WO2022138694A1 - Robot - Google Patents

Robot Download PDF

Info

Publication number
WO2022138694A1
WO2022138694A1 PCT/JP2021/047488 JP2021047488W WO2022138694A1 WO 2022138694 A1 WO2022138694 A1 WO 2022138694A1 JP 2021047488 W JP2021047488 W JP 2021047488W WO 2022138694 A1 WO2022138694 A1 WO 2022138694A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
transport vehicle
control device
elevating
gravity
Prior art date
Application number
PCT/JP2021/047488
Other languages
French (fr)
Japanese (ja)
Inventor
雅幸 掃部
朋暉 岡
仁志 蓮沼
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2022138694A1 publication Critical patent/WO2022138694A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages

Definitions

  • This disclosure relates to robots.
  • Japanese Patent Application Laid-Open No. 2020-108867 discloses a robot vacuum cleaner that cleans a target surface while autonomously moving.
  • the robot vacuum is configured to communicate with the user and can perform a nodding response action that moves the front edge of the housing up and down.
  • the robot vacuum cleaner pushes up and tilts the housing with the attitude control wheel by projecting the attitude control wheel toward the installation surface.
  • the robot vacuum also overcomes steps by pushing up the housing using the attitude control wheels.
  • a service robot which are robots that provide services to humans, have been devised.
  • a service robot may include a robot arm for providing services and a carrier for movement. Since service robots are equipped with equipment for providing services, their configurations may be complicated. Further, the service robot may be required to deal with obstacles such as steps on the traveling surface encountered during movement.
  • the object of the present disclosure is to provide a robot capable of dealing with obstacles and simplifying the structure.
  • the robot includes a self-propelled transport vehicle, one or more robot arms mounted on the transport vehicle, and one or more robots mounted on the transport vehicle and relative to the transport vehicle. It is configured to control the operation of the elevating device for raising and lowering the robot arm, the fluctuating device for changing the center of gravity of the transport vehicle, the transport vehicle, the one or more robot arms, the elevating device, and the fluctuating device.
  • the control device When there is a step upward on the traveling surface, which exists in the first direction, which is the traveling direction of the transport vehicle, the control device reverses the center of gravity of the transport vehicle to the first direction. It is configured to operate the variable device so as to move in the second direction, which is the direction.
  • FIG. 1 is a diagram showing an example of a configuration of a robot system according to an embodiment.
  • FIG. 2 is a perspective view showing an example of the configuration of the robot according to the embodiment.
  • FIG. 3 is a side view showing an example of the configuration of the robot according to the embodiment.
  • FIG. 4 is a block diagram showing an example of the configuration of the control device of the robot system according to the embodiment.
  • FIG. 5 is a flowchart showing an example of the operation of the robot system according to the embodiment.
  • FIG. 6 is a side view showing an example of the operation of the robot according to the embodiment.
  • FIG. 7 is a side view showing an example of the operation of the robot according to the embodiment.
  • FIG. 8 is a side view showing an example of the configuration of the robot according to the modified example.
  • FIG. 9 is a side view showing an example of the operation of the robot according to the modified example.
  • FIG. 1 is a diagram showing an example of the configuration of the robot system 1 according to the embodiment.
  • the robot system 1 according to the embodiment includes one or more robots 100, one or more operation terminals 200, and a server 300.
  • the robot system 1 is configured to provide a service to the user P by using the robot 100 operated from a remote place, without limitation.
  • the robot system 1 can be used in various service industries such as nursing care, medical care, cleaning, security, guidance, rescue, cooking, and product provision.
  • a plurality of robots 100 are arranged in one service providing area AS, which is a place where a service is provided to the user P.
  • One or more operation terminals 200 are arranged in each of the plurality of operation area AOs located away from the service provision area AS.
  • the robot 100 is configured to connect to the communication network N so that data communication is possible via wireless communication.
  • the robot 100 may be connected to the communication network N via wired communication or a combination of wired communication and wireless communication.
  • the operation terminal 200 is configured to be connected to the communication network N so as to be capable of data communication via wired communication, wireless communication, or a combination thereof.
  • One robot 100 and one operation terminal 200 can be connected to each other via a communication network N so as to be capable of data communication. Any wired or wireless communication may be used.
  • the server 300 manages communication via the communication network N.
  • the server 300 includes a computer device.
  • the server 300 manages authentication, connection, disconnection, and the like of communication between the robot 100 and the operation terminal 200.
  • the server 300 stores identification information, security information, and the like of the robot 100 and the operation terminal 200 registered in the robot system 1, and uses the information to qualify the operation terminal 200 for connection to the robot system 1.
  • the server 300 manages the transmission and reception of data between the robot 100 and the operation terminal 200, and the data may pass through the server 300.
  • the server 300 may be configured to convert the data transmitted from the source into a data format available to the destination.
  • the server 300 may be configured to store and store information, commands, data, and the like transmitted and received between the robot 100 and the operation terminal 200 in the process of operating the robot 100.
  • the communication network N is not particularly limited, and may include, for example, a local area network (LAN), a wide area network (WAN), the Internet, or a combination of two or more of these.
  • Communication network N includes short-range wireless communication such as Bluetooth (registered trademark) and ZigBee (registered trademark), dedicated network line, dedicated line of telecommunications carrier, public switched telephone network (PSTN), It may be configured to use a mobile communication network, an internet network, satellite communication, or a combination of two or more of these.
  • the mobile communication network may use a 4th generation mobile communication system, a 5th generation mobile communication system, or the like.
  • the communication network N can include one or more networks. In this embodiment, the communication network N is the Internet.
  • the operation terminal 200 can receive input of commands, information, data, etc. by the operator PO, and can output the received commands, information, data, etc. to other devices.
  • the operation terminal 200 includes an operation input device 201, a terminal computer 202, a presentation device 203, and a communication device 204.
  • the operation input device 201, the terminal computer 202, the presentation device 203, and the communication device 204 may be integrated so as to form one device, or each of them may independently form a device and be connected to each other. Two or more may form one device and be connected to another device.
  • the configuration of the operation terminal 200 is not particularly limited.
  • the operation terminal 200 includes a computer such as a personal computer, a smart device such as a smartphone and a tablet, a personal information terminal, a game terminal, a known teaching device such as a teach pendant used for teaching work to a robot, and a known robot. It may be an operating device, another operating device, another terminal device, a device using these, an improved device thereof, or the like.
  • the operation terminal 200 may be a dedicated device devised for the robot system 1, but may be a general-purpose device available in the general market. In this embodiment, a known general-purpose device is used for the operation terminal 200.
  • the device may be configured to realize the functions of the operation terminal 200 of the present disclosure by installing dedicated software.
  • the operation input device 201 is configured to receive an input by the operator PO and output a signal or the like indicating the input command, information, data, or the like to the terminal computer 202.
  • the configuration of the operation input device 201 is not particularly limited.
  • the operation input device 201 may include a device such as a button, a lever, a dial, a joystick, a mouse, a key, a touch panel, a motion capture, etc., to which an input is given via an operation of an operator PO.
  • the operation input device 201 may include an image pickup device such as a camera that captures an image of the operator PO and the like, and a voice input device such as a microphone that accepts the voice input of the operator PO and the like.
  • the operation input device 201 may be configured to output the captured image data and a signal indicating the input voice to the terminal computer 202.
  • the terminal computer 202 processes the commands, information, data, etc. received via the operation input device 201 and outputs them to another device, and receives the input of commands, information, data, etc. from the other device, and said that. It is configured to perform processing of commands, information, data, etc.
  • the presentation device 203 includes a display capable of displaying an image on the operator PO.
  • the presentation device 203 displays an image of image data received from the terminal computer 202.
  • the presentation device 203 may include a voice output device such as a speaker capable of emitting voice to the operator PO.
  • the presentation device 203 outputs the voice of the voice data received from the terminal computer 202.
  • the communication device 204 includes a communication interface that can be connected to the communication network N.
  • the communication device 204 is connected to the terminal computer 202, and connects the terminal computer 202 and the communication network N so as to be capable of data communication.
  • the communication device 204 may include, for example, a communication device such as a modem, an ONU (Optical Network Unit), a router, and a mobile data communication device.
  • the communication device 204 may include a computer device having a calculation function or the like.
  • FIG. 2 is a perspective view showing an example of the configuration of the robot 100 according to the embodiment.
  • FIG. 3 is a side view showing an example of the configuration of the robot 100 according to the embodiment.
  • the robot 100 includes one carrier 110, one or more robot arms 120, one or more end effectors 130, one elevating device 140, and one or more.
  • the robot arm 120 uses a robot arm that can also function for industrial use.
  • the image pickup devices 174, 175 and 176, the sound collecting device 177, the display device 178, and the audio output device 179 are examples of communication devices.
  • the quantity of each of the above components is not limited to the above quantity and can be changed as appropriate.
  • the transport vehicle 110 is configured to be self-propelled. Although not limited, in the present embodiment, the transport vehicle 110 travels by using the wheels included in the transport vehicle 110.
  • the transport vehicle 110 includes a base 111, drive wheels 112a and 112b, auxiliary wheels 113a to 113d, and transport drive devices 114a and 114b.
  • the base 111 has a rectangular plate-like outer shape.
  • the base 111 may have a thin plate-like or frame-like structure in the vertical direction.
  • upward means an upward direction perpendicular to the support surface when the robot 100 is arranged on the horizontal support surface, that is, a vertically upward direction, and is “downward”.
  • "" Means a downward direction perpendicular to the support surface in the same case, that is, a vertical downward direction.
  • vertical”, “vertical”, “horizontal” and “parallel” are fully vertical, vertical, horizontal and parallel, and perfectly vertical, vertical, horizontal and parallel, respectively. It may include cases that can be regarded as substantially vertical, vertical, horizontal and parallel including the vicinity.
  • the drive wheels 112a and 112b are rotatably attached to the base 111 and support the base 111 from below.
  • the drive wheels 112a and 112b are arranged at positions biased toward the forward direction D1A of the transport vehicle 110 with respect to the base 111, but the driving wheels 112a and 112b are not limited to this. It may be arranged in the center or at a position biased in the direction D1B.
  • the drive wheels 112a and 112b are arranged along the base 111 and side by side in the direction D2A perpendicular to the direction D1A.
  • the direction D1A is a direction along the longitudinal direction which is the long side direction of the base 111
  • the direction D1B is a direction opposite to the direction D1A
  • the direction D2A is a direction along the short side direction of the base 111
  • the direction D2B is a direction opposite to the direction D2A.
  • the drive wheels 112a and 112b are arranged so that the orientation of their respective rotation axes is fixed with respect to the base 111, and the drive wheels 112a and 112b are arranged in the directions D2A and 112b. It can rotate around a rotation axis extending along D2B.
  • the drive wheels 112a and 112b may be arranged on the base 111 so as to be movable in the direction toward and away from the base 111.
  • the drive wheels 112a and 112b may be urged by a urging member such as a spring in a direction away from the base 111. This enables stable grounding of the drive wheels 112a and 112b.
  • the transport drive devices 114a and 114b are attached to the base 111, respectively, and drive the drive wheels 112a and 112b to rotate.
  • the transport drive devices 114a and 114b each include an electric motor as a drive source and a speed reducer that transmits the rotational driving force of the electric motor to the drive wheels 112a and 112b.
  • the electric motors of the transport drive devices 114a and 114b are servomotors, but not limited to.
  • the servomotor is controlled by the control device 180.
  • the transport drive devices 114a and 114b can advance the transport vehicle 110 by rotating the drive wheels 112a and 112b in the same direction at the same speed, and rotate the drive wheels 112a and 112b in the same opposite direction at the same speed. This makes it possible to move the transport vehicle 110 backward.
  • the transport drive devices 114a and 114b can rotate the transport vehicle 110 in various ways by rotating the drive wheels 112a and 112b in a state where either or both of the rotation directions and the rotation speeds are different from each other.
  • the training wheels 113a to 113d are rotatably attached to the base 111 and support the base 111 from below.
  • the training wheels 113a to 113d are arranged around the drive wheels 112a and 112b, and in the present embodiment, they are arranged at the four corners of the base 111.
  • the training wheels 113a and 113b are arranged in the direction D1A with respect to the drive wheels 112a and 112b, and the training wheels 113c and 113d are arranged in the direction DB with respect to the drive wheels 112a and 112b.
  • Each of the training wheels 113a to 113d has a rotation axis extending along the base 111.
  • the training wheels 113a to 113d have a configuration in which the directions of the respective rotation axes can be freely changed while being along the base 111.
  • the training wheels 113a to 113d have a universal caster configuration.
  • the training wheels 113a to 113d and the drive wheels 112a and 112b are arranged so as to be in contact with the flat support surface at the same time, and support the base 111 together.
  • the training wheels 113a to 113d can change the direction of their respective rotation axes according to the traveling direction of the transport vehicle 110, and can roll along the traveling direction.
  • the elevating device 140 is arranged on the base 111, and one or more robot arms 120 are arranged on the elevating device 140.
  • the elevating device 140 raises and lowers one or more robot arms 120 in the upward direction D3A and the downward direction D3B with respect to the base 111.
  • the upward direction D3A and the downward direction D3B are also directions perpendicular to the base 111.
  • the configuration of the elevating device 140 is not particularly limited as long as one or more robot arms 120 can be elevated.
  • the elevating device 140 has a configuration that expands and contracts in the directions D3A and D3B, but is not limited to this.
  • the elevating device 140 has another configuration such as a configuration including a member that supports the robot arm 120 and rotates in the vertical direction, or a configuration in which the support member of the robot arm 120 is slid in the vertical direction on a support column. You may.
  • the telescopic elevating device 140 has a telescopic structure, for example, a one-stage telescopic structure.
  • the structure of the telescopic elevating device 140 may be a known structure.
  • the elevating device 140 may include an elevating drive device 141, an outer cylinder 142, and an inner cylinder 143.
  • the outer cylinder 142 is fixed to the base 111 and extends upward from the base 111 in the upward direction D3A.
  • the inner cylinder 143 is arranged inside the outer cylinder 142 and can move in the directions D3A and D3B with respect to the outer cylinder 142.
  • the elevating drive device 141 moves the inner cylinder 143 in the directions D3A and D3B.
  • the elevating drive device 141 is driven by electric power as a power source, but may be configured to be driven by other power sources such as pneumatic pressure and hydraulic pressure.
  • the elevating drive device 141 may include an electric actuator and a transmission mechanism that transmits the driving force of the electric actuator to the inner cylinder 143.
  • the electric actuator is a servomotor, but may be another actuator such as a linear actuator.
  • the transmission mechanism may be configured to convert the rotational driving force of the servomotor into a driving force that causes the inner cylinder 143 to move linearly.
  • the transmission mechanism may include a rack and pinion structure, a roller or ball screw structure, or the like, or may include a meshing chain structure.
  • the meshing chain structure may be a structure in which a columnar body that pushes up the inner cylinder 143 by meshing the two chains is formed, and the height of the inner cylinder 143 changes according to the meshing length of the two chains.
  • the servomotor of the elevating drive device 141 is controlled by the control device 180.
  • the elevating device 140 is arranged at a position biased in the direction D1A with respect to the base 111.
  • the elevating device 140 is arranged in the upward D3A of the drive wheels 112a and 112b.
  • the elevating device 140 and the robot arm 120 acts on the drive wheels 112a and 112b, and the frictional force between the drive wheels 112a and 112b and the support surface increases. That is, the rotational driving force of the driving wheels 112a and 112b can be efficiently transmitted to the support surface.
  • both robot arms 120A and 120B are arranged at the upper end of the inner cylinder 143 of the elevating device 140 via the base 120C.
  • the robot arms 120A and 120B can be raised and lowered in directions D3A and D3B by the elevating device 140.
  • Both the robot arms 120A and 120B can rotate horizontally along the base 111 about the axis S1 along the direction D3A.
  • the robot arms 120A and 120B have a coaxial double-arm robot arm structure. In the present embodiment, both the robot arms 120A and 120B are rotatable about 360 ° about the axis S1.
  • the robot arm 120A includes links 121A to 124A and arm drive devices M1A to M4A.
  • the robot arm 120B includes links 121B to 124B and arm drive devices M1B to M4B.
  • the arm drive devices M1A to M4A and M1B to M4B are shown in FIG.
  • the arm drive devices M1A to M4A and M1B to M4B are powered by electric power and include a servomotor as an electric motor. Each servomotor is controlled by the control device 180.
  • the links 121A and 121B are each connected to the base 120C via a rotary joint.
  • the base 120C is attached to the upper end of the inner cylinder 143 of the elevating device 140.
  • the links 121A and 121B are rotatable about the axis S1 and are arranged so as to be offset in the direction of the axis S1 in order to avoid mutual interference.
  • the arm drive devices M1A and M1B can rotationally drive the rotary joints of the links 121A and 121B and rotate them to the links 121A and 121B, respectively.
  • the base ends of the links 122A and 122B are connected to the tips of the links 121A and 121B via a rotary joint.
  • the links 122A and 122B are respectively rotatable about an axis along the direction D3A.
  • the arm drive devices M2A and M2B can rotationally drive the rotary joints of the links 122A and 122B and rotate them to the links 122A and 122B, respectively.
  • the base ends of the links 123A and 123B are connected to the tips of the links 122A and 122B via rotary joints.
  • the links 123A and 123B are each rotatable about an axis perpendicular to the direction D3A.
  • Links 123A and 123B each include three link members rotatably connected to each other.
  • the links 123A and 123B are configured to rotate the three link members in conjunction with their rotation, respectively.
  • the arm drive devices M3A and M3B can rotationally drive the rotary joints of the links 123A and 123B, respectively, and allow the links 123A and 123B to expand and contract.
  • Links 124A and 124B are rotatably connected to the tips of the links 123A and 123B, respectively.
  • Links 124A and 124B each include a wrist portion that is rotatable about an axis along direction D3A.
  • the arm drive devices M4A and M4B can rotationally drive the rotary joints of the wrist portions of the links 124A and 124B, respectively, and rotate them to the wrist portions.
  • the wrist portions of the links 124A and 124B each include a mechanical interface that allows connection with the end effector 130.
  • the robot arms 120A and 120B as described above have the structure of the horizontal articulated arm, but may have any structure.
  • the robot arms 120A and 120B may be other types of horizontal articulated type, vertical articulated type, polar coordinate type, cylindrical coordinate type, right angle coordinate type, or other types of robot arms.
  • the number of robot arms 120 arranged in the elevating device 140 may be one or more.
  • end effector 130 two end effectors 130A and 130B are detachably attached to the links 124A and 124B of the robot arms 120A and 120B, respectively.
  • the end effectors 130A and 130B may also be referred to as a robot hand.
  • the end effectors 130A and 130B are configured to act on the object handled by the robot 100.
  • the end effectors 130A and 130B may be configured to operate.
  • the end effectors 130A and 130B include a drive device, and the drive device may be powered by electric power, pneumatic pressure, hydraulic pressure, or the like.
  • the drive device powered by electric power may include an electric motor such as a servo motor.
  • the drive device may be controlled by the control device 180.
  • the robot 100 further includes a device housing 170 on the base 111.
  • the equipment housing 170 is arranged adjacent to the elevating device 140 and the robot arms 120A and 120B in the direction D1B with respect to the elevating device 140.
  • the equipment housing 170 is arranged at a position biased toward the direction D1B with respect to the elevating drive device 141 and the robot arms 120A and 120B.
  • the device housing 170 is arranged at a position biased toward the direction D1B with respect to the base 111, and is located at a position D1B with respect to the drive wheels 112a and 112b.
  • the configuration of the device housing 170 is not particularly limited, but may have, for example, a box-shaped configuration surrounded by a wall or a frame-shaped configuration. In this embodiment, the device housing 170 has a rectangular parallelepiped outer shape.
  • the secondary battery module 171 and the power supply circuit 172, the communication device 173, and the control device 180 are arranged in the device housing 170, and can be arranged in a predetermined position by being attached to the device housing 170.
  • the secondary battery module 171 may be arranged on the base 111, and the power supply circuit 172 may be arranged above the secondary battery module 171.
  • the communication device 173 and the control device 180 may be arranged at any position on the equipment housing 170.
  • the secondary battery module 171 functions as a power source for the robot 100.
  • the secondary battery module 171 includes one or more secondary batteries.
  • a secondary battery is a battery capable of charging and discharging electric power. Examples of secondary batteries are lead storage batteries, lithium ion secondary batteries, all-solid-state batteries, nickel-hydrogen storage batteries, nickel-cadmium storage batteries, and the like.
  • the power supply circuit 172 is a circuit that controls the supply and demand of electric power to the secondary battery module 171.
  • the power supply circuit 172 is configured to control power according to a command of the control device 180 or the like.
  • the power supply circuit 172 may include equipment such as a converter, an inverter, a transformer and an amplifier.
  • the power supply circuit 172 is configured to be connected to an external power source such as a commercial power source.
  • the power supply circuit 172 receives the supply of electric power from an external power source, supplies the electric power to the secondary battery module 171 and stores the electric power.
  • the power supply circuit 172 controls the power supplied to the secondary battery module 171.
  • the power supply circuit 172 supplies the electric power stored in the secondary battery module 171 to the components consuming the electric power in the robot 100.
  • the power supply circuit 172 controls the power supplied to each component.
  • the communication device 173 is a device for wireless communication, and is configured to be able to connect to the communication network N via wireless communication.
  • the wireless communication used by the communication device 173 is not particularly limited.
  • the wireless communication includes mobile data communication, wireless LAN such as wireless Wi-Fi (Wireless Fidelity), short-range wireless communication such as Bluetooth (registered trademark) and ZigBee (registered trademark), or two of these. The above combination or the like may be used.
  • the communication device 173 has a device corresponding to the wireless communication to be used.
  • one workbench 150 is arranged above the device housing 170 in the direction D3A and is supported by the device housing 170.
  • the robot arms 120A and 120B can work on the object on the workbench 150, and the robot 100 can carry the object placed on the workbench 150.
  • the display device 178 includes a display 178a capable of displaying an image and a support 178b that supports the display 178a.
  • the display 178a can display an image of image data sent from the control device 180.
  • the control device 180 displays an image for communicating with the user P facing the robot 100, an image according to a command received from the operation terminal 200, an image for providing various other information to the user, and the like on the display 178a. It may be displayed in.
  • the support body 178b is supported by the inner cylinder 143 of the elevating device 140, and moves up and down together with the inner cylinder 143.
  • the support 178b is arranged in the direction D1B with respect to the base 120C.
  • the support 178b has a columnar shape extending in direction D3A.
  • the support 178b supports the display 178a so as to hold it at a position in the direction D3A, that is, above the robot arms 120A and 120B.
  • the display 178a is supported by the support 178b in a posture in which the screen of the display 178a faces the direction D1A.
  • the display 178a can be moved up and down together with the robot arms 120A and 120B by the lifting device 140. Further, the interference between the robot arms 120A and 120B and the display 178a and the support 178b is suppressed.
  • the user P located in the direction D1A with respect to the robot 100 looks at the display 178a, it is possible to prevent the screen of the display 178a from being obstructed by the robot arms 120A and 120B. Therefore, smooth communication with the user P becomes possible.
  • the display device 178 may include a gimbal 178c between the display 178a and the support 178b.
  • the gimbal 178c can operate to change the posture of the display 178a.
  • the gimbal 178c may be configured to be operated by a human hand or may be configured to be operated by an electrical drive such as a motor.
  • the drive device may be controlled by the control device 180.
  • the sound collecting device 177 includes a microphone capable of acquiring voice from the surroundings and outputting the voice signal of the voice.
  • the sound collecting device 177 is configured to output a voice signal to the control device 180, and the control device 180 is configured to convert the voice signal into voice data and transmit it to the operation terminal 200.
  • the sound collecting device 177 is arranged on the upper part of the display 178a and oriented in the same direction as the screen of the display 178a.
  • the sound collecting device 177 can be raised and lowered together with the robot arms 120A and 120B by the raising and lowering device 140.
  • the voice output device 179 includes a speaker capable of converting a voice signal into a sound wave and radiating it as voice.
  • the voice output device 179 can output voice corresponding to the voice signal sent from the control device 180.
  • the control device 180 voices voice for communicating with the user P facing the robot 100, voice according to a command received from the operation terminal 200, voice for providing various other information to the user P, and the like. It may be output to the output device 179.
  • the audio output device 179 is arranged at the lower part of the display 178a and oriented in the same direction as the screen of the display 178a.
  • the audio output device 179 can be moved up and down together with the robot arms 120A and 120B by the lifting device 140. Therefore, smooth communication with the user P becomes possible.
  • the image pickup devices 174, 175, and 176 each include a camera that captures a digital image, and are configured to send the data of the captured image to the control device 180.
  • the control device 180 may be configured to process the image data captured by the image pickup devices 174, 175 and 176 into data that can be transmitted via a network and send the image data to the operation terminal 200 via the communication network N.
  • the image pickup device 174 is arranged at the tip of either or both of the robot arms 120A and 120B. In this embodiment, the image pickup device 174 is arranged at the end effector 130A of the robot arm 120A and directed toward the tip thereof, without limitation.
  • the image pickup apparatus 174 can image an object to which the robot arm 120A and the end effector 130A act. As a result, the operator PO can smoothly operate the robot 100.
  • the image pickup device 175 is arranged so as to be raised and lowered together with the robot arms 120A and 120B by the raising and lowering device 140.
  • the image pickup apparatus 175 is arranged on the upper part of the display 178a and oriented in the same direction as the screen of the display 178a.
