、所定の条件を満たすオクルージョン部分(死角、物体の影等になる部分を含む)の無効ボクセルを有効ボクセルとするように補間した積載配列データ112を作成する(ステップA8)。ステップA7の詳細については後述する。 Next, the arrangement processing unit 223 of the loading volume management unit 220 of the loading volume ratio measuring device 200 has a plurality of time-series array data 111 from the voxelization unit 222 and a blind spot invalid voxel position from the angle occlusion voxel calculation unit 225. Based on the information, the loading array data 112 interpolated so that the invalid voxels of the occlusion portion (including the portion that becomes a blind spot, the shadow of an object, etc.) satisfying a predetermined condition is an effective voxel is created (step A8). The details of step A7 will be described later.
 ここで、積載配列データ112の作成では、ボクセル化部222からの配列データ111を、操作部241によって指定されたインターバル時間の間隔ごとに、当該インターバル時間分の配列データ111を時系列に配列して関連付けた配列データ群110を作成し、作成された配列データ群110を配列データ群格納部224に格納し、格納された配列データ群110の各配列データ111を比較することでオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを配列データ群110ごとに作成し、作成された推定配列データの有効ボクセルに基づいて、その真下方向、左右方向、及び奥方向にある無効ボクセル(死角無効ボクセルを含む)を有効化(補間)した積載配列データ112を作成する。 Here, in the creation of the loading array data 112, the array data 111 from the box cell conversion unit 222 is arranged in time series for each interval time interval specified by the operation unit 241. The associated sequence data group 110 is created, the created sequence data group 110 is stored in the sequence data group storage unit 224, and the occlusion part is excluded by comparing each sequence data 111 of the stored sequence data group 110. Estimated sequence data that estimates the valid boxels in the above state is created for each sequence data group 110, and based on the valid boxels of the created estimated sequence data, invalid boxels (blind spots) in the downward direction, the left-right direction, and the back direction are created. The loading array data 112 with (including invalid boxels) enabled (interpolated) is created.
 次に、積載容積率計測装置200の結果生成部230の積載容積率算出部232は、積載容積管理部220の配列処理部223からの積載配列データ112に基づいて積載容積率を算出する(ステップA9)。積載容積率の算出の際、算出された積載容積率が、警告値指定部231から指定された警告値以上であるか否かを判定する。 Next, the load volume ratio calculation unit 232 of the result generation unit 230 of the load volume ratio measuring device 200 calculates the load volume ratio based on the load arrangement data 112 from the arrangement processing unit 223 of the load volume management unit 220 (step). A9). When calculating the loaded floor area ratio, it is determined whether or not the calculated loaded floor area ratio is equal to or greater than the warning value specified by the warning value specifying unit 231.
 次に、積載容積率計測装置200の結果生成部230のボクセル可視化部233は、積載容積管理部220の配列処理部223からの積載配列データ112に基づいて有効ボクセルを可視化した可視化情報を作成する(ステップA10)。可視化情報の作成の際、作成された可視化情報において、警告値指定部231から指定された警告値以上の高さの変化があるか否かを判定する。ここで、可視化情報の作成では、積載配列データ112のイメージにグリッド線を描画することができる。なお、ステップA10は、ステップA9と同時に行ってもよく、ステップA9より先に行ってもよい。 Next, the voxel visualization unit 233 of the result generation unit 230 of the load volume ratio measuring device 200 creates visualization information that visualizes effective voxels based on the load arrangement data 112 from the arrangement processing unit 223 of the load volume management unit 220. (Step A10). When creating the visualization information, it is determined whether or not there is a change in height equal to or higher than the warning value specified by the warning value specifying unit 231 in the created visualization information. Here, in the creation of visualization information, grid lines can be drawn on the image of the loading array data 112. In addition, step A10 may be performed at the same time as step A9, or may be performed before step A9.
 次に、積載容積率計測装置200のインタフェイス部240の表示部242は、積載容積率算出部232からの積載容積率(判定結果が警告値以上の積載容積率である場合は警告表示情報)、及び、ボクセル可視化部233からの可視化情報(判定結果が警告値以上の高さの変化がある場合は警告表示情報)を表示する(ステップA11)。表示された積載容積率の値は、積載容積率計測装置200に保存する。 Next, the display unit 242 of the interface unit 240 of the load floor area ratio measuring device 200 is the load volume ratio from the load volume ratio calculation unit 232 (warning display information when the determination result is a load volume ratio equal to or higher than the warning value). , And the visualization information from the boxel visualization unit 233 (warning display information when the determination result has a change in height equal to or greater than the warning value) is displayed (step A11). The displayed value of the loaded floor area ratio is stored in the loaded floor area ratio measuring device 200.
 次に、積載容積率計測装置200は、今回表示した積載容積率の値が前回表示した積載容積率の値から変化しているか否かを判定する(ステップA12)。積載容積率の値の変化は、所定回数(例えば、3回)変化がなかったときに変化なしとすることができる。積載容積率の値の変化がある場合(ステップA12のYES)、ステップA2に戻る。積載容積率の値の変化がない場合(ステップA12のNO)、終了する。 Next, the loaded floor area ratio measuring device 200 determines whether or not the value of the loaded floor area ratio displayed this time has changed from the value of the loaded floor area ratio displayed last time (step A12). The change in the value of the loaded floor area ratio can be regarded as no change when there is no change a predetermined number of times (for example, three times). If there is a change in the value of the loaded floor area ratio (YES in step A12), the process returns to step A2. If there is no change in the value of the loaded floor area ratio (NO in step A12), the process ends.
 次に、実施形態1に係る積載容積率計測システムにおける積載容積率計測装置のステップA7の詳細な動作について図面を用いて説明する。図12は、実施形態1に係る積載容積率計測システムにおける積載容積率計測装置の図11のステップA7の詳細な動作を模式的に示したフローチャート図である。 Next, the detailed operation of step A7 of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment will be described with reference to the drawings. FIG. 12 is a flowchart illustrating the detailed operation of step A7 of FIG. 11 of the floor area ratio measuring device in the floor area ratio measuring system according to the first embodiment.
 ステップA7で無効ボクセル位置情報を計算した後、積載容積率計測装置200の積載容積管理部220の配列処理部223は、ボクセル化部222からの時系列の複数の配列データ111において監視領域内に有効ボクセルが存在するか否かを判断する(ステップB1)。監視領域内に有効ボクセルが存在しない場合(ステップB1のNO)、ステップB9に進む。 After calculating the invalid voxel position information in step A7, the arrangement processing unit 223 of the loading volume management unit 220 of the loading volume ratio measuring device 200 enters the monitoring area in the plurality of time-series array data 111 from the boxing unit 222. It is determined whether or not a valid voxel exists (step B1). If there is no valid voxel in the monitoring area (NO in step B1), the process proceeds to step B9.
