WO2022138403A1 - Antireflection-film-equipped glass covering - Google Patents

Antireflection-film-equipped glass covering Download PDF

Info

Publication number
WO2022138403A1
WO2022138403A1 PCT/JP2021/046392 JP2021046392W WO2022138403A1 WO 2022138403 A1 WO2022138403 A1 WO 2022138403A1 JP 2021046392 W JP2021046392 W JP 2021046392W WO 2022138403 A1 WO2022138403 A1 WO 2022138403A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
antireflection film
index layer
cover glass
Prior art date
Application number
PCT/JP2021/046392
Other languages
French (fr)
Japanese (ja)
Inventor
英明 高星
保 森本
要 瀬戸
泰永 西川
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022572245A priority Critical patent/JPWO2022138403A1/ja
Publication of WO2022138403A1 publication Critical patent/WO2022138403A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a cover glass with an antireflection film.
  • Car navigation systems, in-vehicle information devices such as audio, and mobile communication devices are equipped with display devices.
  • the display device is provided with a protective cover such as a cover glass for the purpose of protecting the display panel from external impact.
  • An antireflection film may be further provided on the surface of the protective cover for the purpose of reducing external light reflection.
  • a light-shielding layer is provided in a frame shape on the surface of the protective cover on the display panel side.
  • the light-shielding layer has a function of concealing the wiring on the display panel side and concealing the illumination light of the backlight to prevent the illumination light from leaking from the periphery of the display panel, in addition to the aesthetic appearance.
  • an infrared sensor 4 is incorporated in or near the display area, for example, as shown in FIG. This is for communication using infrared rays and object detection, and specifically, for driver monitoring, fingerprint detection, touch sensor, gesture sensing, and the like.
  • the infrared light transmittance of the protective cover specifically, the cover glass 2 provided with the antireflection film 1, the transmittance of the sensing light and the signal light used for the infrared sensor 4 is lowered, and the sensor is erroneous. It may cause operation or error.
  • the infrared sensor can be installed on the back side of the light-shielding layer and the infrared-transmitting layer is conspicuous by providing an infrared-transmitting layer which is a region where infrared rays can be transmitted by opening a part of the light-shielding layer provided in a frame shape.
  • the lost structure is known (Patent Documents 1 and 2).
  • the present invention provides a cover glass with an antireflection film which suppresses infrared light reflectance while maintaining suppression of visible light reflectance without opening, and has high infrared light transmittance. The purpose.
  • the present inventors can solve the above-mentioned problems by setting the thickness of the low-refractive index layer at a specific position to be less than a certain value among the high-refractive index layer and the low-refractive index layer constituting the antireflection film.
  • the finding has led to the completion of the present invention.
  • a cover glass provided with an antireflection film wherein the antireflection film is formed by alternately laminating high refractive index layers and low refractive index layers, and the outermost layer thereof is a low refractive index layer, wherein the high refractive index layer is provided.
  • the total number of layers of the rate layer and the low refractive index layer is 5 or more, the thickness of the low refractive index layer located in the third layer from the outermost layer is 35 nm or less, and the outermost layer to the fifth layer.
  • the high refractive index material constituting the high refractive index layer is oxidized by at least one selected from the group consisting of Mo, W, Mg, Si, Nb, Ti, Zr, Ta, Al, Sn and In.
  • the cover glass with an antireflection film according to any one of the above [1] to [3], which is a thing.
  • the low refractive index materials constituting the low refractive index layer include SiO 2 , MgF 2 , a material containing a mixed oxide of Si and Sn, a material containing a mixed oxide of Si and Zr, and Si.
  • the cover glass with an antireflection film according to any one of [1] to [4] above which is at least one selected from the group consisting of a material containing a mixed oxide with Al.
  • the cover glass with an antireflection film according to any one of [1] to [5] above which is used together with an infrared sensor and does not have an opening at a place where light entering and exiting the infrared sensor is transmitted.
  • a display device including an infrared sensor and a cover glass with an antireflection film according to any one of [1] to [6].
  • the present invention it is possible to obtain a cover glass with an antireflection film in which not only the visible light reflectance but also the infrared light reflectance is suppressed.
  • the cover glass with an antireflection film By applying the cover glass with an antireflection film to the display device, the infrared light transmittance can be increased, and the malfunction of the infrared sensor is suitably prevented while maintaining excellent visibility. It can provide devices, mobile display devices, signage, and the like.
  • FIG. 1 is a schematic cross-sectional view of a display device which is an example of the prior art.
  • FIG. 2 is a schematic cross-sectional view when the cover glass with an antireflection film according to the embodiment of the present invention is applied to a display device.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the antireflection film according to the embodiment of the present invention.
  • the cover glass with an antireflection film according to the present embodiment is provided with an antireflection film on the surface of the cover glass.
  • the antireflection film 1 is formed by alternately laminating high refractive index layers and low refractive index layers, and the outermost layer thereof is a low refractive index layer 11.
  • the total number of layers of the high refractive index layer and the low refractive index layer is 5 or more, and the thickness of the low refractive index layer 12 located in the third layer from the outermost layer is 35 nm or less, and the outermost layer to the fifth layer.
  • the thickness of the low refractive index layer 13 located in the eye is 15 nm or less.
  • the antireflection film 1 in the cover glass with the antireflection film is arranged on the surface of the cover glass 2.
  • the antireflection film is formed by alternately laminating high refractive index layers and low refractive index layers.
  • the high refractive index layer and the low refractive index layer may be dielectric layers having different refractive indexes from each other. That is, the high and low refractive indexes are not determined by absolute values, but mean the relative heights and lows with respect to the refractive indexes of adjacent layers during stacking.
  • the outermost layer is a low refractive index layer 11 from the viewpoint of relatively easily producing an antireflection film having a low visible light reflectance.
  • the visible light reflectance in the present specification means the reflectance of light having a wavelength of 550 nm.
  • the infrared light reflectance in the present specification means the reflectance of light having a wavelength of 950 nm.
  • the specific thickness of the low refractive index layer 12 located in the third layer from the outermost layer is 35 nm or less. Further, the thickness of the low refractive index layer 13 located in the fifth layer from the outermost layer is 15 nm or less.
  • the thickness of the low refractive index layer 12 located in the third layer from the outermost layer may be 35 nm or less, preferably 25 nm or less, and more preferably 15 nm or less.
  • the thickness of the low refractive index layer 13 located in the fifth layer from the outermost layer may be 15 nm or less, preferably 10 nm or less. Further, although the lower limit is not particularly limited, the thickness of the low refractive index layer located in the third layer and the fifth layer from the outermost layer is usually preferably 5 nm or more.
  • the thicknesses of the low refractive index layer 12 located in the third layer from the outermost layer and the low refractive index layer 13 located in the fifth layer may be the same or different.
  • the thickness of the low refractive index layers other than the low refractive index layers 12 and 13 located in the third and fifth layers from the outermost layer is not particularly limited.
  • the outermost low-refractive index layer 11 is preferably thicker than the third and fifth low-refractive index layers 12 and 13, more preferably 75 nm or more, and more preferably 80 nm or more, from the viewpoint of suppressing reflectance. More preferably, 85 nm or more is even more preferable. Further, from the viewpoint of design of the display device, the thickness of the outermost layer having a low refractive index layer 11 is preferably 110 nm or less, more preferably 100 nm or less.
  • the thickness of the high refractive index layer in the antireflection film is not particularly limited.
  • the high-refractive index layer 21 located from the outermost layer to the second layer that is, the high-refractive index layer located on the outermost layer side of the high-refractive index layers, is used when the cover glass with an antireflection film is applied to a display device.
  • 40 nm or less is preferable, 35 nm or less is more preferable, and 30 nm or less is further preferable.
  • the high refractive index layer 21 located in the second layer is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more.
  • the thickness of the high-refractive index layer from the outermost layer to the fourth layer of the antireflection film 1 is preferably 2 nm or more, more preferably 3 nm or more, and further preferably 4 nm or more from the viewpoint of reducing the reflectance. Further, from the viewpoint of productivity, the thickness of the high refractive index layer from the outermost layer to the fourth layer and thereafter is preferably 25 nm or less, more preferably 20 nm or less, still more preferably 15 nm or less.
  • the total number of layers of the high-refractive index layer and the low-refractive index layer constituting the antireflection film 1 may be 5 or more, but from the viewpoint of reflectance, 8 or more layers are preferable, and 10 or more layers are more preferable. Further, the total number of layers is preferably 12 layers or less, and more preferably 11 layers or less from the viewpoint of productivity.
  • the layer in contact with the cover glass may be a low refractive index layer or a high refractive index layer, but a low refractive index layer is preferable from the viewpoint of adhesion.
  • a dotted line is shown between the high refractive index layer 23 located in the sixth layer from the outermost layer and the low refractive index layer 14 in contact with the cover glass.
  • an arbitrary number of low-refractive index layers and high-refractive index layers are alternately laminated between the high-refractive index layer 23 located in the sixth layer from the outermost layer and the low-refractive index layer 14 in contact with the cover glass. Indicates that it may be.
  • the total thickness of the high refractive index layer and the low refractive index layer is not particularly limited, but is preferably 550 nm or less, more preferably 350 nm or less, still more preferably 290 nm or less from the viewpoint of productivity.
  • the refractive index of the high refractive index layer at a wavelength of 550 nm is preferably 1.9 or more, more preferably 2.2 or more, from the viewpoint of reducing the reflectance.
  • the upper limit of the refractive index is not particularly limited, but is usually 2.5 or less.
  • the refractive index of the low refractive index layer at a wavelength of 550 nm is preferably 1.6 or less, more preferably 1.5 or less, from the viewpoint of reducing the reflectance.
  • the lower limit of the refractive index is not particularly limited, but is usually 1.35 or more.
  • the high-refractive index layer and the low-refractive index layer are one or more oxides, nitrides, or nitrides selected from the group consisting of Mo, W, Mg, Si, Nb, Ti, Zr, Ta, Al, Sn and In. It is preferably composed of fluoride.
  • Each material constituting the high refractive index layer and the low refractive index layer is appropriately selected from the above oxides, nitrides or fluorides so as to have a desired refractive index.
  • Each layer of the high refractive index layer and the low refractive index layer may be composed of only one kind of the above oxides, nitrides and fluorides, or may be made of two or more kinds.
  • there are a plurality of high refractive index layers and a plurality of low refractive index layers they may be made of the same material or different materials. That is, the plurality of high-refractive index layers and low-refractive index layers may have different refractive indexes.
  • the high refractive index material constituting the high refractive index layer comprises at least one selected from the group consisting of Mo, W, Mg, Si, Nb, Ti, Zr, Ta, Al, Sn and In. Oxides are preferred.
  • the low refractive index materials constituting the low refractive index layer include SiO 2 , MgF 2 , a material containing a mixed oxide of Si and Sn, a material containing a mixed oxide of Si and Zr, and a material containing a mixed oxide of Si and Zr. At least one selected from the group consisting of a material containing a mixed oxide of Si and Al is preferable, SiO 2 is more preferable, and SiO 2 is more preferable. In addition, mainly including in this specification means that it occupies 20% by mass or more among the components constituting such a layer.
  • the antireflection film may be formed directly on the surface of the cover glass, but when the antireflection film is formed on the surface of the film and the film is attached to the cover glass, the antireflection film is formed on the surface of the cover glass. It may have been done.
  • the film is not particularly limited as long as it is transparent, but for example, a film generally called a clear hard coat (CHC) film can be used.
  • CHC clear hard coat
  • an antireflection film may be formed after forming a layer of Si (SiN) nitride on the surface of the film in order to prevent gas components from the film.
  • the thickness of such a layer is not particularly limited, and examples thereof include 5 to 30 nm.
  • the adhesive layer when the film is attached to the cover glass is not particularly limited, but for example, an acrylic optical adhesive, a silicone adhesive, a urethane adhesive, or the like can be used.
  • the adhesive layer is used and bonded so that the film is located on the cover glass side, that is, the antireflection film is on the outside.
  • the thickness of the adhesive layer is not particularly limited, and examples thereof include 5 to 100 ⁇ m.
  • Such an antireflection film via a film may be formed on both sides of the cover glass. Further, an antireflection film may be directly formed on one surface of the cover glass, and an antireflection film may be formed on the other surface via the film.
  • the antireflection film may be formed by applying IR (infrared) transmissive ink to the surface of the cover glass or the film and forming the film on the cover glass or the film.
  • IR transmission ink is preferable because it improves the design. Conventionally known IR transmission inks can be used.
  • the visible light reflectance at a wavelength of 550 nm of the antireflection film is preferably 1% or less, more preferably 0.4% or less from the viewpoint of visibility of the display device when the cover glass with the antireflection film is used for the display device. 0.3% or less is more preferable.
