WO2022138665A1 - Polymer film, laminate, and production method therefor - Google Patents

Polymer film, laminate, and production method therefor Download PDF

Info

Publication number
WO2022138665A1
WO2022138665A1 PCT/JP2021/047403 JP2021047403W WO2022138665A1 WO 2022138665 A1 WO2022138665 A1 WO 2022138665A1 JP 2021047403 W JP2021047403 W JP 2021047403W WO 2022138665 A1 WO2022138665 A1 WO 2022138665A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer film
polymer
curable compound
layer
group
Prior art date
Application number
PCT/JP2021/047403
Other languages
French (fr)
Japanese (ja)
Inventor
泰行 佐々田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020237019478A priority Critical patent/KR20230107302A/en
Priority to CN202180084326.5A priority patent/CN116600986A/en
Priority to JP2022571517A priority patent/JPWO2022138665A1/ja
Publication of WO2022138665A1 publication Critical patent/WO2022138665A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present disclosure relates to a polymer film, a laminate, and a method for producing the same.
  • a liquid crystal polyester film containing at least liquid crystal polyester has a first degree of orientation with respect to a first direction parallel to the main surface of the liquid crystal polyester film.
  • the degree of orientation is defined as the degree of orientation in a second direction parallel to the main surface and orthogonal to the first direction
  • the first degree of orientation and the second degree of orientation are used.
  • the liquid crystal polyester having a first degree of orientation / second degree of orientation which is a ratio to the degree of orientation, of 0.95 or more and 1.04 or less, and is measured by a wide-angle X-ray scattering method in a direction parallel to the main surface.
  • a liquid crystal polyester film having a third degree of orientation of 60.0% or more is described.
  • Patent Document 2 describes a resin layer containing a polymer and a curable compound and having excellent adhesion to a metal layer, and a laminate for a high-frequency circuit laminated with a metal foil.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2020-26474
  • Patent Document 2 International Publication No. 2019/054334
  • An object to be solved by the embodiment of the present invention is to provide a polymer film having excellent ability to suppress wiring distortion at the time of bonding wiring. Further, an object to be solved by the embodiment of the present invention is to provide a laminate using the above polymer film and a method for producing the same.
  • the means for solving the above problems include the following aspects.
  • ⁇ 1> A polymer film containing a polymer having a dielectric loss tangent of 0.01 or less and a curable compound, wherein the curable compound is an oligomer or a polymer and contains a curable compound A.
  • ⁇ 2> A polymer film containing a liquid crystal polymer and a curable compound, wherein the curable compound is an oligomer or a polymer and contains a curable compound A.
  • ⁇ 3> The polymer film according to ⁇ 1> or ⁇ 2>, wherein the content of the curable compound A is higher on the surface than on the inside of the polymer film.
  • ⁇ 4> The polymer film according to ⁇ 1>, wherein the polymer having a dielectric loss tangent of 0.01 or less is a liquid crystal polymer.
  • ⁇ 5> The invention according to any one of ⁇ 1> to ⁇ 4>, wherein the polymer having a dielectric loss tangent of 0.01 or less or the liquid crystal polymer has a melting point Tm or a 5% by mass weight loss temperature Td of 200 ° C. or higher.
  • ⁇ 6> The polymer film according to any one of ⁇ 1> to ⁇ 5>, wherein the curable compound A has a weight average molecular weight of 10,000 or less.
  • the polymer film contains particles and contains particles.
  • ⁇ 8> The polymer film according to any one of ⁇ 1> to ⁇ 7>, wherein the polymer film contains a curing inhibitor.
  • the polymer having a dielectric loss tangent of 0.01 or less or the liquid crystal polymer contains a liquid crystal polymer having a structural repeating unit represented by any of the formulas (1) to (3) ⁇ 1> to ⁇ 8>
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 independently represent a phenylene group, a naphthylene group, a biphenylylene group or the following formula (4).
  • Ar 4 and Ar 5 independently represent a phenylene group or a naphthylene group, and Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
  • the film is 0.1 to 10. the film.
  • ⁇ 12> It has a layer A and a layer B provided on at least one surface of the layer A.
  • ⁇ 13> The polymer film according to any one of ⁇ 1> to ⁇ 12>, which is a base film.
  • ⁇ 14> Further having layer C The polymer film according to ⁇ 13>, which has the layer B, the layer A, and the layer C in this order.
  • ⁇ 15> The polymer film according to any one of ⁇ 1> to ⁇ 14>, which is a bonding sheet.
  • ⁇ 16> A laminate having the polymer film according to any one of ⁇ 1> to ⁇ 15> and a metal layer or metal wiring arranged on at least one surface of the polymer film.
  • ⁇ 17> The laminate according to ⁇ 16>, which has a metal layer or metal wiring, the polymer film, and the metal layer or metal wiring in this order.
  • ⁇ 18> The laminate according to ⁇ 16> or ⁇ 17>, which contains a cured product obtained by curing the curable compound A.
  • ⁇ 19> The polymer film according to any one of ⁇ 1> to ⁇ 15>, the metal layer or the metal wiring, the polymer film according to any one of ⁇ 1> to ⁇ 15>, and the metal layer.
  • a method for manufacturing a laminated body which comprises a bonding step of bonding a metal layer or a metal wiring to a film to form a laminated body in this order.
  • a partial curing step of forming the curable compound A by curing a part of the curable compound, a metal layer or a metal wiring on the film In a polymer film containing a liquid crystal polymer and a curable compound, a partial curing step of forming the curable compound A by curing a part of the curable compound, a metal layer or a metal wiring on the film.
  • a method for manufacturing a laminated body which comprises a bonding step of forming a laminated body by bonding in this order.
  • ⁇ 24> The method for producing a laminate according to any one of ⁇ 21> to ⁇ 23>, wherein the layer containing the curable compound A has a loss tangent of 0.1 or more at 300 ° C.
  • ⁇ 25> The method for producing a laminated body according to any one of ⁇ 21> to ⁇ 24>, wherein the bonding pressure in the bonding step is 0.1 MPa or more.
  • the content of the curable compound A is any one of ⁇ 21> to ⁇ 25>, which is 30% by mass to 100% by mass with respect to the total mass of the curable compound.
  • a method for producing a laminated body which comprises a through hole forming step of forming a through hole in a layer containing the curable compound A in the laminated body in this order.
  • ⁇ 29> The method for producing a laminate according to ⁇ 27> or ⁇ 28>, which comprises a post-curing step of curing the curable compound A after the through-hole forming step.
  • ⁇ 30> The method for producing a laminate according to any one of ⁇ 21> to ⁇ 29>, wherein the metal in the metal layer or the metal wiring is copper or silver.
  • the embodiment of the present invention it is possible to provide a polymer film having excellent ability to suppress wiring distortion at the time of bonding wiring. Further, according to another embodiment of the present invention, it is possible to provide a laminate using the above polymer film and a method for producing the same.
  • the notation that does not describe substitution or non-substitution includes those having no substituent as well as those having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • (meth) acrylic is a term used in a concept that includes both acrylic and methacrylic
  • (meth) acryloyl is a term that is used as a concept that includes both acryloyl and methacrylic. Is.
  • the term "process” in the present specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” will be used as long as the intended purpose of the process is achieved. included.
  • “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the first embodiment of the polymer film according to the present disclosure comprises a polymer having a dielectric loss tangent of 0.01 or less and a curable compound, wherein the curable compound comprises a curable compound A which is an oligomer or a polymer. ..
  • the second embodiment of the polymer film according to the present disclosure comprises a liquid crystal polymer and a curable compound, and the curable compound comprises a curable compound A which is an oligomer or a polymer.
  • polymer film according to the present disclosure refers to both the first embodiment and the second embodiment.
  • the present inventor has found that when a conventional polymer film is bonded to a wiring (particularly a metal wiring), the wiring is often distorted due to the stress at the time of bonding. As a result of diligent studies by the present inventor, it has been found that by adopting the above configuration, it is possible to provide a polymer film having excellent ability to suppress wiring distortion at the time of wiring bonding. The detailed mechanism by which the above effect is obtained is unknown, but it is presumed as follows. By containing the curable compound A which is an oligomer or a polymer as the curable compound, only a part of the curable compound is cured in a half-cured state (also referred to as "semi-cured state" or "B stage state").
  • the polymer film according to the present disclosure can be further strengthened after being bonded by curing the curable compound A.
  • the polymer film according to the present disclosure contains a curable compound, and the curable compound contains a curable compound A which is an oligomer or a polymer.
  • the curable compound in the present disclosure is a compound having a curable group, and may be any of a monomer, an oligomer, and a polymer.
  • the curable compound A is an oligomer or a polymer, and is preferably a polymer from the viewpoint of mechanical strength.
  • the oligomer is a polymer having a weight average molecular weight of 1,000 or more and less than 2,000
  • the polymer is a polymer having a polymerization average molecular weight of 2,000 or more.
  • the curable compound A is preferably an oligomer or polymer having a weight average molecular weight of 1,000 or more, and has a weight average molecular weight of 2, from the viewpoint of adhesion to a metal foil or metal wiring and uneven distribution. It is more preferably a polymer of 000 or more, further preferably a polymer having a weight average molecular weight of 3,000 or more and 200,000 or less, and a polymer having a weight average molecular weight of 5,000 or more and 100,000 or less. Especially preferable. Further, the weight average molecular weight of the curable compound A is preferably 100,000 or less, more preferably 50,000 or less, and particularly preferably 10,000 or less, from the viewpoint of suppressing wiring strain. preferable.
  • the polymer film according to the present disclosure preferably has a higher content of the curable compound A on the surface than on the inside of the polymer film.
  • the surface of the polymer film refers to the outer surface of the polymer film (the surface in contact with air or the substrate), in the range of 3 ⁇ m in the depth direction from the most surface, or with respect to the thickness of the entire polymer film from the most surface. Of the range of 10% or less, the smaller one is defined as the "surface".
  • the inside of the polymer film refers to a part other than the surface of the polymer film, that is, the inner surface of the polymer film (the surface not in contact with air or the substrate), and is not limited, but ⁇ from the center in the thickness direction of the polymer film. Of the range of 1.5 ⁇ m or the range of ⁇ 5% of the total thickness from the center in the thickness direction of the polymer film, the smaller numerical value is defined as “inside”.
  • the polymer film according to the present disclosure preferably contains particles, and preferably contains the curable compound inside or on the surface of the particles. Examples of the particles include microcapsules or microgels having the curable compound inside or on the surface. Among them, microcapsules or microgels having the above-mentioned curable compound inside are preferably mentioned. Further, the particles are preferably organic resin particles.
  • the number of curable groups in the curable compound may be 1 or more, may be 2 or more, but is preferably 2 or more. Further, the curable compound may have only one type of curable group or may have two or more types of curable groups.
  • the curable group is not particularly limited as long as it can be cured, but for example, an ethylenically unsaturated group, an epoxy group, an oxetanyl group, an isocyanate group, an acid anhydride group, a carbodiimide group, an N-hydroxyester group, and the like.
  • examples thereof include a glyoxal group, an imide ester group, an alkyl halide group, a thiol group, a hydroxy group, a carboxy group, an amino group, an amide group, an aldehyde group, a sulfonic acid group and the like.
  • an ethylenically unsaturated group is preferable as the curable group.
  • thermosetting resin examples include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, and silicone. Examples thereof include resins, triazine resins and melamine resins. Further, the thermosetting resin is not particularly limited to these, and known thermosetting resins can be used. These thermosetting resins can be used alone or in combination of two or more. Further, as the curable compound A, a commercially available thermosetting resin-containing adhesive can also be used.
  • the curable compound A a curable compound obtained by half-curing a monomer is preferably mentioned.
  • the monomer is preferably an ethylenically unsaturated compound, more preferably a polyfunctional ethylenic compound.
  • the ethylenically unsaturated compound include (meth) acrylate compound, (meth) acrylamide compound, (meth) acrylic acid, styrene compound, vinyl acetate compound, vinyl ether compound, and olefin compound. Of these, (meth) acrylate compounds are preferred.
  • the molecular weight of the monomer is preferably 50 or more and less than 1,000, more preferably 100 or more and less than 1,000, and the molecular weight is 200, from the viewpoint of adhesion to the metal foil or metal wiring. It is particularly preferable that it is 800 or more and 800 or less.
  • the polymer film according to the present disclosure preferably contains a polymerization initiator.
  • the polymerization initiator is preferably a thermal polymerization initiator or a photopolymerization initiator.
  • the thermal polymerization initiator or the photopolymerization initiator known ones can be used.
  • the thermal polymerization initiator include thermal radical generators. Specific examples thereof include peroxide initiators such as benzoyl peroxide and azobisisobutyronitrile, and azo-based initiators.
  • the photopolymerization initiator include photoradical generators.
  • aromatic ketones (b) onium salt compounds, (c) organic peroxides, (d) thio compounds, (e) hexaarylbiimidazole compounds, (f) ketooxime ester compounds.
  • G borate compound, (h) azinium compound, (i) active ester compound, (j) compound having a carbon halogen bond, (k) pyridium compound and the like.
  • the polymerization initiator only one kind may be added, or two or more kinds may be used in combination.
  • the content of the polymerization initiator is preferably 0.01% by mass to 30% by mass, more preferably 0.05% by mass to 25% by mass, and 0.1% by mass to 20% by mass, based on the total mass of the curable compound. % Is more preferable.
  • the polymer film may contain only one type of curable compound, that is, only one type of curable compound A, or may contain two or more types of curable compound. Further, the polymer film may contain only one type of curable compound A, or may contain two or more types of the curable compound A.
  • the content of the curable compound in the polymer film is preferably 0.1% by mass to 70% by mass with respect to the total mass of the polymer film from the viewpoint of the dielectric positive contact of the polymer film and the ability to suppress wiring strain. It is more preferably 1% by mass to 60% by mass, further preferably 5% by mass to 60% by mass, and particularly preferably 10% by mass to 55% by mass.
  • the content of the curable compound A in the polymer film shall be 0.1% by mass to 70% by mass with respect to the total mass of the polymer film from the viewpoint of dielectric positive contact of the polymer film and suppression of wiring strain. , 1% by mass to 60% by mass, more preferably 5% by mass to 60% by mass, and particularly preferably 10% by mass to 55% by mass.
  • the content of the curable compound A in the polymer film is preferably 30% by mass to 100% by mass, preferably 50% by mass or more, based on the total mass of the curable compound from the viewpoint of suppressing wiring strain. It is more preferably 100% by mass, and particularly preferably 70% by mass to 100% by mass.
  • the first embodiment of the polymer film according to the present disclosure comprises a polymer having a dielectric loss tangent of 0.01 or less.
  • the dielectric loss tangent of the polymer having a dielectric loss tangent of 0.01 or less is preferably 0.005 or less, preferably 0.004 or less, from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or metal wiring. Is more preferable, and more than 0 and 0.003 or less are particularly preferable.
  • the polymer having a dielectric loss tangent of 0.01 or less may have a curable group, but it is assumed that the polymer is different from the curable compound A.
  • the curable compound A preferably has a dielectric loss tangent of more than 0.01, and is preferably not a liquid crystal polymer.
  • the method for measuring the dielectric loss tangent in the present disclosure shall be the following method.
  • the permittivity measurement is carried out by the resonance perturbation method at a frequency of 10 GHz.
  • a 10 GHz cavity resonator (CP531 manufactured by Kanto Electronics Applied Development Co., Ltd.) is connected to a network analyzer (“E8633B” manufactured by Agent Technology), and a polymer film, polymer or sample of each layer (width: 2 mm ⁇ length) is connected to the cavity resonator. (S: 80 mm) is inserted, and the dielectric constant and dielectric tangent of the polymer film or each layer are measured from the change in the resonance frequency before and after the insertion for 96 hours under a temperature of 25 ° C.
  • the measurement of the dielectric loss tangent of the polymer in the present disclosure shall be carried out according to the above-mentioned method for measuring the dielectric loss tangent using a sample obtained by identifying or isolating the chemical structure of the polymer constituting each layer and measuring the polymer as a powder. do.
  • the weight average molecular weight Mw of the polymer having a dielectric loss tangent of 0.01 or less is preferably 1,000 or more, more preferably 2,000 or more, and particularly preferably 5,000 or more. Further, the weight average molecular weight Mw of the polymer having a dielectric loss tangent of 0.005 or less is preferably 1,000,000 or less, more preferably 300,000 or less, and more preferably less than 100,000. Especially preferable.
  • the melting point Tm or 5% by mass weight loss temperature Td of the polymer having a dielectric loss tangent of 0.01 or less is 200 ° C. or higher from the viewpoint of the dielectric loss tangent of the polymer film, the adhesion to the metal foil or the metal wiring, and the heat resistance. It is preferably 250 ° C. or higher, more preferably 280 ° C. or higher, and particularly preferably 300 ° C. or higher and 420 ° C. or lower.
  • the melting point Tm in the present disclosure shall be measured using a differential scanning calorimetry (DSC) device. That is, 5 mg of a sample is placed in a DSC measuring pan, and the peak temperature of the endothermic peak that appears when the temperature is raised from 30 ° C.
  • DSC differential scanning calorimetry
  • the 5% by mass weight loss temperature Td in the present disclosure shall be measured by using a thermogravimetric analysis (TGA) apparatus. That is, the weight of the sample placed in the measurement pan is set as the initial value, and the temperature when the weight is reduced by 5% by mass with respect to the initial value due to the temperature rise is set as the 5% by mass weight loss temperature Td.
  • TGA thermogravimetric analysis
  • the glass transition temperature Tg of the polymer having a dielectric positive contact of 0.01 or less is preferably 150 ° C. or higher from the viewpoint of the dielectric positive contact of the polymer film, the adhesion to the metal foil or the metal wiring, and the heat resistance. It is more preferably 200 ° C. or higher, and particularly preferably 200 ° C. or higher and lower than 280 ° C.
  • the glass transition temperature Tg in the present disclosure shall be measured using a differential scanning calorimetry (DSC) device.
  • the type of polymer having a dielectric loss tangent of 0.01 or less is not particularly limited, and known polymers can be used.
  • the polymer having a dielectric positive contact of 0.01 or less include a liquid crystal polymer, a fluoropolymer, a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond, an aromatic polyether ketone, and a polyolefin.
  • thermoplastic resins such as polyetherimide; elastomers such as copolymers of glycidyl methacrylate and polyethylene; phenolic resins, Examples thereof include thermocurable resins such as epoxy resins, polyimide resins, and cyanate resins.
  • thermocurable resins such as epoxy resins, polyimide resins, and cyanate resins.
  • liquid crystal polymers, fluoropolymers, cyclic aliphatic hydrocarbon groups, and groups having an ethylenically unsaturated bond from the viewpoints of dielectric positive contact of polymer films, adhesion to metal foils or metal wiring, and heat resistance.
  • a liquid crystal polymer is particularly preferable from the viewpoint of the dielectric positive contact of the polymer film, and a fluoropolymer is preferable from the viewpoint of heat resistance and mechanical strength.
  • a second embodiment of the polymer film according to the present disclosure comprises a liquid crystal polymer.
  • the polymer having a dielectric loss tangent of 0.01 or less is preferably a liquid crystal polymer from the viewpoint of the dielectric loss tangent of the polymer film.
  • the type of liquid crystal polymer used in the present disclosure is not particularly limited, and known liquid crystal polymers can be used.
  • the liquid crystal polymer may be a thermotropic liquid crystal polymer that exhibits liquid crystal properties in a molten state, or may be a riotropic liquid crystal polymer that exhibits liquid crystal properties in a solution state.
  • the liquid crystal is melted at a temperature of 450 ° C. or lower.
  • the liquid crystal polymer include liquid crystal polyester, liquid crystal polyester amide having an amide bond introduced into the liquid crystal polyester, liquid crystal polyester ether having an ether bond introduced into the liquid crystal polyester, and liquid crystal polyester carbonate having a carbonate bond introduced into the liquid crystal polyester.
  • the liquid crystal polymer is preferably a polymer having an aromatic ring, and more preferably an aromatic polyester or an aromatic polyester amide, from the viewpoint of liquid crystal property and linear expansion coefficient.
  • the liquid crystal polymer may be a polymer in which an imide bond, a carbodiimide bond, an isocyanate-derived bond such as an isocyanurate bond, or the like is further introduced into an aromatic polyester or an aromatic polyester amide. Further, the liquid crystal polymer is preferably a total aromatic liquid crystal polymer using only an aromatic compound as a raw material monomer.
  • liquid crystal polymer examples include the following liquid crystal polymers. 1) (i) an aromatic hydroxycarboxylic acid, (ii) an aromatic dicarboxylic acid, and (iii) at least one compound selected from the group consisting of aromatic diols, aromatic hydroxyamines and aromatic diamines. It is made by polycondensing. 2) Polycondensation of multiple types of aromatic hydroxycarboxylic acids. 3) A polycondensation of (i) an aromatic dicarboxylic acid and (ii) at least one compound selected from the group consisting of aromatic diols, aromatic hydroxyamines and aromatic diamines. 4) (i) Polyester such as polyethylene terephthalate and (ii) aromatic hydroxycarboxylic acid are polycondensed.
  • the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine and the aromatic diamine may be independently replaced with a polycondensable derivative.
  • the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid can be replaced with the aromatic hydroxycarboxylic acid ester and the aromatic dicarboxylic acid ester by converting the carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group.
  • the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid can be replaced with the aromatic hydroxycarboxylic acid halide and the aromatic dicarboxylic acid halide.
  • the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid can be replaced with the aromatic hydroxycarboxylic acid anhydride and the aromatic dicarboxylic acid anhydride.
  • polymerizable derivatives of compounds having a hydroxy group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines, are those obtained by acylating a hydroxy group and converting it into an acyloxy group (acylated product). Can be mentioned.
  • the aromatic hydroxycarboxylic acid, the aromatic diol, and the aromatic hydroxyamine can each be replaced with an acylated product.
  • polymerizable derivatives of compounds having an amino group such as aromatic hydroxyamines and aromatic diamines, include those obtained by acylating an amino group and converting it into an acylamino group (acylated product).
  • aromatic hydroxyamines and aromatic diamines can each be replaced with acylated products by acylating the amino group to convert it to an acylamino group.
  • the liquid crystal polymer is a structural unit represented by any of the following formulas (1) to (3) from the viewpoint of liquid crystal property, dielectric loss tangent of the polymer film, and adhesion to the metal layer (hereinafter, formula (1). ) Is preferably referred to as a constituent unit (1) or the like, more preferably a constituent unit represented by the following formula (1), and the following formula (1). ), A structural unit represented by the following formula (2), and a structural unit represented by the following formula (3) are particularly preferable.
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 independently represent a phenylene group, a naphthylene group, a biphenylylene group or the following formula (4).
  • Ar 4 and Ar 5 independently represent a phenylene group or a naphthylene group, and Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group and 2-ethylhexyl group. Examples thereof include an n-octyl group and an n-decyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms.
  • aryl group examples include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group and a 2-naphthyl group.
  • the aryl group preferably has 6 to 20 carbon atoms.
  • the number of substitutions is independently, preferably 2 or less, and more preferably 1 in Ar 1 , Ar 2 or Ar 3 , respectively.
  • alkylene group examples include a methylene group, a 1,1-ethanediyl group, a 1-methyl-1,1-ethanediyl group, a 1,1-butandyl group and a 2-ethyl-1,1-hexanediyl group.
  • the alkylene group preferably has 1 to 10 carbon atoms.
  • the structural unit (1) is a structural unit derived from an aromatic hydroxycarboxylic acid.
  • Ar 1 is a p-phenylene group (a structural unit derived from p-hydroxyacousic acid) and an embodiment in which Ar 1 is a 2,6-naphthylene group (6-hydroxy-).
  • a structural unit derived from 2-naphthoic acid) or an embodiment having a 4,4'-biphenylylene group (constituent unit derived from 4'-hydroxy-4-biphenylcarboxylic acid) is preferable.
  • the structural unit (2) is a structural unit derived from an aromatic dicarboxylic acid.
  • Ar 2 is a p-phenylene group (constituent unit derived from terephthalic acid)
  • Ar 2 is an m-phenylene group (constituent unit derived from isophthalic acid)
  • Ar 2 Is a 2,6-naphthylene group (a structural unit derived from 2,6-naphthalenedicarboxylic acid)
  • Ar 2 is a diphenyl ether-4,4'-diyl group (diphenyl ether-4,4'-.
  • a structural unit derived from a dicarboxylic acid) is preferable.
  • the structural unit (3) is a structural unit derived from an aromatic diol, an aromatic hydroxylamine or an aromatic diamine.
  • Ar 3 is a p-phenylene group (a structural unit derived from hydroquinone, p-aminophenol or p-phenylenediamine) and an embodiment in which Ar 3 is an m-phenylene group (isophthalic acid).
  • the structural unit to be used) is preferable.
  • the content of the structural unit (1) is determined by dividing the total amount of all the structural units (the mass of each structural unit (also referred to as “monomer unit”) constituting the liquid crystal polymer by the formula amount of each structural unit.
  • the amount of substance equivalent (mol) of the constituent unit is determined, and the total value thereof) is preferably 30 mol% or more, more preferably 30 mol% to 80 mol%, still more preferably 30 mol% to 60 mol. %, Especially preferably 30 mol% to 40 mol%.
  • the content of the structural unit (2) is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, still more preferably 20 mol% to 35 mol%, particularly, with respect to the total amount of all the structural units.
  • the content of the structural unit (3) is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, still more preferably 20 mol% to 35 mol%, particularly, with respect to the total amount of all the structural units. It is preferably 30 mol% to 35 mol%.
  • the larger the content of the structural unit (1) the easier it is to improve the heat resistance, strength and rigidity, but if it is too large, the solubility in a solvent tends to be low.
  • the ratio between the content of the constituent unit (2) and the content of the constituent unit (3) is expressed by [content of the constituent unit (2)] / [content of the constituent unit (3)] (mol / mol). It is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and further preferably 0.98 / 1 to 1 / 0.98.
  • the liquid crystal polymer may have two or more types of constituent units (1) to (3) independently. Further, the liquid crystal polymer may have a structural unit other than the structural units (1) to (3), but the content thereof is preferably 10 mol% or less with respect to the total amount of all the structural units. It is preferably 5 mol% or less.
  • the liquid crystal polymer has a structural unit (3) in which at least one of X and Y is an imino group as a structural unit (3), that is, an aromatic as a structural unit (3). It is preferable to have at least one of the structural unit derived from hydroxylamine and the structural unit derived from aromatic diamine, and it is more preferable to have only the structural unit (3) in which at least one of X and Y is an imino group.
  • the liquid crystal polymer is preferably produced by melt-polymerizing a raw material monomer corresponding to a constituent unit constituting the liquid crystal polymer.
  • the melt polymerization may be carried out in the presence of a catalyst.
  • catalysts include magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, metal compounds such as antimony trioxide, 4- (dimethylamino) pyridine, 1-methylimidazole and the like.
  • metal compounds such as antimony trioxide, 4- (dimethylamino) pyridine, 1-methylimidazole and the like.
  • nitrogen heterocyclic compounds and nitrogen-containing heterocyclic compounds are preferably mentioned.
  • the melt polymerization may be further solid-phase polymerized, if necessary.
  • the lower limit of the flow start temperature of the liquid crystal polymer is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, still more preferably 250 ° C. or higher, and the upper limit of the flow start temperature is preferably 350 ° C. or higher, 330 ° C. or higher. Is more preferable, and 300 ° C. is even more preferable.
  • the solubility, heat resistance, strength and rigidity are excellent, and the viscosity of the solution is appropriate.
  • the flow start temperature also called the flow temperature or the flow temperature, melts the liquid crystal polymer using a capillary leometer while raising the temperature at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ). It is a temperature that shows a viscosity of 4,800 Pa ⁇ s (48,000 poise) when extruded from a nozzle with an inner diameter of 1 mm and a length of 10 mm, and is a guideline for the molecular weight of the liquid crystal polymer (edited by Naoyuki Koide). , "Liquid Liquid Polymer-Synthesis / Molding / Application-", CMC Co., Ltd., June 5, 1987, p.95).
  • the weight average molecular weight of the liquid crystal polymer is preferably 1,000,000 or less, more preferably 3,000 to 300,000, still more preferably 5,000 to 100,000. It is particularly preferably 5,000 to 30,000.
  • the film after heat treatment is excellent in thermal conductivity, heat resistance, strength and rigidity in the thickness direction.
  • the polymer having a dielectric loss tangent of 0.01 or less is preferably a fluoropolymer from the viewpoint of heat resistance and mechanical strength.
  • the type of the fluorine-based polymer used as the polymer having a dielectric loss tangent of 0.01 or less is not particularly limited as long as the dielectric loss tangent is 0.01 or less, and a known fluorine-based polymer is used. be able to.
  • fluoropolymer examples include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride / propylene hexafluoride copolymer, and ethylene / tetrafluoride.
  • fluoropolymer examples include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride / propylene hexafluoride copolymer, and ethylene / tetrafluoride.
  • examples thereof include an ethylene copolymer and an ethylene / chlorotrifluoroethylene copolymer. Among them, polytetrafluoroethylene is preferable.
  • the fluoropolymer is a fluorinated ⁇ -olefin monomer, that is, an ⁇ -olefin monomer containing at least one fluorine atom, and, if necessary, a non-fluorinated ethylene that is reactive with the fluorinated ⁇ -olefin monomer.
  • fluorinated ⁇ -olefin monomer that is, an ⁇ -olefin monomer containing at least one fluorine atom, and, if necessary, a non-fluorinated ethylene that is reactive with the fluorinated ⁇ -olefin monomer.
  • Examples include homopolymers and copolymers containing building blocks derived from sex unsaturated monomers.
  • Examples thereof include perfluoro (alkyl having 2 to 8 carbon atoms) vinyl ether (for example, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, perfluorooctyl vinyl ether) and the like.
  • tetrafluoroethylene CF 2
  • (perfluorobutyl) ethylene vinylidene fluoride
  • CH 2 CF 2
  • hexafluoropropylene CF 2 ).
  • At least one monomer selected from the group consisting of CFCF 3 ) is preferred.
  • the non-fluorinated monoethylene unsaturated monomer include ethylene, propylene, butene, and an ethylenically unsaturated aromatic monomer (for example, styrene and ⁇ -methylstyrene).
  • the fluorinated ⁇ -olefin monomer may be used alone or in combination of two or more.
  • the non-fluorinated ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • fluoropolymer examples include polychlorotrifluoroethylene (PCTFE), poly (chlorotrifluoroethylene-propylene), poly (ethylene-tetrafluoroethylene) (ETFE), poly (ethylene-chlorotrifluoroethylene) (ECTFE), and the like.
  • the fluoropolymer may be used alone or in combination of two
  • the fluoropolymer is preferably at least one of FEP, PFA, ETFE, or PTFE.
  • FEP is available under the trade name of Teflon (registered trademark) FEP (TEFLON (registered trademark) FEP) from DuPont, or the trade name of NEOFLON FEP from Daikin Industries, Ltd .
  • PFA is the trade name of NEOFLON PFA from Daikin Industries, Ltd., the trade name of Teflon (registered trademark) PFA (TEFLON® PFA) from DuPont, or Solvay. It is available from Solexis) under the trade name of HYFLON PFA.
  • the fluoropolymer preferably contains PTFE.
  • the PTFE can include a PTFE homopolymer, a partially modified PTFE homopolymer, or a combination comprising one or both of these.
  • Partially modified PTFE homopolymers preferably contain less than 1% by weight of building blocks derived from commonomers other than tetrafluoroethylene, based on the total weight of the polymer.
  • the fluoropolymer may be a crosslinkable fluoropolymer having a crosslinkable group.
  • the crosslinkable fluoropolymer can be crosslinked by a conventionally known crosslinking method.
  • One of the typical crosslinkable fluoropolymers is a fluoropolymer having a (meth) acryloxy group.
  • R is a fluorinated oligomer chain having two or more structural units derived from a fluorinated ⁇ -olefin monomer or a non-fluorinated monoethylene unsaturated monomer, and R'is H or-. It is CH 3 and n is 1 to 4.
  • R may be a fluorine-based oligomer chain containing a structural unit derived from tetrafluoroethylene.
  • Forming a crosslinked fluoropolymer network structure by exposing a fluoropolymer having a (meth) acryloxy group to a free radical source in order to initiate a radical crosslinking reaction via the (meth) acryloxy group on a fluoropolymer.
  • the free radical source is not particularly limited, but a photoradical polymerization initiator or an organic peroxide is preferable. Suitable photoradical polymerization initiators and organic peroxides are well known in the art.
  • Crosslinkable fluoropolymers are commercially available and include, for example, DuPont Byton B.
  • the polymer having a dielectric tangent of 0.01 or less may be a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond a structural unit formed of a monomer composed of a cyclic olefin such as, for example, norbornene or a polycyclic norbornene-based monomer is used.
  • thermoplastic resin having the above examples are also referred to as a thermoplastic cyclic olefin resin.
  • the polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is the hydrogenation of the ring-opening polymer of the above cyclic olefin or the ring-opening copolymer using two or more kinds of cyclic olefins. It may be a product, or it may be an addition polymer of a cyclic olefin and an aromatic compound having an ethylenically unsaturated bond such as a chain olefin or a vinyl group.
  • a polar group may be introduced into the polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • the polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be used alone or in combination of two or more.
  • the ring structure of the cyclic aliphatic hydrocarbon group may be a monocyclic ring, a condensed ring in which two or more rings are condensed, or a bridged ring.
  • Examples of the ring structure of the cyclic aliphatic hydrocarbon group include a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, an isovoron ring, a norbornane ring, a dicyclopentane ring and the like.
  • the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be a monofunctional ethylenically unsaturated compound or a polyfunctional ethylenically unsaturated compound.
  • the number of cyclic aliphatic hydrocarbon groups in the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be 1 or more, and may be 2 or more.
  • a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond polymerizes a compound having at least one cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • the polymer may be a polymer of a compound having two or more kinds of cyclic aliphatic hydrocarbon groups and a group having an ethylenically unsaturated bond, or may not have a cyclic aliphatic hydrocarbon group. It may be a copolymer with another ethylenically unsaturated compound.
  • the polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is preferably a cycloolefin polymer.
  • the polymer having a dielectric loss tangent of 0.01 or less may be a polyphenylene ether.
  • the weight average molecular weight (Mw) of the polyphenylene ether is preferably 500 to 5,000, preferably 500 to 3,000, from the viewpoint of heat resistance and film forming property when thermosetting after film formation. It is preferable to have. When it is not heat-cured, it is not particularly limited, but is preferably 3,000 to 100,000, and preferably 5,000 to 50,000.
  • the average number of phenolic hydroxyl groups at the molecular terminal per molecule is preferably 1 to 5 from the viewpoint of dielectric loss tangent and heat resistance, and is preferably 1.5. More preferably, the number is 3 to 3.
  • the number of hydroxyl groups or phenolic hydroxyl groups of the polyphenylene ether can be found, for example, from the standard value of the product of the polyphenylene ether. Examples of the number of terminal hydroxyl groups or the number of terminal phenolic hydroxyl groups include numerical values representing the average value of hydroxyl groups or phenolic hydroxyl groups per molecule of all polyphenylene ethers present in 1 mol of polyphenylene ether.
  • the polyphenylene ether may be used alone or in combination of two or more.
  • polyphenylene ether examples include polyphenylene ether composed of 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol, poly (2,6-dimethyl-1,4-phenylene oxide) and the like.
  • examples thereof include those containing the polyphenylene ether of the above as a main component. More specifically, for example, a compound having a structure represented by the formula (PPE) is preferable.
  • X represents an alkylene group or a single bond having 1 to 3 carbon atoms
  • m represents an integer of 0 to 20
  • n represents an integer of 0 to 20
  • m and n The sum represents an integer from 1 to 30.
  • alkylene group in the X include a dimethylmethylene group and the like.
  • the polymer having a dielectric loss tangent of 0.01 or less may be an aromatic polyetherketone.
  • the aromatic polyetherketone is not particularly limited, and known aromatic polyetherketones can be used.
  • the aromatic polyetherketone is preferably a polyetheretherketone.
  • Polyetheretherketone is a kind of aromatic polyetherketone, and is a polymer in which bonds are arranged in the order of ether bond, ether bond, and carbonyl bond (ketone). It is preferable that each bond is linked by a divalent aromatic group.
  • the aromatic polyetherketone may be used alone or in combination of two or more.
  • aromatic polyether ketone examples include a polyether ether ketone having a chemical structure represented by the following formula (P1) (PEEK) and a polyether ketone having a chemical structure represented by the following formula (P2) (PEK).
  • P1 polyether ether ketone having a chemical structure represented by the following formula (P1)
  • P2 polyether ketone having a chemical structure represented by the following formula (P2)
  • P3 Polyether ether ketone ketone
  • PEEKK polyether ether ketone ketone
  • P5 examples thereof include polyether ketones and ether ketone ketones (PEKEKK) having the represented chemical structure.
  • n of the formulas (P1) to (P5) is preferably 10 or more, more preferably 20 or more, from the viewpoint of mechanical properties.
  • n is preferably 5,000 or less, more preferably 1,000 or less, in that an aromatic polyetherketone can be easily produced. That is, n is preferably 10 to 5,000, more preferably 20 to 1,000.
  • the polymer having a dielectric loss tangent of 0.01 or less is preferably a polymer soluble in a specific organic solvent (hereinafter, also referred to as “soluble polymer”).
  • the soluble polymers in the present disclosure are N-methylpyrrolidone, N-ethylpyrrolidone, dichloromethane, dichloroethane, chloroform, N, N-dimethylacetamide, ⁇ -butyrolactone, dimethylformamide, ethylene glycol monobutyl ether at 25 ° C.
  • ethylene glycol a polymer that dissolves 0.1 g or more in 100 g of at least one solvent selected from the group consisting of monoethyl ether.
  • the polymer film may contain only one kind of polymer having a dielectric loss tangent of 0.01 or less, or may contain two or more kinds of polymers.
  • the content of the polymer having a dielectric positive contact of 0.01 or less in the polymer film is 20% by mass with respect to the total mass of the polymer film from the viewpoint of the dielectric positive contact of the polymer film and the adhesion to the metal foil or the metal wiring. It is preferably ⁇ 99% by mass, more preferably 30% by mass to 98% by mass, further preferably 40% by mass to 97% by mass, and particularly preferably 50% by mass to 95% by mass. preferable.
  • the polymer film according to the present disclosure preferably contains a curing inhibitor from the viewpoint of controlling the curing state and suppressing wiring distortion.
  • the curing inhibitor include a polymerization inhibitor, a heat stabilizer, and the like, and known ones can be used.
  • the polymerization inhibitor include p-methoxyphenol, quinones (eg, hydroquinone, benzoquinone, methoxybenzoquinone, etc.), phenothiazine, catechols, alkylphenols (eg, dibutylhydroxytoluene (BHT), etc.), alkylbisphenols, dimethyldithiocarbamine.
  • Zinc acid copper dimethyldithiocarbamate, copper dibutyldithiocarbamate, copper salicylate, thiodipropionic acid esters, mercaptobenzimidazole, phosphites, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), Examples thereof include 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl (TEMPOL) and tris (N-nitroso-N-phenylhydroxylamine) aluminum salt (also known as cuperon Al).
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • TMPOL 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl
  • tris N-nitroso-N-phenylhydroxylamine aluminum salt
  • heat stabilizer examples include tris (2,4-di-tert-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphite, and Tetrakiss (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonite and bis (2,4-di-tert-butylphenyl) pentaerythritoldi Phosphite and other phosphorus-based heat stabilizers, and lactone-based heat stabilizers such as the reaction product of 8-hydroxy-5,7-di-tert-butylfuran-2-one and o-xylene can be mentioned.
  • the curing inhibitor one type may be used alone, or two or more types may be used in combination.
  • the content of the curing inhibitor is not particularly limited, but is preferably 0.0001% by mass to 2.0% by mass with respect to the total amount of the polymer film.
  • the polymer film preferably contains a filler from the viewpoint of the coefficient of linear expansion and the adhesion to the metal foil or the metal wiring.
  • the filler may be in the form of particles or fibers, and may be an inorganic filler or an organic filler.
  • the number density of the filler is larger inside than the surface of the polymer film from the viewpoint of the linear expansion coefficient and the adhesion to the metal foil or the metal wiring.
  • the inorganic filler a known inorganic filler can be used.
  • the material of the inorganic filler include BN, Al 2 O 3 , Al N, TiO 2 , SiO 2 , barium titanate, strontium titanate, aluminum hydroxide, calcium carbonate, and a material containing two or more of these. Be done.
  • metal oxide particles or fibers are preferable, and silica particles, titania particles, or glass fibers are more preferable, and silica particles or fibers are preferable from the viewpoint of adhesion to a metal foil or metal wiring. Glass fiber is particularly preferred.
  • the average particle size of the inorganic filler is preferably about 20% to about 40% of the thickness of the layer A, and for example, those having an average particle size of 25%, 30% or 35% of the thickness of the layer A may be selected. .. When the particle or fiber is flat, it indicates the length in the short side direction.
  • the average particle size of the inorganic filler is preferably 5 nm to 20 ⁇ m, more preferably 10 nm to 10 ⁇ m, and further preferably 20 nm to 1 ⁇ m from the viewpoint of adhesion to the metal foil or metal wiring. It is preferably 25 nm to 500 nm, and particularly preferably 25 nm.
  • the organic filler a known organic filler can be used.
  • the material of the organic filler include polyethylene, polystyrene, urea-formalin filler, polyester, cellulose, acrylic resin, fluororesin, cured epoxy resin, crosslinked benzoguanamine resin, crosslinked acrylic resin, and a material containing two or more of these.
  • the organic filler may be in the form of fibers such as nanofibers, or may be hollow resin particles.
  • the organic filler is preferably fluororesin particles, polyester-based resin particles, or cellulose-based resin nanofibers from the viewpoint of adhesion to a metal foil or metal wiring, and polytetrafluoroethylene particles. Is more preferable.
  • the average particle size of the organic filler is preferably 5 nm to 20 ⁇ m, more preferably 10 nm to 1 ⁇ m, still more preferably 20 nm to 500 nm, from the viewpoint of adhesion to the metal foil or metal wiring. It is particularly preferably 25 nm to 90 nm.
  • the polymer film may contain only one kind of filler or two or more kinds of fillers.
  • the content of the filler in the polymer film is preferably 5% by volume to 80% by volume, preferably 10% by volume to 70% by volume, based on the total volume of the polymer film, from the viewpoint of adhesion to the metal foil or metal wiring. It is more preferably 15% by volume to 70% by volume, and particularly preferably 20% by volume to 60% by volume.
  • the polymer film according to the present disclosure preferably has a three-dimensional crosslinked structure from the viewpoints of dielectric positive contact of the polymer film, adhesion to a metal foil or metal wiring, heat resistance, and mechanical strength.
  • Examples of the method for forming the three-dimensional crosslinked structure include a method of polymerizing a polyfunctional reactive compound (polyfunctional monomer) to form a cured product of the polyfunctional reactive compound.
  • the polymer film may contain other additives other than the above-mentioned components.
  • additives known additives can be used. Specific examples thereof include leveling agents, antifoaming agents, antioxidants, ultraviolet absorbers, flame retardants, colorants and the like.
  • the polymer film may contain other additives other than the polymer having a dielectric loss tangent of 0.01 or less and the compound having a functional group as other additives.
  • other resins include thermoplastic resins such as polypropylene, polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether and its modifications, polyetherimide, etc .; Elastomers such as polymers; thermocurable resins such as phenolic resins, epoxy resins, polyimide resins, cyanate resins and the like can be mentioned.
  • the total content of the other additives in the polymer film is preferably 25 parts by mass or less, more preferably 10 parts by mass or less, with respect to 100 parts by mass of the polymer having a dielectric loss tangent of 0.01 or less. Yes, more preferably 5 parts by mass or less. Further, the total content of other additives in the polymer film is preferably smaller than the content of the compound having a functional group.
  • the polymer film according to the present disclosure may have a multilayer structure.
  • the polymer film according to the present disclosure preferably has a layer A and a layer B on at least one surface of the layer A.
  • the polymer film according to the present disclosure includes a layer A containing a polymer having a dielectric positive contact of 0.01 or less from the viewpoint of the dielectric positive contact of the polymer film and adhesion to a metal foil or metal wiring, and at least the above layer A. It is preferable to have a polymer having a dielectric positive contact of 0.01 or less and a layer B containing the curable compound A on one surface.
  • the layer A may contain only a polymer having a dielectric loss tangent of 0.01 or less, or may contain a polymer having a dielectric loss tangent of 0.01 or less and a curable compound. Further, the layer A may contain the curable compound A, but it is preferable that the layer A does not contain the curable compound A. Further, the layer A preferably further contains a filler.
  • the layer B preferably contains a polymer having a dielectric loss tangent of 0.01 or less and the curable compound A, and is more preferably a layer composed of the polymer having a dielectric loss tangent of 0.01 or less and the curable compound A. preferable.
  • the polymer film according to the present disclosure preferably has a layer C in addition to the layer A and the layer B, and preferably has the layer B, the layer A, and the layer C in this order.
  • the layer C preferably contains a polymer having a dielectric loss tangent of 0.005 or less and the curable compound A, and is more preferably a layer composed of the polymer having a dielectric loss tangent of 0.01 or less and the curable compound A. preferable.
  • the average thickness of the layer A is not particularly limited, but is preferably 5 ⁇ m to 90 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or the metal wiring. More preferably, it is particularly preferably 15 ⁇ m to 50 ⁇ m.
  • the method for measuring the average thickness of each layer in the polymer film according to the present disclosure is as follows.
  • the polymer film is cut with a microtome and the cross section is observed with an optical microscope to evaluate the thickness of each layer.
  • the cross-section sample is cut out at three or more places, the thickness is measured at three or more points in each cross-section, and the average value thereof is taken as the average thickness.
  • the average thickness of the layers B and C is preferably thinner than the average thickness of the layer A independently from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or the metal wiring.
  • the value of TA / TB which is the ratio of the average thickness TA of the layer A to the average thickness TB of the layer B , is determined from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or the metal wiring. It is preferably larger than 1, more preferably 2 to 100, further preferably 2.5 to 20, and particularly preferably 3 to 10.
  • the value of TA / TC which is the ratio of the average thickness TA of the layer A to the average thickness TC of the layer C , is determined from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or metal wiring. It is preferably larger than 1, more preferably 2 to 100, further preferably 2.5 to 20, and particularly preferably 3 to 10. Further, the value of TC / TB , which is the ratio of the average thickness TC of the layer C to the average thickness TB of the layer B , is determined from the viewpoint of the coefficient of linear expansion and the adhesion to the metal foil or the metal wiring. It is preferably 0.2 to 5, more preferably 0.5 to 2, and particularly preferably 0.8 to 1.2.
  • the average thickness of the layers B and C is preferably 0.1 ⁇ m to 20 ⁇ m, preferably 0.5 ⁇ m, independently from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or the metal wiring. It is more preferably ⁇ 15 ⁇ m, further preferably 1 ⁇ m to 10 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m.
  • the average thickness of the polymer film according to the present disclosure is preferably 6 ⁇ m to 200 ⁇ m, preferably 12 ⁇ m to 100 ⁇ m, from the viewpoints of strength, dielectric positive contact of the polymer film, and adhesion to a metal foil or metal wiring. It is more preferably 20 ⁇ m to 60 ⁇ m, and particularly preferably 20 ⁇ m to 60 ⁇ m.
  • the average thickness of the polymer film is measured at any five points using an adhesive film thickness meter, for example, an electronic micrometer (product name "KG3001A", manufactured by Anritsu Co., Ltd.), and is used as the average value thereof.
  • an adhesive film thickness meter for example, an electronic micrometer (product name "KG3001A", manufactured by Anritsu Co., Ltd.), and is used as the average value thereof.
  • the dielectric loss tangent of the polymer film according to the present disclosure is preferably 0.02 or less, more preferably 0.01 or less, further preferably 0.005 or less, and 0. It is particularly preferable that it exceeds 0.003 and is 0.003 or less.
  • the coefficient of linear expansion of the polymer film according to the present disclosure is preferably ⁇ 20 ppm / K to 50 ppm / K, more preferably ⁇ 10 ppm / K to 40 ppm / K, and 0 ppm / K to 35 ppm / K. It is more preferably 10 ppm / K to 30 ppm / K, and particularly preferably 10 ppm / K to 30 ppm / K.
  • the method for measuring the coefficient of linear expansion in the present disclosure shall be as follows. Using a thermomechanical analyzer (TMA), apply a tensile load of 1 g to both ends of a polymer film with a width of 5 mm and a length of 20 mm or a measurement sample of each layer, and raise the temperature from 25 ° C to 200 ° C at a rate of 5 ° C / min. Then, the coefficient of linear expansion is calculated from the slope of the TMA curve between 30 ° C. and 150 ° C. when the temperature is cooled to 30 ° C. at a rate of 20 ° C./min and the temperature is raised again at a rate of 5 ° C./min.
  • TMA thermomechanical analyzer
  • the layer to be measured may be scraped off with a razor or the like to prepare a measurement sample. If it is difficult to measure the coefficient of linear expansion by the above method, it shall be measured by the following method.
  • the film is cut with a microtome to prepare a section sample, set in an optical microscope equipped with a heating stage system (HS82, manufactured by Polymer Toledo), and subsequently from 25 ° C to 200 ° C at a rate of 5 ° C / min. After raising the temperature, the polymer film or the thickness of each layer (ts30) at 30 ° C. and the thickness of each layer (ts30) at 30 ° C. when the temperature was cooled to 30 ° C.
  • HS82 heating stage system
  • the thickness (ts150) of the polymer film or each layer was evaluated, the value obtained by dividing the dimensional change by the temperature change ((ts150-ts30) / (150-30)) was calculated, and the linear expansion coefficient of the polymer film or each layer was calculated. calculate.
  • the ratio Es / Ec of the surface elastic modulus Es and the internal elastic modulus Ec at 160 ° C. of the polymer film is preferably 0.05 to 10 and preferably 0.1 to 10 from the viewpoint of suppressing wiring strain. Is more preferable, 0.1 to 1 is even more preferable, and 0.1 to 0.5 is particularly preferable. Further, the ratio Es / Ec of the surface elastic modulus Es and the internal elastic modulus Ec at 300 ° C. of the polymer film is preferably 0.01 to 10 and preferably 0.05 to 10 from the viewpoint of suppressing wiring strain. It is more preferably present, more preferably 0.05 to 1, and particularly preferably 0.05 to 0.5. Unless otherwise specified, the elastic modulus in the present disclosure is the storage elastic modulus.
  • the surface elastic modulus Es is the elastic modulus of the layer existing on at least one surface, and the elastic modulus of the surface of the two surfaces having the lower elastic modulus is lower. It is an elastic modulus, and the internal elastic modulus Ec is the elastic modulus of the layer existing in the central portion in the thickness direction of the polymer film.
  • the surface elastic modulus Es is the elastic modulus of the portion within 5 ⁇ m from the surface of the polymer film, and is the elastic modulus of the surface of the two surfaces having the lower elastic modulus.
  • Internal elastic modulus The inside in Ec is the elastic modulus of the central portion in the thickness direction of the polymer film.
  • the loss tangent at 160 ° C. in the layer containing the curable compound A of the polymer film is preferably 0.01 or more, more preferably 0.03 or more, and 0. It is particularly preferably 0.05 to 0.2. Further, the loss tangent at 300 ° C. in the layer containing the curable compound A of the polymer film is preferably 0.03 or more, more preferably 0.1 or more from the viewpoint of suppressing wiring strain. , 0.1 to 0.6 is particularly preferable.
  • the method for measuring the elastic modulus and the loss tangent in the present disclosure is shown below.
  • the polymer film is embedded in UV resin and cut with a microtome to prepare a sample for cross-section evaluation. Subsequently, observation was performed in VE-AFM mode using a scanning probe microscope (SPA400, manufactured by SII Nanotechnology Co., Ltd.), and the surface and internal storage elastic moduli at the measured temperature, as well as the loss positive contact (loss elasticity). Rate / storage modulus) is calculated.
  • SPA400 scanning probe microscope
  • the method for producing the polymer film according to the present disclosure is not particularly limited, and known methods can be referred to.
  • a method for producing a polymer film according to the present disclosure for example, a casting method, a coating method, an extrusion method and the like are preferably mentioned, and among them, the casting method is particularly preferable.
  • the polymer film according to the present disclosure has a multi-layer structure, for example, a co-flow spreading method, a multi-layer coating method, a co-extrusion method and the like are preferably mentioned. Of these, the coextrusion method is particularly preferable for relatively thin film formation, and the coextrusion method is particularly preferable for thick film formation.
  • a layer A forming composition, a layer B forming composition, and a layer C in which the components of each layer such as a liquid crystal polymer are dissolved or dispersed in a solvent, respectively, are used. It is preferable to carry out a co-flow spreading method or a multi-layer coating method using a forming composition or the like.
  • the solvent examples include halogenated hydrocarbons such as dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1-chlorobutane, chlorobenzene and o-dichlorobenzene; Halogenated phenols such as p-chlorophenol, pentachlorophenol and pentafluorophenol; ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; ketones such as acetone and cyclohexanone; esters such as ethyl acetate and ⁇ -butyrolactone; ethylene Phenols such as carbonates and propylene carbonates; amines such as triethylamine; nitrogen-containing heterocyclic aromatic compounds such as pyridine; nitriles such as acetonitrile and succinonitrile; N, N-dimethyl
  • an aprotic compound particularly a solvent containing an aprotic compound having no halogen atom as a main component is preferable because it is low in corrosiveness and easy to handle, and the ratio of the aprotic compound to the whole solvent is It is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • an amide such as N, N-dimethylformamide, N, N-dimethylacetamide, tetramethylurea, N-methylpyrrolidone, or ⁇ -butyrolactone may be used. Esters are preferred, with N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone being more preferred.
  • a solvent containing a compound having a dipole moment of 3 to 5 as a main component is preferable because the liquid crystal polymer is easily dissolved, and the ratio of the compound having a dipole moment of 3 to 5 in the whole solvent is preferable. Is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the aprotic compound it is preferable to use a compound having a dipole moment of 3 to 5.
  • a solvent containing a compound having a boiling point of 220 ° C. or lower at 1 atm as a main component is preferable because it is easy to remove, and the ratio of the compound having a boiling point of 220 ° C. or less at 1 atm to the whole solvent. Is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the aprotic compound it is preferable to use a compound having a boiling point of 220 ° C. or lower at 1 atm.
  • a support when the polymer film is produced by the above-mentioned casting method, co-casting method, coating method, multi-layer coating method, extrusion method, co-extrusion method or the like, a support may be used. good. Further, when a metal layer (metal foil) or the like used for the laminate described later is used as a support, it may be used as it is without peeling. Examples of the support include a metal drum, a metal band, a glass plate, a resin film or a metal foil. Of these, metal drums, metal bands, and resin films are preferable.
  • the resin film examples include a polyimide (PI) film, and examples of commercially available products include U-Pylex S and U-Pylex R manufactured by Ube Kosan Co., Ltd., Kapton manufactured by Toray DuPont Co., Ltd., and Examples thereof include IF30, IF70 and LV300 manufactured by SKC Koron PI.
  • the support may have a surface treatment layer formed on the surface thereof so that the support can be easily peeled off.
  • the surface treatment layer hard chrome plating, fluororesin or the like can be used.
  • the average thickness of the resin film support is not particularly limited, but is preferably 25 ⁇ m or more and 75 ⁇ m or less, and more preferably 50 ⁇ m or more and 75 ⁇ m or less.
  • the method for removing at least a part of the solvent from the cast or applied film-like composition is not particularly limited, and a known drying method can be used.
  • the polymer film according to the present disclosure can be appropriately combined with stretching from the viewpoint of controlling the molecular orientation and adjusting the coefficient of thermal expansion and the mechanical properties.
  • the stretching method is not particularly limited, and a known method can be referred to, and the stretching method may be carried out in a solvent-containing state or in a dry film state. Stretching in a state containing a solvent may be carried out by grasping and stretching the film, or by utilizing self-shrinkage due to drying without stretching. Stretching is particularly effective for the purpose of improving the elongation at break and the strength at break when the brittleness of the film is reduced by the addition of an inorganic filler or the like.
  • the method for producing a polymer film according to the present disclosure may include a step of polymerizing by light or heat, if necessary.
  • the light irradiating means and the heat applying means are not particularly limited, and known light irradiating means such as a metal halide lamp and known heat applying means such as a heater can be used.
  • the light irradiation conditions and the heat application conditions are not particularly limited, and can be carried out at a desired temperature and time, and in a known atmosphere.
  • the method for producing a polymer film according to the present disclosure preferably includes a step of heat-treating (annealing) the polymer film.
  • the heat treatment temperature in the above heat treatment step is the glass transition of the polymer having a dielectric positive contact of 0.01 or less from the viewpoint of the mechanical strength of the web during the manufacturing process, the dimensional change of the manufactured polymer film, the breaking strength, and the like.
  • the temperature is preferably Tg or higher, or preferably less than the melting point Tm.
  • the heat treatment temperature in the heat treatment step is preferably 260 ° C. to 370 ° C., more preferably 310 ° C. to 350 ° C. from the viewpoint of breaking strength.
  • the annealing time is preferably 1 minute to 5 hours, more preferably 5 minutes to 3 hours.
  • the method for producing a polymer film according to the present disclosure may include other known steps, if necessary.
  • the polymer film according to the present disclosure can be used for various purposes, and above all, it can be suitably used for a film for electronic parts such as a printed wiring board, and can be preferably used for a flexible printed circuit board. Further, the polymer film according to the present disclosure can be suitably used as a polymer film for metal adhesion. Further, the polymer film according to the present disclosure can be suitably used as a base film. When used as a base film, the polymer film according to the present disclosure preferably has the layer A and the layer B. Furthermore, the polymer film according to the present disclosure can be suitably used as a bonding sheet (interlayer adhesive sheet). When used as a bonding sheet, the polymer film according to the present disclosure preferably has the layer A, the layer B, and the layer C.
  • the laminate according to the present disclosure may be a laminate of the polymer films according to the present disclosure, but the polymer film according to the present disclosure and a metal layer or metal wiring arranged on at least one surface of the polymer film. It is more preferable to have the polymer film according to the present disclosure, and it is more preferable to have a copper layer or a copper wiring arranged on at least one surface of the polymer film. Further, the laminate according to the present disclosure preferably has a metal layer or metal wiring, a polymer film according to the present disclosure, and a metal layer or metal wiring in this order, and the copper layer or copper wiring and the present disclosure. It is more preferable to have the polymer film according to the above and the copper layer or the copper wiring in this order.
  • the polymer film according to the present disclosure, the copper layer or the copper wiring, the polymer film according to the present disclosure, the metal layer or the metal wiring, and the polymer film according to the present disclosure are used. It is preferable to have them in order.
  • the two polymer films according to the present disclosure used for the laminate may be the same or different.
  • the metal layer and the metal wiring are not particularly limited and may be a known metal layer and metal wiring, but for example, a silver layer, a silver wiring, a copper layer or a copper wiring is preferable, and the copper layer or the copper wiring is preferable. Is more preferable. Further, the metal layer and the metal wiring are preferably metal wiring.
  • the metal in the metal layer and the metal wiring is preferably silver or copper, and more preferably copper. Since the polymer film according to the present disclosure can be further cured, for example, after the metal layer or the metal wiring is attached, the laminate according to the present disclosure contains the above-mentioned curable compound A from the viewpoint of durability. It is preferable to include a cured product obtained by curing. Further, the laminate according to the present disclosure includes a polymer film according to the present disclosure having a layer B, a layer A, and a layer C in this order, and a metal layer arranged on the surface of the polymer film on the layer B side.
  • the metal layer arranged on the surface on the layer B side is preferably a metal layer arranged on the surface of the layer B.
  • the metal layer arranged on the surface on the layer C side is preferably a metal layer arranged on the surface of the layer C, and the metal layer arranged on the surface on the layer B side is the surface of the layer B. It is more preferable that the metal layer arranged on the surface of the layer C and the metal layer arranged on the surface of the layer C is a metal layer arranged on the surface of the layer C.
  • the metal layer arranged on the surface on the layer B side and the metal layer arranged on the surface on the layer C side are different materials and thicknesses even if they are metal layers having the same material, thickness and shape. And may be a metal layer of shape. From the viewpoint of characteristic impedance adjustment, the metal layer arranged on the surface on the layer B side and the metal layer arranged on the surface on the layer C side may be metal layers of different materials and thicknesses. A metal layer may be laminated on only one side of B or layer C.
  • the method for attaching the polymer film and the metal layer or the metal wiring according to the present disclosure is not particularly limited, and a known laminating method can be used.
  • the peel strength between the polymer film and the copper layer is preferably 0.5 kN / m or more, more preferably 0.7 kN / m or more, and 0.7 kN / m to 2.0 kN / m. It is more preferably 0.9 kN / m to 1.5 kN / m, and particularly preferably 0.9 kN / m to 1.5 kN / m.
  • the peel strength between the polymer film and the metal layer shall be measured by the following method.
  • a 1.0 cm wide peeling test piece was prepared from the laminate of the polymer film and the metal layer, the polymer film was fixed to a flat plate with double-sided adhesive tape, and 50 mm by the 180 ° method according to JIS C 5016 (1994).
  • the strength (kN / m) when the polymer film is peeled from the metal layer at a rate of / minute is measured.
  • the metal layer is preferably a silver layer or a copper layer, and more preferably a copper layer.
  • a rolled copper foil formed by a rolling method or an electrolytic copper foil formed by an electrolytic method is preferable, and a rolled copper foil is more preferable from the viewpoint of bending resistance.
  • the average thickness of the metal layer, preferably the copper layer, is not particularly limited, but is preferably 2 ⁇ m to 20 ⁇ m, more preferably 3 ⁇ m to 18 ⁇ m, and even more preferably 5 ⁇ m to 12 ⁇ m.
  • the copper foil may be a copper foil with a carrier formed on a support (carrier) so as to be peelable.
  • a carrier a known carrier can be used.
  • the average thickness of the carrier is not particularly limited, but is preferably 10 ⁇ m to 100 ⁇ m, and more preferably 18 ⁇ m to 50 ⁇ m.
  • the metal layer preferably has a group capable of interacting with the polymer film on the surface on the side in contact with the polymer film.
  • the interoperable group is preferably a group corresponding to a functional group of a compound having a functional group contained in the polymer film, such as an amino group and an epoxy group, and a hydroxy group and an epoxy group. ..
  • the interactable group include the groups listed as functional groups in the above-mentioned compound having a functional group. Among them, from the viewpoint of adhesion and ease of processing, a covalently bondable group is preferable, an amino group or a hydroxy group is more preferable, and an amino group is particularly preferable.
  • etching it is also preferable to process the metal layer in the laminate according to the present disclosure into a desired circuit pattern by etching, for example, to form a flexible printed circuit board.
  • the etching method is not particularly limited, and a known etching method can be used.
  • the loss tangent at 160 ° C. in the layer containing the curable compound A is preferably 0.01 or more, preferably 0.03 or more, from the viewpoint of suppressing wiring strain. It is more preferably 0.05 to 0.2, and particularly preferably 0.05 to 0.2. Further, in the laminate according to the present disclosure, the loss tangent at 300 ° C. in the layer containing the curable compound A is preferably 0.03 or more, preferably 0.1 or more, from the viewpoint of suppressing wiring distortion. It is more preferable, and it is particularly preferable that it is 0.1 to 0.6. When the polymer film is a single layer, the layer containing the curable compound A is the polymer film itself.
  • the method for producing the laminate according to the present disclosure is not particularly limited, but in the case of half-cure, for example, in a polymer having a dielectric tangent of 0.01 or less and a polymer film containing a curable compound, the above-mentioned curing is performed. It is preferable to include a partial curing step of forming the curable compound A in which a part of the sex compound is cured, and a bonding step of bonding the film to the copper layer or the copper wiring to form a laminated body in this order. ..
  • the curable compound A obtained by curing a part of the curable compound is used in a polymer having a dielectric loss tangent of 0.01 or less and a polymer film containing a curable compound. It is preferable to include a partial curing step of forming. Further, the method for producing a laminate according to the present disclosure is a partial curing step of forming the curable compound A in which a part of the curable compound is cured in a liquid crystal polymer and a polymer film containing a curable compound. It is preferable to include.
  • the curing method in the partial curing step may be appropriately selected depending on the curable compound to be used, but it is preferable to use a polymerization initiator, and it is more preferable to use a thermal polymerization initiator. Further, in the partial curing step, it is preferable to use a curing inhibitor. By using a curing inhibitor, the progress of curing can be controlled, and a layer in a partially cured state, that is, a so-called B-stage layer can be easily formed. Further, as the polymer having a dielectric loss tangent of 0.01 or less, the curable compound, and the curable compound A, those described above can be preferably used.
  • the method for producing a laminated body according to the present disclosure preferably includes a bonding step of bonding the film to a metal layer or metal wiring to form a laminated body. Further, in the above bonding step, it is preferable to bond the metal wiring.
  • the laminating method in the laminating step is not particularly limited, and a known laminating method can be used.
  • the bonding pressure in the bonding step is not particularly limited, but is preferably 0.1 MPa or more, and preferably 0.2 MPa to 10 MPa.
  • the bonding temperature in the bonding step can be appropriately selected depending on the film or the like used, but is preferably 150 ° C. or higher, more preferably 280 ° C. or higher, and 280 ° C. or higher 420. It is particularly preferable that the temperature is below ° C.
  • the content of the curable compound A after the bonding step is 30% by mass with respect to the total mass of the curable compound. It is preferably ⁇ 100% by mass, more preferably 50% by mass to 100% by mass, and particularly preferably 70% by mass to 100% by mass.
  • the method for producing a laminated body according to the present disclosure can be suitably used for a method for forming through holes.
  • the method for manufacturing a laminate according to the present disclosure includes a preparation step for preparing a polymer film according to the present disclosure, a bonding step for bonding a metal layer or a metal wiring to the polymer film to form a laminate, and a bonding step.
  • the preparation step is not particularly limited, and the polymer film according to the present disclosure may be prepared. Further, the polymer film according to the present disclosure may be produced.
  • the bonding step is the same as the bonding step described above, and the preferred embodiment is also the same.
  • through holes are provided for mounting electronic components or connecting multilayer printed wirings, and conductive plating of a predetermined thickness is applied to the through holes.
  • Ru conductive plating of a predetermined thickness.
  • the method for producing a laminated body according to the present disclosure preferably includes a through hole forming step of forming a through hole in the layer containing the curable compound A in the laminated body. When the layer containing the curable compound A is formed, it is preferable that at least a part of the surface of the through holes is cured in the through hole forming step.
  • the layer containing the curable compound A can further cure the curable compound A by the heat and pressure at the time of forming the through holes, although it depends on the conditions for forming the through holes.
  • the hole diameter and shape of the through hole are not particularly limited and can be appropriately selected as desired.
  • the method for forming the through hole is not particularly limited, and a known method can be used. For example, a method using a laser or a router, a method by dry etching, and the like can be mentioned. Above all, since heat is generated during the formation of through holes by the laser, the vicinity of the inner wall surface of the through holes to be formed is hardened by using the polymer film according to the present disclosure, and the mechanical strength is further improved. It is preferable because it can be made to.
  • the method for producing the laminate according to the present disclosure preferably includes a post-curing step of curing the curable compound A after the through-hole forming step. ..
  • the layer containing the curable compound A can be further cured after the formation of through holes, and the strength and durability can be improved.
  • the method for producing a laminate according to the present disclosure may include other known steps. Examples of other steps include a cleaning step and the like.
  • the film was cut with a microtome to prepare a sample for cross-section evaluation. Subsequently, using a micro-infrared spectroscopic analysis (micro-IR) device, measurements were taken every 2 ⁇ m from the surface with a 5 ⁇ m ⁇ 20 ⁇ m aperture, and the characteristics derived from polymers with a dielectric constant of 0.01 or less and those derived from curable compounds. The content of the curable compound on the surface and inside of the polymer film was evaluated using the absorption spectral intensity.
  • micro-IR micro-infrared spectroscopic analysis
  • LC-A Liquid crystal polymer produced according to the following manufacturing method
  • the liquid crystal polyester (A1) obtained above is heated in a nitrogen atmosphere from room temperature to 160 ° C. over 2 hours and 20 minutes, then from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and at 180 ° C. By holding for 5 hours, solid-phase polymerization was carried out, the mixture was cooled, and then the mixture was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (A2).
  • the flow start temperature of this liquid crystal polyester (A2) was 220 ° C.
  • the liquid crystal polyester (A2) obtained above is heated in a nitrogen atmosphere from room temperature (23 ° C.) to 180 ° C. over 1 hour and 25 minutes, and then from 180 ° C. to 255 ° C. over 6 hours and 40 minutes. After solid-phase polymerization by holding at 255 ° C. for 5 hours, the mixture was cooled to obtain powdery liquid crystal polyesters (A) (LC-A).
  • the flow start temperature of the liquid crystal polyester (A) was 302 ° C. Further, the melting point Tm of this liquid crystal polyester (A) was measured using a differential scanning calorimetry apparatus and found to be 311 ° C.
  • LC-B Liquid crystal polymer produced according to the following manufacturing method
  • the liquid crystal polyester (B1) obtained above is heated in a nitrogen atmosphere from room temperature to 160 ° C. over 2 hours and 20 minutes, then from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and at 180 ° C. By holding for 5 hours, solid-phase polymerization was carried out, the mixture was cooled, and then the mixture was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (B2).
  • the liquid crystal polyester (B2) obtained above was heated in a nitrogen atmosphere from room temperature (23 ° C.) to 180 ° C. over 1 hour and 20 minutes, and then from 180 ° C. to 240 ° C. over 5 hours to 240.
  • the liquid crystal polyester (C) (LC-B) in the form of powder was obtained by solid-phase polymerization by holding at ° C. for 5 hours and then cooling.
  • M-1 A commercially available low-dielectric adhesive (SLK (manufactured by Shin-Etsu Chemical Co., Ltd.) varnish containing mainly a polymer-type curable compound) was used so that the solid content was as shown in Table 1.
  • SK synthetic low-dielectric adhesive
  • M-2 A commercially available aminophenol type epoxy resin (jER630LSD, manufactured by Mitsubishi Chemical Corporation) was used so that the solid content was the amount shown in Table 1.
  • ⁇ Filler> F-1 Commercially available hydrophobic silica with an average primary particle size of 20 nm (NX90S (surface treated with hexamethyldisilazane, manufactured by Nippon Aerosil Co., Ltd.) is used so that the solid content is as shown in Table 1. board.)
  • NX90S surface treated with hexamethyldisilazane, manufactured by Nippon Aerosil Co., Ltd.
  • F-2 Liquid crystal polymer particles produced according to the following manufacturing method
  • Liquid crystal polyester (LC-C) was pulverized using a jet mill (“KJ-200” manufactured by Kurimoto Iron Works Co., Ltd.) to obtain liquid crystal polyester particles (F-2).
  • the average particle size of the liquid crystal polyester particles was 9 ⁇ m.
  • F-3 Commercially available silica particles having an average particle size of 0.5 ⁇ m (SO-C2, manufactured by Admatex Co., Ltd.) were used so that the solid content was the amount shown in Table 1.
  • F-4 Commercially available hollow powder with an average particle size of 16 ⁇ m (Glass Bubbles iM30K, manufactured by 3M Japan Ltd.)
  • F-5 Boron nitride particles (melting point> 500 ° C., HP40MF100 (manufactured by Mizushima Alloy Iron Co., Ltd.), dielectric loss tangent 0.0007)
  • a film was formed according to the following flow.
  • a sintered fiber metal filter having a nominal pore diameter of 10 ⁇ m was passed, and then a sintered fiber metal filter having a nominal pore diameter of 10 ⁇ m was also passed to obtain each polymer solution.
  • a polymer solution was prepared without adding the additive, passed through the sintered fiber metal filter, and then the additive was added and stirred.
  • a sintered fiber metal filter having a nominal pore diameter of 10 ⁇ m was passed, and then a sintered fiber metal filter having a nominal pore diameter of 10 ⁇ m was also passed to obtain each polymer solution.
  • a liquid crystal polymer solution was prepared without adding the additive, passed through the sintered fiber metal filter, and then the additive was added and stirred.
  • a copper foil of a double-sided copper-clad laminate using the film of Comparative Example 1 was patterned to prepare a wiring base material containing three pairs of signal lines.
  • the length of the signal line was set to 100 mm, and the width was set so that the characteristic impedance was 50 ⁇ .
  • the single-sided copper-clad laminate / wiring base material / single-sided copper-clad laminate is formed so that the film side of the single-sided copper-clad laminate is in contact with the wiring substrate.
  • the curable compound was sufficiently cured by crimping for 60 minutes at the temperature shown in Table 1 and under the conditions of 4.5 MPa using a vacuum press device to prepare a flexible wiring board.
  • the flexible wiring substrate was cut with a microtome, the cross section was observed with an optical microscope, and the inhibitory property of wiring distortion was evaluated based on the following evaluation criteria.
  • Example 1 As shown in Table 1, in Examples 1 to 9, it was found that the dielectric loss tangent was 0.01 or less, and the surface was excellent in followability of unevenness, so that the distortion of the wiring was suppressed. Further, the flexible wiring boards of Examples 1 to 4 were excellent in durability because the curing reaction was sufficiently performed in the laminating step. On the other hand, it was found that when the single-sided copper-clad laminate of Comparative Example 1 was used, the surface unevenness followability was inferior and wiring distortion occurred.
  • the polymer film of Example 4 was further used for the evaluation of through-hole processability described later, and the polymer film of Example 5 was used for the film lamination evaluation described later without performing the wiring strain evaluation.
  • the through-hole portion of the obtained laminate was cut with a microtome, and the surface roughness Rz of the through-hole plating was observed using a scanning electron microscope. As a result, it was 5 ⁇ m when the film of Comparative Example 1 was used. On the other hand, when the film of Example 4 was used, it was as good as 1 ⁇ m.
  • thermocompression bonding machine (“MP-SNL” manufactured by Toyo Seiki Seisakusho Co., Ltd.), the obtained copper-clad laminate precursor was thermocompression-bonded at 300 ° C. and 4.5 MPa for 10 minutes. A double-sided copper-clad laminate was produced.
  • the peel strength of the obtained double-sided copper-clad laminate was 9 kN / m, and it was confirmed that sufficient strength was secured.

