WO2022138039A1 - Shrink film - Google Patents

Shrink film Download PDF

Info

Publication number
WO2022138039A1
WO2022138039A1 PCT/JP2021/044198 JP2021044198W WO2022138039A1 WO 2022138039 A1 WO2022138039 A1 WO 2022138039A1 JP 2021044198 W JP2021044198 W JP 2021044198W WO 2022138039 A1 WO2022138039 A1 WO 2022138039A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
mass
styrene
shrink film
Prior art date
Application number
PCT/JP2021/044198
Other languages
French (fr)
Japanese (ja)
Inventor
有貴 節田
洋 松岡
英訓 土橋
真志 阪野
Original Assignee
株式会社フジシールインターナショナル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジシールインターナショナル filed Critical 株式会社フジシールインターナショナル
Priority to JP2022572040A priority Critical patent/JPWO2022138039A1/ja
Publication of WO2022138039A1 publication Critical patent/WO2022138039A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/34Coverings or external coatings
    • B65D25/36Coverings or external coatings formed by applying sheet material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/04Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion

Definitions

  • the present invention relates to a shrink film.
  • plastic bottles such as PET bottles and metal bottles such as bottle cans are widely used as beverage containers for tea and soft drinks.
  • Plastic labels are often attached to these containers for display, decorativeness, and functionality.
  • a shrink label in which a print layer is provided on a shrink film (heat shrinkable film) is widely used because of merits such as decorativeness, processability (followability to a container), and a wide display area. in use.
  • shrink films using biomass raw materials which are materials derived from industrial waste and plants
  • a shrink film using a biomass raw material for example, a shrink film using polylactic acid, which is a biodegradable and plant-derived material, is known.
  • a practical shrink film using a polystyrene resin as a biomass raw material is not known.
  • an object of the present invention is to provide a shrink film using a polystyrene-based resin derived from biomass and having an excellent shrinkage finish.
  • the present invention is a shrink film having a heat shrinkage mainly in one direction. Containing a styrene-butadiene copolymer having a structural unit derived from a biomass-derived styrene-based monomer, Provided is a shrink film in which the content ratio of a resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower is 45% by mass or more with respect to the total mass of the shrink film.
  • the shrink film includes a base layer portion having one or more layers and surface layers provided on both sides of the base layer portion.
  • the base layer portion has a layer (A layer) containing the styrene-butadiene copolymer as a layer in the base layer portion.
  • the layer A is a layer in which the content ratio of the styrene-butadiene copolymer is 20% by mass or more, and the content ratio of the resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower is 15% by mass or more. Is preferable.
  • the surface layer does not contain the styrene-butadiene copolymer, or the content ratio of the styrene-butadiene copolymer in the surface layer is less than 5% by mass.
  • the shrink film of the present invention uses a polystyrene-based resin derived from biomass and has an excellent shrinkage finish. Therefore, the shrink film of the present invention and the shrink label using the shrink film have practicality, and can reduce the amount of CO 2 generated when a petroleum-derived styrene-based monomer is used.
  • FIG. 4 is an enlarged view of a main part of the AA'cross section of the tubular shrink label shown in FIG.
  • the shrink film of the present invention contains at least a styrene-butadiene copolymer having a structural unit derived from a styrene-based monomer derived from biomass.
  • the shrink film of the present invention contains a resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower.
  • a resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower may be referred to as "high Vicat resin”.
  • the Vicat softening temperature of the styrene-butadiene copolymer is 75 ° C. or higher and 90 ° C. or lower
  • the styrene-butadiene copolymer corresponds to the high bicut resin.
  • the Vicat softening temperature of the high Vicut resin is preferably 75 ° C. or higher and 85 ° C. or lower.
  • the styrene-butadiene copolymer is a copolymer composed of a styrene-based monomer derived from biomass and butadiene as an essential monomer component. That is, it is a polymer containing at least a structural unit derived from a styrene-based monomer derived from biomass and a structural unit derived from butadiene in the molecule (in one molecule).
  • the styrene-butadiene copolymer containing a structural unit derived from a biomass-derived styrene-based monomer may be referred to as a "biomass styrene-butadiene copolymer".
  • the structural unit derived from butadiene in the biomass styrene-butadiene copolymer may be derived from biomass or petroleum.
  • biomass-derived styrene-based monomer examples include those extracted from bionaphtha derived from pulp waste materials such as furniture and wood chips and industrial waste such as swill.
  • the above-mentioned garbage may be garbage other than food.
  • examples of the styrene-based monomer include styrene, ⁇ -methylstyrene, m-methylstyrene, p-methylstyrene, p-ethylstyrene, p-isobutylstyrene, pt-butylstyrene, chloromethylstyrene and the like. Can be mentioned. Of these, styrene is preferable from the viewpoint of availability, material price, and the like. As the styrene-based monomer, only one kind may be used, or two or more kinds may be used.
  • the content ratio of the structural unit derived from the styrene-based monomer derived from the biomass is the total mass (100% by mass) of the structural unit derived from the total styrene-based monomer in the biomass styrene-butadiene copolymer. It is preferably 20% by mass or more, more preferably 50% by mass or more, still more preferably 80% by mass or more, and particularly preferably 95% by mass or more.
  • the monomer component constituting the biomass styrene-butadiene copolymer may further contain the styrene-based monomer derived from the biomass and other monomer components other than butadiene.
  • the other monomer components include petroleum-derived styrene-based monomers, dienes other than butadiene, vinyl-based monomers, polymerizable unsaturated carboxylic acid esters, and polymerizable unsaturated anhydrous carboxylic acids.
  • the form of copolymerization of the styrene-butadiene copolymer is not particularly limited, and examples thereof include random copolymers, block copolymers, and graft copolymers.
  • block copolymers are preferable, and examples thereof include styrene block (S) -diene block (D) type, SDS type, DSD type, SSD-D type and the like. ..
  • Examples of the block copolymer of the biomass styrene-butadiene copolymer include a styrene-butadiene block copolymer (SBC) such as a styrene-butadiene-styrene block copolymer (SBS) and a styrene-butadiene-isoprene-styrene.
  • SBC styrene-butadiene block copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • SBIS block copolymers
  • the styrene-butadiene block copolymer may be any polymer having a styrene block polymerized only with a styrene-based monomer and a butadiene block polymerized only with butadiene, and is not particularly limited.
  • styrene- any polymer having a styrene block polymerized only with a styrene-based monomer and a butadiene block polymerized only with butadiene, and is not particularly limited.
  • styrene- styrene-.
  • a styrene-butadiene block copolymer having a styrene block at both ends such as a butadiene-styrene block copolymer (SBS), a styrene-butadiene-styrene-butadiene-styrene block copolymer (SBSBS); a styrene-butadiene copolymer.
  • SBS butadiene-styrene block copolymer
  • SBSBS styrene-butadiene-styrene-butadiene-styrene block copolymer
  • SB styrene-butadiene block copolymer having a styrene block such as styrene-butadiene-styrene-butadiene copolymer (SBSB) and a butadiene block at the ends; butadiene-styrene-butadiene copolymer (BSB), butadiene Examples thereof include a styrene-butadiene block copolymer having a butadiene block at both ends, such as a styrene-butadiene-styrene-butadiene copolymer (BSBSB).
  • SB styrene-butadiene block copolymer having a styrene block such as styrene-butadiene-styrene-butadiene copolymer (BSBSB).
  • a styrene-butadiene block copolymer having a styrene block at both ends is preferable, and SBS is more preferable.
  • SBS is more preferable.
  • these styrene-butadiene block copolymers only one kind may be used, or two or more kinds may be used.
  • the styrene-butadiene block copolymer can be produced by a known or conventional method for producing a block copolymer.
  • a method for producing the above-mentioned styrene-butadiene block copolymer for example, living polymerization (living radical polymerization, living anionic polymerization, living cation) in which the molecular weight, molecular weight distribution, terminal structure and the like of the styrene-butadiene block copolymer can be easily controlled. Polymerization, etc.).
  • the living polymerization can be carried out by a known or conventional method.
  • the biomass styrene-butadiene copolymer is not particularly limited, but the content ratio of the structural unit derived from the styrene-based monomer is 50 with respect to the total mass (100% by mass) of the biomass styrene-butadiene copolymer. It is preferably ⁇ 98% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 92% by mass, and particularly preferably 70 to 90% by mass.
  • the content ratio is 50% by mass or more, the shrink film is appropriately hardened, the rigidity of the shrink label using the shrink film of the present invention is appropriately increased, and the shrinkage characteristics when the shrink label is attached are good. Tend to be.
  • the content ratio is 98% by mass or less, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish tends to be better.
  • the above-mentioned biomass styrene-butadiene copolymer is not particularly limited, but the content ratio of the structural unit derived from butadiene is 2 to 50% by mass with respect to the total mass (100% by mass) of the biomass styrene-butadiene copolymer. Is preferable, more preferably 5 to 40% by mass, still more preferably 8 to 35% by mass, and particularly preferably 10 to 30% by mass.
  • the content ratio is 50% by mass or less, the shrink film is appropriately hardened, the rigidity of the shrink label using the shrink film of the present invention is appropriately increased, and the shrinkage characteristics when the shrink label is attached are good. Tend to be.
  • the content ratio is 2% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish tends to be better.
  • the Vicat softening temperature of the biomass styrene-butadiene copolymer may be 75 ° C. or higher or lower than 75 ° C., and is not particularly limited.
  • the Vicat softening temperature of the biomass styrene-butadiene copolymer is preferably 75 ° C. or higher and 90 ° C. or lower.
  • the vicut softening temperature of the resin can be measured based on, for example, JIS K7206. Further, the Vicat softening temperature refers to each of the resins used for producing the shrink film, and when the resin used is a polymer alloy, the Vicat softening temperature in units of the polymer alloy is used.
  • biomass styrene-butadiene copolymer a commercially available product may be used, and examples thereof include “Stylolux M” manufactured by Stylolation Co., Ltd.
  • the content ratio of the biomass styrene-butadiene copolymer in the shrink film of the present invention is preferably 10 to 90% by mass, more preferably 15 to 90% by mass, based on the total mass (100% by mass) of the shrink film of the present invention. It is 70% by mass, more preferably 20 to 60% by mass, and particularly preferably 20 to 50% by mass.
  • the content ratio is 10% by mass or more, there are many raw materials derived from biomass, and the amount of CO 2 generated can be further reduced as compared with the case where a polystyrene resin derived from petroleum is used.
  • the content ratio is 90% by mass or less
  • the content ratio of other resins can be relatively increased, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrink film such as shrinkage finish and cut suitability is required.
  • the performance to be achieved can be further optimized.
  • the shrink film of the present invention contains the above high bicut resin as an essential component. As a result, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish is excellent.
  • the high bicut resin include known and commonly used resins having a vicut softening temperature of 75 ° C. or higher and 90 ° C. or lower.
  • the resin includes, for example, a polyester resin, a polystyrene resin, a polyolefin resin, a vinyl chloride resin, a polycarbonate resin, a polyamide resin, and a thermoplastic elastomer as long as the Vicat softening temperature is 75 ° C. or higher and 90 ° C. or lower.
  • thermoplastic resins such as.
  • polyester-based resin and polystyrene-based resin are particularly preferable.
  • As the high bicut resin only one kind may be used, or two or more kinds may be used.
  • polystyrene-based resin as the high-vicut resin examples include the above-mentioned biomass styrene-butadiene copolymer and other polystyrene-based resins.
  • the polystyrene-based resin is a polymer composed of a styrene-based monomer as an essential monomer component. That is, the polystyrene-based resin is a polymer containing at least a structural unit derived from a styrene-based monomer in the molecule (in one molecule).
  • the styrene-based monomer in the above-mentioned other polystyrene-based resin may be derived from biomass or petroleum, but is preferably derived from petroleum.
  • the other polystyrene-based resin is a styrene-butadiene copolymer other than the biomass styrene-butadiene copolymer
  • the styrene-based monomer is derived from petroleum.
  • Examples of the styrene-based monomer include those exemplified and described as the styrene-based monomer in the above-mentioned biomass styrene-butadiene copolymer. Of these, styrene is preferable from the viewpoint of availability, material price, and the like.
  • the styrene-based monomer only one kind may be used, or two or more kinds may be used.
  • the polystyrene-based resin includes, for example, a homopolymer of a styrene-based monomer such as general-purpose polystyrene (GPPS), which is a homopolymer of styrene; and only two or more kinds of styrene-based monomers as a monomer component.
  • GPPS general-purpose polystyrene
  • Polymers ; styrene-diene-based copolymers; styrene-polymerizable unsaturated carboxylic acid ester-based copolymers; copolymers of polystyrene and synthetic rubber (eg, polybutadiene, polyisoprene, etc.), synthesis Impact-resistant polystyrene (HIPS) such as polystyrene obtained by graft-polymerizing styrene on rubber; a polymer containing a styrene-based monomer (for example, a styrene-based monomer and a (meth) acrylic acid ester-based monomer co-existing with each other.
  • HIPS synthesis Impact-resistant polystyrene
  • a polystyrene in which a rubber-like elastic body is dispersed in a continuous phase of a polymer) and the copolymer is graft-polymerized on the rubber-like elastic body graft type impact-resistant polystyrene "graft HIPS"
  • graft HIPS graft type impact-resistant polystyrene
  • styrene-based elastomer Two or more of these polymer alloys and the like can be mentioned.
  • the polystyrene-based resin a styrene-diene-based copolymer, HIPS, grafted HIPS, or a polymer alloy thereof is preferable from the viewpoint of excellent shrinkage characteristics.
  • the polystyrene-based resin only one kind may be used, or two or more kinds may be used.
  • the styrene-diene-based copolymer is a copolymer composed of a styrene-based monomer and a diene (particularly, a conjugated diene) as essential monomer components. That is, it is a polymer containing at least a structural unit derived from a styrene-based monomer and a structural unit derived from a diene (particularly, a conjugated diene) in the molecule (in one molecule).
  • the diene is not particularly limited, but a conjugated diene is preferable, and for example, 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, 1, Examples thereof include 3-pentadiene, 1,3-hexadiene and chloroprene. Of these, 1,3-butadiene is particularly preferable. That is, as the styrene-diene-based copolymer, a styrene-butadiene copolymer is preferable. Only one kind of the above-mentioned diene may be used, or two or more kinds may be used.
  • the monomer component constituting the styrene-diene copolymer may further contain a monomer component other than the styrene-based monomer and the diene.
  • a monomer component other than the styrene-based monomer and the diene include vinyl-based monomers, polymerizable unsaturated carboxylic acid esters, and polymerizable unsaturated anhydrous carboxylic acids.
  • the form of copolymerization of the styrene-diene copolymer is not particularly limited, and examples thereof include random copolymers, block copolymers, and graft copolymers. Of these, block copolymers are preferable.
  • block copolymer (styrene-diene block copolymer) of the styrene-diene-based copolymer examples include a styrene-butadiene block copolymer such as a styrene-butadiene-styrene block copolymer and styrene-isoprene-.
  • Examples thereof include styrene-isoprene block copolymers such as styrene block copolymer (SIS) and styrene-butadiene-isoprene block copolymers such as styrene-butadiene / isoprene-styrene block copolymers, among which styrene-butadiene Block copolymers are preferred.
  • Examples of the styrene-butadiene block copolymer include those exemplified and described as the above-mentioned biomass styrene-butadiene copolymer. As these block copolymers, only one kind may be used, or two or more kinds may be used.
  • the styrene-diene block copolymer can be produced by a known or conventional method for producing a block copolymer.
  • a method for producing the styrene-diene block copolymer for example, living polymerization (living radical polymerization, living anionic polymerization, living cation) in which the molecular weight, molecular weight distribution, terminal structure and the like of the styrene-diene block copolymer can be easily controlled. Polymerization, etc.).
  • the living polymerization can be carried out by a known or conventional method.
  • the styrene-diene-based copolymer is not particularly limited, but the content ratio of the structural unit derived from the styrene-based monomer is 50 with respect to the total mass (100% by mass) of the styrene-diene-based copolymer. It is preferably ⁇ 98% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 92% by mass, and particularly preferably 70 to 90% by mass.
  • the content ratio is 50% by mass or more, the shrink film is appropriately hardened, the rigidity of the shrink label using the shrink film of the present invention is appropriately increased, and the shrinkage characteristics when the shrink label is attached are good. Tend to be.
  • the content ratio is 98% by mass or less, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish tends to be better.
  • the styrene-diene-based copolymer is not particularly limited, but the content ratio of the constituent unit derived from diene is 2 to 50% by mass with respect to the total mass (100% by mass) of the styrene-diene-based copolymer. Is preferable, more preferably 5 to 40% by mass, still more preferably 8 to 35% by mass, and particularly preferably 10 to 30% by mass.
  • the content ratio is 50% by mass or less, the shrink film is appropriately hardened, the rigidity of the shrink label using the shrink film of the present invention is appropriately increased, and the shrinkage characteristics when the shrink label is attached are good. Tend to be.
  • the content ratio is 2% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish tends to be better.
  • polyester-based resin examples include polyesters composed of a dicarboxylic acid component and a diol component as essential constituents (that is, a polyester containing at least a constituent unit derived from a dicarboxylic acid and a constituent unit derived from a diol) and polylactic acid. Examples thereof include a system polymer and a polyester system elastomer.
  • the main polyesters containing at least a structural unit derived from a dicarboxylic acid and a structural unit derived from a diol include polymers, copolymers or mixtures thereof by a condensation reaction of a dicarboxylic acid and a diol.
  • a soft polyester-based resin such as polyethylene terephthalate to which a plasticizer is added may be used.
  • dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,5-dimethylterephthalic acid, 5-t-butylisophthalic acid, 4,4'-biphenyldicarboxylic acid, and trans-3.
  • Aromatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, etc.
  • An aliphatic dicarboxylic acid such as pentadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecandioic acid, icosandioic acid, docosandioic acid, 1,12-dodecandionic acid, and their substitutes; 1,3-cyclopentane.
  • Dicarboxylic acid 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,4-decahydronaphthalenedicarboxylic acid, 1,5-decahydronaphthalenedicarboxylic acid, 2,6 -Decahydronaphthalenedicarboxylic acids, alicyclic dicarboxylic acids such as their substitutes, and the like can be mentioned.
  • the dicarboxylic acid only one kind may be used, or two or more kinds may be used.
  • diol examples include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol.
  • 2,2-Dimethyl-1,3-propanediol (neopentyl glycol), 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 2,2-diethyl-1,3 -Propanediol, 1,8-octanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2,4-dimethyl-1,3-hexanediol, 1,10-decanediol, Aliper diols such as polyethylene glycol and polypropylene glycol; 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3- Alicyclic diols such as cyclobutanediol; ethylene oxide adducts of bisphenol compounds such as
  • the polyester-based resin includes oxycarboxylic acids such as p-oxybenzoic acid and p-oxyethoxybenzoic acid; monocarboxylic acids such as benzoic acid and benzoylbenzoic acid; and polyhydric carboxylic acids such as trimellitic acid.
  • a monohydric alcohol such as polyalkylene glycol monomethyl ether; a constituent unit derived from a polyhydric alcohol such as glycerin, pentaerythritol, trimethylolpropane or the like may be contained.
  • the aromatic polyester resin is preferable as the polyester resin from the viewpoint of shrinkage characteristics, rigidity, mechanical strength and the like.
  • the aromatic polyester resin has 50 mol% or more (preferably 70 mol% or more) of the total dicarboxylic acid component and / or 50 mol% or more (preferably 70 mol% or more) of the total diol component.
  • a polyester resin in which 70 mol% or more) is an aromatic diol is preferable.
  • an aromatic polyester resin which is a polymer, a copolymer, or a mixture thereof by a condensation reaction between a dicarboxylic acid containing an aromatic dicarboxylic acid and a diol containing an aliphatic diol is preferable.
  • the aromatic polyester-based resin is not composed of a single repeating unit from the viewpoint of increasing the heat shrinkage rate and being superior in shrinkage characteristics and rigidity by making the polyester-based resin amorphous.
  • a modified aromatic polyester resin containing a modifying component (copolymer component) is preferable.
  • the modified aromatic polyester-based resin includes, for example, a modified aromatic polyester-based resin in which at least one of a dicarboxylic acid component and a diol component is composed of two or more components, that is, a modified aromatic polyester-based resin is contained in addition to the main component. Resin is preferred.
  • the aromatic polyester-based resin is preferably a modified aromatic polyester-based resin containing a structural unit derived from at least two or more dicarboxylic acids and / or a structural unit derived from at least two or more diols.
  • the modified aromatic polyester resin is a part of the dicarboxylic acid component and / or the diol component in polyethylene terephthalate (PET) using terephthalic acid as the dicarboxylic acid component and ethylene glycol (EG) as the diol component.
  • PET polyethylene terephthalate
  • EG ethylene glycol
  • a modified PET in which is replaced with a modifying component (ie, another dicarboxylic acid component and / or another diol component) is preferably exemplified.
  • dicarboxylic acid component used as the modifying component (copolymerization component) of the modified aromatic polyester resin (particularly, modified PET) examples include cyclohexanedicarboxylic acid, adipic acid, and isophthalic acid. Of these, isophthalic acid is preferable.
  • diol component used as the denaturing component examples include 2,2-dialkyl-1,3-propanediol such as 1,4-cyclohexanedimethanol (CHDM) and neopentyl glycol (NPG), and diethylene glycol. Of these, CHDM, 2,2-dialkyl-1,3-propanediol (particularly NPG) is preferable.
  • the alkyl group in the above 2,2-dialkyl-1,3-propanediol is preferably an alkyl group having 1 to 6 carbon atoms, and the two alkyl groups may be the same alkyl group or different. It may be an alkyl group.
  • the aromatic polyester-based resin is not particularly limited, but specifically, polyethylene terephthalate (PET) using terephthalic acid as the dicarboxylic acid component and EG as the diol component; a dicarboxylic acid component from the viewpoint of shrinkage characteristics.
  • PET polyethylene terephthalate
  • a modified aromatic polyester resin using terephthalic acid as the main component for example, the most abundant diol component
  • CHDM as the copolymerization component
  • a modified aromatic polyester resin using terephthalic acid as the dicarboxylic acid component, ethylene glycol as the diol component as the main component, and 2,2-dialkyl-1,3-propanediol as the copolymerization component ("2,2-".
  • dialkyl-1,3-propanediol copolymerized PET It may be referred to as "dialkyl-1,3-propanediol copolymerized PET”).
  • a modified fragrance using terephthalic acid as the dicarboxylic acid component ethylene glycol as the diol component as the main component, and NPG as the copolymerization component.
  • Group polyester resins (sometimes referred to as “NPG copolymerized PET”) are preferred.
  • the aromatic polyester-based resin is particularly preferably CHDM copolymerized PET and / or 2,2-dialkyl-1,3-propanediol copolymerized PET, and more preferably CHDM copolymerized PET and / or NPG copolymerized PET. From the viewpoint of shrinkage characteristics, CHDM copolymerized PET is most preferable.
  • copolymerization components other than CHDM and 2,2-dialkyl-1,3-propanediol are used, respectively.
  • isophthalic acid or diethylene glycol may be further copolymerized.
  • the aromatic polyester-based resin is preferably a substantially amorphous aromatic polyester-based resin, and more preferably an aromatic polyester-based resin which is an amorphous saturated polyester-based resin.
  • the aromatic polyester-based resin can be made substantially amorphous by, for example, because it becomes difficult to crystallize by being modified as described above.
  • the crystallinity of the polyester resin measured by the differential scanning calorimetry (DSC) method is preferably 15% or less, more preferably 10% or less. Further, it is most preferable that the polyester resin has almost no melting point (melting peak) when measured by the DSC method (that is, a resin having a crystallinity of 0%).
  • the crystallinity can be calculated from the value of the heat of fusion of crystals obtained by DSC measurement, using a sample having a clear crystallinity measured by an X-ray method or the like as a standard.
  • the sample amount is 10 mg
  • the temperature rise rate is 10 ° C./min
  • nitrogen sealing is performed
  • the crystallinity is preferably measured from a single resin, but when measured in a mixed state, the melting peak of the mixed resin is subtracted from the melting peak of the target aromatic polyester resin. You just have to ask. The same applies to the crystallinity of the polyester-based resin that may be contained in the layer in the base layer portion.
  • the weight average molecular weight (Mw) of the polyester resin is preferably 15,000 to 100,000, more preferably 15,000 to 90,000, still more preferably 30,000 to 30,000 from the viewpoint of melting behavior and shrinkage behavior. It is 90,000, particularly preferably 30,000 to 80,000. In the case of 2,2-dialkyl-1,3-propanediol copolymerized PET, 50,000 to 70,000 is particularly preferable. In the present specification, the weight average molecular weight (Mw) is not particularly limited, but can be measured by, for example, GPC using polystyrene as a standard substance.
  • polyester resin for example, "EMBRACE 21214” manufactured by Eastman Chemical (Eastman Chemical), “EMBRACE LV” (above CHDM copolymerized PET), and Bell Polyester Products Co., Ltd. "Belpet MGG200” (2,2-dialkyl-1,3-propanediol copolymer PET), “Belpet E02” (NPG copolymer PET) manufactured by Bell Polyester Products Co., Ltd., "Sky Green” manufactured by SK Chemical Co., Ltd. Etc. are available on the market.
  • EMBRACE 21214 manufactured by Eastman Chemical (Eastman Chemical)
  • EMBRACE LV above CHDM copolymerized PET
  • Belpet MGG200 (2,2-dialkyl-1,3-propanediol copolymer PET)
  • Belpet E02 NPG copolymer PET
  • the content of the high bicut resin in the shrink film of the present invention is 45% by mass or more, preferably 50% by mass or more, more preferably 50% by mass, based on the total mass (100% by mass) of the shrink film of the present invention. It is 70% by mass or more, more preferably 90% by mass or more.
  • the content ratio is 45% by mass or more, the heat shrinkage rate in the orthogonal direction becomes appropriate, and the shrinkage finish of the shrink film is excellent.
  • the upper limit of the content ratio is 100% by mass, preferably 99% by mass.
  • the content ratio of the high bicut resin in the layer to be the surface of at least one (preferably both) of the shrink film of the present invention is preferably 50% by mass or more (for example, 50 to 100% by mass), more preferably 70% by mass. % Or more, more preferably 90% by mass or more.
  • the content ratio is 50% by mass or more, the printability on the shrink film is more excellent.
  • cut fusion is unlikely to occur when manufacturing a tubular shrink label, which will be described later, that is, it is more excellent in cut suitability.
  • the shrink film of the present invention is composed of a single film layer, the single layer is the surface layer, and when the shrink film of the present invention is composed of a plurality of film layers, the surface layer described later is the surface layer. Corresponds to.
  • the shrink film of the present invention may contain a resin having a Vicat softening temperature of 55 ° C. or higher and lower than 75 ° C.
  • a resin having a Vicat softening temperature of 55 ° C. or higher and lower than 75 ° C. may be referred to as "low Vicat resin”.
  • Examples of the low bicut resin include known and commonly used resins having a vicut softening temperature of 55 ° C. or higher and lower than 75 ° C.
  • Examples of the resin include the thermoplastic resins exemplified and described as the above-mentioned high bicut resin as long as the vicut softening temperature is 55 ° C. or higher and lower than 75 ° C.
  • polyester-based resin and polystyrene-based resin are particularly preferable.
  • As the low bicut resin only one kind may be used, or two or more kinds may be used.
  • the content of the low bicut resin in the shrink film of the present invention is preferably 0 to 55% by mass, more preferably more than 0% by mass and 55% by mass, based on the total mass (100% by mass) of the shrink film of the present invention. % Or less, more preferably 1 to 55% by mass.
  • the content ratio of the resin having a Vicat softening temperature of 55 ° C. or higher and 90 ° C. or lower in the shrink film of the present invention is the total mass of the shrink film of the present invention. 95% by mass or more (for example, 95 to 100% by mass) is preferable, and 99% by mass or more is more preferable with respect to (100% by mass). When the content ratio is 95% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
  • the mass ratio of the high bicut resin to the low vicut resin (the former: the latter) is preferably 45 to 100: 55 to 0, more preferably 45 to 99: 55 to 1.
  • the mass ratio of the high bicut resin is 45 or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
  • the total content ratio of the high bicut resin and the low bicut resin is 95% by mass or more, and the mass ratio is within the above range.
  • the shrink film of the present invention is a lubricant, a filler, a heat stabilizer, an antioxidant, an ultraviolet absorber, an antioxidant, an antifogging agent, a flame retardant, a colorant, and a pinning within a range that does not impair the effect of the present invention. It may contain additives such as agents (alkaline earth metals), softeners, and compatibilizers. Only one kind of these components may be used, or two or more kinds thereof may be used. Above all, by containing a lubricant, it is excellent in cutting suitability.
  • the surface layer of at least one (preferably both) of the shrink film of the present invention preferably contains a lubricant. Even when the inner layer of the shrink film of the present invention contains a lubricant, the cut suitability is excellent, but when the layer to be the surface of the shrink film of the present invention contains a lubricant, the cut suitability is more excellent.
  • the shrink film of the present invention may contain a recovery raw material obtained by repelletizing a film piece at the time of film production.
  • the recovered raw material is a recycled raw material composed of non-product parts such as before and after commercialization and film edges, residual parts when a product film is collected from an intermediate product, film scraps such as non-standard products, and polymer scraps.
  • the recovered raw material is preferably one produced from the production of the shrink film of the present invention (so-called self-recovered product).
  • the surface of the shrink film of the present invention may be provided with an antistatic layer or an anchor coat layer as long as the effects of the present invention are not impaired. Further, the surface of the shrink film of the present invention may be subjected to conventional surface treatment such as corona discharge treatment, primer treatment, antistatic coating treatment and the like, if necessary.
  • the shrink film of the present invention may be composed of a single film layer or may be composed of a plurality of film layers.
  • the shrink film of the present invention is composed of a plurality of film layers, two or more of the biomass styrene-butadiene copolymer, the high bicut resin, and the low vicut resin are contained in the same film layer. It may be contained in different film layers.
  • the shrink film of the present invention when the shrink film of the present invention is composed of a plurality of film layers, it is preferable that the shrink film of the present invention includes a base layer portion and surface layers provided on both sides of the base layer portion.
  • a shrink film of the present invention has a layer structure of a surface layer / base layer portion / surface layer, and preferably the base layer portion and the surface layer are directly laminated.
  • the surface layers on both sides of the base layer portion in the shrink film may be the same layer or different layers (layers having different resin compositions and layer thicknesses). ..
  • the base layer portion preferably has at least a layer (A layer) containing the biomass styrene-butadiene copolymer as a layer in the base layer portion.
  • the shrink film is a shrink film having a base layer portion and surface layers provided on both sides of the base layer portion, and the base layer portion has at least an A layer as a layer in the base layer portion. Is preferable.
  • the base layer portion has the A layer, the proportion of the biomass raw material in the entire shrink film can be increased while suppressing the content of the biomass styrene-butadiene copolymer in the surface layer.
  • the layer containing the biomass styrene-butadiene copolymer may be referred to as "A layer".
  • the base layer portion is a portion sandwiched between two surface layers.
  • the base layer portion has one or more layers.
  • the base layer portion preferably contains 1 to 65 layers, and more preferably 3 to 65 layers.
  • the thickness of each layer can be made relatively thin, so that the rigidity and transparency are excellent as compared with the case of one layer.
  • the shrinkage behavior during heat shrinkage can be slowed down, and the shrinkage finish is excellent.
  • the number of layers of the A layer in the base layer portion is not particularly limited, but is 50% or more (preferably 70% or more, more preferably 90% or more) with respect to the number of layers of the base layer portion. Is preferable.
  • FIG. 1 shows an embodiment of a shrink film in which the base layer portion is composed of only one layer A.
  • the shrink film 1 shown in FIG. 1 includes a base layer portion 12 made of a single layer A layer 12a and surface layers 11 provided on both sides of the base layer portion 12.
  • the base layer portion is not particularly limited, but it is preferable that the base layer portion further includes at least one adhesive resin layer as the layer in the base layer portion. In particular, it is more preferable to include an adhesive resin layer as the outermost layer in the base layer portion.
  • the base layer portion contains the adhesive resin layer as the outermost layer of the base layer portion, the adhesiveness between the surface layer and the A layer in the base layer portion can be improved, and delamination can be prevented from occurring even after heat shrinkage. Further, since the adhesive resin layer does not impair the adhesiveness even if it is interposed between the A layer and the A layer, the rigidity of the shrink label is obtained by interposing the adhesive resin layer between the A layers in the base layer portion.
  • the adhesive resin layer is not particularly limited as long as it is a layer having a composition different from that of the adjacent layer, and is, for example, an A layer having a composition different from that of the adjacent A layer (for example, a combination of an A1 layer and an A2 layer described later). You may.
  • the base layer portion When the base layer portion includes three or more layers, the base layer portion is a layer in the base layer portion, and is located inside the two outermost layers located on both end faces in the thickness direction and the inner side in the thickness direction sandwiched between the outermost layers. It is composed of a plurality of intermediate layers. That is, the base layer portion has a structure of [outermost layer / intermediate layer (/ ... / intermediate layer) / outermost layer]. When there are a plurality of A layers in the base layer portion, all or some of the plurality of A layers in the base layer portion may be the same layer or different layers (layers). It may be a layer having a different resin composition or layer thickness.
  • the base layer portion when there are a plurality of adhesive resin layers in the base layer portion, all or some of the plurality of adhesive resin layers in the base layer portion may be the same layer or each other. It may be a different layer (a layer having a different resin composition or layer thickness constituting the layer). Further, the base layer portion may include a layer other than the A layer and the adhesive resin layer as long as the effect of the present invention is not impaired. Further, the A layer and the adhesive resin layer may be the outermost layer of the base layer portion, the intermediate layer, or both of them, respectively, may be included in the base layer portion.
  • FIG. 2 shows an embodiment of the shrink film when the base layer portion includes the A layer and contains three layers.
  • the shrink film 1 shown in FIG. 2 includes a base layer portion 12 and surface layers 11 provided on both sides of the base layer portion 12.
  • the base layer portion 12 is composed of an A layer 12a as an intermediate layer and an adhesive resin layer 12b as an outermost layer.
  • FIG. 3 shows an embodiment of the shrink film when the base layer portion includes the A layer and 9 layers.
  • the shrink film 1 shown in FIG. 3 includes a base layer portion 12 and surface layers 11 provided on both sides of the base layer portion 12.
  • the A layer 12a and the adhesive resin layer 12b are alternately laminated, and the A layer 12a is interposed between all the adhesive resin layers 12b.
  • the outermost layer of the base layer portion 12 is an adhesive resin layer 12b.
  • the layer A in the base layer portion contains at least the above-mentioned biomass styrene-butadiene copolymer in the layer.
  • the content ratio of the biomass styrene-butadiene copolymer in the A layer is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 50 with respect to the total mass (100% by mass) of the A layer. It is mass% or more. When the content ratio is 20% by mass or more, the ratio of the biomass raw material can be further increased.
  • the layer A may contain a thermoplastic resin other than the above-mentioned biomass styrene-butadiene copolymer.
  • the other thermoplastic resin include the high bicut resin and the low vicut resin.
  • the above-mentioned other thermoplastic resin only one kind may be used, or two or more kinds may be used.
  • the A layer may contain the above high bicut resin.
  • the layer A contains the high bicut resin, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
  • the high bicut resin polystyrene-based resin and polyester-based resin are particularly preferable.
  • the polystyrene-based resin a styrene-diene-based copolymer is preferable, and a styrene-butadiene copolymer is more preferable.