  • the visible light reflectance at a wavelength of 550 nm and the infrared light reflectance at a wavelength of 950 nm in the present specification are values measured by a spectrophotometer (manufactured by Shimadzu Corporation, trade name: SolidSpec-3700).
  • the visible light transmittance at a wavelength of 550 nm and the infrared light transmittance at a wavelength of 950 nm are both vertical incident transmittances, and are similarly measured by a spectrophotometer (manufactured by Shimadzu Corporation, trade name: SolidSpec-3700). It is a value to be measured.
  • the infrared light reflectance of the antireflection film at a wavelength of 950 nm is preferably 5% or less, preferably 3% or less, from the viewpoint of preventing malfunction of the infrared sensor when the cover glass with the antireflection film is used together with the infrared sensor. 1% or less is more preferable. The lower the infrared light reflectance, the more preferable, but it is usually 0.5% or more.
  • the tint of the cover glass with antireflection film can be based on the color index.
  • the color index is a value obtained as a * value and b * value, which are color indexes defined in JIS Z 8729: 2004, from the reflection spectrum of the spectral reflectance obtained at the time of measuring the reflectance.
  • the antireflection film can be formed on the main surface of the cover glass by using a known film forming method such as a sputtering method, an ion beam sputtering method, a vacuum vapor deposition method, an ion assisted vapor deposition method using plasma, or an ion plating method. .. That is, the high-refractive index layer and the low-refractive index layer constituting the antireflection film are formed on the main surface of the cover glass according to the stacking order.
  • the sputtering method include magnetron sputtering, pulse sputtering, AC sputtering, digital sputtering and the like.
  • a magnet is placed on the back surface of a material to be a high refractive index layer or a low refractive index layer to generate a magnetic field, and gas ion atoms collide with the surface of the material and are knocked out.
  • This is a method of forming a spatter film with a thickness of several nm.
  • a continuous film of metal oxide or nitride used as a material can be formed.
  • the digital sputtering method first forms an ultrathin metal film by sputtering, and then oxidizes it by irradiating it with oxygen plasma, oxygen ions, or oxygen radicals.
  • the steps of forming and oxidizing the ultrathin film of the metal are repeated in the same chamber to form a thin film having a high refractive index layer or a low refractive index layer.
  • the film-forming molecule is a metal when it is formed on the substrate, it is presumed that it has ductility as compared with the case where the film is formed with a metal oxide. Therefore, it is considered that the rearrangement of the film-forming molecules is likely to occur even with the same energy, and as a result, a dense and smooth film is formed.
  • the antireflection film may be formed on at least one main surface of the cover glass.
  • the antireflection film is formed on the main surface on the surface side exposed to the outside of the cover glass. If necessary, antireflection films may be formed on both main surfaces of the cover glass.
  • the surface side exposed to the outside of the cover glass means the surface side opposite to the surface side where the infrared sensor and the display unit are located in the display device.
  • the cover glass provided with the antireflection film preferably has a refractive index of 1.4 or more and 1.7 or less. This is because when a cover glass with an antireflection film is used for a display device, reflection on the adhesive surface can be sufficiently suppressed when optically adhering a display, a touch panel, or the like.
  • Glasses having various compositions can be applied to the cover glass. For example, it preferably contains sodium, and a composition that can be fortified by molding or chemical strengthening treatment is more preferable. In addition, specific examples thereof include aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkaline barium glass, aluminhosilicate glass and the like.
  • the thickness of the cover glass is not particularly limited, but when the chemical strengthening treatment is performed, it is usually preferably 5 mm or less, and more preferably 3 mm or less in order to effectively perform this.
  • the lower limit is not particularly limited, but 0.5 mm or more is preferable from the viewpoint of strength. Further, it is preferable to use chemically strengthened glass to increase the strength.
  • the infrared light transmittance at a wavelength of 950 nm is preferably 85% or more, more preferably 88% or more from the viewpoint of preventing malfunction of the infrared sensor. More preferably, 90% or more is more preferable, and higher is more preferable.
  • the visible light transmittance of the cover glass with an antireflection film at a wavelength of 550 nm is preferably 90% or more, more preferably 92% or more, and more preferably higher.
  • the antiglare treatment When applying the antiglare treatment to the cover glass, it is preferable to perform the chemical strengthening treatment after the antiglare treatment and before forming the antireflection film.
  • the antiglare treatment is preferably applied to the main surface of the cover glass on the side having the antireflection film.
  • the antiglare treatment method is not particularly limited, and a method of surface-treating the main surface of the glass to form desired unevenness can be used.
  • a method of chemically treating the main surface of the cover glass for example, a method of applying a frost treatment can be mentioned.
  • the frost treatment for example, the soaked surface can be chemically surface-treated by immersing the cover glass, which is the object to be treated, in a mixed solution of hydrogen fluoride and ammonium fluoride.
  • sandblasting treatment in which crystalline silicon dioxide powder, silicon carbide powder, etc. is sprayed onto the surface of a glass substrate with pressurized air, or crystalline silicon dioxide powder, silicon carbide powder, etc. are adhered.
  • a method by physical treatment such as polishing with a brush moistened with water can also be used.
  • the cover glass with an antireflection film according to the present embodiment is preferably used together with the infrared sensor 4.
  • the display device 10 according to the present embodiment includes an infrared sensor 4 and a cover glass 2 provided with an antireflection film 1.
  • the cover glass 2 provided with the antireflection film 1 the same cover glass as the cover glass with the antireflection film described in the above ⁇ cover glass with the antireflection film> can be used, and the preferred embodiment is also the same.
  • the infrared sensor 4 is not particularly limited as long as it includes a light source that emits sensing light and a camera that detects signal light such as monitoring.
  • a print layer 5 may be formed between the infrared sensor 4 and the cover glass 2.
  • the print layer 5 may be a concealing layer that conceals a wiring member or the like arranged on the peripheral edge of the cover glass 2, or may be a decorative layer that enhances the design of the display device 10.
  • the IR transmissive ink layer is a layer formed by using an ink having a high transmittance of infrared light, and is preferably formed in a region through which the sensing light and signal light of the infrared sensor, that is, the ingress / egress light passes.
  • the display panel in the display device is also not particularly limited.
  • a liquid crystal panel, an organic EL panel, a plasma display panel, an electronic ink type panel and the like can be mentioned.
  • the display device may further have a backlight unit.
  • other conventionally known touch panels and the like may be further provided.
  • an antifouling film (AFP film: Anti Finger Print film) may be further formed on the surface of the antireflection film from the viewpoint of protecting the outermost surface of the antireflection film.
  • AFP film Anti Finger Print film
  • the low refractive index layer which is the outermost layer of the antireflection film, is a layer mainly containing SiO 2 from the viewpoint of the bondability related to durability.
  • the antifouling film is laminated on the antireflection film, if the antireflection film is formed on both main surfaces of the cover glass, the antifouling film should be formed on the surfaces of both antireflection films. You can also.
  • the antifouling film may be provided in a place where human hands or the like may come into contact. Therefore, at least, it is sufficient that the antifouling film is formed on the surface of the antireflection film located on the outermost layer side of the display device.
  • the antifouling film can be composed of, for example, a fluorine-containing organosilicon compound.
  • the fluorine-containing organosilicon compound can be used without particular limitation as long as it can impart antifouling property, water repellency, and oil repellency.
  • a fluorine-containing organosilicon compound having one or more groups selected from the group consisting of a polyfluoropolyether group, a polyfluoroalkylene group and a polyfluoroalkyl group can be mentioned.
  • the polyfluoropolyether group is a divalent group having a structure in which a polyfluoroalkylene group and an ethereal oxygen atom are alternately bonded.
  • a fluorine-containing organosilicon compound having one or more groups selected from the group consisting of commercially available polyfluoropolyether groups, polyfluoroalkylene groups and polyfluoroalkyl groups may be used.
  • KP-801 trade name, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KY178 trade name, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KY-130 trade name, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KY-185 trade name, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Optool registered trademark
  • DSX trade names, manufactured by Daikin Co., Ltd.
  • Optool AES both trade names, manufactured by Daikin Co., Ltd.
  • the display device is suitable for in-vehicle information devices such as navigation systems and audio, portable communication devices, signage, and the like.
  • Example 1 to 3 are examples
  • Example 4 is a comparative example.
  • Example 1 As the cover glass, a chemically strengthened glass plate (AGC Dragon Trail (registered trademark)) having a size of 50 mm ⁇ 50 mm ⁇ 2 mm was used. TiO 2 was used as the high refractive index material and SiO 2 was used as the low refractive index material, and the layers were sequentially laminated on one main surface of the cover glass by the magnetron sputtering method. As a result, a cover glass with an antireflection film was obtained in which two layers of TiO, which is a high refractive index layer, and two layers of SiO, which is a low refractive index layer, were alternately laminated.
  • AAC Dragon Trail registered trademark
  • the antireflection film is an eight-layer laminated film having a low refractive index layer as the outermost layer, and the thickness of each layer is 97 nm (low refractive index layer), 28 nm (high refractive index layer), and 16 nm in order from the outermost layer side. (Low refractive index layer), 81 nm (high refractive index layer), 10 nm (low refractive index layer), 41 nm (high refractive index layer), 36 nm (low refractive index layer), 6 nm (high refractive index layer).
  • Example 2 A cover glass with an antireflection film was obtained in the same manner as in Example 1 except that the number of layers of the high refractive index layer and the low refractive index layer in the antireflection film and the thickness of each layer were changed to the following.
  • the antireflection film is a 12-layer laminated film having a low refractive index layer as the outermost layer, and the thickness of each layer is 93.3 nm (low refractive index layer) and 26 nm (high refractive index layer) in order from the outermost layer side.
  • Example 3 A layer made of Si (SiN) nitride having a thickness of 15 nm was deposited on the surface of a clear hard coat (CHC) film (manufactured by Toppan TOMOEGAWA Optical Film Co., Ltd.). Next, TiO 2 was used as the high refractive index material and SiO 2 was used as the low refractive index material, and the layers were sequentially laminated on a layer made of Si (SiN) nitride by a magnetron sputtering method.
  • CHC clear hard coat
  • a CHC film with an antireflection film in which two layers of TiO, which is a high refractive index layer, and two layers of SiO, which is a low refractive index layer, were alternately laminated.
  • This is passed through an adhesive layer (manufactured by Tomoegawa Paper Co., Ltd., TD06A) with a thickness of 25 ⁇ m so that the CHC film is on the side of the chemically strengthened glass plate, and a 50 mm ⁇ 50 mm ⁇ 2 mm chemically strengthened glass plate (Dragon Trail manufactured by AGC). (Registered trademark)).
  • the antireflection film is an eight-layer laminated film having a low refractive index layer as the outermost layer, and the thickness of each layer is 98 nm (low refractive index layer), 29 nm (high refractive index layer), and 16 nm in order from the outermost layer side. (Low refractive index layer), 87 nm (high refractive index layer), 11 nm (low refractive index layer), 44 nm (high refractive index layer), 34 nm (low refractive index layer), 10 nm (high refractive index layer). Further, an antifouling film (manufactured by Shin-Etsu Chemical Co., Ltd., KY-185) having a diameter of 4 nm was further deposited on the surface of the antireflection film.
  • Example 4 A cover glass with an antireflection film was obtained in the same manner as in Example 1 except that the number of layers of the high refractive index layer and the low refractive index layer in the antireflection film and the thickness of each layer were changed to the following.
  • the antireflection film is a five-layer laminated film having a low refractive index layer as the outermost layer, and the thickness of each layer is 80 nm (low refractive index layer), 122 nm (high refractive index layer), and 36 nm in order from the outermost layer side. (Low refractive index layer), 6 nm (high refractive index layer), 16 nm (low refractive index layer).
  • the visible light reflectance and infrared light reflectance of the antireflection film, and the visible light transmittance and infrared light transmittance of the cover glass with antireflection film are determined by using a spectrophotometer (SolidSpec-3700 manufactured by Shimadzu Corporation). I asked. For the visible light reflectance and the infrared light reflectance, the measurement wavelengths were 550 nm and 950 nm, respectively. Further, for the visible light transmittance and the infrared light transmittance, the measurement wavelengths were set to 550 nm and 950 nm, respectively, and the vertical transmittance was determined. The results are shown in Table 1.
  • the antireflection film provided on the cover glass has a low refractive index layer as its outermost layer, and the thickness of the third and fifth low refractive index layers from the outermost layer is thinned, respectively.
  • a significant reduction in the infrared light reflectance was achieved.
  • the cover glass with an antireflection film according to the present invention can realize good visibility and high infrared light transmission without opening a part of the cover glass. ..
  • Anti-reflection film 2 Cover glass 3: Display unit 4: Infrared sensor 5: Printing layer 6: IR transmission ink printing layer 10: Display device 11: Low refractive index layer located on the outermost layer 12: Third from the outermost layer Low refractive index layer 13 located in the outermost layer: Low refractive index layer 14 located in the fifth layer from the outermost layer: Low refractive index layer 21 in contact with the cover glass: High refractive index located in the second layer from the outermost layer Layer 22: High refractive index layer located from the outermost layer to the fourth layer 23: High refractive index layer located from the outermost layer to the sixth layer