Abstract

Provided is: a polymer film including a polymer or liquid crystal polymer with a dielectric dissipation factor of 0.01 or less and a curable compound, said curable compound including a curable compound A which is an oligomer or a polymer; a laminate in which the polymer film is used; and a production method therefor.

Description

ポリマーフィルム、並びに、積層体及びその製造方法Polymer film, laminate and its manufacturing method
 本開示は、ポリマーフィルム、並びに、積層体及びその製造方法に関する。 The present disclosure relates to a polymer film, a laminate, and a method for producing the same.
 近年、通信機器に使用される周波数は非常に高くなる傾向にある。高周波帯域における伝送損失を抑えるため、回路基板に用いられる絶縁材料の比誘電率と誘電正接とを低くすることが要求されている。
 従来、回路基板に用いられる絶縁材料として、ポリイミドが多く用いられてきたが、高耐熱性及び低吸水性であり、かつ、高周波帯域での損失が小さい液晶ポリマーが注目されている。
In recent years, the frequencies used in communication equipment have tended to be very high. In order to suppress transmission loss in the high frequency band, it is required to reduce the relative permittivity and the dielectric loss tangent of the insulating material used for the circuit board.
Conventionally, polyimide has been widely used as an insulating material used for a circuit board, but a liquid crystal polymer having high heat resistance and low water absorption and having a small loss in a high frequency band has been attracting attention.
 従来の液晶ポリマーフィルムとしては、例えば、特許文献1には、少なくとも液晶ポリエステルを含む液晶ポリエステルフィルムであって、第1の配向度を、上記液晶ポリエステルフィルムの主面に平行な第1の方向に対する配向度とし、第2の配向度を、上記主面に平行であり、かつ上記第1の方向と直交する第2の方向に対する配向度としたとき、上記第1の配向度と上記第2の配向度との比である第1の配向度/第2の配向度が0.95以上1.04以下であり、上記主面に平行な方向において広角X線散乱法により測定される上記液晶ポリエステルの第3の配向度が60.0%以上である、液晶ポリエステルフィルムが記載されている。 As the conventional liquid crystal polymer film, for example, in Patent Document 1, a liquid crystal polyester film containing at least liquid crystal polyester has a first degree of orientation with respect to a first direction parallel to the main surface of the liquid crystal polyester film. When the degree of orientation is defined as the degree of orientation in a second direction parallel to the main surface and orthogonal to the first direction, the first degree of orientation and the second degree of orientation are used. The liquid crystal polyester having a first degree of orientation / second degree of orientation, which is a ratio to the degree of orientation, of 0.95 or more and 1.04 or less, and is measured by a wide-angle X-ray scattering method in a direction parallel to the main surface. A liquid crystal polyester film having a third degree of orientation of 60.0% or more is described.
 また、従来の機能性膜としては、特許文献2に記載されたものが知られている。
 特許文献2には、重合体、及び、硬化性化合物を含み、金属層との密着性に優れた樹脂層、及び、金属箔と積層された高周波回路用積層体が記載されている。
Further, as a conventional functional film, the one described in Patent Document 2 is known.
Patent Document 2 describes a resin layer containing a polymer and a curable compound and having excellent adhesion to a metal layer, and a laminate for a high-frequency circuit laminated with a metal foil.
  特許文献1:特開2020-26474号公報
  特許文献2:国際公開第2019/054334号
Patent Document 1: Japanese Unexamined Patent Publication No. 2020-26474 Patent Document 2: International Publication No. 2019/054334
 本発明の実施形態が解決しようとする課題は、配線貼り合わせ時における配線歪みの抑制性に優れるポリマーフィルムを提供することである。
 また、本発明の実施形態が解決しようとする課題は、上記ポリマーフィルムを用いた積層体及びその製造方法を提供することである。
An object to be solved by the embodiment of the present invention is to provide a polymer film having excellent ability to suppress wiring distortion at the time of bonding wiring.
Further, an object to be solved by the embodiment of the present invention is to provide a laminate using the above polymer film and a method for producing the same.
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 誘電正接が0.01以下であるポリマー、及び、硬化性化合物を含み、上記硬化性化合物が、オリゴマー又はポリマーである硬化性化合物Aを含むポリマーフィルム。
<2> 液晶ポリマー、及び、硬化性化合物を含み、上記硬化性化合物が、オリゴマー又はポリマーである硬化性化合物Aを含むポリマーフィルム。
<3> 上記硬化性化合物Aの含有量が、上記ポリマーフィルムの内部より表面の方が多い<1>又は<2>に記載のポリマーフィルム。
<4> 上記誘電正接が0.01以下であるポリマーが、液晶ポリマーである<1>に記載のポリマーフィルム。
<5> 上記誘電正接が0.01以下であるポリマー又は上記液晶ポリマーの融点Tm又は5質量%減量温度Tdが、200℃以上である<1>~<4>のいずれか1つに記載のポリマーフィルム。
<6> 上記硬化性化合物Aの重量平均分子量が、10,000以下である<1>~<5>のいずれか1つに記載のポリマーフィルム。
<7> 上記ポリマーフィルムが、粒子を含み、
 上記粒子の内部又は表面に、上記硬化性化合物を含む<1>~<6>のいずれか1つに記載のポリマーフィルム。
<8> 上記ポリマーフィルムが、硬化阻害剤を含む<1>~<7>のいずれか1つに記載のポリマーフィルム。
<9> 上記誘電正接が0.01以下であるポリマー又は上記液晶ポリマーが、式(1)~式(3)のいずれかで表される構成繰り返し単位を有する液晶ポリマーを含む<1>~<8>のいずれか1つに記載のポリマーフィルム。
 式(1) -O-Ar-CO-
 式(2) -CO-Ar-CO-
 式(3) -X-Ar-Y-
 式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し、Ar及びArはそれぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表し、X及びYはそれぞれ独立に、酸素原子又はイミノ基を表し、Ar~Arにおける水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。
 式(4) -Ar-Z-Ar
 式(4)中、Ar及びArはそれぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキレン基を表す。
<10> 上記硬化性化合物Aの含有量が、上記硬化性化合物の全質量に対し、30質量%~100質量%である<1>~<9>のいずれか1つに記載のポリマーフィルム。
<11> 上記ポリマーフィルムの160℃における表層弾性率Esと内部弾性率Ecとの比率Es/Ecが、0.1~10である<1>~<10>のいずれか1つに記載のポリマーフィルム。
<12> 層Aと、上記層Aの少なくとも一方の面に設けられた層Bを有し、
 上記層Bが、上記誘電正接が0.01以下であるポリマー、及び、上記硬化性化合物Aを含む<1>~<11>のいずれか1つに記載のポリマーフィルム。
<13> 基材フィルムである<1>~<12>のいずれか1つに記載のポリマーフィルム。
<14> 層Cを更に有し、
 上記層Bと、上記層Aと、上記層Cとをこの順で有する<13>に記載のポリマーフィルム。
<15> ボンディングシートである<1>~<14>のいずれか1つに記載のポリマーフィルム。
<16> <1>~<15>のいずれか1つに記載のポリマーフィルムと、上記ポリマーフィルムの少なくとも一方の面に配置された金属層又は金属配線とを有する積層体。
<17> 金属層又は金属配線と、上記ポリマーフィルムと、金属層又は金属配線とをこの順で有する<16>に記載の積層体。
<18> 上記硬化性化合物Aが硬化してなる硬化物を含む<16>又は<17>に記載の積層体。
<19> <1>~<15>のいずれか1つに記載のポリマーフィルムと、金属層又は金属配線と、<1>~<15>のいずれか1つに記載のポリマーフィルムと、金属層又は金属配線と、<1>~<15>のいずれか1つに記載のポリマーフィルムとをこの順で有する積層体。
<20> 上記金属層又は金属配線における金属が、銅、又は、銀である<16>~<19>のいずれか1つに記載の積層体。
<21> 誘電正接が0.01以下であるポリマー、及び、硬化性化合物を含むポリマーフィルムにおいて、上記硬化性化合物の一部を硬化させた上記硬化性化合物Aを形成する一部硬化工程、上記フィルムに金属層又は金属配線に貼り合わせて積層体を形成する貼り合わせ工程をこの順で含む積層体の製造方法。
<22> 液晶ポリマー、及び、硬化性化合物を含むポリマーフィルムにおいて、上記硬化性化合物の一部を硬化させた上記硬化性化合物Aを形成する一部硬化工程、上記フィルムに金属層又は金属配線に貼り合わせて積層体を形成する貼り合わせ工程をこの順で含む積層体の製造方法。
<23> 上記硬化性化合物Aを含む層の160℃における損失正接が、0.03以上である<21>又は<22>に記載の積層体の製造方法。
<24> 上記硬化性化合物Aを含む層の300℃における損失正接が、0.1以上である<21>~<23>のいずれか1つに記載の積層体の製造方法。
<25> 上記貼り合わせ工程における貼り合わせ圧力が、0.1MPa以上である<21>~<24>のいずれか1つに記載の積層体の製造方法。
<26> 上記貼り合わせ工程後、上記硬化性化合物Aの含有量が、上記硬化性化合物の全質量に対し、30質量%~100質量%である<21>~<25>のいずれか1つに記載の積層体の製造方法。
<27> <1>~<15>のいずれか1つに記載のポリマーフィルムを準備する準備工程、上記ポリマーフィルムに金属層又は金属配線に貼り合わせて積層体を形成する貼り合わせ工程、及び、上記積層体における上記硬化性化合物Aを含む層にスルーホールを形成するスルーホール形成工程をこの順で含む積層体の製造方法。
<28> 上記スルーホール形成工程において、上記スルーホールの少なくとも一部の表面が硬化する<27>に記載の積層体の製造方法。
<29> 上記スルーホール形成工程後に、上記硬化性化合物Aを硬化させる後硬化工程を含む<27>又は<28>に記載の積層体の製造方法。
<30> 上記金属層又は金属配線における金属が、銅、又は、銀である<21>~<29>のいずれか1つに記載の積層体の製造方法。
The means for solving the above problems include the following aspects.
<1> A polymer film containing a polymer having a dielectric loss tangent of 0.01 or less and a curable compound, wherein the curable compound is an oligomer or a polymer and contains a curable compound A.
<2> A polymer film containing a liquid crystal polymer and a curable compound, wherein the curable compound is an oligomer or a polymer and contains a curable compound A.
<3> The polymer film according to <1> or <2>, wherein the content of the curable compound A is higher on the surface than on the inside of the polymer film.
<4> The polymer film according to <1>, wherein the polymer having a dielectric loss tangent of 0.01 or less is a liquid crystal polymer.
<5> The invention according to any one of <1> to <4>, wherein the polymer having a dielectric loss tangent of 0.01 or less or the liquid crystal polymer has a melting point Tm or a 5% by mass weight loss temperature Td of 200 ° C. or higher. Polymer film.
<6> The polymer film according to any one of <1> to <5>, wherein the curable compound A has a weight average molecular weight of 10,000 or less.
<7> The polymer film contains particles and contains particles.
The polymer film according to any one of <1> to <6>, which contains the curable compound inside or on the surface of the particles.
<8> The polymer film according to any one of <1> to <7>, wherein the polymer film contains a curing inhibitor.
<9> The polymer having a dielectric loss tangent of 0.01 or less or the liquid crystal polymer contains a liquid crystal polymer having a structural repeating unit represented by any of the formulas (1) to (3) <1> to <8> The polymer film according to any one of.
Equation (1) -O-Ar 1 -CO-
Equation (2) -CO-Ar 2 -CO-
Equation (3) -X-Ar 3 -Y-
In the formulas (1) to (3), Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group, and Ar 2 and Ar 3 independently represent a phenylene group, a naphthylene group, a biphenylylene group or the following formula (4). Represents a group represented by, X and Y each independently represent an oxygen atom or an imino group, and the hydrogen atom in Ar 1 to Ar 3 is independently substituted with a halogen atom, an alkyl group or an aryl group, respectively. You may.
Equation (4) -Ar 4 -Z-Ar 5-
In formula (4), Ar 4 and Ar 5 independently represent a phenylene group or a naphthylene group, and Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
<10> The polymer film according to any one of <1> to <9>, wherein the content of the curable compound A is 30% by mass to 100% by mass with respect to the total mass of the curable compound.
<11> The polymer according to any one of <1> to <10>, wherein the ratio Es / Ec of the surface elastic modulus Es and the internal elastic modulus Ec of the polymer film at 160 ° C. is 0.1 to 10. the film.
<12> It has a layer A and a layer B provided on at least one surface of the layer A.
The polymer film according to any one of <1> to <11>, wherein the layer B contains the polymer having a dielectric loss tangent of 0.01 or less and the curable compound A.
<13> The polymer film according to any one of <1> to <12>, which is a base film.
<14> Further having layer C
The polymer film according to <13>, which has the layer B, the layer A, and the layer C in this order.
<15> The polymer film according to any one of <1> to <14>, which is a bonding sheet.
<16> A laminate having the polymer film according to any one of <1> to <15> and a metal layer or metal wiring arranged on at least one surface of the polymer film.
<17> The laminate according to <16>, which has a metal layer or metal wiring, the polymer film, and the metal layer or metal wiring in this order.
<18> The laminate according to <16> or <17>, which contains a cured product obtained by curing the curable compound A.
<19> The polymer film according to any one of <1> to <15>, the metal layer or the metal wiring, the polymer film according to any one of <1> to <15>, and the metal layer. Alternatively, a laminate having a metal wiring and the polymer film according to any one of <1> to <15> in this order.
<20> The laminate according to any one of <16> to <19>, wherein the metal in the metal layer or the metal wiring is copper or silver.
<21> A partial curing step of forming the curable compound A in which a part of the curable compound is cured in a polymer having a dielectric positive contact of 0.01 or less and a polymer film containing the curable compound. A method for manufacturing a laminated body, which comprises a bonding step of bonding a metal layer or a metal wiring to a film to form a laminated body in this order.
<22> In a polymer film containing a liquid crystal polymer and a curable compound, a partial curing step of forming the curable compound A by curing a part of the curable compound, a metal layer or a metal wiring on the film. A method for manufacturing a laminated body, which comprises a bonding step of forming a laminated body by bonding in this order.
<23> The method for producing a laminate according to <21> or <22>, wherein the layer containing the curable compound A has a loss tangent of 0.03 or more at 160 ° C.
<24> The method for producing a laminate according to any one of <21> to <23>, wherein the layer containing the curable compound A has a loss tangent of 0.1 or more at 300 ° C.
<25> The method for producing a laminated body according to any one of <21> to <24>, wherein the bonding pressure in the bonding step is 0.1 MPa or more.
<26> After the bonding step, the content of the curable compound A is any one of <21> to <25>, which is 30% by mass to 100% by mass with respect to the total mass of the curable compound. The method for manufacturing a laminate according to.
<27> A preparatory step for preparing the polymer film according to any one of <1> to <15>, a bonding step for bonding the polymer film to a metal layer or a metal wiring to form a laminate, and a bonding step. A method for producing a laminated body, which comprises a through hole forming step of forming a through hole in a layer containing the curable compound A in the laminated body in this order.
<28> The method for producing a laminate according to <27>, wherein at least a part of the surface of the through hole is cured in the through hole forming step.
<29> The method for producing a laminate according to <27> or <28>, which comprises a post-curing step of curing the curable compound A after the through-hole forming step.
<30> The method for producing a laminate according to any one of <21> to <29>, wherein the metal in the metal layer or the metal wiring is copper or silver.
 本発明の実施形態によれば、配線貼り合わせ時における配線歪みの抑制性に優れるポリマーフィルムを提供することができる。
 また、本発明の他の実施形態によれば、上記ポリマーフィルムを用いた積層体及びその製造方法を提供することができる。
According to the embodiment of the present invention, it is possible to provide a polymer film having excellent ability to suppress wiring distortion at the time of bonding wiring.
Further, according to another embodiment of the present invention, it is possible to provide a laminate using the above polymer film and a method for producing the same.
 以下において、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 なお、本明細書において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念として用いられる語である。
 また、本明細書中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。 また、本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 更に、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 また、本開示における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel SuperHM-H(東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶剤PFP(ペンタフルオロフェノール)/クロロホルム=1/2(質量比)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
The contents of the present disclosure will be described in detail below. The description of the constituents described below may be based on the representative embodiments of the present disclosure, but the present disclosure is not limited to such embodiments.
In addition, in this specification, "-" indicating a numerical range is used in the sense that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
Further, in the notation of a group (atomic group) in the present specification, the notation that does not describe substitution or non-substitution includes those having no substituent as well as those having a substituent. For example, the "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
As used herein, "(meth) acrylic" is a term used in a concept that includes both acrylic and methacrylic, and "(meth) acryloyl" is a term that is used as a concept that includes both acryloyl and methacrylic. Is.
In addition, the term "process" in the present specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term "process" will be used as long as the intended purpose of the process is achieved. included. Further, in the present disclosure, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous.
Further, in the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
Further, unless otherwise specified, the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the present disclosure are gel permeation chromatography using a column of TSKgel SuperHM-H (trade name manufactured by Toso Co., Ltd.). The molecular weight is detected by a solvent PFP (pentafluorophenol) / chloroform = 1/2 (mass ratio) by a GPC) analyzer and converted using polystyrene as a standard substance.
(ポリマーフィルム)
 本開示に係るポリマーフィルムの第一の実施形態は、誘電正接が0.01以下であるポリマー、及び、硬化性化合物を含み、上記硬化性化合物が、オリゴマー又はポリマーである硬化性化合物Aを含む。
 本開示に係るポリマーフィルムの第二の実施形態は、液晶ポリマー、及び、硬化性化合物を含み、上記硬化性化合物が、オリゴマー又はポリマーである硬化性化合物Aを含む。
(Polymer film)
The first embodiment of the polymer film according to the present disclosure comprises a polymer having a dielectric loss tangent of 0.01 or less and a curable compound, wherein the curable compound comprises a curable compound A which is an oligomer or a polymer. ..
The second embodiment of the polymer film according to the present disclosure comprises a liquid crystal polymer and a curable compound, and the curable compound comprises a curable compound A which is an oligomer or a polymer.
 なお、本明細書において、特に断りなく、単に「本開示に係るポリマーフィルム」という場合は、上記第一の実施形態及び第二の実施形態の両方について述べるものとする。 In the present specification, unless otherwise specified, the term "polymer film according to the present disclosure" refers to both the first embodiment and the second embodiment.
 従来のポリマーフィルムは、配線(特に金属配線)に対して貼り合わせを行った場合に、貼り合わせ時の応力により、配線に歪みが生じる場合が多いことを本発明者は見出した。
 本発明者が鋭意検討した結果、上記構成をとることにより、配線貼り合わせ時における配線歪みの抑制性に優れるポリマーフィルムを提供できることを見出した。
 上記効果が得られる詳細なメカニズムは不明であるが、以下のように推測される。
 硬化性化合物として、オリゴマー又はポリマーである硬化性化合物Aを含むことにより、硬化性化合物の一部のみが硬化しているハーフキュア状態(「半硬化状態」又は「Bステージ状」ともいう。)又はそれに近い状態とすることができ、柔軟性及び形状追従性(凹凸追従性)に優れ、配線貼り合わせ時における応力を小さくすることができ、配線歪みを抑制することができると推定している。
 また、本開示に係るポリマーフィルムは、上記硬化性化合物Aを硬化することにより、貼り合わせ後に更に強度を上げることもできる。
The present inventor has found that when a conventional polymer film is bonded to a wiring (particularly a metal wiring), the wiring is often distorted due to the stress at the time of bonding.
As a result of diligent studies by the present inventor, it has been found that by adopting the above configuration, it is possible to provide a polymer film having excellent ability to suppress wiring distortion at the time of wiring bonding.
The detailed mechanism by which the above effect is obtained is unknown, but it is presumed as follows.
By containing the curable compound A which is an oligomer or a polymer as the curable compound, only a part of the curable compound is cured in a half-cured state (also referred to as "semi-cured state" or "B stage state"). It is presumed that it can be in a state close to or close to it, has excellent flexibility and shape followability (concavo-convex followability), can reduce stress at the time of wiring bonding, and can suppress wiring distortion. ..
Further, the polymer film according to the present disclosure can be further strengthened after being bonded by curing the curable compound A.
<硬化性化合物>
 本開示に係るポリマーフィルムは、硬化性化合物を含み、上記硬化性化合物が、オリゴマー又はポリマーである硬化性化合物Aを含む。
 本開示における硬化性化合物は、硬化性基を有する化合物であり、モノマー、オリゴマー、ポリマーのいずれであってもよい。
 また、上記硬化性化合物Aは、オリゴマー又はポリマーであり、力学強度の観点から、ポリマーであることが好ましい。
 本開示においては、オリゴマーは、重量平均分子量1,000以上2,000未満の重合体であり、ポリマーは、重合平均分子量2,000以上の重合体であるものとする。
 また、上記硬化性化合物Aとしては、金属箔又は金属配線との密着性及び偏在性の観点から、重量平均分子量が1,000以上のオリゴマー又はポリマーであることが好ましく、重量平均分子量が2,000以上のポリマーであることがより好ましく、重量平均分子量が3,000以上200,000以下のポリマーであることが更に好ましく、重量平均分子量が5,000以上100,000以下のポリマーであることが特に好ましい。
 更に、上記硬化性化合物Aの重量平均分子量は、配線歪み抑制の観点から、100,000以下であることが好ましく、50,000以下であることがより好ましく、10,000以下であることが特に好ましい。
<Curable compound>
The polymer film according to the present disclosure contains a curable compound, and the curable compound contains a curable compound A which is an oligomer or a polymer.
The curable compound in the present disclosure is a compound having a curable group, and may be any of a monomer, an oligomer, and a polymer.
Further, the curable compound A is an oligomer or a polymer, and is preferably a polymer from the viewpoint of mechanical strength.
In the present disclosure, the oligomer is a polymer having a weight average molecular weight of 1,000 or more and less than 2,000, and the polymer is a polymer having a polymerization average molecular weight of 2,000 or more.
The curable compound A is preferably an oligomer or polymer having a weight average molecular weight of 1,000 or more, and has a weight average molecular weight of 2, from the viewpoint of adhesion to a metal foil or metal wiring and uneven distribution. It is more preferably a polymer of 000 or more, further preferably a polymer having a weight average molecular weight of 3,000 or more and 200,000 or less, and a polymer having a weight average molecular weight of 5,000 or more and 100,000 or less. Especially preferable.
Further, the weight average molecular weight of the curable compound A is preferably 100,000 or less, more preferably 50,000 or less, and particularly preferably 10,000 or less, from the viewpoint of suppressing wiring strain. preferable.
 また、本開示に係るポリマーフィルムは、配線歪み抑制の観点から、上記硬化性化合物Aの含有量が、上記ポリマーフィルムの内部より表面の方が多いことが好ましい。
 ここで、ポリマーフィルムにおける表面とは、ポリマーフィルムの外側の面(空気又は基板に接する面)を指し、最も表面から深さ方向に3μmの範囲、または、最も表面からポリマーフィルム全体の厚みに対して10%以下の範囲のうち、小さい方を「表面」とする。ポリマーフィルムの内部とは、ポリマーフィルムの表面以外の部分、即ち、ポリマーフィルムの内側の面(空気又は基板に接しない面)を指し、限定的ではないが、ポリマーフィルムの厚み方向の中心から±1.5μmの範囲、または、ポリマーフィルムの厚み方向の中心から総厚みの±5%の範囲、のうち、数値の小さい方を「内部」とする。
 更に、配線歪み抑制の観点から、本開示に係るポリマーフィルムは、粒子を含み、上記粒子の内部又は表面に、上記硬化性化合物を含むことが好ましい。
 上記粒子としては、上記硬化性化合物を内部又は表面に有するマイクロカプセル又はミクロゲル等が挙げられる。
 中でも、上記硬化性化合物を内部に有するマイクロカプセル又はミクロゲルが好ましく挙げられる。
 また、上記粒子は、有機樹脂粒子であることが好ましい。
Further, from the viewpoint of suppressing wiring distortion, the polymer film according to the present disclosure preferably has a higher content of the curable compound A on the surface than on the inside of the polymer film.
Here, the surface of the polymer film refers to the outer surface of the polymer film (the surface in contact with air or the substrate), in the range of 3 μm in the depth direction from the most surface, or with respect to the thickness of the entire polymer film from the most surface. Of the range of 10% or less, the smaller one is defined as the "surface". The inside of the polymer film refers to a part other than the surface of the polymer film, that is, the inner surface of the polymer film (the surface not in contact with air or the substrate), and is not limited, but ± from the center in the thickness direction of the polymer film. Of the range of 1.5 μm or the range of ± 5% of the total thickness from the center in the thickness direction of the polymer film, the smaller numerical value is defined as “inside”.
Further, from the viewpoint of suppressing wiring distortion, the polymer film according to the present disclosure preferably contains particles, and preferably contains the curable compound inside or on the surface of the particles.
Examples of the particles include microcapsules or microgels having the curable compound inside or on the surface.
Among them, microcapsules or microgels having the above-mentioned curable compound inside are preferably mentioned.
Further, the particles are preferably organic resin particles.
 硬化性化合物における硬化性基の数は、1以上であればよく、2以上であってもよいが、2以上であることが好ましい。
 また、硬化性化合物は、1種のみの硬化性基を有していても、2種以上の硬化性基を有していてもよい。
The number of curable groups in the curable compound may be 1 or more, may be 2 or more, but is preferably 2 or more.
Further, the curable compound may have only one type of curable group or may have two or more types of curable groups.
 上記硬化性基としては、硬化可能であれば、特に制限はないが、例えば、エチレン性不飽和基、エポキシ基、オキセタニル基、イソシアネート基、酸無水物基、カルボジイミド基、N-ヒドロキシエステル基、グリオキサール基、イミドエステル基、ハロゲン化アルキル基、チオール基、ヒドロキシ基、カルボキシ基、アミノ基、アミド基、アルデヒド基、スルホン酸基等を挙げることができる。
 上記硬化性化合物Aを後述するハーフキュアにより形成する場合、上記硬化性基としては、エチレン性不飽和基が好ましい。また、その場合、硬化性化合物は、多官能エチレン性不飽和化合物を用いることが好ましい。
The curable group is not particularly limited as long as it can be cured, but for example, an ethylenically unsaturated group, an epoxy group, an oxetanyl group, an isocyanate group, an acid anhydride group, a carbodiimide group, an N-hydroxyester group, and the like. Examples thereof include a glyoxal group, an imide ester group, an alkyl halide group, a thiol group, a hydroxy group, a carboxy group, an amino group, an amide group, an aldehyde group, a sulfonic acid group and the like.
When the curable compound A is formed by half-cure described later, an ethylenically unsaturated group is preferable as the curable group. In that case, it is preferable to use a polyfunctional ethylenically unsaturated compound as the curable compound.
 上記硬化性化合物Aとしては、熱硬化性樹脂が好適に挙げられる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂及びメラミン樹脂等が挙げられる。また、熱硬化性樹脂としては、特にこれらに制限されず、公知の熱硬化性樹脂を使用できる。これらの熱硬化性樹脂は、単独で、又は複数種を併用して用いることができる。
 また、上記硬化性化合物Aとしては、市販の熱硬化性樹脂含有接着剤を用いることもできる。
As the curable compound A, a thermosetting resin is preferably mentioned.
Examples of the thermosetting resin include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, and silicone. Examples thereof include resins, triazine resins and melamine resins. Further, the thermosetting resin is not particularly limited to these, and known thermosetting resins can be used. These thermosetting resins can be used alone or in combination of two or more.
Further, as the curable compound A, a commercially available thermosetting resin-containing adhesive can also be used.
 また、上記硬化性化合物Aとしては、モノマーをハーフキュアさせてなる硬化性化合物が好適に挙げられる。
 モノマーとしては、エチレン性不飽和化合物であることが好ましく、多官能エチレン性化合物であることがより好ましい。
 また、エチレン性不飽和化合物としては、(メタ)アクリレート化合物、(メタ)アクリルアミド化合物、(メタ)アクリル酸、スチレン化合物、ビニルアセテート化合物、ビニルエーテル化合物、オレフィン化合物等が挙げられる。
 中でも、(メタ)アクリレート化合物が好ましい。
 また、モノマーの分子量としては、金属箔又は金属配線との密着性の観点から、分子量50以上1,000未満であることが好ましく、分子量100以上1,000未満であることがより好ましく、分子量200以上800以下であることが特に好ましい。
Further, as the curable compound A, a curable compound obtained by half-curing a monomer is preferably mentioned.
The monomer is preferably an ethylenically unsaturated compound, more preferably a polyfunctional ethylenic compound.
Examples of the ethylenically unsaturated compound include (meth) acrylate compound, (meth) acrylamide compound, (meth) acrylic acid, styrene compound, vinyl acetate compound, vinyl ether compound, and olefin compound.
Of these, (meth) acrylate compounds are preferred.
The molecular weight of the monomer is preferably 50 or more and less than 1,000, more preferably 100 or more and less than 1,000, and the molecular weight is 200, from the viewpoint of adhesion to the metal foil or metal wiring. It is particularly preferable that it is 800 or more and 800 or less.
 また、上記硬化性化合物として、エチレン性不飽和化合物を含む場合、本開示に係るポリマーフィルムは、重合開始剤を含むことが好ましい。重合開始剤としては、熱重合開始剤又は光重合開始剤であることが好ましい。
 熱重合開始剤又は光重合開始剤としては、公知のものを用いることができる。
 熱重合開始剤としては、熱ラジカル発生剤が挙げられる。具体的には、ベンゾイルパーオキサイド、及びアゾビスイソブチロニトリル等のような過酸化物開始剤、並びにアゾ系開始剤等が挙げられる。
 光重合開始剤としては、光ラジカル発生剤が挙げられる。具体的には、(a)芳香族ケトン類、(b)オニウム塩化合物、(c)有機過酸化物、(d)チオ化合物、(e)ヘキサアリールビイミダゾール化合物、(f)ケトオキシムエステル化合物、(g)ボレート化合物、(h)アジニウム化合物、(i)活性エステル化合物、(j)炭素ハロゲン結合を有する化合物、及び(k)ピリジウム類化合物等が挙げられる。
 重合開始剤は、1種のみを添加しても、2種以上を併用してもよい。
 重合開始剤の含有量は、硬化性化合物の全質量に対し、0.01質量%~30質量%が好ましく、0.05質量%~25質量%がより好ましく、0.1質量%~20質量%が更に好ましい。
When the curable compound contains an ethylenically unsaturated compound, the polymer film according to the present disclosure preferably contains a polymerization initiator. The polymerization initiator is preferably a thermal polymerization initiator or a photopolymerization initiator.
As the thermal polymerization initiator or the photopolymerization initiator, known ones can be used.
Examples of the thermal polymerization initiator include thermal radical generators. Specific examples thereof include peroxide initiators such as benzoyl peroxide and azobisisobutyronitrile, and azo-based initiators.
Examples of the photopolymerization initiator include photoradical generators. Specifically, (a) aromatic ketones, (b) onium salt compounds, (c) organic peroxides, (d) thio compounds, (e) hexaarylbiimidazole compounds, (f) ketooxime ester compounds. , (G) borate compound, (h) azinium compound, (i) active ester compound, (j) compound having a carbon halogen bond, (k) pyridium compound and the like.
As the polymerization initiator, only one kind may be added, or two or more kinds may be used in combination.
The content of the polymerization initiator is preferably 0.01% by mass to 30% by mass, more preferably 0.05% by mass to 25% by mass, and 0.1% by mass to 20% by mass, based on the total mass of the curable compound. % Is more preferable.
 ポリマーフィルムは、硬化性化合物を1種のみ、すなわち、硬化性化合物Aを1種のみ含んでいても、硬化性化合物を2種以上含んでいてもよい。
 また、ポリマーフィルムは、硬化性化合物Aを1種のみ含んでいても、2種以上含んでいてもよい。
 ポリマーフィルムにおける硬化性化合物の含有量は、ポリマーフィルムの誘電正接、及び、配線歪み抑制性の観点から、ポリマーフィルムの全質量に対し、0.1質量%~70質量%であることが好ましく、1質量%~60質量%であることがより好ましく、5質量%~60質量%であることが更に好ましく、10質量%~55質量%であることが特に好ましい。
 また、ポリマーフィルムにおける硬化性化合物Aの含有量は、ポリマーフィルムの誘電正接、及び、配線歪み抑制性の観点から、ポリマーフィルムの全質量に対し、0.1質量%~70質量%であることが好ましく、1質量%~60質量%であることがより好ましく、5質量%~60質量%であることが更に好ましく、10質量%~55質量%であることが特に好ましい。
The polymer film may contain only one type of curable compound, that is, only one type of curable compound A, or may contain two or more types of curable compound.
Further, the polymer film may contain only one type of curable compound A, or may contain two or more types of the curable compound A.
The content of the curable compound in the polymer film is preferably 0.1% by mass to 70% by mass with respect to the total mass of the polymer film from the viewpoint of the dielectric positive contact of the polymer film and the ability to suppress wiring strain. It is more preferably 1% by mass to 60% by mass, further preferably 5% by mass to 60% by mass, and particularly preferably 10% by mass to 55% by mass.
Further, the content of the curable compound A in the polymer film shall be 0.1% by mass to 70% by mass with respect to the total mass of the polymer film from the viewpoint of dielectric positive contact of the polymer film and suppression of wiring strain. , 1% by mass to 60% by mass, more preferably 5% by mass to 60% by mass, and particularly preferably 10% by mass to 55% by mass.
 また、ポリマーフィルムにおける上記硬化性化合物Aの含有量は、配線歪み抑制性の観点から、上記硬化性化合物の全質量に対し、30質量%~100質量%であることが好ましく、50質量%~100質量%であることがより好ましく、70質量%~100質量%であることが特に好ましい。 The content of the curable compound A in the polymer film is preferably 30% by mass to 100% by mass, preferably 50% by mass or more, based on the total mass of the curable compound from the viewpoint of suppressing wiring strain. It is more preferably 100% by mass, and particularly preferably 70% by mass to 100% by mass.
<誘電正接が0.01以下であるポリマー>
 本開示に係るポリマーフィルムの第一の実施形態は、誘電正接が0.01以下であるポリマーを含む。
 誘電正接が0.01以下であるポリマーの誘電正接は、ポリマーフィルムの誘電正接、及び、金属箔又は金属配線との密着性の観点から、0.005以下であることが好ましく、0.004以下であることがより好ましく、0を超え0.003以下であることが特に好ましい。
 なお、誘電正接が0.01以下であるポリマーは、硬化性基を有していてもよいが、上記硬化性化合物Aとは、異なる化合物であるものとする。上記硬化性化合物Aは、誘電正接が0.01を超えることが好ましく、また、液晶ポリマーでないことが好ましい。
<Polymer with dielectric loss tangent of 0.01 or less>
The first embodiment of the polymer film according to the present disclosure comprises a polymer having a dielectric loss tangent of 0.01 or less.
The dielectric loss tangent of the polymer having a dielectric loss tangent of 0.01 or less is preferably 0.005 or less, preferably 0.004 or less, from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or metal wiring. Is more preferable, and more than 0 and 0.003 or less are particularly preferable.
The polymer having a dielectric loss tangent of 0.01 or less may have a curable group, but it is assumed that the polymer is different from the curable compound A. The curable compound A preferably has a dielectric loss tangent of more than 0.01, and is preferably not a liquid crystal polymer.
 本開示における誘電正接の測定方法は、以下の方法により測定するものとする。
 誘電率測定は周波数10GHzで共振摂動法により実施する。ネットワークアナライザ(Agilent Technology社製「E8363B」)に10GHzの空洞共振器((株)関東電子応用開発製 CP531)を接続し、空洞共振器にポリマーフィルム、ポリマー又は各層のサンプル(幅:2mm×長さ:80mm)を挿入し、温度25℃、湿度60%RH環境下、96時間の挿入前後の共振周波数の変化からポリマーフィルム又は各層の誘電率及び誘電正接を測定する。