  • the high bicut resin further contains HIPS.
  • the high bicut resin may be the biomass styrene-butadiene copolymer.
  • the content ratio of the high bicut resin in the A layer is preferably 15% by mass or more (for example, 15 to 100% by mass), more preferably 30% by mass or more, based on the total mass (100% by mass) of the A layer. More preferably, it is 50% by mass or more.
  • the content ratio is 15% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
  • the A layer may contain the above low bicut resin.
  • the A layer contains the low bicut resin, the natural shrinkage of the shrink film can be further suppressed.
  • the low bicut resin polystyrene-based resin is preferable, styrene-diene-based copolymer is more preferable, and styrene-butadiene copolymer is more preferable. Further, it is preferable that the low bicut resin further contains HIPS.
  • the low bicut resin may be the biomass styrene-butadiene copolymer.
  • the content ratio of the low bicut resin in the A layer is preferably 0 to 85% by mass, more preferably more than 0% by mass and 85% by mass or less, still more preferably, with respect to the total mass (100% by mass) of the A layer. It is 1 to 70% by mass, particularly preferably 5 to 50% by mass.
  • the content ratio of the resin having a Vicat softening temperature of 55 ° C. or higher and 90 ° C. or lower in the A layer is the total mass (100% by mass) of the A layer.
  • 95% by mass or more for example, 95 to 100% by mass
  • 99% by mass or more is more preferable.
  • the content ratio is 95% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
  • the mass ratio of the high bicut resin to the low vicut resin (the former: the latter) is preferably 15 to 100: 85 to 0, more preferably 45 to 100: 55 to 0, and even more preferably 45 to 99. : 55 to 1.
  • the mass ratio of the high bicut resin is 15 or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
  • the total content ratio of the high bicut resin and the low bicut resin is 95% by mass or more, and the mass ratio is within the above range.
  • the layer A may contain the additives exemplified as those which the shrink film of the present invention may contain, as long as the effects of the present invention are not impaired. Only one kind of these components may be used, or two or more kinds thereof may be used. Further, the layer A may contain a recovery raw material obtained by repelletizing a film piece at the time of film production. Above all, by containing a lubricant, it is excellent in cutting suitability.
  • the surface layer preferably contains a polystyrene resin and / or a polyester resin as a main component.
  • containing as a main component means that it is contained as a component having the largest mass ratio.
  • the surface layer contains a polystyrene resin as a main component, it is superior to the shrinkage finish.
  • a polyester resin as a main component it is excellent in printability and heat shrinkage.
  • polystyrene-based resin examples include the biomass styrene-butadiene copolymer, the high bicut resin, and the low bicut resin.
  • the polystyrene-based resin preferably contains the high bicut resin.
  • the content ratio of the polystyrene resin in the surface layer is preferably more than 50% by mass, more preferably 70% by mass or more, still more preferably 90% by mass or more.
  • polyester-based resin examples include the high bicut resin and the low bicut resin.
  • the polyester-based resin preferably contains the high bicut resin.
  • the content ratio of the polyester resin in the surface layer is preferably more than 50% by mass, more preferably 70% by mass or more, still more preferably 90% by mass or more.
  • the content ratio of the high bicut resin in the surface layer is preferably 95% by mass or more, more preferably 98% by mass or more, based on the total mass (100% by mass) of the surface layer.
  • the content ratio is 95% by mass or more, it is more excellent in printability when forming a print layer on the surface of the shrink film.
  • the content ratio of the polystyrene-based resin and / or the polyester-based resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower is within the above range.
  • the content ratio of the biomass styrene-butadiene copolymer in the surface layer is preferably less than 5% by mass and particularly preferably not contained in the total mass (100% by mass) of the surface layer. When the content ratio is less than 5% by mass, it is more excellent in printability when forming a print layer on the surface of the shrink film.
  • the surface layer may contain the additives exemplified as those which the shrink film of the present invention may contain, as long as the effect of the present invention is not impaired. Only one kind of these components may be used, or two or more kinds thereof may be used. Further, the surface layer may contain a recovery raw material obtained by repelletizing a film piece at the time of film production. Above all, it is preferable to contain a lubricant from the viewpoint of being more excellent in cutting suitability.
  • the base layer portion preferably contains at least an A layer (A1 layer) having a polystyrene-based resin content of 95% by mass or more as a layer in the base layer portion.
  • the content ratio of the polystyrene-based resin in the A1 layer is 95% by mass or more (for example, 95 to 100% by mass), preferably 98% by mass or more, with respect to the total mass (100% by mass) of the A1 layer.
  • the base layer portion may include an A layer (A2 layer) containing a polyester resin and a polystyrene resin.
  • A2 layer a layer containing a polyester resin as a main component
  • the adhesiveness between the surface layer and the A1 layer is excellent. Both the A1 layer and the A2 layer correspond to the A layer.
  • the content ratio of the polyester resin in the A2 layer is preferably 10 to 90% by mass, more preferably 15 to 70% by mass, still more preferably 20% by mass or more, based on the total mass (100% by mass) of the A2 layer. It is less than 50% by mass.
  • the content ratio of the polystyrene resin in the A2 layer is preferably 10 to 90% by mass, more preferably 30 to 85% by mass, and further preferably 50% by mass with respect to the total mass (100% by mass) of the A2 layer. It is more than% and 80% by mass or less.
  • the number of layers of the A1 layer and / or the A2 layer in the base layer portion is not particularly limited, but is 50% or more (preferably 70% or more, more preferably 90% or more) with respect to the number of layers of the base layer portion. It is preferable that the number of layers is the same.
  • the base layer portion has an A1 layer and an A2 layer
  • the A1 layer has no problem in adhesion to the A2 layer, and can be used for optimizing the shrinkage rate and increasing the compressive strength and rigidity of the shrink label. ,preferable.
  • the A2 layer preferably intervenes between two or more A1 layers, and more preferably intervenes between all A1 layers in the base layer portion except the outermost layer.
  • the A1 layer preferably intervenes between two or more A2 layers, and more preferably intervenes between all A2 layers in the base layer portion except the outermost layer.
  • the A1 layer and the A2 layer are not particularly limited, but are preferably laminated alternately, and more preferably directly laminated alternately without interposing another layer. That is, it is most preferable that the base layer portion contains, as layers in the base layer portion, A1 layer and A2 layer alternately, for a total of 3 to 65 layers.
  • the laminated structure of the base layer portion is not particularly limited, but specifically, a laminated structure (A1 layer / A2) in which the “A1 layer / A2 layer” is repeated as a repeating unit without interposing a layer other than the A1 layer and the A2 layer.
  • Layer / A1 layer / A2 layer / ... / A1 layer / A2 layer / A1 layer ), (A2 layer / A1 layer / A2 layer / A1 layer / ... / A2 layer / A1 layer / A2 layer) , (A1 layer / A2 layer / A1 layer / A2 layer / ... / A1 layer / A2 layer) or (A2 layer / A1 layer / A2 layer / A1 layer / ... / A2 layer / A1 layer) Is preferable.
  • the outermost layers on both sides of the base layer portion may be an A1 layer or an A2 layer, but both sides are preferably an A2 layer.
  • both the surface layer and the A2 layer contain a polyester resin
  • both the A1 layer and the A2 layer contain a polystyrene resin, so that the surface layer and the base layer portion shrink. Delamination that tends to occur during processing (during heat shrinkage) can be suppressed, which is preferable. Further, since the stress at the time of heat shrinkage becomes small and the layers are less likely to shift, the rigidity can be increased without lowering the interlayer strength, which is preferable.
  • the base layer portion it is preferable that all A1 layers are formed from the same raw material, and it is preferable that all A2 layers are formed from the same raw material. That is, it is preferable that the A1 layers and the A2 layers are each formed from the same raw material. In particular, it is preferable that all A1 layers are layers having the same composition, and it is preferable that all A2 layers are layers having the same composition.
  • the shrink film of the present invention has heat shrinkage mainly in one direction.
  • a shrink film include a film oriented in one direction (uniaxially oriented film).
  • all the film layers constituting the shrink film of the present invention are uniaxially oriented films.
  • the uniaxially oriented film may be a film that is mainly stretched in one direction and slightly stretched in a direction orthogonal to the one direction, and is substantially stretched in one direction.
  • the uniaxially oriented film is obtained by stretching an unstretched film in one direction.
  • the shrink label using the shrink film of the present invention can mainly heat shrink in the orientation direction of the shrink film of the present invention.
  • the heat shrinkage of the shrink film (before shrink processing) of the present invention at 90 ° C. for 10 seconds (warm water treatment) in the main shrinkage direction is not particularly limited, but is preferably 50% or more (for example, 50 to 90%). , More preferably 55% or more (for example, 55 to 85%), still more preferably 60% or more (for example, 60 to 80%).
  • the "main shrinkage direction" is the direction in which the heat shrinkage rate is the largest, and is generally the direction in which the film is mainly stretched. For example, a film stretched substantially in one direction in the width direction. In some cases, it is in the width direction.
  • the heat shrinkage of the shrink film (before shrink processing) of the present invention at 70 ° C. for 10 seconds (warm water treatment) in the main shrinkage direction is not particularly limited, but is preferably 1 to 20%, more preferably 3 to 10. %.
  • the heat shrinkage rate (80 ° C., 10 seconds) of the shrink film (before shrink processing) of the present invention in the direction orthogonal to the main shrinkage direction (orthogonal direction) is not particularly limited, but is 9.5% or less (for example,-. 5 to 9.5%) is preferable, and more preferably 9.0% or less (for example, -3 to 9.0%).
  • the thickness (total thickness) of the shrink film of the present invention is not particularly limited, but is preferably 10 to 100 ⁇ m, more preferably 15 to 50 ⁇ m, and even more preferably 20 to 45 ⁇ m. When the thickness is 10 ⁇ m or more, the rigidity of the shrink label is excellent.
  • the thickness of the surface layer is not particularly limited, but is preferably 1 to 15 ⁇ m, more preferably 2 to 10 ⁇ m, and even more preferably. Is 2.5 to 8 ⁇ m.
  • the thickness is 15 ⁇ m or less, it is possible to suppress a significant decrease in film elongation at room temperature, which is preferable.
  • the thickness is 1 ⁇ m or more, the rigidity of the shrink label is more excellent.
  • the thickness of each surface layer on both sides of the base layer portion may be the same or different from each other.
  • the thickness of the base layer portion is not particularly limited, but is preferably 8 to 90 ⁇ m, more preferably 10 to 45 ⁇ m, and further preferably 11 to 40 ⁇ m. .. When the thickness is 8 ⁇ m or more, the rigidity of the shrink label can be made more appropriate.
  • the thickness of the layer (thickness per layer) in the base layer portion is not particularly limited, but is preferably 0.2 to 15 ⁇ m, more preferably 0.2 to 15 ⁇ m. It is 0.3 to 10 ⁇ m. When the thickness is 0.2 ⁇ m or more, the rigidity of the shrink label is more excellent.
  • the thicknesses of the plurality of layers in the base layer portion may be the same or different from each other in all or part of them.
  • the thickness of the outermost layer (thickness per layer) of the base layer portion is not particularly limited, but is 0.2 ⁇ m or more (for example, 0.2 to 0.2). 15 ⁇ m) is preferable, and more preferably 0.3 to 10 ⁇ m.
  • the thickness of the intermediate layer (thickness per layer) is not particularly limited, but is preferably 0.3 ⁇ m or more (for example, 0.3 to 15 ⁇ m), and more preferably 0.6 to 10 ⁇ m.
  • the thickness)] is not particularly limited, but is preferably 1: 1 to 1:14, more preferably 1: 1 to 1: 8, and particularly preferably 1: 1 to 1: 4. It is preferable that the base layer portion is thicker than the above ratio of 1: 1 because the effect of improving the transparency by multi-layering can be easily obtained. On the other hand, when the surface layer is thicker than the above ratio of 1:14, the heat shrinkage and rigidity of the shrink label are further improved, which is preferable.
  • the thickness of the A1 layer (total thickness of all A1 layers) and the thickness of the A2 layer (total thickness of all A2 layers).
  • the ratio [(thickness of A1 layer) :( thickness of A2 layer)] is not particularly limited, but is preferably 2: 1 to 1:10, and more preferably 1: 1 to 1: 8. It is preferable that the A2 layer is thicker than the above ratio of 2: 1 because it is easy to obtain higher transparency and more appropriate heat shrinkage and rigidity.
  • the A1 layer is thicker than the above ratio of 1:10, the adhesive strength between the layers in the base layer portion is less likely to decrease, and delamination is less likely to occur, which is preferable.
  • the coefficient of static friction between at least one surface of the shrink film of the present invention is preferably 0.40 or less, more preferably 0.35 or less, still more preferably 0.30.
  • the lower limit of the static friction coefficient is, for example, 0.10.
  • the static friction coefficient can be measured according to JIS K7125 using the shrink film of the present invention as a test piece.
  • the coefficient of dynamic friction between at least one surface of the shrink film of the present invention is preferably 0.40 or less, more preferably 0.38 or less, still more preferably 0.36 or less.
  • the lower limit of the dynamic friction coefficient is, for example, 0.10.
  • the dynamic friction coefficient can be measured according to JIS K7125 using the shrink film of the present invention as a test piece.
  • the tensile elastic modulus of the shrink film of the present invention is preferably 1.0 MPa or more, more preferably 1.1 MPa or more.
  • the upper limit of the tensile elastic modulus may be 2.0 MPa or 1.8 MPa.
  • the tensile elastic modulus can be measured based on JIS K7161-1.
  • a shrink label can be obtained by using the shrink film of the present invention.
  • the shrink label is a shrink label including at least the shrink film of the present invention.
  • the shrink label may include a layer other than the shrink film of the present invention.
  • the layer other than the shrink film of the present invention contained in the shrink label is not particularly limited, but is not particularly limited, but is a printing layer, another film layer such as a non-woven fabric or a foamed sheet, and an adhesive layer (pressure sensitive adhesive layer, heat-sensitive adhesive). Agent layer, etc.), protective layer, anchor coat layer, primer coat layer, coating layer, antistatic layer, aluminum vapor deposition layer and the like.
  • the print layer is not particularly limited, and examples thereof include known and conventional print layers used in shrink labels.
  • Examples of the printing layer include a solvent-drying type printing layer formed by a solvent-drying type printing ink, an active energy ray-curable printing layer formed by an active energy ray-curable printing ink, and the like.
  • the printing layer includes, for example, a design printing layer (color printing layer, etc.) such as a figure or design of a product name, an illustration, handling precautions, a back printing layer formed of a single color such as white, a film, or the like.
  • Examples thereof include a protective print layer provided to protect the print layer, a primer print layer provided to enhance the adhesion between the film and the print layer, and the like.
  • the print layer is not particularly limited, but may be provided only on one side of the shrink film of the present invention, or may be provided on both sides of the shrink film of the present invention. Further, the print layer may be provided on the entire surface (the surface on the side where the print layer is provided) of the shrink film of the present invention, or may be provided on a part of the surface. Further, the print layer is not particularly limited, but may be a single layer or a plurality of layers. Further, the print layer can be provided by a well-known or conventional printing method. Above all, it is preferable that the printing layer is provided by a gravure printing method or a flexographic printing method.
  • the print layer is not particularly limited, but preferably contains a binder resin as an essential component. Further, if necessary, it may contain coloring pigments such as blue, red, yellow, black and white, and additives such as lubricants, dispersants and defoamers. As the binder resin and the like, only one kind may be used, or two or more kinds may be used.
  • the binder resin is not particularly limited, and for example, a resin used as a binder resin in a known or conventional printing layer or printing ink can be used.
  • the binder resin include acrylic resin, urethane resin, polyester resin, polyamide resin, cellulose resin (including nitrocellulose resin), vinyl chloride-vinyl acetate copolymer resin and the like.
  • the coloring pigment is not particularly limited, and for example, a coloring pigment used in a known or conventional printing layer or printing ink can be used.
  • a white pigment such as titanium oxide (titanium dioxide), an indigo pigment such as copper phthalocyanine blue, carbon black, aluminum flakes, mica, and other coloring pigments can be selected and used according to the application. ..
  • extender pigments such as alumina, calcium carbonate, barium sulfate, silica, and acrylic beads can also be used for the purpose of adjusting gloss and the like.
  • the solvent-drying type printing layer is formed by applying, for example, a printing ink produced by mixing the binder resin, the solvent, and if necessary, the coloring pigment and other additives, using a printing machine. , Provided by volatilizing the solvent.
  • the active energy ray-curable printing layer was produced by, for example, mixing the monomer components constituting the binder resin,, if necessary, the coloring pigment, the solvent, and other additives. After the printing ink is applied using a printing machine, it is dried if necessary, and the above-mentioned monomer component is polymerized and cured by irradiation with active energy rays (for example, ultraviolet rays).
  • the thickness of the print layer is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.3 to 5 ⁇ m, for example.
  • the printing layer can be formed by applying printing ink on at least one surface of the shrink film of the present invention and solidifying it by drying or curing.
  • a method for applying the printing ink a known and commonly used method can be used, and among them, gravure printing, flexographic printing, and digital printing are preferable.
  • a general heating device capable of heating on the printing device can be preferably used. From the viewpoint of safety, a hot air heater or the like can be preferably used.
  • the printing ink is generally applied a plurality of times for each color to form a printing layer that is a plurality of layers.
  • the printing ink is produced by mixing, for example, a binder resin, a solvent, and other additives (coloring pigments, etc.), if necessary.
  • Mixing can be performed by a known and conventional mixing method, and is not particularly limited, and for example, a mixer such as a paint shaker, a butterfly mixer, a planetary mixer, a pony mixer, a dissolver, a tank mixer, a homomixer, a homodisper, or a roll mill.
  • Sand mills, ball mills, bead mills, line mills and other mills, kneaders and other mixing devices are used.
  • the mixing time (residence time) at the time of mixing is not particularly limited, but is preferably 10 to 120 minutes.
  • the obtained printing ink may be used after being filtered, if necessary.
  • binder resin, solvent, and other additives only one kind may be used, or two or more kinds may be used.
  • the solvent water or an organic solvent usually used for printing inks used for gravure printing, flexographic printing and the like can be used.
  • the organic solvent include esters such as acetates (eg, ethyl acetate, propyl acetate, butyl acetate); alcohols such as methanol, ethanol, isopropyl alcohol, propanol and butanol; ketones such as methyl ethyl ketone and methyl isobutyl ketone; toluene.
  • Aromatic hydrocarbons such as xylene; aliphatic hydrocarbons such as hexane and octane; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; glycols such as ethylene glycol and propylene glycol; ethylene glycol monopropyl ether and propylene glycol monomethyl ether , Glycol ethers such as propylene glycol monobutyl ether; glycol ether esters such as propylene glycol monomethyl ether acetate and the like.
  • the solvent can be removed by drying after applying the printing ink to the shrink film of the present invention.
  • the solvent also includes the meaning of "dispersion medium".
  • the printing ink When the printing ink is an active energy ray-curable printing ink, the printing ink contains monomer components, solvents, and other additives (coloring pigments, etc.) constituting the binder resin, if necessary.
  • Manufactured by mixing The mixing can be performed by a known and conventional mixing method, and the mixing device is not particularly limited, and for example, the mixing device exemplified and described as the above-mentioned solvent-drying type printing ink mixing device can be used.
  • the mixing time (residence time) at the time of mixing is not particularly limited, but is preferably 10 to 120 minutes.
  • the obtained printing ink may be used after being filtered, if necessary.
  • As each of the above components (monomer component, solvent, and other additives) only one type may be used, or two or more types may be used.
  • the thickness (total thickness) of the shrink label is not particularly limited, but is preferably 10 to 110 ⁇ m, more preferably 15 to 90 ⁇ m, and even more preferably 20 to 80 ⁇ m.
  • the shrink label may be a front print shrink label, a back print shrink label, or a double-sided print shrink label.
  • the shrink film of the present invention is particularly useful as a back-printed shrink label from the viewpoint of excellent shrinkage finish.
  • the front print label is a label that shows printing without passing through a shrink film, and means a label having a design printing layer in front of the shrink film when the label is viewed.
  • the back print label is a label that shows printing through a shrink film, and refers to a label that has a design printing layer on the back side of the shrink film when the label is viewed.
  • the double-sided printing label means a label having a design printing layer on both sides of the shrink film.
  • the shrink label is, for example, a tubular shrink label of a type in which both ends of the label are sealed with a solvent or an adhesive to form a cylinder and attached to the container, or one end of the label is attached to the container, the label is wound, and then the label is wound. It can be used as a wrapping type shrink label in which the other end is overlapped with one end to form a tubular shape.
  • the shrink label is particularly preferably used for a tubular shrink label. That is, the shrink label is preferably a cylindrical shrink label.
  • the tubular shrink label 2 shown in FIG. 4 is formed by superimposing the other end portion on the outer side of one end portion of the shrink label formed in a rectangular shape to form a cylinder, and the inner surface of the other end portion and the outer surface of the one end portion are formed. It is a tubular body formed by joining with a solvent or an adhesive to form a sealing portion 21.
  • the tubular shrink label 2 includes a shrink film 1, and the shrink film 1 is at least oriented in the circumferential direction D of the tubular shrink label 2 and is heat-shrinkable in that direction.
  • the tubular shrink label is preferably attached so that the circumferential direction is the main contraction direction. Further, even in the case of a winding type shrink label, it is preferable that the label is formed into a cylinder so that the circumferential direction is the main contraction direction (that is, the stretching direction).
  • FIG. 5 is an enlarged view of a cross section of AA'in FIG. 4, that is, a main part of the tubular shrink label 2 near the seal portion.
  • both ends of the shrink label are a solvent or an adhesive 33. It is joined with.
  • a design print layer 32 is formed in a region excluding a region having a predetermined width from the other end of one surface (cylindrical inner surface side surface) of the shrink film 1.
  • the back surface printing layer 31 is formed in substantially the entire area excluding the region having a predetermined width from the end of the other end of one surface of the shrink film 1 so as to cover the design printing layer 32.
  • the back surface printing layer 31 and the design printing layer 32 are not formed on the tubular shrink label 2 in the region having a predetermined width from the other end, the shrink film 1 is exposed, and the exposed film surface is exposed.
  • the sealed portion 21 is formed by joining a film exposed surface formed on the inner surface side of the other end of the tubular shrink label 2 and an outer surface (film exposed surface) of one end thereof with a solvent or an adhesive 33. There is. That is, in the sealing portion 21, it is preferable that the shrink films 1 are bonded to each other with a solvent or an adhesive 33.
  • the portions that are not joined may have a print layer because the adhesiveness is not affected even if the back print layer, the design print layer, or the like has a print layer.
  • tubular shrink label 2 in FIG. 5, one end extends to a position where the end overlaps with the back printing layer 31 at the other end, and the back printing layer 31 at one end and the other end shrinks with each other. Overlapping regions are formed via the film 1. Therefore, there is no region where the back print layer 31 does not exist in the thickness direction.
  • the tubular shrink label 2 may have a structure that overlaps the end of one end and the back printing layer on the other end side (overlaps in the thickness direction, that is, overlaps in the surface spreading direction) as shown in FIG.
  • the end of one end and the other end do not extend to the area where the end of one end overlaps the exposed surface of the film at the other end and the end of one end does not extend to the position where it overlaps the back print layer on the other end side.
  • the structure may not overlap with the back print layer.
  • the width of the seal portion is not particularly limited, but is preferably 0.2 to 10 mm, more preferably 0.3 to 5 mm, and even more preferably 0.4 to 2 mm.
  • the method for manufacturing the tubular shrink label is not particularly limited, but is, for example, as follows.
  • a long shrink label is slit to a predetermined width to obtain a long label body in which a plurality of shrink labels are connected in the long direction (longitudinal direction).
  • This long label body is formed into a tubular shape by overlapping so that the heat-shrinkable direction (that is, the heat-shrinkable direction of the shrink film) is the circumferential direction and the other end is on the outside of one end.
  • the overlapped portion is sealed in a strip shape with a predetermined width and both ends are joined to obtain a long tubular label continuum (long tubular shrink label).
  • one tubular shrink label having a predetermined length in the height direction can be obtained.
  • a conventional method for example, a method of pressing a disc-shaped blade in which a cut portion and a non-cut portion are repeatedly formed around the perforation, a method of using a laser, etc.
  • the process of perforating can be appropriately selected, such as after the printing layer is provided or before and after the process of processing into a cylindrical shape.
  • the tubular shrink label is manufactured by cutting the long tubular shrink label as described above, but depending on the shrink label, the inner surfaces of the label adhere (join) to each other at the time of cutting, so-called cut fusion. Arrival may occur.
  • cut fusion is likely to occur in the opening on the upstream side of the tubular shrink label due to, for example, the influence of frictional heat or pressing during cutting.
  • the shrink film of the present invention is excellent in cut suitability, cut fusion is unlikely to occur. Further, even if cut fusion occurs, the degree of fusion is small and it can be easily separated. Therefore, the shrink label can be used not only for a labeler equipped with a cutter that is difficult to cut and fuse, but also for a labeler equipped with a cutter that is relatively easy to cut and fuse, and is excellent in versatility.
  • the shrink label is not particularly limited, but is attached to a container and used as a labeled container.
  • the shrink label may be used for an adherend other than the container.
  • the labeled container particularly, a tubular shrink label
  • the shrink label is obtained.
  • the above containers include, for example, soft drink bottles such as PET bottles, home delivery milk bottles, food containers such as seasonings, alcoholic beverage bottles, pharmaceutical containers, detergents, chemical product containers such as sprays, and toiletries. Includes containers, cup noodle containers, etc.
  • the shape of the container is not particularly limited, and examples thereof include various shapes such as a bottle type such as a cylinder and a square shape, and a cup type.
  • the material of the container is not particularly limited, and examples thereof include plastics such as PET, glass, and metal.
  • the above-mentioned container with a label can be produced, for example, by fitting a tubular shrink label to a predetermined container and then heat-shrinking the tubular shrink label by heat treatment to bring it into close contact with the container (shrink processing).
  • heat treatment method include a method of passing through a hot air tunnel and a steam tunnel, a method of heating with radiant heat such as infrared rays, and the like.
  • a method of treating with steam at 80 to 100 ° C. passing through a heating tunnel filled with steam and steam
  • dry steam at 101 to 140 ° C. can also be used.
  • the heat treatment is not particularly limited, but is preferably carried out in a temperature range in which the temperature of the shrink film is 85 to 100 ° C. (particularly 90 to 97 ° C.).
  • the shrink label can be used for containers that require a high heat shrinkage rate. Further, the treatment time of the heat treatment is preferably 4 to 20 seconds from the viewpoint of productivity and economy.
  • Table 1 shows information on the raw materials used in Examples and Comparative Examples.
  • Table 2 shows the configurations and evaluation results of the shrink films and shrink labels produced in Examples and Comparative Examples.
  • "-" indicates that the evaluation was not performed.
  • Example 1 material 80% by mass of polystyrene-based resin composition D (Vicat softening temperature: 82 ° C.) and 20 mass% of polystyrene-based resin composition E (Vicat softening temperature: 83 ° C.) as raw materials constituting the surface layer (raw materials for surface layer). %Using.
  • the raw material for the surface layer is SBS (derived from petroleum) containing 1% by mass of GPPS and 2% by mass of HIPS.
  • the raw material for the central layer was put into the extruder x heated to 220 ° C., and the raw material for the surface layer was put into the extruder z heated to 250 ° C. Melt extrusion was performed using the above two extruders.
  • the melted central layer raw material and the melted surface layer raw material are composed of two types and three layers of surface layer raw material / central layer raw material / surface layer raw material by using a feed block having a merging method of two types and three layers.
  • the laminated body of was produced. Further, the laminate was extruded from a T-die and then rapidly cooled on a casting drum cooled to 25 ° C. to obtain a laminated unstretched film having surface layers on both sides of the central layer.
  • the laminated unstretched film is tenter-stretched 5 times at 85 ° C. in the width direction to be mainly stretched in the width direction, and the length of the stretched film (shrink film) mainly having heat shrinkage in the direction. I got a scale.
  • Example 2 As a raw material for the central layer, polystyrene resin A is 80% by mass, polystyrene resin B (trade name "Stylolux S", manufactured by Stylollution Co., Ltd., Vicat softening temperature: 70 ° C., styrene-butadiene copolymer (derived from petroleum)). ) was used in an amount of 20% by mass, and a shrink film and a long tubular shrink label were produced in the same manner as in Example 1.
  • Example 3 A shrink film and a long tubular shrink label were produced in the same manner as in Example 1 except that polystyrene-based resin A was used in an amount of 50% by mass and polystyrene-based resin B was used in an amount of 50% by mass as raw materials for the central layer.
  • Example 4 A shrink film and a long tubular shrink label were produced in the same manner as in Example 1 except that polystyrene-based resin A was used in an amount of 20% by mass and polystyrene-based resin B was used in an amount of 80% by mass as raw materials for the central layer.
  • Comparative Example 1 A shrink film and a long tubular shrink label were produced in the same manner as in Example 1 except that polystyrene-based resin B was used in an amount of 100% by mass as a raw material for the central layer.
  • Comparative Example 2 Except for the fact that 100% by mass of polystyrene resin C (trade name “Stylolux T", manufactured by Stylollution, Vicat softening temperature: 62 ° C, styrene-butadiene copolymer (derived from petroleum)) was used as a raw material for the central layer. Made a shrink film and a long tubular shrink label in the same manner as in Example 1.
  • Comparative Example 3 A shrink film and a long tubular shrink label were produced in the same manner as in Example 1 except that polystyrene-based resin B was used in an amount of 50% by mass and polystyrene-based resin C was used in an amount of 50% by mass as raw materials for the central layer.
  • the shrink films obtained in Examples 1 to 4 and Comparative Examples 1 to 3 have a two-kind, three-layer structure of [surface layer / center layer / surface layer]. Therefore, in the shrink film, the base layer portion is composed of a single central layer.
  • the central layer in Examples 1 to 4 corresponds to the A layer.
  • Example 5 As the raw material for the central layer, 50% by mass of the polystyrene-based resin composition D and 50% by mass of the polystyrene-based resin A were used.
  • As a raw material (raw material for the adhesive resin layer) constituting the adhesive resin layer 30% by mass of polyester resin A (trade name "EMBRACE LV", manufactured by Eastman Chemical Company, Vicut softening temperature: 76 ° C.), polystyrene resin A is used. 70% by mass was used.
  • As a raw material for the surface layer 100% by mass of polyester resin A was used.
  • the raw material for the central layer was put into the extruder heated to 220 ° C.
  • the raw material for the adhesive resin layer was put into the extruder b heated to 220 ° C.
  • the raw material for the surface layer was put into the extruder c heated to 220 ° C.
  • Melt extrusion was performed using the above three extruders.
  • the molten center layer raw material and the melted adhesive resin layer raw material are combined into two types, an adhesive resin layer raw material / a central layer raw material / an adhesive resin layer raw material, using a feed block having a merging method of two types and three layers.
  • a three-layered laminate was prepared, extruded from a T-die, and then rapidly cooled on a casting drum cooled to 25 ° C. to obtain a laminated unstretched film having surface layers on both sides of the base layer portion. ..
  • the laminated unstretched film is tenter-stretched 5 times at 85 ° C. in the width direction to be mainly stretched in the width direction, and is a long body of a stretched film (shrink film) having heat shrinkage in the direction.
  • Example 6 A shrink film and a long tubular shrink label were produced in the same manner as in Example 5 except that polystyrene-based resin A was used in an amount of 100% by mass as a raw material for the central layer.
  • the shrink films of Examples 5 and 6 have a three-kind five-layer structure of [surface layer / adhesive resin layer / center layer / adhesive resin layer / surface layer]. Therefore, in the shrink film, the base layer portion has a three-layer structure of [adhesive resin layer / center layer / adhesive resin layer], and the outermost layer of the base layer portion is an adhesive resin layer.
  • the central layer corresponds to the A1 layer
  • the adhesive resin layer corresponds to the A2 layer.
  • Example 7 material
  • 50% by mass of the polystyrene-based resin composition D and 50% by mass of the polystyrene-based resin A were used.
  • As a raw material for the adhesive resin layer 30% by mass of polyester-based resin A and 70% by mass of polystyrene-based resin A were used.
  • As a raw material for the surface layer 100% by mass of polyester resin A was used.
  • the raw material for the central layer was put into the extruder heated to 220 ° C.
  • the raw material for the adhesive resin layer was put into the extruder b heated to 220 ° C.
  • the raw material for the surface layer was put into the extruder c heated to 220 ° C.
  • Melt extrusion was performed using the above three extruders.
  • the two-kind three-layer structure of the raw material for the layer / the raw material for the adhesive resin layer is divided, merged, and laminated as one repeating unit, and the laminated body (I) (the above two-kind three-layer structure is laminated four times (number of repetitions 4)).
  • the melted raw material for the surface layer was merged and laminated on both sides of the laminated body (I) using a feed block to obtain a laminated body (II).
  • the laminate (II) was extruded from a T-die and then rapidly cooled on a casting drum cooled to 25 ° C. to obtain a laminated unstretched film having surface layers on both sides of the base layer portion. ..
  • the laminated unstretched film is tenter-stretched 5 times at 85 ° C. in the width direction to be mainly stretched in the width direction, and is a long body of a stretched film (shrink film) having heat shrinkage in the direction.
  • Example 8 A shrink film and a long tubular shrink label were produced in the same manner as in Example 7 except that polystyrene-based resin A was used in an amount of 100% by mass as a raw material for the central layer.
  • Comparative Example 4 50% by mass of polystyrene resin B and 50% by mass of polystyrene resin C were used as raw materials for the central layer, and 30% by mass of polyester resin A and polystyrene resin B were used as raw materials for the adhesive resin layer.
  • a shrink film and a long tubular shrink label were produced in the same manner as in Example 7 except that 21% by mass and 49% by mass of polystyrene resin C were used.
  • the shrink films of Examples 7 and 8 and Comparative Example 4 were [surface layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive. Resin layer / surface layer] has 3 types and 11 layers. Therefore, in the shrink film, the base layer portion has a nine-layer structure of [adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer]. The outermost layer of the base layer portion is an adhesive resin layer.
  • the central layer in Examples 7 and 8 corresponds to the A1 layer, and the adhesive resin layer corresponds to the A2 layer, respectively.
  • Shrinkage rate (%) (L 0 -L 1 ) / L 0 ⁇ 100
  • L 0 Dimensions of sample piece before heat treatment (main shrinkage direction)
  • L 1 Dimensions of the sample after heat treatment (in the same direction as L 0 )
  • Friction coefficient With respect to the shrink films obtained in Examples and Comparative Examples, the static friction coefficient and the dynamic friction coefficient between the surfaces thereof were measured according to JIS K7125.
  • the shrink film of the present invention when used (Example), the heat shrinkage rate in the orthogonal direction is small while using the polystyrene-based resin using the styrene-based monomer derived from biomass. It had an excellent shrinkage finish and could be used practically. Further, in Examples 5 to 8, after cutting the long tubular shrink label, adhesion between the inner surfaces of the labels could not be confirmed, and the cutting suitability was excellent.
  • the shrink film having poor cutability can be used by appropriately selecting a cutting method for a long tubular label.