Abstract

The present invention pertains to an antireflection-film-equipped glass covering that is a glass covering provided with an antireflection film. The antireflection film is formed by alternately layering high refractive index layers and low refractive index layers. The outermost layer of the antireflection film is a low refractive index layer, and the total number of layers of the high refractive index layers and low refractive index layers is five or more. The thickness of the low refractive index layer which is the third layer from the outermost side of the antireflection film is no more than 35nm, and the thickness of the low refractive index layer which is the fifth layer from the outermost side is no more than 15nm.

Description

反射防止膜付きカバーガラスCover glass with anti-reflective coating
 本発明は反射防止膜付きカバーガラスに関する。 The present invention relates to a cover glass with an antireflection film.
 カーナビゲーションシステムやオーディオ等の車載用情報機器や、携帯通信機器は、ディスプレイ装置を備える。ディスプレイ装置には、表示パネルを外部衝撃から保護することを目的として、カバーガラス等の保護カバーが設けられる。保護カバーの表面には、外光反射の低減を目的として、さらに反射防止膜が設けられていることがある。 Car navigation systems, in-vehicle information devices such as audio, and mobile communication devices are equipped with display devices. The display device is provided with a protective cover such as a cover glass for the purpose of protecting the display panel from external impact. An antireflection film may be further provided on the surface of the protective cover for the purpose of reducing external light reflection.
 また、保護カバーの表示パネル側の面には、例えば、遮光層が枠状に設けられる。遮光層は、美観以外に表示パネル側の配線を隠蔽したり、バックライトの照明光を隠蔽して、表示パネルの周囲から照明光が漏れるのを防止する機能を備える。 Further, for example, a light-shielding layer is provided in a frame shape on the surface of the protective cover on the display panel side. The light-shielding layer has a function of concealing the wiring on the display panel side and concealing the illumination light of the backlight to prevent the illumination light from leaking from the periphery of the display panel, in addition to the aesthetic appearance.
 このようなディスプレイ装置やサイネージ等において、例えば図1に示すように、ディスプレイ領域やその近傍に赤外線センサ4が組み込まれている。これは、赤外線を用いた通信や物体検出を行うためであり、具体的には、ドライバーモニタリングや指紋検知、タッチセンサ、ジェスチャーセンシング等を目的とする。
 しかしながら、保護カバー、具体的には、反射防止膜1を備えるカバーガラス2の赤外光透過率に起因して、赤外線センサ4に用いるセンシング光及び信号光の透過率が低下し、センサの誤作動やエラーの原因となる。
In such a display device, signage, or the like, an infrared sensor 4 is incorporated in or near the display area, for example, as shown in FIG. This is for communication using infrared rays and object detection, and specifically, for driver monitoring, fingerprint detection, touch sensor, gesture sensing, and the like.
However, due to the infrared light transmittance of the protective cover, specifically, the cover glass 2 provided with the antireflection film 1, the transmittance of the sensing light and the signal light used for the infrared sensor 4 is lowered, and the sensor is erroneous. It may cause operation or error.
 そこで、枠状に設けられた遮光層の一部を開口して赤外線が透過できる領域である赤外線透過層を設けることにより、赤外線センサを遮光層の裏側に設置でき、かつ当該赤外線透過層を目立たなくした構造が知られている(特許文献1及び2)。 Therefore, the infrared sensor can be installed on the back side of the light-shielding layer and the infrared-transmitting layer is conspicuous by providing an infrared-transmitting layer which is a region where infrared rays can be transmitted by opening a part of the light-shielding layer provided in a frame shape. The lost structure is known (Patent Documents 1 and 2).
日本国特開2017-49469号公報Japanese Patent Application Laid-Open No. 2017-49469 日本国特許第5392641号公報Japanese Patent No. 5392641
 しかしながら、図1に示すように、カバーガラス2に開口のために穴あけ加工をすると、枠状の遮光層の部分であっても、意匠の観点からデザイン性が損なわれる。また、穴あけ加工によるコストアップも懸念される。 However, as shown in FIG. 1, when the cover glass 2 is drilled for an opening, the design is impaired from the viewpoint of design even in the frame-shaped light-shielding layer portion. In addition, there is concern about cost increase due to drilling.
 これに対し本発明は、開口することなく、可視光反射率の抑制を維持しつつ、赤外光反射率も抑制し、赤外光透過性が高い反射防止膜付きカバーガラスを提供することを目的とする。 On the other hand, the present invention provides a cover glass with an antireflection film which suppresses infrared light reflectance while maintaining suppression of visible light reflectance without opening, and has high infrared light transmittance. The purpose.
 本発明者らは、反射防止膜を構成する高屈折率層と低屈折率層のうち、特定位置の低屈折率層の厚みを一定値以下の薄さとすることにより、上記課題を解決できることを見出し、本発明を完成するに至った。 The present inventors can solve the above-mentioned problems by setting the thickness of the low-refractive index layer at a specific position to be less than a certain value among the high-refractive index layer and the low-refractive index layer constituting the antireflection film. The finding has led to the completion of the present invention.
 すなわち、本発明の一態様は下記のとおりである。
[1] 反射防止膜を備えるカバーガラスであって、前記反射防止膜は高屈折率層及び低屈折率層が交互に積層されてなり、その最外層は低屈折率層であり、前記高屈折率層及び前記低屈折率層の合計の積層数は5層以上であり、前記最外層から第3層目に位置する低屈折率層の厚みが35nm以下、前記最外層から第5層目に位置する低屈折率層の厚みが15nm以下である、反射防止膜付きカバーガラス。
[2] 前記反射防止膜の波長550nmにおける可視光反射率は0.4%以下であり、かつ、波長950nmにおける赤外光反射率は5%以下である、前記[1]に記載の反射防止膜付きカバーガラス。
[3] 前記高屈折率層の波長550nmにおける屈折率が1.9以上であり、前記低屈折率層の波長550nmにおける屈折率が1.6以下である、前記[1]又は[2]に記載の反射防止膜付きカバーガラス。
[4] 前記高屈折率層を構成する高屈折率材料が、Mo、W、Mg、Si、Nb、Ti、Zr、Ta、Al、Sn及びInからなる群より選ばれる少なくとも1種からなる酸化物である、前記[1]~[3]のいずれか1に記載の反射防止膜付きカバーガラス。
[5] 前記低屈折率層を構成する低屈折率材料が、SiO、MgF、SiとSnとの混合酸化物を含む材料、SiとZrとの混合酸化物を含む材料、及びSiとAlとの混合酸化物を含む材料からなる群より選ばれる少なくとも1種である、前記[1]~[4]のいずれか1に記載の反射防止膜付きカバーガラス。
[6] 赤外線センサと共に用いられ、前記赤外線センサの出入光が透過する箇所に開口部を備えない、前記[1]~[5]のいずれか1に記載の反射防止膜付きカバーガラス。
[7] 赤外線センサ及び前記[1]~[6]のいずれか1に記載の反射防止膜付きカバーガラスを備える、ディスプレイ装置。
That is, one aspect of the present invention is as follows.
[1] A cover glass provided with an antireflection film, wherein the antireflection film is formed by alternately laminating high refractive index layers and low refractive index layers, and the outermost layer thereof is a low refractive index layer, wherein the high refractive index layer is provided. The total number of layers of the rate layer and the low refractive index layer is 5 or more, the thickness of the low refractive index layer located in the third layer from the outermost layer is 35 nm or less, and the outermost layer to the fifth layer. A cover glass with an antireflection film having a position of a low refractive index layer having a thickness of 15 nm or less.
[2] The antireflection according to the above [1], wherein the antireflection film has a visible light reflectance of 0.4% or less at a wavelength of 550 nm and an infrared light reflectance of 5% or less at a wavelength of 950 nm. Cover glass with film.
[3] In the above [1] or [2], the refractive index of the high refractive index layer at a wavelength of 550 nm is 1.9 or more, and the refractive index of the low refractive index layer at a wavelength of 550 nm is 1.6 or less. Cover glass with the described anti-refractive film.
[4] The high refractive index material constituting the high refractive index layer is oxidized by at least one selected from the group consisting of Mo, W, Mg, Si, Nb, Ti, Zr, Ta, Al, Sn and In. The cover glass with an antireflection film according to any one of the above [1] to [3], which is a thing.
[5] The low refractive index materials constituting the low refractive index layer include SiO 2 , MgF 2 , a material containing a mixed oxide of Si and Sn, a material containing a mixed oxide of Si and Zr, and Si. The cover glass with an antireflection film according to any one of [1] to [4] above, which is at least one selected from the group consisting of a material containing a mixed oxide with Al.
[6] The cover glass with an antireflection film according to any one of [1] to [5] above, which is used together with an infrared sensor and does not have an opening at a place where light entering and exiting the infrared sensor is transmitted.
[7] A display device including an infrared sensor and a cover glass with an antireflection film according to any one of [1] to [6].
 本発明によれば、可視光反射率のみならず、赤外光反射率も抑制された反射防止膜付きカバーガラスが得られる。かかる反射防止膜付きカバーガラスをディスプレイ装置に適用することで、赤外光透過率を高くでき、優れた視認性を維持したまま、赤外線センサの誤作動等も好適に防止された、車載用ディスプレイ装置、モバイル用ディスプレイ装置、サイネージ等を提供できる。 According to the present invention, it is possible to obtain a cover glass with an antireflection film in which not only the visible light reflectance but also the infrared light reflectance is suppressed. By applying the cover glass with an antireflection film to the display device, the infrared light transmittance can be increased, and the malfunction of the infrared sensor is suitably prevented while maintaining excellent visibility. It can provide devices, mobile display devices, signage, and the like.
図1は、従来技術の一例であるディスプレイ装置の模式断面図である。FIG. 1 is a schematic cross-sectional view of a display device which is an example of the prior art. 図2は、本発明の一実施形態に係る反射防止膜付きカバーガラスをディスプレイ装置に適用した場合の模式断面図である。FIG. 2 is a schematic cross-sectional view when the cover glass with an antireflection film according to the embodiment of the present invention is applied to a display device. 図3は、本発明の一実施形態における反射防止膜の構成を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing the configuration of the antireflection film according to the embodiment of the present invention.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and carried out without departing from the gist of the present invention. Further, "-" indicating a numerical range is used in the sense that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
<反射防止膜付きカバーガラス>
 本実施形態に係る反射防止膜付きカバーガラスは、カバーガラスの表面に反射防止膜を備える。
 反射防止膜1は、図3に示すように、高屈折率層及び低屈折率層が交互に積層されてなり、その最外層は低屈折率層11である。高屈折率層及び低屈折率層の合計の積層数は5層以上であり、最外層から第3層目に位置する低屈折率層12の厚みは35nm以下であり、最外層から第5層目に位置する低屈折率層13の厚みは15nm以下である。
<Cover glass with anti-reflection film>
The cover glass with an antireflection film according to the present embodiment is provided with an antireflection film on the surface of the cover glass.
As shown in FIG. 3, the antireflection film 1 is formed by alternately laminating high refractive index layers and low refractive index layers, and the outermost layer thereof is a low refractive index layer 11. The total number of layers of the high refractive index layer and the low refractive index layer is 5 or more, and the thickness of the low refractive index layer 12 located in the third layer from the outermost layer is 35 nm or less, and the outermost layer to the fifth layer. The thickness of the low refractive index layer 13 located in the eye is 15 nm or less.
[反射防止膜]
 反射防止膜付きカバーガラスにおける反射防止膜1は、カバーガラス2の表面に配置される。反射防止膜は、高屈折率層及び低屈折率層が交互に積層されてなる。高屈折率層及び低屈折率層とは、互いに屈折率が異なる誘電体層であればよい。すなわち、屈折率の高低は絶対的な値で決定されるのではなく、積層する際に隣り合った層の屈折率に対する相対的な高さ及び低さを意味する。
[Anti-reflective coating]
The antireflection film 1 in the cover glass with the antireflection film is arranged on the surface of the cover glass 2. The antireflection film is formed by alternately laminating high refractive index layers and low refractive index layers. The high refractive index layer and the low refractive index layer may be dielectric layers having different refractive indexes from each other. That is, the high and low refractive indexes are not determined by absolute values, but mean the relative heights and lows with respect to the refractive indexes of adjacent layers during stacking.
 屈折率の異なる高屈折率層及び低屈折率層を積層することにより、可視光の反射を抑制する。さらに、積層された高屈折率層及び低屈折率層のうち、最外層は、可視光反射率の低い反射防止膜を比較的容易に作製する観点から、低屈折率層11とする。なお、本明細書における可視光反射率とは、波長550nmの光の反射率を意味する。 By stacking high-refractive index layers and low-refractive index layers with different refractive indexes, reflection of visible light is suppressed. Further, among the laminated high refractive index layer and low refractive index layer, the outermost layer is a low refractive index layer 11 from the viewpoint of relatively easily producing an antireflection film having a low visible light reflectance. The visible light reflectance in the present specification means the reflectance of light having a wavelength of 550 nm.
 さらに、最外層から第3層目と第5層目に位置する低屈折率層12,13の厚みを薄くすることで、可視光のみならず、赤外光の反射率も抑制できる。なお、最外層から第3層目と第5層目に位置する低屈折率層12,13とは、低屈折率層のみを対象として、最外層の低屈折率層を第1番目とした場合に、第2番目の低屈折率層と第3番目の低屈折率層にそれぞれ該当する。また、本明細書における赤外光反射率とは、波長950nmの光の反射率を意味する。 Furthermore, by reducing the thickness of the low refractive index layers 12 and 13 located in the third and fifth layers from the outermost layer, not only visible light but also infrared light reflectance can be suppressed. The low refractive index layers 12 and 13 located in the third and fifth layers from the outermost layer are cases where only the low refractive index layer is targeted and the outermost low refractive index layer is the first layer. It corresponds to the second low refractive index layer and the third low refractive index layer, respectively. Further, the infrared light reflectance in the present specification means the reflectance of light having a wavelength of 950 nm.