 後述するポリマーフィルムの各層を測定する場合は、カミソリ等で不要な層を削り出し、目的の層だけの評価用サンプルを作製してもよい。また、層の厚みが薄い等の理由で、単膜の取り出しが困難な場合には、カミソリ等で測定する層を削り取り、得られた粉末状の試料を用いてもよい。本開示におけるポリマーの誘電正接の測定は、各層を構成するポリマーの化学構造を特定するか又は単離し、測定するポリマーを粉末としたサンプルを用いて、上記の誘電正接の測定方法に従って行うものとする。
The method for measuring the dielectric loss tangent in the present disclosure shall be the following method.
The permittivity measurement is carried out by the resonance perturbation method at a frequency of 10 GHz. A 10 GHz cavity resonator (CP531 manufactured by Kanto Electronics Applied Development Co., Ltd.) is connected to a network analyzer (“E8633B” manufactured by Agent Technology), and a polymer film, polymer or sample of each layer (width: 2 mm × length) is connected to the cavity resonator. (S: 80 mm) is inserted, and the dielectric constant and dielectric tangent of the polymer film or each layer are measured from the change in the resonance frequency before and after the insertion for 96 hours under a temperature of 25 ° C. and a humidity of 60% RH.
When measuring each layer of the polymer film described later, an unnecessary layer may be scraped off with a razor or the like to prepare an evaluation sample of only the target layer. Further, when it is difficult to take out the single film due to the thinness of the layer or the like, the layer to be measured with a razor or the like may be scraped off and the obtained powdery sample may be used. The measurement of the dielectric loss tangent of the polymer in the present disclosure shall be carried out according to the above-mentioned method for measuring the dielectric loss tangent using a sample obtained by identifying or isolating the chemical structure of the polymer constituting each layer and measuring the polymer as a powder. do.
 誘電正接が0.01以下であるポリマーの重量平均分子量Mwは、1,000以上であることが好ましく、2,000以上であることがより好ましく、5,000以上であることが特に好ましい。また、誘電正接が0.005以下であるポリマーの重量平均分子量Mwは、1,000,000以下であることが好ましく、300,000以下であることがより好ましく、100,000未満であることが特に好ましい。 The weight average molecular weight Mw of the polymer having a dielectric loss tangent of 0.01 or less is preferably 1,000 or more, more preferably 2,000 or more, and particularly preferably 5,000 or more. Further, the weight average molecular weight Mw of the polymer having a dielectric loss tangent of 0.005 or less is preferably 1,000,000 or less, more preferably 300,000 or less, and more preferably less than 100,000. Especially preferable.
 誘電正接が0.01以下であるポリマーの融点Tm又は5質量%減量温度Tdは、ポリマーフィルムの誘電正接、金属箔又は金属配線との密着性、及び、耐熱性の観点から、200℃以上であることが好ましく、250℃以上であることがより好ましく、280℃以上であることが更に好ましく、300℃以上420℃以下であることが特に好ましい。
 本開示における融点Tmは、示差走査熱量分析(DSC)装置を用いて測定するものとする。すなわち、DSCの測定パンにサンプルを5mg入れ、これを窒素気流中で10℃/分で30℃から昇温した際に現れた吸熱ピークのピーク温度をフィルムのTmとする。
 また、本開示における5質量%減量温度Tdは、熱重量分析(TGA)装置を用いて測定するものとする。すなわち、測定パンに入れたサンプルの重量を初期値とし、昇温によって上記初期値に対して重量が5質量%低下したときの温度を5質量%減量温度Tdとする。
The melting point Tm or 5% by mass weight loss temperature Td of the polymer having a dielectric loss tangent of 0.01 or less is 200 ° C. or higher from the viewpoint of the dielectric loss tangent of the polymer film, the adhesion to the metal foil or the metal wiring, and the heat resistance. It is preferably 250 ° C. or higher, more preferably 280 ° C. or higher, and particularly preferably 300 ° C. or higher and 420 ° C. or lower.
The melting point Tm in the present disclosure shall be measured using a differential scanning calorimetry (DSC) device. That is, 5 mg of a sample is placed in a DSC measuring pan, and the peak temperature of the endothermic peak that appears when the temperature is raised from 30 ° C. at 10 ° C./min in a nitrogen stream is defined as Tm of the film.
Further, the 5% by mass weight loss temperature Td in the present disclosure shall be measured by using a thermogravimetric analysis (TGA) apparatus. That is, the weight of the sample placed in the measurement pan is set as the initial value, and the temperature when the weight is reduced by 5% by mass with respect to the initial value due to the temperature rise is set as the 5% by mass weight loss temperature Td.
 誘電正接が0.01以下であるポリマーのガラス転移温度Tgは、ポリマーフィルムの誘電正接、金属箔又は金属配線との密着性、及び、耐熱性の観点から、150℃以上であることが好ましく、200℃以上であることがより好ましく、200℃以上280℃未満であることが特に好ましい。
 本開示におけるガラス転移温度Tgは、示差走査熱量分析(DSC)装置を用いて測定するものとする。
The glass transition temperature Tg of the polymer having a dielectric positive contact of 0.01 or less is preferably 150 ° C. or higher from the viewpoint of the dielectric positive contact of the polymer film, the adhesion to the metal foil or the metal wiring, and the heat resistance. It is more preferably 200 ° C. or higher, and particularly preferably 200 ° C. or higher and lower than 280 ° C.
The glass transition temperature Tg in the present disclosure shall be measured using a differential scanning calorimetry (DSC) device.
 本開示において、誘電正接が0.01以下であるポリマーの種類は特に限定されず、公知のポリマーを用いることができる。
 誘電正接が0.01以下であるポリマーとしては、液晶ポリマー、フッ素系ポリマー、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物、芳香族ポリエーテルケトン、ポリオレフィン、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の熱可塑性樹脂;グリシジルメタクリレートとポリエチレンとの共重合体等のエラストマー;フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。
 これらの中でも、ポリマーフィルムの誘電正接、金属箔又は金属配線との密着性、及び、耐熱性の観点から、液晶ポリマー、フッ素系ポリマー、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物、及び、芳香族ポリエーテルケトンよりなる群から選ばれる少なくとも1種のポリマーであることが好ましく、液晶ポリマー及びフッ素系ポリマーよりなる群から選ばれる少なくとも1種のポリマーであることがより好ましく、ポリマーフィルムの誘電正接の観点からは、液晶ポリマーであることが特に好ましく、耐熱性、及び、力学的強度の観点からは、フッ素系ポリマーが好ましい。
In the present disclosure, the type of polymer having a dielectric loss tangent of 0.01 or less is not particularly limited, and known polymers can be used.
Examples of the polymer having a dielectric positive contact of 0.01 or less include a liquid crystal polymer, a fluoropolymer, a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond, an aromatic polyether ketone, and a polyolefin. , Polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether and its modifications, thermoplastic resins such as polyetherimide; elastomers such as copolymers of glycidyl methacrylate and polyethylene; phenolic resins, Examples thereof include thermocurable resins such as epoxy resins, polyimide resins, and cyanate resins.
Among these, liquid crystal polymers, fluoropolymers, cyclic aliphatic hydrocarbon groups, and groups having an ethylenically unsaturated bond from the viewpoints of dielectric positive contact of polymer films, adhesion to metal foils or metal wiring, and heat resistance. It is preferably at least one polymer selected from the group consisting of a polymer of a compound having and, and an aromatic polyether ketone, and at least one polymer selected from the group consisting of a liquid crystal polymer and a fluoropolymer. A liquid crystal polymer is particularly preferable from the viewpoint of the dielectric positive contact of the polymer film, and a fluoropolymer is preferable from the viewpoint of heat resistance and mechanical strength.
-液晶ポリマー-
 本開示に係るポリマーフィルムの第二の実施形態は、液晶ポリマーを含む。
 誘電正接が0.01以下であるポリマーは、ポリマーフィルムの誘電正接の観点から、液晶ポリマーであることが好ましい。
 本開示に用いられる液晶ポリマーは、液晶ポリマーの種類は特に限定されず、公知の液晶ポリマーを用いることができる。
 また、液晶ポリマーは、溶融状態で液晶性を示すサーモトロピック液晶ポリマーでもよく、溶液状態で液晶性を示すリオトロピック液晶ポリマーでもよい。また、サーモトロピック液晶の場合は、450℃以下の温度で溶融するものであることが好ましい。
 液晶ポリマーとしては、例えば、液晶ポリエステル、液晶ポリエステルにアミド結合が導入された液晶ポリエステルアミド、液晶ポリエステルにエーテル結合が導入された液晶ポリエステルエーテル、液晶ポリエステルにカーボネート結合が導入された液晶ポリエ
ステルカーボネートなどを挙げることができる。
 また、液晶ポリマーは、液晶性、及び、線膨張係数の観点から、芳香環を有するポリマーであることが好ましく、芳香族ポリエステル又は芳香族ポリエステルアミドであることがより好ましい。
 更に、液晶ポリマーは、芳香族ポリエステル又は芳香族ポリエステルアミドに、更にイミド結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。
 また、液晶ポリマーは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリマーであることが好ましい。
-Liquid crystal polymer-
A second embodiment of the polymer film according to the present disclosure comprises a liquid crystal polymer.
The polymer having a dielectric loss tangent of 0.01 or less is preferably a liquid crystal polymer from the viewpoint of the dielectric loss tangent of the polymer film.
The type of liquid crystal polymer used in the present disclosure is not particularly limited, and known liquid crystal polymers can be used.
Further, the liquid crystal polymer may be a thermotropic liquid crystal polymer that exhibits liquid crystal properties in a molten state, or may be a riotropic liquid crystal polymer that exhibits liquid crystal properties in a solution state. Further, in the case of a thermotropic liquid crystal, it is preferable that the liquid crystal is melted at a temperature of 450 ° C. or lower.
Examples of the liquid crystal polymer include liquid crystal polyester, liquid crystal polyester amide having an amide bond introduced into the liquid crystal polyester, liquid crystal polyester ether having an ether bond introduced into the liquid crystal polyester, and liquid crystal polyester carbonate having a carbonate bond introduced into the liquid crystal polyester. Can be mentioned.
Further, the liquid crystal polymer is preferably a polymer having an aromatic ring, and more preferably an aromatic polyester or an aromatic polyester amide, from the viewpoint of liquid crystal property and linear expansion coefficient.
Further, the liquid crystal polymer may be a polymer in which an imide bond, a carbodiimide bond, an isocyanate-derived bond such as an isocyanurate bond, or the like is further introduced into an aromatic polyester or an aromatic polyester amide.
Further, the liquid crystal polymer is preferably a total aromatic liquid crystal polymer using only an aromatic compound as a raw material monomer.
 液晶ポリマーの例としては、例えば、以下の液晶ポリマーが挙げられる。
 1)(i)芳香族ヒドロキシカルボン酸と、(ii)芳香族ジカルボン酸と、(iii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンよりなる群から選ばれる少なくとも1種の化合物と、を重縮合させてなるもの。
 2)複数種の芳香族ヒドロキシカルボン酸を重縮合させてなるもの。
 3)(i)芳香族ジカルボン酸と、(ii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンよりなる群から選ばれる少なくとも1種の化合物と、を重縮合させてなるもの。
 4)(i)ポリエチレンテレフタレート等のポリエステルと、(ii)芳香族ヒドロキシカルボン酸と、を重縮合させてなるもの。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンはそれぞれ独立に、重縮合可能な誘導体に置き換えてもよい。
Examples of the liquid crystal polymer include the following liquid crystal polymers.
1) (i) an aromatic hydroxycarboxylic acid, (ii) an aromatic dicarboxylic acid, and (iii) at least one compound selected from the group consisting of aromatic diols, aromatic hydroxyamines and aromatic diamines. It is made by polycondensing.
2) Polycondensation of multiple types of aromatic hydroxycarboxylic acids.
3) A polycondensation of (i) an aromatic dicarboxylic acid and (ii) at least one compound selected from the group consisting of aromatic diols, aromatic hydroxyamines and aromatic diamines.
4) (i) Polyester such as polyethylene terephthalate and (ii) aromatic hydroxycarboxylic acid are polycondensed.
Here, the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine and the aromatic diamine may be independently replaced with a polycondensable derivative.
 例えば、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸エステル及び芳香族ジカルボン酸エステルに置き換えることができる。
 カルボキシ基をハロホルミル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸ハロゲン化物及び芳香族ジカルボン酸ハロゲン化物に置き換えることができる。
 カルボキシ基をアシルオキシカルボニル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸無水物及び芳香族ジカルボン酸無水物に置き換えることができる。
 芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシ基を有する化合物の重合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシ基に変換してなるもの(アシル化物)が挙げられる。
 例えば、ヒドロキシ基をアシル化してアシルオキシ基に変換することにより、芳香族ヒドロキシカルボン酸、芳香族ジオール、及び芳香族ヒドロキシアミンをそれぞれ、アシル化物に置き換えることができる。
 芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
 例えば、アミノ基をアシル化してアシルアミノ基に変換することにより、芳香族ヒドロキシアミン及び芳香族ジアミンをそれぞれ、アシル化物に置き換えることができる。
For example, the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid can be replaced with the aromatic hydroxycarboxylic acid ester and the aromatic dicarboxylic acid ester by converting the carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group.
By converting the carboxy group to a haloformyl group, the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid can be replaced with the aromatic hydroxycarboxylic acid halide and the aromatic dicarboxylic acid halide.
By converting the carboxy group to an acyloxycarbonyl group, the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid can be replaced with the aromatic hydroxycarboxylic acid anhydride and the aromatic dicarboxylic acid anhydride.
Examples of polymerizable derivatives of compounds having a hydroxy group, such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines, are those obtained by acylating a hydroxy group and converting it into an acyloxy group (acylated product). Can be mentioned.
For example, by acylating a hydroxy group to convert it to an acyloxy group, the aromatic hydroxycarboxylic acid, the aromatic diol, and the aromatic hydroxyamine can each be replaced with an acylated product.
Examples of polymerizable derivatives of compounds having an amino group, such as aromatic hydroxyamines and aromatic diamines, include those obtained by acylating an amino group and converting it into an acylamino group (acylated product).
For example, aromatic hydroxyamines and aromatic diamines can each be replaced with acylated products by acylating the amino group to convert it to an acylamino group.
 液晶ポリマーは、液晶性、ポリマーフィルムの誘電正接、及び、金属層との密着性の観点から、下記式(1)~式(3)のいずれかで表される構成単位(以下、式(1)で表される構成単位等を、構成単位(1)等ということがある。)を有することが好ましく、下記式(1)で表される構成単位を有することがより好ましく、下記式(1)で表される構成単位と、下記式(2)で表される構成単位と、下記式(3)で表される構成単位とを有することが特に好ましい。
 式(1) -O-Ar-CO-
 式(2) -CO-Ar-CO-
 式(3) -X-Ar-Y-
 式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し、Ar及びArはそれぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表し、X及びYはそれぞれ独立に、酸素原子又はイミノ基を表し、Ar~Arにおける水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。
 式(4) -Ar-Z-Ar
 式(4)中、Ar及びArはそれぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキレン基を表す。
The liquid crystal polymer is a structural unit represented by any of the following formulas (1) to (3) from the viewpoint of liquid crystal property, dielectric loss tangent of the polymer film, and adhesion to the metal layer (hereinafter, formula (1). ) Is preferably referred to as a constituent unit (1) or the like, more preferably a constituent unit represented by the following formula (1), and the following formula (1). ), A structural unit represented by the following formula (2), and a structural unit represented by the following formula (3) are particularly preferable.
Equation (1) -O-Ar 1 -CO-
Equation (2) -CO-Ar 2 -CO-
Equation (3) -X-Ar 3 -Y-
In the formulas (1) to (3), Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group, and Ar 2 and Ar 3 independently represent a phenylene group, a naphthylene group, a biphenylylene group or the following formula (4). Represents a group represented by, X and Y each independently represent an oxygen atom or an imino group, and the hydrogen atom in Ar 1 to Ar 3 is independently substituted with a halogen atom, an alkyl group or an aryl group, respectively. You may.
Equation (4) -Ar 4 -Z-Ar 5-
In formula (4), Ar 4 and Ar 5 independently represent a phenylene group or a naphthylene group, and Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 上記アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基及びn-デシル基が挙げられる。上記アルキル基の炭素数は、好ましくは1~10である。
 上記アリール基としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基及び2-ナフチル基が挙げられる。上記アリール基の炭素数は、好ましくは6~20である。
 上記水素原子がこれらの基で置換されている場合、その置換数は、Ar、Ar又はArにおいて、それぞれ独立に、好ましくは2個以下であり、より好ましくは1個である。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
Examples of the above alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group and 2-ethylhexyl group. Examples thereof include an n-octyl group and an n-decyl group. The alkyl group preferably has 1 to 10 carbon atoms.
Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group and a 2-naphthyl group. The aryl group preferably has 6 to 20 carbon atoms.
When the hydrogen atom is substituted with these groups, the number of substitutions is independently, preferably 2 or less, and more preferably 1 in Ar 1 , Ar 2 or Ar 3 , respectively.
 上記アルキレン基としては、メチレン基、1,1-エタンジイル基、1-メチル-1,1-エタンジイル基、1,1-ブタンジイル基及び2-エチル-1,1-ヘキサンジイル基が挙げられる。上記アルキレン基の炭素数は、好ましくは1~10である。 Examples of the alkylene group include a methylene group, a 1,1-ethanediyl group, a 1-methyl-1,1-ethanediyl group, a 1,1-butandyl group and a 2-ethyl-1,1-hexanediyl group. The alkylene group preferably has 1 to 10 carbon atoms.
 構成単位(1)は、芳香族ヒドロキシカルボン酸に由来する構成単位である。
 構成単位(1)としては、Arがp-フェニレン基である態様(p-ヒドロキシ安香酸に由来する構成単位)、及びArが2,6-ナフチレン基である態様(6-ヒドロキシ-2-ナフトエ酸に由来する構成単位)、又は、4,4’-ビフェニリレン基である態様(4’-ヒドロキシ-4-ビフェニルカルボン酸に由来する構成単位)が好ましい。
The structural unit (1) is a structural unit derived from an aromatic hydroxycarboxylic acid.
As the structural unit (1), an embodiment in which Ar 1 is a p-phenylene group (a structural unit derived from p-hydroxyacousic acid) and an embodiment in which Ar 1 is a 2,6-naphthylene group (6-hydroxy-). A structural unit derived from 2-naphthoic acid) or an embodiment having a 4,4'-biphenylylene group (constituent unit derived from 4'-hydroxy-4-biphenylcarboxylic acid) is preferable.
 構成単位(2)は、芳香族ジカルボン酸に由来する構成単位である。
 構成単位(2)としては、Arがp-フェニレン基である態様(テレフタル酸に由来する構成単位)、Arがm-フェニレン基である態様(イソフタル酸に由来する構成単位)、Arが2,6-ナフチレン基である態様(2,6-ナフタレンジカルボン酸に由来する構成単位)、又は、Arがジフェニルエーテル-4,4’-ジイル基である態様(ジフェニルエーテル-4,4’-ジカルボン酸に由来する構成単位)が好ましい。
The structural unit (2) is a structural unit derived from an aromatic dicarboxylic acid.
As the structural unit (2), an embodiment in which Ar 2 is a p-phenylene group (constituent unit derived from terephthalic acid), an embodiment in which Ar 2 is an m-phenylene group (constituent unit derived from isophthalic acid), Ar 2 Is a 2,6-naphthylene group (a structural unit derived from 2,6-naphthalenedicarboxylic acid), or Ar 2 is a diphenyl ether-4,4'-diyl group (diphenyl ether-4,4'-. A structural unit derived from a dicarboxylic acid) is preferable.
 構成単位(3)は、芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する構成単位である。
 構成単位(3)としては、Arがp-フェニレン基である態様(ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する構成単位)、Arがm-フェニレン基である態様(イソフタル酸に由来する構成単位)、又は、Arが4,4’-ビフェニリレン基である態様(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する構成単位)が好ましい。
The structural unit (3) is a structural unit derived from an aromatic diol, an aromatic hydroxylamine or an aromatic diamine.
As the structural unit (3), an embodiment in which Ar 3 is a p-phenylene group (a structural unit derived from hydroquinone, p-aminophenol or p-phenylenediamine) and an embodiment in which Ar 3 is an m-phenylene group (isophthalic acid). Derived from (4,4'-dihydroxybiphenyl, 4-amino-4'-hydroxybiphenyl or 4,4'-diaminobiphenyl) or an embodiment in which Ar 3 is a 4,4'-biphenylylene group. The structural unit to be used) is preferable.
 構成単位(1)の含有量は、全構成単位の合計量(液晶ポリマーを構成する各構成単位(「モノマー単位」ともいう。)の質量をその各構成単位の式量で割ることにより、各構成単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30モル%~80モル%、更に好ましくは30モル%~60モル%、特に好ましくは30モル%~40モル%である。
 構成単位(2)の含有量は、全構成単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%~35モル%、更に好ましくは20モル%~35モル%、特に好ましくは30モル%~35モル%である。
 構成単位(3)の含有量は、全構成単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%~35モル%、更に好ましくは20モル%~35モル%、特に好ましくは30モル%~35モル%である。
 構成単位(1)の含有量が多いほど、耐熱性、強度及び剛性が向上し易いが、あまり多いと、溶媒に対する溶解性が低くなり易い。
The content of the structural unit (1) is determined by dividing the total amount of all the structural units (the mass of each structural unit (also referred to as “monomer unit”) constituting the liquid crystal polymer by the formula amount of each structural unit. The amount of substance equivalent (mol) of the constituent unit is determined, and the total value thereof) is preferably 30 mol% or more, more preferably 30 mol% to 80 mol%, still more preferably 30 mol% to 60 mol. %, Especially preferably 30 mol% to 40 mol%.
The content of the structural unit (2) is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, still more preferably 20 mol% to 35 mol%, particularly, with respect to the total amount of all the structural units. It is preferably 30 mol% to 35 mol%.
The content of the structural unit (3) is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, still more preferably 20 mol% to 35 mol%, particularly, with respect to the total amount of all the structural units. It is preferably 30 mol% to 35 mol%.
The larger the content of the structural unit (1), the easier it is to improve the heat resistance, strength and rigidity, but if it is too large, the solubility in a solvent tends to be low.
 構成単位(2)の含有量と構成単位(3)の含有量との割合は、[構成単位(2)の含有量]/[構成単位(3)の含有量](モル/モル)で表して、好ましくは0.9/1~1/0.9、より好ましくは0.95/1~1/0.95、更に好ましくは0.98/1~1/0.98である。 The ratio between the content of the constituent unit (2) and the content of the constituent unit (3) is expressed by [content of the constituent unit (2)] / [content of the constituent unit (3)] (mol / mol). It is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and further preferably 0.98 / 1 to 1 / 0.98.
 なお、液晶ポリマーは、構成単位(1)~(3)をそれぞれ独立に、2種以上有してもよい。また、液晶ポリマーは、構成単位(1)~(3)以外の構成単位を有してもよいが、その含有量は、全構成単位の合計量に対して、好ましくは10モル%以下、より好ましくは5モル%以下である。 The liquid crystal polymer may have two or more types of constituent units (1) to (3) independently. Further, the liquid crystal polymer may have a structural unit other than the structural units (1) to (3), but the content thereof is preferably 10 mol% or less with respect to the total amount of all the structural units. It is preferably 5 mol% or less.
 液晶ポリマーは、溶媒に対する溶解性の観点から、構成単位(3)として、X及びYの少なくとも一方がイミノ基である構成単位(3)を有すること、すなわち、構成単位(3)として、芳香族ヒドロキシルアミンに由来する構成単位及び芳香族ジアミンに由来する構成単位の少なくとも一方を有することが好ましく、X及びYの少なくとも一方がイミノ基である構成単位(3)のみを有することがより好ましい。 From the viewpoint of solubility in a solvent, the liquid crystal polymer has a structural unit (3) in which at least one of X and Y is an imino group as a structural unit (3), that is, an aromatic as a structural unit (3). It is preferable to have at least one of the structural unit derived from hydroxylamine and the structural unit derived from aromatic diamine, and it is more preferable to have only the structural unit (3) in which at least one of X and Y is an imino group.
 液晶ポリマーは、液晶ポリマーを構成する構成単位に対応する原料モノマーを溶融重合させることにより製造することが好ましい。溶融重合は、触媒の存在下に行ってもよい。触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾール等の含窒素複素環式化合物などが挙げられ、含窒素複素環式化合物が好ましく挙げられる。なお、溶融重合は、必要に応じて、更に固相重合させてもよい。 The liquid crystal polymer is preferably produced by melt-polymerizing a raw material monomer corresponding to a constituent unit constituting the liquid crystal polymer. The melt polymerization may be carried out in the presence of a catalyst. Examples of catalysts include magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, metal compounds such as antimony trioxide, 4- (dimethylamino) pyridine, 1-methylimidazole and the like. Examples thereof include nitrogen heterocyclic compounds, and nitrogen-containing heterocyclic compounds are preferably mentioned. The melt polymerization may be further solid-phase polymerized, if necessary.
 液晶ポリマーの流動開始温度の下限値としては、好ましくは180℃以上、より好ましくは200℃以上、更に好ましくは250℃以上であり、流動開始温度の上限値としては、350℃が好ましく、330℃がより好ましく、300℃が更に好ましい。液晶ポリマーの流動開始温度が上記範囲であると、溶解性、耐熱性、強度及び剛性に優れ、また、溶液の粘度が適度である。 The lower limit of the flow start temperature of the liquid crystal polymer is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, still more preferably 250 ° C. or higher, and the upper limit of the flow start temperature is preferably 350 ° C. or higher, 330 ° C. or higher. Is more preferable, and 300 ° C. is even more preferable. When the flow start temperature of the liquid crystal polymer is within the above range, the solubility, heat resistance, strength and rigidity are excellent, and the viscosity of the solution is appropriate.
 流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリマーを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4,800Pa・s(48,000ポイズ)の粘度を示す温度であり、液晶ポリマーの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。 The flow start temperature, also called the flow temperature or the flow temperature, melts the liquid crystal polymer using a capillary leometer while raising the temperature at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ). It is a temperature that shows a viscosity of 4,800 Pa · s (48,000 poise) when extruded from a nozzle with an inner diameter of 1 mm and a length of 10 mm, and is a guideline for the molecular weight of the liquid crystal polymer (edited by Naoyuki Koide). , "Liquid Liquid Polymer-Synthesis / Molding / Application-", CMC Co., Ltd., June 5, 1987, p.95).
 また、液晶ポリマーの重量平均分子量は、1,000,000以下であることが好ましく、3,000~300,000であることがより好ましく、5,000~100,000であることが更に好ましく、5,000~30,000であることが特に好ましい。この液晶ポリマーの重量平均分子量が上記範囲であると、熱処理後のフィルムにおいて、厚さ方向の熱伝導性、耐熱性、強度及び剛性に優れる。 The weight average molecular weight of the liquid crystal polymer is preferably 1,000,000 or less, more preferably 3,000 to 300,000, still more preferably 5,000 to 100,000. It is particularly preferably 5,000 to 30,000. When the weight average molecular weight of this liquid crystal polymer is in the above range, the film after heat treatment is excellent in thermal conductivity, heat resistance, strength and rigidity in the thickness direction.
-フッ素系ポリマー-
 誘電正接が0.01以下であるポリマーは、耐熱性、及び、力学的強度の観点から、フッ素系ポリマーであることが好ましい。
 本開示において、誘電正接が0.01以下であるポリマーとして用いるフッ素系ポリマーは、誘電正接が0.01以下であれば、フッ素系ポリマーの種類は特に限定されず、公知のフッ素系ポリマーを用いることができる。
 フッ素系ポリマーとしては、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン/六フッ化プロピレン共重合体、エチレン/四フッ化エチレン共重合体、エチレン/クロロトリフルオロエチレン共重合体等が挙げられる。
 中でも、ポリテトラフルオロエチレンが好ましく挙げられる。
-Fluorine polymer-
The polymer having a dielectric loss tangent of 0.01 or less is preferably a fluoropolymer from the viewpoint of heat resistance and mechanical strength.
In the present disclosure, the type of the fluorine-based polymer used as the polymer having a dielectric loss tangent of 0.01 or less is not particularly limited as long as the dielectric loss tangent is 0.01 or less, and a known fluorine-based polymer is used. be able to.
Examples of the fluoropolymer include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride / propylene hexafluoride copolymer, and ethylene / tetrafluoride. Examples thereof include an ethylene copolymer and an ethylene / chlorotrifluoroethylene copolymer.
Among them, polytetrafluoroethylene is preferable.
 また、フッ素系ポリマーは、フッ素化α-オレフィンモノマー、すなわち、少なくとも1つのフッ素原子を含むα-オレフィンモノマー、及び、必要に応じ、フッ素化α-オレフィンモノマーに対して反応性の非フッ素化エチレン性不飽和モノマーから誘導される構成単位を含むホモポリマー及びコポリマーが挙げられる。
 フッ素化α-オレフィンモノマーとしては、CF=CF、CHF=CF、CH=CF、CHCl=CHF、CClF=CF、CCl=CF、CClF=CClF、CHF=CCl、CH=CClF、CCl=CClF、CFCF=CF、CFCF=CHF、CFCH=CF、CFCH=CH、CHFCH=CHF、CFCF=CF、パーフルオロ(炭素数2~8のアルキル)ビニルエーテル(例えば、パーフルオロメチルビニルエーテル、パーフルオロプロピルビニルエーテル、パーフルオロオクチルビニルエーテル)等が挙げられる。中でも、テトラフルオロエチレン(CF=CF)、クロロトリフルオロエチレン(CClF=CF)、(パーフルオロブチル)エチレン、フッ化ビニリデン(CH=CF)、及び、ヘキサフルオロプロピレン(CF=CFCF)よりなる群から選ばれた少なくとも1種のモノマーが好ましい。
 非フッ素化モノエチレン性不飽和モノマーとしては、エチレン、プロピレン、ブテン、エチレン性不飽和芳香族モノマー(例えば、スチレン及びα-メチルスチレン)等が挙げられる。
 フッ素化α-オレフィンモノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、非フッ素化エチレン性不飽和モノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
The fluoropolymer is a fluorinated α-olefin monomer, that is, an α-olefin monomer containing at least one fluorine atom, and, if necessary, a non-fluorinated ethylene that is reactive with the fluorinated α-olefin monomer. Examples include homopolymers and copolymers containing building blocks derived from sex unsaturated monomers.
Examples of the fluorinated α-olefin monomer include CF 2 = CF 2 , CHF = CF 2 , CH 2 = CF 2 , CHCl = CHF, CClF = CF 2 , CCl 2 = CF 2 , CClF = CClF, CHF = CCl 2 . CH 2 = CClF, CCl 2 = CClF, CF 3 CF = CF 2 , CF 3 CF = CHF, CF 3 CH = CF 2 , CF 3 CH = CH 2 , CHF 2 CH = CHF, CF 3 CF = CF 2 , Examples thereof include perfluoro (alkyl having 2 to 8 carbon atoms) vinyl ether (for example, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, perfluorooctyl vinyl ether) and the like. Among them, tetrafluoroethylene (CF 2 = CF 2 ), chlorotrifluoroethylene (CClF = CF 2 ), (perfluorobutyl) ethylene, vinylidene fluoride (CH 2 = CF 2 ), and hexafluoropropylene (CF 2 ). = At least one monomer selected from the group consisting of CFCF 3 ) is preferred.
Examples of the non-fluorinated monoethylene unsaturated monomer include ethylene, propylene, butene, and an ethylenically unsaturated aromatic monomer (for example, styrene and α-methylstyrene).
The fluorinated α-olefin monomer may be used alone or in combination of two or more.
Further, the non-fluorinated ethylenically unsaturated monomer may be used alone or in combination of two or more.
 フッ素系ポリマーとしては、ポリクロロトリフルオロエチレン(PCTFE)、ポリ(クロロトリフルオロエチレン-プロピレン)、ポリ(エチレン-テトラフルオロエチレン)(ETFE)、ポリ(エチレン-クロロトリフルオロエチレン)(ECTFE)、ポリ(ヘキサフルオロプロピレン)、ポリ(テトラフルオロエチレン)(PTFE)、ポリ(テトラフルオロエチレン-エチレン-プロピレン)、ポリ(テトラフルオロエチレン-ヘキサフルオロプロピレン)(FEP)、ポリ(テトラフルオロエチレン-プロピレン)(FEPM)、ポリ(テトラフルオロエチレン-パーフルオロプロピレンビニルエーテル)、ポリ(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル)(PFA)(例えば、ポリ(テトラフルオロエチレン-パーフルオロプロピルビニルエーテル))、ポリビニルフルオリド(PVF)、ポリフッ化ビニリデン(PVDF)、ポリ(フッ化ビニリデン-クロロトリフルオロエチレン)、パーフルオロポリエーテル、パーフルオロスルホン酸、パーフルオロポリオキセタン等が挙げられる。
 フッ素系ポリマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
Examples of the fluoropolymer include polychlorotrifluoroethylene (PCTFE), poly (chlorotrifluoroethylene-propylene), poly (ethylene-tetrafluoroethylene) (ETFE), poly (ethylene-chlorotrifluoroethylene) (ECTFE), and the like. Poly (hexafluoropropylene), poly (tetrafluoroethylene) (PTFE), poly (tetrafluoroethylene-ethylene-propylene), poly (tetrafluoroethylene-hexafluoropropylene) (FEP), poly (tetrafluoroethylene-propylene) (FEPM), poly (tetrafluoroethylene-perfluoropropylene vinyl ether), poly (tetrafluoroethylene-perfluoroalkyl vinyl ether) (PFA) (eg, poly (tetrafluoroethylene-perfluoropropyl vinyl ether)), polyvinyl fluoride ( PVF), polyvinylidene fluoride (PVDF), poly (vinylidene fluoride-chlorotrifluoroethylene), perfluoropolyether, perfluorosulfonic acid, perfluoropolyoxetane and the like can be mentioned.
The fluoropolymer may be used alone or in combination of two or more.
 フッ素系ポリマーは、FEP、PFA、ETFE、又は、PTFEの少なくとも1つであることが好ましい。FEPは、デュポン(DuPont)社よりテフロン(登録商標)FEP(TEFLON(登録商標)FEP)の商品名、又は、ダイキン工業(株)よりネオフロンFEP(NEOFLON FEP)の商品名で入手可能であり;PFAは、ダイキン工業(株)よりネオフロンPFA(NEOFLON PFA)の商品名、デュポン(DuPont)社よりテフロン(登録商標)PFA(TEFLON(登録商標)PFA)の商品名、又は、ソルベイ・ソレクシス(Solvay Solexis)社よりハイフロンPFA(HYFLON PFA)の商品名で入手可能である。 The fluoropolymer is preferably at least one of FEP, PFA, ETFE, or PTFE. FEP is available under the trade name of Teflon (registered trademark) FEP (TEFLON (registered trademark) FEP) from DuPont, or the trade name of NEOFLON FEP from Daikin Industries, Ltd .; PFA is the trade name of NEOFLON PFA from Daikin Industries, Ltd., the trade name of Teflon (registered trademark) PFA (TEFLON® PFA) from DuPont, or Solvay. It is available from Solexis) under the trade name of HYFLON PFA.
 フッ素系ポリマーは、PTFEを含むことが好ましい。PTFEは、PTFEホモポリマー、一部が変性されたPTFEホモポリマー、又は、これらの一方若しくは両方を含む組合せを含むことができる。一部が変性されたPTFEホモポリマーは、ポリマーの全質量を基準として、テトラフルオロエチレン以外のコモノマーに由来する構成単位を1質量%未満含むことが好ましい。 The fluoropolymer preferably contains PTFE. The PTFE can include a PTFE homopolymer, a partially modified PTFE homopolymer, or a combination comprising one or both of these. Partially modified PTFE homopolymers preferably contain less than 1% by weight of building blocks derived from commonomers other than tetrafluoroethylene, based on the total weight of the polymer.
 フッ素系ポリマーは、架橋性基を有する架橋性フルオロポリマーであってもよい。架橋性フルオロポリマーは、従来公知の架橋方法によって架橋させることができる。代表的な架橋性フルオロポリマーの1つは、(メタ)アクリロキシ基を有するフルオロポリマーである。例えば、架橋性フルオロポリマーは式:
