WO2022137913A1 - Maleimide resin, asymmetric bismaleimide compound, curable composition, cured object, semiconductor-encapsulating material, semiconductor-encapsulating device, prepreg, circuit board, and build-up film - Google Patents

Maleimide resin, asymmetric bismaleimide compound, curable composition, cured object, semiconductor-encapsulating material, semiconductor-encapsulating device, prepreg, circuit board, and build-up film Download PDF

Info

Publication number
WO2022137913A1
WO2022137913A1 PCT/JP2021/042356 JP2021042356W WO2022137913A1 WO 2022137913 A1 WO2022137913 A1 WO 2022137913A1 JP 2021042356 W JP2021042356 W JP 2021042356W WO 2022137913 A1 WO2022137913 A1 WO 2022137913A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
curable composition
aromatic
semiconductor
Prior art date
Application number
PCT/JP2021/042356
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 下野
瞳 林原
庸行 太田黒
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020237022081A priority Critical patent/KR20230113611A/en
Priority to JP2022536593A priority patent/JP7140307B1/en
Priority to CN202180086105.1A priority patent/CN116888098A/en
Publication of WO2022137913A1 publication Critical patent/WO2022137913A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • C07D207/448Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/36Amides or imides
    • C08F22/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention has a low melting point and softening point, excellent handleability, and a cured product having high heat resistance, and a maleimide resin or a maleimide compound that can be suitably used as a semiconductor encapsulating material, and a curability containing these.
  • the present invention relates to a composition and a cured product thereof, a semiconductor encapsulating material, a semiconductor encapsulating device, a prepreg, a circuit board, and a build-up film.
  • maleimide resin Since maleimide resin has extremely high heat resistance in cured products, its use is being considered as a resin material in fields that require particularly high heat resistance, such as encapsulation materials for power semiconductors, but it is currently on the market. Maleimide resin has a high melting point and softening point, and its low handleability as a material is a problem.
  • a conventionally known maleimide resin for example, a 4,4'-diphenylmethanebismaleimide type compound is widely known, but as described above, the compound has a high melting point and is inferior in handleability as a material. (See, for example, Patent Document 1). Further, as a maleimide resin having relatively high handleability, a 2,2-bis [4- (4-maleimide phenoxy) phenyl] propane type compound is known, and the compound has a cured physical property such as heat resistance. , Did not meet the recent market demand (see, for example, Patent Document 2).
  • the problem to be solved by the present invention is a maleimide resin or maleimide that has a low melting point and softening point and is excellent in handleability, and the cured product has high heat resistance and can be suitably used as a semiconductor encapsulating material or the like. It is an object of the present invention to provide a compound, a curable composition containing these and a cured product thereof, a semiconductor encapsulating material, a semiconductor encapsulating device, a prepreg, a circuit board, and a build-up film.
  • a maleimide resin obtained by maleimizing a polyamine compound which is a reaction product of a plurality of aromatic monoamine compounds and a binder has a low melting point and softening point and is excellent in handleability.
  • the cured product has high heat resistance and can be suitably used as a semiconductor encapsulating material, etc., and have completed the present invention.
  • the present invention is a maleimide resin which is a maleimide product of a polyamine compound (C) which is a reaction product of a plurality of kinds of aromatic monoamine compounds (A) and a binder (B). Regarding.
  • the present invention further relates to an asymmetric bismaleimide compound which is a maleimided product of an asymmetric diamine compound (C-1) in which two different aromatic monoamine compounds (A) are bound with a binder (B).
  • the present invention further relates to a curable composition containing the maleimide resin or the asymmetrical bismaleimide compound.
  • the present invention further relates to a cured product of the curable composition.
  • the present invention further relates to a semiconductor encapsulation material using the curable composition.
  • the present invention further relates to a semiconductor device using the semiconductor encapsulating material.
  • the present invention further relates to a prepreg using the curable composition.
  • the present invention further relates to a circuit board using the prepreg.
  • the present invention further relates to a build-up film using the curable composition.
  • a maleimide resin or a maleimide compound which has a low melting point and softening point and is excellent in handleability, has a high heat resistance of a cured product, and can be suitably used as a semiconductor encapsulation material, etc., is contained.
  • a curable composition and a cured product thereof, a semiconductor encapsulating material, a semiconductor encapsulating device, a prepreg, a circuit board, and a build-up film can be provided.
  • FIG. 1 It is a GPC chart figure of the maleimide resin (1) obtained in Example 1.
  • FIG. 2 is a GPC chart figure of the maleimide resin (2) obtained in Example 2.
  • FIG. 2 is a GPC chart figure of the maleimide resin (3) obtained in Example 3.
  • FIG. 2 is a GPC chart figure of the maleimide resin (4) obtained in Example 4.
  • FIG. It is a GPC chart figure of the maleimide resin (5) obtained in Example 5.
  • FIG. It is a GPC chart figure of the maleimide resin (6) obtained in Example 6.
  • FIG. It is a differential scanning calorimetry (DSC) chart figure of the maleimide resin (1) obtained in Example 1.
  • FIG. It is a differential scanning calorimetry (DSC) chart figure of the maleimide resin (2) obtained in Example 2.
  • DSC differential scanning calorimetry
  • the maleimide resin of the present invention is characterized by being a maleimide product of a polyamine compound (C) which is a reaction product of a plurality of aromatic monoamine compounds (A) and a binder (B).
  • the aromatic monoamine compound (A) as long as it is a compound having one NH 2 on the aromatic ring, other specific structures are not particularly limited, and a wide variety of compounds can be used. Specifically, a compound having one NH 2 group on the aromatic ring of an aromatic compound such as benzene, naphthalene, and anthracene, and a compound having one or more other substituents in addition to the NH 2 group, etc. Can be mentioned. Examples of the other substituent include an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, a halogen atom, an aryl group, an aralkyl group, a hydroxyl group and the like.
  • the aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group.
  • the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • Examples of the alkenyloxy group include an allyloxy group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
  • aralkyl group examples include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
  • the obtained maleimide resin has a low melting point and softening point and is excellent in handleability. Therefore, one or a plurality of the other substituents are added on the aniline or the aromatic nucleus of aniline.
  • the compound to have is preferable.
  • aniline, a compound having a substituent at the 2-position of aniline, and a compound having a substituent at the 2,6-position of aniline are particularly preferable.
  • the type of the substituent of the compound having a substituent at the 2-position of aniline and the compound having a substituent at the 2,6-position of aniline is a maleimide resin having excellent heat resistance in a cured product, and therefore a carbon atom.
  • An aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • the maleimide resin has a low melting point and softening point and is excellent in handleability while maintaining the high heat resistance characteristic of the maleimide resin.
  • the number of the aromatic monoamine compound (A) to be used may be a plurality of kinds, that is, two or more kinds, and the upper limit is not particularly limited, but since it can be produced relatively easily, it is in the range of 2 to 5 kinds. It is preferable to use it, and it is more preferable to use two or three kinds in combination.
  • the amount of each aromatic monoamine compound (A) used is at least 10 with respect to the total of the aromatic monoamine compounds (A) because the melting point and the softening point are low and the effect of excellent handleability is sufficiently exhibited. It is preferably 5% by mass or more, and more preferably 25% by mass or more. The upper limit thereof is preferably 90% or less, and more preferably 75% or less.
  • the mass ratio of the two is preferably in the range of 10/90 to 90/10. More preferably, it is in the range of 20/80 to 80/20.
  • the specific structure of the binder (B) is not particularly limited as long as it is a compound that reacts with the aromatic monoamine compound (A) to bind the aromatic rings of the aromatic monoamine compound (A) to each other. Compounds can be used. Further, the binder (B) may be used alone or in combination of two or more. Specific examples of the binder (B) include an aldehyde compound (B-1), a ketone compound (B-2), an aromatic compound (B-3) represented by the following general formula (B-3), and the following.
  • Ar 1 represents an aromatic ring which may independently have a substituent.
  • R 1 is independently a hydrogen atom or a methyl group.
  • R 2 is an independently hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • R 3 is independently any of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group and an aralkyl group, and l is an integer of 0 to 3.
  • X is any of a hydroxyl group, a halogen atom, and an alkyloxy group.
  • Y is any one of a single bond, a divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, an oxygen atom, a sulfur atom, and a sulfonyl group.
  • aldehyde compound (B-1) examples include aliphatic aldehyde compounds such as formaldehyde and acetaldehyde, and aromatic aldehyde compounds such as benzaldehyde and naphthaldehyde. One of these may be used alone, or two or more thereof may be used in combination.
  • Examples of the ketone compound (B-2) include aliphatic ketone compounds such as acetone, methyl ethyl ketone and diethyl ketone, and aromatic ketone compounds such as acetophenone. One of these may be used alone, or two or more thereof may be used in combination.
  • Ar 1 represents an aromatic ring which may independently have a substituent. Specific examples thereof include a phenylene group, a naphthylene group, and a structural site having one or a plurality of various substituents on these aromatic rings. Examples of the substituent include an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, a halogen atom, an aryl group, an aralkyl group, a hydroxyl group and the like.
  • the aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure.
  • Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group.
  • Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • Examples of the alkenyloxy group include an allyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
  • Examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
  • R 2 is an independent hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, respectively.
  • the aliphatic hydrocarbon group having 1 to 4 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group and the like.
  • R 3 is independently composed of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group and an aralkyl group. It is either, and l is an integer of 0 to 3.
  • the aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure.
  • Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group.
  • Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • Examples of the alkenyloxy group include an allyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
  • Examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
  • X is any of a hydroxyl group, a halogen atom, and an alkyloxy group.
  • alkyloxy group examples include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • Y is any one of a single bond, a divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, an oxygen atom, a sulfur atom, and a sulfonyl group. ..
  • the divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure.
  • the reaction step of reacting the aromatic monoamine compound (A) with the binder (B) to obtain the polyamine compound (C) is, for example, a plurality of types of the aromatic monoamine compound (A) and the binder ( Examples thereof include a method of reacting with B) under acidic catalyst conditions.
  • the reaction may be carried out in a solvent as appropriate. Further, the reaction can be efficiently promoted by heating to about 50 to 200 ° C.
  • the polyamine compound (C) as an intermediate can be obtained by washing with an alkaline aqueous solution, distilled water or the like.
  • the acidic catalyst examples include p-toluenesulfonic acid, dimethylsulfuric acid, diethylsulfuric acid, sulfuric acid, hydrochloric acid, oxalic acid, and activated clay. One of these may be used alone, or two or more thereof may be used in combination.
  • the amount of the acid catalyst added is preferably in the range of 0.01 to 0.5 mol, preferably 0.1 to 0.3 mol, with respect to 2 mol of the aromatic monoamine compound (A).
  • the range ratio is more preferable. When the number of moles cannot be defined, the ratio is preferably in the range of 1 wt% to 50 wt% with respect to the total amount of the aniline compound (A), the binder (B), the solvent and the acidic catalyst.
  • the solvent examples include distilled water and organic solvents such as toluenexylene. These may be used alone or as a mixed solvent of two or more kinds.
  • the amount of the solvent used is preferably in the range of 5 to 100% by mass with respect to the total mass of the aromatic monoamine compound (A) and the binder (B).
  • Examples of the maleimideization reaction of the polyamine compound (C) include a method of reacting the polyamine compound (C) with an acid anhydride under acidic catalytic conditions.
  • reaction control becomes easy, it is preferable to add the acid anhydride in portions to the polyamine compound (C), or to dissolve the acid anhydride in an appropriate solvent and drop the acid anhydride.
  • the reaction may be carried out in a solvent as appropriate.
  • the polyamine compound (C) and the acid anhydride are stirred at room temperature to obtain an amic acid intermediate.
  • an acid catalyst is added and heated to 50 to 200 ° C., more preferably 70 to 150 ° C. to proceed the reaction. At this time, it is preferable to remove the water in the system.
  • the desired maleimide resin can be obtained by washing with an alkaline aqueous solution or distilled water.
  • acid anhydride examples include maleic anhydride, citraconic acid anhydride, 2,3-dimethylmaleic acid anhydride and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • the acidic catalyst examples include p-toluenesulfonic acid, hydroxy-p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, phosphoric acid and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • the amount of the acidic catalyst added is usually 0.01 to 10 mol, preferably 0.03 to 3 mol, based on 1 g / mol of the amino group equivalent of the polyaniline compound (C).
  • the solvent may be any one that can dissolve the polyamine compound (C) and the acid anhydride.
  • a mixed solvent of a non-polar solvent such as toluene and an aprotic polar solvent such as dimethylformamide is used. It is preferable to use.
  • the non-polar solvent include xylene, chlorobenzene and the like in addition to toluene.
  • the aprotic polar solvent include dimethylformaldehyde and methylethylketone. The compounding ratio of both and the amount of the solvent used are appropriately adjusted depending on the solvent solubility of the polyamine compound (C) and the acid anhydride.
  • the mass ratio of the non-protic solvent to the aprotic solvent is in the range of 1/99 to 99/1, and the total solvent amount is the sum of the polyamine compound (C), the acid anhydride and the total solvent amount.
  • the range is 0.5 to 80% can be mentioned.
  • the molecular weight of the maleimide resin of the present invention is not particularly limited, and the reaction conditions and the like can be appropriately changed according to the intended use and adjusted to a preferable value.
  • it when it is used as a semiconductor encapsulant material, it is represented by the following formula (1) because it is a resin having a low melting point and softening point and excellent handling property while maintaining high heat resistance in a cured product.
  • Such dinuclear component, trinuclear component as represented by the following structural formula (2), tetranuclear component represented by the following formulas (3-1) and (3-2), etc. are relatively low. It preferably contains a component having a molecular weight.
  • A is a structural moiety derived from the aromatic monoamine compound (A) and has a maleimide group
  • B is a structural moiety derived from the binder (B).
  • a and B in the formula may be the same or different.
  • the maleimide resin contains a dinuclear component (bismaleimide compound).
  • the ratio of the binuclear component (bismaleimide compound) in the maleimide resin is preferably 30% or more, more preferably 50% or more.
  • the content of the binuclear body in the maleimide resin is a value calculated from the area ratio of the gel permeation chromatography (GPC) chart. Further, in the present invention, the measurement conditions of gel permeation chromatography (GPC) are described in Examples.
  • the "number of nuclei” is the number of structural sites derived from the aromatic monoamine compound (A) in the molecule as shown in the formulas (1) to (3-2).
  • the dinuclear component bismaleimide compound
  • two different aromatic monoamine compounds are obtained because they are resins having low melting point and softening point and excellent handling property while maintaining high heat resistance in the cured product.
  • An asymmetric bismaleimide compound which is a maleimided product of the asymmetric diamine compound (C-1) to which (A) is bound with the binder (B), is preferable.
  • a compound using an aniline compound as the aromatic monoamine compound (A) is preferable, and an asymmetric bismaleimide compound represented by the following structural formula (4) is more preferable.
  • the asymmetric maleimide compound may be isolated and purified before use.
  • [Z in the formula is a divalent organic group having 1 to 200 carbon atoms.
  • Each of R4 is independently an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group, or an aralkyl group. If there are multiple R4s in the equation, they may be the same or different.
  • m is 0 or an integer of 1 to 4.
  • the structural part ⁇ and the structural part ⁇ surrounded by the broken line in the formula have different structures from each other. ]
  • Z in the structural formula (4) is a structural site derived from the binder (B).
  • Z is a divalent organic group having 1 to 200 carbon atoms, but may be a structural moiety containing other atoms such as oxygen atom and halogen atom as long as the carbon atom number is in the range of 1 to 200. .. Above all, a divalent organic group having 1 to 20 carbon atoms is more preferable.
  • Specific examples of the Z include structural parts represented by the following general formulas (Z-1) to (Z-8).
  • Ar 1 represents an aromatic ring which may independently have a substituent.
  • R 3 is independently any of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group and an aralkyl group, and l is an integer of 0 to 3.
  • R 5 represents an aromatic ring which may independently have a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or a substituent.
  • R 6 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • R 7 is either a divalent aliphatic hydrocarbon group other than the one represented by the general formula (Z-1), an aromatic group which may have a substituent, or a combination thereof.
  • Y is any one of a single bond, a divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, an oxygen atom, a sulfur atom, and a sulfonyl group.
  • n is an integer of 1 or more.
  • R 5 in the general formula (Z-1) represents an aromatic ring which may independently have a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or a substituent.
  • the aliphatic hydrocarbon group having 1 to 4 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group and the like.
  • Examples of the aromatic ring that may have the substituent include a phenylene group, a naphthylene group, and a structural site having one or a plurality of various substituents on these aromatic rings.
  • Examples of the substituent include an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, a halogen atom, an aryl group, an aralkyl group, a hydroxyl group and the like.
  • the aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure.
  • Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group.
  • Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • Examples of the alkenyloxy group include an allyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
  • Examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
  • Ar 1 in the general formulas (Z-2), (Z-3) and (Z-8) represents an aromatic ring which may independently have a substituent. Specific examples thereof include those similar to Ar 1 in the general formulas (B-3) to (B-6).
  • R 6 in the general formulas (Z-2) and (Z-3) independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • the aliphatic hydrocarbon group having 1 to 4 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group and the like.
  • Y in the general formula (Z-3) is any one of a single bond, a divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, an oxygen atom, a sulfur atom, and a sulfonyl group.
  • the divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure.
  • R 3 in the general formula (Z-4) is independently any of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group, and an aralkyl group. Is an integer from 0 to 3. Specific examples thereof include those similar to R3 in the general formulas (B - 7) and (B-8).
  • R 7 in the general formula (Z-7) is a divalent aliphatic hydrocarbon group other than that represented by the general formula (Z-1), an aromatic group which may have a substituent, or an aromatic group. It is one of the combinations.
  • the divalent aliphatic hydrocarbon group may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure.
  • R 4 in the structural formula (4) is independently any one of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group and an aralkyl group.
  • the aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure.
  • Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group.
  • Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • Examples of the alkenyloxy group include an allyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • aryl group examples include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
  • aralkyl group examples include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on the aromatic ring thereof. If there are multiple R4s in the equation, they may be the same or different.
  • the obtained maleimide resin has a low melting point and softening point and is excellent in handleability, it is preferable to have a substituent on one or both of the carbon atoms adjacent to the carbon atom substituted by the maleimide group.
  • the substituent is preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • the curable composition of the present invention contains the maleimide resin or the asymmetrical bismaleimide compound.
  • the maleimide resin or the asymmetrical bismaleimide compound may be used alone as the curable component, or one or a plurality of other curable compounds may be used in combination.
  • Examples of the other curable compound include epoxy resin, phenol resin, amine compound, active ester resin, cyanate ester resin, benzoxazine resin, unsaturated bond-containing compound and the like.
  • epoxy resin examples include various bisphenol type epoxy resins, various biphenyl type epoxy resins, various novolak type epoxy resins, dicyclopentadiene-phenol addition reaction type epoxy resins, and phenol aralkyl type epoxy resins. One of these may be used alone, or two or more thereof may be used in combination.
  • phenol resin examples include various bisphenols, various biphenyls, various novolak resins, dicyclopentadiene-phenol addition reaction type resins, phenol aralkyl type resins, and various arylene ether resins. One of these may be used alone, or two or more thereof may be used in combination.
  • the curable composition of the present invention may contain various additives such as a curing accelerator, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, and an emulsifier, if necessary.
  • the curing accelerator examples include phosphorus-based compounds, peroxides, tertiary amines, imidazole compounds, pyridine compounds, organic acid metal salts, Lewis acids, amine complex salts and the like.
  • triphenylphosphine for phosphorus-based compounds, dikmylperoxide for peroxides, and 1,8-diazabicyclo- [5] for tertiary amines are excellent in curability, heat resistance, electrical properties, moisture resistance reliability, etc.
  • -Undecene (DBU) 2-ethyl-4-methylimidazole for imidazole compounds
  • 4-dimethylaminopyridine for pyridine compounds are preferred.
  • the flame retardant may be, for example, red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphate such as ammonium polyphosphate, inorganic phosphorus compounds such as phosphate amide; phosphoric acid ester compounds, phosphonic acid.
  • Cyclic organic phosphorus Organophosphorus compounds such as compounds and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins; nitrogen-based flame retardants such as triazine compounds, cyanuric acid compounds, isocyanuric acid compounds and phenothiazine; silicone oils, silicone rubbers and silicones.
  • Silicone-based flame retardants such as resins; examples thereof include metal hydroxides, metal oxides, metal carbonate compounds, metal powders, boron compounds, and inorganic flame retardants such as low melting point glass. When these flame retardants are used, it is preferably in the range of 0.1 to 20% by mass with respect to the resin solid content of the curable composition.
  • the inorganic filler is blended, for example, when the curable composition of the present invention is used for semiconductor encapsulation material applications.
  • the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide and the like. Above all, the molten silica is preferable because it is possible to blend a larger amount of the inorganic filler.
  • the fused silica can be used in either a crushed form or a spherical shape, but in order to increase the blending amount of the fused silica and suppress the increase in the melt viscosity of the curable composition, a spherical one is mainly used. Is preferable.
  • the filling rate is preferably in the range of 0.5 to 95 parts by mass in 100 parts by mass of the curable composition.
  • a conductive filler such as silver powder or copper powder can be used.
  • the curable composition of the present invention has a low melting point and softening point and is excellent in handleability, and since the cured product has high heat resistance, it can be particularly preferably used as a semiconductor encapsulating material. It can be widely used for electronic materials such as printed wiring boards and resist materials, and for paints, adhesives, molded products, and the like.
  • the semiconductor encapsulation material can be prepared by mixing the formulations using, for example, an extruder, a kneader, a roll, or the like.
  • the semiconductor encapsulating material is molded by casting or using a transfer molding machine, an injection molding machine, or the like, and further, the temperature is 50 to 250 ° C. A method of heating under the conditions for 1 to 10 hours can be mentioned, and a semiconductor device which is a molded product can be obtained by such a method.
  • the curable composition of the present invention When the curable composition of the present invention is used for a printed wiring board application or a build-up adhesive film application, it is generally preferable to mix and dilute it with an organic solvent.
  • the organic solvent include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like.
  • the type and blending amount of the organic solvent can be appropriately adjusted according to the usage environment of the curable composition. For example, in the case of printed wiring board applications, a polar solvent having a boiling point of 160 ° C.
  • ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone
  • acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate
  • carbitol such as cellosolve and butyl carbitol.
  • a solvent an aromatic hydrocarbon solvent such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like, and it is preferable to use the non-volatile content at a ratio of 30 to 60% by mass.
  • the curable composition is impregnated into a reinforcing base material and cured to obtain a prepreg, which is then heat-bonded by overlapping.
  • the method can be mentioned.
  • the reinforcing base material include paper, glass cloth, glass non-woven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the impregnation amount of the curable composition is not particularly limited, but it is usually preferable to adjust the resin content in the prepreg to be 20 to 60% by mass.
  • Example 1 Synthesis of maleimide resin (1)
  • the reaction solution was transferred to a 2 L separable flask, and diluted with 140 g of toluene.
  • the diluted solution was washed once with 100 g of a 10% aqueous sodium hydroxide solution and four times with 100 g of distilled water, and concentrated under reduced pressure to obtain 109.48 g of the polyaniline compound (1).
  • the amine equivalent of the polyaniline compound (1) was 146 eq / g.
  • Each peak corresponds to an ammonia adduct of the following compound.
  • the content of the dinuclear component (bismaleimide compound) calculated from the area ratio in the GPC chart was 96%.
  • the GPC chart of the maleimide resin (1) is shown in FIG.
  • Example 2 Synthesis of maleimide resin (2)
  • a 500 mL eggplant flask attached to a rotary evaporator 52.11 g (0.43 mol) of 2-ethylaniline, 64.17 g (0.43 mol) of 2,6-diethylaniline, 22.14 g of distilled water and 22 p-toluenesulfonic acid. .73 g was charged and heated to 70 ° C. with stirring. After holding the ring at 70 ° C. for 30 minutes, 34.98 g (0.43 mol) of a 37% formalin solution was added in 4 portions over 1 hour and reacted for 4 hours.
  • the reaction solution was transferred to a 2 L separable flask, and diluted with 140 g of toluene.
  • the diluted solution was washed once with 100 g of a 10% aqueous sodium hydroxide solution and four times with 100 g of distilled water, and concentrated under reduced pressure to obtain 119.02 g of the polyaniline compound (2).
  • the amine equivalent of the polyaniline compound (2) was 165 eq / g.
  • Each peak corresponds to an ammonia adduct of the following compound.
  • the content of the dinuclear component (bismaleimide compound) calculated from the area ratio in the GPC chart was 56%.
  • the GPC chart of the maleimide resin (2) is shown in FIG.
  • reaction solution was transferred to a 2 L separable flask, and diluted with 140 g of toluene.
  • the diluted solution was washed once with 100 g of a 10% aqueous sodium hydroxide solution and four times with 100 g of distilled water, and concentrated under reduced pressure to obtain 106.11 g of the polyaniline compound (4).
  • the amine equivalent was 147 eq / g.
  • Example 4 to 6 Synthesis of maleimide resins (4) to (6)
  • Maleimide resins (4) to (6) were synthesized in the same procedure as in Example 1 except that the type and number of moles of the aniline compound were changed as shown in Table 1 below.
  • the GPC charts of the maleimide resins (4) to (6) are shown in FIGS. 4 to 6.
  • Table 1 shows the content of the binuclear component (bismaleimide compound) of each maleimide resin calculated from the area ratio of the GPC chart. Moreover, it was confirmed from the MS spectrum of each maleimide resin that each of them contained an asymmetrical bismaleimide compound.
  • Examples 7 to 12 Evaluation of maleimide resins (1) to (6)
  • the melting point, softening point, Td5 of the cured product, and the coefficient of thermal expansion of the cured product of each maleimide resin were measured and evaluated in the following manner. The evaluation results are shown in Table 2.
  • Td5 of cured product The maleimide resins obtained in Examples 1 to 6 were poured into molds of 11 cm ⁇ 5 cm ( ⁇ thickness of about 1 mm) and cured at 200 ° C. for 2 hours and further at 250 ° C. for 2 hours to obtain a cured product. .. Td5 of the obtained cured product was measured using TGA / DSC manufactured by METTLER TOLEDO CO., LTD. Measuring equipment: METTLER TOLEDO Co., Ltd.
  • TGA / DSC 1 Measurement range: 40 ° C to 150 ° C to 600 ° C Temperature rise rate: 20 ° C / min (40 ° C ⁇ 150 ° C) Hold for 15 minutes (150 ° C) 5 ° C / min (150 ° C ⁇ 600 ° C) Atmosphere: Nitrogen