 最外層から第3層目に位置する低屈折率層12の具体的な厚みは35nm以下である。また、最外層から第5層目に位置する低屈折率層13の厚みは15nm以下である。これにより、赤外光の反射率を著しく低下でき、赤外光の透過率を高くできる。そのため、赤外線センサのセンシング光及び信号光のロスが少なく、センサの誤作動やエラーが抑制される。 The specific thickness of the low refractive index layer 12 located in the third layer from the outermost layer is 35 nm or less. Further, the thickness of the low refractive index layer 13 located in the fifth layer from the outermost layer is 15 nm or less. As a result, the reflectance of infrared light can be significantly reduced, and the transmittance of infrared light can be increased. Therefore, the loss of the sensing light and the signal light of the infrared sensor is small, and the malfunction and error of the sensor are suppressed.
 最外層から第3層目に位置する低屈折率層12の厚みは、35nm以下であればよく、25nm以下が好ましく、15nm以下がより好ましい。最外層から第5層目に位置する低屈折率層13の厚みは、15nm以下であればよく、10nm以下が好ましい。また、下限は特に限定されないが、通常、最外層から第3層目と第5層目に位置する低屈折率層の厚みは5nm以上が好ましい。 The thickness of the low refractive index layer 12 located in the third layer from the outermost layer may be 35 nm or less, preferably 25 nm or less, and more preferably 15 nm or less. The thickness of the low refractive index layer 13 located in the fifth layer from the outermost layer may be 15 nm or less, preferably 10 nm or less. Further, although the lower limit is not particularly limited, the thickness of the low refractive index layer located in the third layer and the fifth layer from the outermost layer is usually preferably 5 nm or more.
 最外層から第3層目に位置する低屈折率層12と、第5層目に位置する低屈折率層13の厚みは、同一であっても異なっていてもよい。 The thicknesses of the low refractive index layer 12 located in the third layer from the outermost layer and the low refractive index layer 13 located in the fifth layer may be the same or different.
 最外層から第3層目と第5層目に位置する低屈折率層12,13以外の低屈折率層の厚みは特に限定されない。
 最外層の低屈折率層11は、反射率抑制の観点から、第3層目及び第5層目の低屈折率層12,13よりも厚いことが好ましく、75nm以上がより好ましく、80nm以上がさらに好ましく、85nm以上がよりさらに好ましい。また、ディスプレイ装置の設計上の点から、最外層の低屈折率層11の厚みは110nm以下が好ましく、100nm以下がより好ましい。
The thickness of the low refractive index layers other than the low refractive index layers 12 and 13 located in the third and fifth layers from the outermost layer is not particularly limited.
The outermost low-refractive index layer 11 is preferably thicker than the third and fifth low-refractive index layers 12 and 13, more preferably 75 nm or more, and more preferably 80 nm or more, from the viewpoint of suppressing reflectance. More preferably, 85 nm or more is even more preferable. Further, from the viewpoint of design of the display device, the thickness of the outermost layer having a low refractive index layer 11 is preferably 110 nm or less, more preferably 100 nm or less.
 反射防止膜における高屈折率層の厚みは特に限定されない。最外層から第2層目に位置する高屈折率層21、すなわち高屈折率層のうち最も最外層側に位置する高屈折率層は、反射防止膜付きカバーガラスをディスプレイ装置に適用する場合、その装置の設計上、40nm以下が好ましく、35nm以下がより好ましく、30nm以下がさらに好ましい。また、反射率低減の点から、第2層目に位置する高屈折率層21は10nm以上が好ましく、15nm以上がより好ましく、20nm以上がさらに好ましい。 The thickness of the high refractive index layer in the antireflection film is not particularly limited. The high-refractive index layer 21 located from the outermost layer to the second layer, that is, the high-refractive index layer located on the outermost layer side of the high-refractive index layers, is used when the cover glass with an antireflection film is applied to a display device. In terms of the design of the apparatus, 40 nm or less is preferable, 35 nm or less is more preferable, and 30 nm or less is further preferable. Further, from the viewpoint of reducing the reflectance, the high refractive index layer 21 located in the second layer is preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more.
 反射防止膜1の最外層から第4層目以降の高屈折率層の厚みは、反射率低減の観点から2nm以上が好ましく、3nm以上がより好ましく、4nm以上がさらに好ましい。また、生産性の点から、最外層から第4層目以降の高屈折率層の厚みは、25nm以下が好ましく、20nm以下がより好ましく、15nm以下がさらに好ましい。 The thickness of the high-refractive index layer from the outermost layer to the fourth layer of the antireflection film 1 is preferably 2 nm or more, more preferably 3 nm or more, and further preferably 4 nm or more from the viewpoint of reducing the reflectance. Further, from the viewpoint of productivity, the thickness of the high refractive index layer from the outermost layer to the fourth layer and thereafter is preferably 25 nm or less, more preferably 20 nm or less, still more preferably 15 nm or less.
 反射防止膜1を構成する高屈折率層及び低屈折率層の合計の積層数は5層以上であればよいが、反射率の点から、8層以上が好ましく、10層以上がより好ましい。また、合計の積層数は、生産性の点から12層以下が好ましく、11層以下がより好ましい。 The total number of layers of the high-refractive index layer and the low-refractive index layer constituting the antireflection film 1 may be 5 or more, but from the viewpoint of reflectance, 8 or more layers are preferable, and 10 or more layers are more preferable. Further, the total number of layers is preferably 12 layers or less, and more preferably 11 layers or less from the viewpoint of productivity.
 反射防止膜のうち、カバーガラスと接する層は低屈折率層でも高屈折率層でもよいが、密着性の点から、低屈折率層が好ましい。なお、図3において、最外層から第6層目に位置する高屈折率層23とカバーガラスと接する低屈折率層14の間に「・・・」と点線が示されている。この点線は、最外層から第6層目に位置する高屈折率層23とカバーガラスと接する低屈折率層14の間に、任意の数の低屈折率層及び高屈折率層が交互に積層されていてもよいことを示す。 Of the antireflection films, the layer in contact with the cover glass may be a low refractive index layer or a high refractive index layer, but a low refractive index layer is preferable from the viewpoint of adhesion. In FIG. 3, a dotted line is shown between the high refractive index layer 23 located in the sixth layer from the outermost layer and the low refractive index layer 14 in contact with the cover glass. In this dotted line, an arbitrary number of low-refractive index layers and high-refractive index layers are alternately laminated between the high-refractive index layer 23 located in the sixth layer from the outermost layer and the low-refractive index layer 14 in contact with the cover glass. Indicates that it may be.
 高屈折率層及び低屈折率層の合計の厚み、すなわち反射防止膜1の厚みは特に限定されないが、生産性の点から550nm以下が好ましく、350nm以下がより好ましく、290nm以下がさらに好ましい。 The total thickness of the high refractive index layer and the low refractive index layer, that is, the thickness of the antireflection film 1 is not particularly limited, but is preferably 550 nm or less, more preferably 350 nm or less, still more preferably 290 nm or less from the viewpoint of productivity.
 高屈折率層の波長550nmにおける屈折率は、反射率低減の点から1.9以上が好ましく、2.2以上がより好ましい。また、屈折率の上限は特に限定されないが、通常2.5以下である。 The refractive index of the high refractive index layer at a wavelength of 550 nm is preferably 1.9 or more, more preferably 2.2 or more, from the viewpoint of reducing the reflectance. The upper limit of the refractive index is not particularly limited, but is usually 2.5 or less.
 低屈折率層の波長550nmにおける屈折率は、反射率低減の点から1.6以下が好ましく、1.5以下がより好ましい。また、屈折率の下限は特に限定されないが、通常1.35以上である。 The refractive index of the low refractive index layer at a wavelength of 550 nm is preferably 1.6 or less, more preferably 1.5 or less, from the viewpoint of reducing the reflectance. The lower limit of the refractive index is not particularly limited, but is usually 1.35 or more.
 高屈折率層及び低屈折率層は、Mo、W、Mg、Si、Nb、Ti、Zr、Ta、Al、Sn及びInよりなる群から選択される1種以上の酸化物、窒化物、又はフッ化物で構成されていることが好ましい。
 上記酸化物、窒化物又はフッ化物を用いることで、高屈折率層及び低屈折率層の全可視波長域での吸収能が小さくなると共に、可視光及び赤外光の反射率を低く抑えられることから好ましい。
The high-refractive index layer and the low-refractive index layer are one or more oxides, nitrides, or nitrides selected from the group consisting of Mo, W, Mg, Si, Nb, Ti, Zr, Ta, Al, Sn and In. It is preferably composed of fluoride.
By using the above oxide, nitride or fluoride, the absorption capacity of the high refractive index layer and the low refractive index layer in the entire visible wavelength range is reduced, and the reflectance of visible light and infrared light can be suppressed to a low level. Therefore, it is preferable.
 所望の屈折率になるように、高屈折率層及び低屈折率層を構成する各材料を、上記の酸化物、窒化物又はフッ化物から適宜選択する。高屈折率層及び低屈折率層の各層は、上記酸化物、窒化物及びフッ化物のうち1種のみから構成されていても、2種以上から構成されていてもよい。また、高屈折率層及び低屈折率層はそれぞれ複数存在するが、それらは、同じ材料で構成されていても、異なる材料で構成されていてもよい。すなわち、複数存在する高屈折率層及び低屈折率層は、それぞれ異なる屈折率であってもよい。 Each material constituting the high refractive index layer and the low refractive index layer is appropriately selected from the above oxides, nitrides or fluorides so as to have a desired refractive index. Each layer of the high refractive index layer and the low refractive index layer may be composed of only one kind of the above oxides, nitrides and fluorides, or may be made of two or more kinds. Further, although there are a plurality of high refractive index layers and a plurality of low refractive index layers, they may be made of the same material or different materials. That is, the plurality of high-refractive index layers and low-refractive index layers may have different refractive indexes.
 上記の中でも、高屈折率層を構成する高屈折率材料は、Mo、W、Mg、Si、Nb、Ti、Zr、Ta、Al、Sn及びInからなる群より選ばれる少なくとも1種以上からなる酸化物が好ましい。 Among the above, the high refractive index material constituting the high refractive index layer comprises at least one selected from the group consisting of Mo, W, Mg, Si, Nb, Ti, Zr, Ta, Al, Sn and In. Oxides are preferred.
 また、上記の中でも、低屈折率層を構成する低屈折率材料は、SiO、MgF、SiとSnとの混合酸化物を含む材料、SiとZrとの混合酸化物を含む材料、及びSiとAlとの混合酸化物を含む材料からなる群より選ばれる少なくとも1種が好ましく、SiOがより好ましく、SiOを主として含むことがさらに好ましい。なお、本明細書において主として含むとは、かかる層を構成する成分のうち、20質量%以上を占めることを意味する。 Among the above, the low refractive index materials constituting the low refractive index layer include SiO 2 , MgF 2 , a material containing a mixed oxide of Si and Sn, a material containing a mixed oxide of Si and Zr, and a material containing a mixed oxide of Si and Zr. At least one selected from the group consisting of a material containing a mixed oxide of Si and Al is preferable, SiO 2 is more preferable, and SiO 2 is more preferable. In addition, mainly including in this specification means that it occupies 20% by mass or more among the components constituting such a layer.
 反射防止膜は、カバーガラスの表面に直接形成されていてもよいが、フィルムの表面に形成され、かつそのフィルムがカバーガラスに貼合されることで、カバーガラスの表面に反射防止膜が形成されていてもよい。フィルムは透明であれば特に限定されないが、例えば一般的にクリアハードコート(CHC)フィルムと呼ばれるもの等を使用できる。 The antireflection film may be formed directly on the surface of the cover glass, but when the antireflection film is formed on the surface of the film and the film is attached to the cover glass, the antireflection film is formed on the surface of the cover glass. It may have been done. The film is not particularly limited as long as it is transparent, but for example, a film generally called a clear hard coat (CHC) film can be used.
 フィルムの表面に反射防止膜を形成する場合には、フィルムからのガス成分等を防ぐため、窒化Si(SiN)の層をフィルムの表面に形成した後に、反射防止膜を形成してもよい。かかる層の厚みは特に限定されないが、例えば5~30nmが挙げられる。 When an antireflection film is formed on the surface of the film, an antireflection film may be formed after forming a layer of Si (SiN) nitride on the surface of the film in order to prevent gas components from the film. The thickness of such a layer is not particularly limited, and examples thereof include 5 to 30 nm.
 フィルムをカバーガラスに貼合する際の粘着層は特に限定されないが、例えば、アクリル系光粘着剤、シリコーン系粘着剤、ウレタン系粘着剤等を使用できる。粘着層を用い、フィルムがカバーガラス側に位置するように、すなわち反射防止膜が外側になるように貼合する。粘着層の厚みは特に限定されないが、例えば5~100μmが挙げられる。 The adhesive layer when the film is attached to the cover glass is not particularly limited, but for example, an acrylic optical adhesive, a silicone adhesive, a urethane adhesive, or the like can be used. The adhesive layer is used and bonded so that the film is located on the cover glass side, that is, the antireflection film is on the outside. The thickness of the adhesive layer is not particularly limited, and examples thereof include 5 to 100 μm.
 このような、フィルムを介した反射防止膜は、カバーガラスの両面に形成されていてもよい。また、カバーガラスの一方の表面には直接反射防止膜が形成され、他方の表面にはフィルムを介して反射防止膜が形成されていてもよい。 Such an antireflection film via a film may be formed on both sides of the cover glass. Further, an antireflection film may be directly formed on one surface of the cover glass, and an antireflection film may be formed on the other surface via the film.
 また、反射防止膜は、カバーガラス又はフィルムの表面にIR(赤外線)透過インキを塗布し、その上に形成されてもよい。IR透過インキは、意匠性の向上のため好ましい。IR透過インキは従来公知のものを使用できる。 Further, the antireflection film may be formed by applying IR (infrared) transmissive ink to the surface of the cover glass or the film and forming the film on the cover glass or the film. IR transmission ink is preferable because it improves the design. Conventionally known IR transmission inks can be used.
 反射防止膜の波長550nmにおける可視光反射率は、反射防止膜付きカバーガラスをディスプレイ装置に用いた際、ディスプレイ装置の視認性の観点から1%以下が好ましく、0.4%以下がより好ましく、0.3%以下がさらに好ましい。可視光反射率は低いほど好ましいが、通常0.05%以上である。
 なお、本明細書における波長550nmにおける可視光反射率、波長950nmにおける赤外光反射率は、分光光度計(島津製作所社製、商品名:SolidSpec-3700)により測定される値である。また、後述する波長550nmにおける可視光透過率及び波長950nmにおける赤外光透過率は、いずれも垂直入射透過率であり、同様に分光光度計(島津製作所社製、商品名:SolidSpec-3700)により測定される値である。
The visible light reflectance at a wavelength of 550 nm of the antireflection film is preferably 1% or less, more preferably 0.4% or less from the viewpoint of visibility of the display device when the cover glass with the antireflection film is used for the display device. 0.3% or less is more preferable. The lower the visible light reflectance is, the more preferable it is, but it is usually 0.05% or more.