  • the image pickup apparatus 175 can take an image of the service-provided user P facing the robot 100. As a result, the operator PO can operate the robot 100 corresponding to the user P.
  • the image pickup device 176 is fixed to the transport vehicle 110 and is arranged in the direction D1A which is the forward direction of the transport vehicle 110.
  • the image pickup apparatus 176 is arranged on the base 111 without limitation.
  • the image pickup apparatus 176 can take an image of the state in front of the transport vehicle 110 while the transport vehicle 110 is moving forward. As a result, the operator PO can smoothly operate the robot 100.
  • the scanning sensor 160 is fixed to the transport vehicle 110 and is arranged toward the direction D1A which is the forward direction of the transport vehicle 110.
  • the scanning sensor 160 is arranged on the base 111 without limitation.
  • the scanning sensor 160 is configured to scan a region extending radially from the scanning sensor 160 toward the direction D1A and detect the position of an object existing in the region.
  • the scanning sensor 160 is arranged so as to be able to scan at least a region in a direction toward the direction D3B from the direction D1A, that is, a direction downward from the direction D1A. As a result, the scanning sensor 160 can scan the traveling surface of the transport vehicle 110.
  • the configuration of the scanning sensor 160 is not particularly limited, and a known sensor may be used for the scanning sensor 160.
  • the scanning sensor 160 may be configured to detect the distance from the scanning sensor 160 to the object and the direction from the scanning sensor 160 to the object.
  • the scanning sensor 160 may include an optical sensor, a lidar, a radar, an ultrasonic sensor, an infrared sensor, or a combination of two or more thereof.
  • the optical sensor detects the distance and direction to an object by irradiating it with a light wave.
  • the rider detects the distance and direction to the object by irradiating it with a laser beam.
  • Radar detects the distance and direction to an object by emitting radio waves.
  • Ultrasonic sensors detect the distance and direction to an object by emitting ultrasonic waves.
  • the infrared sensor detects the distance and direction to an object by irradiating it with infrared rays.
  • the scanning sensor 160 is an example of a detection device.
  • the control device 180 is configured to control the entire robot 100.
  • FIG. 4 is a block diagram showing an example of the configuration of the control device 180 of the robot system 1 according to the embodiment. As shown in FIG. 4, the control device 180 is connected to the terminal computer 202 of the operation terminal 200 via the communication device 173, the communication network N, and the communication device 204 so as to be capable of data communication. The control device 180 controls the operation of each component of the robot 100 according to a command or the like received from the terminal computer 202. The control device 180 controls the operation of each component of the robot 100 according to the stored control program. As a result, the robot 100 can be operated by the operator PO at a remote location away from the robot 100, and the service can be provided on behalf of the service provider.
  • Examples of the components to be controlled by the control device 180 are the transfer drive devices 114a and 114b, the elevating drive device 141, the arm drive devices M1A to M4A of the robot arm 120A, the arm drive devices M1B to M4B of the robot arm 120B, and the end effector 130A.
  • the control device 180 When the control device 180 controls the electric power supplied to each component, the control device 180 outputs a current command value or the like to the power supply circuit 172, and causes the power supply circuit 172 to supply the electric power of the secondary battery module 171 to the component. It may be configured.
  • the control device 180 may be configured to servo control the servomotor.
  • the control device 180 acquires the detection result of the rotation sensor provided in the servomotor from each servomotor, acquires the supply current value from the power supply circuit 172 to the servomotor, and detects the detection result and the supply current value of the rotation sensor. And may be used as feedback information to determine the command value of the current to the servomotor.
  • the supply current value may be a command value of the current supplied from the power supply circuit 172 to the servomotor, or may be a detection result of a current sensor that can be provided in the servomotor.
  • the control device 180 is configured to cause each component of the robot 100 to execute one or more of an operation in manual operation, an operation in automatic operation, and an operation in a combination of manual operation and automatic operation. May be done.
  • control device 180 may be configured to be operated by a component according to the operation content input to the operation terminal 200 and transmitted to the control device 180.
  • control device 180 is configured to automatically, that is, autonomously operate a series of tasks corresponding to the command to the components according to a command input to the operation terminal 200 and transmitted to the control device 180. You may.
  • the control device 180 appropriately performs an operation according to the operation content and an operation of automatically executing a series of tasks according to the operation content and the command received from the operation terminal 200. It may be configured to be executed by a component. For example, the control device 180 may be configured to operate the component according to the operation content when the operation content for correcting the operation is received from the operation terminal 200 during the automatic operation.
  • the control device 180 is configured to receive a detection result such as a detection signal from the scanning sensor 160.
  • the control device 180 is configured to have a calculation function of detecting the traveling surface of the transport vehicle 110 existing in the direction D1A from the transport vehicle 110 based on the detection result of the scanning sensor 160. Further, the control device 180 is configured to have a calculation function of detecting the detected non-landing position, shape and dimension of the traveling surface based on the detection result of the scanning sensor 160.
  • the control device 180 may be configured to have an arithmetic function for generating a three-dimensional model of the traveling surface.
  • the control device 180 is configured to detect the position, shape, and dimension of the step upward on the traveling surface based on the detection result.
  • the control device 180 includes a computer device.
  • the control device 180 may be configured as an electronic circuit board, an electronic control unit, a microcomputer, and other electronic devices.
  • the computer device may include a processor such as a CPU (Central Processing Unit), a non-volatile semiconductor memory such as a ROM, and a volatile semiconductor memory such as a RAM (Random Access Memory).
  • a processor such as a CPU (Central Processing Unit), a non-volatile semiconductor memory such as a ROM, and a volatile semiconductor memory such as a RAM (Random Access Memory).
  • a program for operating a CPU is stored in a ROM or the like in advance.
  • the CPU reads the program from the ROM into the RAM and expands it.
  • the CPU executes each coded instruction in the program expanded in RAM.
  • Each function of the control device 180 may be realized by a computer system including a CPU, ROM, RAM, etc., or may be realized by a dedicated hardware circuit such as an electronic circuit or an integrated circuit, and the computer system and hardware may be realized. It may be realized by a combination of circuits.
  • the control device 180 may be configured to execute each process by centralized control by a single device, or may be configured to execute each process by distributed control by the cooperation of a plurality of devices.
  • the processor is not limited, but the processor is a CPU, MPU (MicroProcessingUnit), GPU (GraphicsProcessingUnit), microprocessor (microprocessor), processor core (processorcore), multiprocessor (multiprocessor), ASIC (Application-Specific Integrated). Circuit), FPGA (Field Programmable Gate Array), etc. may be included, and each process may be realized by a logic circuit or a dedicated circuit formed in an IC (integrated circuit) chip, LSI (Large Scale Integration), or the like.
  • the plurality of processes may be realized by one or a plurality of integrated circuits, or may be realized by one integrated circuit.
  • FIG. 5 is a flowchart showing an example of the operation of the robot system 1 according to the embodiment, and shows an example of the operation of the robot system 1 while the transport vehicle 110 is traveling.
  • the robot 100 is manually operated by the operation terminal 200, the following description will be given.
  • the operator PO in the operation area AO inputs a request in charge of service provision and a service desired to be in charge to the operation terminal 200, and the operation terminal 200 transmits the request or the like to the server 300 (step S101). ).
  • the server 300 searches for a robot 100 capable of performing a desired service, and connects the searched control device 180 of the robot 100 and the operation terminal 200 via the communication network N (step S102).
  • the operator PO When the operator PO receives the notification of the connection completion from the server 300, the operator activates each component of the robot 100 through the input to the operation terminal 200 (step S103).
  • the operator PO inputs an operation for manually operating the robot 100 to the operation terminal 200, and the operation terminal 200 transmits an operation command indicating the content of the input operation to the control device 180.
  • the control device 180 is operated by each component of the robot 100 according to an operation command received from the operation terminal 200, that is, is operated by the robot 100 (step S104).
  • the control device 180 proceeds to step S106 when the movement command to move to the transport vehicle 110 is included in the operation command (Yes in step S105), and proceeds to step S117 when the movement command is not included (No in step S105). ..
  • step S106 the control device 180 is operated by the scanning sensor 160 to scan the direction D1A, which is the traveling direction of the robot 100. Further, the control device 180 processes the detection result of the scanning sensor 160 and detects the presence or absence of a step protruding upward, that is, an upward step on the traveling surface in the direction D1A (step S107).
  • the control device 180 proceeds to step S117 when the height h of the upward step is equal to or less than the first threshold Th1 (Yes in step S108), and when the height h of the upward step exceeds the first threshold Th1 (Yes).
  • step S108, No proceeds to step S109.
  • the case where the upward step does not exist is included when the height h of the upward step is equal to or less than the first threshold value Th1.
  • control device 180 proceeds to step S110 when the height h of the upward step is more than the first threshold Th1 and is equal to or less than the second threshold Th2 (Yes in step S109), and the height h of the upward step is the first. If the threshold value exceeds Th2 (No in step S109), the process proceeds to step S111.
  • the second threshold Th2 is larger than the first threshold Th1.
  • the control device 180 causes either or both of the robot arms 120A and 120B to turn toward the direction D1B opposite to the traveling direction.
  • the turning target robot arm 120A and 120B end effectors 130A and 130B reach the position in the direction D1B from the base 120C. It may be configured to swivel to 120B.
  • the control device 180 swivels the robot arms 120A and 120B to be swiveled so that the end effectors 130A and 130B to be swiveled reach a position above the workbench 150 or a position in the direction D1B from the workbench 150. It may be configured in.
  • FIG. 6 is a side view showing an example of the operation of the robot 100 according to the embodiment.
  • the control device 180 may be configured to determine the robot arms 120A and 120B to be swiveled according to the height h of the upward step. For example, the control device 180 determines one of the robot arms 120A and 120B as a turning target when the height h of the upward step is greater than the first threshold Th1 and is equal to or less than the third threshold Th3, and the height of the upward step is determined. When h exceeds the third threshold value Th3 and is equal to or less than the second threshold value Th2, both the robot arms 120A and 120B may be configured to be determined as the turning target.
  • the third threshold Th3 is larger than the first threshold Th1 and smaller than the second threshold Th2.
  • the control device 180 detects the amount of inclination of the traveling surface in front of the detected upward step based on the processing result in step S107 (step S112).
  • the traveling surface in front of the upward step is a traveling surface from the step toward the transport vehicle 110.
  • the region on the traveling surface to be detected for the amount of inclination may be preset, and the control device 180 determines it according to the state of the robot 100 such as the moving speed of the transport vehicle 110 and the moving direction with respect to the step. It may be configured.
  • the control device 180 proceeds to step S115 when the inclination of the traveling surface in front of the upward step is downward toward the step (Yes in step S113), and when the inclination is not downward (No in step S113).
  • the process proceeds to step S114.
  • the inclination of the traveling surface downward toward the step may mean that the inclination of the traveling surface is downward toward either or both of the traveling direction and the direction D1A of the transport vehicle 110.
  • step S114 the control device 180 extends the elevating device 140 to the elevating drive device 141 and raises the robot arms 120A and 120B.
  • the control device 180 may be configured to move the robot arms 120A and 120B to the highest position.
  • FIG. 7 is a side view showing an example of the operation of the robot 100 according to the embodiment.
  • the highest position is the height position of the robot arms 120A and 120B when the elevating device 140 is most extended in the direction D3A, and the height position where the elevating device 140 can make the robot arms 120A and 120B the highest in the direction D3A. Is.
  • the center of gravity of the robot 100 can move in the directions D3A and D1B, and the center of gravity of the transport vehicle 110 can move in the direction D1B.
  • the control device 180 proceeds to step S115 after the processing of step S114.
  • step S115 the control device 180 causes the transport vehicle 110 to continue traveling and passes through an upward step.
  • the center of gravity of the transport vehicle 110 moves in the direction D1B, so that the training wheels 113a and 113b can easily ride on the upward step.
  • the robot arms 120A and 120B rise in step S114, the center of gravity of the transport vehicle 110 moves in the direction D1B, so that the training wheels 113a and 113b are more likely to ride on the upward step.
  • the control device 180 proceeds to step S117 after the processing of step S115.
  • step S111 the control device 180 sends a warning to the operation terminal 200 indicating that there is a step that the robot 100 cannot pass through.
  • the operation terminal 200 notifies the operator PO of the received warning.
  • the control device 180 may be configured to control the transport vehicle 110 to be stopped in parallel with the transmission of the warning or instead of the transmission of the warning, in front of the upward step.
  • step S116 the control device 180 is driven by the transport vehicle 110 according to the operation command received from the operation terminal 200.
  • the operator PO who has confirmed the warning inputs to the operation terminal 200 an operation of driving the transport vehicle 110 so as to avoid an upward step.
  • the operation terminal 200 transmits an operation command of the input operation to the control device 180, and the control device 180 performs control according to the operation command.
  • the control device 180 proceeds to step S117.
  • step S117 when the operator PO ends the service provision charge, the operation terminal 200 inputs the termination command to the operation terminal 200, and the operation terminal 200 transmits the command to the server 300.
  • the server 300 receives the command to end the charge (Yes in step S117)
  • the server 300 disconnects the connection between the operation terminal 200 and the robot 100, and ends a series of processes.
  • the control device 180 returns to step S104 and repeats the subsequent processing.
  • control device 180 is configured to cause the robot 100 to execute a series of processes from steps S106 to S115 by automatic operation, but the present invention is not limited to this.
  • control device 180 may be configured to cause the robot 100 to execute one or more processes of steps S106 to S115 according to a command received from the operation terminal 200, and the robot 100 may manually perform one or more processes. May be configured to run.
  • the process of the control device 180 does not have to include one or more of steps S105 to S115.
  • steps S112 to S114 may not be included.
  • the control device 180 may be configured to cause the robot 100 to perform the processing of either or both of steps S104 and S116 by automatic operation or a combination of automatic operation and manual operation.
  • the control device 180 may be configured to cause the robot 100 to execute a series of operations for executing the task according to a command of the task received from the operation terminal 200.
  • the drive wheels 112a and 112b, the robot arms 120A and 120B, and the elevating device 140 are arranged at positions biased in the direction D1A with respect to the base 111.
  • the drive wheels 112a and 112b are components of the robot 100. You can reach the step relatively quickly and get on.
  • the robot arms 120A and 120B and the elevating device 140 are arranged at positions biased toward the direction D1A as in the drive wheels 112a and 112b, the load of the robot arms 120A and 120B and the elevating device 140 is applied to the drive wheels 112a and 112b.
  • the frictional force of the drive wheels 112a and 112b increases, and the driving force of the drive wheels 112a and 112b increases. Therefore, the drive wheels 112a and 112b can easily ride on the step.
  • the robot 100A according to the modified example is different from the embodiment in that it includes a device capable of tilting the transport vehicle 110.
  • the modification will be described mainly on the points different from those of the embodiment, and the description of the same points as those of the embodiment will be omitted as appropriate.
  • FIG. 8 is a side view showing an example of the configuration of the robot 100A according to the modified example.
  • the elevating device 140 is in an extended state.
  • the robot 100A according to the present modification further includes a protruding operation unit 190 as compared with the embodiment.
  • the projecting operation unit 190 is configured to project downward so as to lift the transport vehicle 110 from the traveling surface.
  • the protrusion operation unit 190 is attached to the elevating device 140, and moves in the directions D3A and D3B together with the inner cylinder 143 as the elevating device 140 moves up and down.
  • the protruding operation unit 190 is arranged in the direction D1A with respect to the elevating device 140.
  • the protrusion operating unit 190 is an example of a protrusion and a variable device.
  • the protruding operating portion 190 includes a wheel 190a, a bearing body 190b that rotatably supports the wheel 190a, and a support member 190c that connects the bearing body 190b and the inner cylinder 143.
  • the wheels 190a are arranged in the direction D3B with respect to the bearing body 190b and are configured to rotate freely.
  • the wheels 190a and the bearing body 190b may have a universal caster configuration similar to the auxiliary wheels 113a to 113d, and the orientation of the rotation axis of the wheels 190a is fixed as in the drive wheels 112a and 112b. May be good.
  • the wheels 190a and the bearing body 190b are arranged so as to pass through the opening 111a penetrating the base 111 of the transport vehicle 110 when moving in the direction D3B.
  • the support member 190c is connected to the upper end of the inner cylinder 143 via the base 120C and extends in the direction D3B along the inner cylinder 143 and the outer cylinder 142.
  • the elevating drive device 141 When the elevating drive device 141 lowers the inner cylinder 143 in the direction D3B to contract the elevating device 140, the elevating drive device 141 moves the support member 190c, the bearing body 190b, and the wheels 190a in the direction D3B together with the inner cylinder 143. As the inner cylinder 143 descends, the wheels 190a project from the base 111 in the direction D3B and are grounded and pressed against the traveling surface.
  • FIG. 9 is a side view showing an example of the operation of the robot 100A according to the modified example.
  • the lowest position is the height position of the inner cylinder 143 when the elevating device 140 is most contracted in the direction D3B, and the height position where the elevating device 140 can make the inner cylinder 143 the lowest in the direction D3B.
  • the center of gravity of the transport vehicle 110 moves in the direction D1B, and the transport vehicle 110 can easily get over the upward step.
  • the elevating device 140 can smoothly lift the transport vehicle 110 by using the protruding operating portion 190 even when the transport vehicle 110 is running. Since the projecting operating portion 190 is arranged at a position biased in the direction D1A, the training wheels 113a and 113b can be pulled up from the traveling surface. Since the projecting operation portion 190 is arranged in the direction D1A rather than the elevating device 140, the training wheels 113a and 113b are more likely to be pulled up.
  • the control device 180 normally controls the operation of the elevating device 140 so that the height position of the inner cylinder 143 is maintained at a height such that the protruding operation unit 190 does not lift the transport vehicle 110.
  • the control device 180 detects an upward step having a height h above the first threshold value and below the second threshold value, the control device 180 sets the height position of the inner cylinder 143 to the target height position below the height position.
  • the elevating device 140 is configured to perform a contraction operation.
  • the target height position is the lowest position, but the height position is not limited to this, and the target height position may be such that the center of gravity of the transport vehicle 110 moves in the direction D1B.
  • the target height position may be such that the wheels 190a press the traveling surface to the extent that the training wheels 113a and 113b do not separate from the traveling surface.
  • the magnitudes of the first threshold and the second threshold may be the same as or different from those of the embodiment.
  • control device 180 is configured to execute the turning motion of the robot arms 120A and 120B in the direction D1B in the embodiment in parallel with the execution of the descending motion of the projecting motion unit 190 using the lifting device 140. good.
  • the protruding operation unit 190 is arranged in the direction D1A with respect to the elevating device 140, but is not limited to this, and may be arranged at any position around the elevating device 140.
  • the protruding operation unit 190 may be arranged inside the inner cylinder 143 and the outer cylinder 142.
  • the protruding operation unit 190 does not include a drive device that rotationally drives the wheels 190a, but may include the drive device.
  • the protruding operation unit 190 is driven by the elevating device 140 and operates together with the elevating device 140, but the present invention is not limited to this.
  • a device for operating the projecting operation unit 190 may be separately provided.
  • the device may be arranged on the base 111 and configured to slide the support member 190c of the projecting portion 190 in the directions D3A and D3B.
  • the device may be arranged on the base 111 and configured to project the wheels 190a from the base 111 in the direction D3B by rotating the support member 190c.
  • the control device 180 is configured to detect an upward step, but is not limited to this.
  • the control device 180 may be configured to transmit information on the traveling surface to the operating terminal 200, and may transmit image data captured by the imaging device 176 to the operating terminal 200 instead of the information on the traveling surface. It may be configured.
  • the operator PO of the operation terminal 200 transmits a command to move the center of gravity of the transport vehicle 110 to the rear direction D1B to the control device 180 via the operation terminal 200 based on the above information or image data received by the operation terminal 200. be able to.
  • control device 180 is configured to automatically execute the operations of the robots 100 and 100A for moving the center of gravity of the transport vehicle 110 in the rear direction D1B, but is not limited thereto. ..
  • the control device 180 may be configured to cause the robots 100 and 100A to move the center of gravity of the transport vehicle 110 in the rear direction D1B in accordance with an operation command for manual operation received from the operation terminal 200. ..
  • the control device 180 may have an image processing function.
  • the control device 180 may have a function capable of detecting the three-dimensional position of the subject projected on the pixels of the image data.
  • the image pickup apparatus 176 may include a camera that captures an image capable of detecting a three-dimensional position of the subject such as a distance to the subject.
  • the image pickup apparatus 176 may include a stereo camera.
  • the control device 180 may be configured to process two image data captured by a stereo camera and detect the distance of a subject projected on each pixel by using a stereo matching method or the like. In this case, since the image pickup device 176 and the control device 180 can function as the scanning sensor 160, a separate scanning sensor is not required.
  • the robots 100 and 100A are used as robots for providing services to humans, but may be used for other purposes.
  • the robots 100 and 100A may be configured to be used for work in factories, warehouses, and the like.
  • the robot according to one aspect of the present disclosure includes a self-propelled transport vehicle, one or more robot arms mounted on the transport vehicle, and one or more robots mounted on the transport vehicle and relative to the transport vehicle. It is configured to control the operation of the elevating device for raising and lowering the robot arm, the fluctuating device for changing the center of gravity of the transport vehicle, the transport vehicle, the one or more robot arms, the elevating device, and the fluctuating device.
  • the control device When there is a step upward on the traveling surface, which exists in the first direction, which is the traveling direction of the transport vehicle, the control device reverses the center of gravity of the transport vehicle to the first direction. It is configured to operate the variable device so as to move in the second direction, which is the direction.
  • the variable device moves the center of gravity of the transport vehicle in the second direction which is the opposite direction.
  • the center of gravity of the entire robot can also move in the second direction.
  • the portion of the transport vehicle in front of the first direction easily rides on a step.
  • the transport vehicle is provided with wheels at the relevant portion, the wheels are likely to ride on a step.
  • the transport vehicle can travel over the step.
  • the robot only needs to be equipped with a variable device to have the ability to climb over steps, which allows for simplification of its structure.
  • variable device includes the robot arm, and the control device extends in the second direction in order to move the center of gravity of the transport vehicle in the second direction. It may be configured to operate on the robot arm.
  • the robot arm when the robot arm operates so as to extend in the second direction, the center of gravity of the entire robot moves in the second direction, and the center of gravity of the transport vehicle also moves in the second direction. Therefore, the robot does not need to be equipped with a special device for overcoming a step, and its structure can be simplified.
  • the variable device includes a protruding portion capable of projecting downward from the traveling surface so as to lift the transport vehicle, and the control device is a center of gravity of the transport vehicle.
  • the variable device may be configured to project the protrusion and lift the transport vehicle.
  • variable device can easily change the center of gravity of the transport vehicle by operating the protrusion so as to lift the transport vehicle.
  • the variable device need only be able to change the center of gravity of the carrier, and does not necessarily have the ability to lift the carrier until it is separated from the traveling surface. Therefore, the structure of the variable device can be miniaturized and simplified.
  • the projecting portion is driven by the elevating device so as to perform a downward projecting operation and an upward retreating operation in accordance with the lowering operation and the ascending operation of the elevating device, respectively.
  • the control device is configured to cause the projecting portion to lift the transport vehicle by causing the elevating device to perform the descending operation in order to move the center of gravity of the transport vehicle in the second direction. May be good.
  • the elevating device also serves as a driving device for raising and lowering the robot arm and a driving device for projecting the protruding portion. Therefore, the structure of the robot can be simplified.
  • the robot according to one aspect of the present disclosure further comprises a secondary battery as a power source mounted on the transport vehicle and adjacent to the elevating device and the one or more robot arms. May be arranged at a position biased in the reverse direction in the transport vehicle rather than the elevating device and the one or more robot arms.
  • the weight in the forward direction is reduced in the transport vehicle as compared with the elevating device and one or more robot arms. Will be done. This makes it easier for the carrier to ride on the step.
  • the weight of the secondary battery reduces the overturning moment of the robot in the first direction. It is possible to stabilize the robot when the variable device is not operating.
  • circuits including general purpose processors, dedicated processors, integrated circuits, ASICs, conventional circuits, and / or combinations thereof, configured or programmed to perform the disclosed functions. Alternatively, it can be executed using a processing circuit.
  • a processor is considered a processing circuit or circuit because it includes transistors and other circuits.
  • a circuit, unit, or means is hardware that performs the listed functions or is programmed to perform the listed functions.
  • the hardware may be the hardware disclosed herein, or it may be other known hardware that is programmed or configured to perform the listed functions. If the hardware is a processor considered to be a type of circuit, the circuit, means, or unit is a combination of hardware and software, and the software is used to configure the hardware and / or processor.