Abstract

The present invention provides: a maleimide resin and a maleimide compound which are characterized by being a product of maleimidization of a polyamine compound (C) which is a product of reaction between a plurality of aromatic monoamine compounds (A) and a binder (B); a curable composition containing either of these; a cured object formed from the curable composition; a semiconductor-encapsulating material; a semiconductor-encapsulating device; a prepreg; a circuit board; and a build-up film. The maleimide resin and the maleimide compound not only are low in melting point and softening point and have excellent handleability, but also give cured objects having high heat resistance and are suitable for use as or in semiconductor-encapsulating materials, etc.

Description

マレイミド樹脂、非対称ビスマレイミド化合物、硬化性組成物、硬化物、半導体封止材料、半導体封止装置、プリプレグ、回路基板、及びビルドアップフィルムMaleimide resin, asymmetric bismaleimide compound, curable composition, cured product, semiconductor encapsulation material, semiconductor encapsulation device, prepreg, circuit board, and build-up film.
 本発明は、融点や軟化点が低くハンドリング性に優れるとともに、硬化物が高い耐熱性を有し、半導体封止材料等に好適に用いることができるマレイミド樹脂やマレイミド化合物、これらを含有する硬化性組成物とその硬化物、半導体封止材料、半導体封止装置、プリプレグ、回路基板、及びビルドアップフィルムに関する。 INDUSTRIAL APPLICABILITY The present invention has a low melting point and softening point, excellent handleability, and a cured product having high heat resistance, and a maleimide resin or a maleimide compound that can be suitably used as a semiconductor encapsulating material, and a curability containing these. The present invention relates to a composition and a cured product thereof, a semiconductor encapsulating material, a semiconductor encapsulating device, a prepreg, a circuit board, and a build-up film.
 マレイミド樹脂は硬化物における耐熱性が非常に高いことから、パワー半導体用封止材料等、特に高い耐熱性が要求される分野の樹脂材料としてその利用が検討されているが、現在市場に流通しているマレイミド樹脂は融点や軟化点が高く、材料としてのハンドリング性の低さが課題となっている。 Since maleimide resin has extremely high heat resistance in cured products, its use is being considered as a resin material in fields that require particularly high heat resistance, such as encapsulation materials for power semiconductors, but it is currently on the market. Maleimide resin has a high melting point and softening point, and its low handleability as a material is a problem.
 従来知られているマレイミド樹脂としては、例えば、4,4‘-ジフェニルメタンビスマレイミド型の化合物が広く知られているが、前述の通り、当該化合物は融点が高く、材料としてのハンドリング性に劣るものであった(例えば特許文献1参照)。また、比較的ハンドリング性の高いマレイミド樹脂として、2,2-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン型の化合物が知られているが、当該化合物は耐熱性等の硬化物物性において、昨今の市場要求を満たすものではなかった(例えば特許文献2参照)。 As a conventionally known maleimide resin, for example, a 4,4'-diphenylmethanebismaleimide type compound is widely known, but as described above, the compound has a high melting point and is inferior in handleability as a material. (See, for example, Patent Document 1). Further, as a maleimide resin having relatively high handleability, a 2,2-bis [4- (4-maleimide phenoxy) phenyl] propane type compound is known, and the compound has a cured physical property such as heat resistance. , Did not meet the recent market demand (see, for example, Patent Document 2).
特開平2-269716号公報Japanese Unexamined Patent Publication No. 2-269716 特開平6-128225号公報Japanese Unexamined Patent Publication No. 6-128225
 従って、本発明が解決しようとする課題は、融点や軟化点が低くハンドリング性に優れるとともに、硬化物が高い耐熱性を有し、半導体封止材料等に好適に用いることができるマレイミド樹脂やマレイミド化合物、これらを含有する硬化性組成物とその硬化物、半導体封止材料、半導体封止装置、プリプレグ、回路基板、及びビルドアップフィルムを提供することにある。 Therefore, the problem to be solved by the present invention is a maleimide resin or maleimide that has a low melting point and softening point and is excellent in handleability, and the cured product has high heat resistance and can be suitably used as a semiconductor encapsulating material or the like. It is an object of the present invention to provide a compound, a curable composition containing these and a cured product thereof, a semiconductor encapsulating material, a semiconductor encapsulating device, a prepreg, a circuit board, and a build-up film.
 本発明者は、鋭意検討した結果、複数種の芳香族モノアミン化合物と、結合剤との反応生成物であるポリアミン化合物をマレイミド化して得られるマレイミド樹脂が、融点や軟化点が低くハンドリング性に優れるとともに、硬化物が高い耐熱性を有し、半導体封止材料等に好適に用いることができることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventor has found that a maleimide resin obtained by maleimizing a polyamine compound which is a reaction product of a plurality of aromatic monoamine compounds and a binder has a low melting point and softening point and is excellent in handleability. At the same time, they have found that the cured product has high heat resistance and can be suitably used as a semiconductor encapsulating material, etc., and have completed the present invention.
 すなわち、本発明は、複数種の複数種の芳香族モノアミン化合物(A)と、結合剤(B)との反応生成物であるポリアミン化合物(C)のマレイミド化物であることを特徴とするマレイミド樹脂に関する。 That is, the present invention is a maleimide resin which is a maleimide product of a polyamine compound (C) which is a reaction product of a plurality of kinds of aromatic monoamine compounds (A) and a binder (B). Regarding.
 本発明は更に、異なる2種の芳香族モノアミン化合物(A)が結合剤(B)で結合された非対称ジアミン化合物(C-1)のマレイミド化物である非対称ビスマレイミド化合物に関する。 The present invention further relates to an asymmetric bismaleimide compound which is a maleimided product of an asymmetric diamine compound (C-1) in which two different aromatic monoamine compounds (A) are bound with a binder (B).
 本発明は更に、前記マレイミド樹脂又は前記非対称ビスマレイミド化合物を含有する硬化性組成物に関する。 The present invention further relates to a curable composition containing the maleimide resin or the asymmetrical bismaleimide compound.
 本発明は更に、前記硬化性組成物の硬化物に関する。 The present invention further relates to a cured product of the curable composition.
 本発明は更に、前記硬化性組成物を用いた半導体封止材料に関する。 The present invention further relates to a semiconductor encapsulation material using the curable composition.
 本発明は更に、前記半導体封止材料を用いた半導体装置に関する。 The present invention further relates to a semiconductor device using the semiconductor encapsulating material.
 本発明は更に、前記硬化性組成物を用いたプリプレグに関する。 The present invention further relates to a prepreg using the curable composition.
 本発明は更に、前記プリプレグを用いた回路基板に関する。 The present invention further relates to a circuit board using the prepreg.
 本発明は更に、前記硬化性組成物を用いたビルドアップフィルムに関する。 The present invention further relates to a build-up film using the curable composition.
 本発明によれば、融点や軟化点が低くハンドリング性に優れるとともに、硬化物が高い耐熱性を有し、半導体封止材料等に好適に用いることができるマレイミド樹脂やマレイミド化合物、これらを含有する硬化性組成物とその硬化物、半導体封止材料、半導体封止装置、プリプレグ、回路基板、及びビルドアップフィルムを提供することができる。 According to the present invention, a maleimide resin or a maleimide compound, which has a low melting point and softening point and is excellent in handleability, has a high heat resistance of a cured product, and can be suitably used as a semiconductor encapsulation material, etc., is contained. A curable composition and a cured product thereof, a semiconductor encapsulating material, a semiconductor encapsulating device, a prepreg, a circuit board, and a build-up film can be provided.
実施例1で得られたマレイミド樹脂(1)のGPCチャート図である。It is a GPC chart figure of the maleimide resin (1) obtained in Example 1. FIG. 実施例2で得られたマレイミド樹脂(2)のGPCチャート図である。It is a GPC chart figure of the maleimide resin (2) obtained in Example 2. FIG. 実施例3で得られたマレイミド樹脂(3)のGPCチャート図である。It is a GPC chart figure of the maleimide resin (3) obtained in Example 3. FIG. 実施例4で得られたマレイミド樹脂(4)のGPCチャート図である。It is a GPC chart figure of the maleimide resin (4) obtained in Example 4. FIG. 実施例5で得られたマレイミド樹脂(5)のGPCチャート図である。It is a GPC chart figure of the maleimide resin (5) obtained in Example 5. FIG. 実施例6で得られたマレイミド樹脂(6)のGPCチャート図である。It is a GPC chart figure of the maleimide resin (6) obtained in Example 6. FIG. 実施例1で得られたマレイミド樹脂(1)の示差走査熱量測定(DSC)チャート図である。It is a differential scanning calorimetry (DSC) chart figure of the maleimide resin (1) obtained in Example 1. FIG. 実施例2で得られたマレイミド樹脂(2)の示差走査熱量測定(DSC)チャート図である。It is a differential scanning calorimetry (DSC) chart figure of the maleimide resin (2) obtained in Example 2. FIG. 実施例3で得られたマレイミド樹脂(3)の示差走査熱量測定(DSC)チャート図である。It is a differential scanning calorimetry (DSC) chart figure of the maleimide resin (3) obtained in Example 3. FIG. 実施例4で得られたマレイミド樹脂(4)の示差走査熱量測定(DSC)チャート図である。It is a differential scanning calorimetry (DSC) chart figure of the maleimide resin (4) obtained in Example 4. FIG. 実施例5で得られたマレイミド樹脂(5)の示差走査熱量測定(DSC)チャート図である。It is a differential scanning calorimetry (DSC) chart figure of the maleimide resin (5) obtained in Example 5. FIG. 実施例6で得られたマレイミド樹脂(6)の示差走査熱量測定(DSC)チャート図である。It is a differential scanning calorimetry (DSC) chart figure of the maleimide resin (6) obtained in Example 6. FIG.
 以下、本発明を詳細に説明する。
 本発明のマレイミド樹脂は複数種の芳香族モノアミン化合物(A)と、結合剤(B)との反応生成物であるポリアミン化合物(C)のマレイミド化物であることを特徴とする。
Hereinafter, the present invention will be described in detail.
The maleimide resin of the present invention is characterized by being a maleimide product of a polyamine compound (C) which is a reaction product of a plurality of aromatic monoamine compounds (A) and a binder (B).
 前記芳香族モノアミン化合物(A)は、芳香環上にNHを一つ有する化合物であれば、その他の具体構造は特に限定なく、多種多様な化合物を用いることができる。具体的には、ベンゼン、ナフタレン、アントラセン等の芳香族化合物の芳香環上にNH基を一つ有する化合物や、NH基に加えて更にその他の置換基を一つ乃至複数有する化合物等が挙げられる。前記その他の置換基としては、例えば、脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、ハロゲン原子、アリール基、アラルキル基、水酸基等が挙げられる。 As the aromatic monoamine compound (A), as long as it is a compound having one NH 2 on the aromatic ring, other specific structures are not particularly limited, and a wide variety of compounds can be used. Specifically, a compound having one NH 2 group on the aromatic ring of an aromatic compound such as benzene, naphthalene, and anthracene, and a compound having one or more other substituents in addition to the NH 2 group, etc. Can be mentioned. Examples of the other substituent include an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, a halogen atom, an aryl group, an aralkyl group, a hydroxyl group and the like.
 前記脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、ビニル基、プロピル基、アリル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等が挙げられる。前記アルキルオキシ基は、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記アルケニルオキシ基は、アリルオキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。前記アリール基は、フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。前記アラルキル基は、ベンジル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記アルキル基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。 The aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group. Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the alkenyloxy group include an allyloxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei. Examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
 前記芳香族モノアミン化合物(A)の中でも、得られるマレイミド樹脂の融点や軟化点が低くハンドリング性に優れるものとなることから、アニリン又はアニリンの芳香核上に前記その他の置換基を一つないし複数有する化合物が好ましい。更に、アニリン、アニリンの2位に置換基を有する化合物、アニリンの2,6-位に置換基を有する化合物が特に好ましい。また、アニリンの2位に置換基を有する化合物及びアニリンの2,6-位に置換基を有する化合物の置換基の種類としては、硬化物における耐熱性に優れるマレイミド樹脂となることから、炭素原子数1~4の脂肪族炭化水素基が好ましく、炭素原子数1~4のアルキル基がより好ましい。 Among the aromatic monoamine compounds (A), the obtained maleimide resin has a low melting point and softening point and is excellent in handleability. Therefore, one or a plurality of the other substituents are added on the aniline or the aromatic nucleus of aniline. The compound to have is preferable. Further, aniline, a compound having a substituent at the 2-position of aniline, and a compound having a substituent at the 2,6-position of aniline are particularly preferable. Further, the type of the substituent of the compound having a substituent at the 2-position of aniline and the compound having a substituent at the 2,6-position of aniline is a maleimide resin having excellent heat resistance in a cured product, and therefore a carbon atom. An aliphatic hydrocarbon group having 1 to 4 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
 本発明では、前記芳香族モノアミン化合物(A)として複数種を併用する。これにより、マレイミド樹脂の特徴である高い耐熱性を維持しながらも、融点や軟化点が低くハンドリング性に優れるマレイミド樹脂となる。用いる前記芳香族モノアミン化合物(A)の化合物数は複数種、すなわち2種以上であればよく、上限は特に限定されないが、比較的簡便に製造可能となることから、2~5種の範囲で用いることが好ましく、2種又は3種を併用することがより好ましい。また、各芳香族モノアミン化合物(A)の使用量は、融点や軟化点が低くハンドリング性に優れる効果が十分に発揮されることから、前記芳香族モノアミン化合物(A)の合計に対し、少なくとも10質量%以上であることが好ましく、25質量%以上であることがより好ましい。また、その上限値としては、90%以下であることが好ましく、75%以下であることがより好ましい。前記芳香族モノアミン化合物(A)として2種を併用する場合には、両者の質量比が10/90~90/10の範囲であることが好ましく。20/80~80/20の範囲であることがより好ましい。 In the present invention, a plurality of types are used in combination as the aromatic monoamine compound (A). As a result, the maleimide resin has a low melting point and softening point and is excellent in handleability while maintaining the high heat resistance characteristic of the maleimide resin. The number of the aromatic monoamine compound (A) to be used may be a plurality of kinds, that is, two or more kinds, and the upper limit is not particularly limited, but since it can be produced relatively easily, it is in the range of 2 to 5 kinds. It is preferable to use it, and it is more preferable to use two or three kinds in combination. Further, the amount of each aromatic monoamine compound (A) used is at least 10 with respect to the total of the aromatic monoamine compounds (A) because the melting point and the softening point are low and the effect of excellent handleability is sufficiently exhibited. It is preferably 5% by mass or more, and more preferably 25% by mass or more. The upper limit thereof is preferably 90% or less, and more preferably 75% or less. When two kinds of the aromatic monoamine compound (A) are used in combination, the mass ratio of the two is preferably in the range of 10/90 to 90/10. More preferably, it is in the range of 20/80 to 80/20.