The visible light reflectance at a wavelength of 550 nm and the infrared light reflectance at a wavelength of 950 nm in the present specification are values measured by a spectrophotometer (manufactured by Shimadzu Corporation, trade name: SolidSpec-3700). Further, the visible light transmittance at a wavelength of 550 nm and the infrared light transmittance at a wavelength of 950 nm, which will be described later, are both vertical incident transmittances, and are similarly measured by a spectrophotometer (manufactured by Shimadzu Corporation, trade name: SolidSpec-3700). It is a value to be measured.
 反射防止膜の波長950nmにおける赤外光反射率は、反射防止膜付きカバーガラスを赤外線センサと共に用いた場合に、当該赤外線センサの誤作動を防ぐ観点から5%以下が好ましく、3%以下が好ましく、1%以下がさらに好ましい。赤外光反射率は低いほど好ましいが、通常0.5%以上である。 The infrared light reflectance of the antireflection film at a wavelength of 950 nm is preferably 5% or less, preferably 3% or less, from the viewpoint of preventing malfunction of the infrared sensor when the cover glass with the antireflection film is used together with the infrared sensor. 1% or less is more preferable. The lower the infrared light reflectance, the more preferable, but it is usually 0.5% or more.
 反射防止膜付きカバーガラスの色味は色指標を基準とできる。色指標は、上記反射率の測定時に得られた分光反射率の反射スペクトルから、JIS Z 8729:2004において規定されている色指標であるa値及びb値として求められる値である。 The tint of the cover glass with antireflection film can be based on the color index. The color index is a value obtained as a * value and b * value, which are color indexes defined in JIS Z 8729: 2004, from the reflection spectrum of the spectral reflectance obtained at the time of measuring the reflectance.
 反射防止膜は、スパッタリング法、イオンビームスパッタリング法、真空蒸着法、プラズマを用いたイオンアシスト蒸着法、イオンプレーティング法などの公知の成膜方法を用いて、カバーガラスの主面上に形成できる。すなわち、反射防止膜を構成する高屈折率層及び低屈折率層を、その積層順に応じて、カバーガラスの主面上に形成していく。
 スパッタリング法としては、マグネトロンスパッタ、パルススパッタ、ACスパッタ、デジタルスパッタ等が挙げられる。
 上記のうち、例えばマグネトロンスパッタ法は、高屈折率層又は低屈折率層となる材料の裏面に磁石を設置して磁界を発生させ、ガスイオン原子が上記材料の表面に衝突し、叩き出されることにより数nmの厚さでスパッタ成膜する方法である。材料とした金属の酸化物又は窒化物の連続膜を形成できる。
The antireflection film can be formed on the main surface of the cover glass by using a known film forming method such as a sputtering method, an ion beam sputtering method, a vacuum vapor deposition method, an ion assisted vapor deposition method using plasma, or an ion plating method. .. That is, the high-refractive index layer and the low-refractive index layer constituting the antireflection film are formed on the main surface of the cover glass according to the stacking order.
Examples of the sputtering method include magnetron sputtering, pulse sputtering, AC sputtering, digital sputtering and the like.
Of the above, for example, in the magnetron sputtering method, a magnet is placed on the back surface of a material to be a high refractive index layer or a low refractive index layer to generate a magnetic field, and gas ion atoms collide with the surface of the material and are knocked out. This is a method of forming a spatter film with a thickness of several nm. A continuous film of metal oxide or nitride used as a material can be formed.
 デジタルスパッタ法は、通常のマグネトロンスパッタ法とは異なり、まずスパッタリングによって金属の極薄膜を形成してから、酸素プラズマ、酸素イオン又は酸素ラジカルを照射することによって酸化する。この金属の極薄膜の形成と酸化の工程を同一チャンバ内で繰り返して、高屈折率層又は低屈折率層となる薄膜を形成する。この場合、成膜分子が基板に着膜した時は金属であるので、金属酸化物で着膜する場合に比べて延性があると推察される。したがって同じエネルギーでも成膜分子の再配置は起こりやすくなり、結果的に密で平滑な膜ができると考えられる。 Unlike the normal magnetron sputtering method, the digital sputtering method first forms an ultrathin metal film by sputtering, and then oxidizes it by irradiating it with oxygen plasma, oxygen ions, or oxygen radicals. The steps of forming and oxidizing the ultrathin film of the metal are repeated in the same chamber to form a thin film having a high refractive index layer or a low refractive index layer. In this case, since the film-forming molecule is a metal when it is formed on the substrate, it is presumed that it has ductility as compared with the case where the film is formed with a metal oxide. Therefore, it is considered that the rearrangement of the film-forming molecules is likely to occur even with the same energy, and as a result, a dense and smooth film is formed.
 反射防止膜は、カバーガラスの少なくとも一方の主面上に形成されていればよい。また、反射防止膜付きカバーガラスがディスプレイ装置に用いられる場合には、カバーガラスの外部に露出した面側の主面上に反射防止膜が形成されていることが好ましい。必要に応じて、カバーガラスの両主面上に反射防止膜が形成されていてもよい。
 なお、カバーガラスの外部に露出した面側とは、ディスプレイ装置における赤外線センサや表示部がある面側とは反対の面側を意味する。
The antireflection film may be formed on at least one main surface of the cover glass. When the cover glass with an antireflection film is used for a display device, it is preferable that the antireflection film is formed on the main surface on the surface side exposed to the outside of the cover glass. If necessary, antireflection films may be formed on both main surfaces of the cover glass.
The surface side exposed to the outside of the cover glass means the surface side opposite to the surface side where the infrared sensor and the display unit are located in the display device.
[カバーガラス]
 反射防止膜が設けられているカバーガラスは、屈折率が1.4以上1.7以下が好ましい。これは、反射防止膜付きカバーガラスをディスプレイ装置に用いる場合に、ディスプレイやタッチパネルなどを光学的に接着するにあたり、接着面における反射を十分に抑制できるためである。
 カバーガラスには、種々の組成を有するガラスを適用できる。例えばナトリウムを含むことが好ましく、成形、化学強化処理による強化が可能な組成がより好ましい。その他、具体的には、アルミノシリケートガラス、ソーダライムガラス、ホウ珪酸ガラス、鉛ガラス、アルカリバリウムガラス、アルミノホウ珪酸ガラス等が挙げられる。
[cover glass]
The cover glass provided with the antireflection film preferably has a refractive index of 1.4 or more and 1.7 or less. This is because when a cover glass with an antireflection film is used for a display device, reflection on the adhesive surface can be sufficiently suppressed when optically adhering a display, a touch panel, or the like.
Glasses having various compositions can be applied to the cover glass. For example, it preferably contains sodium, and a composition that can be fortified by molding or chemical strengthening treatment is more preferable. In addition, specific examples thereof include aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkaline barium glass, aluminhosilicate glass and the like.
 カバーガラスの厚みは、特に制限はないが、化学強化処理を行う場合はこれを効果的に行うために、通常5mm以下が好ましく、3mm以下がより好ましい。下限は特に限定されないが、強度の点から0.5mm以上が好ましい。
 また、強度を高めるために化学強化された化学強化ガラスを用いることが好ましい。
The thickness of the cover glass is not particularly limited, but when the chemical strengthening treatment is performed, it is usually preferably 5 mm or less, and more preferably 3 mm or less in order to effectively perform this. The lower limit is not particularly limited, but 0.5 mm or more is preferable from the viewpoint of strength.
Further, it is preferable to use chemically strengthened glass to increase the strength.
 反射防止膜付きカバーガラスの波長950nmにおける赤外光透過率は、反射防止膜付きカバーガラスを赤外線センサと共に用いる場合、赤外線センサの誤作動を防ぐ観点から85%以上が好ましく、88%以上がより好ましく、90%以上がさらに好ましく、高いほど好ましい。 When the cover glass with antireflection film is used together with an infrared sensor, the infrared light transmittance at a wavelength of 950 nm is preferably 85% or more, more preferably 88% or more from the viewpoint of preventing malfunction of the infrared sensor. More preferably, 90% or more is more preferable, and higher is more preferable.
 反射防止膜付きカバーガラスの波長550nmにおける可視光透過率は、90%以上が好ましく、92%以上がより好ましく、高いほど好ましい。 The visible light transmittance of the cover glass with an antireflection film at a wavelength of 550 nm is preferably 90% or more, more preferably 92% or more, and more preferably higher.
 カバーガラスに防眩処理を施す場合、化学強化処理は、防眩処理の後であって、反射防止膜を形成する前に行なうことが好ましい。 When applying the antiglare treatment to the cover glass, it is preferable to perform the chemical strengthening treatment after the antiglare treatment and before forming the antireflection film.
 防眩処理は、カバーガラスの反射防止膜を有する側の主面に施されていることが好ましい。
 防眩処理方法は特に限定されず、ガラス主面について表面処理を施し、所望の凹凸を形成する方法を利用できる。具体的には、カバーガラスの主面に化学的処理を行う方法、例えばフロスト処理を施す方法が挙げられる。フロスト処理は、例えば、フッ化水素とフッ化アンモニウムの混合溶液に、被処理体であるカバーガラスを浸漬することで、浸漬面を化学的に表面処理できる。
 化学的処理による方法以外にも、例えば、結晶質二酸化ケイ素粉、炭化ケイ素粉等を加圧空気でガラス基板表面に吹きつけるサンドブラスト処理や、結晶質二酸化ケイ素粉、炭化ケイ素粉等を付着させたブラシを水で湿らせたもので磨く等の物理的処理による方法も利用できる。
The antiglare treatment is preferably applied to the main surface of the cover glass on the side having the antireflection film.
The antiglare treatment method is not particularly limited, and a method of surface-treating the main surface of the glass to form desired unevenness can be used. Specifically, a method of chemically treating the main surface of the cover glass, for example, a method of applying a frost treatment can be mentioned. In the frost treatment, for example, the soaked surface can be chemically surface-treated by immersing the cover glass, which is the object to be treated, in a mixed solution of hydrogen fluoride and ammonium fluoride.
In addition to the chemical treatment method, for example, sandblasting treatment in which crystalline silicon dioxide powder, silicon carbide powder, etc. is sprayed onto the surface of a glass substrate with pressurized air, or crystalline silicon dioxide powder, silicon carbide powder, etc. are adhered. A method by physical treatment such as polishing with a brush moistened with water can also be used.
<ディスプレイ装置>
 本実施形態に係る反射防止膜付きカバーガラスは、図2に示すように、赤外線センサ4と共に用いられることが好ましい。また、本実施形態に係るディスプレイ装置10は、赤外線センサ4と、反射防止膜1が設けられたカバーガラス2とを備える。ここでの反射防止膜1が設けられたカバーガラス2とは、上記<反射防止膜付きカバーガラス>に記載の反射防止膜付きカバーガラスと同様のものを使用でき、好ましい態様も同様である。
 赤外線センサ4は、センシング光を出射する光源と、モニタリング等した信号光を検出するカメラを備えていれば特に限定されない。反射防止膜付きカバーガラスを赤外線センサと共に用いる場合、反射防止膜付きカバーガラスの赤外光透過率の高さゆえに、赤外線センサの出入光が透過する箇所に、図1に示すような開口部を設ける必要はない。すなわち、意匠性やコストの観点から、反射防止膜付きカバーガラスは、上記開口部を備えないことが好ましい。
 赤外線センサ4とカバーガラス2の間には、印刷層5が形成されていてもよい。印刷層5は、カバーガラス2の周縁部に配置される配線部材等を隠蔽する隠蔽層であってもよいし、ディスプレイ装置10の意匠性を高める加飾層であってもよい。
 印刷層や加飾層がある場合には、赤外線センサの出入光である光透過領域の赤外光の透過性を維持するために、上記光透過領域には印刷層5を備えないことが好ましい。あるいは、印刷層5に代えて、IR透過インキ層6を備えることが好ましい。IR透過インキ層とは、赤外光の透過率が高いインキを用いて形成された層であり、赤外線センサのセンシング光と信号光、すなわち出入光が通過する領域に形成されることが好ましい。
<Display device>
As shown in FIG. 2, the cover glass with an antireflection film according to the present embodiment is preferably used together with the infrared sensor 4. Further, the display device 10 according to the present embodiment includes an infrared sensor 4 and a cover glass 2 provided with an antireflection film 1. As the cover glass 2 provided with the antireflection film 1 here, the same cover glass as the cover glass with the antireflection film described in the above <cover glass with the antireflection film> can be used, and the preferred embodiment is also the same.
The infrared sensor 4 is not particularly limited as long as it includes a light source that emits sensing light and a camera that detects signal light such as monitoring. When the cover glass with antireflection film is used together with the infrared sensor, an opening as shown in FIG. 1 is provided at a place where the light entering and exiting the infrared sensor is transmitted due to the high infrared light transmittance of the cover glass with antireflection film. There is no need to provide it. That is, from the viewpoint of design and cost, it is preferable that the cover glass with the antireflection film does not have the above-mentioned opening.
A print layer 5 may be formed between the infrared sensor 4 and the cover glass 2. The print layer 5 may be a concealing layer that conceals a wiring member or the like arranged on the peripheral edge of the cover glass 2, or may be a decorative layer that enhances the design of the display device 10.
When there is a print layer or a decorative layer, it is preferable not to provide the print layer 5 in the light transmission region in order to maintain the transmission of infrared light in the light transmission region which is the light entering and exiting the infrared sensor. .. Alternatively, it is preferable to provide the IR transmission ink layer 6 instead of the print layer 5. The IR transmissive ink layer is a layer formed by using an ink having a high transmittance of infrared light, and is preferably formed in a region through which the sensing light and signal light of the infrared sensor, that is, the ingress / egress light passes.
 ディスプレイ装置における表示パネルも特に限定されない。例えば、液晶パネル、有機ELパネル、プラズマディスプレイパネル、電子インク型パネル等が挙げられる。表示パネルの種類に応じて、ディスプレイ装置は、さらにバックライトユニットを有することがある。
 また、その他タッチパネル等、従来公知のものをさらに備えていてもよい。
The display panel in the display device is also not particularly limited. For example, a liquid crystal panel, an organic EL panel, a plasma display panel, an electronic ink type panel and the like can be mentioned. Depending on the type of display panel, the display device may further have a backlight unit.
Further, other conventionally known touch panels and the like may be further provided.