Abstract

A robot (100; 100A) is provided with: a transport vehicle (110) capable of self-propulsion; one or more robot arms (120A, 120B) mounted on the transport vehicle; a lifting/lowering device (140) that is mounted on the transport vehicle and lifts/lowers the one or more robot arms with respect to the transport vehicle; a fluctuation device (120A, 120B; 190) for causing the center of gravity of the transport vehicle to fluctuate; and a control device (180) that is configured so as to control the operations of the transport vehicle, the one or more robot arms, the lifting/lowering device, and the fluctuation device. The control device is configured so that, if there is a stepped difference upward on a travel surface present in a first direction that is a direction of advance of the transport vehicle, the control device causes the fluctuation device to operate so as to move the center of gravity of the transport vehicle to a second direction that is the opposite direction from the first direction.

Description

ロボットrobot 関連出願への相互参照Cross-reference to related applications
 本件出願は、2020年12月24日に日本特許庁に出願された特願2020-215748号及の優先権及びその利益を主張するものであり、その全体を参照することにより本件出願の一部をなすものとして引用する。 This application claims the priority and benefits of Japanese Patent Application No. 2020-215748 filed with the Japan Patent Office on December 24, 2020, and is a part of this application by reference to the whole. Quoting as something that makes up.
 本開示は、ロボットに関する。 This disclosure relates to robots.
 従来、ロボットは、人の作業を代替するために用いられてきた。例えば、特開2020-108867号公報は、自律移動しつつ対象面を清掃するロボット掃除機を開示する。ロボット掃除機は、ユーザとのコミュニケーションを行うように構成され、その筐体の前端を上下動させるうなずきの応答動作を実行することができる。ロボット掃除機は、姿勢制御輪を設置面に向けて突出させることにより、姿勢制御輪にて筐体を押し上げて傾ける。ロボット掃除機は、姿勢制御輪を用いて筐体を押し上げることにより、段差を乗り越えもする。 Traditionally, robots have been used to replace human work. For example, Japanese Patent Application Laid-Open No. 2020-108867 discloses a robot vacuum cleaner that cleans a target surface while autonomously moving. The robot vacuum is configured to communicate with the user and can perform a nodding response action that moves the front edge of the housing up and down. The robot vacuum cleaner pushes up and tilts the housing with the attitude control wheel by projecting the attitude control wheel toward the installation surface. The robot vacuum also overcomes steps by pushing up the housing using the attitude control wheels.
 近年、人へのサービスを提供するロボットであるサービスロボットが考案されている。サービスロボットは、サービスを提供するためのロボットアームと、移動のための搬送車とを備えることがある。サービスロボットは、サービスを提供するための装備を搭載するため、その構成が複雑になる可能性がある。さらに、サービスロボットは、移動中に遭遇する走行面の段差等の障害物への対応を要求され得る。 In recent years, service robots, which are robots that provide services to humans, have been devised. A service robot may include a robot arm for providing services and a carrier for movement. Since service robots are equipped with equipment for providing services, their configurations may be complicated. Further, the service robot may be required to deal with obstacles such as steps on the traveling surface encountered during movement.
 本開示は、障害物への対応が可能であり且つ構造の簡略化を可能にするロボットを提供することを目的とする。 The object of the present disclosure is to provide a robot capable of dealing with obstacles and simplifying the structure.
 本開示の一態様に係るロボットは、自走可能な搬送車と、前記搬送車に搭載される1つ以上のロボットアームと、前記搬送車に搭載され且つ前記搬送車に対して前記1つ以上のロボットアームを昇降する昇降装置と、前記搬送車の重心を変動させる変動装置と、前記搬送車、前記1つ以上のロボットアーム、前記昇降装置及び前記変動装置の動作を制御するように構成される制御装置とを備え、前記制御装置は、前記搬送車の進行方向である第1方向に存在する、走行面の上方への段差があるとき、前記搬送車の重心を前記第1方向と反対方向である第2方向に移動するように前記変動装置に動作させるように構成される。 The robot according to one aspect of the present disclosure includes a self-propelled transport vehicle, one or more robot arms mounted on the transport vehicle, and one or more robots mounted on the transport vehicle and relative to the transport vehicle. It is configured to control the operation of the elevating device for raising and lowering the robot arm, the fluctuating device for changing the center of gravity of the transport vehicle, the transport vehicle, the one or more robot arms, the elevating device, and the fluctuating device. When there is a step upward on the traveling surface, which exists in the first direction, which is the traveling direction of the transport vehicle, the control device reverses the center of gravity of the transport vehicle to the first direction. It is configured to operate the variable device so as to move in the second direction, which is the direction.
図1は、実施の形態に係るロボットシステムの構成の一例を示す図である。FIG. 1 is a diagram showing an example of a configuration of a robot system according to an embodiment. 図2は、実施の形態に係るロボットの構成の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of the configuration of the robot according to the embodiment. 図3は、実施の形態に係るロボットの構成の一例を示す側面図である。FIG. 3 is a side view showing an example of the configuration of the robot according to the embodiment. 図4は、実施の形態に係るロボットシステムの制御装置の構成の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the configuration of the control device of the robot system according to the embodiment. 図5は、実施の形態に係るロボットシステムの動作の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the operation of the robot system according to the embodiment. 図6は、実施の形態に係るロボットの動作の一例を示す側面図である。FIG. 6 is a side view showing an example of the operation of the robot according to the embodiment. 図7は、実施の形態に係るロボットの動作の一例を示す側面図である。FIG. 7 is a side view showing an example of the operation of the robot according to the embodiment. 図8は、変形例に係るロボットの構成の一例を示す側面図である。FIG. 8 is a side view showing an example of the configuration of the robot according to the modified example. 図9は、変形例に係るロボットの動作の一例を示す側面図である。FIG. 9 is a side view showing an example of the operation of the robot according to the modified example.
 以下において、本開示の例示的な実施の形態を、図面を参照しつつ説明する。以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。添付の図面における各図は、模式的な図であり、必ずしも厳密に図示されたものでない。各図において、実質的に同一の構成要素に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。本明細書及び請求項では、「装置」とは、1つの装置を意味し得るだけでなく、複数の装置からなるシステムも意味し得る。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings. Each of the embodiments described below is a comprehensive or specific example. Among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept are described as arbitrary components. Each figure in the attached drawings is a schematic view and is not necessarily exactly illustrated. In each figure, substantially the same components are designated by the same reference numerals, and duplicate description may be omitted or simplified. As used herein and claimed, "device" can mean not only one device, but also a system of multiple devices.
 [ロボットシステムの構成]
 例示的な実施の形態に係るロボットシステム1の構成の一例を説明する。図1は、実施の形態に係るロボットシステム1の構成の一例を示す図である。図1に示すように、実施の形態に係るロボットシステム1は、1つ以上のロボット100と、1つ以上の操作端末200と、サーバ300とを備える。限定されないが、本実施の形態では、ロボットシステム1は、遠隔地から操作されるロボット100を用いてユーザPにサービスを提供するように構成される。ロボットシステム1は、介護、医療、清掃、警備、案内、救助、調理、商品提供等の様々なサービス業で使用されることができる。
[Robot system configuration]
An example of the configuration of the robot system 1 according to the exemplary embodiment will be described. FIG. 1 is a diagram showing an example of the configuration of the robot system 1 according to the embodiment. As shown in FIG. 1, the robot system 1 according to the embodiment includes one or more robots 100, one or more operation terminals 200, and a server 300. In the present embodiment, the robot system 1 is configured to provide a service to the user P by using the robot 100 operated from a remote place, without limitation. The robot system 1 can be used in various service industries such as nursing care, medical care, cleaning, security, guidance, rescue, cooking, and product provision.
 限定されないが、本実施の形態では、ユーザPにサービスを提供する場所である1つのサービス提供エリアASに、複数のロボット100が配置される。サービス提供エリアASから離れた位置にある複数の操作エリアAOのそれぞれに、1つ以上の操作端末200が配置される。 Although not limited, in the present embodiment, a plurality of robots 100 are arranged in one service providing area AS, which is a place where a service is provided to the user P. One or more operation terminals 200 are arranged in each of the plurality of operation area AOs located away from the service provision area AS.
 ロボット100は、無線通信を介して、データ通信可能に通信ネットワークNと接続するように構成される。ロボット100は、有線通信、又は、有線通信及び無線通信の組み合わせを介して、通信ネットワークNと接続されてもよい。操作端末200は、有線通信、無線通信又はこれらの組み合わせを介して、データ通信可能に通信ネットワークNと接続するように構成される。1つのロボット100と1つの操作端末200とが、通信ネットワークNを介してデータ通信可能に接続され得る。いかなる有線通信及び無線通信が用いられてもよい。 The robot 100 is configured to connect to the communication network N so that data communication is possible via wireless communication. The robot 100 may be connected to the communication network N via wired communication or a combination of wired communication and wireless communication. The operation terminal 200 is configured to be connected to the communication network N so as to be capable of data communication via wired communication, wireless communication, or a combination thereof. One robot 100 and one operation terminal 200 can be connected to each other via a communication network N so as to be capable of data communication. Any wired or wireless communication may be used.
 サーバ300は、通信ネットワークNを介した通信を管理する。サーバ300は、コンピュータ装置を含む。サーバ300は、ロボット100と操作端末200との間の通信の認証、接続及び接続解除等を管理する。例えば、サーバ300は、ロボットシステム1に登録されているロボット100及び操作端末200の識別情報及びセキュリティ情報等を記憶し、当該情報を用いて、操作端末200のロボットシステム1への接続の資格を認証する。サーバ300は、ロボット100と操作端末200との間のデータの送受信を管理し、当該データはサーバ300を経由してもよい。サーバ300は、送信元から送信されるデータを、送信先が利用可能なデータ型式に変換するように構成されてもよい。サーバ300は、ロボット100の操作の過程でロボット100と操作端末200との間で送受信された情報、指令及びデータ等を記憶し蓄積するように構成されてもよい。 The server 300 manages communication via the communication network N. The server 300 includes a computer device. The server 300 manages authentication, connection, disconnection, and the like of communication between the robot 100 and the operation terminal 200. For example, the server 300 stores identification information, security information, and the like of the robot 100 and the operation terminal 200 registered in the robot system 1, and uses the information to qualify the operation terminal 200 for connection to the robot system 1. Authenticate. The server 300 manages the transmission and reception of data between the robot 100 and the operation terminal 200, and the data may pass through the server 300. The server 300 may be configured to convert the data transmitted from the source into a data format available to the destination. The server 300 may be configured to store and store information, commands, data, and the like transmitted and received between the robot 100 and the operation terminal 200 in the process of operating the robot 100.
 通信ネットワークNは特に限定されず、例えば、ローカルエリアネットワーク(Local Area Network:LAN)、広域ネットワーク(Wide Area Network:WAN)、インターネット、又はこれらの2つ以上の組み合わせを含むことができる。通信ネットワークNは、ブルートゥース(Bluetooth)(登録商標)及びZigBee(登録商標)などの近距離無線通信、ネットワーク専用回線、通信事業者の専用回線、公衆交換電話網(Public Switched Telephone Network:PSTN)、モバイル通信網、インターネット網、衛星通信、又は、これらの2つ以上の組み合わせを用いるように構成され得る。モバイル通信網は、第4世代移動通信システム及び第5世代移動通信システム等を用いるものであってもよい。通信ネットワークNは、1つ又は複数のネットワークを含むことができる。本実施の形態では、通信ネットワークNはインターネットである。 The communication network N is not particularly limited, and may include, for example, a local area network (LAN), a wide area network (WAN), the Internet, or a combination of two or more of these. Communication network N includes short-range wireless communication such as Bluetooth (registered trademark) and ZigBee (registered trademark), dedicated network line, dedicated line of telecommunications carrier, public switched telephone network (PSTN), It may be configured to use a mobile communication network, an internet network, satellite communication, or a combination of two or more of these. The mobile communication network may use a 4th generation mobile communication system, a 5th generation mobile communication system, or the like. The communication network N can include one or more networks. In this embodiment, the communication network N is the Internet.
 [操作端末の構成]
 実施の形態に係る操作端末200の構成の一例を説明する。図1に示すように、操作端末200は、操作者PОによる指令、情報及びデータ等の入力を受け付けることができ、受け付けた指令、情報及びデータ等を他の装置に出力できる。操作端末200は、操作入力装置201と、端末コンピュータ202と、提示装置203と、通信装置204とを含む。操作入力装置201、端末コンピュータ202、提示装置203及び通信装置204は、1つの装置を形成するように一体化されてもよく、それぞれが単独で装置を形成し互いに接続されてもよく、これらの2つ以上が1つの装置を形成し他の装置と接続されてもよい。
[Operation terminal configuration]
An example of the configuration of the operation terminal 200 according to the embodiment will be described. As shown in FIG. 1, the operation terminal 200 can receive input of commands, information, data, etc. by the operator PO, and can output the received commands, information, data, etc. to other devices. The operation terminal 200 includes an operation input device 201, a terminal computer 202, a presentation device 203, and a communication device 204. The operation input device 201, the terminal computer 202, the presentation device 203, and the communication device 204 may be integrated so as to form one device, or each of them may independently form a device and be connected to each other. Two or more may form one device and be connected to another device.
 操作端末200の構成は特に限定されない。例えば、操作端末200は、パーソナルコンピュータなどのコンピュータ、スマートフォン及びタブレットなどのスマートデバイス、個人情報端末、ゲーム端末、ロボットへの教示作業に使用されるティーチペンダントなどの既知の教示装置、ロボットの既知の操作装置、その他の操作装置、その他の端末装置、これらを利用する装置、並びに、これらを改良した装置等であってもよい。操作端末200は、ロボットシステム1のために考案される専用の装置であってもよいが、一般市場において入手可能な汎用的な装置であってもよい。本実施の形態では、操作端末200には既知の汎用的な装置が用いられる。当該装置は、専用のソフトウェアがインストールされることによって、本開示の操作端末200の機能を実現するように構成されてもよい。 The configuration of the operation terminal 200 is not particularly limited. For example, the operation terminal 200 includes a computer such as a personal computer, a smart device such as a smartphone and a tablet, a personal information terminal, a game terminal, a known teaching device such as a teach pendant used for teaching work to a robot, and a known robot. It may be an operating device, another operating device, another terminal device, a device using these, an improved device thereof, or the like. The operation terminal 200 may be a dedicated device devised for the robot system 1, but may be a general-purpose device available in the general market. In this embodiment, a known general-purpose device is used for the operation terminal 200. The device may be configured to realize the functions of the operation terminal 200 of the present disclosure by installing dedicated software.
 操作入力装置201は、操作者PОによる入力を受け付け、入力された指令、情報及びデータ等を示す信号等を端末コンピュータ202に出力するように構成される。操作入力装置201の構成は特に限定されない。例えば、操作入力装置201は、ボタン、レバー、ダイヤル、ジョイスティック、マウス、キー、タッチパネル及びモーションキャプチャ等の、操作者PОの操作を介して入力が与えられる装置を含んでもよい。操作入力装置201は、操作者PО等の画像を撮像するカメラ等の撮像装置、及び、操作者PО等の音声の入力を受け付けるマイク等の音声入力装置を含んでもよい。操作入力装置201は、撮像された画像データ、及び、入力された音声を示す信号を端末コンピュータ202に出力するように構成されてもよい。 The operation input device 201 is configured to receive an input by the operator PO and output a signal or the like indicating the input command, information, data, or the like to the terminal computer 202. The configuration of the operation input device 201 is not particularly limited. For example, the operation input device 201 may include a device such as a button, a lever, a dial, a joystick, a mouse, a key, a touch panel, a motion capture, etc., to which an input is given via an operation of an operator PO. The operation input device 201 may include an image pickup device such as a camera that captures an image of the operator PO and the like, and a voice input device such as a microphone that accepts the voice input of the operator PO and the like. The operation input device 201 may be configured to output the captured image data and a signal indicating the input voice to the terminal computer 202.
 端末コンピュータ202は、操作入力装置201を介して受け付けた指令、情報及びデータ等を処理し他の装置に出力すること、及び、他の装置からの指令、情報及びデータ等の入力を受け付け、当該指令、情報及びデータ等を処理することを実行するように構成される。 The terminal computer 202 processes the commands, information, data, etc. received via the operation input device 201 and outputs them to another device, and receives the input of commands, information, data, etc. from the other device, and said that. It is configured to perform processing of commands, information, data, etc.
 提示装置203は、画像を操作者PОに表示可能であるディスプレイを含む。提示装置203は、端末コンピュータ202から受け取る画像データの画像を表示する。提示装置203は、音声を操作者PОに発することができるスピーカ等の音声出力装置を含んでもよい。提示装置203は、端末コンピュータ202から受け取る音声データの音声を出力する。 The presentation device 203 includes a display capable of displaying an image on the operator PO. The presentation device 203 displays an image of image data received from the terminal computer 202. The presentation device 203 may include a voice output device such as a speaker capable of emitting voice to the operator PO. The presentation device 203 outputs the voice of the voice data received from the terminal computer 202.
 通信装置204は、通信ネットワークNと接続可能である通信インタフェースを備える。通信装置204は、端末コンピュータ202と接続され、端末コンピュータ202と通信ネットワークNとをデータ通信可能に接続する。通信装置204は、例えば、モデム、ONU(Optical Network Unit:光回線の終端装置)、ルータ及びモバイルデータ通信機器等の通信機器を含んでもよい。通信装置204は、演算機能等を有するコンピュータ装置を含んでもよい。 The communication device 204 includes a communication interface that can be connected to the communication network N. The communication device 204 is connected to the terminal computer 202, and connects the terminal computer 202 and the communication network N so as to be capable of data communication. The communication device 204 may include, for example, a communication device such as a modem, an ONU (Optical Network Unit), a router, and a mobile data communication device. The communication device 204 may include a computer device having a calculation function or the like.
 [ロボットの構成]
 実施の形態に係るロボット100の構成の一例を説明する。図2は、実施の形態に係るロボット100の構成の一例を示す斜視図である。図3は、実施の形態に係るロボット100の構成の一例を示す側面図である。
[Robot configuration]
An example of the configuration of the robot 100 according to the embodiment will be described. FIG. 2 is a perspective view showing an example of the configuration of the robot 100 according to the embodiment. FIG. 3 is a side view showing an example of the configuration of the robot 100 according to the embodiment.
 図2及び図3に示すように、ロボット100は、1つの搬送車110と、1つ以上のロボットアーム120と、1つ以上のエンドエフェクタ130と、1つの昇降装置140と、1つ以上の作業台150と、走査センサ160と、二次電池モジュール171と、電源回路172と、通信装置173と、撮像装置174、175及び176と、集音装置177と、表示装置178と、音声出力装置179と、制御装置180とを備える。限定されないが、本実施の形態では、ロボットアーム120には、産業用としても機能することができるロボットアームが用いられる。撮像装置174、175及び176、集音装置177、表示装置178、並びに、音声出力装置179は、コミュニケーション装置の一例である。上記の各構成要素の数量は上記数量に限定されず、適宜変更可能である。 As shown in FIGS. 2 and 3, the robot 100 includes one carrier 110, one or more robot arms 120, one or more end effectors 130, one elevating device 140, and one or more. A workbench 150, a scanning sensor 160, a secondary battery module 171, a power supply circuit 172, a communication device 173, an image pickup device 174, 175 and 176, a sound collector 177, a display device 178, and an audio output device. It includes 179 and a control device 180. Although not limited to, in the present embodiment, the robot arm 120 uses a robot arm that can also function for industrial use. The image pickup devices 174, 175 and 176, the sound collecting device 177, the display device 178, and the audio output device 179 are examples of communication devices. The quantity of each of the above components is not limited to the above quantity and can be changed as appropriate.
 搬送車110は自走可能であるように構成される。限定されないが、本実施の形態では、搬送車110は、搬送車110が備える車輪を用いて走行する。搬送車110は、基台111と、駆動輪112a及び112bと、補助輪113aから113dと、搬送駆動装置114a及び114bとを含む。 The transport vehicle 110 is configured to be self-propelled. Although not limited, in the present embodiment, the transport vehicle 110 travels by using the wheels included in the transport vehicle 110. The transport vehicle 110 includes a base 111, drive wheels 112a and 112b, auxiliary wheels 113a to 113d, and transport drive devices 114a and 114b.
 基台111は、矩形板状の外形を有する。例えば、基台111は、上下方向に薄い板状又は枠状の構成を有してもよい。本明細書及び請求項において、「上方向」は、水平な支持面上にロボット100が配置される場合での支持面に垂直な上向きの方向、つまり、鉛直上方向を意味し、「下方向」は、同様の場合での支持面に垂直な下向きの方向、つまり、鉛直下方向を意味する。本明細書及び請求項において、「垂直」、「鉛直」、「水平」及び「平行」はそれぞれ、完全に垂直、鉛直、水平及び平行である場合と、完全な垂直、鉛直、水平及び平行の近傍を含む実質的に垂直、鉛直、水平及び平行とみなすことができる場合とを含み得る。 The base 111 has a rectangular plate-like outer shape. For example, the base 111 may have a thin plate-like or frame-like structure in the vertical direction. In the present specification and the claims, "upward" means an upward direction perpendicular to the support surface when the robot 100 is arranged on the horizontal support surface, that is, a vertically upward direction, and is "downward". "" Means a downward direction perpendicular to the support surface in the same case, that is, a vertical downward direction. As used herein and claimed, "vertical", "vertical", "horizontal" and "parallel" are fully vertical, vertical, horizontal and parallel, and perfectly vertical, vertical, horizontal and parallel, respectively. It may include cases that can be regarded as substantially vertical, vertical, horizontal and parallel including the vicinity.