 前記結合剤(B)は、前記芳香族モノアミン化合物(A)と反応して、前記芳香族モノアミン化合物(A)の芳香環同士を結合する化合物であればその具体構造は特に限定なく、様々な化合物を用いることができる。また、前記結合剤(B)は一種類を単独で用いてもよいし、2種類以上を併用してもよい。前記結合剤(B)の具体例としては、アルデヒド化合物(B-1)、ケトン化合物(B-2)、下記一般式(B-3)で表される芳香族化合物(B-3)、下記一般式(B-4)で表される芳香族化合物(B-4)、下記一般式(B-5)で表される芳香族化合物(B-5)、下記一般式(B-6)で表される芳香族化合物(B-6)、下記一般式(B-7)で表される芳香族化合物(B-7)、下記一般式(B-8)で表される芳香族化合物(B-8)等が挙げられる。 The specific structure of the binder (B) is not particularly limited as long as it is a compound that reacts with the aromatic monoamine compound (A) to bind the aromatic rings of the aromatic monoamine compound (A) to each other. Compounds can be used. Further, the binder (B) may be used alone or in combination of two or more. Specific examples of the binder (B) include an aldehyde compound (B-1), a ketone compound (B-2), an aromatic compound (B-3) represented by the following general formula (B-3), and the following. The aromatic compound (B-4) represented by the general formula (B-4), the aromatic compound (B-5) represented by the following general formula (B-5), and the following general formula (B-6). The aromatic compound (B-6) represented, the aromatic compound (B-7) represented by the following general formula (B-7), and the aromatic compound (B) represented by the following general formula (B-8). -8) and the like.
Figure JPOXMLDOC01-appb-C000003
[一般式(B-3)~(B-8)中、Arはそれぞれ独立して置換基を有していてもよい芳香環を表す。Rはそれぞれ独立して水素原子又はメチル基である。Rはそれぞれ独立して水素原子又は炭素原子数1~4の脂肪族炭化水素基である。Rはそれぞれ独立して脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかであり、lは0~3の整数である。Xは水酸基、ハロゲン原子、アルキルオキシ基のいずれかである。Yは単結合、炭素原子数1~6の二価の脂肪族炭化水素基、酸素原子、硫黄原子、スルホニル基のいずれかである。]
Figure JPOXMLDOC01-appb-C000003
[In the general formulas (B-3) to (B-8), Ar 1 represents an aromatic ring which may independently have a substituent. R 1 is independently a hydrogen atom or a methyl group. R 2 is an independently hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. R 3 is independently any of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group and an aralkyl group, and l is an integer of 0 to 3. X is any of a hydroxyl group, a halogen atom, and an alkyloxy group. Y is any one of a single bond, a divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, an oxygen atom, a sulfur atom, and a sulfonyl group. ]
 前記アルデヒド化合物(B-1)は、例えば、ホルムアルデヒドやアセトアルデヒド等の脂肪族アルデヒド化合物、ベンズアルデヒドやナフトアルデヒド等の芳香族アルデヒド化合物等が挙げられる。これらは一種類を単独で用いてもよいし、2種類以上を併用してもよい。 Examples of the aldehyde compound (B-1) include aliphatic aldehyde compounds such as formaldehyde and acetaldehyde, and aromatic aldehyde compounds such as benzaldehyde and naphthaldehyde. One of these may be used alone, or two or more thereof may be used in combination.
 前記ケトン化合物(B-2)は、例えば、アセトン、メチルエチルケトン、ジエチルケトン等の脂肪族ケトン化合物、アセトフェノン等の芳香族ケトン化合物等が挙げられる。これらは一種類を単独で用いてもよいし、2種類以上を併用してもよい。 Examples of the ketone compound (B-2) include aliphatic ketone compounds such as acetone, methyl ethyl ketone and diethyl ketone, and aromatic ketone compounds such as acetophenone. One of these may be used alone, or two or more thereof may be used in combination.
 前記一般式(B-3)~(B-6)中、Arはそれぞれ独立して置換基を有していてもよい芳香環を表す。具体的には、フェニレン基、ナフチレン基、及びこれらの芳香環上に各種の置換基を一つ乃至複数有する構造部位が挙げられる。前記置換基としては、例えば、脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、ハロゲン原子、アリール基、アラルキル基、水酸基等が挙げられる。前記脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、ビニル基、プロピル基、アリル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等が挙げられる。前記アルキルオキシ基は、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記アルケニルオキシ基は、アリルオキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。前記アリール基は、フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。前記アラルキル基は、ベンジル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記アルキル基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。 In the general formulas (B-3) to (B-6), Ar 1 represents an aromatic ring which may independently have a substituent. Specific examples thereof include a phenylene group, a naphthylene group, and a structural site having one or a plurality of various substituents on these aromatic rings. Examples of the substituent include an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, a halogen atom, an aryl group, an aralkyl group, a hydroxyl group and the like. The aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group. Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the alkenyloxy group include an allyloxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei. Examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
 前記一般式(B-4)、(B-6)中、Rはそれぞれ独立して水素原子又は炭素原子数1~4の脂肪族炭化水素基である。前記炭素原子数1~4の脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、ビニル基、プロピル基、アリル基、ブチル基等が挙げられる。 In the general formulas (B-4) and (B-6), R 2 is an independent hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, respectively. The aliphatic hydrocarbon group having 1 to 4 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group and the like.
 前記一般式(B-7)、(B-8)中、Rはそれぞれ独立して脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかであり、lは0~3の整数である。前記脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、ビニル基、プロピル基、アリル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等が挙げられる。前記アルキルオキシ基は、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記アルケニルオキシ基は、アリルオキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。前記アリール基は、フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。前記アラルキル基は、ベンジル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記アルキル基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。 In the general formulas (B-7) and (B-8), R 3 is independently composed of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group and an aralkyl group. It is either, and l is an integer of 0 to 3. The aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group. Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the alkenyloxy group include an allyloxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei. Examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
 前記一般式(B-4)、(B-6)、(B-8)中、Xは水酸基、ハロゲン原子、アルキルオキシ基のいずれかである。前記アルキルオキシ基は、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。 In the general formulas (B-4), (B-6), and (B-8), X is any of a hydroxyl group, a halogen atom, and an alkyloxy group. Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
 前記一般式(B-5)、(B-6)中、Yは単結合、炭素原子数1~6の二価の脂肪族炭化水素基、酸素原子、硫黄原子、スルホニル基のいずれかである。前記炭素原子数1~6の二価の脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。 In the general formulas (B-5) and (B-6), Y is any one of a single bond, a divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, an oxygen atom, a sulfur atom, and a sulfonyl group. .. The divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure.
 前記芳香族モノアミン化合物(A)と、前記結合剤(B)とを反応させてポリアミン化合物(C)を得る反応工程は、例えば、複数種の前記芳香族モノアミン化合物(A)と前記結合剤(B)とを酸性触媒条件下で反応させる方法等が挙げられる。特に、反応制御が容易になることから、前記芳香族モノアミン化合物(A)中に、前記結合剤(B)を分割添加することが好ましい。当該反応は、適宜溶媒中で行ってもよい。また、50~200℃程度に加熱することで、効率的に反応を進行させることができる。反応終了後はアルカリ水溶液や蒸留水等で洗浄するなどし、中間体であるポリアミン化合物(C)を得ることができる。 The reaction step of reacting the aromatic monoamine compound (A) with the binder (B) to obtain the polyamine compound (C) is, for example, a plurality of types of the aromatic monoamine compound (A) and the binder ( Examples thereof include a method of reacting with B) under acidic catalyst conditions. In particular, it is preferable to separately add the binder (B) to the aromatic monoamine compound (A) because the reaction control becomes easy. The reaction may be carried out in a solvent as appropriate. Further, the reaction can be efficiently promoted by heating to about 50 to 200 ° C. After completion of the reaction, the polyamine compound (C) as an intermediate can be obtained by washing with an alkaline aqueous solution, distilled water or the like.
 前記酸性触媒は、例えば、パラトルエンスルホン酸、ジメチル硫酸、ジエチル硫酸、硫酸、塩酸、シュウ酸、活性白土等が挙げられる。これらは一種類を単独で用いてもよいし、2種類以上を併用してもよい。前記酸性触媒の添加量は、前記芳香族モノアミン化合物化合物(A)2モルに対し、酸触媒が0.01~0.5モルの範囲となる割合が好ましく、0.1~0.3モルの範囲となる割合がより好ましい。モル数が定義できない場合は、アニリン化合物(A)と結合剤(B)と溶媒と酸性触媒の総量に対して1wt%~50wt%の範囲となる割合が好ましい。 Examples of the acidic catalyst include p-toluenesulfonic acid, dimethylsulfuric acid, diethylsulfuric acid, sulfuric acid, hydrochloric acid, oxalic acid, and activated clay. One of these may be used alone, or two or more thereof may be used in combination. The amount of the acid catalyst added is preferably in the range of 0.01 to 0.5 mol, preferably 0.1 to 0.3 mol, with respect to 2 mol of the aromatic monoamine compound (A). The range ratio is more preferable. When the number of moles cannot be defined, the ratio is preferably in the range of 1 wt% to 50 wt% with respect to the total amount of the aniline compound (A), the binder (B), the solvent and the acidic catalyst.
 前記溶媒は、例えば、蒸留水、やトルエンキシレン等の有機溶剤等が挙げられる。これらは一種類を単独で用いてもよいし、2種類以上の混合溶媒としてもよい。前記溶媒の使用量は、前記芳香族モノアミン化合物(A)と前記結合剤(B)との合計質量に対し、5~100質量%の範囲で用いることが好ましい。 Examples of the solvent include distilled water and organic solvents such as toluenexylene. These may be used alone or as a mixed solvent of two or more kinds. The amount of the solvent used is preferably in the range of 5 to 100% by mass with respect to the total mass of the aromatic monoamine compound (A) and the binder (B).
 前記ポリアミン化合物(C)のマレイミド化反応は、例えば、前記ポリアミン化合物(C)と酸無水物とを酸性触媒条件下で反応させる方法が挙げられる。特に、反応制御が容易になることから、前記ポリアミン化合物(C)中に、前記酸無水物を分割添加するか、或いは、前記酸無水物を適当な溶剤に溶解させて滴下することが好ましい。当該反応は適宜溶媒中で行ってもよい。より好ましい反応手順としては、初めに前記ポリアミン化合物(C)と前記酸無水物とを室温で撹拌し、アミック酸中間体を得る。その後、酸触媒を添加し、50~200℃、より好ましくは70~150℃に加熱し反応を進行させる。この時、系内の水分を除去することが好ましい。反応終了後はアルカリ水溶液や蒸留水などで洗浄するなどし、目的のマレイミド樹脂を得ることができる。 Examples of the maleimideization reaction of the polyamine compound (C) include a method of reacting the polyamine compound (C) with an acid anhydride under acidic catalytic conditions. In particular, since reaction control becomes easy, it is preferable to add the acid anhydride in portions to the polyamine compound (C), or to dissolve the acid anhydride in an appropriate solvent and drop the acid anhydride. The reaction may be carried out in a solvent as appropriate. As a more preferable reaction procedure, first, the polyamine compound (C) and the acid anhydride are stirred at room temperature to obtain an amic acid intermediate. Then, an acid catalyst is added and heated to 50 to 200 ° C., more preferably 70 to 150 ° C. to proceed the reaction. At this time, it is preferable to remove the water in the system. After completion of the reaction, the desired maleimide resin can be obtained by washing with an alkaline aqueous solution or distilled water.
 前記酸無水物は、例えば、無水マレイン酸、シトラコン酸無水物、2,3-ジメチルマレイン酸無水物等が挙げ得られる。これらは一種類を単独で用いてもよいし、2種類以上を併用してもよい。 Examples of the acid anhydride include maleic anhydride, citraconic acid anhydride, 2,3-dimethylmaleic acid anhydride and the like. One of these may be used alone, or two or more thereof may be used in combination.
 前記酸性触媒は、例えば、p-トルエンスルホン酸、ヒドロキシ-p-トルエンスルホン酸、メタンスルホン酸、硫酸、リン酸等が挙げられる。これらは一種類を単独で用いてもよいし、2種類以上を併用してもよい。前記酸性触媒の添加量は、前記ポリアニリン化合物(C)のアミノ基当量1g/molに対して通常0.01~10mol、好ましくは0.03~3molである。 Examples of the acidic catalyst include p-toluenesulfonic acid, hydroxy-p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, phosphoric acid and the like. One of these may be used alone, or two or more thereof may be used in combination. The amount of the acidic catalyst added is usually 0.01 to 10 mol, preferably 0.03 to 3 mol, based on 1 g / mol of the amino group equivalent of the polyaniline compound (C).
 前記溶媒は、前記ポリアミン化合物(C)や前記酸無水物を溶解し得るものであればよい。特に、前記ポリアミン化合物(C)や前記酸無水物の溶解性が高く、反応が効率的に進行することから、トルエン等の非極性溶媒と、ジメチルホルムアミド等の非プロトン性極性溶媒との混合溶媒を用いることが好ましい。前記非極性溶媒は、トルエンの他、キシレン、クロロベンゼン等が挙げられる。また、前記非プロトン性極性溶媒は、ジメチルホルムアルデヒドの他、メチルエチルケトン等が挙げられる。両者の配合比及び溶剤の使用量は、前記ポリアミン化合物(C)や前記酸無水物の溶剤溶解性等によって適宜調整される。一例として、前記非極性溶媒と非プロトン性溶媒との質量比を1/99~99/1の範囲とし、全溶媒量を前記ポリアミン化合物(C)と前記酸無水物と全溶媒量の合計に対し、0.5~80%の範囲とする方法が挙げられる。 The solvent may be any one that can dissolve the polyamine compound (C) and the acid anhydride. In particular, since the polyamine compound (C) and the acid anhydride are highly soluble and the reaction proceeds efficiently, a mixed solvent of a non-polar solvent such as toluene and an aprotic polar solvent such as dimethylformamide is used. It is preferable to use. Examples of the non-polar solvent include xylene, chlorobenzene and the like in addition to toluene. Examples of the aprotic polar solvent include dimethylformaldehyde and methylethylketone. The compounding ratio of both and the amount of the solvent used are appropriately adjusted depending on the solvent solubility of the polyamine compound (C) and the acid anhydride. As an example, the mass ratio of the non-protic solvent to the aprotic solvent is in the range of 1/99 to 99/1, and the total solvent amount is the sum of the polyamine compound (C), the acid anhydride and the total solvent amount. On the other hand, a method in which the range is 0.5 to 80% can be mentioned.