 ディスプレイ装置には、反射防止膜の最表面を保護する観点から、反射防止膜の表面上にさらに防汚膜(AFP膜:Anti Finger Print膜)を形成してもよい。防汚膜を形成する際には、耐久性に関わる結合性の観点から、反射防止膜の最外層となる低屈折率層をSiOを主として含む層とすることが好ましい。 In the display device, an antifouling film (AFP film: Anti Finger Print film) may be further formed on the surface of the antireflection film from the viewpoint of protecting the outermost surface of the antireflection film. When forming the antifouling film, it is preferable that the low refractive index layer, which is the outermost layer of the antireflection film, is a layer mainly containing SiO 2 from the viewpoint of the bondability related to durability.
 防汚膜は、反射防止膜上に積層するため、カバーガラスの両主面上に反射防止膜が形成されている場合には、両方の反射防止膜の表面に防汚膜を成膜することもできる。一方で、防汚膜は人の手等が接触する可能性がある場所について設けられていればよい。そのため、少なくとも、ディスプレイ装置の最外層側に位置する反射防止膜の表面上に防汚膜が形成されていればよい。 Since the antifouling film is laminated on the antireflection film, if the antireflection film is formed on both main surfaces of the cover glass, the antifouling film should be formed on the surfaces of both antireflection films. You can also. On the other hand, the antifouling film may be provided in a place where human hands or the like may come into contact. Therefore, at least, it is sufficient that the antifouling film is formed on the surface of the antireflection film located on the outermost layer side of the display device.
 防汚膜は例えば、フッ素含有有機ケイ素化合物により構成できる。フッ素含有有機ケイ素化合物としては、防汚性、撥水性、撥油性を付与できれば特に限定されず使用できる。例えば、ポリフルオロポリエーテル基、ポリフルオロアルキレン基及びポリフルオロアルキル基よりなる群から選ばれる1以上の基を有するフッ素含有有機ケイ素化合物が挙げられる。なお、ポリフルオロポリエーテル基とは、ポリフルオロアルキレン基とエーテル性酸素原子とが交互に結合した構造を有する2価の基のことである。 The antifouling film can be composed of, for example, a fluorine-containing organosilicon compound. The fluorine-containing organosilicon compound can be used without particular limitation as long as it can impart antifouling property, water repellency, and oil repellency. For example, a fluorine-containing organosilicon compound having one or more groups selected from the group consisting of a polyfluoropolyether group, a polyfluoroalkylene group and a polyfluoroalkyl group can be mentioned. The polyfluoropolyether group is a divalent group having a structure in which a polyfluoroalkylene group and an ethereal oxygen atom are alternately bonded.
 また、市販されているポリフルオロポリエーテル基、ポリフルオロアルキレン基及びポリフルオロアルキル基よりなる群から選ばれる1以上の基を有するフッ素含有有機ケイ素化合物を用いてもよい。具体的には、KP-801(商品名、信越化学社製)、KY178(商品名、信越化学社製)、KY-130(商品名、信越化学社製)、KY-185(商品名、信越化学社製)オプツ-ル(登録商標)DSX及びオプツールAES(いずれも商品名、ダイキン社製)等を好ましく使用できる。 Further, a fluorine-containing organosilicon compound having one or more groups selected from the group consisting of commercially available polyfluoropolyether groups, polyfluoroalkylene groups and polyfluoroalkyl groups may be used. Specifically, KP-801 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), KY178 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), KY-130 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), KY-185 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.). (Chemical Co., Ltd.) Optool (registered trademark) DSX, Optool AES (both trade names, manufactured by Daikin Co., Ltd.) and the like can be preferably used.
 本実施形態に係るディスプレイ装置は、ナビゲーションシステムやオーディオ等の車載用情報機器や携帯通信機器、サイネージ等に好適である。 The display device according to this embodiment is suitable for in-vehicle information devices such as navigation systems and audio, portable communication devices, signage, and the like.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されない。また、例1~例3は実施例であり、例4は比較例である。 The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Further, Examples 1 to 3 are examples, and Example 4 is a comparative example.
(例1)
 カバーガラスとして、50mm×50mm×2mmの化学強化ガラス板(AGC社製ドラゴントレイル(登録商標))を用いた。
 高屈折率材料としてTiO、低屈折率材料としてSiOを用い、マグネトロンスパッタリング法により、カバーガラスの一方の主面上に順に積層させた。これにより、高屈折率層であるTiO層及び低屈折率層であるSiO層が交互に積層された反射防止膜付きカバーガラスを得た。
 反射防止膜は、最外層を低屈折率層とする8層の積層膜であり、各層の厚みは、最外層側から順に、97nm(低屈折率層)、28nm(高屈折率層)、16nm(低屈折率層)、81nm(高屈折率層)、10nm(低屈折率層)、41nm(高屈折率層)、36nm(低屈折率層)、6nm(高屈折率層)であった。
(Example 1)
As the cover glass, a chemically strengthened glass plate (AGC Dragon Trail (registered trademark)) having a size of 50 mm × 50 mm × 2 mm was used.
TiO 2 was used as the high refractive index material and SiO 2 was used as the low refractive index material, and the layers were sequentially laminated on one main surface of the cover glass by the magnetron sputtering method. As a result, a cover glass with an antireflection film was obtained in which two layers of TiO, which is a high refractive index layer, and two layers of SiO, which is a low refractive index layer, were alternately laminated.
The antireflection film is an eight-layer laminated film having a low refractive index layer as the outermost layer, and the thickness of each layer is 97 nm (low refractive index layer), 28 nm (high refractive index layer), and 16 nm in order from the outermost layer side. (Low refractive index layer), 81 nm (high refractive index layer), 10 nm (low refractive index layer), 41 nm (high refractive index layer), 36 nm (low refractive index layer), 6 nm (high refractive index layer).
(例2)
 反射防止膜における高屈折率層及び低屈折率層の積層数及び各層の厚みを下記に変更した以外は例1と同様にして反射防止膜付きカバーガラスを得た。
 反射防止膜は、最外層を低屈折率層とする12層の積層膜であり、各層の厚みは、最外層側から順に、93.3nm(低屈折率層)、26nm(高屈折率層)、10nm(低屈折率層)、75.3nm(高屈折率層)、8nm(低屈折率層)、32.3nm(高屈折率層)、25.9nm(低屈折率層)、17.5nm(高屈折率層)であった。
(Example 2)
A cover glass with an antireflection film was obtained in the same manner as in Example 1 except that the number of layers of the high refractive index layer and the low refractive index layer in the antireflection film and the thickness of each layer were changed to the following.
The antireflection film is a 12-layer laminated film having a low refractive index layer as the outermost layer, and the thickness of each layer is 93.3 nm (low refractive index layer) and 26 nm (high refractive index layer) in order from the outermost layer side. 10 nm (low refractive index layer), 75.3 nm (high refractive index layer), 8 nm (low refractive index layer), 32.3 nm (high refractive index layer), 25.9 nm (low refractive index layer), 17.5 nm (High refractive index layer).
(例3)
 クリアハードコート(CHC)フィルム(トッパンTOMOEGAWAオプティカルフィルム社製)の表面に、厚さ15nmの窒化Si(SiN)からなる層を堆積させた。
 次いで、高屈折率材料としてTiO、低屈折率材料としてSiOを用い、マグネトロンスパッタリング法により、窒化Si(SiN)からなる層上に順に積層させた。これにより、高屈折率層であるTiO層及び低屈折率層であるSiO層が交互に積層された反射防止膜付きCHCフィルムを得た。これを、CHCフィルムが化学強化ガラス板側になるように、厚み25μmの粘着層(巴川製紙所社製、TD06A)を介して、50mm×50mm×2mmの化学強化ガラス板(AGC社製ドラゴントレイル(登録商標))に貼合した。
 反射防止膜は、最外層を低屈折率層とする8層の積層膜であり、各層の厚みは、最外層側から順に、98nm(低屈折率層)、29nm(高屈折率層)、16nm(低屈折率層)、87nm(高屈折率層)、11nm(低屈折率層)、44nm(高屈折率層)、34nm(低屈折率層)、10nm(高屈折率層)であった。また、反射防止膜の表面上には、さらに4nmの防汚膜(信越化学社製、KY-185)を堆積させた。
(Example 3)
A layer made of Si (SiN) nitride having a thickness of 15 nm was deposited on the surface of a clear hard coat (CHC) film (manufactured by Toppan TOMOEGAWA Optical Film Co., Ltd.).
Next, TiO 2 was used as the high refractive index material and SiO 2 was used as the low refractive index material, and the layers were sequentially laminated on a layer made of Si (SiN) nitride by a magnetron sputtering method. As a result, a CHC film with an antireflection film was obtained in which two layers of TiO, which is a high refractive index layer, and two layers of SiO, which is a low refractive index layer, were alternately laminated. This is passed through an adhesive layer (manufactured by Tomoegawa Paper Co., Ltd., TD06A) with a thickness of 25 μm so that the CHC film is on the side of the chemically strengthened glass plate, and a 50 mm × 50 mm × 2 mm chemically strengthened glass plate (Dragon Trail manufactured by AGC). (Registered trademark)).
The antireflection film is an eight-layer laminated film having a low refractive index layer as the outermost layer, and the thickness of each layer is 98 nm (low refractive index layer), 29 nm (high refractive index layer), and 16 nm in order from the outermost layer side. (Low refractive index layer), 87 nm (high refractive index layer), 11 nm (low refractive index layer), 44 nm (high refractive index layer), 34 nm (low refractive index layer), 10 nm (high refractive index layer). Further, an antifouling film (manufactured by Shin-Etsu Chemical Co., Ltd., KY-185) having a diameter of 4 nm was further deposited on the surface of the antireflection film.
(例4)
 反射防止膜における高屈折率層及び低屈折率層の積層数及び各層の厚みを下記に変更した以外は例1と同様にして反射防止膜付きカバーガラスを得た。
 反射防止膜は、最外層を低屈折率層とする5層の積層膜であり、各層の厚みは、最外層側から順に、80nm(低屈折率層)、122nm(高屈折率層)、36nm(低屈折率層)、6nm(高屈折率層)、16nm(低屈折率層)であった。
(Example 4)
A cover glass with an antireflection film was obtained in the same manner as in Example 1 except that the number of layers of the high refractive index layer and the low refractive index layer in the antireflection film and the thickness of each layer were changed to the following.
The antireflection film is a five-layer laminated film having a low refractive index layer as the outermost layer, and the thickness of each layer is 80 nm (low refractive index layer), 122 nm (high refractive index layer), and 36 nm in order from the outermost layer side. (Low refractive index layer), 6 nm (high refractive index layer), 16 nm (low refractive index layer).
(評価)
 反射防止膜の可視光反射率及び赤外光反射率、並びに、反射防止膜付きカバーガラスの可視光透過率及び赤外光透過率は分光光度計(島津製作所社製SolidSpec-3700)を用いて求めた。可視光反射率及び赤外光反射率は、それぞれ測定波長を550nm及び950nmとした。また、可視光透過率及び赤外光透過率は、それぞれ測定波長を550nm及び950nmとし、垂直透過率を求めた。結果を表1に示す。
(evaluation)
The visible light reflectance and infrared light reflectance of the antireflection film, and the visible light transmittance and infrared light transmittance of the cover glass with antireflection film are determined by using a spectrophotometer (SolidSpec-3700 manufactured by Shimadzu Corporation). I asked. For the visible light reflectance and the infrared light reflectance, the measurement wavelengths were 550 nm and 950 nm, respectively. Further, for the visible light transmittance and the infrared light transmittance, the measurement wavelengths were set to 550 nm and 950 nm, respectively, and the vertical transmittance was determined. The results are shown in Table 1.
 上記分光光度計を用いた測定で得られた反射スペクトルから、JIS Z 8729:2004に基づき、色指標a値及び色指標b値を求めた。結果を表1に示す。 From the reflection spectrum obtained by the measurement using the spectrophotometer, the color index a * value and the color index b * value were obtained based on JIS Z 8729: 2004. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、カバーガラス上に設けられた反射防止膜は、その最外層を低屈折率層とし、さらに最外層から第3層目及び第5層目の低屈折率層の厚みをそれぞれ薄くすることにより、赤外光反射率の大幅な低減が達成された。 From the above results, the antireflection film provided on the cover glass has a low refractive index layer as its outermost layer, and the thickness of the third and fifth low refractive index layers from the outermost layer is thinned, respectively. As a result, a significant reduction in the infrared light reflectance was achieved.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2020年12月21日出願の日本特許出願(特願2020-211763)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on December 21, 2020 (Japanese Patent Application No. 2020-211763), the contents of which are incorporated herein by reference.
 本発明に係る反射防止膜付きカバーガラスは、赤外線センサを備えたディスプレイ装置に用いた際に、カバーガラスの一部を開口することなく、良好な視認性と高い赤外光透過性を実現できる。また、意匠の観点からデザイン性が損なわれることを抑制でき、穴あけ加工によるコストアップも抑制できる。そのため、高い意匠性と赤外線センサの誤作動の抑制を両立でき、ディスプレイ装置の用途、より具体的には、ナビゲーションシステムやオーディオ等の車載用情報機器や携帯通信機器、サイネージ等の用途に有用である。 When used in a display device equipped with an infrared sensor, the cover glass with an antireflection film according to the present invention can realize good visibility and high infrared light transmission without opening a part of the cover glass. .. In addition, it is possible to prevent the design from being impaired from the viewpoint of design, and it is also possible to suppress the cost increase due to the drilling process. Therefore, it is possible to achieve both high design and suppression of malfunction of the infrared sensor, and it is useful for display device applications, more specifically, in-vehicle information devices such as navigation systems and audio, mobile communication devices, signage, etc. be.
 1:反射防止膜
 2:カバーガラス
 3:表示部
 4:赤外線センサ
 5:印刷層
 6:IR透過インキ印刷層
10:ディスプレイ装置
11:最外層に位置する低屈折率層
12:最外層から第3層目に位置する低屈折率層
13:最外層から第5層目に位置する低屈折率層
14:カバーガラスと接する低屈折率層
21:最外層から第2層目に位置する高屈折率層
22:最外層から第4層目に位置する高屈折率層
23:最外層から第6層目に位置する高屈折率層
1: Anti-reflection film 2: Cover glass 3: Display unit 4: Infrared sensor 5: Printing layer 6: IR transmission ink printing layer 10: Display device 11: Low refractive index layer located on the outermost layer 12: Third from the outermost layer Low refractive index layer 13 located in the outermost layer: Low refractive index layer 14 located in the fifth layer from the outermost layer: Low refractive index layer 21 in contact with the cover glass: High refractive index located in the second layer from the outermost layer Layer 22: High refractive index layer located from the outermost layer to the fourth layer 23: High refractive index layer located from the outermost layer to the sixth layer