  HC=CR’COO-(CH-R-(CH-OOCR’=CH
で表すことができ、式中、Rは、フッ素化α-オレフィンモノマー又は非フッ素化モノエチレン性不飽和モノマーに由来する構成単位を2以上有するフッ素系オリゴマー鎖であり、R’はH又は-CHであり、nは1~4である。Rは、テトラフルオロエチレンに由来する構成単位を含むフッ素系オリゴマー鎖であってよい。
The fluoropolymer may be a crosslinkable fluoropolymer having a crosslinkable group. The crosslinkable fluoropolymer can be crosslinked by a conventionally known crosslinking method. One of the typical crosslinkable fluoropolymers is a fluoropolymer having a (meth) acryloxy group. For example, the crosslinkable fluoropolymer has the formula:
H 2 C = CR'COO- (CH 2 ) n -R- (CH 2 ) n -OOCR'= CH 2
In the formula, R is a fluorinated oligomer chain having two or more structural units derived from a fluorinated α-olefin monomer or a non-fluorinated monoethylene unsaturated monomer, and R'is H or-. It is CH 3 and n is 1 to 4. R may be a fluorine-based oligomer chain containing a structural unit derived from tetrafluoroethylene.
 フッ素系ポリマー上の(メタ)アクリロキシ基を介してラジカル架橋反応を開始するために、(メタ)アクリロキシ基を有するフルオロポリマーをフリーラジカル源に曝露することによって、架橋フルオロポリマー網目構造を形成することができる。フリーラジカル源は、特に制限はないが、光ラジカル重合開始剤、又は、有機過酸化物が好適に挙げられる。適切な光ラジカル重合開始剤及び有機過酸化物は当技術分野においてよく知られている。架橋性フルオロポリマーは市販されており、例えば、デュポン社製バイトンBが挙げられる。 Forming a crosslinked fluoropolymer network structure by exposing a fluoropolymer having a (meth) acryloxy group to a free radical source in order to initiate a radical crosslinking reaction via the (meth) acryloxy group on a fluoropolymer. Can be done. The free radical source is not particularly limited, but a photoradical polymerization initiator or an organic peroxide is preferable. Suitable photoradical polymerization initiators and organic peroxides are well known in the art. Crosslinkable fluoropolymers are commercially available and include, for example, DuPont Byton B.
-環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物-
 誘電正接が0.01以下であるポリマーは、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物であってもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物の例としては、例えば、ノルボルネン又は多環ノルボルネン系モノマーのような環状オレフィンからなるモノマーから形成される構成単位を有する熱可塑性の樹脂が挙げられ、熱可塑性環状オレフィン系樹脂とも呼ばれる。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、上記環状オレフィンの開環重合体や2種以上の環状オレフィンを用いた開環共重合体の水素添加物であってもよく、環状オレフィンと、鎖状オレフィン又はビニル基の如きエチレン性不飽和結合を有する芳香族化合物などとの付加重合体であってもよい。また、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物には、極性基が導入されていてもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
-Polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond-
The polymer having a dielectric tangent of 0.01 or less may be a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
As an example of a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond, a structural unit formed of a monomer composed of a cyclic olefin such as, for example, norbornene or a polycyclic norbornene-based monomer is used. Examples of the thermoplastic resin having the above are also referred to as a thermoplastic cyclic olefin resin.
The polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is the hydrogenation of the ring-opening polymer of the above cyclic olefin or the ring-opening copolymer using two or more kinds of cyclic olefins. It may be a product, or it may be an addition polymer of a cyclic olefin and an aromatic compound having an ethylenically unsaturated bond such as a chain olefin or a vinyl group. Further, a polar group may be introduced into the polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
The polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be used alone or in combination of two or more.
 環状脂肪族炭化水素基の環構造としては、単環であっても、2以上の環が縮合した縮合環であっても、橋掛け環であってもよい。
 環状脂肪族炭化水素基の環構造としては、シクロペンタン環、シクロヘキサン環、シクロオクタン環、イソボロン環、ノルボルナン環、ジシクロペンタン環等が挙げられる。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物は、単官能エチレン性不飽和化合物であっても、多官能エチレン性不飽和化合物であってもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物における環状脂肪族炭化水素基の数は、1以上であればよく、2以上有していてもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、少なくとも1種の環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物を重合してなる重合体であればよく、2種以上環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物であってもよいし、環状脂肪族炭化水素基を有しない他のエチレン性不飽和化合物との共重合体であってもよい。
 また、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、シクロオレフィンポリマーであることが好ましい。
The ring structure of the cyclic aliphatic hydrocarbon group may be a monocyclic ring, a condensed ring in which two or more rings are condensed, or a bridged ring.
Examples of the ring structure of the cyclic aliphatic hydrocarbon group include a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, an isovoron ring, a norbornane ring, a dicyclopentane ring and the like.
The compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be a monofunctional ethylenically unsaturated compound or a polyfunctional ethylenically unsaturated compound.
The number of cyclic aliphatic hydrocarbon groups in the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be 1 or more, and may be 2 or more.
A polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond polymerizes a compound having at least one cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond. The polymer may be a polymer of a compound having two or more kinds of cyclic aliphatic hydrocarbon groups and a group having an ethylenically unsaturated bond, or may not have a cyclic aliphatic hydrocarbon group. It may be a copolymer with another ethylenically unsaturated compound.
Further, the polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is preferably a cycloolefin polymer.
-ポリフェニレンエーテル-
 誘電正接が0.01以下であるポリマーは、ポリフェニレンエーテルであってもよい。
 ポリフェニレンエーテルの重量平均分子量(Mw)は、製膜後に熱硬化する場合には、耐熱性、及び、膜形成性の観点から、500~5,000であることが好ましく、500~3,000であることが好ましい。また、熱硬化しない場合には、特に限定されないが、3,000~100,000であることが好ましく、5,000~50,000であることが好ましい。
 ポリフェニレンエーテルとしては、分子末端のフェノール性水酸基の1分子当たりの平均個数(末端水酸基数)が、誘電正接、及び、耐熱性の観点から、1個~5個であることが好ましく、1.5個~3個であることがより好ましい。
 ポリフェニレンエーテルの水酸基数又はフェノール性水酸基は、例えば、ポリフェニレンエーテルの製品の規格値からわかる。また、末端水酸基数又は末端フェノール性水酸基数としては、例えば、ポリフェニレンエーテル1モル中に存在する全てのポリフェニレンエーテルの1分子あたりの水酸基又はフェノール性水酸基の平均値を表した数値等が挙げられる。
 ポリフェニレンエーテルは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Polyphenylene ether-
The polymer having a dielectric loss tangent of 0.01 or less may be a polyphenylene ether.
The weight average molecular weight (Mw) of the polyphenylene ether is preferably 500 to 5,000, preferably 500 to 3,000, from the viewpoint of heat resistance and film forming property when thermosetting after film formation. It is preferable to have. When it is not heat-cured, it is not particularly limited, but is preferably 3,000 to 100,000, and preferably 5,000 to 50,000.
As the polyphenylene ether, the average number of phenolic hydroxyl groups at the molecular terminal per molecule (number of terminal hydroxyl groups) is preferably 1 to 5 from the viewpoint of dielectric loss tangent and heat resistance, and is preferably 1.5. More preferably, the number is 3 to 3.
The number of hydroxyl groups or phenolic hydroxyl groups of the polyphenylene ether can be found, for example, from the standard value of the product of the polyphenylene ether. Examples of the number of terminal hydroxyl groups or the number of terminal phenolic hydroxyl groups include numerical values representing the average value of hydroxyl groups or phenolic hydroxyl groups per molecule of all polyphenylene ethers present in 1 mol of polyphenylene ether.
The polyphenylene ether may be used alone or in combination of two or more.
 ポリフェニレンエーテルとしては、例えば、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテル、又は、ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルとを主成分とするもの等が挙げられる。より具体的には、例えば、式(PPE)で表される構造を有する化合物であることが好ましい。 Examples of the polyphenylene ether include polyphenylene ether composed of 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol, poly (2,6-dimethyl-1,4-phenylene oxide) and the like. Examples thereof include those containing the polyphenylene ether of the above as a main component. More specifically, for example, a compound having a structure represented by the formula (PPE) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(PPE)中、Xは、炭素数1~3のアルキレン基又は単結合を表し、mは、0~20の整数を表し、nは、0~20の整数を表し、mとnとの合計は、1~30の整数を表す。
 上記Xにおける上記アルキレン基としては、例えば、ジメチルメチレン基等が挙げられる。
In the formula (PPE), X represents an alkylene group or a single bond having 1 to 3 carbon atoms, m represents an integer of 0 to 20, n represents an integer of 0 to 20, and m and n. The sum represents an integer from 1 to 30.
Examples of the alkylene group in the X include a dimethylmethylene group and the like.
-芳香族ポリエーテルケトン-
 誘電正接が0.01以下であるポリマーは、芳香族ポリエーテルケトンであってもよい。
 芳香族ポリエーテルケトンとしては、特に限定されず、公知の芳香族ポリエーテルケトンを用いることができる。
 芳香族ポリエーテルケトンは、ポリエーテルエーテルケトンであることが好ましい。
 ポリエーテルエーテルケトンは、芳香族ポリエーテルケトンの1種であり、エーテル結合、エーテル結合、カルボニル結合(ケトン)の順に結合が配置されたポリマーである。各結合間は、2価の芳香族基により連結されていることが好ましい。
 芳香族ポリエーテルケトンは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Aromatic polyetherketone-
The polymer having a dielectric loss tangent of 0.01 or less may be an aromatic polyetherketone.
The aromatic polyetherketone is not particularly limited, and known aromatic polyetherketones can be used.
The aromatic polyetherketone is preferably a polyetheretherketone.
Polyetheretherketone is a kind of aromatic polyetherketone, and is a polymer in which bonds are arranged in the order of ether bond, ether bond, and carbonyl bond (ketone). It is preferable that each bond is linked by a divalent aromatic group.
The aromatic polyetherketone may be used alone or in combination of two or more.
 芳香族ポリエーテルケトンとしては、例えば、下記式(P1)で表される化学構造を有するポリエーテルエーテルケトン(PEEK)、下記式(P2)で表される化学構造を有するポリエーテルケトン(PEK)、下記式(P3)で表される化学構造を有するポリエーテルケトンケトン(PEKK)、下記式(P4)で表される化学構造を有するポリエーテルエーテルケトンケトン(PEEKK)、下記式(P5)で表される化学構造を有するポリエーテルケトンエーテルケトンケトン(PEKEKK)が挙げられる。 Examples of the aromatic polyether ketone include a polyether ether ketone having a chemical structure represented by the following formula (P1) (PEEK) and a polyether ketone having a chemical structure represented by the following formula (P2) (PEK). , Polyether ether ketone ketone (PEKK) having a chemical structure represented by the following formula (P3), polyether ether ketone ketone (PEEKK) having a chemical structure represented by the following formula (P4), and the following formula (P5). Examples thereof include polyether ketones and ether ketone ketones (PEKEKK) having the represented chemical structure.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(P1)~(P5)の各々のnは、機械的特性の観点から、10以上が好ましく、20以上がより好ましい。一方、芳香族ポリエーテルケトンを容易に製造できる点では、nは、5,000以下が好ましく、1,000以下がより好ましい。すなわち、nは、10~5,000が好ましく、20~1,000がより好ましい。 Each n of the formulas (P1) to (P5) is preferably 10 or more, more preferably 20 or more, from the viewpoint of mechanical properties. On the other hand, n is preferably 5,000 or less, more preferably 1,000 or less, in that an aromatic polyetherketone can be easily produced. That is, n is preferably 10 to 5,000, more preferably 20 to 1,000.
 誘電正接が0.01以下であるポリマーは、特定の有機溶媒に可溶性のポリマー(以下、「可溶性ポリマー」ともいう。)であることが好ましい。
 具体的には、本開示における可溶性ポリマーは、25℃において、N-メチルピロリドン、N-エチルピロリドン、ジクロロメタン、ジクロロエタン、クロロホルム、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルホルムアミド、エチレングリコールモノブチルエーテル及びエチレングリコールモノエチルエーテルよりなる群から選ばれる少なくとも1種の溶媒100gに、0.1g以上溶解するポリマーである。
The polymer having a dielectric loss tangent of 0.01 or less is preferably a polymer soluble in a specific organic solvent (hereinafter, also referred to as “soluble polymer”).
Specifically, the soluble polymers in the present disclosure are N-methylpyrrolidone, N-ethylpyrrolidone, dichloromethane, dichloroethane, chloroform, N, N-dimethylacetamide, γ-butyrolactone, dimethylformamide, ethylene glycol monobutyl ether at 25 ° C. And ethylene glycol, a polymer that dissolves 0.1 g or more in 100 g of at least one solvent selected from the group consisting of monoethyl ether.
 ポリマーフィルムは、誘電正接が0.01以下であるポリマーを1種のみ含んでいても、2種以上含んでいてもよい。
 ポリマーフィルムにおける誘電正接が0.01以下であるポリマーの含有量は、ポリマーフィルムの誘電正接、及び、金属箔又は金属配線との密着性の観点から、ポリマーフィルムの全質量に対し、20質量%~99質量%であることが好ましく、30質量%~98質量%であることがより好ましく、40質量%~97質量%であることが更に好ましく、50質量%~95質量%であることが特に好ましい。
The polymer film may contain only one kind of polymer having a dielectric loss tangent of 0.01 or less, or may contain two or more kinds of polymers.
The content of the polymer having a dielectric positive contact of 0.01 or less in the polymer film is 20% by mass with respect to the total mass of the polymer film from the viewpoint of the dielectric positive contact of the polymer film and the adhesion to the metal foil or the metal wiring. It is preferably ~ 99% by mass, more preferably 30% by mass to 98% by mass, further preferably 40% by mass to 97% by mass, and particularly preferably 50% by mass to 95% by mass. preferable.
<硬化阻害剤>
 本開示に係るポリマーフィルムは、硬化状態の制御、及び、配線歪み抑制性の観点から、硬化阻害剤を含むことが好ましい。
 硬化阻害剤としては、重合禁止剤、熱安定剤等が挙げられ、それぞれ公知のものを用いることができる。
 重合禁止剤としては、p-メトキシフェノール、キノン類(例えば、ハイドロキノン、ベンゾキノン、メトキシベンゾキノン等)、フェノチアジン、カテコール類、アルキルフェノール類(例えば、ジブチルヒドロキシトルエン(BHT)等)、アルキルビスフェノール類、ジメチルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、サリチル酸銅、チオジプロピオン酸エステル類、メルカプトベンズイミダゾール、ホスファイト類、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)、2,2,6,6-テトラメチル-4-ヒドロキシピペリジン-1-オキシル(TEMPOL)、トリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩(別名:クペロンAl)などが挙げられる。
 上記熱安定剤としては、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、テトラキス(2,4-ジ-tert-ブチルフェニル)[1,1-ビフェニル]-4,4’-ジイルビスホスフォナイト、及び、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジフォスファイト等のリン系熱安定剤、8-ヒドロキシ-5,7-ジ-tert-ブチルフラン-2-オンとo-キシレンとの反応生成物等のラクトン系熱安定剤を挙げることができる。
<Cursing inhibitor>
The polymer film according to the present disclosure preferably contains a curing inhibitor from the viewpoint of controlling the curing state and suppressing wiring distortion.
Examples of the curing inhibitor include a polymerization inhibitor, a heat stabilizer, and the like, and known ones can be used.
Examples of the polymerization inhibitor include p-methoxyphenol, quinones (eg, hydroquinone, benzoquinone, methoxybenzoquinone, etc.), phenothiazine, catechols, alkylphenols (eg, dibutylhydroxytoluene (BHT), etc.), alkylbisphenols, dimethyldithiocarbamine. Zinc acid, copper dimethyldithiocarbamate, copper dibutyldithiocarbamate, copper salicylate, thiodipropionic acid esters, mercaptobenzimidazole, phosphites, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), Examples thereof include 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl (TEMPOL) and tris (N-nitroso-N-phenylhydroxylamine) aluminum salt (also known as cuperon Al).
Examples of the heat stabilizer include tris (2,4-di-tert-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphite, and Tetrakiss (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4'-diylbisphosphonite and bis (2,4-di-tert-butylphenyl) pentaerythritoldi Phosphite and other phosphorus-based heat stabilizers, and lactone-based heat stabilizers such as the reaction product of 8-hydroxy-5,7-di-tert-butylfuran-2-one and o-xylene can be mentioned.
 硬化阻害剤は、1種を単独で用いてよく、2種以上を併用してもよい。
 硬化阻害剤の含有量は特に限定されないが、ポリマーフィルムの全量に対して、0.0001質量%~2.0質量%であることが好ましい。
As the curing inhibitor, one type may be used alone, or two or more types may be used in combination.
The content of the curing inhibitor is not particularly limited, but is preferably 0.0001% by mass to 2.0% by mass with respect to the total amount of the polymer film.
<フィラー>
 ポリマーフィルムは、線膨張係数、及び、金属箔又は金属配線との密着性の観点から、フィラーを含むことが好ましい。
 フィラーは、粒子状であっても、繊維状であってもよく、また、無機フィラーであっても、有機フィラーであってもよい。
 本開示に係るポリマーフィルムにおいて、上記フィラーの数密度は、線膨張係数、及び、金属箔又は金属配線との密着性の観点から、上記ポリマーフィルムの表面より内部の方が大きいことが好ましい。
<Filler>
The polymer film preferably contains a filler from the viewpoint of the coefficient of linear expansion and the adhesion to the metal foil or the metal wiring.
The filler may be in the form of particles or fibers, and may be an inorganic filler or an organic filler.
In the polymer film according to the present disclosure, it is preferable that the number density of the filler is larger inside than the surface of the polymer film from the viewpoint of the linear expansion coefficient and the adhesion to the metal foil or the metal wiring.
 無機フィラーとしては、公知の無機フィラーを用いることができる。
 無機フィラーの材質としては、例えば、BN、Al、AlN、TiO、SiO、チタン酸バリウム、チタン酸ストロンチウム、水酸化アルミニウム、炭酸カルシウム、及び、これらを2種以上含む材質が挙げられる。
 中でも、無機フィラーとしては、金属箔又は金属配線との密着性の観点から、金属酸化物粒子、又は、繊維が好ましく、シリカ粒子、チタニア粒子、又は、ガラス繊維がより好ましく、シリカ粒子、又は、ガラス繊維が特に好ましい。
As the inorganic filler, a known inorganic filler can be used.
Examples of the material of the inorganic filler include BN, Al 2 O 3 , Al N, TiO 2 , SiO 2 , barium titanate, strontium titanate, aluminum hydroxide, calcium carbonate, and a material containing two or more of these. Be done.
Among them, as the inorganic filler, metal oxide particles or fibers are preferable, and silica particles, titania particles, or glass fibers are more preferable, and silica particles or fibers are preferable from the viewpoint of adhesion to a metal foil or metal wiring. Glass fiber is particularly preferred.
 無機フィラーの平均粒径は、層Aの厚みの約20%~約40%であることが好ましく、例えば、層Aの厚みの25%、30%又は35%にあるものを選択してもよい。粒子又は繊維が扁平状の場合には、短辺方向の長さを示す。
 また、無機フィラーの平均粒径は、金属箔又は金属配線との密着性の観点から、5nm~20μmであることが好ましく、10nm~10μmであることがより好ましく、20nm~1μmであることが更に好ましく、25nm~500nmであることが特に好ましい。
The average particle size of the inorganic filler is preferably about 20% to about 40% of the thickness of the layer A, and for example, those having an average particle size of 25%, 30% or 35% of the thickness of the layer A may be selected. .. When the particle or fiber is flat, it indicates the length in the short side direction.
The average particle size of the inorganic filler is preferably 5 nm to 20 μm, more preferably 10 nm to 10 μm, and further preferably 20 nm to 1 μm from the viewpoint of adhesion to the metal foil or metal wiring. It is preferably 25 nm to 500 nm, and particularly preferably 25 nm.
 有機フィラーとしては、公知の有機フィラーを用いることができる。
 有機フィラーの材質としては、例えば、ポリエチレン、ポリスチレン、尿素-ホルマリンフィラー、ポリエステル、セルロース、アクリル樹脂、フッ素樹脂、硬化エポキシ樹脂、架橋ベンゾグアナミン樹脂、架橋アクリル樹脂、及び、これらを2種以上含む材質が挙げられる。
 また、有機フィラーは、ナノファイバーのような繊維状であってもよく、中空樹脂粒子であってもよい。
 中でも、有機フィラーとしては、金属箔又は金属配線との密着性の観点から、フッ素樹脂粒子、若しくは、ポリエステル系樹脂粒子、又は、セルロース系樹脂のナノファイバーであることが好ましく、ポリテトラフルオロエチレン粒子であることがより好ましい。
 有機フィラーの平均粒径は、金属箔又は金属配線との密着性の観点から、5nm~20μmであることが好ましく、10nm~1μmであることがより好ましく、20nm~500nmであることが更に好ましく、25nm~90nmであることが特に好ましい。
As the organic filler, a known organic filler can be used.
Examples of the material of the organic filler include polyethylene, polystyrene, urea-formalin filler, polyester, cellulose, acrylic resin, fluororesin, cured epoxy resin, crosslinked benzoguanamine resin, crosslinked acrylic resin, and a material containing two or more of these. Can be mentioned.
Further, the organic filler may be in the form of fibers such as nanofibers, or may be hollow resin particles.
Among them, the organic filler is preferably fluororesin particles, polyester-based resin particles, or cellulose-based resin nanofibers from the viewpoint of adhesion to a metal foil or metal wiring, and polytetrafluoroethylene particles. Is more preferable.
The average particle size of the organic filler is preferably 5 nm to 20 μm, more preferably 10 nm to 1 μm, still more preferably 20 nm to 500 nm, from the viewpoint of adhesion to the metal foil or metal wiring. It is particularly preferably 25 nm to 90 nm.
 ポリマーフィルムは、フィラーを1種のみ含んでいても、2種以上含んでいてもよい。
 ポリマーフィルムにおけるフィラーの含有量は、金属箔又は金属配線との密着性の観点から、ポリマーフィルムの全体積に対し、5体積%~80体積%であることが好ましく、10体積%~70体積%であることがより好ましく、15体積%~70体積%であることが更に好ましく、20体積%~60体積%であることが特に好ましい。
The polymer film may contain only one kind of filler or two or more kinds of fillers.
The content of the filler in the polymer film is preferably 5% by volume to 80% by volume, preferably 10% by volume to 70% by volume, based on the total volume of the polymer film, from the viewpoint of adhesion to the metal foil or metal wiring. It is more preferably 15% by volume to 70% by volume, and particularly preferably 20% by volume to 60% by volume.
 本開示に係るポリマーフィルムは、ポリマーフィルムの誘電正接、金属箔又は金属配線との密着性、耐熱性、及び、力学的強度の観点から、三次元架橋構造を有することが好ましい。
 三次元架橋構造を形成する方法としては、多官能反応性化合物(多官能モノマー)を重合し、多官能反応性化合物の硬化物を形成する方法が挙げられる。
The polymer film according to the present disclosure preferably has a three-dimensional crosslinked structure from the viewpoints of dielectric positive contact of the polymer film, adhesion to a metal foil or metal wiring, heat resistance, and mechanical strength.
Examples of the method for forming the three-dimensional crosslinked structure include a method of polymerizing a polyfunctional reactive compound (polyfunctional monomer) to form a cured product of the polyfunctional reactive compound.
<その他の添加剤>
 ポリマーフィルムは、上述した成分以外のその他の添加剤を含んでいてもよい。
 その他の添加剤としては、公知の添加剤を用いることができる。具体的には、例えば、レベリング剤、消泡剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤等が挙げられる。
<Other additives>
The polymer film may contain other additives other than the above-mentioned components.
As other additives, known additives can be used. Specific examples thereof include leveling agents, antifoaming agents, antioxidants, ultraviolet absorbers, flame retardants, colorants and the like.
 また、ポリマーフィルムは、その他の添加剤として、誘電正接が0.01以下であるポリマー及び官能基を有する化合物以外のその他の樹脂を含んでいてもよい。
 その他の樹脂の例としては、ポリプロピレン、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の熱可塑性樹脂;グリシジルメタクリレートとポリエチレンとの共重合体等のエラストマー;フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。
Further, the polymer film may contain other additives other than the polymer having a dielectric loss tangent of 0.01 or less and the compound having a functional group as other additives.
Examples of other resins include thermoplastic resins such as polypropylene, polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether and its modifications, polyetherimide, etc .; Elastomers such as polymers; thermocurable resins such as phenolic resins, epoxy resins, polyimide resins, cyanate resins and the like can be mentioned.
 ポリマーフィルムにおけるその他の添加剤の総含有量は、誘電正接が0.01以下であるポリマーの含有量100質量部に対して、好ましくは25質量部以下であり、より好ましくは10質量部以下であり、更に好ましくは5質量部以下である。
 また、ポリマーフィルムにおけるその他の添加剤の総含有量は、官能基を有する化合物の含有量よりも少ないことが好ましい。
The total content of the other additives in the polymer film is preferably 25 parts by mass or less, more preferably 10 parts by mass or less, with respect to 100 parts by mass of the polymer having a dielectric loss tangent of 0.01 or less. Yes, more preferably 5 parts by mass or less.
Further, the total content of other additives in the polymer film is preferably smaller than the content of the compound having a functional group.
 また、本開示に係るポリマーフィルムは、多層構造を有するものであってもよい。
 本開示に係るポリマーフィルムは、層Aと、上記層Aの少なくとも一方の面に層Bとを有することが好ましい。
 本開示に係るポリマーフィルムは、ポリマーフィルムの誘電正接、及び、金属箔又は金属配線との密着性の観点から、誘電正接が0.01以下であるポリマーを含む層Aと、上記層Aの少なくとも一方の面に誘電正接が0.01以下であるポリマー及び上記硬化性化合物Aを含む層Bとを有することが好ましい。
 層Aは、誘電正接が0.01以下であるポリマーのみ含んでいても、誘電正接が0.01以下であるポリマー及び硬化性化合物を含んでいてもよい。
 また、層Aは、上記硬化性化合物Aを含んでいてもよいが、含まないことが好ましい。
 更に、層Aは、フィラーを更に含むことが好ましい。
 層Bは、誘電正接が0.01以下であるポリマー及び上記硬化性化合物Aを含むことが好ましく、誘電正接が0.01以下であるポリマー及び上記硬化性化合物Aからなる層であることがより好ましい。
Further, the polymer film according to the present disclosure may have a multilayer structure.
The polymer film according to the present disclosure preferably has a layer A and a layer B on at least one surface of the layer A.
The polymer film according to the present disclosure includes a layer A containing a polymer having a dielectric positive contact of 0.01 or less from the viewpoint of the dielectric positive contact of the polymer film and adhesion to a metal foil or metal wiring, and at least the above layer A. It is preferable to have a polymer having a dielectric positive contact of 0.01 or less and a layer B containing the curable compound A on one surface.
The layer A may contain only a polymer having a dielectric loss tangent of 0.01 or less, or may contain a polymer having a dielectric loss tangent of 0.01 or less and a curable compound.
Further, the layer A may contain the curable compound A, but it is preferable that the layer A does not contain the curable compound A.
Further, the layer A preferably further contains a filler.
The layer B preferably contains a polymer having a dielectric loss tangent of 0.01 or less and the curable compound A, and is more preferably a layer composed of the polymer having a dielectric loss tangent of 0.01 or less and the curable compound A. preferable.
 また、本開示に係るポリマーフィルムは、層A及び層Bに加え、層Cを更に有し、上記層Bと、上記層Aと、上記層Cとをこの順で有することが好ましい。
 層Cは、誘電正接が0.005以下であるポリマー及び上記硬化性化合物Aを含むことが好ましく、誘電正接が0.01以下であるポリマー及び上記硬化性化合物Aからなる層であることがより好ましい。
Further, the polymer film according to the present disclosure preferably has a layer C in addition to the layer A and the layer B, and preferably has the layer B, the layer A, and the layer C in this order.
The layer C preferably contains a polymer having a dielectric loss tangent of 0.005 or less and the curable compound A, and is more preferably a layer composed of the polymer having a dielectric loss tangent of 0.01 or less and the curable compound A. preferable.
 層Aの平均厚みは、特に制限はないが、ポリマーフィルムの誘電正接、及び、金属箔又は金属配線との密着性の観点から、5μm~90μmであることが好ましく、10μm~70μmであることがより好ましく、15μm~50μmであることが特に好ましい。 The average thickness of the layer A is not particularly limited, but is preferably 5 μm to 90 μm, preferably 10 μm to 70 μm, from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or the metal wiring. More preferably, it is particularly preferably 15 μm to 50 μm.
 本開示に係るポリマーフィルムにおける各層の平均厚みの測定方法は、以下の通りである。
 ポリマーフィルムをミクロトームで切削し、断面を光学顕微鏡で観察して、各層の厚みを評価する。断面サンプルは3ヶ所以上切り出し、各断面において、3点以上厚みを測定し、それらの平均値を平均厚みとする。
The method for measuring the average thickness of each layer in the polymer film according to the present disclosure is as follows.
The polymer film is cut with a microtome and the cross section is observed with an optical microscope to evaluate the thickness of each layer. The cross-section sample is cut out at three or more places, the thickness is measured at three or more points in each cross-section, and the average value thereof is taken as the average thickness.
 層B及び層Cの平均厚みはそれぞれ独立に、ポリマーフィルムの誘電正接、及び、金属箔又は金属配線との密着性の観点から、層Aの平均厚みよりも薄いことが好ましい。
 層Aの平均厚みTと層Bの平均厚みTとの比であるT/Tの値は、ポリマーフィルムの誘電正接、及び、金属箔又は金属配線との密着性の観点から、1より大きいことが好ましく、2~100であることがより好ましく、2.5~20であることが更に好ましく、3~10であることが特に好ましい。
 層Aの平均厚みTと層Cの平均厚みTとの比であるT/Tの値は、ポリマーフィルムの誘電正接、及び、金属箔又は金属配線との密着性の観点から、1より大きいことが好ましく、2~100であることがより好ましく、2.5~20であることが更に好ましく、3~10であることが特に好ましい。
 また、層Cの平均厚みTと層Bの平均厚みTとの比であるT/Tの値は、線膨張係数、及び、金属箔又は金属配線との密着性の観点から、0.2~5であることが好ましく、0.5~2であることがより好ましく、0.8~1.2であることが特に好ましい。
 更に、層B及び層Cの平均厚みはそれぞれ独立に、ポリマーフィルムの誘電正接、及び、金属箔又は金属配線との密着性の観点から、0.1μm~20μmであることが好ましく、0.5μm~15μmであることがより好ましく、1μm~10μmであることが更に好ましく、3μm~8μmであることが特に好ましい。
The average thickness of the layers B and C is preferably thinner than the average thickness of the layer A independently from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or the metal wiring.
The value of TA / TB , which is the ratio of the average thickness TA of the layer A to the average thickness TB of the layer B , is determined from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or the metal wiring. It is preferably larger than 1, more preferably 2 to 100, further preferably 2.5 to 20, and particularly preferably 3 to 10.
The value of TA / TC , which is the ratio of the average thickness TA of the layer A to the average thickness TC of the layer C , is determined from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or metal wiring. It is preferably larger than 1, more preferably 2 to 100, further preferably 2.5 to 20, and particularly preferably 3 to 10.
Further, the value of TC / TB , which is the ratio of the average thickness TC of the layer C to the average thickness TB of the layer B , is determined from the viewpoint of the coefficient of linear expansion and the adhesion to the metal foil or the metal wiring. It is preferably 0.2 to 5, more preferably 0.5 to 2, and particularly preferably 0.8 to 1.2.
Further, the average thickness of the layers B and C is preferably 0.1 μm to 20 μm, preferably 0.5 μm, independently from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal foil or the metal wiring. It is more preferably ~ 15 μm, further preferably 1 μm to 10 μm, and particularly preferably 3 μm to 8 μm.
 本開示に係るポリマーフィルムの平均厚みは、強度、ポリマーフィルムの誘電正接、及び、金属箔又は金属配線との密着性の観点から、6μm~200μmであることが好ましく、12μm~100μmであることがより好ましく、20μm~60μmであることが特に好ましい。 The average thickness of the polymer film according to the present disclosure is preferably 6 μm to 200 μm, preferably 12 μm to 100 μm, from the viewpoints of strength, dielectric positive contact of the polymer film, and adhesion to a metal foil or metal wiring. It is more preferably 20 μm to 60 μm, and particularly preferably 20 μm to 60 μm.
 ポリマーフィルムの平均厚みは、任意の5箇所について、接着式の膜厚計、例えば、電子マイクロメータ(製品名「KG3001A]、アンリツ社製)を用いて測定し、それらの平均値とする。 The average thickness of the polymer film is measured at any five points using an adhesive film thickness meter, for example, an electronic micrometer (product name "KG3001A", manufactured by Anritsu Co., Ltd.), and is used as the average value thereof.
 本開示に係るポリマーフィルムの誘電正接は、誘電率の観点から、0.02以下であることが好ましく、0.01以下であることがより好ましく、0.005以下であることが更に好ましく、0を超え0.003以下であることが特に好ましい。 From the viewpoint of the dielectric constant, the dielectric loss tangent of the polymer film according to the present disclosure is preferably 0.02 or less, more preferably 0.01 or less, further preferably 0.005 or less, and 0. It is particularly preferable that it exceeds 0.003 and is 0.003 or less.
 本開示に係るポリマーフィルムの線膨張係数は、-20ppm/K~50ppm/Kであることが好ましく、-10ppm/K~40ppm/Kであることがより好ましく、0ppm/K~35ppm/Kであることが更に好ましく、10ppm/K~30ppm/Kであることが特に好ましい。 The coefficient of linear expansion of the polymer film according to the present disclosure is preferably −20 ppm / K to 50 ppm / K, more preferably −10 ppm / K to 40 ppm / K, and 0 ppm / K to 35 ppm / K. It is more preferably 10 ppm / K to 30 ppm / K, and particularly preferably 10 ppm / K to 30 ppm / K.
 本開示における線膨張係数の測定方法は、以下の方法により測定するものとする。
 熱機械分析装置(TMA)を用いて、幅5mm、長さ20mmのポリマーフィルム又は各層の測定サンプルの両端に1gの引張荷重をかけ、5℃/分の速度で25℃~200℃まで昇温した後、20℃/分の速度で30℃まで冷却し、再び5℃/分の速度で昇温したときの、30℃~150℃の間のTMA曲線の傾きから線膨張係数を算出する。
 各層を測定する場合は、カミソリ等により、測定する層を削り取り測定サンプルを作製してもよい。
 また、上記方法にて線膨張係数の測定が困難な場合は、以下の方法にて測定するものとする。
 フィルムをミクロトームで切削して切片サンプルを作製し、加熱ステージシステム(HS82、メトラー・トレド社製)を備えた光学顕微鏡にセットし、続いて、5℃/分の速度で25℃~200℃まで昇温した後、20℃/分の速度で30℃まで冷却し、再び5℃/分の速度で昇温したときの、30℃でのポリマーフィルム又は各層の厚み(ts30)、及び、150℃でのポリマーフィルム又は各層の厚み(ts150)を評価し、寸法変化を温度変化で除した値((ts150-ts30)/(150-30))を算出し、ポリマーフィルム又は各層の線膨張係数を算出する。
The method for measuring the coefficient of linear expansion in the present disclosure shall be as follows.
Using a thermomechanical analyzer (TMA), apply a tensile load of 1 g to both ends of a polymer film with a width of 5 mm and a length of 20 mm or a measurement sample of each layer, and raise the temperature from 25 ° C to 200 ° C at a rate of 5 ° C / min. Then, the coefficient of linear expansion is calculated from the slope of the TMA curve between 30 ° C. and 150 ° C. when the temperature is cooled to 30 ° C. at a rate of 20 ° C./min and the temperature is raised again at a rate of 5 ° C./min.
When measuring each layer, the layer to be measured may be scraped off with a razor or the like to prepare a measurement sample.
If it is difficult to measure the coefficient of linear expansion by the above method, it shall be measured by the following method.