Abstract

Provided is a shrink film in which a biomass-derived polystyrene resin is used and which has exceptional shrink finishing properties. This shrink film has thermal shrinkage properties mainly in one direction, the shrink film including a styrene-butadiene copolymer that has constituent units derived from biomass-derived styrene monomers, and being such that the content proportion of a resin that has a Vicat softening temperature of 75-90°C (inclusive) relative to the entire mass of the shrink film is 45 mass% or greater.

Description

シュリンクフィルムShrink film
 本発明は、シュリンクフィルムに関する。 The present invention relates to a shrink film.
 現在、お茶や清涼飲料水等の飲料用容器として、PETボトル等のプラスチック製ボトルや、ボトル缶等の金属製ボトルなどが広く用いられている。これらの容器には、表示や装飾性、機能性の付与のためプラスチックラベルを装着する場合が多い。このようなプラスチックラベルとしては、例えば、装飾性、加工性(容器への追従性)、広い表示面積などのメリットから、シュリンクフィルム(熱収縮性フィルム)に印刷層が設けられたシュリンクラベルが広く使用されている。 Currently, plastic bottles such as PET bottles and metal bottles such as bottle cans are widely used as beverage containers for tea and soft drinks. Plastic labels are often attached to these containers for display, decorativeness, and functionality. As such a plastic label, for example, a shrink label in which a print layer is provided on a shrink film (heat shrinkable film) is widely used because of merits such as decorativeness, processability (followability to a container), and a wide display area. in use.
 上記シュリンクラベルに用いられるシュリンクフィルムとしては、ポリスチレン系樹脂やポリエステル系樹脂を用いたものが知られている(特許文献1参照)。 As the shrink film used for the shrink label, a polystyrene-based resin or a polyester-based resin is known (see Patent Document 1).
国際公開第99/29490号International Publication No. 99/29490
 近年、環境保護の観点から、工業廃棄物や植物由来の材料であるバイオマス原料を用いたシュリンクフィルムが求められている。バイオマス原料を用いたシュリンクフィルムとしては、例えば、生分解性であり且つ植物由来の材料であるポリ乳酸を用いたシュリンクフィルムが知られている。しかしながら、ポリスチレン系樹脂をバイオマス原料として用いた実用可能なシュリンクフィルムは知られていない。 In recent years, from the viewpoint of environmental protection, shrink films using biomass raw materials, which are materials derived from industrial waste and plants, have been demanded. As a shrink film using a biomass raw material, for example, a shrink film using polylactic acid, which is a biodegradable and plant-derived material, is known. However, a practical shrink film using a polystyrene resin as a biomass raw material is not known.
 また、ポリスチレン系樹脂を用いたシュリンクフィルムは、シュリンクラベルとして被装着物に装着した際、主収縮方向と直交する方向(直交方向)への熱収縮が起こり、ラベルに設けられたデザインがゆがむ、デザインの位置ずれにより被装着物との一体感が損なわれる、シワが発生する等の問題が起こり、その結果収縮仕上がりが悪くなる場合があった。 Further, when a shrink film using a polystyrene resin is attached to an object to be attached as a shrink label, heat shrinkage occurs in a direction orthogonal to the main shrinkage direction (orthogonal direction), and the design provided on the label is distorted. Due to the misalignment of the design, the sense of unity with the object to be attached is impaired, wrinkles are generated, and the like, and as a result, the shrinkage finish may be deteriorated.
 従って、本発明の目的は、バイオマス由来のポリスチレン系樹脂を用い、且つ収縮仕上がりに優れるシュリンクフィルムを提供することにある。 Therefore, an object of the present invention is to provide a shrink film using a polystyrene-based resin derived from biomass and having an excellent shrinkage finish.
 本発明は、主に一方向に熱収縮性を有するシュリンクフィルムであって、
 バイオマス由来のスチレン系単量体に由来する構成単位を有するスチレン-ブタジエン共重合体を含み、
 上記シュリンクフィルムの総質量に対して、ビカット軟化温度が75℃以上90℃以下である樹脂の含有割合が45質量%以上である、シュリンクフィルムを提供する。
The present invention is a shrink film having a heat shrinkage mainly in one direction.
Containing a styrene-butadiene copolymer having a structural unit derived from a biomass-derived styrene-based monomer,
Provided is a shrink film in which the content ratio of a resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower is 45% by mass or more with respect to the total mass of the shrink film.
 上記シュリンクフィルムは、1または2以上の層を有する基層部と、上記基層部の両面側に設けられた表面層とを備え、
 上記基層部は、上記基層部中の層として、上記スチレン-ブタジエン共重合体を含む層(A層)を有し、
 上記A層は、上記スチレン-ブタジエン共重合体の含有割合が20質量%以上であり、上記ビカット軟化温度が75℃以上90℃以下の樹脂の含有割合が15質量%以上である層であることが好ましい。
The shrink film includes a base layer portion having one or more layers and surface layers provided on both sides of the base layer portion.
The base layer portion has a layer (A layer) containing the styrene-butadiene copolymer as a layer in the base layer portion.
The layer A is a layer in which the content ratio of the styrene-butadiene copolymer is 20% by mass or more, and the content ratio of the resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower is 15% by mass or more. Is preferable.
 上記表面層は、上記スチレン-ブタジエン共重合体を含まないか、または上記表面層中の上記スチレン-ブタジエン共重合体の含有割合が5質量%未満であることが好ましい。 It is preferable that the surface layer does not contain the styrene-butadiene copolymer, or the content ratio of the styrene-butadiene copolymer in the surface layer is less than 5% by mass.
 本発明のシュリンクフィルムは、上記構成を有することにより、バイオマス由来のポリスチレン系樹脂を用い、且つ収縮仕上がりに優れる。このため、本発明のシュリンクフィルムおよび当該シュリンクフィルムを用いたシュリンクラベルは実用性を有しつつ、石油由来のスチレン系単量体を用いる場合に対してCO2発生量を削減することができる。 By having the above-mentioned structure, the shrink film of the present invention uses a polystyrene-based resin derived from biomass and has an excellent shrinkage finish. Therefore, the shrink film of the present invention and the shrink label using the shrink film have practicality, and can reduce the amount of CO 2 generated when a petroleum-derived styrene-based monomer is used.
本発明のシュリンクフィルムの一例を示す概略図(部分断面図)である。It is the schematic (partial sectional view) which shows an example of the shrink film of this invention. 本発明のシュリンクフィルムの他の一例を示す概略図(部分断面図)である。It is the schematic (partial sectional view) which shows another example of the shrink film of this invention. 本発明のシュリンクフィルムのさらに他の一例を示す概略図(部分断面図)である。It is a schematic diagram (partial sectional view) which shows still another example of the shrink film of this invention. 本発明のシュリンクフィルムを用いたシュリンクラベルの一実施形態である筒状シュリンクラベルの一例を示す概略図である。It is a schematic diagram which shows an example of the cylindrical shrink label which is one Embodiment of the shrink label using the shrink film of this invention. 図4に示す筒状シュリンクラベルのA-A’断面の要部拡大図である。FIG. 4 is an enlarged view of a main part of the AA'cross section of the tubular shrink label shown in FIG.
[シュリンクフィルム]
 本発明のシュリンクフィルムは、バイオマス由来のスチレン系単量体に由来する構成単位を有するスチレン-ブタジエン共重合体を少なくとも含む。
[Shrink film]
The shrink film of the present invention contains at least a styrene-butadiene copolymer having a structural unit derived from a styrene-based monomer derived from biomass.
 また、本発明のシュリンクフィルムは、ビカット軟化温度が75℃以上90℃以下である樹脂を含む。本明細書において、ビカット軟化温度が75℃以上90℃以下である樹脂を「高ビカット樹脂」と称する場合がある。上記スチレン-ブタジエン共重合体のビカット軟化温度が75℃以上90℃以下である場合、上記スチレン-ブタジエン共重合体は上記高ビカット樹脂に該当する。上記高ビカット樹脂のビカット軟化温度は、好ましくは75℃以上85℃以下である。 Further, the shrink film of the present invention contains a resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower. In the present specification, a resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower may be referred to as "high Vicat resin". When the Vicat softening temperature of the styrene-butadiene copolymer is 75 ° C. or higher and 90 ° C. or lower, the styrene-butadiene copolymer corresponds to the high bicut resin. The Vicat softening temperature of the high Vicut resin is preferably 75 ° C. or higher and 85 ° C. or lower.
(バイオマススチレン-ブタジエン共重合体)
 上記スチレン-ブタジエン共重合体は、バイオマス由来のスチレン系単量体およびブタジエンを必須の単量体成分として構成される共重合体である。すなわち、分子中(1分子中)に、バイオマス由来のスチレン系単量体に由来する構成単位、およびブタジエンに由来する構成単位を少なくとも含む重合体である。なお、本明細書において、バイオマス由来のスチレン系単量体に由来する構成単位を含む上記スチレン-ブタジエン共重合体を「バイオマススチレン-ブタジエン共重合体」と称する場合がある。上記バイオマススチレン-ブタジエン共重合体におけるブタジエンに由来する構成単位は、バイオマス由来であってもよいし、石油由来であってもよい。
(Biomass styrene-butadiene copolymer)
The styrene-butadiene copolymer is a copolymer composed of a styrene-based monomer derived from biomass and butadiene as an essential monomer component. That is, it is a polymer containing at least a structural unit derived from a styrene-based monomer derived from biomass and a structural unit derived from butadiene in the molecule (in one molecule). In the present specification, the styrene-butadiene copolymer containing a structural unit derived from a biomass-derived styrene-based monomer may be referred to as a "biomass styrene-butadiene copolymer". The structural unit derived from butadiene in the biomass styrene-butadiene copolymer may be derived from biomass or petroleum.
 上記バイオマス由来のスチレン系単量体としては、家具や木片等のパルプ廃材や生ゴミ等の工業廃棄物に由来するバイオナフサから抽出されたものが挙げられる。上記生ゴミは食物以外の生ゴミであってもよい。上記スチレン系単量体としては、例えば、スチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-エチルスチレン、p-イソブチルスチレン、p-t-ブチルスチレン、クロロメチルスチレンなどが挙げられる。中でも、入手し易さ、材料価格等の観点から、スチレンが好ましい。上記スチレン系単量体は、一種のみを使用してもよいし、二種以上を使用してもよい。 Examples of the biomass-derived styrene-based monomer include those extracted from bionaphtha derived from pulp waste materials such as furniture and wood chips and industrial waste such as swill. The above-mentioned garbage may be garbage other than food. Examples of the styrene-based monomer include styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, p-ethylstyrene, p-isobutylstyrene, pt-butylstyrene, chloromethylstyrene and the like. Can be mentioned. Of these, styrene is preferable from the viewpoint of availability, material price, and the like. As the styrene-based monomer, only one kind may be used, or two or more kinds may be used.
 上記バイオマス由来のスチレン系単量体に由来する構成単位の含有割合は、上記バイオマススチレン-ブタジエン共重合体中の全スチレン系単量体に由来する構成単位の総質量(100質量%)に対して、20質量%以上が好ましく、より好ましくは50質量%以上、さらに好ましくは80質量%以上、特に好ましくは95質量%以上である。 The content ratio of the structural unit derived from the styrene-based monomer derived from the biomass is the total mass (100% by mass) of the structural unit derived from the total styrene-based monomer in the biomass styrene-butadiene copolymer. It is preferably 20% by mass or more, more preferably 50% by mass or more, still more preferably 80% by mass or more, and particularly preferably 95% by mass or more.
 上記バイオマススチレン-ブタジエン共重合体を構成する単量体成分は、さらに、上記バイオマス由来のスチレン系単量体およびブタジエン以外のその他の単量体成分を含んでいてもよい。上記その他の単量体成分としては、例えば、石油由来のスチレン系単量体、ブタジエン以外のジエン、ビニル系モノマー、重合性不飽和カルボン酸エステル、重合性不飽和無水カルボン酸などが挙げられる。 The monomer component constituting the biomass styrene-butadiene copolymer may further contain the styrene-based monomer derived from the biomass and other monomer components other than butadiene. Examples of the other monomer components include petroleum-derived styrene-based monomers, dienes other than butadiene, vinyl-based monomers, polymerizable unsaturated carboxylic acid esters, and polymerizable unsaturated anhydrous carboxylic acids.
 上記スチレン-ブタジエン系共重合体の共重合の形態は、特に限定されないが、例えば、ランダム共重合体、ブロック共重合体、グラフト共重合体などが挙げられる。中でも、ブロック共重合体が好ましく、例えば、スチレンブロック(S)-ジエンブロック(D)型、S-D-S型、D-S-D型、S-D-S-D型などが挙げられる。 The form of copolymerization of the styrene-butadiene copolymer is not particularly limited, and examples thereof include random copolymers, block copolymers, and graft copolymers. Among them, block copolymers are preferable, and examples thereof include styrene block (S) -diene block (D) type, SDS type, DSD type, SSD-D type and the like. ..
 上記バイオマススチレン-ブタジエン共重合体のブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体(SBS)等のスチレン-ブタジエンブロック共重合体(SBC)、スチレン-ブタジエン・イソプレン-スチレンブロック共重合体(SBIS)等のスチレン-ブタジエン-イソプレンブロック共重合体などが挙げられ、中でも、スチレン-ブタジエンブロック共重合体が好ましい。なお、これらのブロック共重合体は、一種のみを使用してもよいし、二種以上を使用してもよい。 Examples of the block copolymer of the biomass styrene-butadiene copolymer include a styrene-butadiene block copolymer (SBC) such as a styrene-butadiene-styrene block copolymer (SBS) and a styrene-butadiene-isoprene-styrene. Examples thereof include styrene-butadiene-isoprene block copolymers such as block copolymers (SBIS), and among them, styrene-butadiene block copolymers are preferable. As these block copolymers, only one kind may be used, or two or more kinds may be used.
 上記スチレン-ブタジエンブロック共重合体としては、スチレン系単量体のみが重合したスチレンブロックとブタジエンのみが重合したブタジエンブロックとを有する共重合体であればよく、特に限定されないが、例えば、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-ブタジエン-スチレン-ブタジエン-スチレンブロック共重合体(SBSBS)等のスチレンブロックを両末端に有するスチレン-ブタジエンブロック共重合体;スチレン-ブタジエン共重合体(SB)、スチレン-ブタジエン-スチレン-ブタジエン共重合体(SBSB)等のスチレンブロックおよびブタジエンブロックをそれぞれ末端に有するスチレン-ブタジエンブロック共重合体;ブタジエン-スチレン-ブタジエン共重合体(BSB)、ブタジエン-スチレン-ブタジエン-スチレン-ブタジエン共重合体(BSBSB)等のブタジエンブロックを両末端に有するスチレン-ブタジエンブロック共重合体などが挙げられる。中でも、スチレンブロックを両末端に有するスチレン-ブタジエンブロック共重合体が好ましく、より好ましくはSBSである。なお、これらのスチレン-ブタジエンブロック共重合体は、一種のみを使用してもよいし、二種以上を使用してもよい。 The styrene-butadiene block copolymer may be any polymer having a styrene block polymerized only with a styrene-based monomer and a butadiene block polymerized only with butadiene, and is not particularly limited. For example, styrene-. A styrene-butadiene block copolymer having a styrene block at both ends, such as a butadiene-styrene block copolymer (SBS), a styrene-butadiene-styrene-butadiene-styrene block copolymer (SBSBS); a styrene-butadiene copolymer. (SB), styrene-butadiene block copolymer having a styrene block such as styrene-butadiene-styrene-butadiene copolymer (SBSB) and a butadiene block at the ends; butadiene-styrene-butadiene copolymer (BSB), butadiene Examples thereof include a styrene-butadiene block copolymer having a butadiene block at both ends, such as a styrene-butadiene-styrene-butadiene copolymer (BSBSB). Of these, a styrene-butadiene block copolymer having a styrene block at both ends is preferable, and SBS is more preferable. As these styrene-butadiene block copolymers, only one kind may be used, or two or more kinds may be used.
 上記スチレン-ブタジエンブロック共重合体は、公知乃至慣用のブロック共重合体の製造方法により製造することができる。上記スチレン-ブタジエンブロック共重合体の製造方法としては、例えば、スチレン-ブタジエンブロック共重合体の分子量、分子量分布および末端構造などを制御しやすい、リビング重合(リビングラジカル重合、リビングアニオン重合、リビングカチオン重合など)が挙げられる。上記リビング重合は公知乃至慣用の方法により実施可能である。 The styrene-butadiene block copolymer can be produced by a known or conventional method for producing a block copolymer. As a method for producing the above-mentioned styrene-butadiene block copolymer, for example, living polymerization (living radical polymerization, living anionic polymerization, living cation) in which the molecular weight, molecular weight distribution, terminal structure and the like of the styrene-butadiene block copolymer can be easily controlled. Polymerization, etc.). The living polymerization can be carried out by a known or conventional method.
 上記バイオマススチレン-ブタジエン共重合体は、特に限定されないが、スチレン系単量体に由来する構成単位の含有割合が、バイオマススチレン-ブタジエン共重合体の総質量(100質量%)に対して、50~98質量%が好ましく、より好ましくは60~95質量%、さらに好ましくは65~92質量%、特に好ましくは70~90質量%である。
上記含有割合が50質量%以上であると、シュリンクフィルムを適度に硬くし、本発明のシュリンクフィルムを用いたシュリンクラベルの剛性を適度に高くし、シュリンクラベルを装着する際の収縮特性が良好となる傾向がある。上記含有割合が98質量%以下であると、上記直交方向の熱収縮率がより適度となり、収縮仕上がりにより優れる傾向がある。
The biomass styrene-butadiene copolymer is not particularly limited, but the content ratio of the structural unit derived from the styrene-based monomer is 50 with respect to the total mass (100% by mass) of the biomass styrene-butadiene copolymer. It is preferably ~ 98% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 92% by mass, and particularly preferably 70 to 90% by mass.
When the content ratio is 50% by mass or more, the shrink film is appropriately hardened, the rigidity of the shrink label using the shrink film of the present invention is appropriately increased, and the shrinkage characteristics when the shrink label is attached are good. Tend to be. When the content ratio is 98% by mass or less, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish tends to be better.
 上記バイオマススチレン-ブタジエン共重合体は、特に限定されないが、ブタジエンに由来する構成単位の含有割合が、バイオマススチレン-ブタジエン共重合体の総質量(100質量%)に対して、2~50質量%が好ましく、より好ましくは5~40質量%、さらに好ましくは8~35質量%、特に好ましくは10~30質量%である。上記含有割合が50質量%以下であると、シュリンクフィルムを適度に硬くし、本発明のシュリンクフィルムを用いたシュリンクラベルの剛性を適度に高くし、シュリンクラベルを装着する際の収縮特性が良好となる傾向がある。上記含有割合が2質量%以上であると、直交方向の熱収縮率がより適度となり、収縮仕上がりにより優れる傾向がある。 The above-mentioned biomass styrene-butadiene copolymer is not particularly limited, but the content ratio of the structural unit derived from butadiene is 2 to 50% by mass with respect to the total mass (100% by mass) of the biomass styrene-butadiene copolymer. Is preferable, more preferably 5 to 40% by mass, still more preferably 8 to 35% by mass, and particularly preferably 10 to 30% by mass. When the content ratio is 50% by mass or less, the shrink film is appropriately hardened, the rigidity of the shrink label using the shrink film of the present invention is appropriately increased, and the shrinkage characteristics when the shrink label is attached are good. Tend to be. When the content ratio is 2% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish tends to be better.
 上記バイオマススチレン-ブタジエン共重合体のビカット軟化温度は、75℃以上であっても75℃未満であってもよく、特に限定されない。上記バイオマススチレン-ブタジエン共重合体のビカット軟化温度は、75℃以上90℃以下であることが好ましい。 The Vicat softening temperature of the biomass styrene-butadiene copolymer may be 75 ° C. or higher or lower than 75 ° C., and is not particularly limited. The Vicat softening temperature of the biomass styrene-butadiene copolymer is preferably 75 ° C. or higher and 90 ° C. or lower.
 なお、本明細書において、樹脂のビカット軟化温度は、例えば、JIS K7206に基づいて測定することができる。また、上記ビカット軟化温度は、シュリンクフィルムの作製に使用される樹脂それぞれのものをいい、使用される樹脂がポリマーアロイである場合はポリマーアロイ単位のビカット軟化温度を用いることとする。 In the present specification, the vicut softening temperature of the resin can be measured based on, for example, JIS K7206. Further, the Vicat softening temperature refers to each of the resins used for producing the shrink film, and when the resin used is a polymer alloy, the Vicat softening temperature in units of the polymer alloy is used.
 上記バイオマススチレン-ブタジエン共重合体は、市販品を用いてもよく、例えば、スタイロルーション社製「スタイロルクス M」などが挙げられる。 As the above-mentioned biomass styrene-butadiene copolymer, a commercially available product may be used, and examples thereof include "Stylolux M" manufactured by Stylolation Co., Ltd.
 本発明のシュリンクフィルム中の上記バイオマススチレン-ブタジエン共重合体の含有割合は、本発明のシュリンクフィルムの総質量(100質量%)に対して、10~90質量%が好ましく、より好ましくは15~70質量%、さらに好ましくは20~60質量%、特に好ましくは20~50質量%である。上記含有割合が10質量%以上であると、バイオマス由来の原料が多く、石油由来のポリスチレン系樹脂を用いる場合に対してCO2発生量をより削減することができる。上記含有割合が90質量%以下であると、相対的に他の樹脂の含有割合を多くすることができ、直交方向の熱収縮率がより適度となり、収縮仕上がりやカット適性等のシュリンクフィルムに求められる性能をより最適化することができる。 The content ratio of the biomass styrene-butadiene copolymer in the shrink film of the present invention is preferably 10 to 90% by mass, more preferably 15 to 90% by mass, based on the total mass (100% by mass) of the shrink film of the present invention. It is 70% by mass, more preferably 20 to 60% by mass, and particularly preferably 20 to 50% by mass. When the content ratio is 10% by mass or more, there are many raw materials derived from biomass, and the amount of CO 2 generated can be further reduced as compared with the case where a polystyrene resin derived from petroleum is used. When the content ratio is 90% by mass or less, the content ratio of other resins can be relatively increased, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrink film such as shrinkage finish and cut suitability is required. The performance to be achieved can be further optimized.
(高ビカット樹脂)
 本発明のシュリンクフィルムは、上記高ビカット樹脂を必須成分として含む。これにより、上記直交方向の熱収縮率がより適度となり、収縮仕上がりに優れる。上記高ビカット樹脂としては、公知乃至慣用の樹脂のうち、ビカット軟化温度が75℃以上90℃以下である樹脂が挙げられる。上記樹脂としては、例えば、ビカット軟化温度が75℃以上90℃以下である限りにおいて、ポリエステル系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、塩化ビニル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、熱可塑性エラストマー等の熱可塑性樹脂が挙げられる。上記高ビカット樹脂としては、中でも、ポリエステル系樹脂、ポリスチレン系樹脂が好ましい。上記高ビカット樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。
(High bicut resin)
The shrink film of the present invention contains the above high bicut resin as an essential component. As a result, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish is excellent. Examples of the high bicut resin include known and commonly used resins having a vicut softening temperature of 75 ° C. or higher and 90 ° C. or lower. The resin includes, for example, a polyester resin, a polystyrene resin, a polyolefin resin, a vinyl chloride resin, a polycarbonate resin, a polyamide resin, and a thermoplastic elastomer as long as the Vicat softening temperature is 75 ° C. or higher and 90 ° C. or lower. Examples thereof include thermoplastic resins such as. As the high bicut resin, polyester-based resin and polystyrene-based resin are particularly preferable. As the high bicut resin, only one kind may be used, or two or more kinds may be used.
 上記高ビカット樹脂としてのポリスチレン系樹脂としては、上記バイオマススチレン-ブタジエン共重合体やその他のポリスチレン系樹脂が挙げられる。上記ポリスチレン系樹脂は、スチレン系単量体を必須の単量体(モノマー)成分として構成される重合体である。すなわち、上記ポリスチレン系樹脂は、分子中(1分子中)に、スチレン系単量体に由来する構成単位を少なくとも含む重合体である。 Examples of the polystyrene-based resin as the high-vicut resin include the above-mentioned biomass styrene-butadiene copolymer and other polystyrene-based resins. The polystyrene-based resin is a polymer composed of a styrene-based monomer as an essential monomer component. That is, the polystyrene-based resin is a polymer containing at least a structural unit derived from a styrene-based monomer in the molecule (in one molecule).
 上記その他のポリスチレン系樹脂におけるスチレン系単量体は、バイオマス由来であってもよく、石油由来であってもよいが、石油由来であることが好ましい。なお、上記その他のポリスチレン系樹脂が上記バイオマススチレン-ブタジエン共重合体以外のスチレン-ブタジエン共重合体である場合、スチレン系単量体は石油由来である。上記スチレン系単量体としては、上述のバイオマススチレン-ブタジエン共重合体におけるスチレン系単量体として例示および説明されたものが挙げられる。中でも、入手し易さ、材料価格等の観点から、スチレンが好ましい。上記スチレン系単量体は、一種のみを使用してもよいし、二種以上を使用してもよい。 The styrene-based monomer in the above-mentioned other polystyrene-based resin may be derived from biomass or petroleum, but is preferably derived from petroleum. When the other polystyrene-based resin is a styrene-butadiene copolymer other than the biomass styrene-butadiene copolymer, the styrene-based monomer is derived from petroleum. Examples of the styrene-based monomer include those exemplified and described as the styrene-based monomer in the above-mentioned biomass styrene-butadiene copolymer. Of these, styrene is preferable from the viewpoint of availability, material price, and the like. As the styrene-based monomer, only one kind may be used, or two or more kinds may be used.
 上記ポリスチレン系樹脂としては、例えば、スチレンの単独重合体である汎用ポリスチレン(GPPS)等のスチレン系単量体の単独重合体;二種以上のスチレン系単量体のみを単量体成分として構成される共重合体;スチレン-ジエン系共重合体;スチレン-重合性不飽和カルボン酸エステル系共重合体等の共重合体;ポリスチレンと合成ゴム(例えば、ポリブタジエンやポリイソプレン等)の混合物、合成ゴムにスチレンをグラフト重合させたポリスチレン等の耐衝撃性ポリスチレン(HIPS);スチレン系単量体を含む重合体(例えば、スチレン系単量体と(メタ)アクリル酸エステル系単量体との共重合体)の連続相中にゴム状弾性体を分散させ、該ゴム状弾性体に前記共重合体をグラフト重合させたポリスチレン(グラフトタイプ耐衝撃性ポリスチレン「グラフトHIPS」という);スチレン系エラストマー;これらのうちの2以上のポリマーアロイなどが挙げられる。上記ポリスチレン系樹脂としては、中でも、収縮特性に優れる観点から、スチレン-ジエン系共重合体、HIPS、グラフトHIPS、またはこれらのポリマーアロイが好ましい。
なお、上記ポリスチレン系樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。
The polystyrene-based resin includes, for example, a homopolymer of a styrene-based monomer such as general-purpose polystyrene (GPPS), which is a homopolymer of styrene; and only two or more kinds of styrene-based monomers as a monomer component. Polymers; styrene-diene-based copolymers; styrene-polymerizable unsaturated carboxylic acid ester-based copolymers; copolymers of polystyrene and synthetic rubber (eg, polybutadiene, polyisoprene, etc.), synthesis Impact-resistant polystyrene (HIPS) such as polystyrene obtained by graft-polymerizing styrene on rubber; a polymer containing a styrene-based monomer (for example, a styrene-based monomer and a (meth) acrylic acid ester-based monomer co-existing with each other. A polystyrene in which a rubber-like elastic body is dispersed in a continuous phase of a polymer) and the copolymer is graft-polymerized on the rubber-like elastic body (graft type impact-resistant polystyrene "graft HIPS"); styrene-based elastomer; Two or more of these polymer alloys and the like can be mentioned. As the polystyrene-based resin, a styrene-diene-based copolymer, HIPS, grafted HIPS, or a polymer alloy thereof is preferable from the viewpoint of excellent shrinkage characteristics.
As the polystyrene-based resin, only one kind may be used, or two or more kinds may be used.
 上記スチレン-ジエン系共重合体は、スチレン系単量体およびジエン(特に、共役ジエン)を必須の単量体成分として構成される共重合体である。すなわち、分子中(1分子中)に、スチレン系単量体に由来する構成単位、およびジエン(特に、共役ジエン)に由来する構成単位を少なくとも含む重合体である。 The styrene-diene-based copolymer is a copolymer composed of a styrene-based monomer and a diene (particularly, a conjugated diene) as essential monomer components. That is, it is a polymer containing at least a structural unit derived from a styrene-based monomer and a structural unit derived from a diene (particularly, a conjugated diene) in the molecule (in one molecule).
 上記ジエンとしては、特に限定されないが、共役ジエンが好ましく、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、クロロプレンなどが挙げられる。中でも、1,3-ブタジエンが特に好ましい。すなわち、上記スチレン-ジエン系共重合体としては、スチレン-ブタジエン共重合体が好ましい。上記ジエンは、一種のみを使用してもよいし、二種以上を使用してもよい。 The diene is not particularly limited, but a conjugated diene is preferable, and for example, 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, 1, Examples thereof include 3-pentadiene, 1,3-hexadiene and chloroprene. Of these, 1,3-butadiene is particularly preferable. That is, as the styrene-diene-based copolymer, a styrene-butadiene copolymer is preferable. Only one kind of the above-mentioned diene may be used, or two or more kinds may be used.
 上記スチレン-ジエン系共重合体を構成する単量体成分は、さらに、上記スチレン系単量体および上記ジエン以外の単量体成分を含んでいてもよい。上記スチレン系単量体および上記ジエン以外の単量体成分としては、例えば、ビニル系モノマー、重合性不飽和カルボン酸エステル、重合性不飽和無水カルボン酸などが挙げられる。 The monomer component constituting the styrene-diene copolymer may further contain a monomer component other than the styrene-based monomer and the diene. Examples of the monomer component other than the styrene-based monomer and the diene include vinyl-based monomers, polymerizable unsaturated carboxylic acid esters, and polymerizable unsaturated anhydrous carboxylic acids.
 上記スチレン-ジエン系共重合体の共重合の形態は、特に限定されないが、例えば、ランダム共重合体、ブロック共重合体、グラフト共重合体などが挙げられる。中でも、ブロック共重合体が好ましい。 The form of copolymerization of the styrene-diene copolymer is not particularly limited, and examples thereof include random copolymers, block copolymers, and graft copolymers. Of these, block copolymers are preferable.
 上記スチレン-ジエン系共重合体のブロック共重合体(スチレン-ジエンブロック共重合体)としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体等のスチレン-ブタジエンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体(SIS)等のスチレン-イソプレンブロック共重合体、スチレン-ブタジエン・イソプレン-スチレンブロック共重合体等のスチレン-ブタジエン-イソプレンブロック共重合体などが挙げられ、中でも、スチレン-ブタジエンブロック共重合体が好ましい。上記スチレン-ブタジエンブロック共重合体としては、上述のバイオマススチレン-ブタジエン共重合体として例示および説明されたものが挙げられる。なお、これらのブロック共重合体は、一種のみを使用してもよいし、二種以上を使用してもよい。 Examples of the block copolymer (styrene-diene block copolymer) of the styrene-diene-based copolymer include a styrene-butadiene block copolymer such as a styrene-butadiene-styrene block copolymer and styrene-isoprene-. Examples thereof include styrene-isoprene block copolymers such as styrene block copolymer (SIS) and styrene-butadiene-isoprene block copolymers such as styrene-butadiene / isoprene-styrene block copolymers, among which styrene-butadiene Block copolymers are preferred. Examples of the styrene-butadiene block copolymer include those exemplified and described as the above-mentioned biomass styrene-butadiene copolymer. As these block copolymers, only one kind may be used, or two or more kinds may be used.
 上記スチレン-ジエンブロック共重合体は、公知乃至慣用のブロック共重合体の製造方法により製造することができる。上記スチレン-ジエンブロック共重合体の製造方法としては、例えば、スチレン-ジエンブロック共重合体の分子量、分子量分布および末端構造などを制御しやすい、リビング重合(リビングラジカル重合、リビングアニオン重合、リビングカチオン重合等)が挙げられる。上記リビング重合は公知乃至慣用の方法により実施可能である。 The styrene-diene block copolymer can be produced by a known or conventional method for producing a block copolymer. As a method for producing the styrene-diene block copolymer, for example, living polymerization (living radical polymerization, living anionic polymerization, living cation) in which the molecular weight, molecular weight distribution, terminal structure and the like of the styrene-diene block copolymer can be easily controlled. Polymerization, etc.). The living polymerization can be carried out by a known or conventional method.