 監視領域内に有効ボクセルが存在する場合(ステップB1のYES)、配列処理部223は、時系列の複数の配列データ111に基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、作成された推定配列データにおける有効ボクセルを2次元平面に射影(例えば、図8(C)、図9(C)、図10(C)参照)する(ステップB2)。 When there is an effective voxel in the monitoring area (YES in step B1), the sequence processing unit 223 hides the measurement target behind the obstacle in the foreground based on the plurality of sequence data 111 in the time series. Estimated sequence data that estimates the effective voxels in a state where the obscured occlusion part is excluded is created, and the effective voxels in the created estimated sequence data are projected onto a two-dimensional plane (for example, FIGS. 8 (C) and 9 (for example). C), see FIG. 10 (C)) (step B2).
 ステップB2の後、配列処理部223は、射影された2次元平面の全領域が有効ボクセルである否かを判断する(ステップB3)。2次元平面の全領域が有効ボクセルである場合(ステップB3のYES)、ステップB8に進む。 After step B2, the array processing unit 223 determines whether or not the entire region of the projected two-dimensional plane is an effective voxel (step B3). If the entire area of the two-dimensional plane is a valid voxel (YES in step B3), the process proceeds to step B8.
 2次元平面の一部が有効ボクセルでない場合(ステップB3のNO)、配列処理部223は、配列データ群格納部224から配列データ群110の過去データを読み出して参照する(ステップB4)。 When a part of the two-dimensional plane is not a valid voxel (NO in step B3), the array processing unit 223 reads the past data of the array data group 110 from the array data group storage unit 224 and refers to it (step B4).
 ステップB4の後、配列処理部223は、ステップA7で計算された死角無効ボクセル位置情報を用いて、過去データの最前の有効ボクセルから所定距離以内に、現在の配列データ111における3次元ボクセルの最前の有効ボクセルと同じ面にある死角無効ボクセルが存在するか否かを判断する(ステップB5)。過去データの最前の有効ボクセルから所定距離以内に死角無効ボクセルが存在しない場合(ステップB5のNO)、ステップB8に進む。 After step B4, the sequence processing unit 223 uses the blind spot invalid voxel position information calculated in step A7 to be within a predetermined distance from the previous valid voxel of the past data, and the front of the three-dimensional voxel in the current sequence data 111. It is determined whether or not there is a blind spot invalid voxel on the same surface as the effective voxel of (step B5). If there is no blind spot invalid voxel within a predetermined distance from the previous valid voxel of the past data (NO in step B5), the process proceeds to step B8.
 過去データの最前の有効ボクセルから所定距離以内に死角無効ボクセルが存在する場合(ステップB5のYES)、配列処理部223は、現在の配列データ111における3次元ボクセルの最前の有効ボクセルの左右方向に存在するすべての死角無効ボクセルを有効ボクセルに有効化する(ステップB6)。 When the blind spot invalid voxel exists within a predetermined distance from the front valid voxel of the past data (YES in step B5), the sequence processing unit 223 moves the voxel in the left-right direction of the front valid voxel of the three-dimensional box cell in the current sequence data 111. Enable all existing blind spot invalid voxels into valid voxels (step B6).
 ステップB6の後、配列処理部223は、現在の配列データ111における3次元ボクセルの最前の有効ボクセル(ステップB6で有効化された有効ボクセルを含む)の下方向にある全ての死角無効ボクセルを有効ボクセルに有効化する(ステップB7)。 After step B6, the sequence processing unit 223 validates all the blind spot invalid voxels below the front valid voxels of the 3D voxels in the current sequence data 111 (including the valid voxels activated in step B6). Activate for voxels (step B7).
 全領域が有効ボクセルである場合(ステップB3のYES)、過去データの最前の有効ボクセルから所定距離以内に死角無効ボクセルが存在しない場合(ステップB5のNO)、又は、ステップB7の後、配列処理部223は、現在の配列データ111における3次元ボクセルの最前の有効ボクセル(ステップB6、ステップB7で有効化された有効ボクセルを含む)の奥方向にある全ての無効ボクセルを有効ボクセルに有効化し(ステップB8)、その後、図11のステップA9に進む。 When all regions are valid voxels (YES in step B3), when there is no blind spot invalid voxel within a predetermined distance from the previous valid voxel in the past data (NO in step B5), or after step B7, sequence processing Part 223 activates all invalid voxels in the depth direction of the front valid voxels (including the valid voxels activated in steps B6 and B7) in the current sequence data 111 to the valid voxels (the valid voxels). Step B8), and then proceed to step A9 in FIG.
 監視領域内に有効ボクセルが存在しない場合(ステップB1のNO)、配列処理部223は、ボクセル化部222からの時系列の複数の配列データ111において監視領域外に有効ボクセルが存在するか否かを判断する(ステップB9)。 When there is no effective voxel in the monitoring area (NO in step B1), the sequence processing unit 223 determines whether or not there is an effective voxel outside the monitoring area in the plurality of time-series sequence data 111 from the box cell conversion unit 222. Is determined (step B9).
 監視領域外に有効ボクセルが存在する場合(ステップB9のYES)、又は、荷物の積載がない場合(ステップB12のNO)、配列処理部223は、監視領域内に荷物の積載がないと判断し(ステップB10)、その後、図11のステップA9に進む。 If there is an effective voxel outside the monitoring area (YES in step B9), or if there is no loading of luggage (NO in step B12), the array processing unit 223 determines that there is no loading of luggage in the monitoring area. (Step B10), and then proceed to step A9 in FIG.
 監視領域外に有効ボクセルが存在しない場合(ステップB9のNO)、配列処理部223は、配列データ群格納部224から配列データ群110の過去データを読み出して参照する(ステップB11)。 When there is no effective voxel outside the monitoring area (NO in step B9), the sequence processing unit 223 reads the past data of the sequence data group 110 from the sequence data group storage unit 224 and refers to it (step B11).
 ステップB11の後、配列処理部223は、配列データ群110の過去データにおいて監視領域内に荷物の積載があるか否かを判断する(ステップB12)。荷物の積載がない場合(ステップB12のNO)、ステップB10に進む。 After step B11, the array processing unit 223 determines whether or not there is a load in the monitoring area in the past data of the array data group 110 (step B12). If no luggage is loaded (NO in step B12), the process proceeds to step B10.
 荷物の積載がある場合(ステップB12のYES)、配列処理部223は、過去データ分の有効ボクセルに対応する、現在の配列データ111における3次元ボクセルの無効ボクセルを有効化する(ステップB13)。 When there is a load of luggage (YES in step B12), the array processing unit 223 activates the invalid voxels of the three-dimensional voxels in the current array data 111 corresponding to the valid voxels for the past data (step B13).
 ステップB13の後、配列処理部223は、過去データを参照して有効ボクセルが存在しない状態が所定時間以上継続しているか否かを判断する(ステップB14)。 After step B13, the array processing unit 223 refers to the past data and determines whether or not the state in which no valid voxel exists continues for a predetermined time or longer (step B14).