 駆動輪112a及び112bは、基台111に回転可能に取り付けられ、基台111を下方から支持する。本実施の形態では、駆動輪112a及び112bは、基台111に対して、搬送車110の前進方向である方向D1Aに偏った位置に配置されるが、これに限定されず、基台111の中央、又は、方向D1Bに偏った位置に配置されてもよい。駆動輪112a及び112bは、基台111に沿い且つ方向D1Aに垂直な方向D2Aに並んで配置される。例えば、方向D1Aは、基台111の長辺方向である長手方向に沿う方向であり、方向D1Bは、方向D1Aと反対方向である。方向D2Aは、基台111の短辺方向である短手方向に沿う方向であり、方向D2Bは、方向D2Aと反対方向である。 The drive wheels 112a and 112b are rotatably attached to the base 111 and support the base 111 from below. In the present embodiment, the drive wheels 112a and 112b are arranged at positions biased toward the forward direction D1A of the transport vehicle 110 with respect to the base 111, but the driving wheels 112a and 112b are not limited to this. It may be arranged in the center or at a position biased in the direction D1B. The drive wheels 112a and 112b are arranged along the base 111 and side by side in the direction D2A perpendicular to the direction D1A. For example, the direction D1A is a direction along the longitudinal direction which is the long side direction of the base 111, and the direction D1B is a direction opposite to the direction D1A. The direction D2A is a direction along the short side direction of the base 111, and the direction D2B is a direction opposite to the direction D2A.
 限定されないが、本実施の形態では、駆動輪112a及び112bは、それぞれの回転軸の向きが基台111に対して固定されるように配置されており、駆動輪112a及び112bは、方向D2A及びD2Bに沿って延びる回転軸を中心に回転可能である。駆動輪112a及び112bは、基台111に接近する方向及び離れる方向に移動可能であるように基台111に配置されてもよい。駆動輪112a及び112bは、基台111から離れる方向へ、ばね等の付勢部材によって付勢されてもよい。これにより、駆動輪112a及び112bの安定した接地が可能である。 Although not limited, in the present embodiment, the drive wheels 112a and 112b are arranged so that the orientation of their respective rotation axes is fixed with respect to the base 111, and the drive wheels 112a and 112b are arranged in the directions D2A and 112b. It can rotate around a rotation axis extending along D2B. The drive wheels 112a and 112b may be arranged on the base 111 so as to be movable in the direction toward and away from the base 111. The drive wheels 112a and 112b may be urged by a urging member such as a spring in a direction away from the base 111. This enables stable grounding of the drive wheels 112a and 112b.
 搬送駆動装置114a及び114bはそれぞれ、基台111に取り付けられ、駆動輪112a及び112bを回転駆動する。例えば、搬送駆動装置114a及び114bはそれぞれ、駆動源としての電気モータと、電気モータの回転駆動力を駆動輪112a及び112bに伝達する減速機とを含む。限定されないが、本実施の形態では、搬送駆動装置114a及び114bの電気モータは、サーボモータである。サーボモータは、制御装置180によって制御される。 The transport drive devices 114a and 114b are attached to the base 111, respectively, and drive the drive wheels 112a and 112b to rotate. For example, the transport drive devices 114a and 114b each include an electric motor as a drive source and a speed reducer that transmits the rotational driving force of the electric motor to the drive wheels 112a and 112b. In the present embodiment, the electric motors of the transport drive devices 114a and 114b are servomotors, but not limited to. The servomotor is controlled by the control device 180.
 搬送駆動装置114a及び114bは、駆動輪112a及び112bを同じ一方向に同じ速度で回転させることで搬送車110を前進させることができ、駆動輪112a及び112bを同じ逆方向に同じ速度で回転させることで搬送車110を後進させることができる。搬送駆動装置114a及び114bは、駆動輪112a及び112bを、回転方向及び回転速度のいずれか又は両方が互いに異なる状態で回転させることで、搬送車110を多様に旋回させることができる。 The transport drive devices 114a and 114b can advance the transport vehicle 110 by rotating the drive wheels 112a and 112b in the same direction at the same speed, and rotate the drive wheels 112a and 112b in the same opposite direction at the same speed. This makes it possible to move the transport vehicle 110 backward. The transport drive devices 114a and 114b can rotate the transport vehicle 110 in various ways by rotating the drive wheels 112a and 112b in a state where either or both of the rotation directions and the rotation speeds are different from each other.
 補助輪113aから113dは、基台111に回転可能に取り付けられ、基台111を下方から支持する。補助輪113aから113dは、駆動輪112a及び112bの周囲に配置され、本実施の形態では、基台111の4つの角に配置される。補助輪113a及び113bは、駆動輪112a及び112bよりも方向D1Aに配置され、補助輪113c及び113dは、駆動輪112a及び112bよりも方向DBに配置される。補助輪113aから113dはそれぞれ、基台111に沿って延びる回転軸を有する。補助輪113aから113dは、それぞれの回転軸の向きを基台111に沿わせつつ自在に変えることができる構成を有する。例えば、補助輪113aから113dは、自在キャスタの構成を有する。補助輪113aから113d並びに駆動輪112a及び112bは、平坦な支持面に同時に接することができるように配置され、一緒に基台111を支持する。補助輪113aから113dは、搬送車110の進行方向に従ってそれぞれの回転軸の向きを変え、当該進行方向に沿って転がることができる。 The training wheels 113a to 113d are rotatably attached to the base 111 and support the base 111 from below. The training wheels 113a to 113d are arranged around the drive wheels 112a and 112b, and in the present embodiment, they are arranged at the four corners of the base 111. The training wheels 113a and 113b are arranged in the direction D1A with respect to the drive wheels 112a and 112b, and the training wheels 113c and 113d are arranged in the direction DB with respect to the drive wheels 112a and 112b. Each of the training wheels 113a to 113d has a rotation axis extending along the base 111. The training wheels 113a to 113d have a configuration in which the directions of the respective rotation axes can be freely changed while being along the base 111. For example, the training wheels 113a to 113d have a universal caster configuration. The training wheels 113a to 113d and the drive wheels 112a and 112b are arranged so as to be in contact with the flat support surface at the same time, and support the base 111 together. The training wheels 113a to 113d can change the direction of their respective rotation axes according to the traveling direction of the transport vehicle 110, and can roll along the traveling direction.
 昇降装置140は、基台111の上に配置され、1つ以上のロボットアーム120が、昇降装置140の上に配置される。昇降装置140は、基台111に対して、上方向D3A及び下方向D3Bへ1つ以上のロボットアーム120を昇降する。上方向D3A及び下方向D3Bは、基台111に垂直な方向でもある。 The elevating device 140 is arranged on the base 111, and one or more robot arms 120 are arranged on the elevating device 140. The elevating device 140 raises and lowers one or more robot arms 120 in the upward direction D3A and the downward direction D3B with respect to the base 111. The upward direction D3A and the downward direction D3B are also directions perpendicular to the base 111.
 昇降装置140の構成は、1つ以上のロボットアーム120を昇降可能であれば、特に限定されない。限定されないが、本実施の形態では、昇降装置140は、方向D3A及びD3Bへ伸縮する構成を有する。例えば、昇降装置140は、ロボットアーム120を支持し且つ上下方向に回動する部材を備える構成、又は、ロボットアーム120の支持部材を支柱上で上下方向にスライドさせる構成等の他の構成を有してもよい。 The configuration of the elevating device 140 is not particularly limited as long as one or more robot arms 120 can be elevated. In this embodiment, the elevating device 140 has a configuration that expands and contracts in the directions D3A and D3B, but is not limited to this. For example, the elevating device 140 has another configuration such as a configuration including a member that supports the robot arm 120 and rotates in the vertical direction, or a configuration in which the support member of the robot arm 120 is slid in the vertical direction on a support column. You may.
 伸縮可能な昇降装置140は、テレスコピック構造を有し、例えば、1段のテレスコピック構造を有する。テレスコピック式の昇降装置140の構造は、既知の構造であってもよい。例えば、昇降装置140は、昇降駆動装置141と、外筒142と、内筒143とを備えてもよい。外筒142は、基台111に固定され、基台111から上方向D3Aに延びる。内筒143は、外筒142の内側に配置され、外筒142に対して方向D3A及びD3Bに移動可能である。昇降駆動装置141は、内筒143を方向D3A及びD3Bに移動させる。昇降駆動装置141は、電力を動力源として駆動するが、空気圧及び液圧等の他の動力源により駆動するように構成されてもよい。 The telescopic elevating device 140 has a telescopic structure, for example, a one-stage telescopic structure. The structure of the telescopic elevating device 140 may be a known structure. For example, the elevating device 140 may include an elevating drive device 141, an outer cylinder 142, and an inner cylinder 143. The outer cylinder 142 is fixed to the base 111 and extends upward from the base 111 in the upward direction D3A. The inner cylinder 143 is arranged inside the outer cylinder 142 and can move in the directions D3A and D3B with respect to the outer cylinder 142. The elevating drive device 141 moves the inner cylinder 143 in the directions D3A and D3B. The elevating drive device 141 is driven by electric power as a power source, but may be configured to be driven by other power sources such as pneumatic pressure and hydraulic pressure.
 例えば、昇降駆動装置141は、電動アクチュエータと、電動アクチュエータの駆動力を内筒143に伝達する伝達機構とを含んでもよい。本実施の形態では、電動アクチュエータは、サーボモータであるが、リニアアクチュエータ等の他のアクチュエータであってもよい。伝達機構は、サーボモータの回転駆動力を、内筒143を直線運動させる駆動力に変換するように構成されてもよい。例えば、伝達機構は、ラック・アンド・ピニオン構造、ローラ又はボールねじ構造等を含んでもよく、噛み合いチェーン構造を含んでもよい。噛み合いチェーン構造は、2つのチェーンが噛み合うことによって内筒143を押し上げる柱状体を形成し、2つのチェーンの噛み合い長に応じて内筒143の高さが変わる構造であってもよい。昇降駆動装置141のサーボモータは、制御装置180によって制御される。 For example, the elevating drive device 141 may include an electric actuator and a transmission mechanism that transmits the driving force of the electric actuator to the inner cylinder 143. In the present embodiment, the electric actuator is a servomotor, but may be another actuator such as a linear actuator. The transmission mechanism may be configured to convert the rotational driving force of the servomotor into a driving force that causes the inner cylinder 143 to move linearly. For example, the transmission mechanism may include a rack and pinion structure, a roller or ball screw structure, or the like, or may include a meshing chain structure. The meshing chain structure may be a structure in which a columnar body that pushes up the inner cylinder 143 by meshing the two chains is formed, and the height of the inner cylinder 143 changes according to the meshing length of the two chains. The servomotor of the elevating drive device 141 is controlled by the control device 180.
 限定されないが、本実施の形態では、昇降装置140は、基台111に対して方向D1Aに偏った位置に配置される。例えば、昇降装置140は、駆動輪112a及び112bの上方向D3Aに配置される。これにより、昇降装置140及びロボットアーム120の荷重の多くが駆動輪112a及び112bに作用し、駆動輪112a及び112bと支持面との摩擦力が大きくなる。つまり、駆動輪112a及び112bの回転駆動力が、効率的に支持面に伝達され得る。 Although not limited, in the present embodiment, the elevating device 140 is arranged at a position biased in the direction D1A with respect to the base 111. For example, the elevating device 140 is arranged in the upward D3A of the drive wheels 112a and 112b. As a result, most of the load of the elevating device 140 and the robot arm 120 acts on the drive wheels 112a and 112b, and the frictional force between the drive wheels 112a and 112b and the support surface increases. That is, the rotational driving force of the driving wheels 112a and 112b can be efficiently transmitted to the support surface.
 限定されないが、本実施の形態では、ロボットアーム120として、2つのロボットアーム120A及び120Bが、基台120Cを介して昇降装置140の内筒143の上端に配置される。ロボットアーム120A及び120Bは、昇降装置140によって方向D3A及びD3Bに上昇及び下降され得る。ロボットアーム120A及び120Bはいずれも、方向D3Aに沿う軸S1を中心として、基台111に沿って水平方向に回動可能である。ロボットアーム120A及び120Bは、同軸双腕式のロボットアームの構造を有する。本実施の形態では、ロボットアーム120A及び120Bはいずれも、軸S1を中心に360°にわたって回動可能である。 Although not limited, in the present embodiment, as the robot arm 120, two robot arms 120A and 120B are arranged at the upper end of the inner cylinder 143 of the elevating device 140 via the base 120C. The robot arms 120A and 120B can be raised and lowered in directions D3A and D3B by the elevating device 140. Both the robot arms 120A and 120B can rotate horizontally along the base 111 about the axis S1 along the direction D3A. The robot arms 120A and 120B have a coaxial double-arm robot arm structure. In the present embodiment, both the robot arms 120A and 120B are rotatable about 360 ° about the axis S1.
 ロボットアーム120Aは、リンク121Aから124Aと、アーム駆動装置M1AからM4Aとを含む。ロボットアーム120Bは、リンク121Bから124Bと、アーム駆動装置M1BからM4Bとを含む。アーム駆動装置M1AからM4A及びM1BからM4Bは、図4に示される。アーム駆動装置M1AからM4A及びM1BからM4Bは、電力を動力源とし、電気モータとしてサーボモータを含む。各サーボモータは、制御装置180によって制御される。 The robot arm 120A includes links 121A to 124A and arm drive devices M1A to M4A. The robot arm 120B includes links 121B to 124B and arm drive devices M1B to M4B. The arm drive devices M1A to M4A and M1B to M4B are shown in FIG. The arm drive devices M1A to M4A and M1B to M4B are powered by electric power and include a servomotor as an electric motor. Each servomotor is controlled by the control device 180.
 リンク121A及び121Bはそれぞれ、回転関節を介して基台120Cと接続される。基台120Cは、昇降装置140の内筒143の上端に取り付けられる。リンク121A及び121Bは、軸S1を中心に回動可能であり、互いの干渉を避けるために軸S1の方向にずらして配置される。アーム駆動装置M1A及びM1Bはそれぞれ、リンク121A及び121Bの回転関節を回転駆動し、リンク121A及び121Bに旋回させることができる。 The links 121A and 121B are each connected to the base 120C via a rotary joint. The base 120C is attached to the upper end of the inner cylinder 143 of the elevating device 140. The links 121A and 121B are rotatable about the axis S1 and are arranged so as to be offset in the direction of the axis S1 in order to avoid mutual interference. The arm drive devices M1A and M1B can rotationally drive the rotary joints of the links 121A and 121B and rotate them to the links 121A and 121B, respectively.
 リンク122A及び122Bそれぞれの基端部は、回転関節を介してリンク121A及び121Bの先端部と接続される。リンク122A及び122Bはそれぞれ、方向D3Aに沿う軸を中心に回動可能である。アーム駆動装置M2A及びM2Bはそれぞれ、リンク122A及び122Bの回転関節を回転駆動し、リンク122A及び122Bに旋回させることができる。 The base ends of the links 122A and 122B are connected to the tips of the links 121A and 121B via a rotary joint. The links 122A and 122B are respectively rotatable about an axis along the direction D3A. The arm drive devices M2A and M2B can rotationally drive the rotary joints of the links 122A and 122B and rotate them to the links 122A and 122B, respectively.
 リンク123A及び123Bそれぞれの基端部は、回転関節を介してリンク122A及び122Bの先端部と接続される。リンク123A及び123Bはそれぞれ、方向D3Aに垂直な軸を中心に回動可能である。リンク123A及び123Bはそれぞれ、互いに対して回動可能に連結されている3つのリンク部材を含む。リンク123A及び123Bはそれぞれ、その回動に連動して、3つのリンク部材を回動させるように構成される。リンク123A及び123Bはそれぞれ回動すると、3つのリンク部材間に形成される角度を変化させ、それにより、上方向D3A又は下方向D3Bに伸縮動作をする。リンク123A及び123Bは、それぞれの先端部分の高さを変えることができる。アーム駆動装置M3A及びM3Bはそれぞれ、リンク123A及び123Bの回転関節を回転駆動し、リンク123A及び123Bに伸縮動作させることができる。 The base ends of the links 123A and 123B are connected to the tips of the links 122A and 122B via rotary joints. The links 123A and 123B are each rotatable about an axis perpendicular to the direction D3A. Links 123A and 123B each include three link members rotatably connected to each other. The links 123A and 123B are configured to rotate the three link members in conjunction with their rotation, respectively. When the links 123A and 123B rotate, respectively, they change the angle formed between the three link members, whereby the links 123A and 123B expand and contract in the upward direction D3A or the downward direction D3B. The heights of the tips of the links 123A and 123B can be changed. The arm drive devices M3A and M3B can rotationally drive the rotary joints of the links 123A and 123B, respectively, and allow the links 123A and 123B to expand and contract.
 リンク124A及び124Bそれぞれの基端部は、リンク123A及び123Bの先端部と回動可能に接続される。リンク124A及び124Bはそれぞれ、方向D3Aに沿う軸を中心に回動可能な手首部分を含む。アーム駆動装置M4A及びM4Bはそれぞれ、リンク124A及び124Bの手首部分の回転関節を回転駆動し、当該手首部分に回動させることができる。リンク124A及び124Bの手首部分はそれぞれ、エンドエフェクタ130との接続を可能にするメカニカルインタフェースを含む。 The base ends of the links 124A and 124B are rotatably connected to the tips of the links 123A and 123B, respectively. Links 124A and 124B each include a wrist portion that is rotatable about an axis along direction D3A. The arm drive devices M4A and M4B can rotationally drive the rotary joints of the wrist portions of the links 124A and 124B, respectively, and rotate them to the wrist portions. The wrist portions of the links 124A and 124B each include a mechanical interface that allows connection with the end effector 130.
 上記のようなロボットアーム120A及び120Bは、水平多関節型アームの構成を有するが、いかなる構成を有してもよい。例えば、ロボットアーム120A及び120Bは、他のタイプの水平多関節型、垂直多関節型、極座標型、円筒座標型、直角座標型、又はその他の型式のロボットアームであってもよい。昇降装置140に配置されるロボットアーム120の数量も1つ以上であればよい。 The robot arms 120A and 120B as described above have the structure of the horizontal articulated arm, but may have any structure. For example, the robot arms 120A and 120B may be other types of horizontal articulated type, vertical articulated type, polar coordinate type, cylindrical coordinate type, right angle coordinate type, or other types of robot arms. The number of robot arms 120 arranged in the elevating device 140 may be one or more.
 エンドエフェクタ130として、2つのエンドエフェクタ130A及び130Bがそれぞれ、ロボットアーム120A及び120Bのリンク124A及び124Bに、着脱可能に取り付けられている。エンドエフェクタ130A及び130Bは、ロボットハンドとも呼ばれる場合がある。エンドエフェクタ130A及び130Bは、ロボット100が扱う対象物に作用を加えるように構成される。エンドエフェクタ130A及び130Bは、動作するように構成されてもよい。この場合、エンドエフェクタ130A及び130Bは、駆動装置を備え、当該駆動装置は、電力、空気圧又は液圧等を動力源としてもよい。電力を動力源とする駆動装置は、サーボモータ等の電気モータを備えてもよい。駆動装置は、制御装置180によって制御されてもよい。 As the end effector 130, two end effectors 130A and 130B are detachably attached to the links 124A and 124B of the robot arms 120A and 120B, respectively. The end effectors 130A and 130B may also be referred to as a robot hand. The end effectors 130A and 130B are configured to act on the object handled by the robot 100. The end effectors 130A and 130B may be configured to operate. In this case, the end effectors 130A and 130B include a drive device, and the drive device may be powered by electric power, pneumatic pressure, hydraulic pressure, or the like. The drive device powered by electric power may include an electric motor such as a servo motor. The drive device may be controlled by the control device 180.
 ロボット100は、基台111上に機器筐体170をさらに備える。機器筐体170は、昇降装置140に対して方向D1Bで、昇降装置140並びにロボットアーム120A及び120Bと隣り合って配置される。機器筐体170は、昇降駆動装置141並びにロボットアーム120A及び120Bよりも、方向D1Bに偏った位置に配置される。限定されないが、本実施の形態では、機器筐体170は、基台111に対して、方向D1Bに偏った位置に配置され、駆動輪112a及び112bよりも方向D1Bに位置する。機器筐体170の構成は特に限定されないが、例えば、壁で囲まれた箱状の構成、又は、枠状の構成を有してもよい。本実施の形態では、機器筐体170は直方体状の外形を有する。 The robot 100 further includes a device housing 170 on the base 111. The equipment housing 170 is arranged adjacent to the elevating device 140 and the robot arms 120A and 120B in the direction D1B with respect to the elevating device 140. The equipment housing 170 is arranged at a position biased toward the direction D1B with respect to the elevating drive device 141 and the robot arms 120A and 120B. Although not limited, in the present embodiment, the device housing 170 is arranged at a position biased toward the direction D1B with respect to the base 111, and is located at a position D1B with respect to the drive wheels 112a and 112b. The configuration of the device housing 170 is not particularly limited, but may have, for example, a box-shaped configuration surrounded by a wall or a frame-shaped configuration. In this embodiment, the device housing 170 has a rectangular parallelepiped outer shape.
 二次電池モジュール171、電源回路172、通信装置173及び制御装置180は、機器筐体170内に配置され、機器筐体170に取り付けられることによって、所定の位置に配置され得る。例えば、二次電池モジュール171が基台111上に配置され、二次電池モジュール171の上方に電源回路172が配置されてもよい。通信装置173及び制御装置180は、機器筐体170のいかなる位置に配置されてもよい。 The secondary battery module 171 and the power supply circuit 172, the communication device 173, and the control device 180 are arranged in the device housing 170, and can be arranged in a predetermined position by being attached to the device housing 170. For example, the secondary battery module 171 may be arranged on the base 111, and the power supply circuit 172 may be arranged above the secondary battery module 171. The communication device 173 and the control device 180 may be arranged at any position on the equipment housing 170.
 二次電池モジュール171は、ロボット100の電力源として機能する。二次電池モジュール171は、1つ以上の二次電池を含む。二次電池は、電力の充電及び放電を可能な電池である。二次電池の例は、鉛蓄電池、リチウムイオン二次電池、全固体電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池等である。 The secondary battery module 171 functions as a power source for the robot 100. The secondary battery module 171 includes one or more secondary batteries. A secondary battery is a battery capable of charging and discharging electric power. Examples of secondary batteries are lead storage batteries, lithium ion secondary batteries, all-solid-state batteries, nickel-hydrogen storage batteries, nickel-cadmium storage batteries, and the like.
 電源回路172は、二次電池モジュール171に対する電力の需給を制御する回路である。電源回路172は、制御装置180の指令等に従って、電力制御をするように構成される。例えば、電源回路172は、コンバータ、インバータ、トランス及びアンプ等の機器を含んでもよい。 The power supply circuit 172 is a circuit that controls the supply and demand of electric power to the secondary battery module 171. The power supply circuit 172 is configured to control power according to a command of the control device 180 or the like. For example, the power supply circuit 172 may include equipment such as a converter, an inverter, a transformer and an amplifier.