 上記スチレン-ジエン系共重合体は、特に限定されないが、スチレン系単量体に由来する構成単位の含有割合が、スチレン-ジエン系共重合体の総質量(100質量%)に対して、50~98質量%が好ましく、より好ましくは60~95質量%、さらに好ましくは65~92質量%、特に好ましくは70~90質量%である。上記含有割合が50質量%以上であると、シュリンクフィルムを適度に硬くし、本発明のシュリンクフィルムを用いたシュリンクラベルの剛性を適度に高くし、シュリンクラベルを装着する際の収縮特性が良好となる傾向がある。上記含有割合が98質量%以下であると、上記直交方向の熱収縮率がより適度となり、収縮仕上がりにより優れる傾向がある。 The styrene-diene-based copolymer is not particularly limited, but the content ratio of the structural unit derived from the styrene-based monomer is 50 with respect to the total mass (100% by mass) of the styrene-diene-based copolymer. It is preferably ~ 98% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 92% by mass, and particularly preferably 70 to 90% by mass. When the content ratio is 50% by mass or more, the shrink film is appropriately hardened, the rigidity of the shrink label using the shrink film of the present invention is appropriately increased, and the shrinkage characteristics when the shrink label is attached are good. Tend to be. When the content ratio is 98% by mass or less, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish tends to be better.
 上記スチレン-ジエン系共重合体は、特に限定されないが、ジエンに由来する構成単位の含有割合が、スチレン-ジエン系共重合体の総質量(100質量%)に対して、2~50質量%が好ましく、より好ましくは5~40質量%、さらに好ましくは8~35質量%、特に好ましくは10~30質量%である。上記含有割合が50質量%以下であると、シュリンクフィルムを適度に硬くし、本発明のシュリンクフィルムを用いたシュリンクラベルの剛性を適度に高くし、シュリンクラベルを装着する際の収縮特性が良好となる傾向がある。上記含有割合が2質量%以上であると、直交方向の熱収縮率がより適度となり、収縮仕上がりにより優れる傾向がある。 The styrene-diene-based copolymer is not particularly limited, but the content ratio of the constituent unit derived from diene is 2 to 50% by mass with respect to the total mass (100% by mass) of the styrene-diene-based copolymer. Is preferable, more preferably 5 to 40% by mass, still more preferably 8 to 35% by mass, and particularly preferably 10 to 30% by mass. When the content ratio is 50% by mass or less, the shrink film is appropriately hardened, the rigidity of the shrink label using the shrink film of the present invention is appropriately increased, and the shrinkage characteristics when the shrink label is attached are good. Tend to be. When the content ratio is 2% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish tends to be better.
 上記ポリエステル系樹脂としては、例えば、ジカルボン酸成分とジオール成分を必須の構成成分として構成されたポリエステル(すなわち、ジカルボン酸に由来する構成単位とジオールに由来する構成単位を少なくとも含むポリエステル)、ポリ乳酸系重合体、ポリエステル系エラストマーなどが挙げられる。ジカルボン酸に由来する構成単位とジオールに由来する構成単位を少なくとも含むポリエステルの主なものとしては、ジカルボン酸とジオールの縮合反応による重合体、共重合体またはこれらの混合物が挙げられる。上記ポリエステル系樹脂としては、可塑剤を添加されたポリエチレンテレフタレートなどの軟質ポリエステル系樹脂を用いてもよい。 Examples of the polyester-based resin include polyesters composed of a dicarboxylic acid component and a diol component as essential constituents (that is, a polyester containing at least a constituent unit derived from a dicarboxylic acid and a constituent unit derived from a diol) and polylactic acid. Examples thereof include a system polymer and a polyester system elastomer. The main polyesters containing at least a structural unit derived from a dicarboxylic acid and a structural unit derived from a diol include polymers, copolymers or mixtures thereof by a condensation reaction of a dicarboxylic acid and a diol. As the polyester-based resin, a soft polyester-based resin such as polyethylene terephthalate to which a plasticizer is added may be used.
 上記ジカルボン酸(ジカルボン酸成分)としては、例えば、テレフタル酸、イソフタル酸、フタル酸、2,5-ジメチルテレフタル酸、5-t-ブチルイソフタル酸、4,4’-ビフェニルジカルボン酸、トランス-3,3’-スチルベンジカルボン酸、トランス-4,4’-スチルベンジカルボン酸、4,4’-ジベンジルジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,2,6,6-テトラメチルビフェニル-4,4’-ジカルボン酸、1,1,3-トリメチル-3-フェニルインデン-4,5-ジカルボン酸、1,2-ジフェノキシエタン-4,4’-ジカルボン酸、ジフェニルエーテルジカルボン酸、2,5-アントラセンジカルボン酸、2,5-ピリジンジカルボン酸、およびこれらの置換体等の芳香族ジカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、イコサン二酸、ドコサン二酸、1,12-ドデカンジオン酸、およびこれらの置換体等の脂肪族ジカルボン酸;1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-デカヒドロナフタレンジカルボン酸、1,5-デカヒドロナフタレンジカルボン酸、2,6-デカヒドロナフタレンジカルボン酸、およびこれらの置換体等の脂環式ジカルボン酸などが挙げられる。上記ジカルボン酸は、一種のみを使用してもよいし二種以上を使用してもよい。 Examples of the dicarboxylic acid (dicarboxylic acid component) include terephthalic acid, isophthalic acid, phthalic acid, 2,5-dimethylterephthalic acid, 5-t-butylisophthalic acid, 4,4'-biphenyldicarboxylic acid, and trans-3. , 3'-Stylbenzicarboxylic acid, trans-4,4'-stillbenzdicarboxylic acid, 4,4'-dibenzyldicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,3-naphthalene Dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,2,6,6-tetramethylbiphenyl-4,4'-dicarboxylic acid, 1,1,3-trimethyl-3-phenyl Inden-4,5-dicarboxylic acid, 1,2-diphenoxyetane-4,4'-dicarboxylic acid, diphenyletherdicarboxylic acid, 2,5-anthracenedicarboxylic acid, 2,5-pyridinedicarboxylic acid, and their substitutes. Aromatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, etc. An aliphatic dicarboxylic acid such as pentadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecandioic acid, icosandioic acid, docosandioic acid, 1,12-dodecandionic acid, and their substitutes; 1,3-cyclopentane. Dicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,4-decahydronaphthalenedicarboxylic acid, 1,5-decahydronaphthalenedicarboxylic acid, 2,6 -Decahydronaphthalenedicarboxylic acids, alicyclic dicarboxylic acids such as their substitutes, and the like can be mentioned. As the dicarboxylic acid, only one kind may be used, or two or more kinds may be used.
 上記ジオール(ジオール成分)としては、例えば、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-2,4-ジメチル-1,3-ヘキサンジオール、1,10-デカンジオール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族ジオール;1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール等の脂環式ジオール;2,2-ビス(4-β-ヒドロキシエトキシフェニル)プロパン、ビス(4-β-ヒドロキシエトキシフェニル)スルホン等のビスフェノール系化合物のエチレンオキシド付加物、キシリレングリコール等の芳香族ジオールなどが挙げられる。上記ジオールは、一種のみを使用してもよいし二種以上を使用してもよい。 Examples of the diol (diol component) include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. , 2,2-Dimethyl-1,3-propanediol (neopentyl glycol), 1,6-hexanediol, 2-ethyl-2-methyl-1,3-propanediol, 2,2-diethyl-1,3 -Propanediol, 1,8-octanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-2,4-dimethyl-1,3-hexanediol, 1,10-decanediol, Aliper diols such as polyethylene glycol and polypropylene glycol; 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2,4,4-tetramethyl-1,3- Alicyclic diols such as cyclobutanediol; ethylene oxide adducts of bisphenol compounds such as 2,2-bis (4-β-hydroxyethoxyphenyl) propane and bis (4-β-hydroxyethoxyphenyl) sulfones, xylylene glycol and the like. Aromatic diols and the like. As the above diol, only one kind may be used, or two or more kinds may be used.
 上記ポリエステル系樹脂は、上記以外にも、p-オキシ安息香酸、p-オキシエトキシ安息香酸等のオキシカルボン酸;安息香酸、ベンゾイル安息香酸等のモノカルボン酸;トリメリット酸等の多価カルボン酸;ポリアルキレングリコールモノメチルエーテル等の1価アルコール;グリセリン、ペンタエリスリトール、トリメチロールプロパン等の多価アルコールなどに由来する構成単位を含んでいてもよい。 In addition to the above, the polyester-based resin includes oxycarboxylic acids such as p-oxybenzoic acid and p-oxyethoxybenzoic acid; monocarboxylic acids such as benzoic acid and benzoylbenzoic acid; and polyhydric carboxylic acids such as trimellitic acid. A monohydric alcohol such as polyalkylene glycol monomethyl ether; a constituent unit derived from a polyhydric alcohol such as glycerin, pentaerythritol, trimethylolpropane or the like may be contained.
 中でも、収縮特性、剛性、機械強度などの観点から、上記ポリエステル系樹脂は、芳香族ポリエステル系樹脂が好ましい。なお、上記芳香族ポリエステル系樹脂とは、全ジカルボン酸成分中の50モル%以上(好ましくは70モル%以上)が芳香族ジカルボン酸、および/または、全ジオール成分中の50モル%以上(好ましくは70モル%以上)が芳香族ジオールであるポリエステル系樹脂である。さらに、芳香族ジカルボン酸を含むジカルボン酸と脂肪族ジオールを含むジオールとの縮合反応による重合体、共重合体、またはこれらの混合物である芳香族ポリエステル系樹脂が好ましい。 Among them, the aromatic polyester resin is preferable as the polyester resin from the viewpoint of shrinkage characteristics, rigidity, mechanical strength and the like. The aromatic polyester resin has 50 mol% or more (preferably 70 mol% or more) of the total dicarboxylic acid component and / or 50 mol% or more (preferably 70 mol% or more) of the total diol component. Is a polyester resin in which 70 mol% or more) is an aromatic diol. Further, an aromatic polyester resin which is a polymer, a copolymer, or a mixture thereof by a condensation reaction between a dicarboxylic acid containing an aromatic dicarboxylic acid and a diol containing an aliphatic diol is preferable.
 上記芳香族ポリエステル系樹脂は、ポリエステル系樹脂を非晶性とすることにより、熱収縮率を高くし、収縮特性や剛性により優れる観点から、単一の繰り返し単位から構成されているのではなく、変性成分(共重合成分)を含んでいる変性芳香族ポリエステル系樹脂が好ましい。変性芳香族ポリエステル系樹脂としては、例えば、ジカルボン酸成分およびジオール成分のうちの少なくとも一方が2以上の成分から構成される、すなわち、主成分の他に変性成分を含んでいる変性芳香族ポリエステル系樹脂が好ましい。言い換えると、上記芳香族ポリエステル系樹脂は、少なくとも二種以上のジカルボン酸に由来する構成単位および/または少なくとも二種以上のジオールに由来する構成単位を含む変性芳香族ポリエステル系樹脂が好ましい。 The aromatic polyester-based resin is not composed of a single repeating unit from the viewpoint of increasing the heat shrinkage rate and being superior in shrinkage characteristics and rigidity by making the polyester-based resin amorphous. A modified aromatic polyester resin containing a modifying component (copolymer component) is preferable. The modified aromatic polyester-based resin includes, for example, a modified aromatic polyester-based resin in which at least one of a dicarboxylic acid component and a diol component is composed of two or more components, that is, a modified aromatic polyester-based resin is contained in addition to the main component. Resin is preferred. In other words, the aromatic polyester-based resin is preferably a modified aromatic polyester-based resin containing a structural unit derived from at least two or more dicarboxylic acids and / or a structural unit derived from at least two or more diols.
 上記変性芳香族ポリエステル系樹脂としては、上記の中でも、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコール(EG)を用いたポリエチレンテレフタレート(PET)において、ジカルボン酸成分および/またはジオール成分の一部を変性成分(すなわち、他のジカルボン酸成分および/または他のジオール成分)に置き換えた変性PETが好ましく例示される。 Among the above, the modified aromatic polyester resin is a part of the dicarboxylic acid component and / or the diol component in polyethylene terephthalate (PET) using terephthalic acid as the dicarboxylic acid component and ethylene glycol (EG) as the diol component. A modified PET in which is replaced with a modifying component (ie, another dicarboxylic acid component and / or another diol component) is preferably exemplified.
 上記変性芳香族ポリエステル系樹脂(特に、変性PET)の変性成分(共重合成分)として用いられるジカルボン酸成分としては、例えば、シクロヘキサンジカルボン酸、アジピン酸、イソフタル酸などが挙げられる。中でも好ましくは、イソフタル酸である。また、変性成分として用いられるジオール成分としては、1,4-シクロヘキサンジメタノール(CHDM)、ネオペンチルグリコール(NPG)等の2,2-ジアルキル-1,3-プロパンジオール、ジエチレングリコールなどが挙げられる。中でも好ましくは、CHDM、2,2-ジアルキル-1,3-プロパンジオール(特に、NPG)である。なお、上記2,2-ジアルキル-1,3-プロパンジオールにおけるアルキル基は、炭素数1~6のアルキル基が好ましく、また、2つのアルキル基は、同一のアルキル基であってもよいし異なるアルキル基であってもよい。 Examples of the dicarboxylic acid component used as the modifying component (copolymerization component) of the modified aromatic polyester resin (particularly, modified PET) include cyclohexanedicarboxylic acid, adipic acid, and isophthalic acid. Of these, isophthalic acid is preferable. Examples of the diol component used as the denaturing component include 2,2-dialkyl-1,3-propanediol such as 1,4-cyclohexanedimethanol (CHDM) and neopentyl glycol (NPG), and diethylene glycol. Of these, CHDM, 2,2-dialkyl-1,3-propanediol (particularly NPG) is preferable. The alkyl group in the above 2,2-dialkyl-1,3-propanediol is preferably an alkyl group having 1 to 6 carbon atoms, and the two alkyl groups may be the same alkyl group or different. It may be an alkyl group.
 上記芳香族ポリエステル系樹脂としては、特に限定されないが、具体的には、収縮特性の観点で、ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてEGを用いたポリエチレンテレフタレート(PET);ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを主成分(例えば、最も多いジオール成分)、CHDMを共重合成分として用いた変性芳香族ポリエステル系樹脂(「CHDM共重合PET」と称する場合がある);ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを主成分、2,2-ジアルキル-1,3-プロパンジオールを共重合成分として用いた変性芳香族ポリエステル系樹脂(「2,2-ジアルキル-1,3-プロパンジオール共重合PET」と称する場合がある)が好ましい。上記2,2-ジアルキル-1,3-プロパンジオール共重合PETの中では、特に、ジカルボン酸成分としてテレフタル酸を用い、ジオール成分としてエチレングリコールを主成分、NPGを共重合成分として用いた変性芳香族ポリエステル系樹脂(「NPG共重合PET」と称する場合がある)が好ましい。上記芳香族ポリエステル系樹脂は、特に好ましくはCHDM共重合PETおよび/または2,2-ジアルキル-1,3-プロパンジオール共重合PETであり、さらに好ましくはCHDM共重合PETおよび/またはNPG共重合PET、収縮特性の観点から、最も好ましくはCHDM共重合PETである。なお、上記CHDM共重合PET、2,2-ジアルキル-1,3-プロパンジオール共重合PETには、それぞれ、CHDM、2,2-ジアルキル-1,3-プロパンジオール以外の共重合成分が用いられていてもよく、例えば、さらに、イソフタル酸やジエチレングリコールが共重合されていてもよい。 The aromatic polyester-based resin is not particularly limited, but specifically, polyethylene terephthalate (PET) using terephthalic acid as the dicarboxylic acid component and EG as the diol component; a dicarboxylic acid component from the viewpoint of shrinkage characteristics. A modified aromatic polyester resin using terephthalic acid as the main component (for example, the most abundant diol component) and CHDM as the copolymerization component (sometimes referred to as "CHDM copolymerized PET"). A modified aromatic polyester resin using terephthalic acid as the dicarboxylic acid component, ethylene glycol as the diol component as the main component, and 2,2-dialkyl-1,3-propanediol as the copolymerization component ("2,2-". It may be referred to as "dialkyl-1,3-propanediol copolymerized PET"). Among the above 2,2-dialkyl-1,3-propanediol copolymerized PETs, in particular, a modified fragrance using terephthalic acid as the dicarboxylic acid component, ethylene glycol as the diol component as the main component, and NPG as the copolymerization component. Group polyester resins (sometimes referred to as "NPG copolymerized PET") are preferred. The aromatic polyester-based resin is particularly preferably CHDM copolymerized PET and / or 2,2-dialkyl-1,3-propanediol copolymerized PET, and more preferably CHDM copolymerized PET and / or NPG copolymerized PET. From the viewpoint of shrinkage characteristics, CHDM copolymerized PET is most preferable. In the above CHDM copolymerized PET and 2,2-dialkyl-1,3-propanediol copolymerized PET, copolymerization components other than CHDM and 2,2-dialkyl-1,3-propanediol are used, respectively. For example, isophthalic acid or diethylene glycol may be further copolymerized.
 上記芳香族ポリエステル系樹脂は、実質的に非晶性の芳香族ポリエステル系樹脂が好ましく、より好ましくは、非晶性の飽和ポリエステル系樹脂である芳香族ポリエステル系樹脂である。特に限定されないが、芳香族ポリエステル系樹脂は、上述のように変性することによって、結晶化しにくくなるため、例えば、変性によって実質的に非晶性とすることができる。芳香族ポリエステル系樹脂を非晶性とすることにより、比較的低温での押出が可能となる。これにより、押出加工時の層形成性が良好となり、また、シュリンクフィルムの収縮特性が向上する。 The aromatic polyester-based resin is preferably a substantially amorphous aromatic polyester-based resin, and more preferably an aromatic polyester-based resin which is an amorphous saturated polyester-based resin. Although not particularly limited, the aromatic polyester-based resin can be made substantially amorphous by, for example, because it becomes difficult to crystallize by being modified as described above. By making the aromatic polyester resin amorphous, extrusion at a relatively low temperature becomes possible. As a result, the layer formability at the time of extrusion processing is improved, and the shrinkage property of the shrink film is improved.
 上記ポリエステル系樹脂の、示差走査熱量測定(DSC)法(10℃/分の昇温速度で測定)により測定した結晶化度は、15%以下が好ましく、より好ましくは10%以下である。さらに、上記ポリエステル系樹脂は、上記DSC法により測定した場合に、融点(融解ピーク)がほとんど見られないもの(すなわち、結晶化度0%のもの)が最も好ましい。上記結晶化度は、DSC測定より得られる結晶融解熱の値から、X線法等により測定した結晶化度の明確なサンプルを標準として、算出することができる。なお、結晶融解熱は、例えば、セイコーインスツル(株)製DSC(示差走査熱量測定)装置を用い、試料量10mg、昇温速度10℃/分で、窒素シールを行い、一度融点以上まで昇温し、常温まで降温した後、再度昇温したときの融解ピークの面積から求めることができる。結晶化度は、単一の樹脂から測定されることが好ましいが、混合状態で測定される場合には、混合される樹脂の融解ピークを差し引いて、対象となる芳香族ポリエステル系樹脂の融解ピークを求めればよい。なお、基層部中の層に含まれていてもよいポリエステル系樹脂の結晶化度についても同様である。 The crystallinity of the polyester resin measured by the differential scanning calorimetry (DSC) method (measured at a heating rate of 10 ° C./min) is preferably 15% or less, more preferably 10% or less. Further, it is most preferable that the polyester resin has almost no melting point (melting peak) when measured by the DSC method (that is, a resin having a crystallinity of 0%). The crystallinity can be calculated from the value of the heat of fusion of crystals obtained by DSC measurement, using a sample having a clear crystallinity measured by an X-ray method or the like as a standard. For the heat of fusion of crystals, for example, a DSC (differential scanning calorimetry) device manufactured by Seiko Instruments Co., Ltd. is used, the sample amount is 10 mg, the temperature rise rate is 10 ° C./min, nitrogen sealing is performed, and the temperature rises to the melting point or higher once. It can be obtained from the area of the melting peak when the temperature is raised again after warming and lowering to room temperature. The crystallinity is preferably measured from a single resin, but when measured in a mixed state, the melting peak of the mixed resin is subtracted from the melting peak of the target aromatic polyester resin. You just have to ask. The same applies to the crystallinity of the polyester-based resin that may be contained in the layer in the base layer portion.
 上記ポリエステル系樹脂の重量平均分子量(Mw)は、溶融挙動や収縮挙動の観点から、15,000~100,000が好ましく、より好ましくは15,000~90,000、さらに好ましくは30,000~90,000、特に好ましくは30,000~80,000である。2,2-ジアルキル-1,3-プロパンジオール共重合PETの場合、50,000~70,000が特に好ましい。なお、本明細書において、重量平均分子量(Mw)は、特に限定されないが、例えば、GPCにより、標準物質としてポリスチレンを用いて測定することができる。 The weight average molecular weight (Mw) of the polyester resin is preferably 15,000 to 100,000, more preferably 15,000 to 90,000, still more preferably 30,000 to 30,000 from the viewpoint of melting behavior and shrinkage behavior. It is 90,000, particularly preferably 30,000 to 80,000. In the case of 2,2-dialkyl-1,3-propanediol copolymerized PET, 50,000 to 70,000 is particularly preferable. In the present specification, the weight average molecular weight (Mw) is not particularly limited, but can be measured by, for example, GPC using polystyrene as a standard substance.
 上記ポリエステル系樹脂は、市販品を用いてもよく、例えば、Eastman Chemical(イーストマンケミカル)社製「EMBRACE 21214」、「EMBRACE LV」(以上CHDM共重合PET)や、(株)ベルポリエステルプロダクツ製「ベルペット MGG200」(2,2-ジアルキル-1,3-プロパンジオール共重合PET)、(株)ベルポリエステルプロダクツ製「ベルペット E02」(NPG共重合PET)、SKケミカル社製「スカイグリーン」などが市場で入手できる。 Commercially available products may be used as the polyester resin, for example, "EMBRACE 21214" manufactured by Eastman Chemical (Eastman Chemical), "EMBRACE LV" (above CHDM copolymerized PET), and Bell Polyester Products Co., Ltd. "Belpet MGG200" (2,2-dialkyl-1,3-propanediol copolymer PET), "Belpet E02" (NPG copolymer PET) manufactured by Bell Polyester Products Co., Ltd., "Sky Green" manufactured by SK Chemical Co., Ltd. Etc. are available on the market.
 本発明のシュリンクフィルム中の上記高ビカット樹脂の含有割合は、本発明のシュリンクフィルムの総質量(100質量%)に対して、45質量%以上であり、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上である。
上記含有割合が45質量%以上であることにより、直交方向の熱収縮率が適度となり、シュリンクフィルムの収縮仕上がりに優れる。上記含有割合の上限は、100質量%であり、好ましくは99質量%である。
The content of the high bicut resin in the shrink film of the present invention is 45% by mass or more, preferably 50% by mass or more, more preferably 50% by mass, based on the total mass (100% by mass) of the shrink film of the present invention. It is 70% by mass or more, more preferably 90% by mass or more.
When the content ratio is 45% by mass or more, the heat shrinkage rate in the orthogonal direction becomes appropriate, and the shrinkage finish of the shrink film is excellent. The upper limit of the content ratio is 100% by mass, preferably 99% by mass.
 本発明のシュリンクフィルムの、少なくとも一方(好ましくは両方)の表面となる層中の上記高ビカット樹脂の含有割合は、50質量%以上(例えば50~100質量%)が好ましく、より好ましくは70質量%以上、さらに好ましくは90質量%以上である。上記含有割合が50質量%以上であると、シュリンクフィルムへの印刷適性により優れる。また、後述の筒状シュリンクラベルを製造する際のカット融着が起こりにくい、すなわちカット適性により優れる。なお、本発明のシュリンクフィルムが単数のフィルム層で構成される場合は当該単層が、本発明のシュリンクフィルムが複数のフィルム層で構成される場合は後述の表面層などが上記表面となる層に該当する。 The content ratio of the high bicut resin in the layer to be the surface of at least one (preferably both) of the shrink film of the present invention is preferably 50% by mass or more (for example, 50 to 100% by mass), more preferably 70% by mass. % Or more, more preferably 90% by mass or more. When the content ratio is 50% by mass or more, the printability on the shrink film is more excellent. In addition, cut fusion is unlikely to occur when manufacturing a tubular shrink label, which will be described later, that is, it is more excellent in cut suitability. When the shrink film of the present invention is composed of a single film layer, the single layer is the surface layer, and when the shrink film of the present invention is composed of a plurality of film layers, the surface layer described later is the surface layer. Corresponds to.
 本発明のシュリンクフィルムは、ビカット軟化温度が55℃以上75℃未満である樹脂を含んでいてもよい。本明細書において、ビカット軟化温度が55℃以上75℃未満である樹脂を「低ビカット樹脂」と称する場合がある。本発明のシュリンクフィルムは、上記低ビカット樹脂を含むと、シュリンクフィルムの自然収縮をより抑制することができる。 The shrink film of the present invention may contain a resin having a Vicat softening temperature of 55 ° C. or higher and lower than 75 ° C. In the present specification, a resin having a Vicat softening temperature of 55 ° C. or higher and lower than 75 ° C. may be referred to as "low Vicat resin". When the shrink film of the present invention contains the above-mentioned low vicut resin, the natural shrinkage of the shrink film can be further suppressed.
 上記低ビカット樹脂としては、公知乃至慣用の樹脂のうち、ビカット軟化温度が55℃以上75℃未満である樹脂が挙げられる。上記樹脂としては、例えば、ビカット軟化温度が55℃以上75℃未満である限りにおいて、上述の高ビカット樹脂として例示および説明された熱可塑性樹脂が挙げられる。上記低ビカット樹脂としては、中でも、ポリエステル系樹脂、ポリスチレン系樹脂が好ましい。上記低ビカット樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。 Examples of the low bicut resin include known and commonly used resins having a vicut softening temperature of 55 ° C. or higher and lower than 75 ° C. Examples of the resin include the thermoplastic resins exemplified and described as the above-mentioned high bicut resin as long as the vicut softening temperature is 55 ° C. or higher and lower than 75 ° C. As the low bicut resin, polyester-based resin and polystyrene-based resin are particularly preferable. As the low bicut resin, only one kind may be used, or two or more kinds may be used.
 本発明のシュリンクフィルム中の上記低ビカット樹脂の含有割合は、本発明のシュリンクフィルムの総質量(100質量%)に対して、0~55質量%が好ましく、より好ましくは0質量%超55質量%以下、さらに好ましくは1~55質量%である。 The content of the low bicut resin in the shrink film of the present invention is preferably 0 to 55% by mass, more preferably more than 0% by mass and 55% by mass, based on the total mass (100% by mass) of the shrink film of the present invention. % Or less, more preferably 1 to 55% by mass.
 本発明のシュリンクフィルム中の、ビカット軟化温度が55℃以上90℃以下である樹脂の含有割合、すなわち上記高ビカット樹脂および上記低ビカット樹脂の合計の含有割合は、本発明のシュリンクフィルムの総質量(100質量%)に対して、95質量%以上(例えば95~100質量%)が好ましく、より好ましくは99質量%以上である。上記含有割合が95質量%以上であると、直交方向の熱収縮率がより適度となり、シュリンクフィルムの収縮仕上がりにより優れる。 The content ratio of the resin having a Vicat softening temperature of 55 ° C. or higher and 90 ° C. or lower in the shrink film of the present invention, that is, the total content ratio of the high Vicat resin and the low Vicut resin is the total mass of the shrink film of the present invention. 95% by mass or more (for example, 95 to 100% by mass) is preferable, and 99% by mass or more is more preferable with respect to (100% by mass). When the content ratio is 95% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
 本発明のシュリンクフィルムにおいて、上記高ビカット樹脂と上記低ビカット樹脂の質量比(前者:後者)は、45~100:55~0が好ましく、より好ましくは45~99:55~1である。上記高ビカット樹脂の質量比が45以上であると、直交方向の熱収縮率がより適度となり、シュリンクフィルムの収縮仕上がりにより優れる。特に、上記高ビカット樹脂および上記低ビカット樹脂の合計の含有割合が95質量%以上であり、且つ上記質量比が上記範囲内であることが好ましい。 In the shrink film of the present invention, the mass ratio of the high bicut resin to the low vicut resin (the former: the latter) is preferably 45 to 100: 55 to 0, more preferably 45 to 99: 55 to 1. When the mass ratio of the high bicut resin is 45 or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent. In particular, it is preferable that the total content ratio of the high bicut resin and the low bicut resin is 95% by mass or more, and the mass ratio is within the above range.
 本発明のシュリンクフィルムは、本発明の効果を損なわない範囲内で、滑剤、充填剤、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、防曇剤、難燃剤、着色剤、ピニング剤(アルカリ土類金属)、軟化剤、相溶化剤などの添加剤を含んでいてもよい。これらの成分は、一種のみを使用してもよいし、二種以上を使用してもよい。中でも、滑剤を含むことにより、カット適性に優れる。 The shrink film of the present invention is a lubricant, a filler, a heat stabilizer, an antioxidant, an ultraviolet absorber, an antioxidant, an antifogging agent, a flame retardant, a colorant, and a pinning within a range that does not impair the effect of the present invention. It may contain additives such as agents (alkaline earth metals), softeners, and compatibilizers. Only one kind of these components may be used, or two or more kinds thereof may be used. Above all, by containing a lubricant, it is excellent in cutting suitability.
 本発明のシュリンクフィルムの少なくとも一方(好ましくは両方)の表面となる層は滑剤を含むことが好ましい。本発明のシュリンクフィルムの内部の層が滑剤を含む場合であってもカット適性に優れるが、本発明のシュリンクフィルムの表面となる層が滑剤を含むと、カット適性により優れる。 The surface layer of at least one (preferably both) of the shrink film of the present invention preferably contains a lubricant. Even when the inner layer of the shrink film of the present invention contains a lubricant, the cut suitability is excellent, but when the layer to be the surface of the shrink film of the present invention contains a lubricant, the cut suitability is more excellent.
 また、本発明のシュリンクフィルムは、フィルム製造時のフィルム片を再ペレット化された回収原料を含有していてもよい。なお、回収原料とは、製品化の前後やフィルムエッジ等の非製品部分、中間製品から製品フィルムを採取した際の残余部分や規格外品等のフィルム屑、ポリマー屑からなるリサイクル原料である。ただし、回収原料は本発明のシュリンクフィルムの製造より生じたもの(いわゆる自己回収品)が好ましい。 Further, the shrink film of the present invention may contain a recovery raw material obtained by repelletizing a film piece at the time of film production. The recovered raw material is a recycled raw material composed of non-product parts such as before and after commercialization and film edges, residual parts when a product film is collected from an intermediate product, film scraps such as non-standard products, and polymer scraps. However, the recovered raw material is preferably one produced from the production of the shrink film of the present invention (so-called self-recovered product).
 本発明のシュリンクフィルムの表面には、本発明の効果を損なわない範囲内で、帯電防止層やアンカーコート層が設けられていてもよい。また、本発明のシュリンクフィルムの表面には、必要に応じて、コロナ放電処理、プライマー処理、帯電防止コーティング処理等の慣用の表面処理が施されていてもよい。 The surface of the shrink film of the present invention may be provided with an antistatic layer or an anchor coat layer as long as the effects of the present invention are not impaired. Further, the surface of the shrink film of the present invention may be subjected to conventional surface treatment such as corona discharge treatment, primer treatment, antistatic coating treatment and the like, if necessary.
(シュリンクフィルムの構造)
 本発明のシュリンクフィルムは、単数のフィルム層から構成されていてもよいし、複数のフィルム層から構成されてもよい。本発明のシュリンクフィルムが複数のフィルム層で構成される場合、上記バイオマススチレン-ブタジエン共重合体、上記高ビカット樹脂、および上記低ビカット樹脂のうちの2以上は、同一のフィルム層に含まれていてもよく、それぞれ別のフィルム層に含まれていてもよい。
(Structure of shrink film)
The shrink film of the present invention may be composed of a single film layer or may be composed of a plurality of film layers. When the shrink film of the present invention is composed of a plurality of film layers, two or more of the biomass styrene-butadiene copolymer, the high bicut resin, and the low vicut resin are contained in the same film layer. It may be contained in different film layers.