 有効ボクセルが存在しない状態が所定時間以上継続している場合(ステップB14のYES)、配列処理部223は、監視領域の全体に積載が済んだと判断し(ステップB15)、その後、図11のステップA9に進む。 When the state in which the effective voxels do not exist continues for a predetermined time or longer (YES in step B14), the array processing unit 223 determines that the entire monitoring area has been loaded (step B15), and then, in FIG. 11, FIG. Proceed to step A9.
 有効ボクセルが存在しない状態が所定時間以上継続していない場合(ステップB14のNO)、配列処理部223は、監視領域への荷物の積載中の可能性があると判断し(ステップB16)、その後、図11のステップA9に進む。 If the absence of valid voxels has not continued for a predetermined time or longer (NO in step B14), the sequence processing unit 223 determines that the load may be being loaded in the monitoring area (step B16), and then , Proceed to step A9 in FIG.
 実施形態1によれば、撮影部300で撮影された撮影データ100の監視領域の点群をボクセル化し、監視領域における最前の有効ボクセルの左右方向及び下方にある全ての死角無効ボクセルを有効化し、奥方向にある全ての無効ボクセルを有効化して積載容積率を算出することで、撮影部の至近距離に荷物があっても、撮影部を複数台用いないで容積ベースでの荷物の計測積載量と実積載量との乖離を抑えることに貢献することができる。これにより、積載容積率を自動的に監視しつつ、荷物全体の状況を正確に認識することに貢献することができる。また、撮影部300の仕様から生じるオクルージョンを除去することができるとともに、複数台の撮影部300を設置して死角が生じる場合でも適用可能になり、撮影部300をトラックに近づけて設置したり、撮影部300をコンテナ内へ設置してもより適切な積載の可視化が可能になるので、撮影部300の設置場所のフレキシビリティ(柔軟性、融通性)が高まる。 According to the first embodiment, the point cloud of the monitoring area of the photographing data 100 photographed by the photographing unit 300 is voxelized, and all the blind spot invalid voxels in the left-right direction and below the front effective voxel in the monitoring area are activated. By enabling all invalid voxels in the back direction and calculating the loading volume ratio, even if there is luggage in the immediate vicinity of the shooting unit, the measured loading capacity of the luggage on a volume basis without using multiple imaging units It can contribute to suppressing the discrepancy between the actual load capacity and the actual load capacity. This can contribute to accurately recognizing the situation of the entire luggage while automatically monitoring the loaded floor area ratio. In addition, occlusion caused by the specifications of the photographing unit 300 can be removed, and it can be applied even when a plurality of photographing units 300 are installed and a blind spot occurs, so that the photographing unit 300 can be installed close to the truck. Even if the photographing unit 300 is installed in the container, more appropriate visualization of the loading becomes possible, so that the flexibility (flexibility, flexibility) of the installation location of the photographing unit 300 is enhanced.
 また、実施形態1によれば、コンテナ11の奥から順次手前方向に積み込まれる荷物20、あるいは、逆に手前方向から順次下ろされる荷物20について、積載容積および積載容積率を定量的に可視化することができる。これにより、荷物20の積み込みを実施する人員の個別判断に依存しない、監視者が判断しやすいデータをリアルタイムに提供することができる。 Further, according to the first embodiment, the loading volume and the loading volume ratio are quantitatively visualized for the cargo 20 that is sequentially loaded from the back of the container 11 toward the front, or conversely, the cargo 20 that is sequentially unloaded from the front. Can be done. As a result, it is possible to provide data that can be easily determined by the observer in real time, without depending on the individual determination of the personnel who load the cargo 20.
 また、実施形態1によれば、撮影データ100を時系列に解析することで、撮影部300を1台のみ使用することで発生する作業中の人物などの一時的なオクルージョン要因による結果への影響を低減することができる。 Further, according to the first embodiment, by analyzing the shooting data 100 in chronological order, the influence on the result due to a temporary occlusion factor such as a person who is working generated by using only one shooting unit 300. Can be reduced.
 また、実施形態1によれば、撮影データ100の監視領域の点群をボクセル化(随時データを単位グリッドで分割したボクセルの配列へと変換)することで、計算量を削減することができ、疎になったデータの補間処理や、オクルージョンで欠落した部分の推定処理を簡略化することができ、高速な演算を行うことができる。 Further, according to the first embodiment, the amount of calculation can be reduced by converting the point cloud of the monitoring area of the photographing data 100 into voxels (converting the data at any time into an array of voxels divided by a unit grid). Interpolation processing of sparse data and estimation processing of missing parts due to occlusion can be simplified, and high-speed calculation can be performed.
[実施形態2]
 実施形態2に係る積載容積率計測装置について図面を用いて説明する。図13は、実施形態2に係る積載容積率計測装置の構成を模式的に示したブロック図である。
[Embodiment 2]
The loaded floor area ratio measuring device according to the second embodiment will be described with reference to the drawings. FIG. 13 is a block diagram schematically showing the configuration of the loaded floor area ratio measuring device according to the second embodiment.
 積載容積率計測装置200は、監視領域内の計測対象物の積載容積率を計測する装置である。積載容積率計測装置200は、監視領域指定部221と、ボクセル化部222と、画角オクルージョンボクセル計算部225と、配列処理部223と、を備える。 The loaded floor area ratio measuring device 200 is a device that measures the loaded floor area ratio of the object to be measured in the monitoring area. The loading floor area ratio measuring device 200 includes a monitoring area designation unit 221, a voxelization unit 222, an angle of view occlusion voxel calculation unit 225, and an arrangement processing unit 223.
 監視領域指定部221は、所定空間を撮影部(図示せず)で撮影した撮影データ100のうち当該所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得するように構成されている。 The monitoring area designation unit 221 acquires a point cloud in the designated monitoring area in which the area where the measurement object is loaded in the predetermined space is present in the photographing data 100 obtained by photographing the predetermined space by the photographing unit (not shown). It is configured to do.
 ボクセル化部222は、監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データ111を作成するように構成されている。 The voxelization unit 222 creates array data 111 in which voxels having a predetermined number or more of point clouds among the voxels in the voxel grid obtained by dividing the monitoring area by voxels having a voxel side length specified in advance are used as effective voxels. It is configured to do.
 画角オクルージョンボクセル計算部225は、撮影部(図示せず)が取り付けられた位置に係る撮影部取付位置情報、撮影部の画角に係る画角情報、監視領域、及び、ボクセル辺長に基づいて、配列データ111内のボクセルグリッドにおいて、撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報114を計算するように構成されている。 The angle of view occlusion voxel calculation unit 225 is based on the imaging unit mounting position information related to the position where the photographing unit (not shown) is attached, the angle of view information related to the angle of view of the photographing unit, the monitoring area, and the voxel side length. Therefore, in the voxel grid in the array data 111, the blind spot invalid voxel position information 114 related to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit is calculated.