 電源回路172は、商用電源等の外部電源と接続されるように構成される。電源回路172は、外部電源から電力の供給を受け付け、当該電力を二次電池モジュール171に供給し蓄電させる。電源回路172は、二次電池モジュール171に供給する電力を制御する。 The power supply circuit 172 is configured to be connected to an external power source such as a commercial power source. The power supply circuit 172 receives the supply of electric power from an external power source, supplies the electric power to the secondary battery module 171 and stores the electric power. The power supply circuit 172 controls the power supplied to the secondary battery module 171.
 電源回路172は、二次電池モジュール171に蓄積される電力を、ロボット100内の電力を消費する構成要素に供給する。電源回路172は、各構成要素に供給する電力を制御する。 The power supply circuit 172 supplies the electric power stored in the secondary battery module 171 to the components consuming the electric power in the robot 100. The power supply circuit 172 controls the power supplied to each component.
 通信装置173は、無線通信のための装置であり、無線通信を介して通信ネットワークNと接続できるように構成される。通信装置173が使用する無線通信は、特に限定されない。例えば、当該無線通信は、モバイルデータ通信、無線Wi-Fi(Wireless Fidelity)などの無線LAN、ブルートゥース(Bluetooth)(登録商標)及びZigBee(登録商標)などの近距離無線通信、又はこれらの2つ以上の組み合わせ等を用いてもよい。通信装置173は、使用する無線通信に対応する機器を有する。 The communication device 173 is a device for wireless communication, and is configured to be able to connect to the communication network N via wireless communication. The wireless communication used by the communication device 173 is not particularly limited. For example, the wireless communication includes mobile data communication, wireless LAN such as wireless Wi-Fi (Wireless Fidelity), short-range wireless communication such as Bluetooth (registered trademark) and ZigBee (registered trademark), or two of these. The above combination or the like may be used. The communication device 173 has a device corresponding to the wireless communication to be used.
 限定されないが、本実施の形態では、1つの作業台150が、方向D3Aでの機器筐体170の上方に配置され、機器筐体170によって支持される。ロボットアーム120A及び120Bは、作業台150上で、対象物に対する作業を行うことができ、ロボット100は、作業台150上に載せられた対象物を運搬することができる。 Although not limited, in the present embodiment, one workbench 150 is arranged above the device housing 170 in the direction D3A and is supported by the device housing 170. The robot arms 120A and 120B can work on the object on the workbench 150, and the robot 100 can carry the object placed on the workbench 150.
 表示装置178は、画像を表示可能であるディスプレイ178aと、ディスプレイ178aを支持する支持体178bとを含む。ディスプレイ178aは、制御装置180から送られる画像データの画像を表示することができる。制御装置180は、ロボット100と対峙するユーザPとコミュニケーションをとるための画像、操作端末200から受け取る指令に従った画像、及び、その他の様々な情報をユーザに提供するための画像等をディスプレイ178aに表示させてもよい。 The display device 178 includes a display 178a capable of displaying an image and a support 178b that supports the display 178a. The display 178a can display an image of image data sent from the control device 180. The control device 180 displays an image for communicating with the user P facing the robot 100, an image according to a command received from the operation terminal 200, an image for providing various other information to the user, and the like on the display 178a. It may be displayed in.
 支持体178bは、昇降装置140の内筒143によって支持され、内筒143と共に昇降する。支持体178bは、基台120Cに対して方向D1Bに配置される。支持体178bは、方向D3Aへ延びる柱状の形状を有する。支持体178bは、ロボットアーム120A及び120Bよりも方向D3Aの位置、つまり上方の位置に保持するようにディスプレイ178aを支持する。ディスプレイ178aは、ディスプレイ178aの画面が方向D1Aへ向いている姿勢で支持体178bによって支持される。 The support body 178b is supported by the inner cylinder 143 of the elevating device 140, and moves up and down together with the inner cylinder 143. The support 178b is arranged in the direction D1B with respect to the base 120C. The support 178b has a columnar shape extending in direction D3A. The support 178b supports the display 178a so as to hold it at a position in the direction D3A, that is, above the robot arms 120A and 120B. The display 178a is supported by the support 178b in a posture in which the screen of the display 178a faces the direction D1A.
 これにより、ディスプレイ178aは、昇降装置140によってロボットアーム120A及び120Bと共に昇降され得る。さらに、ロボットアーム120A及び120Bとディスプレイ178a及び支持体178bとの干渉が抑えられる。ロボット100に対して方向D1Aに位置するユーザPがディスプレイ178aを視るとき、ロボットアーム120A及び120Bによってディスプレイ178aの画面が遮られることが抑えられる。よって、ユーザPに対する円滑なコミュニケーションが可能になる。 Thereby, the display 178a can be moved up and down together with the robot arms 120A and 120B by the lifting device 140. Further, the interference between the robot arms 120A and 120B and the display 178a and the support 178b is suppressed. When the user P located in the direction D1A with respect to the robot 100 looks at the display 178a, it is possible to prevent the screen of the display 178a from being obstructed by the robot arms 120A and 120B. Therefore, smooth communication with the user P becomes possible.
 表示装置178は、ディスプレイ178aと支持体178bとの間にジンバル178cを備えてもよい。ジンバル178cは、ディスプレイ178aの姿勢を変えるように動作することができる。ジンバル178cは、人の手によって動作するように構成されてもよく、モータ等の電気的な駆動装置によって動作するように構成されてもよい。当該駆動装置は、制御装置180によって制御されてもよい。 The display device 178 may include a gimbal 178c between the display 178a and the support 178b. The gimbal 178c can operate to change the posture of the display 178a. The gimbal 178c may be configured to be operated by a human hand or may be configured to be operated by an electrical drive such as a motor. The drive device may be controlled by the control device 180.
 集音装置177は、周囲から音声を取得し当該音声の音声信号を出力することができるマイクを含む。集音装置177は、音声信号を制御装置180に出力するように構成され、制御装置180は、音声信号を音声データに変換し操作端末200に送信するように構成される。限定されないが、本実施の形態では、集音装置177は、ディスプレイ178aの上部に配置され、ディスプレイ178aの画面と同様の向きに方向付けられている。集音装置177は、昇降装置140によってロボットアーム120A及び120Bと共に昇降され得る。 The sound collecting device 177 includes a microphone capable of acquiring voice from the surroundings and outputting the voice signal of the voice. The sound collecting device 177 is configured to output a voice signal to the control device 180, and the control device 180 is configured to convert the voice signal into voice data and transmit it to the operation terminal 200. In the present embodiment, the sound collecting device 177 is arranged on the upper part of the display 178a and oriented in the same direction as the screen of the display 178a. The sound collecting device 177 can be raised and lowered together with the robot arms 120A and 120B by the raising and lowering device 140.
 音声出力装置179は、音声信号を音波に変換し音声として放射することができるスピーカを含む。音声出力装置179は、制御装置180から送られる音声信号に対応する音声を出力することができる。制御装置180は、ロボット100と対峙するユーザPとコミュニケーションをとるための音声、操作端末200から受け取る指令に従った音声、及び、その他の様々な情報をユーザPに提供するための音声等を音声出力装置179に出力させてもよい。限定されないが、本実施の形態では、音声出力装置179は、ディスプレイ178aの下部に配置され、ディスプレイ178aの画面と同様の向きに方向付けられている。音声出力装置179は、昇降装置140によってロボットアーム120A及び120Bと共に昇降され得る。よって、ユーザPに対する円滑なコミュニケーションが可能になる。 The voice output device 179 includes a speaker capable of converting a voice signal into a sound wave and radiating it as voice. The voice output device 179 can output voice corresponding to the voice signal sent from the control device 180. The control device 180 voices voice for communicating with the user P facing the robot 100, voice according to a command received from the operation terminal 200, voice for providing various other information to the user P, and the like. It may be output to the output device 179. In the present embodiment, the audio output device 179 is arranged at the lower part of the display 178a and oriented in the same direction as the screen of the display 178a. The audio output device 179 can be moved up and down together with the robot arms 120A and 120B by the lifting device 140. Therefore, smooth communication with the user P becomes possible.
 撮像装置174、175及び176はそれぞれ、デジタル画像を撮像するカメラを含み、撮像した画像のデータを制御装置180に送るように構成される。制御装置180は、撮像装置174、175及び176によって撮像された画像データをネットワーク送信可能なデータに処理し、通信ネットワークNを介して、操作端末200に送るように構成されてもよい。 The image pickup devices 174, 175, and 176 each include a camera that captures a digital image, and are configured to send the data of the captured image to the control device 180. The control device 180 may be configured to process the image data captured by the image pickup devices 174, 175 and 176 into data that can be transmitted via a network and send the image data to the operation terminal 200 via the communication network N.
 撮像装置174は、ロボットアーム120A及び120Bのいずれか又は両方の先端部に配置される。限定されないが、本実施の形態では、撮像装置174は、ロボットアーム120Aのエンドエフェクタ130Aに配置され、その先端へ方向付けられている。撮像装置174は、ロボットアーム120A及びエンドエフェクタ130Aが作用を加える対象物を撮像することができる。これにより、操作者PОはロボット100の操作を円滑に行うことができる。 The image pickup device 174 is arranged at the tip of either or both of the robot arms 120A and 120B. In this embodiment, the image pickup device 174 is arranged at the end effector 130A of the robot arm 120A and directed toward the tip thereof, without limitation. The image pickup apparatus 174 can image an object to which the robot arm 120A and the end effector 130A act. As a result, the operator PO can smoothly operate the robot 100.
 撮像装置175は、昇降装置140によってロボットアーム120A及び120Bと共に昇降されるように配置される。限定されないが、本実施の形態では、撮像装置175は、ディスプレイ178aの上部に配置され、ディスプレイ178aの画面と同様の向きに方向付けられている。撮像装置175は、ロボット100に対峙するサービス提供対象のユーザPを撮像することができる。これにより、操作者PОはユーザPに対応したロボット100の操作を行うことができる。 The image pickup device 175 is arranged so as to be raised and lowered together with the robot arms 120A and 120B by the raising and lowering device 140. In the present embodiment, the image pickup apparatus 175 is arranged on the upper part of the display 178a and oriented in the same direction as the screen of the display 178a. The image pickup apparatus 175 can take an image of the service-provided user P facing the robot 100. As a result, the operator PO can operate the robot 100 corresponding to the user P.
 撮像装置176は、搬送車110に固定され且つ搬送車110の前進方向である方向D1Aに向けて配置される。限定されないが、本実施の形態では、撮像装置176は、基台111に配置される。撮像装置176は、搬送車110の前進移動中、搬送車110の前方の状態を撮像することができる。これにより、操作者PОはロボット100の操作を円滑に行うことができる。 The image pickup device 176 is fixed to the transport vehicle 110 and is arranged in the direction D1A which is the forward direction of the transport vehicle 110. In the present embodiment, the image pickup apparatus 176 is arranged on the base 111 without limitation. The image pickup apparatus 176 can take an image of the state in front of the transport vehicle 110 while the transport vehicle 110 is moving forward. As a result, the operator PO can smoothly operate the robot 100.
 走査センサ160は、搬送車110に固定され且つ搬送車110の前進方向である方向D1Aに向けて配置される。限定されないが、本実施の形態では、走査センサ160は、基台111に配置される。走査センサ160は、走査センサ160から方向D1Aに向かって放射状に広がる領域を走査し、当該領域内に存在する物体の位置を検出するように構成される。走査センサ160は、方向D1Aよりも方向D3Bへ向いた方向、つまり、方向D1Aよりも下向きの方向の領域を少なくとも走査できるように配置される。これにより、走査センサ160は、搬送車110の走行面を走査することができる。 The scanning sensor 160 is fixed to the transport vehicle 110 and is arranged toward the direction D1A which is the forward direction of the transport vehicle 110. In this embodiment, the scanning sensor 160 is arranged on the base 111 without limitation. The scanning sensor 160 is configured to scan a region extending radially from the scanning sensor 160 toward the direction D1A and detect the position of an object existing in the region. The scanning sensor 160 is arranged so as to be able to scan at least a region in a direction toward the direction D3B from the direction D1A, that is, a direction downward from the direction D1A. As a result, the scanning sensor 160 can scan the traveling surface of the transport vehicle 110.
 走査センサ160の構成は、特に限定されず、既知のセンサが走査センサ160に用いられてもよい。例えば、走査センサ160は、走査センサ160から物体までの距離と、走査センサ160から物体への方向とを検出するように構成されてもよい。例えば、走査センサ160は、光学式センサ、ライダ(Lidar)、レーダ、超音波センサ、赤外線センサ又はこれらの2つ以上の組み合わせ等を含んでもよい。光学式センサは、光波を照射することで物体までの距離及び方向を検出する。ライダは、レーザ光を照射することで物体までの距離及び方向を検出する。レーダは、電波を出射することで物体までの距離及び方向を検出する。超音波センサは、超音波を出射することで物体までの距離及び方向を検出する。赤外線センサは、赤外線を照射することで物体までの距離及び方向を検出する。走査センサ160は検出装置の一例である。 The configuration of the scanning sensor 160 is not particularly limited, and a known sensor may be used for the scanning sensor 160. For example, the scanning sensor 160 may be configured to detect the distance from the scanning sensor 160 to the object and the direction from the scanning sensor 160 to the object. For example, the scanning sensor 160 may include an optical sensor, a lidar, a radar, an ultrasonic sensor, an infrared sensor, or a combination of two or more thereof. The optical sensor detects the distance and direction to an object by irradiating it with a light wave. The rider detects the distance and direction to the object by irradiating it with a laser beam. Radar detects the distance and direction to an object by emitting radio waves. Ultrasonic sensors detect the distance and direction to an object by emitting ultrasonic waves. The infrared sensor detects the distance and direction to an object by irradiating it with infrared rays. The scanning sensor 160 is an example of a detection device.
 制御装置180は、ロボット100全体を制御するように構成される。図4は、実施の形態に係るロボットシステム1の制御装置180の構成の一例を示すブロック図である。図4に示すように、制御装置180は、通信装置173、通信ネットワークN及び通信装置204を介して、操作端末200の端末コンピュータ202とデータ通信可能に接続される。制御装置180は、端末コンピュータ202から受信する指令等に従って、ロボット100の各構成要素の動作を制御する。制御装置180は、記憶されている制御プログラムに従って、ロボット100の各構成要素の動作を制御する。これにより、ロボット100は、ロボット100から離れた遠隔場所にいる操作者PОによって操作されることができ、サービスの提供者の代わりにサービスを提供することができる。 The control device 180 is configured to control the entire robot 100. FIG. 4 is a block diagram showing an example of the configuration of the control device 180 of the robot system 1 according to the embodiment. As shown in FIG. 4, the control device 180 is connected to the terminal computer 202 of the operation terminal 200 via the communication device 173, the communication network N, and the communication device 204 so as to be capable of data communication. The control device 180 controls the operation of each component of the robot 100 according to a command or the like received from the terminal computer 202. The control device 180 controls the operation of each component of the robot 100 according to the stored control program. As a result, the robot 100 can be operated by the operator PO at a remote location away from the robot 100, and the service can be provided on behalf of the service provider.
 制御装置180の制御対象の構成要素の例は、搬送駆動装置114a及び114b、昇降駆動装置141、ロボットアーム120Aのアーム駆動装置M1AからM4A、ロボットアーム120Bのアーム駆動装置M1BからM4B、エンドエフェクタ130A及び130Bの駆動装置、走査センサ160、撮像装置174から176、集音装置177、表示装置178並びに音声出力装置179等であるが、全てが必須ではない。 Examples of the components to be controlled by the control device 180 are the transfer drive devices 114a and 114b, the elevating drive device 141, the arm drive devices M1A to M4A of the robot arm 120A, the arm drive devices M1B to M4B of the robot arm 120B, and the end effector 130A. And 130B drive device, scanning sensor 160, image pickup device 174 to 176, sound collection device 177, display device 178, voice output device 179, etc., but not all of them are essential.
 制御装置180は、各構成要素に供給する電力を制御する場合、電源回路172に電流の指令値等を出力し、電源回路172に二次電池モジュール171の電力を当該構成要素に供給させるように構成されてもよい。制御装置180は、サーボモータをサーボ制御するように構成されてもよい。制御装置180は、各サーボモータから、当該サーボモータに備えられる回転センサの検出結果を取得し、電源回路172から当該サーボモータへの供給電流値を取得し、回転センサの検出結果と供給電流値とをフィードバック情報として用いて、当該サーボモータへの電流の指令値を決定するように構成されてもよい。供給電流値は、電源回路172からサーボモータへ供給する電流の指令値であってもよく、サーボモータに設けられ得る電流センサの検出結果であってもよい。 When the control device 180 controls the electric power supplied to each component, the control device 180 outputs a current command value or the like to the power supply circuit 172, and causes the power supply circuit 172 to supply the electric power of the secondary battery module 171 to the component. It may be configured. The control device 180 may be configured to servo control the servomotor. The control device 180 acquires the detection result of the rotation sensor provided in the servomotor from each servomotor, acquires the supply current value from the power supply circuit 172 to the servomotor, and detects the detection result and the supply current value of the rotation sensor. And may be used as feedback information to determine the command value of the current to the servomotor. The supply current value may be a command value of the current supplied from the power supply circuit 172 to the servomotor, or may be a detection result of a current sensor that can be provided in the servomotor.
 制御装置180は、手動運転での動作と、自動運転での動作と、手動運転及び自動運転の組み合わせでの動作とのうちの1つ以上を、ロボット100の各構成要素に実行させるように構成されてもよい。 The control device 180 is configured to cause each component of the robot 100 to execute one or more of an operation in manual operation, an operation in automatic operation, and an operation in a combination of manual operation and automatic operation. May be done.
 手動運転では、制御装置180は、操作端末200に入力され制御装置180に送信される操作内容に逐次従って構成要素に動作させるように構成されてもよい。 In manual operation, the control device 180 may be configured to be operated by a component according to the operation content input to the operation terminal 200 and transmitted to the control device 180.
 自動運転では、制御装置180は、操作端末200に入力され制御装置180に送信される指令に従って、当該指令に対応する一連のタスクを構成要素に自動で、つまり自律的に動作させるように構成されてもよい。 In the automatic operation, the control device 180 is configured to automatically, that is, autonomously operate a series of tasks corresponding to the command to the components according to a command input to the operation terminal 200 and transmitted to the control device 180. You may.
 手動運転及び自動運転の組み合わせでは、制御装置180は、操作端末200から受信する操作内容及び指令に応じて、操作内容に逐次従った動作と、一連のタスクを自動で実行する動作とを適宜、構成要素に実行させるように構成されてもよい。例えば、制御装置180は、自動運転中、操作端末200から、動作を修正するための操作内容を受信すると、当該操作内容に従って構成要素に動作させるように構成されてもよい。 In the combination of manual operation and automatic operation, the control device 180 appropriately performs an operation according to the operation content and an operation of automatically executing a series of tasks according to the operation content and the command received from the operation terminal 200. It may be configured to be executed by a component. For example, the control device 180 may be configured to operate the component according to the operation content when the operation content for correcting the operation is received from the operation terminal 200 during the automatic operation.
 制御装置180は、走査センサ160から、検出信号等の検出結果を受け取るように構成される。制御装置180は、走査センサ160の検出結果に基づき、搬送車110から方向D1Aに存在する搬送車110の走行面を検出する演算機能を有するように構成される。さらに、制御装置180は、走査センサ160の検出結果に基づき、検出された走行面の不陸の位置、形状及び寸法を検出する演算機能を有するように構成される。例えば、制御装置180は、走行面の3次元モデルを生成する演算機能を有するように構成されてもよい。制御装置180は、検出結果に基づき、走行面の上方への段差の位置、形状及び寸法を検出するように構成される。 The control device 180 is configured to receive a detection result such as a detection signal from the scanning sensor 160. The control device 180 is configured to have a calculation function of detecting the traveling surface of the transport vehicle 110 existing in the direction D1A from the transport vehicle 110 based on the detection result of the scanning sensor 160. Further, the control device 180 is configured to have a calculation function of detecting the detected non-landing position, shape and dimension of the traveling surface based on the detection result of the scanning sensor 160. For example, the control device 180 may be configured to have an arithmetic function for generating a three-dimensional model of the traveling surface. The control device 180 is configured to detect the position, shape, and dimension of the step upward on the traveling surface based on the detection result.
 制御装置180は、コンピュータ装置を含む。例えば、制御装置180は、電子回路基板、電子制御ユニット、マイクロコンピュータ、及びその他の電子機器等として構成されてもよい。コンピュータ装置は、CPU(中央処理装置:Central Processing Unit)等のプロセッサ、ROM等の不揮発性半導体メモリ、及び、RAM(Random Access Memory)等の揮発性半導体メモリ等を含んでもよい。例えば、CPUが動作するためのプログラムは、ROM等に予め保持されている。CPUは、ROMからプログラムをRAMに読み出して展開する。CPUは、RAMに展開されたプログラム中のコード化された各命令を実行する。 The control device 180 includes a computer device. For example, the control device 180 may be configured as an electronic circuit board, an electronic control unit, a microcomputer, and other electronic devices. The computer device may include a processor such as a CPU (Central Processing Unit), a non-volatile semiconductor memory such as a ROM, and a volatile semiconductor memory such as a RAM (Random Access Memory). For example, a program for operating a CPU is stored in a ROM or the like in advance. The CPU reads the program from the ROM into the RAM and expands it. The CPU executes each coded instruction in the program expanded in RAM.
 制御装置180の各機能は、CPU、ROM及びRAM等からなるコンピュータシステムにより実現されてもよく、電子回路又は集積回路等の専用のハードウェア回路により実現されてもよく、上記コンピュータシステム及びハードウェア回路の組み合わせにより実現されてもよい。制御装置180は、単一の装置による集中制御により各処理を実行するように構成されてもよく、複数の装置の協働による分散制御により各処理を実行するように構成されてもよい。 Each function of the control device 180 may be realized by a computer system including a CPU, ROM, RAM, etc., or may be realized by a dedicated hardware circuit such as an electronic circuit or an integrated circuit, and the computer system and hardware may be realized. It may be realized by a combination of circuits. The control device 180 may be configured to execute each process by centralized control by a single device, or may be configured to execute each process by distributed control by the cooperation of a plurality of devices.