Claims (7)

  1.  反射防止膜を備えるカバーガラスであって、
     前記反射防止膜は高屈折率層及び低屈折率層が交互に積層されてなり、その最外層は低屈折率層であり、
     前記高屈折率層及び前記低屈折率層の合計の積層数は5層以上であり、
     前記最外層から第3層目に位置する低屈折率層の厚みが35nm以下、前記最外層から第5層目に位置する低屈折率層の厚みが15nm以下である、反射防止膜付きカバーガラス。
    A cover glass with an antireflection film
    The antireflection film is formed by alternately laminating high refractive index layers and low refractive index layers, and the outermost layer thereof is a low refractive index layer.
    The total number of layers of the high refractive index layer and the low refractive index layer is 5 or more.
    Cover glass with antireflection film, the thickness of the low refractive index layer located in the third layer from the outermost layer is 35 nm or less, and the thickness of the low refractive index layer located in the fifth layer from the outermost layer is 15 nm or less. ..
  2.  前記反射防止膜の波長550nmにおける可視光反射率は0.4%以下であり、かつ、波長950nmにおける赤外光反射率は5%以下である、請求項1に記載の反射防止膜付きカバーガラス。 The cover glass with an antireflection film according to claim 1, wherein the antireflection film has a visible light reflectance of 0.4% or less at a wavelength of 550 nm and an infrared light reflectance of 5% or less at a wavelength of 950 nm. ..
  3.  前記高屈折率層の波長550nmにおける屈折率が1.9以上であり、前記低屈折率層の波長550nmにおける屈折率が1.6以下である、請求項1又は2に記載の反射防止膜付きカバーガラス。 The antireflection film according to claim 1 or 2, wherein the high refractive index layer has a refractive index of 1.9 or more at a wavelength of 550 nm and the low refractive index layer has a refractive index of 1.6 or less at a wavelength of 550 nm. cover glass.
  4.  前記高屈折率層を構成する高屈折率材料が、Mo、W、Mg、Si、Nb、Ti、Zr、Ta、Al、Sn及びInからなる群より選ばれる少なくとも1種からなる酸化物である、請求項1~3のいずれか1項に記載の反射防止膜付きカバーガラス。 The high refractive index material constituting the high refractive index layer is an oxide composed of at least one selected from the group consisting of Mo, W, Mg, Si, Nb, Ti, Zr, Ta, Al, Sn and In. , The cover glass with an antireflection film according to any one of claims 1 to 3.
  5.  前記低屈折率層を構成する低屈折率材料が、SiO、MgF、SiとSnとの混合酸化物を含む材料、SiとZrとの混合酸化物を含む材料、及びSiとAlとの混合酸化物を含む材料からなる群より選ばれる少なくとも1種である、請求項1~4のいずれか1項に記載の反射防止膜付きカバーガラス。 The low refractive index materials constituting the low refractive index layer include SiO 2 , MgF 2 , a material containing a mixed oxide of Si and Sn, a material containing a mixed oxide of Si and Zr, and Si and Al. The cover glass with an antireflection film according to any one of claims 1 to 4, which is at least one selected from the group consisting of a material containing a mixed oxide.
  6.  赤外線センサと共に用いられ、前記赤外線センサの出入光が透過する箇所に開口部を備えない、請求項1~5のいずれか1項に記載の反射防止膜付きカバーガラス。 The cover glass with an antireflection film according to any one of claims 1 to 5, which is used together with an infrared sensor and does not have an opening at a place where light entering and exiting the infrared sensor passes.
  7.  赤外線センサ及び請求項1~6のいずれか1項に記載の反射防止膜付きカバーガラスを備える、ディスプレイ装置。 A display device including an infrared sensor and a cover glass with an antireflection film according to any one of claims 1 to 6.
PCT/JP2021/046392 2020-12-21 2021-12-15 Antireflection-film-equipped glass covering WO2022138403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572245A JPWO2022138403A1 (en) 2020-12-21 2021-12-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-211763 2020-12-21
JP2020211763 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022138403A1 true WO2022138403A1 (en) 2022-06-30