 配列処理部223は、予め指定されたインターバル時間内にある複数の配列データ111に基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成するように構成されている。配列処理部223は、所定の条件を満たす場合に、推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データ112を作成するように構成されている。 The array processing unit 223 is in a state of excluding the occlusion portion in which the obstacle in the foreground hides the measurement object in the background and makes it invisible based on the plurality of array data 111 within the interval time specified in advance. It is configured to create estimated sequence data that estimates valid voxels. The sequence processing unit 223 activates all blind spot invalid voxels in the left-right direction or downward direction of the foremost effective voxel in the estimated sequence data as effective voxels, and all after activation, when a predetermined condition is satisfied. It is configured to create loading sequence data 112 in which all invalid voxels in the depth direction of the valid voxels of the above are enabled as valid voxels.
 積載容積率算出部232は、積載配列データ112に基づいて、監視領域内の全容積に対する監視領域内に積載された計測対象物の容積の割合である積載容積率を算出するように構成されている。 The floor area ratio calculation unit 232 is configured to calculate the floor area ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area, based on the loading arrangement data 112. There is.
 実施形態2によれば、撮影部で撮影された撮影データ100の監視領域の点群をボクセル化し、所定の条件を満たす場合に、監視領域における最前の有効ボクセルの左右方向ないし下方向にある全ての死角無効ボクセルを有効化し、奥方向にある全ての無効ボクセルを有効化して積載容積率を算出することで、撮影部の至近距離に荷物があっても、撮影部を複数台用いないで容積ベースでの荷物の計測積載量と実積載量との乖離を抑えることに貢献することができる。 According to the second embodiment, the point cloud of the monitoring area of the photographing data 100 photographed by the photographing unit is converted into voxels, and when a predetermined condition is satisfied, all the points in the left-right direction or the downward direction of the frontmost effective voxel in the monitoring area. By enabling the blind spot invalid voxels and calculating the loading volume ratio by enabling all invalid voxels in the back direction, even if there is luggage in the close range of the shooting part, the volume without using multiple shooting parts It can contribute to suppressing the discrepancy between the measured load capacity of the luggage at the base and the actual load capacity.
 なお、実施形態1、2に係る積載容積率計測装置は、いわゆるハードウェア資源(情報処理装置、コンピュータ)により構成することができ、図14に例示する構成を備えたものを用いることができる。例えば、ハードウェア資源1000は、内部バス1004により相互に接続される、プロセッサ1001、メモリ1002、ネットワークインタフェイス1003等を備える。 Note that the loaded floor area ratio measuring device according to the first and second embodiments can be configured by so-called hardware resources (information processing device, computer), and one having the configuration illustrated in FIG. 14 can be used. For example, the hardware resource 1000 includes a processor 1001, a memory 1002, a network interface 1003, and the like, which are interconnected by an internal bus 1004.
 なお、図14に示す構成は、ハードウェア資源1000のハードウェア構成を限定する趣旨ではない。ハードウェア資源1000は、図示しないハードウェア(例えば、入出力インタフェイス)を含んでもよい。あるいは、装置に含まれるプロセッサ1001等のユニットの数も図14の例示に限定する趣旨ではなく、例えば、複数のプロセッサ1001がハードウェア資源1000に含まれていてもよい。プロセッサ1001には、例えば、CPU(Central Processing Unit)、MPU(Micro Processor Unit)、GPU(Graphics Processing Unit)等を用いることができる。 Note that the configuration shown in FIG. 14 does not mean to limit the hardware configuration of the hardware resource 1000. The hardware resource 1000 may include hardware (eg, an input / output interface) (not shown). Alternatively, the number of units such as the processor 1001 included in the apparatus is not limited to the example of FIG. 14, and for example, a plurality of processors 1001 may be included in the hardware resource 1000. For the processor 1001, for example, a CPU (Central Processing Unit), an MPU (Micro Processor Unit), a GPU (Graphics Processing Unit), or the like can be used.
 メモリ1002には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)等を用いることができる。 For the memory 1002, for example, RAM (RandomAccessMemory), ROM (ReadOnlyMemory), HDD (HardDiskDrive), SSD (SolidStateDrive) and the like can be used.
 ネットワークインタフェイス1003には、例えば、LAN(Local Area Network)カード、ネットワークアダプタ、ネットワークインタフェイスカード等を用いることができる。 For the network interface 1003, for example, a LAN (Local Area Network) card, a network adapter, a network interface card, or the like can be used.
 ハードウェア資源1000の機能は、上述の処理モジュールにより実現される。当該処理モジュールは、例えば、メモリ1002に格納されたプログラムをプロセッサ1001が実行することで実現される。また、そのプログラムは、ネットワークを介してダウンロードするか、あるいは、プログラムを記憶した記憶媒体を用いて、更新することができる。さらに、上記処理モジュールは、半導体チップにより実現されてもよい。即ち、上記処理モジュールが行う機能は、何らかのハードウェアにおいてソフトウェアが実行されることによって実現できればよい。 The function of the hardware resource 1000 is realized by the above-mentioned processing module. The processing module is realized, for example, by the processor 1001 executing a program stored in the memory 1002. In addition, the program can be downloaded via a network or updated using a storage medium in which the program is stored. Further, the processing module may be realized by a semiconductor chip. That is, the function performed by the processing module may be realized by executing the software on some hardware.
 上記実施形態の一部または全部は以下の付記のようにも記載され得るが、以下には限られない。 A part or all of the above embodiment may be described as in the following appendix, but is not limited to the following.