 本発明のマレイミド樹脂の分子量は特に限定されず、用途等に応じて適宜反応条件等を変更し、好ましい値に調節することが可能である。中でも、半導体封止材料用途に用いる場合には、硬化物における高い耐熱性を維持しながらも、融点や軟化点が低くハンドリング性に優れる樹脂となることから、下記式(1)で表されるような2核体成分、下記構造式(2)で表されるような3核体成分、下記式(3-1)や(3-2)で表される4核体成分等、比較的低分子量の成分を含有することが好ましい。 The molecular weight of the maleimide resin of the present invention is not particularly limited, and the reaction conditions and the like can be appropriately changed according to the intended use and adjusted to a preferable value. Above all, when it is used as a semiconductor encapsulant material, it is represented by the following formula (1) because it is a resin having a low melting point and softening point and excellent handling property while maintaining high heat resistance in a cured product. Such dinuclear component, trinuclear component as represented by the following structural formula (2), tetranuclear component represented by the following formulas (3-1) and (3-2), etc. are relatively low. It preferably contains a component having a molecular weight.
Figure JPOXMLDOC01-appb-C000004
[式中Aは前記芳香族モノアミン化合物(A)に由来し、また、マレイミド基を有する構造部位であり、Bは前記結合剤(B)に由来する構造部位である。式中のA及びBはそれぞれ同一であってもよいし、異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000004
[In the formula, A is a structural moiety derived from the aromatic monoamine compound (A) and has a maleimide group, and B is a structural moiety derived from the binder (B). A and B in the formula may be the same or different. ]
 特に、マレイミド樹脂が2核体成分(ビスマレイミド化合物)を含むことが好ましい。マレイミド樹脂中の2核体成分(ビスマレイミド化合物)の割合は30%以上であることが好ましく、50%以上であることがより好ましい。 In particular, it is preferable that the maleimide resin contains a dinuclear component (bismaleimide compound). The ratio of the binuclear component (bismaleimide compound) in the maleimide resin is preferably 30% or more, more preferably 50% or more.
 本発明において、マレイミド樹脂中の2核体の含有量は、ゲル浸透クロマトグラフィー(GPC)のチャート図の面積比から算出される値である。また、本発明においてゲル浸透クロマトグラフィー(GPC)の測定条件は実施例に記載したものである。なお、発明において「核体数」とは、前記式(1)~(3-2)に示す通り、分子中の前記芳香族モノアミン化合物(A)に由来する構造部位の数のことである。 In the present invention, the content of the binuclear body in the maleimide resin is a value calculated from the area ratio of the gel permeation chromatography (GPC) chart. Further, in the present invention, the measurement conditions of gel permeation chromatography (GPC) are described in Examples. In the invention, the "number of nuclei" is the number of structural sites derived from the aromatic monoamine compound (A) in the molecule as shown in the formulas (1) to (3-2).
 また、2核体成分(ビスマレイミド化合物)の中でも、硬化物における高い耐熱性を維持しながらも、融点や軟化点が低くハンドリング性に優れる樹脂となることから、異なる2種の芳香族モノアミン化合物(A)が結合剤(B)で結合された非対称ジアミン化合物(C-1)のマレイミド化物である非対称ビスマレイミド化合物が好ましい。更に、前記芳香族モノアミン化合物(A)としてアニリン化合物を用いたものが好ましく、下記構造式(4)で表される非対称ビスマレイミド化合物がより好ましい。本発明においては、当該非対称マレイミド化合物を単離精製して用いてもよい。 In addition, among the dinuclear component (bismaleimide compound), two different aromatic monoamine compounds are obtained because they are resins having low melting point and softening point and excellent handling property while maintaining high heat resistance in the cured product. An asymmetric bismaleimide compound, which is a maleimided product of the asymmetric diamine compound (C-1) to which (A) is bound with the binder (B), is preferable. Further, a compound using an aniline compound as the aromatic monoamine compound (A) is preferable, and an asymmetric bismaleimide compound represented by the following structural formula (4) is more preferable. In the present invention, the asymmetric maleimide compound may be isolated and purified before use.
Figure JPOXMLDOC01-appb-C000005
[式中Zは炭素原子数1~200の二価の有機基である。Rはそれぞれ独立して脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかである。式中にRが複数存在する場合、それらは同一であってもよいし、異なっていてもよい。mは0又は1~4の整数である。式中破線で囲われた構造部位αと構造部位βとは互いに異なる構造を有する。]
Figure JPOXMLDOC01-appb-C000005
[Z in the formula is a divalent organic group having 1 to 200 carbon atoms. Each of R4 is independently an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group, or an aralkyl group. If there are multiple R4s in the equation, they may be the same or different. m is 0 or an integer of 1 to 4. The structural part α and the structural part β surrounded by the broken line in the formula have different structures from each other. ]
 前記構造式(4)中のZは前記結合剤(B)に由来する構造部位である。Zは炭素原子数1~200の二価の有機基であるが、炭素原子数が1~200の範囲であれば、酸素原子やハロゲン原子等、その他の原子を含む構造部位であってもよい。中でも、炭素原子数1~20の二価の有機基であることがより好ましい。前記Zの具体例としては、例えば、下記一般式(Z-1)~(Z-8)で表される構造部位等が挙げられる。 Z in the structural formula (4) is a structural site derived from the binder (B). Z is a divalent organic group having 1 to 200 carbon atoms, but may be a structural moiety containing other atoms such as oxygen atom and halogen atom as long as the carbon atom number is in the range of 1 to 200. .. Above all, a divalent organic group having 1 to 20 carbon atoms is more preferable. Specific examples of the Z include structural parts represented by the following general formulas (Z-1) to (Z-8).
Figure JPOXMLDOC01-appb-C000006
[一般式(Z-1)~(X-8)中、Arはそれぞれ独立して置換基を有していてもよい芳香環を表す。Rはそれぞれ独立して脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかであり、lは0~3の整数である。Rはそれぞれ独立して水素原子、炭素原子数1~4の脂肪族炭化水素基、又は置換基を有していてもよい芳香環を表す。Rはそれぞれ独立して水素原子又は炭素原子数1~4の脂肪族炭化水素基を表す。Rは一般式(Z-1)で表されるもの以外の二価の脂肪族炭化水素基、置換基を有していてもいい芳香族基、またはその組み合わせのいずれかである。Yは単結合、炭素原子数1~6の二価の脂肪族炭化水素基、酸素原子、硫黄原子、スルホニル基のいずれかである。nは1以上の整数である。]
Figure JPOXMLDOC01-appb-C000006
[In the general formulas (Z-1) to (X-8), Ar 1 represents an aromatic ring which may independently have a substituent. R 3 is independently any of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group and an aralkyl group, and l is an integer of 0 to 3. R 5 represents an aromatic ring which may independently have a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or a substituent. R 6 independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. R 7 is either a divalent aliphatic hydrocarbon group other than the one represented by the general formula (Z-1), an aromatic group which may have a substituent, or a combination thereof. Y is any one of a single bond, a divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, an oxygen atom, a sulfur atom, and a sulfonyl group. n is an integer of 1 or more. ]
 前記一般式(Z-1)中のRはそれぞれ独立して水素原子、炭素原子数1~4の脂肪族炭化水素基、又は置換基を有していてもよい芳香環を表す。前記炭素原子数1~4の脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、ビニル基、プロピル基、アリル基、ブチル基等が挙げられる。前記置換基を有していてもよい芳香環は、例えば、フェニレン基、ナフチレン基、及びこれらの芳香環上に各種の置換基を一つ乃至複数有する構造部位が挙げられる。前記置換基としては、例えば、脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、ハロゲン原子、アリール基、アラルキル基、水酸基等が挙げられる。前記脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、ビニル基、プロピル基、アリル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等が挙げられる。前記アルキルオキシ基は、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記アルケニルオキシ基は、アリルオキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。前記アリール基は、フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。前記アラルキル基は、ベンジル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記アルキル基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。 R 5 in the general formula (Z-1) represents an aromatic ring which may independently have a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, or a substituent. The aliphatic hydrocarbon group having 1 to 4 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group and the like. Examples of the aromatic ring that may have the substituent include a phenylene group, a naphthylene group, and a structural site having one or a plurality of various substituents on these aromatic rings. Examples of the substituent include an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, a halogen atom, an aryl group, an aralkyl group, a hydroxyl group and the like. The aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group. Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the alkenyloxy group include an allyloxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei. Examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei.
 前記一般式(Z-2)、(Z-3)、(Z-8)中のArはそれぞれ独立して置換基を有していてもよい芳香環を表す。その具体例は前記一般式(B-3)~(B-6)中のArと同様のものが挙げられる。 Ar 1 in the general formulas (Z-2), (Z-3) and (Z-8) represents an aromatic ring which may independently have a substituent. Specific examples thereof include those similar to Ar 1 in the general formulas (B-3) to (B-6).
 前記一般式(Z-2)、(Z-3)中のRはそれぞれ独立して水素原子又は炭素原子数1~4の脂肪族炭化水素基を表す。前記炭素原子数1~4の脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、ビニル基、プロピル基、アリル基、ブチル基等が挙げられる。 R 6 in the general formulas (Z-2) and (Z-3) independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. The aliphatic hydrocarbon group having 1 to 4 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group and the like.
 前記一般式(Z-3)中のYは単結合、炭素原子数1~6の二価の脂肪族炭化水素基、酸素原子、硫黄原子、スルホニル基のいずれかである。前記炭素原子数1~6の二価の脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。 Y in the general formula (Z-3) is any one of a single bond, a divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, an oxygen atom, a sulfur atom, and a sulfonyl group. The divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure.
 前記一般式(Z-4)中のRはそれぞれ独立して脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかであり、lは0~3の整数である。その具体例は前記一般式(B-7)、(B-8)中のRと同様のものが挙げられる。 R 3 in the general formula (Z-4) is independently any of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group, and an aralkyl group. Is an integer from 0 to 3. Specific examples thereof include those similar to R3 in the general formulas (B - 7) and (B-8).
 前記一般式(Z-7)中のRは一般式(Z-1)で表されるもの以外の二価の脂肪族炭化水素基、置換基を有していてもいい芳香族基、またはその組み合わせのいずれかである。前記二価の脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。 R 7 in the general formula (Z-7) is a divalent aliphatic hydrocarbon group other than that represented by the general formula (Z-1), an aromatic group which may have a substituent, or an aromatic group. It is one of the combinations. The divalent aliphatic hydrocarbon group may have a linear type, a branched type or a cyclic structure, and may have an unsaturated bond in the structure.
 前記構造式(4)中のRは、それぞれ独立して脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかである。前記脂肪族炭化水素基は直鎖型、分岐型、環状構造のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、ビニル基、プロピル基、アリル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等が挙げられる。前記アルキルオキシ基は、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記アルケニルオキシ基は、アリルオキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。前記アリール基は、フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。前記アラルキル基は、ベンジル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香環上に前記アルキル基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。式中にRが複数存在する場合、それらは同一であってもよいし、異なっていてもよい。 R 4 in the structural formula (4) is independently any one of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group and an aralkyl group. The aliphatic hydrocarbon group may have a linear type, a branched type, or a cyclic structure, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a vinyl group, a propyl group, an allyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and a nonyl group. Examples of the alkyloxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the alkenyloxy group include an allyloxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aliphatic hydrocarbon group, an alkoxy group, a halogen atom and the like are substituted on these aromatic nuclei. Examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, an alkoxy group, a halogen atom and the like are substituted on the aromatic ring thereof. If there are multiple R4s in the equation, they may be the same or different.
 中でも、得られるマレイミド樹脂の融点や軟化点が低くハンドリング性に優れるものとなることから、マレイミド基が置換している炭素原子に隣接する炭素原子の片方又は両方に置換基を有することが好ましい。また、当該置換基は炭素原子数1~4の脂肪族炭化水素基が好ましく、炭素原子数1~4のアルキル基がより好ましい。 Among them, since the obtained maleimide resin has a low melting point and softening point and is excellent in handleability, it is preferable to have a substituent on one or both of the carbon atoms adjacent to the carbon atom substituted by the maleimide group. Further, the substituent is preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
 本願発明の硬化性組成物は、前記マレイミド樹脂又は前記非対称ビスマレイミド化合物を含有する。本発明の硬化性組成物は、硬化性成分として前記マレイミド樹脂或いは前記非対称ビスマレイミド化合物を単独で用いてもよいし、その他の硬化性化合物を1つないし複数併用してもよい。 The curable composition of the present invention contains the maleimide resin or the asymmetrical bismaleimide compound. In the curable composition of the present invention, the maleimide resin or the asymmetrical bismaleimide compound may be used alone as the curable component, or one or a plurality of other curable compounds may be used in combination.
 前記その他の硬化性化合物としては、例えば、エポキシ樹脂、フェノール樹脂、アミン化合物、活性エステル樹脂、シアネートエステル樹脂、ベンゾオキサジン樹脂、不飽和結合含有化合物等が挙げられる。 Examples of the other curable compound include epoxy resin, phenol resin, amine compound, active ester resin, cyanate ester resin, benzoxazine resin, unsaturated bond-containing compound and the like.
 前記エポキシ樹脂は、例えば、各種のビスフェノール型エポキシ樹脂、各種のビフェニル型エポキシ樹脂、各種のノボラック型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂等が挙げられる。これらは一種類を単独で用いてもよいし、2種類以上を併用してもよい。 Examples of the epoxy resin include various bisphenol type epoxy resins, various biphenyl type epoxy resins, various novolak type epoxy resins, dicyclopentadiene-phenol addition reaction type epoxy resins, and phenol aralkyl type epoxy resins. One of these may be used alone, or two or more thereof may be used in combination.
 前記フェノール樹脂は、例えば、各種のビスフェノール、各種のビフェニル、各種のノボラック樹脂、ジシクロペンタジエン-フェノール付加反応型樹脂、フェノールアラルキル型樹脂、各種のアリーレンエーテル樹脂等が挙げられる。これらは一種類を単独で用いてもよいし、2種類以上を併用してもよい。 Examples of the phenol resin include various bisphenols, various biphenyls, various novolak resins, dicyclopentadiene-phenol addition reaction type resins, phenol aralkyl type resins, and various arylene ether resins. One of these may be used alone, or two or more thereof may be used in combination.