The film is cut with a microtome to prepare a section sample, set in an optical microscope equipped with a heating stage system (HS82, manufactured by Polymer Toledo), and subsequently from 25 ° C to 200 ° C at a rate of 5 ° C / min. After raising the temperature, the polymer film or the thickness of each layer (ts30) at 30 ° C. and the thickness of each layer (ts30) at 30 ° C. when the temperature was cooled to 30 ° C. at a rate of 20 ° C./min and then raised again at a rate of 5 ° C./min, and 150 ° C. The thickness (ts150) of the polymer film or each layer was evaluated, the value obtained by dividing the dimensional change by the temperature change ((ts150-ts30) / (150-30)) was calculated, and the linear expansion coefficient of the polymer film or each layer was calculated. calculate.
 上記ポリマーフィルムの160℃における表層弾性率Esと内部弾性率Ecとの比率Es/Ecは、配線歪み抑制の観点から、0.05~10であることが好ましく、0.1~10であることがより好ましく、0.1~1であることが更に好ましく、0.1~0.5であることが特に好ましい。
 また、上記ポリマーフィルムの300℃における表層弾性率Esと内部弾性率Ecとの比率Es/Ecは、配線歪み抑制の観点から、0.01~10であることが好ましく、0.05~10であることがより好ましく、0.05~1であることが更に好ましく、0.05~0.5であることが特に好ましい。
 なお、特に説明のない限り、本開示における弾性率は、貯蔵弾性率である。
 また、本開示において、ポリマーフィルムが多層である場合は、表層弾性率Esは、少なくとも一方の表面に存在する層の弾性率であり、かつ2つの表面のうちの弾性率が低い側の表面の弾性率であり、内部弾性率Ecは、ポリマーフィルムの厚さ方向の中央部に存在する層の弾性率である。
 ポリマーフィルムが単層である場合は、表層弾性率Esは、ポリマーフィルムの表面から5μm以内の部分の弾性率であり、かつ2つの表面のうちの弾性率が低い側の表面の弾性率であり、内部弾性率Ecにおける内部は、ポリマーフィルムの厚さ方向の中央部分の弾性率である。
The ratio Es / Ec of the surface elastic modulus Es and the internal elastic modulus Ec at 160 ° C. of the polymer film is preferably 0.05 to 10 and preferably 0.1 to 10 from the viewpoint of suppressing wiring strain. Is more preferable, 0.1 to 1 is even more preferable, and 0.1 to 0.5 is particularly preferable.
Further, the ratio Es / Ec of the surface elastic modulus Es and the internal elastic modulus Ec at 300 ° C. of the polymer film is preferably 0.01 to 10 and preferably 0.05 to 10 from the viewpoint of suppressing wiring strain. It is more preferably present, more preferably 0.05 to 1, and particularly preferably 0.05 to 0.5.
Unless otherwise specified, the elastic modulus in the present disclosure is the storage elastic modulus.
Further, in the present disclosure, when the polymer film has multiple layers, the surface elastic modulus Es is the elastic modulus of the layer existing on at least one surface, and the elastic modulus of the surface of the two surfaces having the lower elastic modulus is lower. It is an elastic modulus, and the internal elastic modulus Ec is the elastic modulus of the layer existing in the central portion in the thickness direction of the polymer film.
When the polymer film is a single layer, the surface elastic modulus Es is the elastic modulus of the portion within 5 μm from the surface of the polymer film, and is the elastic modulus of the surface of the two surfaces having the lower elastic modulus. , Internal elastic modulus The inside in Ec is the elastic modulus of the central portion in the thickness direction of the polymer film.
 上記ポリマーフィルムの上記硬化性化合物Aを含む層における160℃での損失正接は、配線歪み抑制の観点から、0.01以上であることが好ましく、0.03以上であることがより好ましく、0.05~0.2であることが特に好ましい。
 また、上記ポリマーフィルムの上記硬化性化合物Aを含む層における300℃での損失正接は、配線歪み抑制の観点から、0.03以上であることが好ましく、0.1以上であることがより好ましく、0.1~0.6であることが特に好ましい。
The loss tangent at 160 ° C. in the layer containing the curable compound A of the polymer film is preferably 0.01 or more, more preferably 0.03 or more, and 0. It is particularly preferably 0.05 to 0.2.
Further, the loss tangent at 300 ° C. in the layer containing the curable compound A of the polymer film is preferably 0.03 or more, more preferably 0.1 or more from the viewpoint of suppressing wiring strain. , 0.1 to 0.6 is particularly preferable.
 本開示における弾性率、及び、損失正接の測定方法を以下に示す。
 ポリマーフィルムをUVレジンで包埋し、ミクロトームで切削して断面評価用サンプルを作製する。続けて、走査型プローブ顕微鏡(SPA400、エスアイアイ・ナノテクノロジー(株)製)を用いて、VE-AFMモードで観察し、測定温度における表面及び内部の貯蔵弾性率、並びに、損失正接(損失弾性率/貯蔵弾性率)を算出する。
The method for measuring the elastic modulus and the loss tangent in the present disclosure is shown below.
The polymer film is embedded in UV resin and cut with a microtome to prepare a sample for cross-section evaluation. Subsequently, observation was performed in VE-AFM mode using a scanning probe microscope (SPA400, manufactured by SII Nanotechnology Co., Ltd.), and the surface and internal storage elastic moduli at the measured temperature, as well as the loss positive contact (loss elasticity). Rate / storage modulus) is calculated.
<ポリマーフィルムの製造方法>
〔製膜〕
 本開示に係るポリマーフィルムの製造方法は、特に制限はなく、公知の方法を参照することができる。
 本開示に係るポリマーフィルムの製造方法としては、例えば、流延法、塗布法、押出法等が好適に挙げられ、中でも、流延法が特に好ましい。また、本開示に係るポリマーフィルムが、多層構造を有する場合には、例えば、共流延法、重層塗布法、共押出法等が好適に挙げられる。中でも、比較的薄手の製膜には共流延法が特に好ましく、厚手の製膜には共押出法が特に好ましい。
 ポリマーフィルムにおける多層構造を共流延法及び重層塗布法により製造する場合、液晶ポリマー等の各層の成分をそれぞれ溶媒に溶解又は分散した層A形成用組成物、層B形成用組成物、層C形成用組成物等を用いて、共流延法又は重層塗布法を行うことが好ましい。
<Manufacturing method of polymer film>
[Film formation]
The method for producing the polymer film according to the present disclosure is not particularly limited, and known methods can be referred to.
As a method for producing a polymer film according to the present disclosure, for example, a casting method, a coating method, an extrusion method and the like are preferably mentioned, and among them, the casting method is particularly preferable. When the polymer film according to the present disclosure has a multi-layer structure, for example, a co-flow spreading method, a multi-layer coating method, a co-extrusion method and the like are preferably mentioned. Of these, the coextrusion method is particularly preferable for relatively thin film formation, and the coextrusion method is particularly preferable for thick film formation.
When the multilayer structure of the polymer film is produced by the cocurrent spreading method and the multi-layer coating method, a layer A forming composition, a layer B forming composition, and a layer C in which the components of each layer such as a liquid crystal polymer are dissolved or dispersed in a solvent, respectively, are used. It is preferable to carry out a co-flow spreading method or a multi-layer coating method using a forming composition or the like.
 溶媒としては、例えば、ジクロロメタン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、1-クロロブタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン化炭化水素;p-クロロフェノール、ペンタクロロフェノール、ペンタフルオロフェノール等のハロゲン化フェノール;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル;アセトン、シクロヘキサノン等のケトン;酢酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;トリエチルアミン等のアミン;ピリジン等の含窒素複素環芳香族化合物;アセトニトリル、スクシノニトリル等のニトリル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド、テトラメチル尿素等の尿素化合物;ニトロメタン、ニトロベンゼン等のニトロ化合物;ジメチルスルホキシド、スルホラン等の硫黄化合物;ヘキサメチルリン酸アミド、トリn-ブチルリン酸等のリン化合物等が挙げられ、それらを2種以上用いてもよい。 Examples of the solvent include halogenated hydrocarbons such as dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1-chlorobutane, chlorobenzene and o-dichlorobenzene; Halogenated phenols such as p-chlorophenol, pentachlorophenol and pentafluorophenol; ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; ketones such as acetone and cyclohexanone; esters such as ethyl acetate and γ-butyrolactone; ethylene Phenols such as carbonates and propylene carbonates; amines such as triethylamine; nitrogen-containing heterocyclic aromatic compounds such as pyridine; nitriles such as acetonitrile and succinonitrile; N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl Examples include amides such as pyrrolidone, urea compounds such as tetramethylurea; nitro compounds such as nitromethane and nitrobenzene; sulfur compounds such as dimethylsulfoxide and sulfolane; and phosphorus compounds such as hexamethylphosphate amide and tri-n-butylphosphate. Two or more of them may be used.
 溶媒としては、腐食性が低く、取り扱い易いことから、非プロトン性化合物、特にハロゲン原子を有しない非プロトン性化合物を主成分とする溶媒が好ましく、溶媒全体に占める非プロトン性化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。また、上記非プロトン性化合物としては、液晶ポリマーを溶解し易いことから、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドン等のアミド又はγ-ブチロラクトン等のエステルを用いることが好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチルピロリドンがより好ましい。 As the solvent, an aprotic compound, particularly a solvent containing an aprotic compound having no halogen atom as a main component is preferable because it is low in corrosiveness and easy to handle, and the ratio of the aprotic compound to the whole solvent is It is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass. Further, as the aprotic compound, since it is easy to dissolve a liquid crystal polymer, an amide such as N, N-dimethylformamide, N, N-dimethylacetamide, tetramethylurea, N-methylpyrrolidone, or γ-butyrolactone may be used. Esters are preferred, with N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone being more preferred.
 また、溶媒としては、液晶ポリマーを溶解し易いことから、双極子モーメントが3~5である化合物を主成分とする溶媒が好ましく、溶媒全体に占める双極子モーメントが
3~5である化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。
 上記非プロトン性化合物として、双極子モーメントが3~5である化合物を用いることが好ましい。
Further, as the solvent, a solvent containing a compound having a dipole moment of 3 to 5 as a main component is preferable because the liquid crystal polymer is easily dissolved, and the ratio of the compound having a dipole moment of 3 to 5 in the whole solvent is preferable. Is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
As the aprotic compound, it is preferable to use a compound having a dipole moment of 3 to 5.
 また、溶媒としては、除去し易いことから、1気圧における沸点が220℃以下である化合物を主成分とするとする溶媒が好ましく、溶媒全体に占める1気圧における沸点が220℃以下である化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。
 上記非プロトン性化合物として、1気圧における沸点が220℃以下である化合物を用いることが好ましい。
Further, as the solvent, a solvent containing a compound having a boiling point of 220 ° C. or lower at 1 atm as a main component is preferable because it is easy to remove, and the ratio of the compound having a boiling point of 220 ° C. or less at 1 atm to the whole solvent. Is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
As the aprotic compound, it is preferable to use a compound having a boiling point of 220 ° C. or lower at 1 atm.
 また、本開示に係るポリマーフィルムの製造方法は、上記流延法、共流延法、塗布方、重層塗布法、押出法、及び共押出法等により製造する場合、支持体を使用してもよい。また、後述する積層体に用いる金属層(金属箔)等を支持体として使用する場合、剥離せずそのまま使用してもよい。
 支持体としては、例えば、金属ドラム、金属バンド、ガラス板、樹脂フィルム又は金属箔が挙げられる。中でも、金属ドラム、金属バンド、樹脂フィルムが好ましい。
 樹脂フィルムとしては、例えばポリイミド(PI)フィルムを挙げることができ、市販品の例としては、宇部興産(株)製U-ピレックスS及びU-ピレックスR、東レデュポン(株)製カプトン、並びに、SKCコーロンPI社製IF30、IF70及びLV300等が挙げられる。
 また、支持体は、容易に剥離できるように、表面に表面処理層が形成されていてもよい。表面処理層は、ハードクロムメッキ、フッ素樹脂等を用いることができる。
 樹脂フィルム支持体の平均厚みは、特に制限はないが、好ましくは25μm以上75μm以下であり、より好ましくは50μm以上75μmである。
Further, as the method for producing a polymer film according to the present disclosure, when the polymer film is produced by the above-mentioned casting method, co-casting method, coating method, multi-layer coating method, extrusion method, co-extrusion method or the like, a support may be used. good. Further, when a metal layer (metal foil) or the like used for the laminate described later is used as a support, it may be used as it is without peeling.
Examples of the support include a metal drum, a metal band, a glass plate, a resin film or a metal foil. Of these, metal drums, metal bands, and resin films are preferable.
Examples of the resin film include a polyimide (PI) film, and examples of commercially available products include U-Pylex S and U-Pylex R manufactured by Ube Kosan Co., Ltd., Kapton manufactured by Toray DuPont Co., Ltd., and Examples thereof include IF30, IF70 and LV300 manufactured by SKC Koron PI.
Further, the support may have a surface treatment layer formed on the surface thereof so that the support can be easily peeled off. For the surface treatment layer, hard chrome plating, fluororesin or the like can be used.
The average thickness of the resin film support is not particularly limited, but is preferably 25 μm or more and 75 μm or less, and more preferably 50 μm or more and 75 μm or less.
 また、流延又は塗布された膜状の組成物(流延膜又は塗膜)から溶媒の少なくとも一部を除去する方法としては、特に制限はなく、公知の乾燥方法を用いることができる。 Further, the method for removing at least a part of the solvent from the cast or applied film-like composition (cast film or coating film) is not particularly limited, and a known drying method can be used.
〔延伸〕
 本開示に係るポリマーフィルムは、分子配向を制御し、熱膨張係数や力学物性を調整する観点で、適宜、延伸を組み合わせることができる。延伸の方法は、特に制限はなく、公知の方法を参照することができ、溶媒を含んだ状態で実施してもよく、乾膜の状態で実施してもよい。溶媒を含んだ状態での延伸は、フィルムを把持して伸長してもよく、伸長せずに乾燥による自己収縮を利用して実施してもよい。延伸は、無機フィラー等の添加によってフィルム脆性が低下した場合に、破断伸度や破断強度を改善する目的で特に有効である。
[Stretching]
The polymer film according to the present disclosure can be appropriately combined with stretching from the viewpoint of controlling the molecular orientation and adjusting the coefficient of thermal expansion and the mechanical properties. The stretching method is not particularly limited, and a known method can be referred to, and the stretching method may be carried out in a solvent-containing state or in a dry film state. Stretching in a state containing a solvent may be carried out by grasping and stretching the film, or by utilizing self-shrinkage due to drying without stretching. Stretching is particularly effective for the purpose of improving the elongation at break and the strength at break when the brittleness of the film is reduced by the addition of an inorganic filler or the like.
 また、本開示に係るポリマーフィルムの製造方法は、必要に応じて、光又は熱により重合する工程を含んでいてもよい。
 光の照射手段、及び、熱の付与手段としては、特に制限はなく、メタルハライドランプ等の公知の光の照射手段、及び、ヒーター等の公知の熱の付与手段を用いることができる。
 光照射条件、及び、熱付与条件としては、特に制限はなく、所望の温度及び時間、並びに、公知の雰囲気で行うことができる。
Further, the method for producing a polymer film according to the present disclosure may include a step of polymerizing by light or heat, if necessary.
The light irradiating means and the heat applying means are not particularly limited, and known light irradiating means such as a metal halide lamp and known heat applying means such as a heater can be used.
The light irradiation conditions and the heat application conditions are not particularly limited, and can be carried out at a desired temperature and time, and in a known atmosphere.
〔熱処理〕
 本開示に係るポリマーフィルムの製造方法は、ポリマーフィルムを熱処理(アニール)する工程を含むことが好ましい。
 上記熱処理する工程における熱処理温度としては、製造プロセス中のウェブの機械強度、及び、製造されたポリマーフィルムの寸法変化、破断強度等の観点から、誘電正接が0.01以下であるポリマーのガラス転移温度Tg以上の温度、又は、融点Tm未満の温度であることが好ましい。
 更に、上記熱処理する工程における熱処理温度として具体的には、破断強度の観点から、260℃~370℃であることが好ましく、310℃~350℃であることがより好ましい。アニールの時間としては、1分~5時間が好ましく、5分~3時間が更に好ましい。
 また、本開示に係るポリマーフィルムの製造方法は、必要に応じ、他の公知の工程を含んでいてもよい。
〔Heat treatment〕
The method for producing a polymer film according to the present disclosure preferably includes a step of heat-treating (annealing) the polymer film.
The heat treatment temperature in the above heat treatment step is the glass transition of the polymer having a dielectric positive contact of 0.01 or less from the viewpoint of the mechanical strength of the web during the manufacturing process, the dimensional change of the manufactured polymer film, the breaking strength, and the like. The temperature is preferably Tg or higher, or preferably less than the melting point Tm.
Further, the heat treatment temperature in the heat treatment step is preferably 260 ° C. to 370 ° C., more preferably 310 ° C. to 350 ° C. from the viewpoint of breaking strength. The annealing time is preferably 1 minute to 5 hours, more preferably 5 minutes to 3 hours.
Further, the method for producing a polymer film according to the present disclosure may include other known steps, if necessary.
<用途>
 本開示に係るポリマーフィルムは、種々の用途に用いることができる、中でも、プリント配線板などの電子部品用フィルムに好適に用いることができ、フレキシブルプリント回路基板により好適に用いることができる。
 また、本開示に係るポリマーフィルムは、金属接着用ポリマーフィルムとして好適に用いることができる。
 更に、本開示に係るポリマーフィルムは、基材フィルムとして好適に用いることができる。また、基材フィルムとして用いる場合、本開示に係るポリマーフィルムは、上記層A及び上記層Bを有することが好ましい。
 更にまた、本開示に係るポリマーフィルムは、ボンディングシート(層間接着シート)として好適に用いることができる。また、ボンディングシートとして用いる場合、本開示に係るポリマーフィルムは、上記層A、上記層B及び上記層Cを有することが好ましい。
<Use>
The polymer film according to the present disclosure can be used for various purposes, and above all, it can be suitably used for a film for electronic parts such as a printed wiring board, and can be preferably used for a flexible printed circuit board.
Further, the polymer film according to the present disclosure can be suitably used as a polymer film for metal adhesion.
Further, the polymer film according to the present disclosure can be suitably used as a base film. When used as a base film, the polymer film according to the present disclosure preferably has the layer A and the layer B.
Furthermore, the polymer film according to the present disclosure can be suitably used as a bonding sheet (interlayer adhesive sheet). When used as a bonding sheet, the polymer film according to the present disclosure preferably has the layer A, the layer B, and the layer C.
(積層体)
 本開示に係る積層体は、本開示に係るポリマーフィルムが積層したものであればよいが、本開示に係るポリマーフィルムと、上記ポリマーフィルムの少なくとも一方の面に配置された金属層又は金属配線とを有することが好ましく、本開示に係るポリマーフィルムと、上記ポリマーフィルムの少なくとも一方の面に配置された銅層又は銅配線とを有することがより好ましい。
 また、本開示に係る積層体としては、金属層又は金属配線と、本開示に係るポリマーフィルムと、金属層又は金属配線とをこの順で有することが好ましく、銅層又は銅配線と、本開示に係るポリマーフィルムと、銅層又は銅配線とをこの順で有することがより好ましい。
 更に、本開示に係る積層体としては、本開示に係るポリマーフィルムと、銅層又は銅配線と、本開示に係るポリマーフィルムと、金属層又は金属配線と、本開示に係るポリマーフィルムとをこの順で有することが好ましい。上記積層体に用いる2つの本開示に係るポリマーフィルムは、同じものであっても、異なるものであってもよい。
 上記金属層及び金属配線は、特に制限はなく、公知の金属層及び金属配線であればよいが、例えば、銀層、銀配線、銅層又は銅配線であることが好ましく、銅層又は銅配線であることがより好ましい。
 また、上記金属層及び金属配線は、金属配線であることが好ましい。
 更に、上記金属層及び金属配線における金属は、銀、又は、銅であることが好ましく、銅であることがより好ましい。
 本開示に係るポリマーフィルムは、例えば、金属層又は金属配線の貼り付け後に、更に硬化させることが可能であるため、本開示に係る積層体は、耐久性の観点から、上記硬化性化合物Aが硬化してなる硬化物を含むことが好ましい。
 また、本開示に係る積層体は、層Bと、層Aと、層Cとをこの順で有する本開示に係るポリマーフィルムと、上記ポリマーフィルムの上記層B側の面に配置された金属層と、上記ポリマーフィルムの上記層C側の面に配置された金属層とを有することが好ましく、上記金属層がいずれも、銅層であることがより好ましい。
 上記層B側の面に配置された金属層は、上記層Bの表面に配置された金属層であることが好ましい。
 上記層C側の面に配置された金属層は、上記層Cの表面に配置された金属層であることが好ましく、上記層B側の面に配置された金属層は、上記層Bの表面に配置された金属層であり、かつ上記層C側の面に配置された金属層は、上記層Cの表面に配置された金属層であることがより好ましい。
 また、上記層B側の面に配置された金属層と上記層C側の面に配置された金属層とは、同じ材質、厚さ及び形状の金属層であっても、異なる材質、厚さ及び形状の金属層であってもよい。特性インピーダンス調整の観点からは、上記層B側の面に配置された金属層と上記層C側の面に配置された金属層とは、異なる材質や厚みの金属層であってもよく、層B又は層Cのうち、片側だけに金属層が積層されていてもよい。
(Laminated body)
The laminate according to the present disclosure may be a laminate of the polymer films according to the present disclosure, but the polymer film according to the present disclosure and a metal layer or metal wiring arranged on at least one surface of the polymer film. It is more preferable to have the polymer film according to the present disclosure, and it is more preferable to have a copper layer or a copper wiring arranged on at least one surface of the polymer film.
Further, the laminate according to the present disclosure preferably has a metal layer or metal wiring, a polymer film according to the present disclosure, and a metal layer or metal wiring in this order, and the copper layer or copper wiring and the present disclosure. It is more preferable to have the polymer film according to the above and the copper layer or the copper wiring in this order.
Further, as the laminate according to the present disclosure, the polymer film according to the present disclosure, the copper layer or the copper wiring, the polymer film according to the present disclosure, the metal layer or the metal wiring, and the polymer film according to the present disclosure are used. It is preferable to have them in order. The two polymer films according to the present disclosure used for the laminate may be the same or different.
The metal layer and the metal wiring are not particularly limited and may be a known metal layer and metal wiring, but for example, a silver layer, a silver wiring, a copper layer or a copper wiring is preferable, and the copper layer or the copper wiring is preferable. Is more preferable.
Further, the metal layer and the metal wiring are preferably metal wiring.
Further, the metal in the metal layer and the metal wiring is preferably silver or copper, and more preferably copper.
Since the polymer film according to the present disclosure can be further cured, for example, after the metal layer or the metal wiring is attached, the laminate according to the present disclosure contains the above-mentioned curable compound A from the viewpoint of durability. It is preferable to include a cured product obtained by curing.
Further, the laminate according to the present disclosure includes a polymer film according to the present disclosure having a layer B, a layer A, and a layer C in this order, and a metal layer arranged on the surface of the polymer film on the layer B side. It is preferable to have a metal layer arranged on the surface of the polymer film on the layer C side, and it is more preferable that all of the metal layers are copper layers.
The metal layer arranged on the surface on the layer B side is preferably a metal layer arranged on the surface of the layer B.
The metal layer arranged on the surface on the layer C side is preferably a metal layer arranged on the surface of the layer C, and the metal layer arranged on the surface on the layer B side is the surface of the layer B. It is more preferable that the metal layer arranged on the surface of the layer C and the metal layer arranged on the surface of the layer C is a metal layer arranged on the surface of the layer C.
Further, the metal layer arranged on the surface on the layer B side and the metal layer arranged on the surface on the layer C side are different materials and thicknesses even if they are metal layers having the same material, thickness and shape. And may be a metal layer of shape. From the viewpoint of characteristic impedance adjustment, the metal layer arranged on the surface on the layer B side and the metal layer arranged on the surface on the layer C side may be metal layers of different materials and thicknesses. A metal layer may be laminated on only one side of B or layer C.
 本開示に係るポリマーフィルムと金属層又は金属配線とを貼り付ける方法としては、特に制限はなく、公知のラミネート方法を用いることができる。 The method for attaching the polymer film and the metal layer or the metal wiring according to the present disclosure is not particularly limited, and a known laminating method can be used.
 上記ポリマーフィルムと上記銅層との剥離強度は、0.5kN/m以上であることが好ましく、0.7kN/m以上であることがより好ましく、0.7kN/m~2.0kN/mであることが更に好ましく、0.9kN/m~1.5kN/mであることが特に好ましい。 The peel strength between the polymer film and the copper layer is preferably 0.5 kN / m or more, more preferably 0.7 kN / m or more, and 0.7 kN / m to 2.0 kN / m. It is more preferably 0.9 kN / m to 1.5 kN / m, and particularly preferably 0.9 kN / m to 1.5 kN / m.
 本開示において、ポリマーフィルムと金属層(例えば、銅層)との剥離強度は、以下の方法により測定するものとする。
 ポリマーフィルムと金属層との積層体から1.0cm幅の剥離用試験片を作製し、ポリマーフィルムを両面接着テープで平板に固定し、JIS C 5016(1994)に準じて180°法により、50mm/分の速度で金属層からポリマーフィルムを剥離したときの強度(kN/m)を測定する。
In the present disclosure, the peel strength between the polymer film and the metal layer (for example, the copper layer) shall be measured by the following method.
A 1.0 cm wide peeling test piece was prepared from the laminate of the polymer film and the metal layer, the polymer film was fixed to a flat plate with double-sided adhesive tape, and 50 mm by the 180 ° method according to JIS C 5016 (1994). The strength (kN / m) when the polymer film is peeled from the metal layer at a rate of / minute is measured.
 金属層は、銀層又は銅層であることが好ましく、銅層であることがより好ましい。銅層としては、圧延法により形成された圧延銅箔、又は、電解法により形成された電解銅箔が好ましく、耐屈曲性の観点から、圧延銅箔であることがより好ましい。 The metal layer is preferably a silver layer or a copper layer, and more preferably a copper layer. As the copper layer, a rolled copper foil formed by a rolling method or an electrolytic copper foil formed by an electrolytic method is preferable, and a rolled copper foil is more preferable from the viewpoint of bending resistance.
 金属層、好ましくは銅層の平均厚みは、特に限定されないが、2μm~20μmであることが好ましく、3μm~18μmであることがより好ましく、5μm~12μmであることが更に好ましい。銅箔は、支持体(キャリア)上に剥離可能に形成されているキャリア付き銅箔であってもよい。キャリアとしては、公知のものを用いることができる。キャリアの平均厚みは、特に限定されないが、10μm~100μmであることが好ましく、18μm~50μmであることがより好ましい。 The average thickness of the metal layer, preferably the copper layer, is not particularly limited, but is preferably 2 μm to 20 μm, more preferably 3 μm to 18 μm, and even more preferably 5 μm to 12 μm. The copper foil may be a copper foil with a carrier formed on a support (carrier) so as to be peelable. As the carrier, a known carrier can be used. The average thickness of the carrier is not particularly limited, but is preferably 10 μm to 100 μm, and more preferably 18 μm to 50 μm.
 また、上記金属層は、本開示における効果をより発揮する観点から、上記ポリマーフィルムに接する側の面に上記ポリマーフィルムと相互作用可能な基を有することが好ましい。また、上記相互作用可能な基は、例えば、アミノ基とエポキシ基、ヒドロキシ基とエポキシ基のように、上記ポリマーフィルムが含有する官能基を有する化合物の官能基に対応する基であることが好ましい。
 相互作用可能な基としては、上記官能基を有する化合物において官能基をして挙げた基が挙げられる。
 中でも、密着性、及び、処理容易性の観点から、共有結合可能な基であることが好ましく、アミノ基、又は、ヒドロキシ基であることがより好ましく、アミノ基であることが特に好ましい。
Further, from the viewpoint of further exerting the effect in the present disclosure, the metal layer preferably has a group capable of interacting with the polymer film on the surface on the side in contact with the polymer film. Further, the interoperable group is preferably a group corresponding to a functional group of a compound having a functional group contained in the polymer film, such as an amino group and an epoxy group, and a hydroxy group and an epoxy group. ..
Examples of the interactable group include the groups listed as functional groups in the above-mentioned compound having a functional group.
Among them, from the viewpoint of adhesion and ease of processing, a covalently bondable group is preferable, an amino group or a hydroxy group is more preferable, and an amino group is particularly preferable.
 本開示に係る積層体における金属層を、例えば、エッチングにより所望の回路パターンに加工し、フレキシブルプリント回路基板することも好ましい。エッチング方法としては、特に制限はなく、公知のエッチング方法を用いることができる。 It is also preferable to process the metal layer in the laminate according to the present disclosure into a desired circuit pattern by etching, for example, to form a flexible printed circuit board. The etching method is not particularly limited, and a known etching method can be used.
 本開示に係る積層体において、上記硬化性化合物Aを含む層における160℃での損失正接は、配線歪み抑制の観点から、0.01以上であることが好ましく、0.03以上であることがより好ましく、0.05~0.2であることが特に好ましい。
 また、本開示に係る積層体において、上記硬化性化合物Aを含む層における300℃での損失正接は、配線歪み抑制の観点から、0.03以上であることが好ましく、0.1以上であることがより好ましく、0.1~0.6であることが特に好ましい。
 なお、ポリマーフィルムが単層である場合、上記硬化性化合物Aを含む層はポリマーフィルム自体となる。
In the laminate according to the present disclosure, the loss tangent at 160 ° C. in the layer containing the curable compound A is preferably 0.01 or more, preferably 0.03 or more, from the viewpoint of suppressing wiring strain. It is more preferably 0.05 to 0.2, and particularly preferably 0.05 to 0.2.
Further, in the laminate according to the present disclosure, the loss tangent at 300 ° C. in the layer containing the curable compound A is preferably 0.03 or more, preferably 0.1 or more, from the viewpoint of suppressing wiring distortion. It is more preferable, and it is particularly preferable that it is 0.1 to 0.6.
When the polymer film is a single layer, the layer containing the curable compound A is the polymer film itself.
 本開示に係る積層体の製造方法は、特に制限はないが、ハーフキュアを行う場合は、例えば、誘電正接が0.01以下であるポリマー、及び、硬化性化合物を含むポリマーフィルムにおいて、上記硬化性化合物の一部を硬化させた上記硬化性化合物Aを形成する一部硬化工程、上記フィルムに銅層又は銅配線に貼り合わせて積層体を形成する貼り合わせ工程をこの順で含むことが好ましい。 The method for producing the laminate according to the present disclosure is not particularly limited, but in the case of half-cure, for example, in a polymer having a dielectric tangent of 0.01 or less and a polymer film containing a curable compound, the above-mentioned curing is performed. It is preferable to include a partial curing step of forming the curable compound A in which a part of the sex compound is cured, and a bonding step of bonding the film to the copper layer or the copper wiring to form a laminated body in this order. ..
 本開示に係る積層体の製造方法は、誘電正接が0.01以下であるポリマー、及び、硬化性化合物を含むポリマーフィルムにおいて、上記硬化性化合物の一部を硬化させた上記硬化性化合物Aを形成する一部硬化工程を含むことが好ましい。
 また、本開示に係る積層体の製造方法は、液晶ポリマー、及び、硬化性化合物を含むポリマーフィルムにおいて、上記硬化性化合物の一部を硬化させた上記硬化性化合物Aを形成する一部硬化工程を含むことが好ましい。
 上記一部硬化工程における硬化方法としては、用いる硬化性化合物に応じて、適宜選択すればよいが、重合開始剤を用いることが好ましく、熱重合開始剤を用いることがより好ましい。
 また、上記一部硬化工程においては、硬化阻害剤を用いることが好ましい。硬化阻害剤を用いることにより、硬化の進行具合を制御することができ、一部のみ硬化した状態の層、いわゆる、Bステージ状の層を容易に形成することができる。
 また、誘電正接が0.01以下であるポリマー、硬化性化合物、及び、硬化性化合物Aとしては、上述したものを好適に用いることができる。
In the method for producing a laminate according to the present disclosure, in a polymer having a dielectric loss tangent of 0.01 or less and a polymer film containing a curable compound, the curable compound A obtained by curing a part of the curable compound is used. It is preferable to include a partial curing step of forming.
Further, the method for producing a laminate according to the present disclosure is a partial curing step of forming the curable compound A in which a part of the curable compound is cured in a liquid crystal polymer and a polymer film containing a curable compound. It is preferable to include.
The curing method in the partial curing step may be appropriately selected depending on the curable compound to be used, but it is preferable to use a polymerization initiator, and it is more preferable to use a thermal polymerization initiator.
Further, in the partial curing step, it is preferable to use a curing inhibitor. By using a curing inhibitor, the progress of curing can be controlled, and a layer in a partially cured state, that is, a so-called B-stage layer can be easily formed.
Further, as the polymer having a dielectric loss tangent of 0.01 or less, the curable compound, and the curable compound A, those described above can be preferably used.
 本開示に係る積層体の製造方法は、上記フィルムに金属層又は金属配線に貼り合わせて積層体を形成する貼り合わせ工程を含むことが好ましい。
 また、上記貼り合わせ工程においては、金属配線を貼り合わせることが好ましい。
 上記貼り合わせ工程における貼り合わせ方法は、特に制限はなく、公知のラミネート方法を用いることができる。
 上記貼り合わせ工程における貼り合わせ圧力は、特に制限はないが、0.1MPa以上であることが好ましく、0.2MPa~10MPaであることが好ましい。
 また、上記貼り合わせ工程における貼り合わせ温度は、使用するフィルム等に応じて適宜選択することができるが、150℃以上であることが好ましく、280℃以上であることがより好ましく、280℃以上420℃以下であることが特に好ましい。
The method for producing a laminated body according to the present disclosure preferably includes a bonding step of bonding the film to a metal layer or metal wiring to form a laminated body.
Further, in the above bonding step, it is preferable to bond the metal wiring.
The laminating method in the laminating step is not particularly limited, and a known laminating method can be used.
The bonding pressure in the bonding step is not particularly limited, but is preferably 0.1 MPa or more, and preferably 0.2 MPa to 10 MPa.
The bonding temperature in the bonding step can be appropriately selected depending on the film or the like used, but is preferably 150 ° C. or higher, more preferably 280 ° C. or higher, and 280 ° C. or higher 420. It is particularly preferable that the temperature is below ° C.
 また、本開示に係る積層体の製造方法は、配線歪みの抑制の観点から、上記貼り合わせ工程後、上記硬化性化合物Aの含有量が、上記硬化性化合物の全質量に対し、30質量%~100質量%であることが好ましく、50質量%~100質量%であることがより好ましく、70質量%~100質量%であることが特に好ましい。 Further, in the method for producing a laminate according to the present disclosure, from the viewpoint of suppressing wiring distortion, the content of the curable compound A after the bonding step is 30% by mass with respect to the total mass of the curable compound. It is preferably ~ 100% by mass, more preferably 50% by mass to 100% by mass, and particularly preferably 70% by mass to 100% by mass.
 また、本開示に係る積層体の製造方法は、スルーホールを形成する方法に好適に用いることができる。
 具体的には、本開示に係る積層体の製造方法は、本開示に係るポリマーフィルムを準備する準備工程、上記ポリマーフィルムに金属層又は金属配線に貼り合わせて積層体を形成する貼り合わせ工程、及び、上記積層体における上記硬化性化合物Aを含む層にスルーホールを形成するスルーホール形成工程をこの順で含むことが好ましい。
Further, the method for producing a laminated body according to the present disclosure can be suitably used for a method for forming through holes.