 本発明のシュリンクフィルムが複数のフィルム層から構成されている場合、本発明のシュリンクフィルムは、基層部と、上記基層部の両面側に設けられた表面層とを備えることが好ましい。このような本発明のシュリンクフィルムは、表面層/基層部/表面層の層構成を有し、好ましくは基層部と表面層とが直接積層されている。上記シュリンクフィルム中の、基層部の両面側にある表面層はそれぞれ、同一の層であってもよいし、互いに異なる層(層を構成する樹脂組成や層厚みが異なる層)であってもよい。 When the shrink film of the present invention is composed of a plurality of film layers, it is preferable that the shrink film of the present invention includes a base layer portion and surface layers provided on both sides of the base layer portion. Such a shrink film of the present invention has a layer structure of a surface layer / base layer portion / surface layer, and preferably the base layer portion and the surface layer are directly laminated. The surface layers on both sides of the base layer portion in the shrink film may be the same layer or different layers (layers having different resin compositions and layer thicknesses). ..
 上記基層部は、基層部中の層として、上記バイオマススチレン-ブタジエン共重合体を含む層(A層)を少なくとも有することが好ましい。すなわち、上記シュリンクフィルムは、基層部と、上記基層部の両面側に設けられた表面層とを有し、上記基層部が、上記基層部中の層として、A層を少なくとも有するシュリンクフィルムであることが好ましい。
基層部がA層を有すると、表面層中の上記バイオマススチレン-ブタジエン共重合体の含有量を抑えつつ、シュリンクフィルム全体におけるバイオマス原料の割合を高くできる。
なお、本明細書において、上記バイオマススチレン-ブタジエン共重合体を含有する層を、「A層」と称する場合がある。
The base layer portion preferably has at least a layer (A layer) containing the biomass styrene-butadiene copolymer as a layer in the base layer portion. That is, the shrink film is a shrink film having a base layer portion and surface layers provided on both sides of the base layer portion, and the base layer portion has at least an A layer as a layer in the base layer portion. Is preferable.
When the base layer portion has the A layer, the proportion of the biomass raw material in the entire shrink film can be increased while suppressing the content of the biomass styrene-butadiene copolymer in the surface layer.
In the present specification, the layer containing the biomass styrene-butadiene copolymer may be referred to as "A layer".
 上記基層部は、2つの表面層に挟まれた部分である。上記基層部は、1または2以上の層を有する。上記基層部は、層を1~65層含むことが好ましく、3~65層含むことがより好ましい。3層以上に多層化されている場合、1層あたりの厚みを比較的薄くすることができるため、1層である場合に対して、剛性および透明性に優れる。また、熱収縮時の収縮挙動が緩やかとすることができ、収縮仕上がりに優れる。 The base layer portion is a portion sandwiched between two surface layers. The base layer portion has one or more layers. The base layer portion preferably contains 1 to 65 layers, and more preferably 3 to 65 layers. When the number of layers is three or more, the thickness of each layer can be made relatively thin, so that the rigidity and transparency are excellent as compared with the case of one layer. In addition, the shrinkage behavior during heat shrinkage can be slowed down, and the shrinkage finish is excellent.
 上記基層部中のA層の層数は、特に限定されないが、上記基層部の層数に対して、50%以上(好ましくは70%以上、より好ましくは90%以上)となる層数であることが好ましい。 The number of layers of the A layer in the base layer portion is not particularly limited, but is 50% or more (preferably 70% or more, more preferably 90% or more) with respect to the number of layers of the base layer portion. Is preferable.
 基層部がA層1層のみから構成される場合、本発明のシュリンクフィルムは、表面層/A層/表面層]の層構成を有する。基層部がA層1層のみから構成される場合のシュリンクフィルムの一実施形態を図1に示す。図1に示すシュリンクフィルム1は、A層12a単層からなる基層部12と、基層部12の両面に設けられた表面層11とを備える。 When the base layer portion is composed of only one A layer, the shrink film of the present invention has a layer structure of [surface layer / A layer / surface layer]. FIG. 1 shows an embodiment of a shrink film in which the base layer portion is composed of only one layer A. The shrink film 1 shown in FIG. 1 includes a base layer portion 12 made of a single layer A layer 12a and surface layers 11 provided on both sides of the base layer portion 12.
 また、基層部が層を2層以上含む場合、基層部は、特に限定されないが、基層部中の層として、さらに、接着樹脂層を少なくとも1層含むことが好ましい。特に、基層部中の最外層として接着樹脂層を含むことがより好ましい。基層部が上記接着樹脂層を基層部の最外層として含む場合、表面層と基層部中のA層との接着性を向上させ、熱収縮後においても層間剥離を起こりにくくすることができる。また、上記接着樹脂層はA層とA層との間に介在させても接着性が損なわれることがないため、基層部において上記接着樹脂層をA層間に介在させることにより、シュリンクラベルの剛性を高くすることにも使用できる。
上記接着樹脂層は、隣接する層と組成が異なる層であれば特に限定されず、例えば、隣接するA層とは組成が異なるA層(例えば、後述のA1層とA2層の組み合わせ)であってもよい。
When the base layer portion includes two or more layers, the base layer portion is not particularly limited, but it is preferable that the base layer portion further includes at least one adhesive resin layer as the layer in the base layer portion. In particular, it is more preferable to include an adhesive resin layer as the outermost layer in the base layer portion. When the base layer portion contains the adhesive resin layer as the outermost layer of the base layer portion, the adhesiveness between the surface layer and the A layer in the base layer portion can be improved, and delamination can be prevented from occurring even after heat shrinkage. Further, since the adhesive resin layer does not impair the adhesiveness even if it is interposed between the A layer and the A layer, the rigidity of the shrink label is obtained by interposing the adhesive resin layer between the A layers in the base layer portion. Can also be used to increase the height.
The adhesive resin layer is not particularly limited as long as it is a layer having a composition different from that of the adjacent layer, and is, for example, an A layer having a composition different from that of the adjacent A layer (for example, a combination of an A1 layer and an A2 layer described later). You may.
 基層部が層を3層以上含む場合、基層部は、基層部中の層であって、厚み方向の両端面に位置する2つの最外層と、当該最外層に挟まれた厚み方向内側に位置する複数の中間層とによって構成される。即ち、基層部は、[最外層/中間層(/・・・/中間層)/最外層]の構成を有する。基層部中に複数のA層がある場合、基層部中の複数のA層のうちの、全ての層または一部の層は、同一の層であってもよいし、互いに異なる層(層を構成する樹脂組成や層厚みが異なる層)であってもよい。同様に、基層部中に複数の接着樹脂層がある場合、基層部中の複数の接着樹脂層のうちの、全ての層または一部の層は、同一の層であってもよいし、互いに異なる層(層を構成する樹脂組成や層厚みが異なる層)であってもよい。また、基層部は、本発明の効果を損なわない範囲内で、A層、接着樹脂層以外の層を含んでいてもよい。さらに、上記A層、上記接着樹脂層は、それぞれ、基層部の最外層であってもよいし、中間層であってもよく、またはその両方として基層部に含まれていてもよい。 When the base layer portion includes three or more layers, the base layer portion is a layer in the base layer portion, and is located inside the two outermost layers located on both end faces in the thickness direction and the inner side in the thickness direction sandwiched between the outermost layers. It is composed of a plurality of intermediate layers. That is, the base layer portion has a structure of [outermost layer / intermediate layer (/ ... / intermediate layer) / outermost layer]. When there are a plurality of A layers in the base layer portion, all or some of the plurality of A layers in the base layer portion may be the same layer or different layers (layers). It may be a layer having a different resin composition or layer thickness. Similarly, when there are a plurality of adhesive resin layers in the base layer portion, all or some of the plurality of adhesive resin layers in the base layer portion may be the same layer or each other. It may be a different layer (a layer having a different resin composition or layer thickness constituting the layer). Further, the base layer portion may include a layer other than the A layer and the adhesive resin layer as long as the effect of the present invention is not impaired. Further, the A layer and the adhesive resin layer may be the outermost layer of the base layer portion, the intermediate layer, or both of them, respectively, may be included in the base layer portion.
 基層部がA層を含み且つ層を3層含む場合のシュリンクフィルムの一実施形態を図2に示す。図2に示すシュリンクフィルム1は、基層部12と、基層部12の両面に設けられた表面層11とを備える。基層部12は、中間層としてのA層12aと、最外層としての接着樹脂層12bとから構成されている。 FIG. 2 shows an embodiment of the shrink film when the base layer portion includes the A layer and contains three layers. The shrink film 1 shown in FIG. 2 includes a base layer portion 12 and surface layers 11 provided on both sides of the base layer portion 12. The base layer portion 12 is composed of an A layer 12a as an intermediate layer and an adhesive resin layer 12b as an outermost layer.
 基層部がA層を含み且つ層を9層含む場合のシュリンクフィルムの一実施形態を図3に示す。図3に示すシュリンクフィルム1は、基層部12と、基層部12の両面に設けられた表面層11とを備える。基層部12は、A層12aと接着樹脂層12bとが交互に積層しており、全ての接着樹脂層12bの間にはA層12aが介在している。基層部12の最外層は接着樹脂層12bである。 FIG. 3 shows an embodiment of the shrink film when the base layer portion includes the A layer and 9 layers. The shrink film 1 shown in FIG. 3 includes a base layer portion 12 and surface layers 11 provided on both sides of the base layer portion 12. In the base layer portion 12, the A layer 12a and the adhesive resin layer 12b are alternately laminated, and the A layer 12a is interposed between all the adhesive resin layers 12b. The outermost layer of the base layer portion 12 is an adhesive resin layer 12b.
 基層部中のA層は、層中に、上記バイオマススチレン-ブタジエン共重合体を少なくとも含む。A層中の上記バイオマススチレン-ブタジエン共重合体の含有割合は、A層の総質量(100質量%)に対して、20質量%以上が好ましく、より好ましくは30質量%以上、さらに好ましくは50質量%以上である。上記含有割合が20質量%以上であると、バイオマス原料の割合をより高くできる。 The layer A in the base layer portion contains at least the above-mentioned biomass styrene-butadiene copolymer in the layer. The content ratio of the biomass styrene-butadiene copolymer in the A layer is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 50 with respect to the total mass (100% by mass) of the A layer. It is mass% or more. When the content ratio is 20% by mass or more, the ratio of the biomass raw material can be further increased.
 A層は、上記バイオマススチレン-ブタジエン共重合体以外のその他の熱可塑性樹脂を含んでいてもよい。上記その他の熱可塑性樹脂としては、上記高ビカット樹脂および上記低ビカット樹脂が挙げられる。上記その他の熱可塑性樹脂は、一種のみを使用してもよいし、二種以上を使用してもよい。 The layer A may contain a thermoplastic resin other than the above-mentioned biomass styrene-butadiene copolymer. Examples of the other thermoplastic resin include the high bicut resin and the low vicut resin. As the above-mentioned other thermoplastic resin, only one kind may be used, or two or more kinds may be used.
 A層は、上記高ビカット樹脂を含んでいてもよい。A層が上記高ビカット樹脂を含むと、直交方向の熱収縮率がより適度となり、シュリンクフィルムの収縮仕上がりにより優れる。上記高ビカット樹脂としては、中でも、ポリスチレン系樹脂、ポリエステル系樹脂が好ましい。上記ポリスチレン系樹脂としては、スチレン-ジエン系共重合体が好ましく、より好ましくはスチレン-ブタジエン共重合体である。また、上記高ビカット樹脂としては、さらに、HIPSを含むことが好ましい。なお、上記高ビカット樹脂は、上記バイオマススチレン-ブタジエン共重合体であってもよい。 The A layer may contain the above high bicut resin. When the layer A contains the high bicut resin, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent. As the high bicut resin, polystyrene-based resin and polyester-based resin are particularly preferable. As the polystyrene-based resin, a styrene-diene-based copolymer is preferable, and a styrene-butadiene copolymer is more preferable. Further, it is preferable that the high bicut resin further contains HIPS. The high bicut resin may be the biomass styrene-butadiene copolymer.
 A層中の上記高ビカット樹脂の含有割合は、A層の総質量(100質量%)に対して、15質量%以上(例えば15~100質量%)が好ましく、より好ましくは30質量%以上、さらに好ましくは50質量%以上である。上記含有割合が15質量%以上であると、上記直交方向の熱収縮率がより適度となり、シュリンクフィルムの収縮仕上がりがより優れる。 The content ratio of the high bicut resin in the A layer is preferably 15% by mass or more (for example, 15 to 100% by mass), more preferably 30% by mass or more, based on the total mass (100% by mass) of the A layer. More preferably, it is 50% by mass or more. When the content ratio is 15% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
 A層は、上記低ビカット樹脂を含んでいてもよい。A層が上記低ビカット樹脂を含むと、シュリンクフィルムの自然収縮をより抑制することができる。上記低ビカット樹脂としては、中でも、ポリスチレン系樹脂が好ましく、より好ましくはスチレン-ジエン系共重合体、さらに好ましくはスチレン-ブタジエン共重合体である。また、上記低ビカット樹脂としては、さらに、HIPSを含むことが好ましい。なお、上記低ビカット樹脂は、上記バイオマススチレン-ブタジエン共重合体であってもよい。 The A layer may contain the above low bicut resin. When the A layer contains the low bicut resin, the natural shrinkage of the shrink film can be further suppressed. As the low bicut resin, polystyrene-based resin is preferable, styrene-diene-based copolymer is more preferable, and styrene-butadiene copolymer is more preferable. Further, it is preferable that the low bicut resin further contains HIPS. The low bicut resin may be the biomass styrene-butadiene copolymer.
 A層中の上記低ビカット樹脂の含有割合は、A層の総質量(100質量%)に対して、0~85質量%が好ましく、より好ましくは0質量%超85質量%以下、さらに好ましくは1~70質量%、特に好ましくは5~50質量%である。 The content ratio of the low bicut resin in the A layer is preferably 0 to 85% by mass, more preferably more than 0% by mass and 85% by mass or less, still more preferably, with respect to the total mass (100% by mass) of the A layer. It is 1 to 70% by mass, particularly preferably 5 to 50% by mass.
 A層中の、ビカット軟化温度が55℃以上90℃以下である樹脂の含有割合、すなわち上記高ビカット樹脂および上記低ビカット樹脂の合計の含有割合は、A層の総質量(100質量%)に対して、95質量%以上(例えば95~100質量%)が好ましく、より好ましくは99質量%以上である。上記含有割合が95質量%以上であると、直交方向の熱収縮率がより適度となり、シュリンクフィルムの収縮仕上がりにより優れる。 The content ratio of the resin having a Vicat softening temperature of 55 ° C. or higher and 90 ° C. or lower in the A layer, that is, the total content ratio of the high Vicat resin and the low Vicut resin is the total mass (100% by mass) of the A layer. On the other hand, 95% by mass or more (for example, 95 to 100% by mass) is preferable, and 99% by mass or more is more preferable. When the content ratio is 95% by mass or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
 A層において、上記高ビカット樹脂と上記低ビカット樹脂の質量比(前者:後者)は、15~100:85~0が好ましく、より好ましくは45~100:55~0、さらに好ましくは45~99:55~1である。上記高ビカット樹脂の質量比が15以上であると、直交方向の熱収縮率がより適度となり、シュリンクフィルムの収縮仕上がりにより優れる。特に、上記高ビカット樹脂および上記低ビカット樹脂の合計の含有割合が95質量%以上であり、且つ上記質量比が上記範囲内であることが好ましい。 In the layer A, the mass ratio of the high bicut resin to the low vicut resin (the former: the latter) is preferably 15 to 100: 85 to 0, more preferably 45 to 100: 55 to 0, and even more preferably 45 to 99. : 55 to 1. When the mass ratio of the high bicut resin is 15 or more, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent. In particular, it is preferable that the total content ratio of the high bicut resin and the low bicut resin is 95% by mass or more, and the mass ratio is within the above range.
 A層は、本発明の効果を損なわない範囲内で、本発明のシュリンクフィルムが含んでいてもよいものとして例示された添加剤を含んでいてもよい。これらの成分は、一種のみを使用してもよいし、二種以上を使用してもよい。また、A層は、フィルム製造時のフィルム片を再ペレット化された回収原料を含有していてもよい。中でも、滑剤を含むことにより、カット適性に優れる。 The layer A may contain the additives exemplified as those which the shrink film of the present invention may contain, as long as the effects of the present invention are not impaired. Only one kind of these components may be used, or two or more kinds thereof may be used. Further, the layer A may contain a recovery raw material obtained by repelletizing a film piece at the time of film production. Above all, by containing a lubricant, it is excellent in cutting suitability.
 表面層は、ポリスチレン系樹脂および/またはポリエステル系樹脂を主成分として含むことが好ましい。なお、本明細書において、「主成分として含む」とは、最も質量割合が多い成分として含むことをいうものとする。表面層がポリスチレン系樹脂を主成分として含む場合、収縮仕上がりより優れる。表面層がポリエステル系樹脂を主成分として含む場合、印刷適性および熱収縮率により優れる。 The surface layer preferably contains a polystyrene resin and / or a polyester resin as a main component. In addition, in this specification, "containing as a main component" means that it is contained as a component having the largest mass ratio. When the surface layer contains a polystyrene resin as a main component, it is superior to the shrinkage finish. When the surface layer contains a polyester resin as a main component, it is excellent in printability and heat shrinkage.
 上記ポリスチレン系樹脂としては、上記バイオマススチレン-ブタジエン共重合体、上記高ビカット樹脂、上記低ビカット樹脂などが挙げられる。上記ポリスチレン系樹脂としては、中でも、上記高ビカット樹脂を含むことが好ましい。表面層がポリスチレン系樹脂を主成分として含む場合の表面層中のポリスチレン系樹脂の含有割合は、50質量%超が好ましく、より好ましくは70質量%以上、さらに好ましくは90質量%以上である。 Examples of the polystyrene-based resin include the biomass styrene-butadiene copolymer, the high bicut resin, and the low bicut resin. The polystyrene-based resin preferably contains the high bicut resin. When the surface layer contains a polystyrene resin as a main component, the content ratio of the polystyrene resin in the surface layer is preferably more than 50% by mass, more preferably 70% by mass or more, still more preferably 90% by mass or more.
 上記ポリエステル系樹脂としては、上記高ビカット樹脂、上記低ビカット樹脂などが挙げられる。上記ポリエステル系樹脂としては、中でも、上記高ビカット樹脂を含むことが好ましい。表面層がポリエステル系樹脂を主成分として含む場合の表面層中のポリエステル系樹脂の含有割合は、50質量%超が好ましく、より好ましくは70質量%以上、さらに好ましくは90質量%以上である。 Examples of the polyester-based resin include the high bicut resin and the low bicut resin. The polyester-based resin preferably contains the high bicut resin. When the surface layer contains the polyester resin as a main component, the content ratio of the polyester resin in the surface layer is preferably more than 50% by mass, more preferably 70% by mass or more, still more preferably 90% by mass or more.
 表面層中の上記高ビカット樹脂の含有割合は、表面層の総質量(100質量%)に対して、95質量%以上が好ましく、より好ましくは98質量%以上である。上記含有割合が95質量%以上であると、シュリンクフィルム表面に印刷層を形成する際の印刷適性により優れる。特に、ビカット軟化温度が75℃以上90℃以下の、ポリスチレン系樹脂および/またはポリエステル系樹脂の含有割合が上記範囲内であることが好ましい。 The content ratio of the high bicut resin in the surface layer is preferably 95% by mass or more, more preferably 98% by mass or more, based on the total mass (100% by mass) of the surface layer. When the content ratio is 95% by mass or more, it is more excellent in printability when forming a print layer on the surface of the shrink film. In particular, it is preferable that the content ratio of the polystyrene-based resin and / or the polyester-based resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower is within the above range.
 表面層中の上記バイオマススチレン-ブタジエン共重合体の含有割合は、表面層の総質量(100質量%)に対して、5質量%未満が好ましく、含まないことが特に好ましい。
上記含有割合が5質量%未満であると、シュリンクフィルム表面に印刷層を形成する際の印刷適性により優れる。
The content ratio of the biomass styrene-butadiene copolymer in the surface layer is preferably less than 5% by mass and particularly preferably not contained in the total mass (100% by mass) of the surface layer.
When the content ratio is less than 5% by mass, it is more excellent in printability when forming a print layer on the surface of the shrink film.
 表面層は、本発明の効果を損なわない範囲内で、本発明のシュリンクフィルムが含んでいてもよいものとして例示された添加剤を含んでいてもよい。これらの成分は、一種のみを使用してもよいし、二種以上を使用してもよい。また、表面層は、フィルム製造時のフィルム片を再ペレット化された回収原料を含有していてもよい。中でも、カット適性により優れる観点から、滑剤を含むことが好ましい。 The surface layer may contain the additives exemplified as those which the shrink film of the present invention may contain, as long as the effect of the present invention is not impaired. Only one kind of these components may be used, or two or more kinds thereof may be used. Further, the surface layer may contain a recovery raw material obtained by repelletizing a film piece at the time of film production. Above all, it is preferable to contain a lubricant from the viewpoint of being more excellent in cutting suitability.
 上記基層部は、基層部中の層として、ポリスチレン系樹脂の含有割合が95質量%以上であるA層(A1層)を少なくとも含むことが好ましい。A1層中のポリスチレン系樹脂の含有割合は、A1層の総質量(100質量%)に対して、95質量%以上(例えば95~100質量%)であり、好ましくは98質量%以上である。A1層を含むと、直交方向の熱収縮率がより適度となり、シュリンクフィルムの収縮仕上がりにより優れる。 The base layer portion preferably contains at least an A layer (A1 layer) having a polystyrene-based resin content of 95% by mass or more as a layer in the base layer portion. The content ratio of the polystyrene-based resin in the A1 layer is 95% by mass or more (for example, 95 to 100% by mass), preferably 98% by mass or more, with respect to the total mass (100% by mass) of the A1 layer. When the A1 layer is included, the heat shrinkage rate in the orthogonal direction becomes more appropriate, and the shrinkage finish of the shrink film is more excellent.
 上記基層部は、ポリエステル系樹脂およびポリスチレン系樹脂を含むA層(A2層)を含んでいてもよい。表面層がポリエステル系樹脂を主成分とする層である場合、A2層を含むと、表面層とA1層との接着性に優れる。なお、A1層およびA2層のいずれもA層に該当する。 The base layer portion may include an A layer (A2 layer) containing a polyester resin and a polystyrene resin. When the surface layer is a layer containing a polyester resin as a main component, if the A2 layer is included, the adhesiveness between the surface layer and the A1 layer is excellent. Both the A1 layer and the A2 layer correspond to the A layer.
 A2層中のポリエステル系樹脂の含有割合は、A2層の総質量(100質量%)に対して、10~90質量%が好ましく、より好ましくは15~70質量%、さらに好ましくは20質量%以上50質量%未満である。また、A2層中のポリスチレン系樹脂の含有割合は、A2層の総質量(100質量%)に対して、10~90質量%が好ましく、より好ましくは30~85質量%、さらに好ましくは50質量%超80質量%以下である。 The content ratio of the polyester resin in the A2 layer is preferably 10 to 90% by mass, more preferably 15 to 70% by mass, still more preferably 20% by mass or more, based on the total mass (100% by mass) of the A2 layer. It is less than 50% by mass. The content ratio of the polystyrene resin in the A2 layer is preferably 10 to 90% by mass, more preferably 30 to 85% by mass, and further preferably 50% by mass with respect to the total mass (100% by mass) of the A2 layer. It is more than% and 80% by mass or less.
 上記基層部中のA1層および/またはA2層の層数は、特に限定されないが、上記基層部の層数に対して、50%以上(好ましくは70%以上、より好ましくは90%以上)となる層数であることが好ましい。 The number of layers of the A1 layer and / or the A2 layer in the base layer portion is not particularly limited, but is 50% or more (preferably 70% or more, more preferably 90% or more) with respect to the number of layers of the base layer portion. It is preferable that the number of layers is the same.
 上記基層部は、A1層およびA2層を有する場合、A1層とA2層とが隣接する積層構成を有することが好ましい。上記基層部が上記積層構成を有すると、A1層はA2層との接着性に問題がなく、収縮速度を適正化したり、シュリンクラベルの圧縮強度や剛性を高くしたりすることにも使用できるため、好ましい。 When the base layer portion has an A1 layer and an A2 layer, it is preferable that the base layer portion has a laminated structure in which the A1 layer and the A2 layer are adjacent to each other. When the base layer portion has the laminated structure, the A1 layer has no problem in adhesion to the A2 layer, and can be used for optimizing the shrinkage rate and increasing the compressive strength and rigidity of the shrink label. ,preferable.
 上記基層部において、A2層は、2以上のA1層間に介在していることが好ましく、最外層を除き、基層部中の全てのA1層間に介在していることがより好ましい。また、A1層は、2以上のA2層間に介在していることが好ましく、最外層を除き、基層部中の全てのA2層間に介在していることがより好ましい。特に、上記基層部において、A1層およびA2層は、特に限定されないが、交互に積層されていることが好ましく、他の層を介さずに、交互に直接積層されていることがより好ましい。すなわち、上記基層部は、基層部中の層として、A1層およびA2層を、交互に、合計して3~65層含むことが最も好ましい。 In the base layer portion, the A2 layer preferably intervenes between two or more A1 layers, and more preferably intervenes between all A1 layers in the base layer portion except the outermost layer. Further, the A1 layer preferably intervenes between two or more A2 layers, and more preferably intervenes between all A2 layers in the base layer portion except the outermost layer. In particular, in the base layer portion, the A1 layer and the A2 layer are not particularly limited, but are preferably laminated alternately, and more preferably directly laminated alternately without interposing another layer. That is, it is most preferable that the base layer portion contains, as layers in the base layer portion, A1 layer and A2 layer alternately, for a total of 3 to 65 layers.
 上記基層部の積層構成は、特に限定されないが、具体的には、A1層およびA2層以外の層を介さずに、「A1層/A2層」を繰り返し単位として繰り返す積層構成(A1層/A2層/A1層/A2層/・・・・/A1層/A2層/A1層)、(A2層/A1層/A2層/A1層/・・・・/A2層/A1層/A2層)、(A1層/A2層/A1層/A2層/・・・・/A1層/A2層)若しくは(A2層/A1層/A2層/A1層/・・・・/A2層/A1層)となっていることが好ましい。 The laminated structure of the base layer portion is not particularly limited, but specifically, a laminated structure (A1 layer / A2) in which the “A1 layer / A2 layer” is repeated as a repeating unit without interposing a layer other than the A1 layer and the A2 layer. Layer / A1 layer / A2 layer / ... / A1 layer / A2 layer / A1 layer), (A2 layer / A1 layer / A2 layer / A1 layer / ... / A2 layer / A1 layer / A2 layer) , (A1 layer / A2 layer / A1 layer / A2 layer / ... / A1 layer / A2 layer) or (A2 layer / A1 layer / A2 layer / A1 layer / ... / A2 layer / A1 layer) Is preferable.
 上記基層部の両面の最外層は、A1層でもよいし、A2層でもよいが、両面ともA2層が好ましい。基層部の最外層にA2層を用いると、表面層とA2層は共にポリエステル系樹脂を含有し、A1層とA2層は共にポリスチレン系樹脂を含有するため、表面層と基層部の間でシュリンク加工時(熱収縮時)に生じやすい層間剥離を抑制することができ、好ましい。また、熱収縮時の応力が小さくなり層間がずれにくくなるため、層間強度が低下することなく、剛性を高くすることができ、好ましい。 The outermost layers on both sides of the base layer portion may be an A1 layer or an A2 layer, but both sides are preferably an A2 layer. When the A2 layer is used as the outermost layer of the base layer portion, both the surface layer and the A2 layer contain a polyester resin, and both the A1 layer and the A2 layer contain a polystyrene resin, so that the surface layer and the base layer portion shrink. Delamination that tends to occur during processing (during heat shrinkage) can be suppressed, which is preferable. Further, since the stress at the time of heat shrinkage becomes small and the layers are less likely to shift, the rigidity can be increased without lowering the interlayer strength, which is preferable.
 特に限定されないが、上記基層部においては、全てのA1層が同じ原料から形成されていることが好ましく、なおかつ、全てのA2層が同じ原料から形成されていることが好ましい。すなわち、A1層同士、A2層同士は、それぞれ、同じ原料から形成されていることが好ましい。特に、全てのA1層は同じ組成の層であることが好ましく、なおかつ、全てのA2層は同じ組成の層であることが好ましい。 Although not particularly limited, in the base layer portion, it is preferable that all A1 layers are formed from the same raw material, and it is preferable that all A2 layers are formed from the same raw material. That is, it is preferable that the A1 layers and the A2 layers are each formed from the same raw material. In particular, it is preferable that all A1 layers are layers having the same composition, and it is preferable that all A2 layers are layers having the same composition.
(シュリンクフィルムの特性)
 本発明のシュリンクフィルムは、主に一方向に熱収縮性を有する。このようなシュリンクフィルムとしては、主に一方向に配向したフィルム(一軸配向フィルム)が挙げられる。また、本発明のシュリンクフィルムを構成する全てのフィルム層が一軸配向フィルムであることが好ましい。上記一軸配向フィルムは、一方向に主に延伸され、当該一方向と直交する方向にわずかに延伸された、実質的に一方向に延伸されたフィルムであってもよい。
(Characteristics of shrink film)
The shrink film of the present invention has heat shrinkage mainly in one direction. Examples of such a shrink film include a film oriented in one direction (uniaxially oriented film). Further, it is preferable that all the film layers constituting the shrink film of the present invention are uniaxially oriented films. The uniaxially oriented film may be a film that is mainly stretched in one direction and slightly stretched in a direction orthogonal to the one direction, and is substantially stretched in one direction.
 上記一軸配向フィルムは、未延伸フィルムを一方向に延伸することで得られる。なお、本発明のシュリンクフィルムを用いたシュリンクラベルは、本発明のシュリンクフィルムの配向方向に主に熱収縮できる。 The uniaxially oriented film is obtained by stretching an unstretched film in one direction. The shrink label using the shrink film of the present invention can mainly heat shrink in the orientation direction of the shrink film of the present invention.
 本発明のシュリンクフィルム(シュリンク加工前)の、主収縮方向の、90℃、10秒(温水処理)における熱収縮率は、特に限定されないが、50%以上(例えば、50~90%)が好ましく、より好ましくは55%以上(例えば、55~85%)、さらに好ましくは60%以上(例えば、60~80%)である。なお、上記「主収縮方向」とは最も熱収縮率が大きい方向であり、一般的には主に延伸処理された方向であり、例えば、幅方向に実質的に一方向に延伸されたフィルムの場合には幅方向である。 The heat shrinkage of the shrink film (before shrink processing) of the present invention at 90 ° C. for 10 seconds (warm water treatment) in the main shrinkage direction is not particularly limited, but is preferably 50% or more (for example, 50 to 90%). , More preferably 55% or more (for example, 55 to 85%), still more preferably 60% or more (for example, 60 to 80%). The "main shrinkage direction" is the direction in which the heat shrinkage rate is the largest, and is generally the direction in which the film is mainly stretched. For example, a film stretched substantially in one direction in the width direction. In some cases, it is in the width direction.
 本発明のシュリンクフィルム(シュリンク加工前)の、主収縮方向の、70℃、10秒(温水処理)における熱収縮率は、特に限定されないが、1~20%が好ましく、より好ましくは3~10%である。 The heat shrinkage of the shrink film (before shrink processing) of the present invention at 70 ° C. for 10 seconds (warm water treatment) in the main shrinkage direction is not particularly limited, but is preferably 1 to 20%, more preferably 3 to 10. %.
 本発明のシュリンクフィルム(シュリンク加工前)の、主収縮方向と直交する方向(直交方向)の熱収縮率(80℃、10秒)は、特に限定されないが、9.5%以下(例えば、-5~9.5%)が好ましく、より好ましくは9.0%以下(例えば、-3~9.0%)である。 The heat shrinkage rate (80 ° C., 10 seconds) of the shrink film (before shrink processing) of the present invention in the direction orthogonal to the main shrinkage direction (orthogonal direction) is not particularly limited, but is 9.5% or less (for example,-. 5 to 9.5%) is preferable, and more preferably 9.0% or less (for example, -3 to 9.0%).