 本発明の硬化性組成物は必要に応じて硬化促進剤、難燃剤、無機質充填材、シランカップリング剤、離型剤、顔料、乳化剤等の各種添加剤を含有しても良い。 The curable composition of the present invention may contain various additives such as a curing accelerator, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, and an emulsifier, if necessary.
 前記硬化促進剤は、例えば、リン系化合物、過酸化物、第3級アミン、イミダゾール化合物、ピリジン化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。中でも、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルホスフィン、過酸化物ではジクミルパーオキサイド、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)、イミダゾール化合物では2-エチル-4-メチルイミダゾール、ピリジン化合物では4-ジメチルアミノピリジンが好ましい。 Examples of the curing accelerator include phosphorus-based compounds, peroxides, tertiary amines, imidazole compounds, pyridine compounds, organic acid metal salts, Lewis acids, amine complex salts and the like. Among them, triphenylphosphine for phosphorus-based compounds, dikmylperoxide for peroxides, and 1,8-diazabicyclo- [5] for tertiary amines are excellent in curability, heat resistance, electrical properties, moisture resistance reliability, etc. 4.0] -Undecene (DBU), 2-ethyl-4-methylimidazole for imidazole compounds, and 4-dimethylaminopyridine for pyridine compounds are preferred.
 前記難燃剤は、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム、リン酸アミド等の無機リン化合物;リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)―10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10―(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等の有機リン化合物;トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等の窒素系難燃剤;シリコーンオイル、シリコーンゴム、シリコーン樹脂等のシリコーン系難燃剤;金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等の無機難燃剤等が挙げられる。これら難燃剤を用いる場合は、硬化性組成物の樹脂固形分に対し0.1~20質量%の範囲であることが好ましい。 The flame retardant may be, for example, red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphate such as ammonium polyphosphate, inorganic phosphorus compounds such as phosphate amide; phosphoric acid ester compounds, phosphonic acid. Compounds, phosphinic acid compounds, phosphin oxide compounds, phosphoran compounds, organonitrous-containing phosphorus compounds, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) ) -10H-9-Oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7-dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, etc. Cyclic organic phosphorus Organophosphorus compounds such as compounds and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins; nitrogen-based flame retardants such as triazine compounds, cyanuric acid compounds, isocyanuric acid compounds and phenothiazine; silicone oils, silicone rubbers and silicones. Silicone-based flame retardants such as resins; examples thereof include metal hydroxides, metal oxides, metal carbonate compounds, metal powders, boron compounds, and inorganic flame retardants such as low melting point glass. When these flame retardants are used, it is preferably in the range of 0.1 to 20% by mass with respect to the resin solid content of the curable composition.
 前記無機質充填材は、例えば、本発明の硬化性組成物を半導体封止材料用途に用いる場合などに配合される。前記無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。中でも、無機質充填材をより多く配合することが可能となることから、前記溶融シリカが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つ、硬化性組成物の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は硬化性組成物の100質量部中、0.5~95質量部の範囲で配合することが好ましい。 The inorganic filler is blended, for example, when the curable composition of the present invention is used for semiconductor encapsulation material applications. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide and the like. Above all, the molten silica is preferable because it is possible to blend a larger amount of the inorganic filler. The fused silica can be used in either a crushed form or a spherical shape, but in order to increase the blending amount of the fused silica and suppress the increase in the melt viscosity of the curable composition, a spherical one is mainly used. Is preferable. Further, in order to increase the blending amount of spherical silica, it is preferable to appropriately adjust the particle size distribution of spherical silica. The filling rate is preferably in the range of 0.5 to 95 parts by mass in 100 parts by mass of the curable composition.
 本発明の硬化性組成物を導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。 When the curable composition of the present invention is used for applications such as conductive paste, a conductive filler such as silver powder or copper powder can be used.
 本発明の硬化性組成物は、融点や軟化点が低くハンドリング性に優れるとともに、硬化物が高い耐熱性を有することから、特に半導体封止材料等に好適に用いることができるが、この他、プリント配線基板やレジスト材料等の電子材料用途、塗料や接着剤、成型品等の用途にも広く利用することができる。 The curable composition of the present invention has a low melting point and softening point and is excellent in handleability, and since the cured product has high heat resistance, it can be particularly preferably used as a semiconductor encapsulating material. It can be widely used for electronic materials such as printed wiring boards and resist materials, and for paints, adhesives, molded products, and the like.
 本発明の硬化性組成物を半導体封止材料用途に用いる場合、一般には無機質充填材を配合することが好ましい。半導体封止材料は、例えば、押出機、ニーダー、ロール等を用いて配合物を混合して調製することができる。得られた半導体封止材料を用いて半導体パッケージを成型する方法は、例えば、該半導体封止材料を注型或いはトランスファー成形機、射出成型機などを用いて成形し、更に50~250℃の温度条件下で1~10時間加熱する方法が挙げられ、このような方法により、成形物である半導体装置を得ることが出来る。 When the curable composition of the present invention is used as a semiconductor encapsulating material, it is generally preferable to add an inorganic filler. The semiconductor encapsulation material can be prepared by mixing the formulations using, for example, an extruder, a kneader, a roll, or the like. As a method of molding a semiconductor package using the obtained semiconductor encapsulating material, for example, the semiconductor encapsulating material is molded by casting or using a transfer molding machine, an injection molding machine, or the like, and further, the temperature is 50 to 250 ° C. A method of heating under the conditions for 1 to 10 hours can be mentioned, and a semiconductor device which is a molded product can be obtained by such a method.
 本発明の硬化性組成物をプリント配線基板用途やビルドアップ接着フィルム用途に用いる場合、一般には有機溶剤を配合して希釈して用いることが好ましい。前記有機溶剤は、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。有機溶剤の種類や配合量は硬化性組成物の使用環境に応じて適宜調整できるが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、不揮発分が40~80質量%となる割合で使用することが好ましい。ビルドアップ接着フィルム用途では、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶剤、セロソルブ、ブチルカルビトール等のカルビトール溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、不揮発分が30~60質量%となる割合で使用することが好ましい。 When the curable composition of the present invention is used for a printed wiring board application or a build-up adhesive film application, it is generally preferable to mix and dilute it with an organic solvent. Examples of the organic solvent include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like. The type and blending amount of the organic solvent can be appropriately adjusted according to the usage environment of the curable composition. For example, in the case of printed wiring board applications, a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, or dimethylformamide, should be used. Is preferable, and it is preferable to use it at a ratio of 40 to 80% by mass of the non-volatile content. For build-up adhesive film applications, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, acetate solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitol such as cellosolve and butyl carbitol. It is preferable to use a solvent, an aromatic hydrocarbon solvent such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like, and it is preferable to use the non-volatile content at a ratio of 30 to 60% by mass.
 本発明の硬化性組成物を用いてプリント配線基板を製造する方法は、例えば、硬化性組成物を補強基材に含浸し硬化させてプリプレグを得、これと銅箔とを重ねて加熱圧着させる方法が挙げられる。前記補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。硬化性組成物の含浸量は特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。 In the method of manufacturing a printed wiring board using the curable composition of the present invention, for example, the curable composition is impregnated into a reinforcing base material and cured to obtain a prepreg, which is then heat-bonded by overlapping. The method can be mentioned. Examples of the reinforcing base material include paper, glass cloth, glass non-woven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth. The impregnation amount of the curable composition is not particularly limited, but it is usually preferable to adjust the resin content in the prepreg to be 20 to 60% by mass.
 次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。本発明の実施例において、ゲル浸透クロマトグラフィー(GPC)、高速液体クロマトグラフィー(HPLC)、液体クロマトグラフィー質量分析(LC-MS)、アミン当量の各測定条件は以下の通りである。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples, but in the following, "part" and "%" are based on mass unless otherwise specified. In the examples of the present invention, the measurement conditions of gel permeation chromatography (GPC), high performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LC-MS), and amine equivalent are as follows.
<ゲル浸透クロマトグラフィー(GPC)の測定条件>
 測定装置 :東ソー株式会社製「HLC-8320 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPCワークステーション EcoSEC-WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
<Measurement conditions for gel permeation chromatography (GPC)>
Measuring device: "HLC-8320 GPC" manufactured by Tosoh Corporation,
Column: Guard column "HXL-L" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G3000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G4000HXL" manufactured by Tosoh Corporation
Detector: RI (Differential Refractometer)
Data processing: "GPC Workstation EcoSEC-WorkStation" manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene with a known molecular weight was used in accordance with the measurement manual of the above-mentioned "GPC workstation EcoSEC-WorkStation".
(Polystyrene used)
"A-500" manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
"F-1" manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
"F-4" manufactured by Tosoh Corporation
"F-10" manufactured by Tosoh Corporation
"F-20" manufactured by Tosoh Corporation
"F-40" manufactured by Tosoh Corporation
"F-80" manufactured by Tosoh Corporation
"F-128" manufactured by Tosoh Corporation
Sample: A solution of 1.0% by mass in tetrahydrofuran in terms of resin solid content filtered through a microfilter (50 μl).
<高速液体クロマトグラフィー(HPLC)、液体クロマトグラフィー質量分析(LC-MS)の測定条件>
コントローラ:Agilent Technologies 1260 Infinity II
カラム:Agilent EC-C18(4.6×50mm、2.7μm)
カラム温度 :40℃
ポンプ流速 :1.0ml/分
溶離条件  :K1-水、K2-アセトニトリル
       K1/K2=0/100→30/70(線形に濃度変化0-1.67分)
       K1/K2=30/70(1.67-5分)
       K1/K2=30/70→90/10(5-8分)
       (比率は体積比)
検出波長  :UV254、275、300nm
MS    :Agilent Technologies InfinityLab LC/MSD
<Measurement conditions of high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS)>
Controller: Agilent Technologies 1260 Infinity II
Column: Agilent EC-C18 (4.6 x 50 mm, 2.7 μm)
Column temperature: 40 ° C
Pump flow rate: 1.0 ml / min Elution conditions: K1-water, K2-acetonitrile K1 / K2 = 0/100 → 30/70 (linear concentration change 0-1.67 min)
K1 / K2 = 30/70 (1.67-5 minutes)
K1 / K2 = 30/70 → 90/10 (5-8 minutes)
(Ratio is volume ratio)
Detection wavelength: UV254, 275, 300nm
MS: Agilent Technologies InfinityLab LC / MSD
<アミン当量の測定>
 500mL共栓付き三角フラスコに、試料であるポリアニリン化合物を約2.5g入れ、ピリジン7.5g、無水酢酸2.5g、トリフェニルホスフィン7.5gを精秤後、冷却管を装着し、120℃に設定したオイルバスにて150分加熱還流する。
 混合物を冷却した後、蒸留水5.0mL、プロピレングリコールモノメチルエーテル100mL、テトラヒドロフラン75mL、0.5mol/L水酸化カリウム-エタノール溶液(~50mL)を加え、電位差滴定法により滴定した。同様の方法で空試験を行なって補正した。
 アミン当量(g/eq.)=(S×2,000)/(Blank-A)
 S:試料の量(g)
 A:0.5mol/L水酸化カリウム-エタノール溶液の消費量(mL)
 Blank:空試験における0.5mol/L水酸化カリウム-エタノール溶液の消費量(mL)
<Measurement of amine equivalent>
Approximately 2.5 g of the sample polyaniline compound was placed in a 500 mL Erlenmeyer flask with a stopper, 7.5 g of pyridine, 2.5 g of acetic anhydride, and 7.5 g of triphenylphosphine were precisely weighed, and then a cooling tube was attached. Heat and reflux for 150 minutes in the oil bath set in.
After cooling the mixture, 5.0 mL of distilled water, 100 mL of propylene glycol monomethyl ether, 75 mL of tetrahydrofuran, and a 0.5 mol / L potassium hydroxide-ethanol solution (~ 50 mL) were added, and titration was performed by a potential difference titration method. A blank test was performed in the same manner to correct the problem.
Amine equivalent (g / eq.) = (S × 2,000) / (Blank-A)
S: Amount of sample (g)
A: Consumption (mL) of 0.5 mol / L potassium hydroxide-ethanol solution
Blank: Consumption (mL) of 0.5 mol / L potassium hydroxide-ethanol solution in blank test
(実施例1:マレイミド樹脂(1)の合成)
 ロータリーエバポレーターに取り付けた500mLナスフラスコに、2,6-キシリジン52.40g(0.43mol)、2,6-ジエチルアニリン64.52g(0.43mol)、蒸留水22.14gおよびp-トルエンスルホン酸22.73gを仕込み、攪拌しながら70℃まで加熱した。70℃で30分間保持した後、37%ホルマリン溶液34.98g(0.43mol)を1時間かけて4分割投入し、4時間反応させた。反応後、室温まで空冷し、反応溶液を2Lのセパラブルフラスコに移し、トルエン140gで希釈した。希釈溶液は10%水酸化ナトリウム水溶液100gで1回、蒸留水100gで4回洗浄し、減圧濃縮してポリアニリン化合物(1)109.48gを得た。ポリアニリン化合物(1)のアミン当量は146eq/gであった。
(Example 1: Synthesis of maleimide resin (1))