Specifically, the method for manufacturing a laminate according to the present disclosure includes a preparation step for preparing a polymer film according to the present disclosure, a bonding step for bonding a metal layer or a metal wiring to the polymer film to form a laminate, and a bonding step. In addition, it is preferable to include a through hole forming step of forming a through hole in the layer containing the curable compound A in the laminated body in this order.
 上記準備工程としては、特に制限はなく、本開示に係るポリマーフィルムを準備すればよい。また、本開示に係るポリマーフィルムを製造してもよい。
 上記貼り合わせ工程としては、上述した貼り合わせ工程と同様であり、好ましい態様も同様である。
The preparation step is not particularly limited, and the polymer film according to the present disclosure may be prepared. Further, the polymer film according to the present disclosure may be produced.
The bonding step is the same as the bonding step described above, and the preferred embodiment is also the same.
 多層プリント配線基板においては、例えば、電子部品を実装するため、あるいは多層となったプリント配線間を接続するために、スルーホール(貫通孔)を設け、そこに所定厚さの導電メッキを施される。
 本開示に係る積層体の製造方法は、上記積層体における上記硬化性化合物Aを含む層にスルーホールを形成するスルーホール形成工程を含むことが好ましい。
 上記硬化性化合物Aを含む層を形成した場合、上記スルーホール形成工程において、上記スルーホールの少なくとも一部の表面が硬化することが好ましい。
 上記硬化性化合物Aを含むことにより、更に硬化することが可能であるため、スルーホール形成時又は形成後に、上記スルーホールの少なくとも一部の表面が硬化することができ、スルーホール部分の強度及び耐久性を向上させることができる。上記硬化性化合物Aを含む層は、スルーホールの形成条件にもよるが、スルーホール形成時の熱及び圧力により、上記硬化性化合物Aを更に硬化させることができる。
 スルーホールの孔径及び形状は、特に制限はなく、所望に応じ適宜選択することができる。
In a multilayer printed wiring board, for example, through holes (through holes) are provided for mounting electronic components or connecting multilayer printed wirings, and conductive plating of a predetermined thickness is applied to the through holes. Ru.
The method for producing a laminated body according to the present disclosure preferably includes a through hole forming step of forming a through hole in the layer containing the curable compound A in the laminated body.
When the layer containing the curable compound A is formed, it is preferable that at least a part of the surface of the through holes is cured in the through hole forming step.
Since it can be further cured by containing the curable compound A, at least a part of the surface of the through hole can be cured during or after the formation of the through hole, and the strength of the through hole portion and the strength of the through hole portion can be cured. Durability can be improved. The layer containing the curable compound A can further cure the curable compound A by the heat and pressure at the time of forming the through holes, although it depends on the conditions for forming the through holes.
The hole diameter and shape of the through hole are not particularly limited and can be appropriately selected as desired.
 スルーホールの形成方法としては、特に制限はなく、公知の方法を用いることができる。例えば、レーザー又はルーターなどを用いる方法、ドライエッチングによる方法等が挙げられる。
 中でも、レーザーによりスルーホールの形成方法はスルーホール形成時に熱が生じるため、本開示に係るポリマーフィルムを用いることにより、形成されるスルーホールの内壁面近傍が硬化して、より力学的強度を向上させることができるため、好ましい。
The method for forming the through hole is not particularly limited, and a known method can be used. For example, a method using a laser or a router, a method by dry etching, and the like can be mentioned.
Above all, since heat is generated during the formation of through holes by the laser, the vicinity of the inner wall surface of the through holes to be formed is hardened by using the polymer film according to the present disclosure, and the mechanical strength is further improved. It is preferable because it can be made to.
 また、本開示に係る積層体の製造方法は、スルーホール部分の強度及び耐久性を向上させる観点から、上記スルーホール形成工程後に、上記硬化性化合物Aを硬化させる後硬化工程を含むことが好ましい。
 上記硬化性化合物Aを含むことにより、スルーホール形成後に上記硬化性化合物Aを含む層を更に硬化させ、強度及び耐久性を向上させることができる。
Further, from the viewpoint of improving the strength and durability of the through-hole portion, the method for producing the laminate according to the present disclosure preferably includes a post-curing step of curing the curable compound A after the through-hole forming step. ..
By containing the curable compound A, the layer containing the curable compound A can be further cured after the formation of through holes, and the strength and durability can be improved.
 また、本開示に係る積層体の製造方法は、その他の公知の工程を含んでいてもよい。
 その他の工程としては、例えば、洗浄工程等が挙げられる。
In addition, the method for producing a laminate according to the present disclosure may include other known steps.
Examples of other steps include a cleaning step and the like.
 以下に実施例を挙げて本開示を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の範囲は以下に示す具体例に限定されるものではない。 The present disclosure will be described in more detail with reference to examples below. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples may be appropriately changed as long as they do not deviate from the gist of the present disclosure. Therefore, the scope of the present disclosure is not limited to the specific examples shown below.
<<測定法>>
〔誘電正接〕
 誘電正接の測定は、周波数10GHzで共振摂動法により実施した。ネットワークアナライザ(Agilent Technology社製「E8363B」)に10GHzの空洞共振器((株)関東電子応用開発製CP531)を接続し、空洞共振器にフィルムのサンプル(幅:2.0mm×長さ:80mmを挿入し、温度25℃、湿度60%RH環境下、96時間の挿入前後の共振周波数の変化からフィルムの誘電正接を測定した。
<< Measurement method >>
[Dissipation factor]
The measurement of the dielectric loss tangent was carried out by the resonance perturbation method at a frequency of 10 GHz. A 10 GHz hollow resonator (CP531 manufactured by Kanto Denshi Applied Development Co., Ltd.) is connected to a network analyzer (“E8633B” manufactured by Agent Technology), and a film sample (width: 2.0 mm × length: 80 mm) is connected to the cavity resonator. Was inserted, and the dielectric positive contact of the film was measured from the change in the resonance frequency before and after the insertion for 96 hours under a temperature of 25 ° C. and a humidity of 60% RH.
〔弾性率及び損失正接〕
 ポリマーフィルムを紫外線硬化型樹脂(UVレジン)で包埋し、ミクロトームで切削して断面評価用サンプルを作製した。続けて、走査型プローブ顕微鏡(SPA400、エスアイアイ・ナノテクノロジー(株)製)を用いて、VE-AFMモードで観察し、測定温度における表面及び内部の貯蔵弾性率、並びに、損失正接(損失弾性率/貯蔵弾性率)を算出した。
[Elastic modulus and loss tangent]
The polymer film was embedded in an ultraviolet curable resin (UV resin) and cut with a microtome to prepare a sample for cross-section evaluation. Subsequently, observation was performed in VE-AFM mode using a scanning probe microscope (SPA400, manufactured by SII Nanotechnology Co., Ltd.), and the surface and internal storage elastic moduli at the measured temperature, as well as the loss positive contact (loss elasticity). Rate / storage modulus) was calculated.
〔剥離強度〕
 ポリマーフィルムと銅層との積層体から10mm幅の剥離用試験片を作製し、ポリマーフィルムを両面接着テープで平板に固定し、JIS C 5016(1994)に準じて180°法により、50mm/分の速度でポリマーフィルムから銅層を剥離したときの強度(kN/m)を測定した。
[Peeling strength]
A 10 mm wide peeling test piece was prepared from the laminate of the polymer film and the copper layer, the polymer film was fixed to a flat plate with double-sided adhesive tape, and 50 mm / min by the 180 ° method according to JIS C 5016 (1994). The strength (kN / m) when the copper layer was peeled off from the polymer film was measured at the speed of.
〔厚み方向の添加量分布〕
 フィルムをミクロトームで切削して断面評価用サンプルを作製した。続けて、顕微赤外分光分析(顕微IR)装置を用い、5μm×20μmのアパーチャーで表面から2μm毎に測定し、誘電率が0.01以下であるポリマー由来、並びに、硬化性化合物由来の特性吸収スペクトル強度を用い、ポリマーフィルム表面、及び、内部の硬化性化合物の含有率を評価した。
[Distribution of addition amount in the thickness direction]
The film was cut with a microtome to prepare a sample for cross-section evaluation. Subsequently, using a micro-infrared spectroscopic analysis (micro-IR) device, measurements were taken every 2 μm from the surface with a 5 μm × 20 μm aperture, and the characteristics derived from polymers with a dielectric constant of 0.01 or less and those derived from curable compounds. The content of the curable compound on the surface and inside of the polymer film was evaluated using the absorption spectral intensity.
<<製造例>>
<液晶ポリマー>
 LC-A:下記製造方法に従って作製した液晶ポリマー
<< Manufacturing example >>
<Liquid crystal polymer>
LC-A: Liquid crystal polymer produced according to the following manufacturing method
-LC-Aの製造-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸940.9g(5.0モル)、4-ヒドロキシアセトアミノフェン377.9g(2.5モル)、イソフタル酸415.3g(2.5モル)及び無水酢酸867.8g(8.4モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温(23℃)から140℃まで60分かけて昇温し、140℃で3時間還流させた。
 次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(A1)を得た。この液晶ポリエステル(A1)の流動開始温度は、193.3℃であった。
-Manufacturing of LC-A-
In a reactor equipped with a stirrer, torque meter, nitrogen gas introduction tube, thermometer and reflux cooler, 940.9 g (5.0 mol) of 6-hydroxy-2-naphthoic acid, 4-hydroxyacetaminophen 377. After adding 9 g (2.5 mol), 415.3 g (2.5 mol) of isophthalic acid and 867.8 g (8.4 mol) of anhydrous acetic acid, the gas in the reactor was replaced with nitrogen gas, and then a nitrogen gas stream. The temperature was raised from room temperature (23 ° C.) to 140 ° C. over 60 minutes with stirring, and the mixture was refluxed at 140 ° C. for 3 hours.
Then, while distilling off by-product acetic acid and unreacted acetic anhydride, the temperature was raised from 150 ° C. to 300 ° C. over 5 hours, held at 300 ° C. for 30 minutes, and then the contents were taken out from the reactor and brought to room temperature. Cooled. The obtained solid matter was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (A1). The flow start temperature of this liquid crystal polyester (A1) was 193.3 ° C.
 上記で得た液晶ポリエステル(A1)を、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより、固相重合させた後、冷却し、次いで、粉砕機で粉砕して、粉末状の液晶ポリエステル(A2)を得た。この液晶ポリエステル(A2)の流動開始温度は、220℃であった。 The liquid crystal polyester (A1) obtained above is heated in a nitrogen atmosphere from room temperature to 160 ° C. over 2 hours and 20 minutes, then from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and at 180 ° C. By holding for 5 hours, solid-phase polymerization was carried out, the mixture was cooled, and then the mixture was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (A2). The flow start temperature of this liquid crystal polyester (A2) was 220 ° C.
 上記で得た液晶ポリエステル(A2)を、窒素雰囲気下、室温(23℃)から180℃まで1時間25分かけて昇温し、次いで180℃から255℃まで6時間40分かけて昇温し、255℃で5時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル(A)(LC-A)を得た。液晶ポリエステル(A)の流動開始温度は、302℃であった。また、この液晶ポリエステル(A)を、示差走査熱量分析装置を用いて融点Tmを測定した結果、311℃であった。 The liquid crystal polyester (A2) obtained above is heated in a nitrogen atmosphere from room temperature (23 ° C.) to 180 ° C. over 1 hour and 25 minutes, and then from 180 ° C. to 255 ° C. over 6 hours and 40 minutes. After solid-phase polymerization by holding at 255 ° C. for 5 hours, the mixture was cooled to obtain powdery liquid crystal polyesters (A) (LC-A). The flow start temperature of the liquid crystal polyester (A) was 302 ° C. Further, the melting point Tm of this liquid crystal polyester (A) was measured using a differential scanning calorimetry apparatus and found to be 311 ° C.
 LC-B:下記製造方法に従って作製した液晶ポリマー LC-B: Liquid crystal polymer produced according to the following manufacturing method
-LC-Bの製造-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸940.9g(5.0モル)、4-ヒドロキシアセトアミノフェン377.9g(2.5モル)、イソフタル酸415.3g(2.5モル)及び無水酢酸867.8g(8.4モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温(23℃)から143℃まで60分かけて昇温し、143℃で1時間還流させた。
 次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(B1)を得た。
-Manufacturing of LC-B-
In a reactor equipped with a stirrer, torque meter, nitrogen gas introduction tube, thermometer and reflux cooler, 940.9 g (5.0 mol) of 6-hydroxy-2-naphthoic acid, 4-hydroxyacetaminophen 377. After adding 9 g (2.5 mol), 415.3 g (2.5 mol) of isophthalic acid and 867.8 g (8.4 mol) of anhydrous acetic acid, the gas in the reactor was replaced with nitrogen gas, and then a nitrogen gas stream. The temperature was raised from room temperature (23 ° C.) to 143 ° C. over 60 minutes with stirring, and the mixture was refluxed at 143 ° C. for 1 hour.
Then, while distilling off by-product acetic acid and unreacted acetic anhydride, the temperature was raised from 150 ° C. to 300 ° C. over 5 hours, held at 300 ° C. for 30 minutes, and then the contents were taken out from the reactor and brought to room temperature. Cooled. The obtained solid matter was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (B1).
 上記で得た液晶ポリエステル(B1)を、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより、固相重合させた後、冷却し、次いで、粉砕機で粉砕して、粉末状の液晶ポリエステル(B2)を得た。 The liquid crystal polyester (B1) obtained above is heated in a nitrogen atmosphere from room temperature to 160 ° C. over 2 hours and 20 minutes, then from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and at 180 ° C. By holding for 5 hours, solid-phase polymerization was carried out, the mixture was cooled, and then the mixture was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (B2).
 上記で得た液晶ポリエステル(B2)を、窒素雰囲気下、室温(23℃)から180℃まで1時間20分かけて昇温し、次いで180℃から240℃まで5時間かけて昇温し、240℃で5時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル(C)(LC-B)を得た。 The liquid crystal polyester (B2) obtained above was heated in a nitrogen atmosphere from room temperature (23 ° C.) to 180 ° C. over 1 hour and 20 minutes, and then from 180 ° C. to 240 ° C. over 5 hours to 240. The liquid crystal polyester (C) (LC-B) in the form of powder was obtained by solid-phase polymerization by holding at ° C. for 5 hours and then cooling.
<硬化性化合物>
 M-1:市販の低誘電接着剤(ポリマー型の硬化性化合物を主として含むSLK(信越化学工業(株)製)のワニスを用い、固形分量が表1に記載の量になるように用いた。)
 M-2:市販のアミノフェノール型エポキシ樹脂(jER630LSD、三菱ケミカル(株)製)を、固形分量が表1に記載の量となるように用いた。
<Curable compound>
M-1: A commercially available low-dielectric adhesive (SLK (manufactured by Shin-Etsu Chemical Co., Ltd.) varnish containing mainly a polymer-type curable compound) was used so that the solid content was as shown in Table 1. .)
M-2: A commercially available aminophenol type epoxy resin (jER630LSD, manufactured by Mitsubishi Chemical Corporation) was used so that the solid content was the amount shown in Table 1.
<フィラー>
 F-1:市販の平均一次粒径20nmの疎水性シリカ(NX90S(ヘキサメチルジシラザンで表面処理、日本アエロジル(株)製)を用い、固形分量が表1に記載の量となるように用いた。)
<Filler>
F-1: Commercially available hydrophobic silica with an average primary particle size of 20 nm (NX90S (surface treated with hexamethyldisilazane, manufactured by Nippon Aerosil Co., Ltd.) is used so that the solid content is as shown in Table 1. board.)
 F-2:下記製造方法に従って作製した液晶ポリマー粒子 F-2: Liquid crystal polymer particles produced according to the following manufacturing method
-LC-Cの製造-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ヒドロキノン272.52g(2.475モル、2,6-ナフタレンジカルボン酸及びテレフタル酸の合計モル量に対して0.225モル過剰)、無水酢酸1226.87g(12モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
-Manufacturing of LC-C-
In a reactor equipped with a stirrer, torque meter, nitrogen gas introduction tube, thermometer and reflux cooler, 2-hydroxy-6-naphthoic acid 1034.99 g (5.5 mol), 2,6-naphthalenedicarboxylic acid 378 0.33 g (1.75 mol), terephthalic acid 83.07 g (0.5 mol), hydroquinone 272.52 g (2.475 mol, 2,6-naphthalenedicarboxylic acid and terephthalic acid 0. 225 mol excess), 1226.87 g (12 mol) of anhydrous acetic acid, and 0.17 g of 1-methylimidazole as a catalyst. After replacing the gas in the reactor with nitrogen gas, the temperature was raised from room temperature to 145 ° C. over 15 minutes while stirring under a nitrogen gas stream, and the mixture was refluxed at 145 ° C. for 1 hour.
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で3時間保持した後、固形状の液晶ポリエステル(LC-C)を取り出し、この液晶ポリエステル(LC-C)を室温まで冷却した。このポリエステル(LC-C)の流動開始温度は、265℃であった。 Then, while distilling off the by-produced acetic acid and unreacted acetic anhydride, the temperature was raised from 145 ° C. to 310 ° C. over 3 hours and 30 minutes, kept at 310 ° C. for 3 hours, and then solid liquid crystal polyester (LC). -C) was taken out, and this liquid crystal polyester (LC-C) was cooled to room temperature. The flow start temperature of this polyester (LC-C) was 265 ° C.
〔液晶ポリエステル粒子(F-1)の製造〕
 ジェットミル((株)栗本鐡工所製「KJ-200」)を用いて、液晶ポリエステル(LC-C)を粉砕し、液晶ポリエステル粒子(F-2)を得た。この液晶ポリエステル粒子の平均粒径は9μmであった。
[Manufacturing of liquid crystal polyester particles (F-1)]
Liquid crystal polyester (LC-C) was pulverized using a jet mill (“KJ-200” manufactured by Kurimoto Iron Works Co., Ltd.) to obtain liquid crystal polyester particles (F-2). The average particle size of the liquid crystal polyester particles was 9 μm.
 F-3:市販の平均粒径0.5μmのシリカ粒子(SO-C2、(株)アドマテックス製)を、固形分量が表1に記載の量となるように用いた。
 F-4:市販の平均粒径16μmの中空粉体(グラスバブルズiM30K、スリーエムジャパン(株)製)
 F-5:窒化ホウ素粒子(融点>500℃、HP40MF100(水島合金鉄(株)製)、誘電正接0.0007)
F-3: Commercially available silica particles having an average particle size of 0.5 μm (SO-C2, manufactured by Admatex Co., Ltd.) were used so that the solid content was the amount shown in Table 1.
F-4: Commercially available hollow powder with an average particle size of 16 μm (Glass Bubbles iM30K, manufactured by 3M Japan Ltd.)
F-5: Boron nitride particles (melting point> 500 ° C., HP40MF100 (manufactured by Mizushima Alloy Iron Co., Ltd.), dielectric loss tangent 0.0007)
<製膜>
 下記の流延に準じて製膜を行った。
<Film formation>
A film was formed according to the following flow.
〔共流延A(溶液製膜)〕
-ポリマー溶液の調製-
 上記液晶ポリマー、及び、添加剤をN-メチルピロリドンに加え、窒素雰囲気下、140℃4時間撹拌して溶液化した後、表1に記載の体積比率になるように添加剤を添加し、25℃30分攪拌して、ポリマー溶液を得た。液晶ポリマーと添加剤は、表1に記載の体積比率で添加し、固形分濃度は、層A(コア層)用の溶液は23質量%、層B(表層)用の溶液は20質量%とした。
 続いて、最初に、公称孔径10μmの焼結繊維金属フィルターを通過させ、ついで同じく公称孔径10μmの焼結繊維金属フィルターを通過させ、各ポリマー溶液をそれぞれ得た。
 なお、添加剤がN-メチルピロリドンに溶解しない場合は、添加剤を添加せずにポリマー溶液を調製し、上記焼結繊維金属フィルターに通過させた後に添加剤を添加して、撹拌した。
[Hypersalivation A (solution film formation)]
-Preparation of polymer solution-
The above liquid crystal polymer and the additive were added to N-methylpyrrolidone, and the mixture was stirred at 140 ° C. for 4 hours to form a solution. Then, the additive was added so as to have the volume ratio shown in Table 1, and 25 The mixture was stirred at ° C. for 30 minutes to obtain a polymer solution. The liquid crystal polymer and the additive were added in the volume ratio shown in Table 1, and the solid content concentration was 23% by mass for the solution for layer A (core layer) and 20% by mass for the solution for layer B (surface layer). did.
Subsequently, first, a sintered fiber metal filter having a nominal pore diameter of 10 μm was passed, and then a sintered fiber metal filter having a nominal pore diameter of 10 μm was also passed to obtain each polymer solution.
When the additive was not dissolved in N-methylpyrrolidone, a polymer solution was prepared without adding the additive, passed through the sintered fiber metal filter, and then the additive was added and stirred.
-片面銅張積層板の作製-
 得られた層A用、及び、層B用のポリマー溶液を、2層共流延用に調整したフィードブロックを装備した流延ダイに送液し、銅箔(福田金属箔粉工業(株)製、CF-T4X-SV-12、平均厚み12μm)の処理面上に、銅箔と層Aとが接するように流延した。40℃にて4時間乾燥することにより、流延膜から溶媒を除去し、銅層とフィルムとを有する積層体(片面銅張積層板)を得た。
-Manufacturing of single-sided copper-clad laminate-
The obtained polymer solutions for layer A and layer B were sent to a casting die equipped with a feed block adjusted for two-layer co-casting, and copper foil (Fukuda Metal Leaf Powder Industry Co., Ltd.) was sent. Manufactured by CF-T4X-SV-12, with an average thickness of 12 μm), the copper foil was cast so as to be in contact with the layer A. The solvent was removed from the cast film by drying at 40 ° C. for 4 hours to obtain a laminate having a copper layer and a film (single-sided copper-clad laminate).
〔共流延B(溶液製膜)〕
-ポリマー溶液の調製-
 表1に記載のポリマー、及び、表1に記載の添加剤をN-メチルピロリドンに加え、窒素雰囲気下、140℃4時間撹拌し、ポリマー溶液を得た。上記ポリマー及び添加剤は、表1に記載の体積比率で添加し、固形分濃度は、表1に記載の値とした。
 続いて、最初に、公称孔径10μmの焼結繊維金属フィルターを通過させ、ついで同じく公称孔径10μmの焼結繊維金属フィルターを通過させ、各層A用、及び、層B用のポリマー溶液、並びに、必要に応じて層C用のポリマー溶液をそれぞれ得た。
 なお、添加剤がN-メチルピロリドンに溶解しない場合は、添加剤を添加せずに液晶ポリマー溶液を調製し、上記焼結繊維金属フィルターに通過させた後に添加剤を添加して、25℃30分撹拌した。
[Hypersalivation B (solution film formation)]
-Preparation of polymer solution-
The polymer shown in Table 1 and the additive shown in Table 1 were added to N-methylpyrrolidone and stirred at 140 ° C. for 4 hours under a nitrogen atmosphere to obtain a polymer solution. The above polymers and additives were added in the volume ratio shown in Table 1, and the solid content concentration was set to the value shown in Table 1.
Subsequently, first, a sintered fiber metal filter having a nominal pore diameter of 10 μm is passed, and then a sintered fiber metal filter having a nominal pore diameter of 10 μm is also passed, and polymer solutions for each layer A and B, and necessary. A polymer solution for layer C was obtained according to the above.
If the additive does not dissolve in N-methylpyrrolidone, prepare a liquid crystal polymer solution without adding the additive, pass it through the sintered fiber metal filter, and then add the additive at 25 ° C. 30. The mixture was stirred for a minute.
-フィルムの作製-
 得られた層A用、及び、層B用のポリマー溶液、並びに、必要に応じて層C用のポリマー溶液を、共流延用に調整したフィードブロックを装備した流延ダイに送液し、支持体として、銅箔(福田金属箔粉工業(株)製、CF-T9DA-SV-18、厚み18μm、貼り付け面(処理面)の表面粗さRz0.85μm)の処理面上に流延し、層B/層A(/層C)/銅箔の積層体をそれぞれ作製した。40℃にて4時間乾燥、更に100℃で2時間乾燥することにより、流延膜から溶媒を除去し、銅層を有するポリマーフィルム(積層体)をそれぞれ得た。
-Film production-
The obtained polymer solutions for layer A and layer B, and if necessary, the polymer solution for layer C were sent to a casting die equipped with a feed block prepared for co-casting. As a support, it is poured onto a treated surface of a copper foil (CF-T9DA-SV-18 manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., thickness 18 μm, surface roughness Rz 0.85 μm of the pasting surface (processed surface)). Then, a laminated body of layer B / layer A (/ layer C) / copper foil was prepared. The solvent was removed from the cast film by drying at 40 ° C. for 4 hours and further drying at 100 ° C. for 2 hours to obtain polymer films (laminates) having a copper layer.
〔単層流延(溶液製膜)〕
-ポリマー溶液の調製-
 上記液晶ポリマー、及び、添加剤をN-メチルピロリドンに加え、窒素雰囲気下、140℃4時間撹拌して溶液化した後、表1に記載の体積比率になるように添加剤を添加し、25℃30分攪拌して、ポリマー溶液を得た。液晶ポリマーと添加剤は、表1に記載の体積比率で添加し、固形分濃度は23質量%とした。
 続いて、最初に、公称孔径10μmの焼結繊維金属フィルターを通過させ、ついで同じく公称孔径10μmの焼結繊維金属フィルターを通過させ、各ポリマー溶液をそれぞれ得た。
 なお、添加剤がN-メチルピロリドンに溶解しない場合は、添加剤を添加せずに液晶ポリマー溶液を調製し、上記焼結繊維金属フィルターに通過させた後に添加剤を添加して、撹拌した。
[Single laminar flow (solution film formation)]
-Preparation of polymer solution-
The above liquid crystal polymer and the additive were added to N-methylpyrrolidone, and the mixture was stirred at 140 ° C. for 4 hours to form a solution. Then, the additive was added so as to have the volume ratio shown in Table 1, and 25 The mixture was stirred at ° C. for 30 minutes to obtain a polymer solution. The liquid crystal polymer and the additive were added in the volume ratio shown in Table 1, and the solid content concentration was 23% by mass.
Subsequently, first, a sintered fiber metal filter having a nominal pore diameter of 10 μm was passed, and then a sintered fiber metal filter having a nominal pore diameter of 10 μm was also passed to obtain each polymer solution.
When the additive was not dissolved in N-methylpyrrolidone, a liquid crystal polymer solution was prepared without adding the additive, passed through the sintered fiber metal filter, and then the additive was added and stirred.
-ポリマーフィルムの作製-
 得られたポリマー溶液を、単層タイプの流延ダイに送液し、ステンレス製ベルト上に流延した。残留溶剤量が25質量%になった時点で支持体から剥離し、ウェブの両端をテンタークリップで把持ながら乾燥して溶媒を除去し、ポリマーフィルムを得た。
-Preparation of polymer film-
The obtained polymer solution was sent to a single-layer type casting die and cast on a stainless steel belt. When the amount of the residual solvent reached 25% by mass, the film was peeled off from the support and dried while grasping both ends of the web with tenter clips to remove the solvent to obtain a polymer film.
-片面銅張積層板の作製-
 得られたポリマーフィルムを、銅箔(福田金属箔粉工業(株)製、CF-T4X-SV-12、平均厚み12μm)の処理面が、フィルムと接するように載せ、ラミネータ(ニッコー・マテリアルズ社製「真空ラミネータV-130」)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、片面銅張積層板を得た。
-Manufacturing of single-sided copper-clad laminate-
The obtained polymer film was placed on the copper foil (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., CF-T4X-SV-12, average thickness 12 μm) so that the treated surface was in contact with the film, and the laminator (Nikko Materials) was placed. A single-sided copper-clad laminate was obtained by laminating for 1 minute under the conditions of 140 ° C. and a laminating pressure of 0.4 MPa using a "vacuum laminator V-130" manufactured by the same company.
-両面銅張積層板の作製-
~銅張積層板前駆体工程~
 得られたポリマーフィルムの両面を、銅箔(福田金属箔粉工業(株)製、CF-T4X-SV-12、平均厚み12μm)の処理面が、フィルムと接するように載せ、ラミネータ(ニッコー・マテリアルズ(株)製「真空ラミネータV-130」)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、両面銅張積層板を得た。
-Manufacturing of double-sided copper-clad laminate-
-Copper-clad laminate precursor process-
A laminator (Nikko. Using "Vacuum Laminator V-130" manufactured by Materials Co., Ltd.), laminating treatment was performed for 1 minute under the conditions of 140 ° C. and a laminating pressure of 0.4 MPa to obtain a double-sided copper-clad laminate.
<フレキシブル配線基板の作製1>
 上記片面銅張積層板及び上記両面銅張積層板を用い、外層プレーン(グランド層)の4層ストリップライン構造を有するフレキシブル配線基板を作製した。
<Manufacturing of flexible wiring board 1>
Using the single-sided copper-clad laminate and the double-sided copper-clad laminate, a flexible wiring board having a four-layer stripline structure of an outer layer plane (ground layer) was produced.
-配線基材の形成工程-
 公知のフォトファブリケーション手法により、比較例1のフィルムを用いた両面銅張積層板の銅箔をパターニングして、3対の信号線を含む配線基材を作製した。信号線の長さは100mm、幅は特性インピーダンスが50Ωになるように設定した。
-Process of forming wiring base material-
By a known photofabrication method, a copper foil of a double-sided copper-clad laminate using the film of Comparative Example 1 was patterned to prepare a wiring base material containing three pairs of signal lines. The length of the signal line was set to 100 mm, and the width was set so that the characteristic impedance was 50 Ω.
-積層工程-
 上記配線基材及び一対の上記片面銅張積層板を用い、片面銅張積層板のフィルム側が配線基材と接するように、片面銅張積層板/配線基材/片面銅張積層板となるように重ねた。真空プレス装置を使用して、表1に記載の温度、且つ4.5MPaの条件で60分間圧着することにより、硬化性化合物を十分に硬化させ、フレキシブル配線基板を作製した。
-Laminating process-
Using the wiring base material and the pair of single-sided copper-clad laminates, the single-sided copper-clad laminate / wiring base material / single-sided copper-clad laminate is formed so that the film side of the single-sided copper-clad laminate is in contact with the wiring substrate. Layered on. The curable compound was sufficiently cured by crimping for 60 minutes at the temperature shown in Table 1 and under the conditions of 4.5 MPa using a vacuum press device to prepare a flexible wiring board.
 作製したフレキシブル配線基板を用いて、配線の歪みに関する評価を行った。評価方法は以下のとおりである。評価結果を表1に示す。 Using the manufactured flexible wiring board, we evaluated the distortion of the wiring. The evaluation method is as follows. The evaluation results are shown in Table 1.
<配線歪み>
 フレキシブル配線基板をミクロトームで切削し、断面を光学顕微鏡で観察し、下記の評価基準に基づいて、配線の歪みの抑制性を評価した。
  A:信号線及びグランド線に歪みが認められない。
  B:信号線に歪みは認められないが、グランド線に歪みが認められる。
  C:1対の信号線に歪みが認められる。
  D:2対又は3対の信号線に歪みが認められる。
<Wiring distortion>
The flexible wiring substrate was cut with a microtome, the cross section was observed with an optical microscope, and the inhibitory property of wiring distortion was evaluated based on the following evaluation criteria.
A: No distortion is observed in the signal line and ground line.
B: No distortion is observed in the signal line, but distortion is observed in the ground line.
C: Distortion is observed in a pair of signal lines.
D: Distortion is observed in 2 or 3 pairs of signal lines.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、実施例1~実施例9では、誘電正接が、0.01以下であり、表面の凹凸追随性に優れるため、配線の歪みが抑制されることが分かった。また、実施例1~4のフレキシブル配線基板は、積層工程において、十分に硬化反応が行われたため、耐久性にも優れるものであった。
 一方、比較例1の片面銅張積層板を用いた場合、表面の凹凸追随性に劣り、配線の歪みが発生することが分かった。
 なお、実施例4のポリマーフィルムは、後述するスルーホール加工性の評価に更に用い、実施例5のポリマーフィルムは、上記配線歪み評価は行わず、後述するフィルムの積層評価に用いた。
As shown in Table 1, in Examples 1 to 9, it was found that the dielectric loss tangent was 0.01 or less, and the surface was excellent in followability of unevenness, so that the distortion of the wiring was suppressed. Further, the flexible wiring boards of Examples 1 to 4 were excellent in durability because the curing reaction was sufficiently performed in the laminating step.
On the other hand, it was found that when the single-sided copper-clad laminate of Comparative Example 1 was used, the surface unevenness followability was inferior and wiring distortion occurred.
The polymer film of Example 4 was further used for the evaluation of through-hole processability described later, and the polymer film of Example 5 was used for the film lamination evaluation described later without performing the wiring strain evaluation.
<スルーホール加工性評価>
 実施例4のポリマーフィルムを用いた両面銅張積層板にNCドリルを用いて貫通スルーホール加工を行い、導電化処理、電気銅めっきにより20μm厚のめっき層を形成し、基板の両面の層間導通を行った。更に、公知のフォトグラフィ手法により信号線、及び、グランドパッド等を形成した後、両面に12.5μm厚のポリイミドフィルムを含むカバーレイを形成した。また、比較例1のフィルムを用いた両面銅張積層板についても、同様の加工を行った。
<Through hole workability evaluation>
Through-hole processing is performed on a double-sided copper-clad laminate using the polymer film of Example 4 using an NC drill, a plating layer having a thickness of 20 μm is formed by conduction treatment and electrolytic copper plating, and interlayer conduction on both sides of the substrate is formed. Was done. Further, after forming a signal line, a ground pad, and the like by a known photography method, a coverlay containing a polyimide film having a thickness of 12.5 μm was formed on both sides. Further, the same processing was performed on the double-sided copper-clad laminate using the film of Comparative Example 1.
 得られた積層体のスルーホール部分をミクロトームで切削し、走査型電子顕微鏡を用いてスルーホールめっきの表面粗さRzを観察したところ、比較例1のフィルムを用いた場合は5μmであったのに対し、実施例4のフィルムを用いた場合は1μmと良好であった。 The through-hole portion of the obtained laminate was cut with a microtome, and the surface roughness Rz of the through-hole plating was observed using a scanning electron microscope. As a result, it was 5 μm when the film of Comparative Example 1 was used. On the other hand, when the film of Example 4 was used, it was as good as 1 μm.
<フィルムの積層評価>
 市販の液晶ポリマーフィルム(ベクスターCTQ、(株)クラレ製)の両面を、2枚の実施例5のポリマーフィルムで挟み込み、更に外側に、銅箔(福田金属箔粉工業(株)製、CF-T9DA-SV-12、平均厚み12μm)の処理面が、フィルムと接するように載せ、ラミネータ(ニッコー・マテリアルズ(株)製「真空ラミネータV-130」)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、両面銅張積層板の前駆体を得た。
<Evaluation of film lamination>
Both sides of a commercially available liquid crystal polymer film (Vexter CTQ, manufactured by Kuraray Co., Ltd.) are sandwiched between two polymer films of Example 5, and copper foil (manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., CF-) is further outside. Place the treated surface of T9DA-SV-12 (average thickness 12 μm) in contact with the film, and use a laminator (“Vacuum Laminator V-130” manufactured by Nikko Materials Co., Ltd.) at 140 ° C. and laminating pressure. Laminating treatment was carried out for 1 minute under the condition of 0.4 MPa to obtain a precursor of a double-sided copper-clad laminate.
 続けて、熱圧着機((株)東洋精機製作所製「MP-SNL」)を用いて、得られた銅張積層板前駆体を300℃4.5MPaの条件で10分間熱圧着することにより、両面銅張積層板を作製した。 Subsequently, using a thermocompression bonding machine (“MP-SNL” manufactured by Toyo Seiki Seisakusho Co., Ltd.), the obtained copper-clad laminate precursor was thermocompression-bonded at 300 ° C. and 4.5 MPa for 10 minutes. A double-sided copper-clad laminate was produced.
 得られた両面銅張積層板の剥離強度は9kN/mであり、十分な強度が確保されていることを確認した。 The peel strength of the obtained double-sided copper-clad laminate was 9 kN / m, and it was confirmed that sufficient strength was secured.
 2020年12月21日に出願された日本国特許出願第2020-211785号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2020-21178, filed December 21, 2020, is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Is incorporated herein by reference.