 限定されないが、例えば、プロセッサは、CPU、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ(microprocessor)、プロセッサコア(processor core)、マルチプロセッサ(multiprocessor)、ASIC(Application-Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等を含み、IC(集積回路)チップ、LSI(Large Scale Integration)等に形成された論理回路又は専用回路によって各処理を実現してもよい。複数の処理は、1つ又は複数の集積回路により実現されてもよく、1つの集積回路により実現されてもよい。 For example, the processor is not limited, but the processor is a CPU, MPU (MicroProcessingUnit), GPU (GraphicsProcessingUnit), microprocessor (microprocessor), processor core (processorcore), multiprocessor (multiprocessor), ASIC (Application-Specific Integrated). Circuit), FPGA (Field Programmable Gate Array), etc. may be included, and each process may be realized by a logic circuit or a dedicated circuit formed in an IC (integrated circuit) chip, LSI (Large Scale Integration), or the like. The plurality of processes may be realized by one or a plurality of integrated circuits, or may be realized by one integrated circuit.
 [ロボットシステムの動作]
 図5を参照しつつ、実施の形態に係るロボットシステム1の動作の一例を説明する。図5は、実施の形態に係るロボットシステム1の動作の一例を示すフローチャートであり、搬送車110の走行中のロボットシステム1の動作の一例を示す。本例では、ロボット100が、操作端末200によって手動運転されるとして、以下の説明を行う。
[Operation of robot system]
An example of the operation of the robot system 1 according to the embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing an example of the operation of the robot system 1 according to the embodiment, and shows an example of the operation of the robot system 1 while the transport vehicle 110 is traveling. In this example, assuming that the robot 100 is manually operated by the operation terminal 200, the following description will be given.
 まず、操作エリアAOの操作者PОは、サービス提供を担当する要求と、担当を希望するサービスとを操作端末200に入力し、操作端末200は、当該要求等をサーバ300に送信する(ステップS101)。サーバ300は、希望のサービスを行うことができるロボット100を探索し、探索されたロボット100の制御装置180と上記操作端末200とを通信ネットワークNを介して接続する(ステップS102)。 First, the operator PO in the operation area AO inputs a request in charge of service provision and a service desired to be in charge to the operation terminal 200, and the operation terminal 200 transmits the request or the like to the server 300 (step S101). ). The server 300 searches for a robot 100 capable of performing a desired service, and connects the searched control device 180 of the robot 100 and the operation terminal 200 via the communication network N (step S102).
 操作者PОは、接続完了の通知をサーバ300から受け取ると、操作端末200への入力を通じて、ロボット100の各構成要素を起動する(ステップS103)。 When the operator PO receives the notification of the connection completion from the server 300, the operator activates each component of the robot 100 through the input to the operation terminal 200 (step S103).
 操作者PОは、ロボット100を手動運転するための操作を操作端末200に入力し、操作端末200は、入力された操作の内容を示す操作指令を制御装置180に送信する。制御装置180は、操作端末200から受信する操作指令に従って、ロボット100の各構成要素に動作させる、つまりロボット100に動作させる(ステップS104)。 The operator PO inputs an operation for manually operating the robot 100 to the operation terminal 200, and the operation terminal 200 transmits an operation command indicating the content of the input operation to the control device 180. The control device 180 is operated by each component of the robot 100 according to an operation command received from the operation terminal 200, that is, is operated by the robot 100 (step S104).
 制御装置180は、搬送車110に移動させる移動指令が操作指令に含まれる場合(ステップS105でYes)にステップS106に進み、移動指令が含まれない場合(ステップS105でNo)にステップS117に進む。 The control device 180 proceeds to step S106 when the movement command to move to the transport vehicle 110 is included in the operation command (Yes in step S105), and proceeds to step S117 when the movement command is not included (No in step S105). ..
 ステップS106において、制御装置180は、走査センサ160に動作させ、ロボット100の進行方向である方向D1Aを走査させる。さらに、制御装置180は、走査センサ160の検出結果を処理し、方向D1Aにある走行面において、上方へ突出する段差、つまり上向きの段差の有無を検出する(ステップS107)。 In step S106, the control device 180 is operated by the scanning sensor 160 to scan the direction D1A, which is the traveling direction of the robot 100. Further, the control device 180 processes the detection result of the scanning sensor 160 and detects the presence or absence of a step protruding upward, that is, an upward step on the traveling surface in the direction D1A (step S107).
 制御装置180は、上向きの段差の高さhが第1閾値Th1以下である場合(ステップS108でYes)にステップS117に進み、上向きの段差の高さhが第1閾値Th1超である場合(ステップS108でNo)にステップS109に進む。上向きの段差が存在しない場合は、上向きの段差の高さhが第1閾値Th1以下である場合に含まれる。 The control device 180 proceeds to step S117 when the height h of the upward step is equal to or less than the first threshold Th1 (Yes in step S108), and when the height h of the upward step exceeds the first threshold Th1 (Yes). In step S108, No) proceeds to step S109. The case where the upward step does not exist is included when the height h of the upward step is equal to or less than the first threshold value Th1.
 さらに、制御装置180は、上向きの段差の高さhが第1閾値Th1超且つ第2閾値Th2以下である場合(ステップS109でYes)にステップS110に進み、上向きの段差の高さhが第2閾値Th2超である場合(ステップS109でNo)にステップS111に進む。第2閾値Th2は、第1閾値Th1よりも大きい。 Further, the control device 180 proceeds to step S110 when the height h of the upward step is more than the first threshold Th1 and is equal to or less than the second threshold Th2 (Yes in step S109), and the height h of the upward step is the first. If the threshold value exceeds Th2 (No in step S109), the process proceeds to step S111. The second threshold Th2 is larger than the first threshold Th1.
 ステップS110において、制御装置180は、ロボットアーム120A及び120Bのいずれか又は両方に、進行方向と反対方向である方向D1Bへ向かって旋回させる。例えば、図6に示すように、制御装置180は、旋回対象のロボットアーム120A及び120Bのエンドエフェクタ130A及び130Bが、基台120Cよりも方向D1Bの位置に至るまで、旋回対象のロボットアーム120A及び120Bに旋回させるように構成されてもよい。例えば、制御装置180は、旋回対象のエンドエフェクタ130A及び130Bが作業台150の上方の位置又は作業台150よりも方向D1Bの位置に至るように、旋回対象のロボットアーム120A及び120Bに旋回させるように構成されてもよい。これにより、ロボット100の重心及び搬送車110の重心が方向D1Bに移動する。ロボットアーム120A及び120Bは、搬送車110の重心を変動させる変動装置である。図6は、実施の形態に係るロボット100の動作の一例を示す側面図である。 In step S110, the control device 180 causes either or both of the robot arms 120A and 120B to turn toward the direction D1B opposite to the traveling direction. For example, as shown in FIG. 6, in the control device 180, the turning target robot arm 120A and 120B end effectors 130A and 130B reach the position in the direction D1B from the base 120C. It may be configured to swivel to 120B. For example, the control device 180 swivels the robot arms 120A and 120B to be swiveled so that the end effectors 130A and 130B to be swiveled reach a position above the workbench 150 or a position in the direction D1B from the workbench 150. It may be configured in. As a result, the center of gravity of the robot 100 and the center of gravity of the transport vehicle 110 move in the direction D1B. The robot arms 120A and 120B are variable devices that change the center of gravity of the transport vehicle 110. FIG. 6 is a side view showing an example of the operation of the robot 100 according to the embodiment.
 制御装置180は、上向きの段差の高さhに応じて、旋回させるロボットアーム120A及び120Bを決定するように構成されてもよい。例えば、制御装置180は、上向きの段差の高さhが第1閾値Th1超且つ第3閾値Th3以下である場合にロボットアーム120A及び120Bの一方を旋回対象に決定し、上向きの段差の高さhが第3閾値Th3超且つ第2閾値Th2以下である場合にロボットアーム120A及び120Bの両方を旋回対象に決定するように構成されてもよい。第3閾値Th3は、第1閾値Th1よりも大きく、第2閾値Th2よりも小さい。 The control device 180 may be configured to determine the robot arms 120A and 120B to be swiveled according to the height h of the upward step. For example, the control device 180 determines one of the robot arms 120A and 120B as a turning target when the height h of the upward step is greater than the first threshold Th1 and is equal to or less than the third threshold Th3, and the height of the upward step is determined. When h exceeds the third threshold value Th3 and is equal to or less than the second threshold value Th2, both the robot arms 120A and 120B may be configured to be determined as the turning target. The third threshold Th3 is larger than the first threshold Th1 and smaller than the second threshold Th2.
 次いで、制御装置180は、ステップS107での処理結果に基づき、検出された上向きの段差の手前の走行面の傾斜量を検出する(ステップS112)。上向きの段差の手前の走行面は、当該段差から搬送車110に向かう走行面である。傾斜量の検出対象の走行面上の領域は、予め設定されていてもよく、制御装置180が、搬送車110の移動速度及び段差に対する移動方向等のロボット100の状態に応じて決定するように構成されてもよい。制御装置180は、上向きの段差の手前の走行面の傾斜が当該段差に向かって下向きである場合(ステップS113でYes)にステップS115に進み、当該勾配が下向きでない場合(ステップS113でNo)にステップS114に進む。走行面の傾斜が段差に向かって下向きであるとは、搬送車110の進行方向及び方向D1Aのいずれか又は両方に向かって走行面の傾斜が下向きであることであってもよい。 Next, the control device 180 detects the amount of inclination of the traveling surface in front of the detected upward step based on the processing result in step S107 (step S112). The traveling surface in front of the upward step is a traveling surface from the step toward the transport vehicle 110. The region on the traveling surface to be detected for the amount of inclination may be preset, and the control device 180 determines it according to the state of the robot 100 such as the moving speed of the transport vehicle 110 and the moving direction with respect to the step. It may be configured. The control device 180 proceeds to step S115 when the inclination of the traveling surface in front of the upward step is downward toward the step (Yes in step S113), and when the inclination is not downward (No in step S113). The process proceeds to step S114. The inclination of the traveling surface downward toward the step may mean that the inclination of the traveling surface is downward toward either or both of the traveling direction and the direction D1A of the transport vehicle 110.
 ステップS114において、制御装置180は、昇降駆動装置141に昇降装置140を伸長させ、ロボットアーム120A及び120Bを上昇させる。例えば、図7に示すように、制御装置180は、ロボットアーム120A及び120Bを最高位置に移動させるように構成されてもよい。図7は、実施の形態に係るロボット100の動作の一例を示す側面図である。 In step S114, the control device 180 extends the elevating device 140 to the elevating drive device 141 and raises the robot arms 120A and 120B. For example, as shown in FIG. 7, the control device 180 may be configured to move the robot arms 120A and 120B to the highest position. FIG. 7 is a side view showing an example of the operation of the robot 100 according to the embodiment.
 最高位置は、昇降装置140が方向D3Aへ最も伸長したときのロボットアーム120A及び120Bの高さ位置であり、昇降装置140がロボットアーム120A及び120Bを方向D3Aへ最も高くすることができる高さ位置である。これにより、ロボット100の重心が方向D3A及びD1Bに移動し、搬送車110の重心が方向D1Bに移動し得る。制御装置180は、ステップS114の処理後、ステップS115に進む。 The highest position is the height position of the robot arms 120A and 120B when the elevating device 140 is most extended in the direction D3A, and the height position where the elevating device 140 can make the robot arms 120A and 120B the highest in the direction D3A. Is. As a result, the center of gravity of the robot 100 can move in the directions D3A and D1B, and the center of gravity of the transport vehicle 110 can move in the direction D1B. The control device 180 proceeds to step S115 after the processing of step S114.
 ステップS115において、制御装置180は、搬送車110に走行を継続させ、上向きの段差を通過させる。ステップS110でのロボットアーム120A及び120Bのいずれか又は両方の旋回により、搬送車110の重心が方向D1Bへ移動するため、補助輪113a及び113bが上向きの段差に乗り上げやすくなる。ステップS114でのロボットアーム120A及び120Bの上昇により、搬送車110の重心が方向D1Bへ移動するため、補助輪113a及び113bが上向きの段差にさらに乗り上げやすくなる。制御装置180は、ステップS115の処理後、ステップS117に進む。 In step S115, the control device 180 causes the transport vehicle 110 to continue traveling and passes through an upward step. By turning either or both of the robot arms 120A and 120B in step S110, the center of gravity of the transport vehicle 110 moves in the direction D1B, so that the training wheels 113a and 113b can easily ride on the upward step. As the robot arms 120A and 120B rise in step S114, the center of gravity of the transport vehicle 110 moves in the direction D1B, so that the training wheels 113a and 113b are more likely to ride on the upward step. The control device 180 proceeds to step S117 after the processing of step S115.
 ステップS111において、制御装置180は、ロボット100が通過できない段差があることを示す警告を操作端末200に送信する。操作端末200は、受信した警告を操作者POに報知する。上向きの段差の高さhが第2閾値超である場合、ロボット100は、搬送車110に当該段差を確実に乗り越えさせることができない。制御装置180は、警告の送信と並行して、又は、警告の送信の代わりに、上向きの段差の手前で搬送車110を停止させる制御を行うように構成されてもよい。 In step S111, the control device 180 sends a warning to the operation terminal 200 indicating that there is a step that the robot 100 cannot pass through. The operation terminal 200 notifies the operator PO of the received warning. When the height h of the upward step exceeds the second threshold value, the robot 100 cannot surely make the transport vehicle 110 get over the step. The control device 180 may be configured to control the transport vehicle 110 to be stopped in parallel with the transmission of the warning or instead of the transmission of the warning, in front of the upward step.
 次いで、ステップS116において、制御装置180は、操作端末200から受信する操作指令に従って、搬送車110に走行させる。例えば、警告を確認した操作者POは、上向きの段差を回避するように搬送車110に走行させる操作を操作端末200に入力する。操作端末200は、入力された操作の操作指令を制御装置180に送信し、制御装置180は、当該操作指令に従った制御を行う。制御装置180は、ステップS116の処理後、ステップS117に進む。 Next, in step S116, the control device 180 is driven by the transport vehicle 110 according to the operation command received from the operation terminal 200. For example, the operator PO who has confirmed the warning inputs to the operation terminal 200 an operation of driving the transport vehicle 110 so as to avoid an upward step. The operation terminal 200 transmits an operation command of the input operation to the control device 180, and the control device 180 performs control according to the operation command. After the process of step S116, the control device 180 proceeds to step S117.
 ステップS117において、操作者PОは、サービス提供の担当を終了する場合、終了の指令を操作端末200に入力し、操作端末200は当該指令をサーバ300に送信する。サーバ300は、担当終了の指令を受信した場合(ステップS117でYes)に、操作端末200とロボット100との接続を切断し、一連の処理を終了する。サーバ300が担当終了の指令を受信しない場合(ステップS117でNo)に、制御装置180はステップS104に戻り、以降の処理を繰り返す。 In step S117, when the operator PO ends the service provision charge, the operation terminal 200 inputs the termination command to the operation terminal 200, and the operation terminal 200 transmits the command to the server 300. When the server 300 receives the command to end the charge (Yes in step S117), the server 300 disconnects the connection between the operation terminal 200 and the robot 100, and ends a series of processes. When the server 300 does not receive the command to end the charge (No in step S117), the control device 180 returns to step S104 and repeats the subsequent processing.
 上記例では、制御装置180は、ステップS106からS115の一連の処理を自動運転でロボット100に実行させるように構成されるが、これに限定されない。例えば、制御装置180は、ステップS106からS115の1つ以上の処理を、操作端末200から受け取る指令に従ってロボット100に実行させるように構成されてもよく、1つ以上の処理を手動運転でロボット100に実行させるように構成されてもよい。 In the above example, the control device 180 is configured to cause the robot 100 to execute a series of processes from steps S106 to S115 by automatic operation, but the present invention is not limited to this. For example, the control device 180 may be configured to cause the robot 100 to execute one or more processes of steps S106 to S115 according to a command received from the operation terminal 200, and the robot 100 may manually perform one or more processes. May be configured to run.
 制御装置180の処理は、ステップS105からS115の1つ以上を含まなくてもよい。例えば、ステップS112からS114が含まれなくてもよい。搬送車110の走行面が搬送車110の進行方向に向かって上昇する傾斜を有する場合、昇降装置140がロボットアーム120A及び120Bを上昇させると、ロボット100全体の重心が上方に移動し、搬送車110及びロボット100全体の重心がさらに方向D1Bへ移動する。よって、搬送車110が段差を乗り越えやすくなる。 The process of the control device 180 does not have to include one or more of steps S105 to S115. For example, steps S112 to S114 may not be included. When the traveling surface of the transport vehicle 110 has an inclination that rises in the traveling direction of the transport vehicle 110, when the elevating device 140 raises the robot arms 120A and 120B, the center of gravity of the entire robot 100 moves upward, and the transport vehicle The center of gravity of the 110 and the robot 100 as a whole further moves in the direction D1B. Therefore, the transport vehicle 110 can easily get over the step.
 制御装置180は、ステップS104及びS116のいずれか又は両方の処理を、自動運転、又は、自動運転及び手動運転の組み合わせでロボット100に動作させるように構成されてもよい。例えば、自動運転では、制御装置180は、操作端末200から受け取るタスクの指令に従って、当該タスクを実行するための一連の動作をロボット100に実行させるように構成されてもよい。 The control device 180 may be configured to cause the robot 100 to perform the processing of either or both of steps S104 and S116 by automatic operation or a combination of automatic operation and manual operation. For example, in automatic operation, the control device 180 may be configured to cause the robot 100 to execute a series of operations for executing the task according to a command of the task received from the operation terminal 200.
 搬送車110において、駆動輪112a及び112b、ロボットアーム120A及び120B並びに昇降装置140は、基台111に対して方向D1Aに偏った位置に配置される。これにより、搬送車110の重心を方向D1Bへ移動させるようにロボットアーム120A及び120Bを旋回させた状態で搬送車110が方向D1Aに進行するとき、駆動輪112a及び112bは、ロボット100の構成要素の中で比較的早くに段差に到達し乗り上げることができる。さらに、ロボットアーム120A及び120B並びに昇降装置140が駆動輪112a及び112bと同様に方向D1Aに偏った位置に配置されるため、ロボットアーム120A及び120B並びに昇降装置140の荷重が駆動輪112a及び112bに作用し、駆動輪112a及び112bの摩擦力が大きくなり、駆動輪112a及び112bの駆動力が大きくなる。よって、駆動輪112a及び112bが段差に乗り上げやすい。 In the transport vehicle 110, the drive wheels 112a and 112b, the robot arms 120A and 120B, and the elevating device 140 are arranged at positions biased in the direction D1A with respect to the base 111. As a result, when the transport vehicle 110 advances in the direction D1A with the robot arms 120A and 120B turned so as to move the center of gravity of the transport vehicle 110 in the direction D1B, the drive wheels 112a and 112b are components of the robot 100. You can reach the step relatively quickly and get on. Further, since the robot arms 120A and 120B and the elevating device 140 are arranged at positions biased toward the direction D1A as in the drive wheels 112a and 112b, the load of the robot arms 120A and 120B and the elevating device 140 is applied to the drive wheels 112a and 112b. As a result, the frictional force of the drive wheels 112a and 112b increases, and the driving force of the drive wheels 112a and 112b increases. Therefore, the drive wheels 112a and 112b can easily ride on the step.
 (変形例)
 実施の形態の変形例に係るロボットを説明する。変形例に係るロボット100Aは、搬送車110を傾斜させることができる装置を備える点で、実施の形態と異なる。以下、変形例について、実施の形態と異なる点を中心に説明し、実施の形態と同様の点の説明を適宜省略する。
(Modification example)
A robot according to a modified example of the embodiment will be described. The robot 100A according to the modified example is different from the embodiment in that it includes a device capable of tilting the transport vehicle 110. Hereinafter, the modification will be described mainly on the points different from those of the embodiment, and the description of the same points as those of the embodiment will be omitted as appropriate.
 図8は、変形例に係るロボット100Aの構成の一例を示す側面図である。図8では、昇降装置140は伸長した状態である。本変形例に係るロボット100Aは、実施の形態と比較して、突出動作部190をさらに備える。突出動作部190は、走行面から搬送車110を持ち上げるように下方へ突出する動作をするように構成される。突出動作部190は、昇降装置140に取り付けられており、昇降装置140の上昇動作及び下降動作それぞれに伴って、内筒143と共に方向D3A及びD3Bに移動する。限定されないが、本変形例では、突出動作部190は、昇降装置140に対して方向D1Aに配置される。突出動作部190は、突出部及び変動装置の一例である。 FIG. 8 is a side view showing an example of the configuration of the robot 100A according to the modified example. In FIG. 8, the elevating device 140 is in an extended state. The robot 100A according to the present modification further includes a protruding operation unit 190 as compared with the embodiment. The projecting operation unit 190 is configured to project downward so as to lift the transport vehicle 110 from the traveling surface. The protrusion operation unit 190 is attached to the elevating device 140, and moves in the directions D3A and D3B together with the inner cylinder 143 as the elevating device 140 moves up and down. Although not limited, in this modification, the protruding operation unit 190 is arranged in the direction D1A with respect to the elevating device 140. The protrusion operating unit 190 is an example of a protrusion and a variable device.