52.40 g (0.43 mol) of 2,6-xylidine, 64.52 g (0.43 mol) of 2,6-diethylaniline, 22.14 g of distilled water and p-toluenesulfonic acid in a 500 mL eggplant flask attached to a rotary evaporator. 22.73 g was charged and heated to 70 ° C. with stirring. After holding at 70 ° C. for 30 minutes, 34.98 g (0.43 mol) of a 37% formalin solution was added in 4 portions over 1 hour and reacted for 4 hours. After the reaction, the mixture was air-cooled to room temperature, the reaction solution was transferred to a 2 L separable flask, and diluted with 140 g of toluene. The diluted solution was washed once with 100 g of a 10% aqueous sodium hydroxide solution and four times with 100 g of distilled water, and concentrated under reduced pressure to obtain 109.48 g of the polyaniline compound (1). The amine equivalent of the polyaniline compound (1) was 146 eq / g.
 温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコにポリアニリン化合物(1)78.35g(アミン当量換算で0.54mol)、トルエン231.5g、ジメチルホルムアミド23.3gを仕込み室温で攪拌した。無水マレイン酸59.53g(0.61mol)を1時間かけて4分割投入し、室温でさらに1時間反応させた。p-トルエンスルホン酸一水和物2.3gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を6時間行った。60℃まで放冷した溶液を、5%炭酸水素ナトリウム水溶液100gで2回、蒸留水150gで7回洗浄した。途中、分液能向上のためにトルエン200gを追加した。減圧濃縮してマレイミド樹脂(1)105.7gを得た。LC-MSスペクトルにて、M+=432、460、488のピークを確認した。それぞれのピークは下記化合物のアンモニア付加物に相当する。また、GPCチャート図の面積比から算出される2核体成分(ビスマレイミド化合物)の含有量は、96%であった。マレイミド樹脂(1)のGPCチャートを図1に示す。 A 2L flask equipped with a thermometer, a cooling tube, a Dean Stark trap, and a stirrer is charged with 78.35 g of polyaniline compound (1) (0.54 mol in terms of amine equivalent), 231.5 g of toluene, and 23.3 g of dimethylformamide, and stirred at room temperature. did. 59.53 g (0.61 mol) of maleic anhydride was added in 4 portions over 1 hour and reacted at room temperature for another 1 hour. Add 2.3 g of p-toluenesulfonic acid monohydrate, heat the reaction solution, cool and separate the azeotropic water and toluene, and then return only the toluene to the system to carry out the dehydration reaction. I went for hours. The solution allowed to cool to 60 ° C. was washed twice with 100 g of a 5% aqueous sodium hydrogen carbonate solution and seven times with 150 g of distilled water. On the way, 200 g of toluene was added to improve the liquid separation capacity. Concentration under reduced pressure gave 105.7 g of maleimide resin (1). The peak of M + = 432, 460, 488 was confirmed in the LC-MS spectrum. Each peak corresponds to an ammonia adduct of the following compound. The content of the dinuclear component (bismaleimide compound) calculated from the area ratio in the GPC chart was 96%. The GPC chart of the maleimide resin (1) is shown in FIG.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(実施例2:マレイミド樹脂(2)の合成)
 ロータリーエバポレーターに取り付けた500mLナスフラスコに、2-エチルアニリン52.11g(0.43mol)、2,6-ジエチルアニリン64.17g(0.43mol)、蒸留水22.14gおよびp-トルエンスルホン酸22.73gを仕込み、攪拌しながら70℃まで加熱した。70℃で30分環保持した後、37%ホルマリン溶液34.98g(0.43mol)を1時間かけて4分割投入し、4時間反応させた。反応後、室温まで空冷し、反応溶液を2Lのセパラブルフラスコに移し、トルエン140gで希釈した。希釈溶液は10%水酸化ナトリウム水溶液100gで1回、蒸留水100gで4回洗浄し、減圧濃縮してポリアニリン化合物(2)119.02gを得た。ポリアニリン化合物(2)のアミン当量は165eq/gであった。
(Example 2: Synthesis of maleimide resin (2))
In a 500 mL eggplant flask attached to a rotary evaporator, 52.11 g (0.43 mol) of 2-ethylaniline, 64.17 g (0.43 mol) of 2,6-diethylaniline, 22.14 g of distilled water and 22 p-toluenesulfonic acid. .73 g was charged and heated to 70 ° C. with stirring. After holding the ring at 70 ° C. for 30 minutes, 34.98 g (0.43 mol) of a 37% formalin solution was added in 4 portions over 1 hour and reacted for 4 hours. After the reaction, the mixture was air-cooled to room temperature, the reaction solution was transferred to a 2 L separable flask, and diluted with 140 g of toluene. The diluted solution was washed once with 100 g of a 10% aqueous sodium hydroxide solution and four times with 100 g of distilled water, and concentrated under reduced pressure to obtain 119.02 g of the polyaniline compound (2). The amine equivalent of the polyaniline compound (2) was 165 eq / g.
 温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコにポリアニリン化合物(2)87.45g(アミン当量換算で0.53mol)、トルエン231.5g、ジメチルホルムアミド23.3gを仕込み室温で攪拌した。無水マレイン酸59.53g(0.61mol)を1時間かけて4分割投入し、室温でさらに1時間反応させた。p-トルエンスルホン酸一水和物2.3gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を6時間行った。60℃まで放冷した溶液を、5%炭酸水素ナトリウム水溶液100gで2回、蒸留水150gで7回洗浄した。途中分液能向上のためにトルエン200gを追加した。減圧濃縮してマレイミド樹脂(2)123.36gを得た。LC-MSスペクトルにて、M+=432、460、488のピークを確認した。それぞれのピークは下記化合物のアンモニア付加物に相当する。また、GPCチャート図の面積比から算出される2核体成分(ビスマレイミド化合物)の含有量は、56%であった。マレイミド樹脂(2)のGPCチャートを図2に示す。 In a 2L flask equipped with a thermometer, a cooling tube, a Dean Stark trap, and a stirrer, 87.45 g of polyaniline compound (2) (0.53 mol in terms of amine equivalent), 231.5 g of toluene, and 23.3 g of dimethylformamide were charged and stirred at room temperature. did. 59.53 g (0.61 mol) of maleic anhydride was added in 4 portions over 1 hour and reacted at room temperature for another 1 hour. Add 2.3 g of p-toluenesulfonic acid monohydrate, heat the reaction solution, cool and separate the azeotropic water and toluene, and then return only the toluene to the system to carry out the dehydration reaction. I went for hours. The solution allowed to cool to 60 ° C. was washed twice with 100 g of a 5% aqueous sodium hydrogen carbonate solution and seven times with 150 g of distilled water. 200 g of toluene was added to improve the liquid separation capacity on the way. Concentration under reduced pressure gave 123.36 g of maleimide resin (2). The peak of M + = 432, 460, 488 was confirmed in the LC-MS spectrum. Each peak corresponds to an ammonia adduct of the following compound. The content of the dinuclear component (bismaleimide compound) calculated from the area ratio in the GPC chart was 56%. The GPC chart of the maleimide resin (2) is shown in FIG.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(実施例3:マレイミド樹脂(3)の合成)
 ロータリーエバポレーターに取り付けた500mLナスフラスコに、2-エチルアニリン52.11g(0.43mol)、2,6-キシリジン52.11g(0.43mol)、蒸留水22.14gおよびp-トルエンスルホン酸22.73gを仕込み、攪拌しながら70℃まで加熱した。70℃で30分間保持した後、37%ホルマリン溶液34.98g(0.43mol)を1時間かけて4分割投入し、4時間反応させた。反応後、室温まで空冷し、反応溶液を2Lのセパラブルフラスコに移し、トルエン140gで希釈した。希釈溶液は10%水酸化ナトリウム水溶液100gで1回、蒸留水100gで4回洗浄し、減圧濃縮してポリアニリン化合物(4)106.11gを得た。アミン当量は147eq/gであった。
(Example 3: Synthesis of maleimide resin (3))
In a 500 mL eggplant flask attached to a rotary evaporator, 52.11 g (0.43 mol) of 2-ethylaniline, 52.11 g (0.43 mol) of 2,6-xylidine, 22.14 g of distilled water and 22. of p-toluenesulfonic acid. 73 g was charged and heated to 70 ° C. with stirring. After holding at 70 ° C. for 30 minutes, 34.98 g (0.43 mol) of a 37% formalin solution was added in 4 portions over 1 hour and reacted for 4 hours. After the reaction, the mixture was air-cooled to room temperature, the reaction solution was transferred to a 2 L separable flask, and diluted with 140 g of toluene. The diluted solution was washed once with 100 g of a 10% aqueous sodium hydroxide solution and four times with 100 g of distilled water, and concentrated under reduced pressure to obtain 106.11 g of the polyaniline compound (4). The amine equivalent was 147 eq / g.
 温度計、冷却管、ディーンスタークトラップ、攪拌機を取り付けた2Lフラスコにポリアニリン化合物(3)77.91g(アミン当量換算で0.53mol)、トルエン231.5g、DMF23.3gを仕込み室温で攪拌した。無水マレイン酸59.53g(0.61mol)を1時間かけて4分割投入し、室温でさらに1時間反応させた。p-トルエンスルホン酸一水和物2.3gを加え、反応液を加熱し還流下で共沸してくる水とトルエンを冷却・分離した後、トルエンだけを系内に戻して脱水反応を6時間行った。60℃まで放冷した溶液を、5%炭酸水素ナトリウム水溶液100gで2回、蒸留水150gで7回洗浄した。途中分液能向上のためにトルエン200gを追加した。減圧濃縮してマレイミド樹脂(3)113.09gを得た。LC-MSスペクトルにて、M+=432のピークが確認された。当該ピークは下記化合物のアンモニア付加物に相当する。また、GPCチャート図の面積比から算出される2核体成分(ビスマレイミド化合物)の含有量は、58%であった。マレイミド樹脂(3)のGPCチャートを図3に示す。 77.91 g of polyaniline compound (3) (0.53 mol in terms of amine equivalent), 231.5 g of toluene, and 23.3 g of DMF were charged in a 2 L flask equipped with a thermometer, a cooling tube, a Dean Stark trap, and a stirrer, and stirred at room temperature. 59.53 g (0.61 mol) of maleic anhydride was added in 4 portions over 1 hour and reacted at room temperature for another 1 hour. Add 2.3 g of p-toluenesulfonic acid monohydrate, heat the reaction solution, cool and separate the azeotropic water and toluene, and then return only the toluene to the system to carry out the dehydration reaction. I went for hours. The solution allowed to cool to 60 ° C. was washed twice with 100 g of a 5% aqueous sodium hydrogen carbonate solution and seven times with 150 g of distilled water. 200 g of toluene was added to improve the liquid separation capacity on the way. Concentration under reduced pressure gave 113.09 g of maleimide resin (3). A peak of M + = 432 was confirmed in the LC-MS spectrum. The peak corresponds to the ammonia adduct of the following compound. The content of the dinuclear component (bismaleimide compound) calculated from the area ratio in the GPC chart was 58%. The GPC chart of the maleimide resin (3) is shown in FIG.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(実施例4~6:マレイミド樹脂(4)~(6)の合成)
 アニリン化合物の種類とモル数を下記表1に示す通り変更した以外は、実施例1と同様の手順でマレイミド樹脂(4)~(6)を合成した。マレイミド樹脂(4)~(6)のGPCチャート図を図4~6に示す。
GPCチャート図の面積比から算出される各マレイミド樹脂の2核体成分(ビスマレイミド化合物)の含有量を表1に示す。
また、各マレイミド樹脂のMSスペクトルから、それぞれ非対称ビスマレイミド化合物を含有していることを確認した。
(Examples 4 to 6: Synthesis of maleimide resins (4) to (6))
Maleimide resins (4) to (6) were synthesized in the same procedure as in Example 1 except that the type and number of moles of the aniline compound were changed as shown in Table 1 below. The GPC charts of the maleimide resins (4) to (6) are shown in FIGS. 4 to 6.
Table 1 shows the content of the binuclear component (bismaleimide compound) of each maleimide resin calculated from the area ratio of the GPC chart.
Moreover, it was confirmed from the MS spectrum of each maleimide resin that each of them contained an asymmetrical bismaleimide compound.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(実施例7~12:マレイミド樹脂(1)~(6)の評価)
 下記の要領で各マレイミド樹脂の融点、軟化点、硬化物のTd5、及び硬化物の熱膨張率を測定し、評価した。評価結果を表2に示す。
(Examples 7 to 12: Evaluation of maleimide resins (1) to (6))
The melting point, softening point, Td5 of the cured product, and the coefficient of thermal expansion of the cured product of each maleimide resin were measured and evaluated in the following manner. The evaluation results are shown in Table 2.
<融点の測定>
 実施例1~6で得られたマレイミド樹脂について、示差走査熱量測定(DSC)を用い、以下の条件にて測定したDSC曲線における融解ピークの頂点を融点とした。マレイミド樹脂(1)~(6)の示差走査熱量測定(DSC)チャート図を図7~12に示す。
測定装置 :メトラー・トレド株式会社製「DSC1」、
サンプル量:約5mg
温度条件 :10℃/分
<Measurement of melting point>
For the maleimide resins obtained in Examples 1 to 6, differential scanning calorimetry (DSC) was used, and the apex of the melting peak in the DSC curve measured under the following conditions was defined as the melting point. The differential scanning calorimetry (DSC) charts of the maleimide resins (1) to (6) are shown in FIGS. 7 to 12.
Measuring device: "DSC1" manufactured by METTLER TOLEDO Co., Ltd.,
Sample amount: Approximately 5 mg
Temperature condition: 10 ° C / min
<軟化点の測定>
 実施例1~6で得られたマレイミド樹脂について、軟化点をJIS K7234(環球法)に準拠して測定した。
<Measurement of softening point>
The softening points of the maleimide resins obtained in Examples 1 to 6 were measured according to JIS K7234 (ring ball method).
<硬化物のTd5の測定>
 実施例1~6で得られたマレイミド樹脂を、それぞれ、11cm×5cm(×厚み約1mm)の型に流し込み、200℃で2時間、更に250℃で2時間硬化させて、硬化物を得た。
 得られた硬化物について、メトラー・トレド株式会社製 TGA/DSCを用い、Td5を測定した。
測定機器:メトラー・トレド株式会社 TGA/DSC 1
測定範囲:40℃~150℃~600℃
昇温速度:20℃/分(40℃→150℃)
     15分保持(150℃)
     5℃/分 (150℃→600℃)
雰囲気 :窒素
<Measurement of Td5 of cured product>
The maleimide resins obtained in Examples 1 to 6 were poured into molds of 11 cm × 5 cm (× thickness of about 1 mm) and cured at 200 ° C. for 2 hours and further at 250 ° C. for 2 hours to obtain a cured product. ..
Td5 of the obtained cured product was measured using TGA / DSC manufactured by METTLER TOLEDO CO., LTD.
Measuring equipment: METTLER TOLEDO Co., Ltd. TGA / DSC 1
Measurement range: 40 ° C to 150 ° C to 600 ° C
Temperature rise rate: 20 ° C / min (40 ° C → 150 ° C)
Hold for 15 minutes (150 ° C)
5 ° C / min (150 ° C → 600 ° C)
Atmosphere: Nitrogen
硬化物の熱膨張率の測定
 先と同様の条件で硬化物を得、株式会社日立ハイテクサイエンス社製TMA/SS6100を用いて熱膨張率を測定した。
測定機器 :TMA/SS6100(株式会社日立ハイテクサイエンス)
プローブ :石英製膨張・圧縮プローブ
測定荷重 :88.8mN
測定温度 :1st run r.t.~270℃
      2nd run 0~270℃
昇温速度 :3℃/分
雰囲気  :窒素
Measurement of the coefficient of thermal expansion of the cured product The cured product was obtained under the same conditions as the above, and the coefficient of thermal expansion was measured using TMA / SS6100 manufactured by Hitachi High-Tech Science Co., Ltd.
Measuring equipment: TMA / SS6100 (Hitachi High-Tech Science Corporation)
Probe: Quartz expansion / compression probe Measurement load: 88.8 mN
Measurement temperature: 1st run r. t. ~ 270 ° C
2nd run 0-270 ° C
Temperature rise rate: 3 ° C / min Atmosphere: Nitrogen
(比較例1)
 比較対象として4,4’-ジフェニルメタンビスマレイミド(大和化成株式会社製「BMI-1000」)を用い、実施例と同様の方法にて、マレイミド樹脂の融点を測定した。融点は160℃であった。また、当該ビスマレイミド化合物は150℃では溶融しないことから、JIS K7234(環球法)に準拠しての軟化点は測定しなかった。
(Comparative Example 1)
Using 4,4'-diphenylmethanebismaleimide (“BMI-1000” manufactured by Daiwa Kasei Co., Ltd.) as a comparison target, the melting point of the maleimide resin was measured by the same method as in the examples. The melting point was 160 ° C. Moreover, since the bismaleimide compound does not melt at 150 ° C., the softening point was not measured according to JIS K7234 (ring ball method).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (12)