Family

ID=82159194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046392 WO2022138403A1 (en) 2020-12-21 2021-12-15 Antireflection-film-equipped glass covering

Country Status (3)

Country Link
JP (1) JPWO2022138403A1 (en)
TW (1) TW202224928A (en)
WO (1) WO2022138403A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178261A (en) * 2004-12-24 2006-07-06 Seiko Epson Corp Dielectric multilayer film filter and optical member
JP2012111887A (en) * 2010-11-26 2012-06-14 Konica Minolta Advanced Layers Inc Method for producing resin film, resin film, polarizing plate and liquid crystal display both using the same
JP2014174325A (en) * 2013-03-08 2014-09-22 Konica Minolta Inc Imaging optical system unit, imaging device and digital device
JP2015200888A (en) * 2014-04-03 2015-11-12 ショット アクチエンゲゼルシャフトSchott AG Hard reflection preventive film, manufacturing of hard reflection preventive film and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178261A (en) * 2004-12-24 2006-07-06 Seiko Epson Corp Dielectric multilayer film filter and optical member
JP2012111887A (en) * 2010-11-26 2012-06-14 Konica Minolta Advanced Layers Inc Method for producing resin film, resin film, polarizing plate and liquid crystal display both using the same
JP2014174325A (en) * 2013-03-08 2014-09-22 Konica Minolta Inc Imaging optical system unit, imaging device and digital device
JP2015200888A (en) * 2014-04-03 2015-11-12 ショット アクチエンゲゼルシャフトSchott AG Hard reflection preventive film, manufacturing of hard reflection preventive film and use thereof

Also Published As

Publication number Publication date
TW202224928A (en) 2022-07-01
JPWO2022138403A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
JP6881172B2 (en) Transparent substrate with antireflection film and display device using it
JP6561823B2 (en) Glass laminate with protective film
WO2018105602A1 (en) Transparent substrate having light blocking region and display device
JP2009122416A (en) Optical thin film
EP4186690A1 (en) Anti-reflective film-attached transparent substrate and image display device
KR102439066B1 (en) Optical laminates and articles
US20230144879A1 (en) Transparent substrate with anti-reflective film
JP6939974B2 (en) Display device
JP2019191340A (en) Transparent plate with light shielding layer
WO2022138403A1 (en) Antireflection-film-equipped glass covering
JP2023105806A (en) Transparent substrate with antireflection coating and image display device
JP6780619B2 (en) Substrate with low reflective film and its manufacturing method
JP6806193B2 (en) Glass laminate with protective film
WO2023195500A1 (en) Antireflection film-attached transparent substrate and image display device
US20230229037A1 (en) Anti-reflective film-attached transparent substrate and image display device
JP7156556B2 (en) Transparent substrate with multilayer film
JPH11149063A (en) Spectacle lens with antireflection film
US20230408731A1 (en) Transparent substrate with multilayer film and image display device
KR20240052892A (en) Anti-reflective film-attached transparent substrate and image display device
US20220340482A1 (en) Electronic Device Coatings With Organic Components
TW202319780A (en) Transparent substrate with reflection preventing film and image displaying device have light absorbing ability and insulation
JP2023126251A (en) Self-luminous display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910551

Country of ref document: EP

Kind code of ref document: A1