Claims (30)

  1.  誘電正接が0.01以下であるポリマー、及び、
     硬化性化合物を含み、
     前記硬化性化合物が、オリゴマー又はポリマーである硬化性化合物Aを含む
     ポリマーフィルム。
    Polymers with a dielectric loss tangent of 0.01 or less, and
    Contains curable compounds
    A polymer film containing a curable compound A in which the curable compound is an oligomer or a polymer.
  2.  液晶ポリマー、及び、
     硬化性化合物を含み、
     前記硬化性化合物が、オリゴマー又はポリマーである硬化性化合物Aを含む
     ポリマーフィルム。
    Liquid crystal polymer and
    Contains curable compounds
    A polymer film containing a curable compound A in which the curable compound is an oligomer or a polymer.
  3.  前記硬化性化合物Aの含有量が、前記ポリマーフィルムの内部より表面の方が多い請求項1又は請求項2に記載のポリマーフィルム。 The polymer film according to claim 1 or 2, wherein the content of the curable compound A is higher on the surface than on the inside of the polymer film.
  4.  前記誘電正接が0.01以下であるポリマーが、液晶ポリマーである請求項1に記載のポリマーフィルム。 The polymer film according to claim 1, wherein the polymer having a dielectric loss tangent of 0.01 or less is a liquid crystal polymer.
  5.  前記誘電正接が0.01以下であるポリマー又は前記液晶ポリマーの融点Tm又は5質量%減量温度Tdが、200℃以上である請求項1~請求項4のいずれか1項に記載のポリマーフィルム。 The polymer film according to any one of claims 1 to 4, wherein the polymer having a dielectric loss tangent of 0.01 or less or the liquid crystal polymer having a melting point Tm or a 5% by mass weight loss temperature Td of 200 ° C. or higher.
  6.  前記硬化性化合物Aの重量平均分子量が、10,000以下である請求項1~請求項5のいずれか1項に記載のポリマーフィルム。 The polymer film according to any one of claims 1 to 5, wherein the curable compound A has a weight average molecular weight of 10,000 or less.
  7.  前記ポリマーフィルムが、粒子を含み、
     前記粒子の内部又は表面に、前記硬化性化合物を含む請求項1~請求項6のいずれか1項に記載のポリマーフィルム。
    The polymer film contains particles and contains
    The polymer film according to any one of claims 1 to 6, wherein the curable compound is contained inside or on the surface of the particles.
  8.  前記ポリマーフィルムが、硬化阻害剤を含む請求項1~請求項7のいずれか1項に記載のポリマーフィルム。 The polymer film according to any one of claims 1 to 7, wherein the polymer film contains a curing inhibitor.
  9.  前記誘電正接が0.01以下であるポリマー又は前記液晶ポリマーが、式(1)~式(3)のいずれかで表される構成繰り返し単位を有する液晶ポリマーを含む請求項1~請求項8のいずれか1項に記載のポリマーフィルム。
     式(1) -O-Ar-CO-
     式(2) -CO-Ar-CO-
     式(3) -X-Ar-Y-
     式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し、Ar及びArはそれぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表し、X及びYはそれぞれ独立に、酸素原子又はイミノ基を表し、Ar~Arにおける水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。
     式(4) -Ar-Z-Ar
     式(4)中、Ar及びArはそれぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキレン基を表す。
    Claims 1 to 8, wherein the polymer having a dielectric loss tangent of 0.01 or less or the liquid crystal polymer comprises a liquid crystal polymer having a structural repeating unit represented by any of the formulas (1) to (3). The polymer film according to any one of the following items.
    Equation (1) -O-Ar 1 -CO-
    Equation (2) -CO-Ar 2 -CO-
    Equation (3) -X-Ar 3 -Y-
    In the formulas (1) to (3), Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group, and Ar 2 and Ar 3 independently represent a phenylene group, a naphthylene group, a biphenylylene group or the following formula (4). Represents a group represented by, X and Y each independently represent an oxygen atom or an imino group, and the hydrogen atom in Ar 1 to Ar 3 is independently substituted with a halogen atom, an alkyl group or an aryl group, respectively. You may.
    Equation (4) -Ar 4 -Z-Ar 5-
    In formula (4), Ar 4 and Ar 5 independently represent a phenylene group or a naphthylene group, and Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
  10.  前記硬化性化合物Aの含有量が、前記硬化性化合物の全質量に対し、30質量%~100質量%である請求項1~請求項9のいずれか1項に記載のポリマーフィルム。 The polymer film according to any one of claims 1 to 9, wherein the content of the curable compound A is 30% by mass to 100% by mass with respect to the total mass of the curable compound.
  11.  前記ポリマーフィルムの160℃における表層弾性率Esと内部弾性率Ecとの比率Es/Ecが、0.1~10である請求項1~請求項10のいずれか1項に記載のポリマーフィルム。 The polymer film according to any one of claims 1 to 10, wherein the ratio Es / Ec of the surface elastic modulus Es and the internal elastic modulus Ec at 160 ° C. of the polymer film is 0.1 to 10.
  12.  層Aと、前記層Aの少なくとも一方の面に設けられた層Bを有し、
     前記層Bが、前記誘電正接が0.01以下であるポリマー、及び、前記硬化性化合物Aを含む請求項1~請求項11のいずれか1項に記載のポリマーフィルム。
    It has a layer A and a layer B provided on at least one surface of the layer A.
    The polymer film according to any one of claims 1 to 11, wherein the layer B contains the polymer having a dielectric loss tangent of 0.01 or less and the curable compound A.
  13.  基材フィルムである請求項1~請求項12のいずれか1項に記載のポリマーフィルム。 The polymer film according to any one of claims 1 to 12, which is a base film.
  14.  層Cを更に有し、
     前記層Bと、前記層Aと、前記層Cとをこの順で有する請求項13に記載のポリマーフィルム。
    Further having layer C
    The polymer film according to claim 13, which has the layer B, the layer A, and the layer C in this order.
  15.  ボンディングシートである請求項1~請求項14のいずれか1項に記載のポリマーフィルム。 The polymer film according to any one of claims 1 to 14, which is a bonding sheet.
  16.  請求項1~請求項15のいずれか1項に記載のポリマーフィルムと、前記ポリマーフィルムの少なくとも一方の面に配置された金属層又は金属配線とを有する積層体。 A laminate having the polymer film according to any one of claims 1 to 15 and a metal layer or metal wiring arranged on at least one surface of the polymer film.
  17.  金属層又は金属配線と、前記ポリマーフィルムと、金属層又は金属配線とをこの順で有する請求項16に記載の積層体。 The laminate according to claim 16, which has a metal layer or metal wiring, the polymer film, and the metal layer or metal wiring in this order.
  18.  前記硬化性化合物Aが硬化してなる硬化物を含む請求項16又は請求項17に記載の積層体。 The laminate according to claim 16 or 17, which includes a cured product obtained by curing the curable compound A.
  19.  請求項1~請求項15のいずれか1項に記載のポリマーフィルムと、金属層又は金属配線と、請求項1~請求項15のいずれか1項に記載のポリマーフィルムと、金属層又は金属配線と、請求項1~請求項15のいずれか1項に記載のポリマーフィルムとをこの順で有する積層体。 The polymer film according to any one of claims 1 to 15, the metal layer or the metal wiring, the polymer film according to any one of claims 1 to 15, and the metal layer or the metal wiring. A laminate having the polymer film according to any one of claims 1 to 15 in this order.
  20.  前記金属層又は金属配線における金属が、銅、又は、銀である請求項16~請求項19のいずれか1項に記載の積層体。 The laminate according to any one of claims 16 to 19, wherein the metal in the metal layer or metal wiring is copper or silver.
  21.  誘電正接が0.01以下であるポリマー、及び、硬化性化合物を含むポリマーフィルムにおいて、前記硬化性化合物の一部を硬化させた前記硬化性化合物Aを形成する一部硬化工程、
     前記フィルムに金属層又は金属配線に貼り合わせて積層体を形成する貼り合わせ工程をこの順で含む
     積層体の製造方法。
    A partial curing step of forming the curable compound A by curing a part of the curable compound in a polymer having a dielectric loss tangent of 0.01 or less and a polymer film containing a curable compound.
    A method for manufacturing a laminated body, which comprises a bonding step of bonding the film to a metal layer or a metal wiring to form a laminated body in this order.
  22.  液晶ポリマー、及び、硬化性化合物を含むポリマーフィルムにおいて、前記硬化性化合物の一部を硬化させた前記硬化性化合物Aを形成する一部硬化工程、
     前記フィルムに金属層又は金属配線に貼り合わせて積層体を形成する貼り合わせ工程をこの順で含む
     積層体の製造方法。
    A partial curing step of forming the curable compound A by curing a part of the curable compound in a liquid crystal polymer and a polymer film containing a curable compound.
    A method for manufacturing a laminated body, which comprises a bonding step of bonding the film to a metal layer or a metal wiring to form a laminated body in this order.
  23.  前記硬化性化合物Aを含む層の160℃における損失正接が、0.03以上である請求項21又は請求項22に記載の積層体の製造方法。 The method for producing a laminate according to claim 21, wherein the layer containing the curable compound A has a loss tangent of 0.03 or more at 160 ° C.
  24.  前記硬化性化合物Aを含む層の300℃における損失正接が、0.1以上である請求項21~請求項23のいずれか1項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 21 to 23, wherein the layer containing the curable compound A has a loss tangent of 0.1 or more at 300 ° C.
  25.  前記貼り合わせ工程における貼り合わせ圧力が、0.1MPa以上である請求項21~請求項24のいずれか1項に記載の積層体の製造方法。 The method for manufacturing a laminated body according to any one of claims 21 to 24, wherein the bonding pressure in the bonding step is 0.1 MPa or more.
  26.  前記貼り合わせ工程後、前記硬化性化合物Aの含有量が、前記硬化性化合物の全質量に対し、30質量%~100質量%である請求項21~請求項25のいずれか1項に記載の積層体の製造方法。 The invention according to any one of claims 21 to 25, wherein the content of the curable compound A is 30% by mass to 100% by mass with respect to the total mass of the curable compound after the bonding step. A method for manufacturing a laminate.
  27.  請求項1~請求項15のいずれか1項に記載のポリマーフィルムを準備する準備工程、
     前記ポリマーフィルムに金属層又は金属配線に貼り合わせて積層体を形成する貼り合わせ工程、及び、
     前記積層体における前記硬化性化合物Aを含む層にスルーホールを形成するスルーホール形成工程をこの順で含む
     積層体の製造方法。
    A preparatory step for preparing the polymer film according to any one of claims 1 to 15.
    A bonding step of bonding the polymer film to a metal layer or metal wiring to form a laminate, and
    A method for producing a laminated body, which comprises a through hole forming step of forming a through hole in a layer containing the curable compound A in the laminated body in this order.
  28.  前記スルーホール形成工程において、前記スルーホールの少なくとも一部の表面が硬化する請求項27に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 27, wherein in the through-hole forming step, at least a part of the surface of the through-hole is cured.
  29.  前記スルーホール形成工程後に、前記硬化性化合物Aを硬化させる後硬化工程を含む請求項27又は請求項28に記載の積層体の製造方法。 The method for producing a laminate according to claim 27 or 28, which comprises a post-curing step of curing the curable compound A after the through-hole forming step.
  30.  前記金属層又は金属配線における金属が、銅、又は、銀である請求項21~請求項29のいずれか1項に記載の積層体の製造方法。 The method for manufacturing a laminate according to any one of claims 21 to 29, wherein the metal in the metal layer or metal wiring is copper or silver.
PCT/JP2021/047403 2020-12-21 2021-12-21 Polymer film, laminate, and production method therefor WO2022138665A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237019478A KR20230107302A (en) 2020-12-21 2021-12-21 Polymer film, laminate, and manufacturing method thereof
CN202180084326.5A CN116600986A (en) 2020-12-21 2021-12-21 Polymer film, laminate, and method for producing same
JP2022571517A JPWO2022138665A1 (en) 2020-12-21 2021-12-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-211785 2020-12-21
JP2020211785 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022138665A1 true WO2022138665A1 (en) 2022-06-30