  1.  複数種の芳香族モノアミン化合物(A)と、結合剤(B)との反応生成物であるポリアミン化合物(C)のマレイミド化物であることを特徴とするマレイミド樹脂。 A maleimide resin characterized by being a maleimide product of a polyamine compound (C) which is a reaction product of a plurality of types of aromatic monoamine compounds (A) and a binder (B).
  2.  前記結合剤(B)が、アルデヒド化合物(B-1)、ケトン化合物(B-2)、下記一般式(B-3)で表される芳香族化合物(B-3)、下記一般式(B-4)で表される芳香族化合物(B-4)、下記一般式(B-5)で表される芳香族化合物(B-5)、下記一般式(B-6)で表される芳香族化合物(B-6)、下記一般式(B-7)で表される芳香族化合物(B-7)、下記一般式(B-8)で表される芳香族化合物(B-8)のいずれか一種以上である請求項1記載のマレイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(B-3)~(B-8)中、Arはそれぞれ独立して置換基を有していてもよい芳香環を表す。Rはそれぞれ独立して水素原子又はメチル基である。Rはそれぞれ独立して水素原子又は炭素原子数1~4の脂肪族炭化水素基である。Rはそれぞれ独立して脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかであり、lは0~3の整数である。Xは水酸基、ハロゲン原子、アルキルオキシ基のいずれかである。Yは単結合、炭素原子数1~6の二価の脂肪族炭化水素基、酸素原子、硫黄原子、スルホニル基のいずれかである。]
    The binder (B) is an aldehyde compound (B-1), a ketone compound (B-2), an aromatic compound (B-3) represented by the following general formula (B-3), and the following general formula (B). The aromatic compound (B-4) represented by -4), the aromatic compound (B-5) represented by the following general formula (B-5), and the fragrance represented by the following general formula (B-6). Of the group compound (B-6), the aromatic compound (B-7) represented by the following general formula (B-7), and the aromatic compound (B-8) represented by the following general formula (B-8). The maleimide resin according to claim 1, which is one or more of them.
    Figure JPOXMLDOC01-appb-C000001
    [In the general formulas (B-3) to (B-8), Ar 1 represents an aromatic ring which may independently have a substituent. R 1 is independently a hydrogen atom or a methyl group. R 2 is an independently hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. R 3 is independently any of an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group and an aralkyl group, and l is an integer of 0 to 3. X is any of a hydroxyl group, a halogen atom, and an alkyloxy group. Y is any one of a single bond, a divalent aliphatic hydrocarbon group having 1 to 6 carbon atoms, an oxygen atom, a sulfur atom, and a sulfonyl group. ]
  3.  異なる2種の芳香族モノアミン化合物(A)が結合剤(B)で結合された非対称ジアミン化合物(C-1)のマレイミド化物を含有する請求項1又は2記載のマレイミド樹脂。 The maleimide resin according to claim 1 or 2, which contains a maleimided product of an asymmetric diamine compound (C-1) in which two different aromatic monoamine compounds (A) are bound with a binder (B).
  4.  異なる2種の芳香族モノアミン化合物(A)が結合剤(B)で結合された非対称ジアミン化合物(C-1)のマレイミド化物である非対称ビスマレイミド化合物。 An asymmetric bismaleimide compound which is a maleimided product of an asymmetric diamine compound (C-1) in which two different aromatic monoamine compounds (A) are bound with a binder (B).
  5.  下記一般式(4)で表されることを特徴とする請求項4記載の非対称ビスマレイミド化合物。
    Figure JPOXMLDOC01-appb-C000002
    [式中Zは炭素原子数1~200の二価の有機基である。Rはそれぞれ独立して脂肪族炭化水素基、アルキルオキシ基、アルケニルオキシ基、アルキニルオキシ基、ハロゲン原子、アリール基、アラルキル基のいずれかである。式中にRが複数存在する場合、それらは同一であってもよいし、異なっていてもよい。mは0又は1~4の整数である。式中破線で囲われた構造部位αと構造部位βとは互いに異なる構造を有する。]
    The asymmetrical bismaleimide compound according to claim 4, which is represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000002
    [Z in the formula is a divalent organic group having 1 to 200 carbon atoms. Each of R4 is independently an aliphatic hydrocarbon group, an alkyloxy group, an alkenyloxy group, an alkynyloxy group, a halogen atom, an aryl group, or an aralkyl group. If there are multiple R4s in the equation, they may be the same or different. m is 0 or an integer of 1 to 4. The structural part α and the structural part β surrounded by the broken line in the formula have different structures from each other. ]
  6.  請求項1~3のいずれか一つに記載のマレイミド樹脂、或いは請求項4又は5記載の非対称ビスマレイミド化合物を含有する硬化性組成物。 A curable composition containing the maleimide resin according to any one of claims 1 to 3 or the asymmetrical bismaleimide compound according to claim 4 or 5.
  7.  請求項6記載の硬化性組成物の硬化物。 A cured product of the curable composition according to claim 6.
  8.  請求項6記載の硬化性組成物を用いた半導体封止材料。 A semiconductor encapsulation material using the curable composition according to claim 6.
  9.  請求項8記載の半導体封止材料を用いた半導体装置。 A semiconductor device using the semiconductor encapsulating material according to claim 8.
  10.  請求項6記載の硬化性組成物を用いたプリプレグ。 A prepreg using the curable composition according to claim 6.
  11.  請求項10記載のプリプレグを用いた回路基板。 A circuit board using the prepreg according to claim 10.
  12.  請求項6記載の硬化性組成物を用いたビルドアップフィルム。 A build-up film using the curable composition according to claim 6.
PCT/JP2021/042356 2020-12-22 2021-11-18 Maleimide resin, asymmetric bismaleimide compound, curable composition, cured object, semiconductor-encapsulating material, semiconductor-encapsulating device, prepreg, circuit board, and build-up film WO2022137913A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237022081A KR20230113611A (en) 2020-12-22 2021-11-18 Maleimide resin, asymmetric bismaleimide compound, curable composition, cured product, semiconductor encapsulation material, semiconductor encapsulation device, prepreg, circuit board, and build-up film
JP2022536593A JP7140307B1 (en) 2020-12-22 2021-11-18 Maleimide resin, asymmetric bismaleimide compound, curable composition, cured product, semiconductor sealing material, semiconductor sealing device, prepreg, circuit board, and build-up film
CN202180086105.1A CN116888098A (en) 2020-12-22 2021-11-18 Maleimide resin, asymmetric bismaleimide compound, curable composition, cured product, semiconductor sealing material, semiconductor sealing device, prepreg, circuit board, and laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020212256 2020-12-22
JP2020-212256 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022137913A1 true WO2022137913A1 (en) 2022-06-30