[付記1]
 所定空間を撮影部で撮影した撮影データのうち前記所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得するように構成された監視領域指定部と、
 前記監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、前記点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データを作成するように構成されたボクセル化部と、
 前記撮影部が取り付けられた位置に係る撮影部取付位置情報、前記撮影部の画角に係る画角情報、前記監視領域、及び、前記ボクセル辺長に基づいて、前記配列データ内の前記ボクセルグリッドにおいて、前記撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報を計算するように構成された画角オクルージョンボクセル計算部と、
 予め指定されたインターバル時間内にある複数の前記配列データに基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、所定の条件を満たす場合に、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するように構成された配列処理部と、
 前記積載配列データに基づいて、前記監視領域内の全容積に対する前記監視領域内に積載された前記計測対象物の容積の割合である積載容積率を算出するように構成された積載容積率算出部と、
を備える積載容積率計測装置。
[付記2]
 前記配列処理部は、複数の前記配列データにおいて前記監視領域内に有効ボクセルが存在するときに、前記推定配列データを作成するように構成されている、
付記1記載の積載容積率計測装置。
[付記3]
 前記配列処理部は、前記推定配列データにおける前記有効ボクセルを2次元平面に射影し、前記所定の条件として、前記2次元平面の一部に前記有効ボクセルが存在しないときに、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化するように構成されている、
付記1又は2記載の積載容積率計測装置。
[付記4]
 前記配列処理部は、前記積載配列データを作成する際、前記所定の条件として、過去データの最前の有効ボクセルの位置から所定距離以内に死角無効ボクセルが存在するときに、前記推定配列データにおける最前の前記有効ボクセルの左右方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、有効化後の最前の前記有効ボクセルの下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化するように構成されている、
付記1乃至3のいずれか一に記載の積載容積率計測装置。
[付記5]
 前記配列処理部は、下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化した後に、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化するように構成されている、
付記4記載の積載容積率計測装置。
[付記6]
 前記配列処理部は、前記積載配列データを作成する際、前記所定の条件として、過去データの最前の有効ボクセルの位置から所定距離以内に死角無効ボクセルが存在しないときに、全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するように構成されている、
付記1乃至5のいずれか一に記載の積載容積率計測装置。
[付記7]
 前記配列処理部は、前記所定の条件として、前記2次元平面の全領域に前記有効ボクセルが存在するときに、全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するように構成されている、
付記3記載の積載容積率計測装置。
[付記8]
 所定空間を撮影した撮影データを出力するように構成された撮影部と、
 付記1乃至7のいずれか一に記載の積載容積率計測装置と、
を備える積載容積率計測システム。
[付記9]
 ハードウェア資源を用いて積載容積率を計測する積載容積率計測方法であって、
 所定空間を撮影部で撮影した撮影データのうち前記所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得するステップと、
 前記監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、前記点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データを作成するステップと、
 前記撮影部が取り付けられた位置に係る撮影部取付位置情報、前記撮影部の画角に係る画角情報、前記監視領域、及び、前記ボクセル辺長に基づいて、前記配列データ内の前記ボクセルグリッドにおいて、前記撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報を計算するステップと、
 予め指定されたインターバル時間内にある複数の前記配列データに基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、所定の条件を満たす場合に、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するステップと、
 前記積載配列データに基づいて、前記監視領域内の全容積に対する前記監視領域内に積載された前記計測対象物の容積の割合である積載容積率を算出するステップと、
を含む積載容積率計測方法。
[付記10]
 積載容積率を計測する処理をハードウェア資源に実行させるプログラムであって、
 所定空間を撮影部で撮影した撮影データのうち前記所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得する処理と、
 前記監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、前記点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データを作成する処理と、
 前記撮影部が取り付けられた位置に係る撮影部取付位置情報、前記撮影部の画角に係る画角情報、前記監視領域、及び、前記ボクセル辺長に基づいて、前記配列データ内の前記ボクセルグリッドにおいて、前記撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報を計算する処理と、
 予め指定されたインターバル時間内にある複数の前記配列データに基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、所定の条件を満たす場合に、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成する処理と、
 前記積載配列データに基づいて、前記監視領域内の全容積に対する前記監視領域内に積載された前記計測対象物の容積の割合である積載容積率を算出する処理と、
を前記ハードウェア資源に実行させる、
プログラム。
[Appendix 1]
A monitoring area designation unit configured to acquire a point cloud in which a region in which a measurement object is loaded in the predetermined space is located in a designated monitoring region among shooting data captured by the imaging unit in a predetermined space.
Among the voxels in the voxel grid obtained by dividing the monitoring area by voxels having a predetermined voxel side length, the voxels having a predetermined number of points in the point cloud are used as effective voxels to create array data. With the voxelization department,
The voxel grid in the array data based on the imaging unit mounting position information related to the position where the imaging unit is attached, the angle of view information related to the angle of view of the imaging unit, the monitoring area, and the voxel side length. In the angle of view occlusion voxel calculation unit configured to calculate the blind spot invalid voxel position information related to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit.
Estimated effective voxels excluding the occlusion part where the obstacle in the foreground hides the measurement object behind and makes it invisible, based on the plurality of said sequence data within the predetermined interval time. When sequence data is created and certain conditions are met, all the blind spot invalid voxels located in the left-right direction or downward direction of the front valid voxel in the estimated sequence data are enabled as valid voxels, and after activation. An array processing unit configured to create loading array data with all invalid voxels in the depths of all the valid voxels enabled for valid voxels.
Based on the loading arrangement data, the loading volume ratio calculation unit configured to calculate the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area. When,
A loaded floor area ratio measuring device.
[Appendix 2]
The sequence processing unit is configured to create the estimated sequence data when a valid voxel exists in the monitored region in the plurality of sequence data.
The loaded floor area ratio measuring device according to Appendix 1.
[Appendix 3]
The sequence processing unit projects the effective voxels in the estimated sequence data onto a two-dimensional plane, and under the predetermined condition, when the valid voxels do not exist in a part of the two-dimensional plane, the estimated sequence data All the blind spot invalid voxels located in the left-right direction or downward direction of the foremost effective voxel are configured to be activated as effective voxels.
The loaded floor area ratio measuring device according to Appendix 1 or 2.
[Appendix 4]
When the array processing unit creates the loaded array data, as the predetermined condition, when the blind spot invalid voxel exists within a predetermined distance from the position of the foremost effective voxel in the past data, the array processing unit is the foremost in the estimated array data. All the blind spot invalid voxels in the left-right direction of the effective voxel of the above are enabled to the effective voxels, and all the blind spot invalid voxels in the downward direction of the previous effective voxel after activation are activated to the effective voxels. Is configured in,
The loaded floor area ratio measuring device according to any one of Supplementary note 1 to 3.
[Appendix 5]
The sequence processing unit activates all the downward blind spot invalid voxels into effective voxels, and then activates all the invalid voxels in the depth direction of all the activated effective voxels into effective voxels. Is configured to
The loaded floor area ratio measuring device according to Appendix 4.
[Appendix 6]
When the array processing unit creates the loading array data, as the predetermined condition, when there is no blind spot invalid voxel within a predetermined distance from the position of the previous effective voxel in the past data, the array processing unit of all the effective voxels. It is configured to create loading array data with all invalid voxels in the back direction enabled for valid voxels,
The loaded floor area ratio measuring device according to any one of Supplementary note 1 to 5.
[Appendix 7]
As the predetermined condition, when the effective voxels are present in the entire region of the two-dimensional plane, the array processing unit enables all the invalid voxels in the depth direction of all the effective voxels to be effective voxels. It is configured to create loading array data,
The loaded floor area ratio measuring device according to Appendix 3.
[Appendix 8]
A shooting unit configured to output shooting data shot in a predetermined space,
The loaded floor area ratio measuring device according to any one of Supplementary note 1 to 7.
A loading floor area ratio measurement system equipped with.
[Appendix 9]
It is a loading floor area ratio measurement method that measures the floor area ratio using hardware resources.
A step of acquiring a point cloud in the designated monitoring area where the area where the measurement object is loaded in the predetermined space is among the shooting data taken by the photographing unit in the predetermined space.
Among the voxels in the voxel grid obtained by dividing the monitoring area by voxels having a predetermined voxel side length, a step of creating array data using voxels having a predetermined number or more of points in the point cloud as effective voxels.