 本発明のシュリンクフィルムの厚み(総厚み)は、特に限定されないが、10~100μmが好ましく、より好ましくは15~50μm、さらに好ましくは20~45μmである。上記厚みが10μm以上であると、シュリンクラベルの剛性に優れる。 The thickness (total thickness) of the shrink film of the present invention is not particularly limited, but is preferably 10 to 100 μm, more preferably 15 to 50 μm, and even more preferably 20 to 45 μm. When the thickness is 10 μm or more, the rigidity of the shrink label is excellent.
 本発明のシュリンクフィルムが上記基層部および上記表面層を有する場合の上記表面層の厚み(1層の厚み)は、特に限定されないが、1~15μmが好ましく、より好ましくは2~10μm、さらに好ましくは2.5~8μmである。上記厚みが15μm以下であると、常温時のフィルム伸度が著しく低下するのを抑制でき、好ましい。上記厚みが1μm以上であると、シュリンクラベルの剛性により優れる。なお、基層部の両面側のそれぞれの表面層の厚みは、同一であってもよいし、互いに異なっていてもよい。 When the shrink film of the present invention has the base layer portion and the surface layer, the thickness of the surface layer (thickness of one layer) is not particularly limited, but is preferably 1 to 15 μm, more preferably 2 to 10 μm, and even more preferably. Is 2.5 to 8 μm. When the thickness is 15 μm or less, it is possible to suppress a significant decrease in film elongation at room temperature, which is preferable. When the thickness is 1 μm or more, the rigidity of the shrink label is more excellent. The thickness of each surface layer on both sides of the base layer portion may be the same or different from each other.
 本発明のシュリンクフィルムが上記基層部および上記表面層を有する場合の上記基層部の厚みは、特に限定されないが、8~90μmが好ましく、より好ましくは10~45μm、さらに好ましくは11~40μmである。上記厚みが8μm以上であると、シュリンクラベルの剛性をより適度にすることができる。 When the shrink film of the present invention has the base layer portion and the surface layer, the thickness of the base layer portion is not particularly limited, but is preferably 8 to 90 μm, more preferably 10 to 45 μm, and further preferably 11 to 40 μm. .. When the thickness is 8 μm or more, the rigidity of the shrink label can be made more appropriate.
 本発明のシュリンクフィルムが上記基層部および上記表面層を有する場合の上記基層部中の層の厚み(1層あたりの厚み)は、特に限定されないが、0.2~15μmが好ましく、より好ましくは0.3~10μmである。上記厚みが0.2μm以上であると、シュリンクラベルの剛性により優れる。なお、上記基層部中の複数の層の厚みは、それらのうちの全てまたは一部が同一であってもよいし、互いに異なっていてもよい。 When the shrink film of the present invention has the base layer portion and the surface layer, the thickness of the layer (thickness per layer) in the base layer portion is not particularly limited, but is preferably 0.2 to 15 μm, more preferably 0.2 to 15 μm. It is 0.3 to 10 μm. When the thickness is 0.2 μm or more, the rigidity of the shrink label is more excellent. The thicknesses of the plurality of layers in the base layer portion may be the same or different from each other in all or part of them.
 本発明のシュリンクフィルムが上記基層部および上記表面層を有する場合の上記基層部の最外層の厚み(1層あたりの厚み)は、特に限定されないが、0.2μm以上(例えば、0.2~15μm)が好ましく、より好ましくは0.3~10μmである。上記中間層の厚み(1層あたりの厚み)は、特に限定されないが、0.3μm以上(例えば、0.3~15μm)が好ましく、より好ましくは0.6~10μmである。 When the shrink film of the present invention has the base layer portion and the surface layer, the thickness of the outermost layer (thickness per layer) of the base layer portion is not particularly limited, but is 0.2 μm or more (for example, 0.2 to 0.2). 15 μm) is preferable, and more preferably 0.3 to 10 μm. The thickness of the intermediate layer (thickness per layer) is not particularly limited, but is preferably 0.3 μm or more (for example, 0.3 to 15 μm), and more preferably 0.6 to 10 μm.
 本発明のシュリンクフィルムが上記基層部および上記表面層を有する場合の、表面層の厚み(全ての表面層の厚みの合計)と基層部の厚みの比[(表面層の厚み):(基層部の厚み)]は、特に限定されないが、1:1~1:14が好ましく、より好ましくは1:1~1:8、特に好ましくは1:1~1:4である。上記の比が1:1よりも基層部が厚いと、多層化による透明性の向上の効果が得られやすく、好ましい。一方、上記の比が1:14よりも表面層が厚いと、シュリンクラベルの熱収縮性、剛性がより向上し、好ましい。 When the shrink film of the present invention has the base layer portion and the surface layer, the ratio of the thickness of the surface layer (total of the thicknesses of all the surface layers) to the thickness of the base layer portion [(thickness of the surface layer) :( base layer portion). The thickness)] is not particularly limited, but is preferably 1: 1 to 1:14, more preferably 1: 1 to 1: 8, and particularly preferably 1: 1 to 1: 4. It is preferable that the base layer portion is thicker than the above ratio of 1: 1 because the effect of improving the transparency by multi-layering can be easily obtained. On the other hand, when the surface layer is thicker than the above ratio of 1:14, the heat shrinkage and rigidity of the shrink label are further improved, which is preferable.
 本発明のシュリンクフィルムが基層部中の層としてA1層およびA2層を有する場合、A1層の厚み(全てのA1層の厚みの合計)とA2層の厚み(全てのA2層の厚みの合計)の比[(A1層の厚み):(A2層の厚み)]は、特に限定されないが、2:1~1:10が好ましく、より好ましくは1:1~1:8である。上記の比が2:1よりもA2層が厚いと、より高い透明性、およびより適正な熱収縮性と剛性が得られやすく、好ましい。一方、上記の比が1:10よりもA1層が厚いと、基層部中の層同士の接着強度が低下しにくく、より層間剥離が生じにくくなり、好ましい。 When the shrink film of the present invention has an A1 layer and an A2 layer as layers in the base layer portion, the thickness of the A1 layer (total thickness of all A1 layers) and the thickness of the A2 layer (total thickness of all A2 layers). The ratio [(thickness of A1 layer) :( thickness of A2 layer)] is not particularly limited, but is preferably 2: 1 to 1:10, and more preferably 1: 1 to 1: 8. It is preferable that the A2 layer is thicker than the above ratio of 2: 1 because it is easy to obtain higher transparency and more appropriate heat shrinkage and rigidity. On the other hand, when the A1 layer is thicker than the above ratio of 1:10, the adhesive strength between the layers in the base layer portion is less likely to decrease, and delamination is less likely to occur, which is preferable.
 本発明のシュリンクフィルムの少なくとも一方の表面同士の静摩擦係数は、0.40以下が好ましく、より好ましくは0.35以下、さらに好ましくは0.30である。上記静摩擦係数が0.40以下であると、カット適性に優れる。上記静摩擦係数の下限は、例えば0.10である。上記静摩擦係数は、本発明のシュリンクフィルムを試験片とし、JIS K7125に準拠して測定することができる。 The coefficient of static friction between at least one surface of the shrink film of the present invention is preferably 0.40 or less, more preferably 0.35 or less, still more preferably 0.30. When the static friction coefficient is 0.40 or less, the cutting suitability is excellent. The lower limit of the static friction coefficient is, for example, 0.10. The static friction coefficient can be measured according to JIS K7125 using the shrink film of the present invention as a test piece.
 本発明のシュリンクフィルムの少なくとも一方の表面同士の動摩擦係数は、0.40以下が好ましく、より好ましくは0.38以下、さらに好ましくは0.36以下である。上記動摩擦係数が上記範囲内であると、シュリンクフィルムへの印刷適性に優れる。上記動摩擦係数の下限は、例えば0.10である。上記動摩擦係数は、本発明のシュリンクフィルムを試験片とし、JIS K7125に準拠して測定することができる。 The coefficient of dynamic friction between at least one surface of the shrink film of the present invention is preferably 0.40 or less, more preferably 0.38 or less, still more preferably 0.36 or less. When the dynamic friction coefficient is within the above range, the printability on a shrink film is excellent. The lower limit of the dynamic friction coefficient is, for example, 0.10. The dynamic friction coefficient can be measured according to JIS K7125 using the shrink film of the present invention as a test piece.
 本発明のシュリンクフィルムの引張弾性率は、1.0MPa以上が好ましく、より好ましくは1.1MPa以上である。上記引張弾性率が1.0MPa以上であると、被装着物への装着安定性に優れる。上記引張弾性率の上限は、2.0MPaであってもよく、1.8MPaであってもよい。上記引張弾性率は、JIS K7161-1に基づいて測定することができる。 The tensile elastic modulus of the shrink film of the present invention is preferably 1.0 MPa or more, more preferably 1.1 MPa or more. When the tensile elastic modulus is 1.0 MPa or more, the mounting stability on the object to be mounted is excellent. The upper limit of the tensile elastic modulus may be 2.0 MPa or 1.8 MPa. The tensile elastic modulus can be measured based on JIS K7161-1.
[シュリンクラベル]
 本発明のシュリンクフィルムを用いて、シュリンクラベルを得ることができる。上記シュリンクラベルは、本発明のシュリンクフィルムを少なくとも備えるシュリンクラベルである。上記シュリンクラベルは、本発明のシュリンクフィルム以外の層を備えていてもよい。
[Shrink label]
A shrink label can be obtained by using the shrink film of the present invention. The shrink label is a shrink label including at least the shrink film of the present invention. The shrink label may include a layer other than the shrink film of the present invention.
(本発明のシュリンクフィルム以外の層)
 上記シュリンクラベルに含まれる、本発明のシュリンクフィルム以外の層としては、特に限定されないが、印刷層、不織布や発泡シート等の他のフィルム層、接着剤層(感圧性接着剤層、感熱性接着剤層等)、保護層、アンカーコート層、プライマーコート層、コーティング層、帯電防止層、アルミニウム蒸着層などが挙げられる。
(Layer other than the shrink film of the present invention)
The layer other than the shrink film of the present invention contained in the shrink label is not particularly limited, but is not particularly limited, but is a printing layer, another film layer such as a non-woven fabric or a foamed sheet, and an adhesive layer (pressure sensitive adhesive layer, heat-sensitive adhesive). Agent layer, etc.), protective layer, anchor coat layer, primer coat layer, coating layer, antistatic layer, aluminum vapor deposition layer and the like.
(印刷層)
 上記印刷層としては、特に限定されず、例えば、シュリンクラベルにおいて用いられる公知乃至慣用の印刷層が挙げられる。上記印刷層としては、溶剤乾燥型の印刷インキによって形成される溶剤乾燥型の印刷層、活性エネルギー線硬化型の印刷インキによって形成される活性エネルギー線硬化型の印刷層などが挙げられる。また、上記印刷層としては、例えば、商品名、イラスト、取り扱い注意事項等の図やデザイン等の意匠印刷層(カラー印刷層等)、白等の単一色で形成された背面印刷層、フィルムや印刷層を保護するために設けられる保護印刷層、フィルムと印刷層の密着性を高めるために設けられるプライマー印刷層などが挙げられる。上記印刷層は、特に限定されないが、本発明のシュリンクフィルムの片面側のみに設けられていてもよいし、本発明のシュリンクフィルムの両面側に設けられていてもよい。また、上記印刷層は、本発明のシュリンクフィルムの表面(印刷層が設けられる側の表面)の全面に設けられていてもよいし、一部に設けられていてもよい。さらに、上記印刷層は、特に限定されないが、単層であってもよいし、複層であってもよい。また、上記印刷層は、周知乃至慣用の印刷方法により設けることができる。中でも、上記印刷層は、グラビア印刷法またはフレキソ印刷法によって設けられることが好ましい。
(Print layer)
The print layer is not particularly limited, and examples thereof include known and conventional print layers used in shrink labels. Examples of the printing layer include a solvent-drying type printing layer formed by a solvent-drying type printing ink, an active energy ray-curable printing layer formed by an active energy ray-curable printing ink, and the like. The printing layer includes, for example, a design printing layer (color printing layer, etc.) such as a figure or design of a product name, an illustration, handling precautions, a back printing layer formed of a single color such as white, a film, or the like. Examples thereof include a protective print layer provided to protect the print layer, a primer print layer provided to enhance the adhesion between the film and the print layer, and the like. The print layer is not particularly limited, but may be provided only on one side of the shrink film of the present invention, or may be provided on both sides of the shrink film of the present invention. Further, the print layer may be provided on the entire surface (the surface on the side where the print layer is provided) of the shrink film of the present invention, or may be provided on a part of the surface. Further, the print layer is not particularly limited, but may be a single layer or a plurality of layers. Further, the print layer can be provided by a well-known or conventional printing method. Above all, it is preferable that the printing layer is provided by a gravure printing method or a flexographic printing method.
 上記印刷層は、特に限定されないが、バインダー樹脂を必須成分として含むことが好ましい。さらに、必要に応じて、青、赤、黄、黒、白等の着色顔料や滑剤、分散剤、消泡剤などの添加剤を含んでいてもよい。上記バインダー樹脂などは、それぞれ、一種のみを使用してもよいし、二種以上を使用してもよい。 The print layer is not particularly limited, but preferably contains a binder resin as an essential component. Further, if necessary, it may contain coloring pigments such as blue, red, yellow, black and white, and additives such as lubricants, dispersants and defoamers. As the binder resin and the like, only one kind may be used, or two or more kinds may be used.
 上記バインダー樹脂としては、特に限定されず、例えば、公知乃至慣用の印刷層、印刷インキにおいてバインダー樹脂として用いられる樹脂を用いることができる。上記バインダー樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース系樹脂(ニトロセルロース系樹脂を含む)、塩化ビニル-酢酸ビニル共重合系樹脂などが挙げられる。上記着色顔料としては、特に限定されず、例えば、公知乃至慣用の印刷層、印刷インキにおいて用いられる着色顔料を用いることができる。上記着色顔料は、例えば、酸化チタン(二酸化チタン)等の白顔料、銅フタロシアニンブルー等の藍顔料、カーボンブラック、アルミフレーク、雲母(マイカ)、その他着色顔料などを用途に合わせて選択、使用できる。また、上記着色顔料として、その他にも、光沢調整等の目的で、アルミナ、炭酸カルシウム、硫酸バリウム、シリカ、アクリルビーズなどの体質顔料も使用できる。 The binder resin is not particularly limited, and for example, a resin used as a binder resin in a known or conventional printing layer or printing ink can be used. Examples of the binder resin include acrylic resin, urethane resin, polyester resin, polyamide resin, cellulose resin (including nitrocellulose resin), vinyl chloride-vinyl acetate copolymer resin and the like. The coloring pigment is not particularly limited, and for example, a coloring pigment used in a known or conventional printing layer or printing ink can be used. As the coloring pigment, for example, a white pigment such as titanium oxide (titanium dioxide), an indigo pigment such as copper phthalocyanine blue, carbon black, aluminum flakes, mica, and other coloring pigments can be selected and used according to the application. .. In addition, as the coloring pigment, extender pigments such as alumina, calcium carbonate, barium sulfate, silica, and acrylic beads can also be used for the purpose of adjusting gloss and the like.
 上記溶剤乾燥型の印刷層は、例えば、上記バインダー樹脂、溶剤、必要に応じて、上記着色顔料およびその他添加剤などを混合することにより製造された印刷インキを、印刷機を用いて塗布した後、溶剤を揮発させて設けられる。一方、上記活性エネルギー線硬化型の印刷層は、例えば、上記バインダー樹脂を構成する単量体成分、必要に応じて、上記着色顔料、溶剤、およびその他添加剤などを混合することにより製造された印刷インキを、印刷機を用いて塗布した後、必要に応じて乾燥し、活性エネルギー線(例えば、紫外線)照射により上記単量体成分を重合し硬化させて設けられる。 The solvent-drying type printing layer is formed by applying, for example, a printing ink produced by mixing the binder resin, the solvent, and if necessary, the coloring pigment and other additives, using a printing machine. , Provided by volatilizing the solvent. On the other hand, the active energy ray-curable printing layer was produced by, for example, mixing the monomer components constituting the binder resin,, if necessary, the coloring pigment, the solvent, and other additives. After the printing ink is applied using a printing machine, it is dried if necessary, and the above-mentioned monomer component is polymerized and cured by irradiation with active energy rays (for example, ultraviolet rays).
 上記印刷層の厚みは、特に限定されないが、例えば、0.1~10μmが好ましく、より好ましくは0.3~5μmである。 The thickness of the print layer is not particularly limited, but is preferably 0.1 to 10 μm, more preferably 0.3 to 5 μm, for example.
 上記印刷層は、本発明のシュリンクフィルムの少なくとも一方の面上に、印刷インキを塗布し、乾燥や硬化によって固化させることにより形成することができる。上記印刷インキを塗布する方法としては、公知慣用の方法を用いることができ、中でも、グラビア印刷、フレキソ印刷、デジタル印刷が好ましい。また、塗布された印刷インキを加熱などにより、乾燥または乾燥固化する際には、印刷装置上で加熱が可能な、一般的な加熱装置を好ましく用いることができる。安全性の観点から、好ましくは、熱風ヒーターなどを用いることができる。例えば、意匠印刷層は、一般的に、上記印刷インキの塗布は、色ごとに、複数回行われ、複層である印刷層が形成される。 The printing layer can be formed by applying printing ink on at least one surface of the shrink film of the present invention and solidifying it by drying or curing. As a method for applying the printing ink, a known and commonly used method can be used, and among them, gravure printing, flexographic printing, and digital printing are preferable. Further, when the applied printing ink is dried or solidified by heating or the like, a general heating device capable of heating on the printing device can be preferably used. From the viewpoint of safety, a hot air heater or the like can be preferably used. For example, in a design printing layer, the printing ink is generally applied a plurality of times for each color to form a printing layer that is a plurality of layers.
 上記印刷インキが溶剤乾燥型の印刷インキである場合、上記印刷インキは、例えば、バインダー樹脂、溶媒およびその他添加剤(着色顔料等)などを、必要に応じて、混合することにより製造される。混合は、公知慣用の混合方法により行うことができ、特に限定されないが、例えば、ペイントシェイカー、バタフライミキサー、プラネタリーミキサー、ポニーミキサー、ディゾルバー、タンクミキサー、ホモミキサー、ホモディスパー等のミキサーや、ロールミル、サンドミル、ボールミル、ビーズミル、ラインミル等のミル、ニーダー等の混合装置が用いられる。混合の際の混合時間(滞留時間)は、特に限定されないが、10~120分が好ましい。得られた印刷インキは、必要に応じて、濾過してから用いてもよい。上記各成分(バインダー樹脂、溶媒、その他の添加剤)は、それぞれ、一種のみを使用してもよいし、二種以上を使用してもよい。 When the printing ink is a solvent-drying type printing ink, the printing ink is produced by mixing, for example, a binder resin, a solvent, and other additives (coloring pigments, etc.), if necessary. Mixing can be performed by a known and conventional mixing method, and is not particularly limited, and for example, a mixer such as a paint shaker, a butterfly mixer, a planetary mixer, a pony mixer, a dissolver, a tank mixer, a homomixer, a homodisper, or a roll mill. , Sand mills, ball mills, bead mills, line mills and other mills, kneaders and other mixing devices are used. The mixing time (residence time) at the time of mixing is not particularly limited, but is preferably 10 to 120 minutes. The obtained printing ink may be used after being filtered, if necessary. As each of the above components (binder resin, solvent, and other additives), only one kind may be used, or two or more kinds may be used.
 上記溶媒としては、グラビア印刷やフレキソ印刷等に使用される印刷インキに通常用いられる水や有機溶剤などを用いることができる。上記有機溶剤としては、例えば、酢酸エステル(例えば、酢酸エチル、酢酸プロピル、酢酸ブチル)等のエステル;メタノール、エタノール、イソプロピルアルコール、プロパノール、ブタノール等のアルコール;メチルエチルケトン、メチルイソブチルケトン等のケトン;トルエン、キシレン等の芳香族炭化水素;ヘキサン、オクタン等の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素;エチレングリコール、プロピレングリコール等のグリコール;エチレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等のグリコールエーテル;プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテルエステルなどが挙げられる。上記溶媒は、印刷インキを本発明のシュリンクフィルムに塗布した後、乾燥により除去することができる。なお、上記溶媒には、「分散媒」の意味も含む。 As the solvent, water or an organic solvent usually used for printing inks used for gravure printing, flexographic printing and the like can be used. Examples of the organic solvent include esters such as acetates (eg, ethyl acetate, propyl acetate, butyl acetate); alcohols such as methanol, ethanol, isopropyl alcohol, propanol and butanol; ketones such as methyl ethyl ketone and methyl isobutyl ketone; toluene. Aromatic hydrocarbons such as xylene; aliphatic hydrocarbons such as hexane and octane; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; glycols such as ethylene glycol and propylene glycol; ethylene glycol monopropyl ether and propylene glycol monomethyl ether , Glycol ethers such as propylene glycol monobutyl ether; glycol ether esters such as propylene glycol monomethyl ether acetate and the like. The solvent can be removed by drying after applying the printing ink to the shrink film of the present invention. The solvent also includes the meaning of "dispersion medium".
 上記印刷インキが活性エネルギー線硬化型の印刷インキである場合、上記印刷インキは、バインダー樹脂を構成する単量体成分、溶媒、およびその他添加剤(着色顔料等)などを、必要に応じて、混合することにより製造される。混合は、公知慣用の混合方法により行うことができ、特に限定されないが、例えば、上述の溶剤乾燥型の印刷インキの混合装置として例示および説明された混合装置などが使用できる。混合の際の混合時間(滞留時間)は、特に限定されないが、10~120分が好ましい。得られた印刷インキは、必要に応じて、濾過してから用いてもよい。上記各成分(単量体成分、溶媒、その他の添加剤)は、それぞれ、一種のみを使用してもよいし、二種以上を使用してもよい。 When the printing ink is an active energy ray-curable printing ink, the printing ink contains monomer components, solvents, and other additives (coloring pigments, etc.) constituting the binder resin, if necessary. Manufactured by mixing. The mixing can be performed by a known and conventional mixing method, and the mixing device is not particularly limited, and for example, the mixing device exemplified and described as the above-mentioned solvent-drying type printing ink mixing device can be used. The mixing time (residence time) at the time of mixing is not particularly limited, but is preferably 10 to 120 minutes. The obtained printing ink may be used after being filtered, if necessary. As each of the above components (monomer component, solvent, and other additives), only one type may be used, or two or more types may be used.
 上記シュリンクラベルの厚み(総厚み)は、特に限定されないが、10~110μmが好ましく、より好ましくは15~90μm、さらに好ましくは20~80μmである。 The thickness (total thickness) of the shrink label is not particularly limited, but is preferably 10 to 110 μm, more preferably 15 to 90 μm, and even more preferably 20 to 80 μm.
 上記シュリンクラベルは、表印刷シュリンクラベルであってもよいし、裏印刷シュリンクラベルであってもよいし、両面印刷シュリンクラベルであってもよい。中でも、本発明のシュリンクフィルムは収縮仕上がりに優れる観点から、裏印刷シュリンクラベルとして用いることが特に有用である。なお、本明細書において、表印刷ラベルとは、シュリンクフィルムを通さず印刷を見せるラベルであり、ラベルを見る際に、シュリンクフィルムよりも手前に意匠印刷層があるラベルをいう。また、裏印刷ラベルとは、シュリンクフィルムを通して印刷を見せるラベルであり、ラベルを見る際に、シュリンクフィルムよりも奥側に意匠印刷層があるラベルをいう。また、両面印刷ラベルとは、シュリンクフィルムの両面側に意匠印刷層を有するラベルをいう。 The shrink label may be a front print shrink label, a back print shrink label, or a double-sided print shrink label. Above all, the shrink film of the present invention is particularly useful as a back-printed shrink label from the viewpoint of excellent shrinkage finish. In the present specification, the front print label is a label that shows printing without passing through a shrink film, and means a label having a design printing layer in front of the shrink film when the label is viewed. The back print label is a label that shows printing through a shrink film, and refers to a label that has a design printing layer on the back side of the shrink film when the label is viewed. The double-sided printing label means a label having a design printing layer on both sides of the shrink film.
 上記シュリンクラベルは、例えば、ラベル両端を溶剤や接着剤でシールし筒状にして容器に装着されるタイプの筒状シュリンクラベルや、ラベルの一端を容器に貼り付け、ラベルを巻き回した後、他端を一端に重ね合わせて筒状にする巻き付け方式のシュリンクラベルとして用いることができる。上記シュリンクラベルは、上記の中でも、筒状シュリンクラベルに特に好ましく用いられる。すなわち、上記シュリンクラベルは、筒状シュリンクラベルであることが好ましい。 The shrink label is, for example, a tubular shrink label of a type in which both ends of the label are sealed with a solvent or an adhesive to form a cylinder and attached to the container, or one end of the label is attached to the container, the label is wound, and then the label is wound. It can be used as a wrapping type shrink label in which the other end is overlapped with one end to form a tubular shape. Among the above, the shrink label is particularly preferably used for a tubular shrink label. That is, the shrink label is preferably a cylindrical shrink label.
 図4および図5を用いて、上記シュリンクラベルの好ましい実施形態である筒状シュリンクラベルの一例について説明する。図4に記載の筒状シュリンクラベル2は、矩形状に形成された上記シュリンクラベルの一端部の外側に他端部を重ね合わせて筒状とし、他端部の内面と一端部の外面とを溶剤または接着剤で接合しシール部21が形成された筒状体である。筒状シュリンクラベル2は、シュリンクフィルム1を含み、シュリンクフィルム1は、筒状シュリンクラベル2の周方向Dに少なくとも配向し、当該方向に熱収縮可能である。なお、上記筒状シュリンクラベルは、周方向が主収縮方向となるように装着されていることが好ましい。また、巻き付け方式のシュリンクラベルであっても、周方向が主収縮方向(すなわち、延伸方向)となるように筒状にされることが好ましい。 An example of a cylindrical shrink label, which is a preferred embodiment of the shrink label, will be described with reference to FIGS. 4 and 5. The tubular shrink label 2 shown in FIG. 4 is formed by superimposing the other end portion on the outer side of one end portion of the shrink label formed in a rectangular shape to form a cylinder, and the inner surface of the other end portion and the outer surface of the one end portion are formed. It is a tubular body formed by joining with a solvent or an adhesive to form a sealing portion 21. The tubular shrink label 2 includes a shrink film 1, and the shrink film 1 is at least oriented in the circumferential direction D of the tubular shrink label 2 and is heat-shrinkable in that direction. The tubular shrink label is preferably attached so that the circumferential direction is the main contraction direction. Further, even in the case of a winding type shrink label, it is preferable that the label is formed into a cylinder so that the circumferential direction is the main contraction direction (that is, the stretching direction).
 図5は、図4におけるA-A’の断面、すなわち、筒状シュリンクラベル2の、シール部付近の要部拡大図であり、シール部21では、シュリンクラベルの両端部が溶剤または接着剤33で接合されている。具体的には、シュリンクラベルは、シュリンクフィルム1の一方の面(筒状の内面側の面)の他端部の端から所定幅の領域を除いた領域に意匠印刷層32が形成され、その意匠印刷層32を覆うように、シュリンクフィルム1の一方の面の他端部の端から所定幅の領域を除いた領域の略全域に背面印刷層31が形成されている。このため、筒状シュリンクラベル2には、他端部の端から所定幅の領域は、背面印刷層31および意匠印刷層32が形成されておらず、シュリンクフィルム1が露出し、フィルム露出面が形成され、シール部21は、筒状シュリンクラベル2の他端部の内面側に形成されたフィルム露出面と、一端部の外面(フィルム露出面)とを、溶剤または接着剤33によって接合されている。すなわち、シール部21では、シュリンクフィルム1同士が溶剤または接着剤33で接合されていることが好ましい。なお、上記両端部のうち、接合されない部分は、背面印刷層、意匠印刷層等の印刷層などを有していても接着性に影響はないため、印刷層を有していてもよい。 FIG. 5 is an enlarged view of a cross section of AA'in FIG. 4, that is, a main part of the tubular shrink label 2 near the seal portion. In the seal portion 21, both ends of the shrink label are a solvent or an adhesive 33. It is joined with. Specifically, in the shrink label, a design print layer 32 is formed in a region excluding a region having a predetermined width from the other end of one surface (cylindrical inner surface side surface) of the shrink film 1. The back surface printing layer 31 is formed in substantially the entire area excluding the region having a predetermined width from the end of the other end of one surface of the shrink film 1 so as to cover the design printing layer 32. Therefore, the back surface printing layer 31 and the design printing layer 32 are not formed on the tubular shrink label 2 in the region having a predetermined width from the other end, the shrink film 1 is exposed, and the exposed film surface is exposed. The sealed portion 21 is formed by joining a film exposed surface formed on the inner surface side of the other end of the tubular shrink label 2 and an outer surface (film exposed surface) of one end thereof with a solvent or an adhesive 33. There is. That is, in the sealing portion 21, it is preferable that the shrink films 1 are bonded to each other with a solvent or an adhesive 33. Of the above-mentioned both end portions, the portions that are not joined may have a print layer because the adhesiveness is not affected even if the back print layer, the design print layer, or the like has a print layer.
 なお、図5における筒状シュリンクラベル2では、一端部は、その端が他端部の背面印刷層31と重なる位置まで延びてきており、一端部と他端部の背面印刷層31同士がシュリンクフィルム1を介して重なる領域が形成されている。このため、厚み方向に背面印刷層31が存在しない領域は存在しない。筒状シュリンクラベル2は、図5に示すような、一端部の端と他端部側の背面印刷層と重なる(厚み方向に重なる、すなわち面広がり方向において重なる)構造であってもよいし、一端部の端が他端部のフィルム露出面と重なる領域まで延び、一端部の端が他端部側の背面印刷層と重なる位置まで延びてきていない、一端部の端と他端部側の背面印刷層とが重ならない構造であってもよい。 In the tubular shrink label 2 in FIG. 5, one end extends to a position where the end overlaps with the back printing layer 31 at the other end, and the back printing layer 31 at one end and the other end shrinks with each other. Overlapping regions are formed via the film 1. Therefore, there is no region where the back print layer 31 does not exist in the thickness direction. The tubular shrink label 2 may have a structure that overlaps the end of one end and the back printing layer on the other end side (overlaps in the thickness direction, that is, overlaps in the surface spreading direction) as shown in FIG. The end of one end and the other end do not extend to the area where the end of one end overlaps the exposed surface of the film at the other end and the end of one end does not extend to the position where it overlaps the back print layer on the other end side. The structure may not overlap with the back print layer.
 上記シール部の幅は、特に限定されないが、0.2~10mmが好ましく、より好ましくは0.3~5mm、さらに好ましくは0.4~2mmである。 The width of the seal portion is not particularly limited, but is preferably 0.2 to 10 mm, more preferably 0.3 to 5 mm, and even more preferably 0.4 to 2 mm.
(筒状シュリンクラベルの製造方法)
 上記筒状シュリンクラベルの製造方法は、特に限定されないが、例えば、下記の通りである。長尺状のシュリンクラベルを、所定の幅にスリットして、シュリンクラベルが長尺方向(長手方向)に複数個連なったラベル長尺体を得る。このラベル長尺体を、熱収縮可能な方向(すなわち、シュリンクフィルムの熱収縮方向)が周方向となるように、他端部が一端部の外側になるように重ね合わせて筒状に形成し、当該重ね合わせた部分を所定幅で帯状にシールして両端部を接合して、長尺筒状のラベル連続体(長尺筒状シュリンクラベル)を得ることができる。この長尺筒状シュリンクラベルを周方向に切断することで、高さ方向に所定の長さを有する1つの筒状シュリンクラベルを得ることができる。なお、ラベル切除用のミシン目を設ける場合は、慣用の方法(例えば、周囲に切断部と非切断部とが繰り返し形成された円板状の刃物を押し当てる方法やレーザーを用いる方法など)により施すことができる。ミシン目を施す工程は、印刷層を設けた後や、筒状に加工する工程の前後など、適宜選択できる。
(Manufacturing method of tubular shrink label)