Family

ID=82159361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042356 WO2022137913A1 (en) 2020-12-22 2021-11-18 Maleimide resin, asymmetric bismaleimide compound, curable composition, cured object, semiconductor-encapsulating material, semiconductor-encapsulating device, prepreg, circuit board, and build-up film

Country Status (5)

Country Link
JP (1) JP7140307B1 (en)
KR (1) KR20230113611A (en)
CN (1) CN116888098A (en)
TW (1) TW202231691A (en)
WO (1) WO2022137913A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130290A (en) * 1974-07-02 1976-03-15 Ciba Geigy
JPS52125161A (en) * 1976-04-09 1977-10-20 Ciba Geigy Ag Preparation of maleimide
JPH02300223A (en) * 1989-05-16 1990-12-12 Mitsubishi Petrochem Co Ltd Polyimide
JPH0431464A (en) * 1990-05-25 1992-02-03 Mitsubishi Petrochem Co Ltd Curing resin composition for circuit and metal foil-clad resin board
KR20150002953A (en) * 2013-06-27 2015-01-08 제일모직주식회사 Hardmask composition, method of forming patterns using the hardmask composition and semiconductor integrated circuit device including the patterns including the patterns
WO2020217679A1 (en) * 2019-04-26 2020-10-29 Dic株式会社 Maleimide, curable resin composition, and cured product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0385937A1 (en) 1989-02-28 1990-09-05 Ciba-Geigy Ag Curable blends based on aromatic bismaleinimides
JPH06128225A (en) 1992-10-19 1994-05-10 Mitsubishi Petrochem Co Ltd Production of amorphous bismaleimide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130290A (en) * 1974-07-02 1976-03-15 Ciba Geigy
JPS52125161A (en) * 1976-04-09 1977-10-20 Ciba Geigy Ag Preparation of maleimide
JPH02300223A (en) * 1989-05-16 1990-12-12 Mitsubishi Petrochem Co Ltd Polyimide
JPH0431464A (en) * 1990-05-25 1992-02-03 Mitsubishi Petrochem Co Ltd Curing resin composition for circuit and metal foil-clad resin board
KR20150002953A (en) * 2013-06-27 2015-01-08 제일모직주식회사 Hardmask composition, method of forming patterns using the hardmask composition and semiconductor integrated circuit device including the patterns including the patterns
WO2020217679A1 (en) * 2019-04-26 2020-10-29 Dic株式会社 Maleimide, curable resin composition, and cured product

Also Published As

Publication number Publication date
TW202231691A (en) 2022-08-16
CN116888098A (en) 2023-10-13
JPWO2022137913A1 (en) 2022-06-30
JP7140307B1 (en) 2022-09-21
KR20230113611A (en) 2023-07-31

Similar Documents

Publication Publication Date Title
JP3464783B2 (en) Phosphorus-containing curing agent and flame-retardant cured epoxy resin using the same
JP5664817B2 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP7068669B2 (en) Active ester compound
WO2018008411A1 (en) Active ester resin composition and cured product of same
KR102268344B1 (en) Active ester composition and cured product thereof
JP6332720B1 (en) Active ester resin and its cured product
JP6862701B2 (en) Active ester resin and its cured product
KR20190025607A (en) Curable composition and its cured product
JP5682805B1 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
WO2022137913A1 (en) Maleimide resin, asymmetric bismaleimide compound, curable composition, cured object, semiconductor-encapsulating material, semiconductor-encapsulating device, prepreg, circuit board, and build-up film
WO2018008409A1 (en) Active ester resin and cured product thereof
KR101184292B1 (en) Novel epoxy compounds and their flame-retarding epoxy resin compositions
JP6863067B2 (en) δ-Valerolactone skeleton-containing resin
JP5682804B1 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
WO2017145772A1 (en) Epoxy resin, curable resin composition, and cured product thereof
JP7465926B2 (en) Epoxy resin, its manufacturing method, epoxy composition containing same, and uses thereof
JP7276665B2 (en) Active ester composition and semiconductor encapsulation material
JP6332721B1 (en) Active ester resin and its cured product
JP2018193470A (en) δ- VALEROLACTONE SKELETON-CONTAINING RESIN

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022536593

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180086105.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237022081

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910066

Country of ref document: EP

Kind code of ref document: A1