 突出動作部190は、車輪190aと、車輪190aを回転可能に支持する軸受体190bと、軸受体190bと内筒143とを連結する支持部材190cとを含む。車輪190aは、軸受体190bに対して方向D3Bに配置され、自由に回転するように構成される。例えば、車輪190a及び軸受体190bは、補助輪113aから113dと同様に、自在キャスタの構成を有してもよく、駆動輪112a及び112bと同様に、車輪190aの回転軸の向きが固定されてもよい。車輪190a及び軸受体190bは、方向D3Bに移動する場合に、搬送車110の基台111を貫通する開口部111aを通るように配置される。支持部材190cは、内筒143の上端に基台120Cを介して接続され、内筒143及び外筒142に沿って方向D3Bへ延びる。 The protruding operating portion 190 includes a wheel 190a, a bearing body 190b that rotatably supports the wheel 190a, and a support member 190c that connects the bearing body 190b and the inner cylinder 143. The wheels 190a are arranged in the direction D3B with respect to the bearing body 190b and are configured to rotate freely. For example, the wheels 190a and the bearing body 190b may have a universal caster configuration similar to the auxiliary wheels 113a to 113d, and the orientation of the rotation axis of the wheels 190a is fixed as in the drive wheels 112a and 112b. May be good. The wheels 190a and the bearing body 190b are arranged so as to pass through the opening 111a penetrating the base 111 of the transport vehicle 110 when moving in the direction D3B. The support member 190c is connected to the upper end of the inner cylinder 143 via the base 120C and extends in the direction D3B along the inner cylinder 143 and the outer cylinder 142.
 昇降駆動装置141は、内筒143を方向D3Bへ下降させて昇降装置140を収縮させるとき、内筒143と共に、支持部材190c、軸受体190b及び車輪190aを方向D3Bへ移動させる。内筒143の下降に従って、車輪190aは基台111から方向D3Bへ突出し、走行面に接地し押し付けられる。 When the elevating drive device 141 lowers the inner cylinder 143 in the direction D3B to contract the elevating device 140, the elevating drive device 141 moves the support member 190c, the bearing body 190b, and the wheels 190a in the direction D3B together with the inner cylinder 143. As the inner cylinder 143 descends, the wheels 190a project from the base 111 in the direction D3B and are grounded and pressed against the traveling surface.
 図9に示すように、昇降駆動装置141は、接地後も、内筒143を最下位置に移動させることによって、突出動作部190を用いて、基台111を方向D3Aへ持ち上げることができる。図9は、変形例に係るロボット100Aの動作の一例を示す側面図である。 As shown in FIG. 9, the elevating drive device 141 can lift the base 111 in the direction D3A by using the protruding operation unit 190 by moving the inner cylinder 143 to the lowest position even after touchdown. FIG. 9 is a side view showing an example of the operation of the robot 100A according to the modified example.
 最下位置は、昇降装置140が方向D3Bへ最も収縮したときの内筒143の高さ位置であり、昇降装置140が内筒143を方向D3Bへ最も低くすることができる高さ位置である。これにより、搬送車110の重心が方向D1Bへ移動し、搬送車110が上向きの段差を乗り越えやすくなる。 The lowest position is the height position of the inner cylinder 143 when the elevating device 140 is most contracted in the direction D3B, and the height position where the elevating device 140 can make the inner cylinder 143 the lowest in the direction D3B. As a result, the center of gravity of the transport vehicle 110 moves in the direction D1B, and the transport vehicle 110 can easily get over the upward step.
 突出動作部190の下端に車輪190aが配置されるため、搬送車110が走行中であっても、昇降装置140は、突出動作部190を用いて搬送車110を円滑に持ち上げることができる。突出動作部190が、方向D1Aに偏った位置に配置されるため、補助輪113a及び113bが走行面から引き上げられ得る。突出動作部190が、昇降装置140よりも方向D1Aに配置されるため、補助輪113a及び113bがさらに引き上げられやすい。 Since the wheels 190a are arranged at the lower end of the protruding operating portion 190, the elevating device 140 can smoothly lift the transport vehicle 110 by using the protruding operating portion 190 even when the transport vehicle 110 is running. Since the projecting operating portion 190 is arranged at a position biased in the direction D1A, the training wheels 113a and 113b can be pulled up from the traveling surface. Since the projecting operation portion 190 is arranged in the direction D1A rather than the elevating device 140, the training wheels 113a and 113b are more likely to be pulled up.
 制御装置180は、通常、突出動作部190が搬送車110を持ち上げないような高さに位置に内筒143の高さ位置を維持するように、昇降装置140の動作を制御する。制御装置180は、第1閾値超且つ第2閾値以下の高さhの上向きの段差を検出すると、内筒143の高さ位置を、上記高さ位置よりも下方の目標の高さ位置にするように、昇降装置140に収縮動作をさせるように構成される。本変形例では、目標の高さ位置は最下位置であるが、これに限定されず、搬送車110の重心が方向D1Bに移動するような高さ位置であってもよい。例えば、目標の高さ位置は、補助輪113a及び113bが走行面から離れない程度に車輪190aが走行面を押圧するような高さ位置であってもよい。第1閾値及び第2閾値の大きさは、実施の形態と同様であってもよく異なっていてもよい。 The control device 180 normally controls the operation of the elevating device 140 so that the height position of the inner cylinder 143 is maintained at a height such that the protruding operation unit 190 does not lift the transport vehicle 110. When the control device 180 detects an upward step having a height h above the first threshold value and below the second threshold value, the control device 180 sets the height position of the inner cylinder 143 to the target height position below the height position. As described above, the elevating device 140 is configured to perform a contraction operation. In this modification, the target height position is the lowest position, but the height position is not limited to this, and the target height position may be such that the center of gravity of the transport vehicle 110 moves in the direction D1B. For example, the target height position may be such that the wheels 190a press the traveling surface to the extent that the training wheels 113a and 113b do not separate from the traveling surface. The magnitudes of the first threshold and the second threshold may be the same as or different from those of the embodiment.
 制御装置180は、昇降装置140を用いた突出動作部190の下降動作の実行と並行して、実施の形態におけるロボットアーム120A及び120Bの方向D1Bへの旋回動作を実行するように構成されてもよい。 Even if the control device 180 is configured to execute the turning motion of the robot arms 120A and 120B in the direction D1B in the embodiment in parallel with the execution of the descending motion of the projecting motion unit 190 using the lifting device 140. good.
 本変形例では、突出動作部190は、昇降装置140に対して方向D1Aに配置されるが、これに限定されず、昇降装置140の周囲のいかなる位置に配置されてもよい。例えば、突出動作部190は、内筒143及び外筒142の内側に配置されてもよい。 In this modification, the protruding operation unit 190 is arranged in the direction D1A with respect to the elevating device 140, but is not limited to this, and may be arranged at any position around the elevating device 140. For example, the protruding operation unit 190 may be arranged inside the inner cylinder 143 and the outer cylinder 142.
 本変形例では、突出動作部190は、車輪190aを回転駆動する駆動装置を備えないが、当該駆動装置を備えてもよい。 In this modification, the protruding operation unit 190 does not include a drive device that rotationally drives the wheels 190a, but may include the drive device.
 本変形例では、突出動作部190は、昇降装置140によって駆動され、昇降装置140と一緒に動作するが、これに限定されない。突出動作部190を動作させる装置が別に設けられてもよい。例えば、当該装置は、基台111に配置され、突出動作部190の支持部材190cを方向D3A及びD3Bにスライドさせるように構成されてもよい。当該装置は、基台111に配置され、支持部材190cを回動させることで車輪190aを基台111から方向D3Bに突出させるように構成されてもよい。 In this modification, the protruding operation unit 190 is driven by the elevating device 140 and operates together with the elevating device 140, but the present invention is not limited to this. A device for operating the projecting operation unit 190 may be separately provided. For example, the device may be arranged on the base 111 and configured to slide the support member 190c of the projecting portion 190 in the directions D3A and D3B. The device may be arranged on the base 111 and configured to project the wheels 190a from the base 111 in the direction D3B by rotating the support member 190c.
 (その他の実施の形態)
 以上、本開示の実施の形態の例について説明したが、本開示は、上記実施の形態に限定されない。すなわち、本開示の範囲内で種々の変形及び改良が可能である。例えば、各種変形を実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
Although the examples of the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. That is, various modifications and improvements are possible within the scope of the present disclosure. For example, a form in which various modifications are applied to an embodiment and a form constructed by combining components in different embodiments are also included in the scope of the present disclosure.
 例えば、実施の形態及び変形例では、制御装置180は、上向きの段差を検出するように構成されるが、これに限定されない。制御装置180は、走行面の情報を操作端末200に送信するように構成されてもよく、走行面の情報の代わりに、撮像装置176によって撮像された画像データを操作端末200に送信するように構成されてもよい。操作端末200の操作者POは、操作端末200が受信する上記情報又は画像データに基づき、搬送車110の重心を後方の方向D1Bへ移動する指令を操作端末200を介して制御装置180に送信することができる。 For example, in the embodiment and the modification, the control device 180 is configured to detect an upward step, but is not limited to this. The control device 180 may be configured to transmit information on the traveling surface to the operating terminal 200, and may transmit image data captured by the imaging device 176 to the operating terminal 200 instead of the information on the traveling surface. It may be configured. The operator PO of the operation terminal 200 transmits a command to move the center of gravity of the transport vehicle 110 to the rear direction D1B to the control device 180 via the operation terminal 200 based on the above information or image data received by the operation terminal 200. be able to.
 実施の形態及び変形例では、制御装置180は、搬送車110の重心を後方の方向D1Bへ移動するためのロボット100及び100Aの動作を自動で実行するように構成されるが、これに限定されない。制御装置180は、操作端末200から受信する手動運転のための操作指令に従って、搬送車110の重心を後方の方向D1Bへ移動するための動作をロボット100及び100Aにさせるように構成されてもよい。 In the embodiments and modifications, the control device 180 is configured to automatically execute the operations of the robots 100 and 100A for moving the center of gravity of the transport vehicle 110 in the rear direction D1B, but is not limited thereto. .. The control device 180 may be configured to cause the robots 100 and 100A to move the center of gravity of the transport vehicle 110 in the rear direction D1B in accordance with an operation command for manual operation received from the operation terminal 200. ..
 実施の形態及び変形例において、制御装置180は、画像処理機能を備えてもよい。例えば、制御装置180は、画像データの画素に写し出される被写体の3次元位置を検出することができる機能を備えてもよい。この場合、撮像装置176は、被写体までの距離等の被写体の3次元位置の検出が可能である画像を撮像するカメラを含んでもよい。例えば、撮像装置176は、ステレオカメラを含んでもよい。制御装置180は、ステレオマッチング手法等を用いて、ステレオカメラによって撮像される2つの画像データを処理し、各画素に写し出される被写体の距離を検出するように構成されてもよい。この場合、撮像装置176及び制御装置180が走査センサ160として機能し得るため、別個の走査センサが不要である。 In the embodiment and the modification, the control device 180 may have an image processing function. For example, the control device 180 may have a function capable of detecting the three-dimensional position of the subject projected on the pixels of the image data. In this case, the image pickup apparatus 176 may include a camera that captures an image capable of detecting a three-dimensional position of the subject such as a distance to the subject. For example, the image pickup apparatus 176 may include a stereo camera. The control device 180 may be configured to process two image data captured by a stereo camera and detect the distance of a subject projected on each pixel by using a stereo matching method or the like. In this case, since the image pickup device 176 and the control device 180 can function as the scanning sensor 160, a separate scanning sensor is not required.
 実施の形態及び変形例では、ロボット100及び100Aは、人にサービスを提供するためのロボットとして用いられるが、他の用途に用いられてもよい。例えば、ロボット100及び100Aは、工場及び倉庫等における作業に用いられるように構成されてもよい。 In the embodiments and modifications, the robots 100 and 100A are used as robots for providing services to humans, but may be used for other purposes. For example, the robots 100 and 100A may be configured to be used for work in factories, warehouses, and the like.
 本開示の技術の各態様例は、以下のように挙げられる。本開示の一態様に係るロボットは、自走可能な搬送車と、前記搬送車に搭載される1つ以上のロボットアームと、前記搬送車に搭載され且つ前記搬送車に対して前記1つ以上のロボットアームを昇降する昇降装置と、前記搬送車の重心を変動させる変動装置と、前記搬送車、前記1つ以上のロボットアーム、前記昇降装置及び前記変動装置の動作を制御するように構成される制御装置とを備え、前記制御装置は、前記搬送車の進行方向である第1方向に存在する、走行面の上方への段差があるとき、前記搬送車の重心を前記第1方向と反対方向である第2方向に移動するように前記変動装置に動作させるように構成される。 Examples of each aspect of the technique disclosed in the present disclosure are as follows. The robot according to one aspect of the present disclosure includes a self-propelled transport vehicle, one or more robot arms mounted on the transport vehicle, and one or more robots mounted on the transport vehicle and relative to the transport vehicle. It is configured to control the operation of the elevating device for raising and lowering the robot arm, the fluctuating device for changing the center of gravity of the transport vehicle, the transport vehicle, the one or more robot arms, the elevating device, and the fluctuating device. When there is a step upward on the traveling surface, which exists in the first direction, which is the traveling direction of the transport vehicle, the control device reverses the center of gravity of the transport vehicle to the first direction. It is configured to operate the variable device so as to move in the second direction, which is the direction.
 上記態様によると、進行方向である第1方向に段差があるとき、変動装置が反対方向である第2方向に搬送車の重心を移動させる。これにより、ロボット全体の重心も第2方向に移動し得る。このような状態で搬送車が第1方向に走行すると、搬送車における第1方向前方の部位は、段差に乗り上げやすい。例えば、搬送車が当該部位に車輪を備える場合、当該車輪が段差に乗り上げやすい。これにより、搬送車は段差を乗り越えて走行することができる。さらに、ロボットは、段差を乗り越える能力を有するために変動装置を備えるだけでよく、その構造の簡略化を可能にする。 According to the above aspect, when there is a step in the first direction which is the traveling direction, the variable device moves the center of gravity of the transport vehicle in the second direction which is the opposite direction. As a result, the center of gravity of the entire robot can also move in the second direction. When the transport vehicle travels in the first direction in such a state, the portion of the transport vehicle in front of the first direction easily rides on a step. For example, when the transport vehicle is provided with wheels at the relevant portion, the wheels are likely to ride on a step. As a result, the transport vehicle can travel over the step. In addition, the robot only needs to be equipped with a variable device to have the ability to climb over steps, which allows for simplification of its structure.
 本開示の一態様に係るロボットにおいて、前記変動装置は、前記ロボットアームを含み、前記制御装置は、前記搬送車の重心を前記第2方向に移動するために、前記第2方向に延びるように前記ロボットアームに動作させるように構成されてもよい。 In the robot according to one aspect of the present disclosure, the variable device includes the robot arm, and the control device extends in the second direction in order to move the center of gravity of the transport vehicle in the second direction. It may be configured to operate on the robot arm.
 上記態様によると、ロボットアームが第2方向に延びるように動作すると、ロボット全体の重心が第2方向に移動し、搬送車の重心も第2方向に移動する。よって、ロボットは、段差を乗り越えるための特別な装置を備える必要がなく、その構造の簡略化を可能にする。 According to the above aspect, when the robot arm operates so as to extend in the second direction, the center of gravity of the entire robot moves in the second direction, and the center of gravity of the transport vehicle also moves in the second direction. Therefore, the robot does not need to be equipped with a special device for overcoming a step, and its structure can be simplified.
 本開示の一態様に係るロボットにおいて、前記変動装置は、前記走行面から前記搬送車を持ち上げるように下方へ突出する動作が可能である突出部を含み、前記制御装置は、前記搬送車の重心を前記第2方向に移動するために、前記変動装置に前記突出部を突出させ前記搬送車を持ち上げさせるように構成されてもよい。 In the robot according to one aspect of the present disclosure, the variable device includes a protruding portion capable of projecting downward from the traveling surface so as to lift the transport vehicle, and the control device is a center of gravity of the transport vehicle. In order to move the vehicle in the second direction, the variable device may be configured to project the protrusion and lift the transport vehicle.
 上記態様によると、変動装置は、搬送車を持ち上げるように突出部に動作させることによって、搬送車の重心を容易に変動させることができる。変動装置は、搬送車の重心を変動できればよく、走行面から離れるまで搬送車を持ち上げる能力を必ずしも有さなくてもよい。よって、変動装置の構造の小型化及び簡略化が可能である。 According to the above aspect, the variable device can easily change the center of gravity of the transport vehicle by operating the protrusion so as to lift the transport vehicle. The variable device need only be able to change the center of gravity of the carrier, and does not necessarily have the ability to lift the carrier until it is separated from the traveling surface. Therefore, the structure of the variable device can be miniaturized and simplified.
 本開示の一態様に係るロボットにおいて、前記突出部は、前記昇降装置によって駆動され、前記昇降装置の下降動作及び上昇動作それぞれに伴って下方への突出動作及び上方への後退動作をするように構成され、前記制御装置は、前記搬送車の重心を前記第2方向に移動するために、前記昇降装置に前記下降動作をさせることで前記突出部に前記搬送車を持ち上げさせるように構成されてもよい。 In the robot according to one aspect of the present disclosure, the projecting portion is driven by the elevating device so as to perform a downward projecting operation and an upward retreating operation in accordance with the lowering operation and the ascending operation of the elevating device, respectively. The control device is configured to cause the projecting portion to lift the transport vehicle by causing the elevating device to perform the descending operation in order to move the center of gravity of the transport vehicle in the second direction. May be good.
 上記態様によると、昇降装置が、ロボットアームの昇降のための駆動装置と、突出部の突出のための駆動装置とを兼ねる。よって、ロボットの構造の簡略化が可能になる。 According to the above aspect, the elevating device also serves as a driving device for raising and lowering the robot arm and a driving device for projecting the protruding portion. Therefore, the structure of the robot can be simplified.
 本開示の一態様に係るロボットは、前記搬送車に搭載され且つ前記昇降装置及び前記1つ以上のロボットアームに隣り合って配置される電力源としての二次電池をさらに備え、前記二次電池は、前記昇降装置及び前記1つ以上のロボットアームよりも、前記搬送車における後進方向に偏った位置に配置されてもよい。 The robot according to one aspect of the present disclosure further comprises a secondary battery as a power source mounted on the transport vehicle and adjacent to the elevating device and the one or more robot arms. May be arranged at a position biased in the reverse direction in the transport vehicle rather than the elevating device and the one or more robot arms.
 上記態様によると、二次電池が、昇降装置及び1つ以上のロボットアームよりも前進方向に位置しないため、搬送車において、昇降装置及び1つ以上のロボットアームよりも前進方向の重量物が低減される。これにより、搬送車が段差に乗り上げやすくなる。二次電池の重量は、ロボットの第1方向への転倒モーメントを低減する。変動装置が動作していないときのロボットを安定化することができる。 According to the above aspect, since the secondary battery is not located in the forward direction with respect to the elevating device and one or more robot arms, the weight in the forward direction is reduced in the transport vehicle as compared with the elevating device and one or more robot arms. Will be done. This makes it easier for the carrier to ride on the step. The weight of the secondary battery reduces the overturning moment of the robot in the first direction. It is possible to stabilize the robot when the variable device is not operating.
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成又はプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC、従来の回路、及び/又は、それらの組み合わせ、を含む回路又は処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路又は回路と見なされる。本開示において、回路、ユニット、又は手段は、列挙された機能を実行するハードウェアであるか、又は、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラム又は構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、又はユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェア及び/又はプロセッサの構成に使用される。 The functions of the elements disclosed herein include circuits including general purpose processors, dedicated processors, integrated circuits, ASICs, conventional circuits, and / or combinations thereof, configured or programmed to perform the disclosed functions. Alternatively, it can be executed using a processing circuit. A processor is considered a processing circuit or circuit because it includes transistors and other circuits. In the present disclosure, a circuit, unit, or means is hardware that performs the listed functions or is programmed to perform the listed functions. The hardware may be the hardware disclosed herein, or it may be other known hardware that is programmed or configured to perform the listed functions. If the hardware is a processor considered to be a type of circuit, the circuit, means, or unit is a combination of hardware and software, and the software is used to configure the hardware and / or processor.
 上記で用いた序数、数量等の数字は、全て本開示の技術を具体的に説明するために例示するものであり、本開示は例示された数字に制限されない。構成要素間の接続関係は、本開示の技術を具体的に説明するために例示するものであり、本開示の機能を実現する接続関係はこれに限定されない。 The numbers such as ordinal numbers and quantities used above are all examples for concretely explaining the technique of the present disclosure, and the present disclosure is not limited to the illustrated numbers. The connection relationships between the components are exemplified for the purpose of specifically explaining the technique of the present disclosure, and the connection relationships that realize the functions of the present disclosure are not limited thereto.
 本開示は、その本質的な特徴の精神から逸脱することなく、様々なかたちで実施され得るように、本開示の範囲は、明細書の記載よりも添付の請求項によって定義されるため、例示的な実施の形態及び変形例は、例示的なものであって限定的なものではない。請求項及びその範囲内にあるすべての変更、又は、請求項及びその範囲の均等物は、請求項によって包含されることが意図されている。 The scope of the disclosure is defined by the appended claims rather than the description of the specification so that the disclosure can be carried out in various ways without departing from the spirit of its essential characteristics. Embodiments and modifications are exemplary and not limited. Claims and all modifications within the scope of the claims, or equivalents of the claims and their scope, are intended to be embraced by the claims.

