WO2022137786A1 - Zinc oxide dispersion, titanium oxide dispersion, and cosmetic composition - Google Patents

Zinc oxide dispersion, titanium oxide dispersion, and cosmetic composition Download PDF

Info

Publication number
WO2022137786A1
WO2022137786A1 PCT/JP2021/039486 JP2021039486W WO2022137786A1 WO 2022137786 A1 WO2022137786 A1 WO 2022137786A1 JP 2021039486 W JP2021039486 W JP 2021039486W WO 2022137786 A1 WO2022137786 A1 WO 2022137786A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
dispersion
titanium oxide
oxide particles
dispersion medium
Prior art date
Application number
PCT/JP2021/039486
Other languages
French (fr)
Japanese (ja)
Inventor
聡一郎 森川
園子 相良
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2022137786A1 publication Critical patent/WO2022137786A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to a zinc oxide dispersion, a titanium oxide dispersion and a cosmetic composition. More specifically, the present invention maintains good biotoxicity and suppresses the formation of coarse particles due to reaggregation of overdispersed particles.
  • the present invention relates to a dispersion, a titanium oxide dispersion and a cosmetic composition.
  • Zinc oxide particles or titanium oxide particles are dispersed in a nanometer-sized average dispersed particle size, and the zinc oxide particles and titanium oxide particles function as an ultraviolet shielding agent. Therefore, it is used in cosmetic compositions such as sunscreens. Further, the dispersion in which zinc oxide particles and the like are dispersed makes it possible to simplify the manufacturing process of the cosmetic composition and improve the quality.
  • Patent Document 1 a pigment composition using sodium polyacrylate having a mass average molecular weight of 10,000 or less as a dispersant and zinc oxide particles having a surface texture compatible with the dispersant as a pigment. The thing is listed. According to Patent Document 1, the average dispersed particle size D50 of the zinc oxide particles dispersed in the pigment composition can be suppressed to a sufficiently small value, and as a result, the pigment composition is used as an aqueous ink composition for inkjet. In addition, it is described that it can be applied to cosmetic compositions.
  • the present invention has been made in view of the above problems, and an object thereof is to suppress the formation of coarse particles due to reaggregation of zinc oxide particles or overdispersed particles of titanium oxide particles while maintaining excellent biotoxicity. Further, it is an object of the present invention to provide a zinc oxide dispersion, a titanium oxide dispersion and a cosmetic composition having excellent dispersibility.
  • the zinc oxide dispersion according to the present invention comprises zinc oxide particles, a dispersant of the zinc oxide particles composed of sodium polyacrylate having a mass average molecular weight of less than 10,000, and the zinc oxide particles.
  • the dispersion medium comprises only water and propylene glycol and / or glycerin, and the compounding ratio of the propylene glycol to the dispersion medium (propylene glycol / dispersion medium) is 0 on a mass basis.
  • the compounding ratio of the glycerin to the dispersion medium is in the range of 0.1 / 1 to 0.8 / 1 on a mass basis. It is characterized by being.
  • sodium polyacrylate having a mass average molecular weight of 10,000 or less is used as a dispersant for zinc oxide particles, and only water, propylene glycol and / or glycerin are used as a dispersion medium for dispersing zinc oxide particles.
  • a dispersant for zinc oxide particles and only water, propylene glycol and / or glycerin are used as a dispersion medium for dispersing zinc oxide particles.
  • the dispersion medium of the present invention is a mixed solvent in which water is mixed with propylene glycol and / or glycerin, and even when only water is used as the dispersion medium, good biotoxicity can be maintained. Be done.
  • the compounding ratio of propylene glycol to the dispersion medium is in the range of 0.3 / 1 to 0.9 / 1 on a mass basis, and the compounding ratio of glycerin to the dispersion medium is 0.1 / 1 on a mass basis. It shall be within the range of ⁇ 0.8 / 1.
  • the zinc oxide particles on which sodium polyacrylate is adsorbed are wetted on the surface, and the decrease in the cohesive force is promoted.
  • reaggregation due to overdispersion of the zinc oxide particles can be suppressed or reduced, and the value of the dispersed particle diameter D99 of the zinc oxide particles can be prevented from increasing.