The voxel grid in the array data based on the imaging unit mounting position information related to the position where the imaging unit is attached, the angle of view information related to the angle of view of the imaging unit, the monitoring area, and the voxel side length. In the step of calculating the blind spot invalid voxel position information related to the position of the blind spot invalid voxel that cannot be visualized in the occlusion portion that becomes the blind spot of the photographing unit.
Estimated effective voxels excluding the occlusion part where the obstacle in the foreground hides the measurement object behind and makes it invisible, based on the plurality of said sequence data within the predetermined interval time. When sequence data is created and certain conditions are met, all the blind spot invalid voxels located in the left-right direction or downward direction of the front valid voxel in the estimated sequence data are enabled as valid voxels, and after activation. Steps to create loading array data with all invalid voxels in the depths of all the valid voxels enabled for valid voxels,
Based on the loading arrangement data, a step of calculating the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area, and
Load floor area ratio measurement method including.
[Appendix 10]
It is a program that causes hardware resources to execute the process of measuring the loaded floor area ratio.
Processing to acquire a point cloud in the designated monitoring area where the area where the measurement object is loaded in the predetermined space is among the shooting data taken by the shooting unit in the predetermined space.
Among the voxels in the voxel grid obtained by dividing the monitoring area by voxels having a predetermined voxel side length, a process of creating array data using a voxel having a predetermined number or more of points in the point cloud as an effective voxel.
The voxel grid in the array data based on the imaging unit mounting position information related to the position where the imaging unit is attached, the angle of view information related to the angle of view of the imaging unit, the monitoring area, and the voxel side length. In the process of calculating the blind spot invalid voxel position information related to the position of the blind spot invalid voxel that cannot be visualized in the occlusion portion that becomes the blind spot of the photographing unit.
Estimated effective voxels excluding the occlusion part where the obstacle in the foreground hides the measurement object behind and makes it invisible, based on the plurality of said sequence data within the predetermined interval time. When sequence data is created and certain conditions are met, all the blind spot invalid voxels located in the left-right direction or downward direction of the front valid voxel in the estimated sequence data are enabled as valid voxels, and after activation. The process of creating loading array data with all invalid voxels in the depth direction of all the valid voxels enabled for valid voxels, and
Based on the loading arrangement data, a process of calculating the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area,
To let the hardware resource execute
program.
 なお、上記の特許文献の各開示は、本書に引用をもって繰り込み記載されているものとし、必要に応じて本発明の基礎ないし一部として用いることが出来るものとする。本発明の全開示(特許請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択(必要により不選択)が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、本願に記載の数値及び数値範囲については、明記がなくともその任意の中間値、下位数値、及び、小範囲が記載されているものとみなされる。さらに、上記引用した文献の各開示事項は、必要に応じ、本願発明の趣旨に則り、本願発明の開示の一部として、その一部又は全部を、本書の記載事項と組み合わせて用いることも、本願の開示事項に含まれる(属する)ものと、みなされる。 It should be noted that each disclosure of the above patent documents shall be renormalized and described in this document, and may be used as the basis or a part of the present invention as necessary. Within the framework of all disclosures (including claims and drawings) of the present invention, embodiments or examples can be changed or adjusted based on the basic technical idea thereof. Further, various combinations or selections (necessary) of various disclosure elements (including each element of each claim, each element of each embodiment or embodiment, each element of each drawing, etc.) within the framework of all disclosure of the present invention. (Not selected) is possible. That is, it goes without saying that the present invention includes all disclosures including claims and drawings, and various modifications and modifications that can be made by those skilled in the art in accordance with the technical idea. In addition, regarding the numerical values and numerical ranges described in the present application, it is considered that arbitrary intermediate values, lower numerical values, and small ranges are described even if they are not specified. Further, each of the disclosed matters of the above-cited documents may be used in combination with the matters described in this document in part or in whole as a part of the disclosure of the present invention, if necessary, in accordance with the purpose of the present invention. It is considered to be included in (belonging to) the matters disclosed in the present application.
 1 積載容積率計測システム
 10 トラック
 11 トラックコンテナ
 20 荷物
 20a 視覚化可能な荷物
 20b 視覚化不能な荷物
 100 撮影データ
 110 配列データ群
 111 配列データ
 112 積載配列データ
 113 撮影部諸元データ
 114 死角無効ボクセル位置情報
 200 積載容積率計測装置
 210 前処理部
 211 フォーマット変換部
 212 ノイズ除去部
 220 積載容積管理部
 221 監視領域指定部
 222 ボクセル化部
 223 配列処理部
 224 配列データ群格納部
 225 画角オクルージョンボクセル計算部
 226 撮影部諸元データ格納部
 230 結果生成部
 231 警告値指定部
 232 積載容積率算出部
 233 ボクセル可視化部
 240 インタフェイス部
 241 操作部
 242 表示部
 300 撮影部
 400 ネットワーク
 1000 ハードウェア資源
 1001 プロセッサ
 1002 メモリ
 1003 ネットワークインタフェイス
 1004 内部バス
1 Loading capacity ratio measurement system 10 Truck 11 Truck container 20 Luggage 20a Visualizable luggage 20b Non-visualable luggage 100 Shooting data 110 Sequence data group 111 Sequence data 112 Loading sequence data 113 Shooting section specification data 114 Blind spot invalid boxel position Information 200 Load capacity ratio measuring device 210 Preprocessing unit 211 Format conversion unit 212 Noise removal unit 220 Load capacity management unit 221 Monitoring area designation unit 222 Box cell conversion unit 223 Sequence processing unit 224 Array data group storage unit 225 Angle occlusion box cell calculation unit 226 Imaging unit Specifications Data storage unit 230 Result generation unit 231 Warning value specification unit 232 Loading volume ratio calculation unit 233 Box cell visualization unit 240 Interface unit 241 Operation unit 242 Display unit 300 Imaging unit 400 Network 1000 Hardware resources 1001 Processor 1002 Memory 1003 Network interface 1004 Internal bus

Claims (10)

  1.  所定空間を撮影部で撮影した撮影データのうち前記所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得するように構成された監視領域指定部と、
     前記監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、前記点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データを作成するように構成されたボクセル化部と、
     前記撮影部が取り付けられた位置に係る撮影部取付位置情報、前記撮影部の画角に係る画角情報、前記監視領域、及び、前記ボクセル辺長に基づいて、前記配列データ内の前記ボクセルグリッドにおいて、前記撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報を計算するように構成された画角オクルージョンボクセル計算部と、
     予め指定されたインターバル時間内にある複数の前記配列データに基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、所定の条件を満たす場合に、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するように構成された配列処理部と、
     前記積載配列データに基づいて、前記監視領域内の全容積に対する前記監視領域内に積載された前記計測対象物の容積の割合である積載容積率を算出するように構成された積載容積率算出部と、
    を備える積載容積率計測装置。
    A monitoring area designation unit configured to acquire a point cloud in which a region in which a measurement object is loaded in the predetermined space is located in a designated monitoring region among shooting data captured by the imaging unit in a predetermined space.