Family

ID=82156967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047403 WO2022138665A1 (en) 2020-12-21 2021-12-21 Polymer film, laminate, and production method therefor

Country Status (5)

Country Link
JP (1) JPWO2022138665A1 (en)
KR (1) KR20230107302A (en)
CN (1) CN116600986A (en)
TW (1) TW202239833A (en)
WO (1) WO2022138665A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048729A1 (en) * 2022-08-31 2024-03-07 富士フイルム株式会社 Film, method for manufacturing same, and laminate
WO2024048727A1 (en) * 2022-08-31 2024-03-07 富士フイルム株式会社 Laminate, film, thermosetting film, and method for producing wiring substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054334A1 (en) * 2017-09-15 2019-03-21 Jsr株式会社 High-frequency circuit laminate, method for manufacturing same, and b-stage sheet
JP2020026474A (en) * 2018-08-10 2020-02-20 住友化学株式会社 Liquid crystal polyester film, liquid composition containing liquid crystal polyester and method for manufacturing liquid crystal polyester film
JP2022018372A (en) * 2020-07-15 2022-01-27 昭和電工マテリアルズ株式会社 Laminate film and conductor substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054334A1 (en) * 2017-09-15 2019-03-21 Jsr株式会社 High-frequency circuit laminate, method for manufacturing same, and b-stage sheet
JP2020026474A (en) * 2018-08-10 2020-02-20 住友化学株式会社 Liquid crystal polyester film, liquid composition containing liquid crystal polyester and method for manufacturing liquid crystal polyester film
JP2022018372A (en) * 2020-07-15 2022-01-27 昭和電工マテリアルズ株式会社 Laminate film and conductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048729A1 (en) * 2022-08-31 2024-03-07 富士フイルム株式会社 Film, method for manufacturing same, and laminate
WO2024048727A1 (en) * 2022-08-31 2024-03-07 富士フイルム株式会社 Laminate, film, thermosetting film, and method for producing wiring substrate

Also Published As

Publication number Publication date
KR20230107302A (en) 2023-07-14
JPWO2022138665A1 (en) 2022-06-30
TW202239833A (en) 2022-10-16
CN116600986A (en) 2023-08-15

Similar Documents

Publication Publication Date Title
WO2022163776A1 (en) Polymer film, multilayer body and method for producing same
WO2022138665A1 (en) Polymer film, laminate, and production method therefor
US20230321953A1 (en) Liquid crystal polymer film, method for manufacturing same, and laminate
US20230286250A1 (en) Film and laminate
JP2022085734A (en) Liquid crystal polymer film, and laminate
US20230321958A1 (en) Liquid crystal polymer film, polymer film, and laminate
US20230292434A1 (en) Liquid crystal polymer film, polymer film, and laminate
US20230278317A1 (en) Polymer film and laminate
JP2022126429A (en) Polymer film and laminate
WO2022138666A1 (en) Layered body and polymer film
WO2023191010A1 (en) Film and laminate
WO2023191011A1 (en) Film and laminate
WO2024048729A1 (en) Film, method for manufacturing same, and laminate
WO2023145784A1 (en) Wiring substrate and method for producing same, film, and layered body
WO2023191012A1 (en) Film, laminate, and method for manufacturing same
WO2024048728A1 (en) Film and laminate
WO2024048727A1 (en) Laminate, film, thermosetting film, and method for producing wiring substrate
WO2023233878A1 (en) Film and laminate
WO2022113973A1 (en) Polymer film and laminate
US20230083002A1 (en) Polymer film and method of producing same, and laminate
WO2022176914A1 (en) Liquid crystal polymer film, polymer film, and multilayer body
JP2024034319A (en) Films and laminates
JP2023020291A (en) Polymer film and laminate
JP2022184737A (en) Wiring board and manufacturing method for the same
TW202249544A (en) Wiring board and method for manufacturing wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571517

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237019478

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084326.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910805

Country of ref document: EP

Kind code of ref document: A1