  • the blending ratio of propylene glycol to 0.9 / 1 or less and the blending ratio of glycerin to 0.8 / 1 or less, it is possible to prevent the viscosity of the zinc oxide dispersion from becoming too high.
  • the zinc oxide particles are preferably zinc oxide particles that have not been surface-treated. As a result, it is possible to suppress the increase in the average dispersed particle size of the dispersed zinc oxide particles and bring the zinc oxide particles closer to the average primary particle size. In addition, it is possible to prevent a decrease in storage stability.
  • the content ratio of the zinc oxide particles and the sodium polyacrylate is in the range of 1: 0.01 to 1: 0.5 on a mass basis.
  • the content ratio is in the range of 1: 0.01 to 1: 0.5 on a mass basis.
  • the average dispersed particle diameter D99 of the dispersed zinc oxide particles is 350 nm or less. As a result, the separation, sedimentation and aggregation of zinc oxide particles can be prevented, and the storage stability of the zinc oxide dispersion can be maintained.
  • the titanium oxide dispersion according to the present invention comprises titanium oxide particles, a dispersant of the titanium oxide particles composed of sodium polyacrylate having a mass average molecular weight of less than 10,000, and the titanium oxide particles.
  • the dispersion medium comprises only water and 1,3-butylene glycol and / or glycerin, and the compounding ratio of the 1,3-butylene glycol to the dispersion medium (1,3-butylene glycol).
  • Butylene glycol / dispersion medium) is in the range of 0.1 / 1 to 0.9 / 1 on a mass basis, and the compounding ratio of the glycerin to the dispersion medium (glycerin / dispersion medium) is 0. It is characterized in that it is in the range of 1/1 to 0.9 / 1.
  • sodium polyacrylate having a mass average molecular weight of 10,000 or less is used as a dispersant for titanium oxide particles, and water and 1,3-butylene glycol and / or glycerin are used as a dispersion medium for dispersing titanium oxide particles.
  • the dispersion medium of the present invention is a mixed solvent in which water and 1,3-butylene glycol and / or glycerin are mixed, and the skin irritation is reduced as compared with the case where propylene glycol is used as the dispersion medium, for example. can do.
  • the titanium oxide dispersion of the present invention can maintain good biotoxicity as compared with the case of using a dispersion medium consisting only of water.
  • the compounding ratio of 1,3-butylene glycol to the dispersion medium is in the range of 0.1 / 1 to 0.9 / 1 on the mass basis, and the compounding ratio of glycerin to the dispersion medium is 0 on the mass basis. It shall be in the range of 1/1 to 0.9 / 1.
  • the dispersion medium of sodium polyacrylate adsorbed on the surface of the titanium oxide particles is used. Wetness can be improved.
  • the titanium oxide particles on which sodium polyacrylate is adsorbed are wetted, and the decrease in cohesive force is promoted.
  • reaggregation due to overdispersion of the titanium oxide particles can be suppressed or reduced, and the value of the dispersed particle diameter D99 of the titanium oxide particles can be prevented from increasing.
  • the blending ratio of 1,3-butylene glycol to 0.9 / 1 or less and the blending ratio of glycerin to 0.9 / 1 or less, it is possible to prevent the viscosity of the titanium oxide dispersion from becoming too high. be able to.
  • the titanium oxide particles are preferably titanium oxide particles that have not been surface-treated. This suppresses the increase in the average dispersed particle size of the dispersed titanium oxide particles and makes it possible to approach the average primary particle size. In addition, it is possible to prevent a decrease in storage stability.
  • the content ratio of the titanium oxide particles to the sodium polyacrylate is preferably in the range of 1: 0.01 to 1: 0.5 on a mass basis.
  • the content ratio is preferably in the range of 1: 0.01 to 1: 0.5 on a mass basis.
  • the average dispersed particle diameter D99 of the dispersed titanium oxide particles is 350 nm or less. As a result, the separation, sedimentation and aggregation of the titanium oxide particles can be prevented, and the storage stability of the titanium oxide dispersion can be maintained.
  • the cosmetic composition according to the present invention is characterized by containing the zinc oxide dispersion or the titanium oxide dispersion in order to solve the above-mentioned problems.