The method for manufacturing the tubular shrink label is not particularly limited, but is, for example, as follows. A long shrink label is slit to a predetermined width to obtain a long label body in which a plurality of shrink labels are connected in the long direction (longitudinal direction). This long label body is formed into a tubular shape by overlapping so that the heat-shrinkable direction (that is, the heat-shrinkable direction of the shrink film) is the circumferential direction and the other end is on the outside of one end. , The overlapped portion is sealed in a strip shape with a predetermined width and both ends are joined to obtain a long tubular label continuum (long tubular shrink label). By cutting this long tubular shrink label in the circumferential direction, one tubular shrink label having a predetermined length in the height direction can be obtained. When providing a perforation for cutting a label, a conventional method (for example, a method of pressing a disc-shaped blade in which a cut portion and a non-cut portion are repeatedly formed around the perforation, a method of using a laser, etc.) is used. Can be applied. The process of perforating can be appropriately selected, such as after the printing layer is provided or before and after the process of processing into a cylindrical shape.
 なお、筒状シュリンクラベルは上記のようにして長尺筒状シュリンクラベルが切断されて製造されるが、シュリンクラベルによっては、当該切断時においてラベルの内面同士が接着(接合)する、所謂カット融着が発生する場合がある。特にギロチンカッターやロータリーカッターを用いた場合には、例えば切断時の摩擦熱や押圧の影響などにより、筒状シュリンクラベルの上流側の開口部にカット融着が発生しやすい。しかしながら、本発明のシュリンクフィルムはカット適性に優れる場合、カット融着が発生しにくい。また、仮にカット融着が発生したとしても融着の程度が小さく、容易に引き離すことができる。このため、上記シュリンクラベルは、カット融着しにくいカッターを搭載したラベラーだけで無く、比較的カット融着しやすいカッターを搭載したラベラーにも使用でき、汎用性に優れる。 The tubular shrink label is manufactured by cutting the long tubular shrink label as described above, but depending on the shrink label, the inner surfaces of the label adhere (join) to each other at the time of cutting, so-called cut fusion. Arrival may occur. In particular, when a guillotine cutter or a rotary cutter is used, cut fusion is likely to occur in the opening on the upstream side of the tubular shrink label due to, for example, the influence of frictional heat or pressing during cutting. However, when the shrink film of the present invention is excellent in cut suitability, cut fusion is unlikely to occur. Further, even if cut fusion occurs, the degree of fusion is small and it can be easily separated. Therefore, the shrink label can be used not only for a labeler equipped with a cutter that is difficult to cut and fuse, but also for a labeler equipped with a cutter that is relatively easy to cut and fuse, and is excellent in versatility.
[ラベル付き容器]
 上記シュリンクラベルは、特に限定されないが、容器に装着して、ラベル付き容器として用いられる。なお、上記シュリンクラベルは、容器以外の被着体に用いられてもよい。
例えば、上記シュリンクラベル(特に、筒状シュリンクラベル)を容器の周りに、上記シュリンクラベルが筒状となるように配置し、熱収縮させることによって容器に装着することにより、ラベル付き容器(上記シュリンクラベルを有するラベル付き容器)が得られる。上記容器には、例えば、PETボトル等のソフトドリンク用ボトル、宅配用牛乳瓶、調味料等の食品用容器、アルコール飲料用ボトル、医薬品容器、洗剤、スプレー等の化学製品の容器、トイレタリー用の容器、カップ麺容器などが含まれる。上記容器の形状としては、特に限定されないが、例えば、円筒状、角形等のボトルタイプや、カップタイプなどの様々な形状が挙げられる。また、上記容器の材質としては、特に限定されないが、例えば、PET等のプラスチック、ガラス、金属などが挙げられる。
[Labeled container]
The shrink label is not particularly limited, but is attached to a container and used as a labeled container. The shrink label may be used for an adherend other than the container.
For example, by arranging the shrink label (particularly, a tubular shrink label) around the container so that the shrink label has a cylindrical shape and attaching it to the container by heat shrinking, the labeled container (the shrink label) (the shrink label). A labeled container with a label) is obtained. The above containers include, for example, soft drink bottles such as PET bottles, home delivery milk bottles, food containers such as seasonings, alcoholic beverage bottles, pharmaceutical containers, detergents, chemical product containers such as sprays, and toiletries. Includes containers, cup noodle containers, etc. The shape of the container is not particularly limited, and examples thereof include various shapes such as a bottle type such as a cylinder and a square shape, and a cup type. The material of the container is not particularly limited, and examples thereof include plastics such as PET, glass, and metal.
 上記ラベル付き容器は、例えば、筒状シュリンクラベルを、所定の容器に外嵌した後、加熱処理によって筒状シュリンクラベルを熱収縮させ、容器に追従密着させること(シュリンク加工)によって作製できる。上記加熱処理の方法としては、例えば、熱風トンネルやスチームトンネルを通過させる方法、赤外線等の輻射熱で加熱する方法などが挙げられる。特に、80~100℃のスチームで処理する(スチームおよび湯気が充満した加熱トンネルを通過させる)方法が好ましい。また、101~140℃のドライスチームを用いることもできる。上記加熱処理は、特に限定されないが、シュリンクフィルムの温度が85~100℃(特に、90~97℃)となる温度範囲で実施することが好ましい。上記シュリンクラベルは、高い熱収縮率を要する容器に対する使用が可能となる。また、加熱処理の処理時間は、生産性、経済性の観点から、4~20秒が好ましい。 The above-mentioned container with a label can be produced, for example, by fitting a tubular shrink label to a predetermined container and then heat-shrinking the tubular shrink label by heat treatment to bring it into close contact with the container (shrink processing). Examples of the heat treatment method include a method of passing through a hot air tunnel and a steam tunnel, a method of heating with radiant heat such as infrared rays, and the like. In particular, a method of treating with steam at 80 to 100 ° C. (passing through a heating tunnel filled with steam and steam) is preferable. Further, dry steam at 101 to 140 ° C. can also be used. The heat treatment is not particularly limited, but is preferably carried out in a temperature range in which the temperature of the shrink film is 85 to 100 ° C. (particularly 90 to 97 ° C.). The shrink label can be used for containers that require a high heat shrinkage rate. Further, the treatment time of the heat treatment is preferably 4 to 20 seconds from the viewpoint of productivity and economy.
 以下に、実施例に基づいて、本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.
 なお、表1に、実施例および比較例で用いた原料の情報を示した。また、表2に、実施例および比較例で作製したシュリンクフィルムおよびシュリンクラベルの構成および評価結果などを示した。表2において「-」は、評価を行わなかったことを示す。 Table 1 shows information on the raw materials used in Examples and Comparative Examples. In addition, Table 2 shows the configurations and evaluation results of the shrink films and shrink labels produced in Examples and Comparative Examples. In Table 2, "-" indicates that the evaluation was not performed.
 実施例1
(原料)
 表面層を構成する原料(表面層用原料)として、ポリスチレン系樹脂組成物D(ビカット軟化温度:82℃)を80質量%、ポリスチレン系樹脂組成物E(ビカット軟化温度:83℃)を20質量%用いた。表面層用原料は、GPPS1質量%およびHIPS2質量%を含むSBS(石油由来)である。
 中心層を構成する原料(中心層用原料)として、ポリスチレン系樹脂A(商品名「スタイロルクス M」、スタイロルーション社製、ビカット軟化温度:76℃、バイオマススチレン-ブタジエン共重合体)を100質量%用いた。
Example 1
(material)
80% by mass of polystyrene-based resin composition D (Vicat softening temperature: 82 ° C.) and 20 mass% of polystyrene-based resin composition E (Vicat softening temperature: 83 ° C.) as raw materials constituting the surface layer (raw materials for surface layer). %Using. The raw material for the surface layer is SBS (derived from petroleum) containing 1% by mass of GPPS and 2% by mass of HIPS.
As a raw material constituting the central layer (raw material for the central layer), 100 mass of polystyrene resin A (trade name "Stylolux M", manufactured by Stylollution Co., Ltd., Vicat softening temperature: 76 ° C., biomass styrene-butadiene copolymer) %Using.
(シュリンクフィルム)
 220℃に加熱した押出機xに上記中心層用原料、250℃に加熱した押出機zに上記表面層用原料を投入した。上記2台の押出機を用いて、溶融押出を行った。溶融した中心層用原料および溶融した表面層用原料を、合流方式が2種3層型のフィードブロックを用いて、表面層用原料/中心層用原料/表面層用原料の2種3層構成の積層体を作製した。
さらに、上記積層体を、Tダイより押出した後、25℃に冷却したキャスティングドラム上で急冷して、中心層の両面側にそれぞれ表面層が設けられた積層未延伸フィルムを得た。
 次に、上記積層未延伸フィルムを、幅方向に85℃で5倍テンター延伸することにより、幅方向に主に延伸され、主に当該方向に熱収縮性を有する延伸フィルム(シュリンクフィルム)の長尺体を得た。
(Shrink film)
The raw material for the central layer was put into the extruder x heated to 220 ° C., and the raw material for the surface layer was put into the extruder z heated to 250 ° C. Melt extrusion was performed using the above two extruders. The melted central layer raw material and the melted surface layer raw material are composed of two types and three layers of surface layer raw material / central layer raw material / surface layer raw material by using a feed block having a merging method of two types and three layers. The laminated body of was produced.
Further, the laminate was extruded from a T-die and then rapidly cooled on a casting drum cooled to 25 ° C. to obtain a laminated unstretched film having surface layers on both sides of the central layer.
Next, the laminated unstretched film is tenter-stretched 5 times at 85 ° C. in the width direction to be mainly stretched in the width direction, and the length of the stretched film (shrink film) mainly having heat shrinkage in the direction. I got a scale.
(筒状シュリンクラベル)
 上記で得られたシュリンクフィルムの長尺体に対して、グラビア印刷機によって意匠印刷層および白色の背景印刷層を形成して、シュリンクラベルの長尺体を得た。次いで、上記シュリンクラベルの長尺体を、スリットして所定幅とした後、幅方向が周方向となるように一端部と他端部とを重ね合わせて筒状にし、当該一端部と他端部のシュリンクフィルム面同士を溶剤でシールし、シュリンクラベルの筒状長尺体(長尺筒状シュリンクラベル)を得た。
(Cylindrical shrink label)
A design printing layer and a white background printing layer were formed on the long body of the shrink film obtained above by a gravure printing machine to obtain a long body of a shrink label. Next, the long body of the shrink label is slit to have a predetermined width, and then one end and the other end are overlapped to form a cylinder so that the width direction is the circumferential direction, and the one end and the other end are formed into a cylinder. The shrink film surfaces of the portions were sealed with a solvent to obtain a tubular elongated body (long tubular shrink label) of the shrink label.
 実施例2
 中心層用原料として、ポリスチレン系樹脂Aを80質量%、ポリスチレン系樹脂B(商品名「スタイロルクス S」、スタイロルーション社製、ビカット軟化温度:70℃、スチレン-ブタジエン共重合体(石油由来))を20質量%用いたこと以外は、実施例1と同様にして、シュリンクフィルムおよび長尺筒状シュリンクラベルを作製した。
Example 2
As a raw material for the central layer, polystyrene resin A is 80% by mass, polystyrene resin B (trade name "Stylolux S", manufactured by Stylollution Co., Ltd., Vicat softening temperature: 70 ° C., styrene-butadiene copolymer (derived from petroleum)). ) Was used in an amount of 20% by mass, and a shrink film and a long tubular shrink label were produced in the same manner as in Example 1.
 実施例3
 中心層用原料として、ポリスチレン系樹脂Aを50質量%、ポリスチレン系樹脂Bを50質量%用いたこと以外は、実施例1と同様にして、シュリンクフィルムおよび長尺筒状シュリンクラベルを作製した。
Example 3
A shrink film and a long tubular shrink label were produced in the same manner as in Example 1 except that polystyrene-based resin A was used in an amount of 50% by mass and polystyrene-based resin B was used in an amount of 50% by mass as raw materials for the central layer.
 実施例4
 中心層用原料として、ポリスチレン系樹脂Aを20質量%、ポリスチレン系樹脂Bを80質量%用いたこと以外は、実施例1と同様にして、シュリンクフィルムおよび長尺筒状シュリンクラベルを作製した。
Example 4
A shrink film and a long tubular shrink label were produced in the same manner as in Example 1 except that polystyrene-based resin A was used in an amount of 20% by mass and polystyrene-based resin B was used in an amount of 80% by mass as raw materials for the central layer.
 比較例1
 中心層用原料として、ポリスチレン系樹脂Bを100質量%用いたこと以外は、実施例1と同様にして、シュリンクフィルムおよび長尺筒状シュリンクラベルを作製した。
Comparative Example 1
A shrink film and a long tubular shrink label were produced in the same manner as in Example 1 except that polystyrene-based resin B was used in an amount of 100% by mass as a raw material for the central layer.
 比較例2
 中心層用原料として、ポリスチレン系樹脂C(商品名「スタイロルクス T」、スタイロルーション社製、ビカット軟化温度:62℃、スチレン-ブタジエン共重合体(石油由来))を100質量%用いたこと以外は、実施例1と同様にして、シュリンクフィルムおよび長尺筒状シュリンクラベルを作製した。
Comparative Example 2
Except for the fact that 100% by mass of polystyrene resin C (trade name "Stylolux T", manufactured by Stylollution, Vicat softening temperature: 62 ° C, styrene-butadiene copolymer (derived from petroleum)) was used as a raw material for the central layer. Made a shrink film and a long tubular shrink label in the same manner as in Example 1.
 比較例3
 中心層用原料として、ポリスチレン系樹脂Bを50質量%、ポリスチレン系樹脂Cを50質量%用いたこと以外は、実施例1と同様にして、シュリンクフィルムおよび長尺筒状シュリンクラベルを作製した。
Comparative Example 3
A shrink film and a long tubular shrink label were produced in the same manner as in Example 1 except that polystyrene-based resin B was used in an amount of 50% by mass and polystyrene-based resin C was used in an amount of 50% by mass as raw materials for the central layer.
 なお、実施例1~4および比較例1~3で得られたシュリンクフィルムは、[表面層/中心層/表面層]の2種3層構成となっている。従って、上記シュリンクフィルムにおいて、基層部は中心層単層で構成されている。なお、実施例1~4における中心層はA層に該当する。 The shrink films obtained in Examples 1 to 4 and Comparative Examples 1 to 3 have a two-kind, three-layer structure of [surface layer / center layer / surface layer]. Therefore, in the shrink film, the base layer portion is composed of a single central layer. The central layer in Examples 1 to 4 corresponds to the A layer.
 実施例5
(原料)
 中心層用原料として、ポリスチレン系樹脂組成物Dを50質量%、ポリスチレン系樹脂Aを50質量%用いた。
 接着樹脂層を構成する原料(接着樹脂層用原料)として、ポリエステル系樹脂A(商品名「EMBRACE LV」、Eastman Chemical社製、ビカット軟化温度:76℃)を30質量%、ポリスチレン系樹脂Aを70質量%用いた。
 表面層用原料として、ポリエステル系樹脂Aを100質量%用いた。
Example 5
(material)
As the raw material for the central layer, 50% by mass of the polystyrene-based resin composition D and 50% by mass of the polystyrene-based resin A were used.
As a raw material (raw material for the adhesive resin layer) constituting the adhesive resin layer, 30% by mass of polyester resin A (trade name "EMBRACE LV", manufactured by Eastman Chemical Company, Vicut softening temperature: 76 ° C.), polystyrene resin A is used. 70% by mass was used.
As a raw material for the surface layer, 100% by mass of polyester resin A was used.
(シュリンクフィルム)
 220℃に加熱した押出機aに上記中心層用原料、220℃に加熱した押出機bに上記接着樹脂層用原料、220℃に加熱した押出機cに上記表面層用原料を投入した。上記3台の押出機を用いて、溶融押出を行った。溶融した中心層用原料および溶融した接着樹脂層用原料を、合流方式が2種3層型のフィードブロックを用いて、接着樹脂層用原料/中心層用原料/接着樹脂層用原料の2種3層構成の積層体を作製し、Tダイより押出した後、25℃に冷却したキャスティングドラム上で急冷して、基層部の両面側にそれぞれ表面層が設けられた積層未延伸フィルムを得た。
 次に、上記積層未延伸フィルムを、幅方向に85℃で5倍テンター延伸することにより、幅方向に主に延伸され、当該方向に熱収縮性を有する延伸フィルム(シュリンクフィルム)の長尺体を得た。
(Shrink film)
The raw material for the central layer was put into the extruder heated to 220 ° C., the raw material for the adhesive resin layer was put into the extruder b heated to 220 ° C., and the raw material for the surface layer was put into the extruder c heated to 220 ° C. Melt extrusion was performed using the above three extruders. The molten center layer raw material and the melted adhesive resin layer raw material are combined into two types, an adhesive resin layer raw material / a central layer raw material / an adhesive resin layer raw material, using a feed block having a merging method of two types and three layers. A three-layered laminate was prepared, extruded from a T-die, and then rapidly cooled on a casting drum cooled to 25 ° C. to obtain a laminated unstretched film having surface layers on both sides of the base layer portion. ..
Next, the laminated unstretched film is tenter-stretched 5 times at 85 ° C. in the width direction to be mainly stretched in the width direction, and is a long body of a stretched film (shrink film) having heat shrinkage in the direction. Got
(筒状シュリンクラベル)
 上記で得られたシュリンクフィルムを用いたこと以外は実施例1と同様にして長尺筒状シュリンクラベルを作製した。
(Cylindrical shrink label)
A long tubular shrink label was produced in the same manner as in Example 1 except that the shrink film obtained above was used.
 実施例6
 中心層用原料として、ポリスチレン系樹脂Aを100質量%用いたこと以外は、実施例5と同様にして、シュリンクフィルムおよび長尺筒状シュリンクラベルを作製した。
Example 6
A shrink film and a long tubular shrink label were produced in the same manner as in Example 5 except that polystyrene-based resin A was used in an amount of 100% by mass as a raw material for the central layer.
 なお、実施例5および6のシュリンクフィルムは、[表面層/接着樹脂層/中心層/接着樹脂層/表面層]の3種5層構成となっている。従って、上記シュリンクフィルムにおいて、基層部は[接着樹脂層/中心層/接着樹脂層]の3層構成となっており、基層部の最外層は接着樹脂層となっている。なお、中心層はA1層、接着樹脂層はA2層にそれぞれ該当する。 The shrink films of Examples 5 and 6 have a three-kind five-layer structure of [surface layer / adhesive resin layer / center layer / adhesive resin layer / surface layer]. Therefore, in the shrink film, the base layer portion has a three-layer structure of [adhesive resin layer / center layer / adhesive resin layer], and the outermost layer of the base layer portion is an adhesive resin layer. The central layer corresponds to the A1 layer, and the adhesive resin layer corresponds to the A2 layer.
 実施例7
(原料)
 中心層用原料として、ポリスチレン系樹脂組成物Dを50質量%、ポリスチレン系樹脂Aを50質量%用いた。
 接着樹脂層用原料として、ポリエステル系樹脂Aを30質量%、ポリスチレン系樹脂Aを70質量%用いた。
 表面層用原料として、ポリエステル系樹脂Aを100質量%用いた。
Example 7
(material)
As the raw material for the central layer, 50% by mass of the polystyrene-based resin composition D and 50% by mass of the polystyrene-based resin A were used.
As a raw material for the adhesive resin layer, 30% by mass of polyester-based resin A and 70% by mass of polystyrene-based resin A were used.
As a raw material for the surface layer, 100% by mass of polyester resin A was used.
(シュリンクフィルム)
 220℃に加熱した押出機aに上記中心層用原料、220℃に加熱した押出機bに上記接着樹脂層用原料、220℃に加熱した押出機cに上記表面層用原料を投入した。上記3台の押出機を用いて、溶融押出を行った。溶融した中心層用原料および溶融した接着樹脂層用原料を、合流方式が2種3層型のフィードブロックと4分割のマルチプライヤーとを組み合わせた積層装置を用いて、接着樹脂層用原料/中心層用原料/接着樹脂層用原料の2種3層構成をひとつの繰り返し単位として分割・合流・積層させ、積層体(I)(上記2種3層構成が4つ積層(繰り返し数4)されたもの)とし、溶融した表面層用原料を、上記積層体(I)の両面側に、フィードブロックを用いて合流・積層させ、積層体(II)とした。さらに、上記積層体(II)を、Tダイより押出した後、25℃に冷却したキャスティングドラム上で急冷して、基層部の両面側にそれぞれ表面層が設けられた積層未延伸フィルムを得た。
 次に、上記積層未延伸フィルムを、幅方向に85℃で5倍テンター延伸することにより、幅方向に主に延伸され、当該方向に熱収縮性を有する延伸フィルム(シュリンクフィルム)の長尺体を得た。
(Shrink film)
The raw material for the central layer was put into the extruder heated to 220 ° C., the raw material for the adhesive resin layer was put into the extruder b heated to 220 ° C., and the raw material for the surface layer was put into the extruder c heated to 220 ° C. Melt extrusion was performed using the above three extruders. A raw material for an adhesive resin layer / center using a laminating device that combines a molten core layer raw material and a melted adhesive resin layer raw material in combination with a feed block with a two-kind, three-layer type and a multiplier divided into four parts. The two-kind three-layer structure of the raw material for the layer / the raw material for the adhesive resin layer is divided, merged, and laminated as one repeating unit, and the laminated body (I) (the above two-kind three-layer structure is laminated four times (number of repetitions 4)). The melted raw material for the surface layer was merged and laminated on both sides of the laminated body (I) using a feed block to obtain a laminated body (II). Further, the laminate (II) was extruded from a T-die and then rapidly cooled on a casting drum cooled to 25 ° C. to obtain a laminated unstretched film having surface layers on both sides of the base layer portion. ..
Next, the laminated unstretched film is tenter-stretched 5 times at 85 ° C. in the width direction to be mainly stretched in the width direction, and is a long body of a stretched film (shrink film) having heat shrinkage in the direction. Got
(筒状シュリンクラベル)
 上記で得られたシュリンクフィルムを用いたこと以外は実施例1と同様にして長尺筒状シュリンクラベルを作製した。
(Cylindrical shrink label)
A long tubular shrink label was produced in the same manner as in Example 1 except that the shrink film obtained above was used.
 実施例8
 中心層用原料として、ポリスチレン系樹脂Aを100質量%用いたこと以外は、実施例7と同様にして、シュリンクフィルムおよび長尺筒状シュリンクラベルを作製した。
Example 8
A shrink film and a long tubular shrink label were produced in the same manner as in Example 7 except that polystyrene-based resin A was used in an amount of 100% by mass as a raw material for the central layer.
 比較例4
 中心層用原料として、ポリスチレン系樹脂Bを50質量%、ポリスチレン系樹脂Cを50質量%用いたこと、および、接着樹脂層用原料として、ポリエステル系樹脂Aを30質量%、ポリスチレン系樹脂Bを21質量%、ポリスチレン系樹脂Cを49質量%用いたこと以外は、実施例7と同様にして、シュリンクフィルムおよび長尺筒状シュリンクラベルを作製した。
Comparative Example 4
50% by mass of polystyrene resin B and 50% by mass of polystyrene resin C were used as raw materials for the central layer, and 30% by mass of polyester resin A and polystyrene resin B were used as raw materials for the adhesive resin layer. A shrink film and a long tubular shrink label were produced in the same manner as in Example 7 except that 21% by mass and 49% by mass of polystyrene resin C were used.
 なお、実施例7、8、および比較例4のシュリンクフィルムは、[表面層/接着樹脂層/中心層/接着樹脂層/中心層/接着樹脂層/中心層/接着樹脂層/中心層/接着樹脂層/表面層]の3種11層構成となっている。従って、上記シュリンクフィルムにおいて、基層部は[接着樹脂層/中心層/接着樹脂層/中心層/接着樹脂層/中心層/接着樹脂層/中心層/接着樹脂層]の9層構成となっており、基層部の最外層は接着樹脂層となっている。なお、実施例7および8における中心層はA1層、接着樹脂層はA2層にそれぞれ該当する。 The shrink films of Examples 7 and 8 and Comparative Example 4 were [surface layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive. Resin layer / surface layer] has 3 types and 11 layers. Therefore, in the shrink film, the base layer portion has a nine-layer structure of [adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer / center layer / adhesive resin layer]. The outermost layer of the base layer portion is an adhesive resin layer. The central layer in Examples 7 and 8 corresponds to the A1 layer, and the adhesive resin layer corresponds to the A2 layer, respectively.
(評価)
 実施例および比較例で得られたシュリンクフィルムおよび長尺筒状シュリンクラベルについて、以下の評価を行った。評価結果は表2に示した。
(evaluation)
The shrink films and long tubular shrink labels obtained in Examples and Comparative Examples were evaluated as follows. The evaluation results are shown in Table 2.
(1)引張弾性率
 実施例および比較例で得られたシュリンクフィルム(シュリンク加工前)から、150mm(幅方向;主収縮方向、標線間隔10mm)×15mm(長手方向;主収縮方向に対して直交方向)の長方形のサンプル片を作製した。上記サンプル片について、JIS K7161-1に基づき、試験速度10mm/minで引張弾性率を測定した。
(1) Tensile elastic modulus From the shrink film (before shrink processing) obtained in Examples and Comparative Examples, 150 mm (width direction; main contraction direction, marked line spacing 10 mm) × 15 mm (longitudinal direction; with respect to main contraction direction). A rectangular sample piece (in the orthogonal direction) was prepared. The tensile elastic modulus of the above sample piece was measured at a test speed of 10 mm / min based on JIS K7161-1.
(2)直交方向の熱収縮率
 実施例および比較例で得られたシュリンクフィルム(シュリンク加工前)から、120mm(幅方向;主収縮方向、標線間隔10mm)×5mm(長手方向;主収縮方向に対して直交方向)の長方形のサンプル片を作製した。
 上記サンプル片を90℃の温水中で、10秒熱処理(無荷重下)し、熱処理前後の標線間隔の差を読み取り、以下の計算式で、主収縮方向に対する直交方向について、熱収縮率を算出した。
 収縮率(%) = (L0-L1)/L0×100 L0 : 熱処理前のサンプル片の寸法(主収縮方向)
 L1 : 熱処理後のサンプルの寸法(L0と同じ方向) 
(2) Thermal shrinkage rate in the orthogonal direction From the shrink film (before shrink processing) obtained in Examples and Comparative Examples, 120 mm (width direction; main shrinkage direction, marked line spacing 10 mm) × 5 mm (longitudinal direction; main shrinkage direction) A rectangular sample piece (in the direction orthogonal to the direction) was prepared.
The above sample piece is heat-treated in warm water at 90 ° C. for 10 seconds (under no load), the difference in the marked line spacing before and after the heat treatment is read, and the heat shrinkage rate is calculated in the direction orthogonal to the main shrinkage direction by the following formula. Calculated.
Shrinkage rate (%) = (L 0 -L 1 ) / L 0 × 100 L 0 : Dimensions of sample piece before heat treatment (main shrinkage direction)
L 1 : Dimensions of the sample after heat treatment (in the same direction as L 0 )
(3)摩擦係数
 実施例および比較例で得られたシュリンクフィルムを、JIS K7125に準拠して、その表面同士における静摩擦係数および動摩擦係数を測定した。
 測定機器、測定条件、手順等は、下記の通りである。
  測定機器:「Friction Tester TR-2」(東洋精機(株)製)
  錘:200g±2g(=1.96Nの法線力FPが生じる)、63mm×63mmの底面を有し、当該底面に同寸法のフェルトが貼られたものを用いた。
  サンプル:65mm×160mmにカットしたシュリンクフィルム片(未収縮品)
  摩擦相手:110mm×300mmにカットしたシュリンクフィルム片(未収縮品)  手順:表面が外側を向くようにサンプルを錘に巻装し、サンプル付き錘を得た。当該サンプル付き錘は、錘の底面がサンプルに覆われ、サンプルの表面が錘の底面全体にわたって存在し測定面(63×63mm)を形成している。上記摩擦相手のシュリンクフィルム片が表面を上に向けた状態で固定された平滑なテーブル上に、サンプル付き錘の測定面が摩擦相手の表面と接触するようにサンプル付き錘を載置して測定を開始した。そして、最初に得られた最大応力を静摩擦力とし、この値から静摩擦係数を計算した。また、滑り運動中に働く摩擦力を動摩擦力とし、この値から動摩擦係数を計算した。
  測定距離:60mm
  速度:100mm/min
(3) Friction coefficient With respect to the shrink films obtained in Examples and Comparative Examples, the static friction coefficient and the dynamic friction coefficient between the surfaces thereof were measured according to JIS K7125.
The measuring equipment, measuring conditions, procedures, etc. are as follows.
Measuring equipment: "Friction Tester TR-2" (manufactured by Toyo Seiki Co., Ltd.)
Weight: 200 g ± 2 g (= 1.96 N normal force FP is generated), has a bottom surface of 63 mm × 63 mm, and a felt of the same size is attached to the bottom surface.
Sample: Shrink film piece cut to 65 mm x 160 mm (non-shrinkable product)
Friction partner: Shrink film piece cut to 110 mm x 300 mm (non-shrinkable product) Procedure: A sample was wound around a weight so that the surface faced outward, and a weight with a sample was obtained. In the weight with a sample, the bottom surface of the weight is covered with the sample, and the surface of the sample exists over the entire bottom surface of the weight to form a measurement surface (63 × 63 mm). A weight with a sample is placed on a smooth table fixed with the shrink film piece of the friction partner facing upward so that the measurement surface of the weight with the sample is in contact with the surface of the friction partner. Started. Then, the maximum stress obtained first was taken as the static friction force, and the static friction coefficient was calculated from this value. Further, the frictional force acting during the sliding motion was taken as the dynamic frictional force, and the dynamic friction coefficient was calculated from this value.
Measurement distance: 60 mm
Speed: 100 mm / min
(4)カット適性
 実施例および比較例で得られた長尺筒状シュリンクラベルを、ロータリー式のカット機にて幅方向に切断した際のカット面の接着度合を確認した。そして、カット適性を以下の基準で評価した。
 カット適性が良好(○):カット後の切断面において、ラベル内面同士の接着がない。
 カット適性が可(△):カット後の切断面において、一部ラベル内面同士の接着が見られるが、拡開可能。
 カット適性が不良(×):カット後の切断面において、全体にラベル内面同士の接着が見られ、拡開できなかった。
(4) Cutability When the long tubular shrink labels obtained in Examples and Comparative Examples were cut in the width direction with a rotary cutting machine, the degree of adhesion of the cut surface was confirmed. Then, the cut suitability was evaluated according to the following criteria.
Good cutability (○): There is no adhesion between the inner surfaces of the labels on the cut surface after cutting.
Cut suitability is possible (△): On the cut surface after cutting, some of the inner surfaces of the labels are adhered to each other, but they can be expanded.
Poor cut suitability (x): On the cut surface after cutting, adhesion between the inner surfaces of the labels was observed as a whole, and the label could not be expanded.
(5)CO2削減率
 ポリスチレン系樹脂AのCO2削減率が74質量%であることに基づき、ポリスチレン系樹脂Aの含有量から算出した。
(5) CO 2 reduction rate Based on the fact that the CO 2 reduction rate of the polystyrene-based resin A is 74% by mass, it was calculated from the content of the polystyrene-based resin A.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなとおり、本発明のシュリンクフィルムを用いた場合(実施例)は、バイオマス由来のスチレン系単量体を用いたポリスチレン系樹脂を使用しながら、直交方向の熱収縮率が小さく、収縮仕上がりに優れており、実用上使用可能であった。また、実施例5~8は、長尺筒状シュリンクラベルの切断後において、ラベル内面同士の接着は確認できず、カット適性に優れていた。なお、上記カット適性が不良であるシュリンクフィルムは、長尺筒状ラベルのカット方法を適宜選択することで使用可能である。 As is clear from Table 2, when the shrink film of the present invention is used (Example), the heat shrinkage rate in the orthogonal direction is small while using the polystyrene-based resin using the styrene-based monomer derived from biomass. It had an excellent shrinkage finish and could be used practically. Further, in Examples 5 to 8, after cutting the long tubular shrink label, adhesion between the inner surfaces of the labels could not be confirmed, and the cutting suitability was excellent. The shrink film having poor cutability can be used by appropriately selecting a cutting method for a long tubular label.
 1   シュリンクフィルム
 11  表面層
 12  基層部
 12a A層
 12b 接着樹脂層
 2   筒状シュリンクラベル
 21  シール部
 D   周方向
 31  背面印刷層
 32  意匠印刷層
 33  溶剤または接着剤
1 Shrink film 11 Surface layer 12 Base layer 12a A layer 12b Adhesive resin layer 2 Cylindrical shrink label 21 Seal part D Circumferential direction 31 Back printing layer 32 Design printing layer 33 Solvent or adhesive