Claims (5)

  1.  自走可能な搬送車と、
     前記搬送車に搭載される1つ以上のロボットアームと、
     前記搬送車に搭載され且つ前記搬送車に対して前記1つ以上のロボットアームを昇降する昇降装置と、
     前記搬送車の重心を変動させる変動装置と、
     前記搬送車、前記1つ以上のロボットアーム、前記昇降装置及び前記変動装置の動作を制御するように構成される制御装置とを備え、
     前記制御装置は、前記搬送車の進行方向である第1方向に存在する、走行面の上方への段差があるとき、前記搬送車の重心を前記第1方向と反対方向である第2方向に移動するように前記変動装置に動作させるように構成される
     ロボット。
    A self-propelled carrier and
    With one or more robot arms mounted on the carrier,
    An elevating device mounted on the transport vehicle and for raising and lowering the one or more robot arms with respect to the transport vehicle.
    A variable device that fluctuates the center of gravity of the carrier, and
    The carrier, the one or more robot arms, the elevating device, and a control device configured to control the operation of the variable device are provided.
    When there is a step upward on the traveling surface, which exists in the first direction of the traveling direction of the transport vehicle, the control device sets the center of gravity of the transport vehicle in the second direction opposite to the first direction. A robot configured to move the variable device to move.
  2.  前記変動装置は、前記ロボットアームを含み、
     前記制御装置は、前記搬送車の重心を前記第2方向に移動するために、前記第2方向に延びるように前記ロボットアームに動作させるように構成される
     請求項1に記載のロボット。
    The variable device includes the robot arm.
    The robot according to claim 1, wherein the control device is configured to be operated by the robot arm so as to extend in the second direction in order to move the center of gravity of the transport vehicle in the second direction.
  3.  前記変動装置は、前記走行面から前記搬送車を持ち上げるように下方へ突出する動作が可能である突出部を含み、
     前記制御装置は、前記搬送車の重心を前記第2方向に移動するために、前記変動装置に前記突出部を突出させ前記搬送車を持ち上げさせるように構成される
     請求項1または2に記載のロボット。
    The variable device includes a protrusion capable of projecting downward from the traveling surface so as to lift the transport vehicle.
    The control device according to claim 1 or 2, wherein the control device is configured to cause the variable device to project the protrusion and lift the transport vehicle in order to move the center of gravity of the transport vehicle in the second direction. robot.
  4.  前記突出部は、前記昇降装置によって駆動され、前記昇降装置の下降動作及び上昇動作それぞれに伴って下方への突出動作及び上方への後退動作をするように前記昇降装置と接続され、
     前記制御装置は、前記搬送車の重心を前記第2方向に移動するために、前記昇降装置に前記下降動作をさせることで前記突出部に前記搬送車を持ち上げさせるように構成される
     請求項3に記載のロボット。
    The projecting portion is driven by the elevating device and is connected to the elevating device so as to perform a downward projecting operation and an upward retreating operation with the lowering operation and the ascending operation of the elevating device, respectively.
    3. The control device is configured to cause the projecting portion to lift the transport vehicle by causing the elevating device to perform the descending operation in order to move the center of gravity of the transport vehicle in the second direction. The robot described in.
  5.  前記搬送車に搭載され且つ前記昇降装置及び前記1つ以上のロボットアームに隣り合って配置される電力源としての二次電池をさらに備え、
     前記二次電池は、前記昇降装置及び前記1つ以上のロボットアームよりも、前記搬送車における後進方向に偏った位置に配置される
     請求項1から4のいずれか一項に記載のロボット。
    Further equipped with a secondary battery as a power source mounted on the carrier and placed adjacent to the elevating device and the one or more robot arms.
    The robot according to any one of claims 1 to 4, wherein the secondary battery is arranged at a position biased in the reverse direction in the transport vehicle rather than the elevating device and the one or more robot arms.
PCT/JP2021/047488 2020-12-24 2021-12-22 Robot WO2022138694A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020215748A JP2022101273A (en) 2020-12-24 2020-12-24 robot
JP2020-215748 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138694A1 true WO2022138694A1 (en) 2022-06-30

Family

ID=82156996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047488 WO2022138694A1 (en) 2020-12-24 2021-12-22 Robot

Country Status (2)

Country Link
JP (1) JP2022101273A (en)
WO (1) WO2022138694A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116119336A (en) * 2023-01-29 2023-05-16 江苏理工学院 Intelligent material handling robot
CN116931574A (en) * 2023-07-24 2023-10-24 国广顺能(上海)能源科技有限公司 Multi-mode tracking method for car body, storage medium and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635505U (en) * 1986-06-30 1988-01-14
JP2004001705A (en) * 2002-03-29 2004-01-08 Sanyo Electric Co Ltd Movable carriage
JP2007061964A (en) * 2005-08-31 2007-03-15 Toshiba Corp Moving robot having arm mechanism
JP2010064501A (en) * 2008-09-08 2010-03-25 Toyota Central R&D Labs Inc Wheel traveling body
WO2014002275A1 (en) * 2012-06-29 2014-01-03 株式会社安川電機 Moving body and moving body system
JP2015128973A (en) * 2014-01-09 2015-07-16 トヨタ自動車株式会社 Movable body
WO2019111522A1 (en) * 2017-12-05 2019-06-13 株式会社大気社 Surface processing system for large object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635505U (en) * 1986-06-30 1988-01-14
JP2004001705A (en) * 2002-03-29 2004-01-08 Sanyo Electric Co Ltd Movable carriage
JP2007061964A (en) * 2005-08-31 2007-03-15 Toshiba Corp Moving robot having arm mechanism
JP2010064501A (en) * 2008-09-08 2010-03-25 Toyota Central R&D Labs Inc Wheel traveling body
WO2014002275A1 (en) * 2012-06-29 2014-01-03 株式会社安川電機 Moving body and moving body system
JP2015128973A (en) * 2014-01-09 2015-07-16 トヨタ自動車株式会社 Movable body
WO2019111522A1 (en) * 2017-12-05 2019-06-13 株式会社大気社 Surface processing system for large object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116119336A (en) * 2023-01-29 2023-05-16 江苏理工学院 Intelligent material handling robot
CN116931574A (en) * 2023-07-24 2023-10-24 国广顺能(上海)能源科技有限公司 Multi-mode tracking method for car body, storage medium and electronic equipment

Also Published As

Publication number Publication date
JP2022101273A (en) 2022-07-06

Similar Documents

Publication Publication Date Title
WO2022138694A1 (en) Robot
US20220250231A1 (en) Humanoid robotics system and methods
US11845621B2 (en) Robot and robot system having the same
Bonani et al. The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research
US20170095382A1 (en) Mobile human-friendly assistive robot
JP4774964B2 (en) Robot equipment
CN113840693A (en) Morphology of mobile robot
US20210229293A1 (en) Lifting robot systems
US11958187B2 (en) Robot hand, robot and robot system
CN110744544B (en) Service robot vision grabbing method and service robot
US11633852B2 (en) Computing device, machine learning method, and storage medium
CN114080301A (en) Independently translating coaxial robotic arm and sensing housing
CN114072255A (en) Mobile robot sensor configuration
CN111015681A (en) Communication machine room inspection robot system
JP2003200366A (en) Robot
CN106671101A (en) Intelligent shooting robot
EP3839464A1 (en) Multiple degree of freedom force sensor
WO2023171677A1 (en) Robot system, and cart
WO2023171676A1 (en) Control method for robot and robot
WO2022264672A1 (en) Self-propelled device
US20220168909A1 (en) Fusing a Static Large Field of View and High Fidelity Moveable Sensors for a Robot Platform
WO2022138695A1 (en) Robot
WO2021117701A1 (en) Master/slave system and control method
WO2023171675A1 (en) Robot control method and robot
JP2023131062A (en) Method of controlling robot and robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910834

Country of ref document: EP

Kind code of ref document: A1