    Among the voxels in the voxel grid obtained by dividing the monitoring area by voxels having a predetermined voxel side length, the voxels having a predetermined number of points in the point cloud are used as effective voxels to create array data. With the voxelization department,
    The voxel grid in the array data based on the imaging unit mounting position information related to the position where the imaging unit is attached, the angle of view information related to the angle of view of the imaging unit, the monitoring area, and the voxel side length. In the angle of view occlusion voxel calculation unit configured to calculate the blind spot invalid voxel position information related to the position of the invisible blind spot invalid voxel of the occlusion portion which is the blind spot of the photographing unit.
    Estimated effective voxels excluding the occlusion part where the obstacle in the foreground hides the measurement object behind and makes it invisible, based on the plurality of said sequence data within the predetermined interval time. When sequence data is created and certain conditions are met, all the blind spot invalid voxels located in the left-right direction or downward direction of the front valid voxel in the estimated sequence data are enabled as valid voxels, and after activation. An array processing unit configured to create loading array data with all invalid voxels in the depths of all the valid voxels enabled for valid voxels.
    Based on the loading arrangement data, the loading volume ratio calculation unit configured to calculate the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area. When,
    A loaded floor area ratio measuring device.
  2.  前記配列処理部は、複数の前記配列データにおいて前記監視領域内に有効ボクセルが存在するときに、前記推定配列データを作成するように構成されている、
    請求項1記載の積載容積率計測装置。
    The sequence processing unit is configured to create the estimated sequence data when a valid voxel exists in the monitored region in the plurality of sequence data.
    The loaded floor area ratio measuring device according to claim 1.
  3.  前記配列処理部は、前記推定配列データにおける前記有効ボクセルを2次元平面に射影し、前記所定の条件として、前記2次元平面の一部に前記有効ボクセルが存在しないときに、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化するように構成されている、
    請求項1又は2記載の積載容積率計測装置。
    The sequence processing unit projects the effective voxels in the estimated sequence data onto a two-dimensional plane, and under the predetermined condition, when the valid voxels do not exist in a part of the two-dimensional plane, the estimated sequence data All the blind spot invalid voxels located in the left-right direction or downward direction of the foremost effective voxel are configured to be activated as effective voxels.
    The loaded floor area ratio measuring device according to claim 1 or 2.
  4.  前記配列処理部は、前記積載配列データを作成する際、前記所定の条件として、過去データの最前の有効ボクセルの位置から所定距離以内に死角無効ボクセルが存在するときに、前記推定配列データにおける最前の前記有効ボクセルの左右方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、有効化後の最前の前記有効ボクセルの下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化するように構成されている、
    請求項1乃至3のいずれか一に記載の積載容積率計測装置。
    When the array processing unit creates the loaded array data, as the predetermined condition, when the blind spot invalid voxel exists within a predetermined distance from the position of the foremost effective voxel in the past data, the array processing unit is the foremost in the estimated array data. All the blind spot invalid voxels in the left-right direction of the effective voxel of the above are enabled to the effective voxels, and all the blind spot invalid voxels in the downward direction of the previous effective voxel after activation are activated to the effective voxels. Is configured in,
    The loaded floor area ratio measuring device according to any one of claims 1 to 3.
  5.  前記配列処理部は、下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化した後に、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化するように構成されている、
    請求項4記載の積載容積率計測装置。
    The sequence processing unit activates all the downward blind spot invalid voxels into effective voxels, and then activates all the invalid voxels in the depth direction of all the activated effective voxels into effective voxels. Is configured to
    The loaded floor area ratio measuring device according to claim 4.
  6.  前記配列処理部は、前記積載配列データを作成する際、前記所定の条件として、過去データの最前の有効ボクセルの位置から所定距離以内に死角無効ボクセルが存在しないときに、全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するように構成されている、
    請求項1乃至5のいずれか一に記載の積載容積率計測装置。
    When the array processing unit creates the loading array data, as the predetermined condition, when there is no blind spot invalid voxel within a predetermined distance from the position of the previous effective voxel in the past data, the array processing unit of all the effective voxels. It is configured to create loading array data with all invalid voxels in the back direction enabled for valid voxels,
    The loaded floor area ratio measuring device according to any one of claims 1 to 5.
  7.  前記配列処理部は、前記所定の条件として、前記2次元平面の全領域に前記有効ボクセルが存在するときに、全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するように構成されている、
    請求項3記載の積載容積率計測装置。
    As the predetermined condition, when the effective voxels are present in the entire region of the two-dimensional plane, the array processing unit enables all the invalid voxels in the depth direction of all the effective voxels to be effective voxels. It is configured to create loading array data,
    The loaded floor area ratio measuring device according to claim 3.
  8.  所定空間を撮影した撮影データを出力するように構成された撮影部と、
     請求項1乃至7のいずれか一に記載の積載容積率計測装置と、
    を備える積載容積率計測システム。
    A shooting unit configured to output shooting data shot in a predetermined space,
    The loaded floor area ratio measuring device according to any one of claims 1 to 7.
    A loading floor area ratio measurement system equipped with.
  9.  ハードウェア資源を用いて積載容積率を計測する積載容積率計測方法であって、
     所定空間を撮影部で撮影した撮影データのうち前記所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得するステップと、
     前記監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、前記点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データを作成するステップと、
     前記撮影部が取り付けられた位置に係る撮影部取付位置情報、前記撮影部の画角に係る画角情報、前記監視領域、及び、前記ボクセル辺長に基づいて、前記配列データ内の前記ボクセルグリッドにおいて、前記撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報を計算するステップと、
     予め指定されたインターバル時間内にある複数の前記配列データに基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、所定の条件を満たす場合に、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成するステップと、
     前記積載配列データに基づいて、前記監視領域内の全容積に対する前記監視領域内に積載された前記計測対象物の容積の割合である積載容積率を算出するステップと、
    を含む積載容積率計測方法。
    It is a loading floor area ratio measurement method that measures the floor area ratio using hardware resources.
    A step of acquiring a point cloud in the designated monitoring area where the area where the measurement object is loaded in the predetermined space is among the shooting data taken by the photographing unit in the predetermined space.
    Among the voxels in the voxel grid obtained by dividing the monitoring area by voxels having a predetermined voxel side length, a step of creating array data using voxels having a predetermined number or more of points in the point cloud as effective voxels.
    The voxel grid in the array data based on the imaging unit mounting position information related to the position where the imaging unit is attached, the angle of view information related to the angle of view of the imaging unit, the monitoring area, and the voxel side length. In the step of calculating the blind spot invalid voxel position information related to the position of the blind spot invalid voxel that cannot be visualized in the occlusion portion that becomes the blind spot of the photographing unit.