Claims (3)

  1.  主に一方向に熱収縮性を有するシュリンクフィルムであって、
     バイオマス由来のスチレン系単量体に由来する構成単位を有するスチレン-ブタジエン共重合体を含み、
     前記シュリンクフィルムの総質量に対して、ビカット軟化温度が75℃以上90℃以下である樹脂の含有割合が45質量%以上である、シュリンクフィルム。
    A shrink film that is mainly heat-shrinkable in one direction.
    Containing a styrene-butadiene copolymer having a structural unit derived from a biomass-derived styrene-based monomer,
    A shrink film having a resin content of 45% by mass or more and a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower with respect to the total mass of the shrink film.
  2.  1または2以上の層を有する基層部と、前記基層部の両面側に設けられた表面層とを備え、
     前記基層部は、前記基層部中の層として、前記スチレン-ブタジエン共重合体を含む層(A層)を有し、
     前記A層は、前記スチレン-ブタジエン共重合体の含有割合が20質量%以上であり、前記ビカット軟化温度が75℃以上90℃以下の樹脂の含有割合が15質量%以上である層である、請求項1に記載のシュリンクフィルム。
    A base layer portion having one or more layers and a surface layer provided on both sides of the base layer portion are provided.
    The base layer portion has a layer (A layer) containing the styrene-butadiene copolymer as a layer in the base layer portion.
    The layer A is a layer in which the content ratio of the styrene-butadiene copolymer is 20% by mass or more, and the content ratio of the resin having a Vicat softening temperature of 75 ° C. or higher and 90 ° C. or lower is 15% by mass or more. The shrink film according to claim 1.
  3.  前記表面層は、前記スチレン-ブタジエン共重合体を含まないか、または前記表面層中の前記スチレン-ブタジエン共重合体の含有割合が5質量%未満である、請求項2に記載のシュリンクフィルム。 The shrink film according to claim 2, wherein the surface layer does not contain the styrene-butadiene copolymer, or the content ratio of the styrene-butadiene copolymer in the surface layer is less than 5% by mass.
PCT/JP2021/044198 2020-12-24 2021-12-02 Shrink film WO2022138039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572040A JPWO2022138039A1 (en) 2020-12-24 2021-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-214699 2020-12-24
JP2020214699 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138039A1 true WO2022138039A1 (en) 2022-06-30

Family

ID=82159450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044198 WO2022138039A1 (en) 2020-12-24 2021-12-02 Shrink film

Country Status (2)

Country Link
JP (1) JPWO2022138039A1 (en)
WO (1) WO2022138039A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891721A (en) * 1973-11-15 1975-06-24 Goodyear Tire & Rubber Block polymers of styrene-butadiene-2-vinylpyridine
JP2014051617A (en) * 2012-09-07 2014-03-20 Sumitomo Rubber Ind Ltd Rubber composition for tire, tire member and pneumatic tire
JP2015009515A (en) * 2013-06-28 2015-01-19 株式会社フジシールインターナショナル Shrink label
JP2015042711A (en) * 2013-08-26 2015-03-05 住友ゴム工業株式会社 Cap tread rubber composition for passenger car tire, cap tread rubber for passenger car tire, and pneumatic tire for passenger car
JP2016505645A (en) * 2012-11-09 2016-02-25 株式会社ブリヂストン Usage of biological styrene
JP2016210079A (en) * 2015-05-08 2016-12-15 株式会社フジシールインターナショナル Shrink film
JP2018507297A (en) * 2015-02-09 2018-03-15 アーチャー−ダニエルズ−ミッドランド カンパニー Renewable resource derived polymer oil macroinitiator and thermoplastic block copolymer derived therefrom
WO2020080026A1 (en) * 2018-10-16 2020-04-23 グンゼ株式会社 Heat-shrinkable multi-layered film
JP2020516759A (en) * 2017-04-07 2020-06-11 クウィック ロック コーポレーション Biodegradable polystyrene composite and its use
JP2020193274A (en) * 2019-05-28 2020-12-03 福助工業株式会社 Polystyrene-based resin composition, resin sheet thereof and resin molding thereof
JP2020196873A (en) * 2019-05-31 2020-12-10 三菱ケミカル株式会社 Styrenic sheet for thermoforming and molding for food packaging
JP2021126834A (en) * 2020-02-14 2021-09-02 グンゼ株式会社 Heat-shrinkable film and heat-shrinkable label

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891721A (en) * 1973-11-15 1975-06-24 Goodyear Tire & Rubber Block polymers of styrene-butadiene-2-vinylpyridine
JP2014051617A (en) * 2012-09-07 2014-03-20 Sumitomo Rubber Ind Ltd Rubber composition for tire, tire member and pneumatic tire
JP2016505645A (en) * 2012-11-09 2016-02-25 株式会社ブリヂストン Usage of biological styrene
JP2015009515A (en) * 2013-06-28 2015-01-19 株式会社フジシールインターナショナル Shrink label
JP2015042711A (en) * 2013-08-26 2015-03-05 住友ゴム工業株式会社 Cap tread rubber composition for passenger car tire, cap tread rubber for passenger car tire, and pneumatic tire for passenger car
JP2018507297A (en) * 2015-02-09 2018-03-15 アーチャー−ダニエルズ−ミッドランド カンパニー Renewable resource derived polymer oil macroinitiator and thermoplastic block copolymer derived therefrom
JP2016210079A (en) * 2015-05-08 2016-12-15 株式会社フジシールインターナショナル Shrink film
JP2020516759A (en) * 2017-04-07 2020-06-11 クウィック ロック コーポレーション Biodegradable polystyrene composite and its use
WO2020080026A1 (en) * 2018-10-16 2020-04-23 グンゼ株式会社 Heat-shrinkable multi-layered film
JP2020193274A (en) * 2019-05-28 2020-12-03 福助工業株式会社 Polystyrene-based resin composition, resin sheet thereof and resin molding thereof
JP2020196873A (en) * 2019-05-31 2020-12-10 三菱ケミカル株式会社 Styrenic sheet for thermoforming and molding for food packaging
JP2021126834A (en) * 2020-02-14 2021-09-02 グンゼ株式会社 Heat-shrinkable film and heat-shrinkable label

Also Published As

Publication number Publication date
JPWO2022138039A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
TWI654081B (en) Heat shrinkable multilayer film and heat shrinkable label
JP4948874B2 (en) Laminated shrink label
JP5049150B2 (en) Shrink film and shrink label
JP4917915B2 (en) Shrink film
WO2014148554A1 (en) Shrink label and method for producing same
JP6274930B2 (en) Shrink label
JP5184817B2 (en) Shrink label
JP4694948B2 (en) Shrink film, shrink label and labeled container
JP6936569B2 (en) Shrink label
WO2022138039A1 (en) Shrink film
JP4700418B2 (en) Shrink labels and labeled containers
JP6591781B2 (en) Shrink film
JP6345455B2 (en) Shrink label
JP4658780B2 (en) Shrink film, shrink label and labeled container
JP6608722B2 (en) Shrink film and shrink label
JP6669525B2 (en) Shrink labels and labeled containers
JP4833880B2 (en) Laminated film and shrink label
JP2009006530A (en) Shrink film and shrink label
JP6345422B2 (en) Shrink label
JP6555865B2 (en) Shrink label
JP6456638B2 (en) Labeled container
JP6339334B2 (en) Shrink label
JP6470931B2 (en) Shrink label
JP6345456B2 (en) Shrink label and manufacturing method thereof
JP6345453B2 (en) Shrink label

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910191

Country of ref document: EP

Kind code of ref document: A1