    Estimated effective voxels excluding the occlusion part where the obstacle in the foreground hides the measurement object behind and makes it invisible, based on the plurality of said sequence data within the predetermined interval time. When sequence data is created and certain conditions are met, all the blind spot invalid voxels located in the left-right direction or downward direction of the front valid voxel in the estimated sequence data are enabled as valid voxels, and after activation. Steps to create loading array data with all invalid voxels in the depths of all the valid voxels enabled for valid voxels,
    Based on the loading arrangement data, a step of calculating the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area, and
    Load floor area ratio measurement method including.
  10.  積載容積率を計測する処理をハードウェア資源に実行させるプログラムであって、
     所定空間を撮影部で撮影した撮影データのうち前記所定空間において計測対象物が積載される領域が指定された監視領域に存在する点群を取得する処理と、
     前記監視領域を、予め指定されたボクセル辺長のボクセルで分割したボクセルグリッドにおけるボクセルのうち、前記点群の点数が所定数以上存在するボクセルを有効ボクセルとした配列データを作成する処理と、
     前記撮影部が取り付けられた位置に係る撮影部取付位置情報、前記撮影部の画角に係る画角情報、前記監視領域、及び、前記ボクセル辺長に基づいて、前記配列データ内の前記ボクセルグリッドにおいて、前記撮影部の死角となるオクルージョン部分の視覚化不能な死角無効ボクセルの位置に係る死角無効ボクセル位置情報を計算する処理と、
     予め指定されたインターバル時間内にある複数の前記配列データに基づいて、手前にある障害物が背後にある計測対象物を隠して見えなくしているオクルージョン部分を除外した状態の有効ボクセルを推定した推定配列データを作成し、所定の条件を満たす場合に、前記推定配列データにおける最前の前記有効ボクセルの左右方向ないし下方向にある全ての前記死角無効ボクセルを有効ボクセルに有効化し、かつ、有効化後の全ての前記有効ボクセルの奥方向にある全ての無効ボクセルを有効ボクセルに有効化した積載配列データを作成する処理と、
     前記積載配列データに基づいて、前記監視領域内の全容積に対する前記監視領域内に積載された前記計測対象物の容積の割合である積載容積率を算出する処理と、
    を前記ハードウェア資源に実行させる、
    プログラム。
    It is a program that causes hardware resources to execute the process of measuring the loaded floor area ratio.
    Processing to acquire a point cloud in the designated monitoring area where the area where the measurement object is loaded in the predetermined space is among the shooting data taken by the shooting unit in the predetermined space.
    Among the voxels in the voxel grid obtained by dividing the monitoring area by voxels having a predetermined voxel side length, a process of creating array data using voxels having a predetermined number or more of points in the point cloud as effective voxels.
    The voxel grid in the array data based on the imaging unit mounting position information related to the position where the imaging unit is attached, the angle of view information related to the angle of view of the imaging unit, the monitoring area, and the voxel side length. In the process of calculating the blind spot invalid voxel position information related to the position of the blind spot invalid voxel that cannot be visualized in the occlusion portion that becomes the blind spot of the photographing unit.
    Estimated effective voxels excluding the occlusion part where the obstacle in the foreground hides the measurement object behind and makes it invisible, based on the plurality of said sequence data within the predetermined interval time. When sequence data is created and certain conditions are met, all the blind spot invalid voxels located in the left-right direction or downward direction of the front valid voxel in the estimated sequence data are enabled as valid voxels, and after activation. The process of creating loading array data with all invalid voxels in the depth direction of all the valid voxels enabled for valid voxels, and
    Based on the loading arrangement data, a process of calculating the loading volume ratio, which is the ratio of the volume of the measurement object loaded in the monitoring area to the total volume in the monitoring area,
    To let the hardware resource execute
    program.
PCT/JP2021/047556 2020-12-25 2021-12-22 Load capacity rate measuring device, system, method, and program WO2022138715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022571549A JP7491615B2 (en) 2020-12-25 2021-12-22 Load volume ratio measuring device, system, method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020216527 2020-12-25
JP2020-216527 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138715A1 true WO2022138715A1 (en) 2022-06-30

Family

ID=82159767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047556 WO2022138715A1 (en) 2020-12-25 2021-12-22 Load capacity rate measuring device, system, method, and program

Country Status (2)

Country Link
JP (1) JP7491615B2 (en)
WO (1) WO2022138715A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060451A (en) * 2018-10-10 2020-04-16 日野自動車株式会社 Luggage space monitoring system and luggage space monitoring method
JP2020064588A (en) * 2019-03-18 2020-04-23 株式会社Mujin Shape information generation device, control device, unloading device, distribution system, program, and control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060451A (en) * 2018-10-10 2020-04-16 日野自動車株式会社 Luggage space monitoring system and luggage space monitoring method
JP2020064588A (en) * 2019-03-18 2020-04-23 株式会社Mujin Shape information generation device, control device, unloading device, distribution system, program, and control method

Also Published As

Publication number Publication date
JP7491615B2 (en) 2024-05-28
JPWO2022138715A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
KR102658233B1 (en) Harbor monitoring device and harbor monitoring method
AU2018391965B2 (en) Container loading/unloading time estimation
AU2018388705B2 (en) Systems and methods for determining commercial trailer fullness
JP7103690B2 (en) Volumetric devices, systems, methods, and programs
AU2018391957B2 (en) Computing package wall density in commercial trailer loading
US11004226B2 (en) Image processing device, image processing method, and image display system for grasping a distance from an obstacle with a smaller visual line shift
WO2020233436A1 (en) Vehicle speed determination method, and vehicle
CN113469871A (en) Carriage loadable space detection method and device based on three-dimensional laser
JP6620443B2 (en) Monitoring program, monitoring apparatus, and monitoring method
JP7191630B2 (en) Luggage room monitoring system and luggage room monitoring method
US20200401821A1 (en) Operating assistance method, control unit, operating assistance system and working device
JP7323170B2 (en) Loading volume ratio measuring device, system, method and program
KR101214471B1 (en) Method and System for 3D Reconstruction from Surveillance Video
WO2022138715A1 (en) Load capacity rate measuring device, system, method, and program
CN114219770A (en) Ground detection method, ground detection device, electronic equipment and storage medium
CN111591284A (en) Visual field blind area obstacle avoidance method and device based on monocular recognition
US20190197775A1 (en) Determining a set of facets that represents a skin of a real object
WO2022181753A1 (en) Loading space recognition device, system, method, and program
WO2023166411A1 (en) Automatic digital inspection of railway environment
US11763439B2 (en) Systems and methods for assessing trailer utilization
JP2021021671A (en) Distance measuring device, system, method, and program
KR102613257B1 (en) Modeling method, modeling device and modeling system for modeling target object
JP2021099689A (en) Information processor, information processing method, and program
JP6385621B2 (en) Image display device, image display method, and image display program
JP2023178749A (en) Information processing device, information processing system, information processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910855

Country of ref document: EP

Kind code of ref document: A1