  • the zinc oxide dispersion and the titanium oxide dispersion in the above configuration are dispersions in which the values of the average dispersed particle diameter D99 of the zinc oxide particles and the titanium oxide particles to be dispersed are significantly reduced as compared with the conventional dispersion. be. Therefore, the cosmetic composition of the present invention containing these dispersions reduces or prevents the occurrence of so-called whitening, in which a white film remains on the skin during and after application, as compared with the conventional cosmetic composition. Can be done.
  • sodium polyacrylate having a mass average molecular weight of 10,000 or less is used as a dispersant for zinc oxide particles, and a mixed solvent consisting only of water and propylene glycol and / or glycerin as a dispersion medium for dispersing zinc oxide particles.
  • a mixed solvent consisting only of water and propylene glycol and / or glycerin as a dispersion medium for dispersing zinc oxide particles.
  • Propylene glycol and glycerin used as dispersion media are compounds having safety to the human body. Therefore, according to the present invention, it is possible to provide a zinc oxide dispersion having excellent dispersibility while maintaining good biotoxicity. Further, according to the present invention, it is possible to provide a cosmetic composition in which the occurrence of whitening is reduced or prevented by containing the zinc oxide dispersion.
  • sodium polyacrylate having a mass average molecular weight of 10,000 or less is used as a dispersant for titanium oxide particles, and water and 1,3-butylene glycol and / or glycerin are used as a dispersion medium for dispersing titanium oxide particles.
  • a mixed solvent consisting only of and is used.
  • 1,3-butylene glycol and glycerin used as a dispersion medium are compounds having safety to the human body.
  • 1,3-butylene glycol can reduce the skin irritation of the titanium oxide dispersion as compared with the case of using propylene glycol, for example. Therefore, according to the present invention, it is possible to provide a titanium oxide dispersion having excellent dispersibility while maintaining good biotoxicity. Further, according to the present invention, it is possible to provide a cosmetic composition capable of reducing or preventing the occurrence of whitening and reducing skin irritation by containing the titanium oxide dispersion.
  • the zinc oxide dispersion according to the present embodiment contains at least zinc oxide (ZnO) particles as a dispersant, sodium polyacrylate as a dispersant for zinc oxide particles, and a dispersion medium.
  • the zinc oxide particles include zinc oxide particles surface-treated with a compound such as silicon dioxide hydrate (hydrous silica), hydrogen dimethicone, triethoxycaprylylsilane, and aluminum hydroxide, and the surface treatment thereof.
  • examples include zinc oxide particles that have not been treated.
  • zinc oxide particles it is preferable to use zinc oxide particles that have not been surface-treated in the present embodiment.
  • the average dispersed particle size of the zinc oxide particles can be further reduced as compared with the surface-treated zinc oxide particles, and good storage stability is maintained. be able to. Further, the average dispersed particle size of the dispersed zinc oxide particles can be brought close to the average primary particle size of the zinc oxide particles.
  • the zinc oxide particles mean crystalline zinc oxide particles unless otherwise specified.
  • commercially available products can also be used as the zinc oxide particles, and such commercially available products include, for example, NANOFINE-50LP, FINEX-33W, FINEX-52W-LP2, FINEX-33W-LP2, and FINEX-50S-LP2. , FINEX-30S-LPT, FINEX-50-OTS, FINEX-50, FINEX-30, FINEX-25 (all trade names, manufactured by Sakai Chemical Industry Co., Ltd.) and the like.
  • FINEX-50, FINEX-30 and FINEX-25 which have not been surface-treated are preferable.
  • the average primary particle diameter (volume average particle diameter) of the zinc oxide particles is preferably 20 nm to 400 nm, more preferably 30 nm to 200 nm, and particularly preferably 40 nm to 100 nm.
  • the average primary particle diameter is preferably 20 nm to 400 nm, more preferably 30 nm to 200 nm, and particularly preferably 40 nm to 100 nm.
  • the "average primary particle size” means the average particle size of the primary particles, and the primary particles generally refer to the smallest particles constituting the powder, and are single crystals or close to them. It means that it includes particles formed by aggregating crystallites.
  • the average primary particle diameter is an arithmetic average diameter obtained by observing zinc oxide particles with an electron microscope.
  • zinc oxide particles having a monodisperse particle size distribution are used, but the present invention is not limited to this, and zinc oxide particles having a polydisperse particle size distribution may be used. Further, two or more kinds of zinc oxide particles having a monodisperse particle size distribution may be mixed and used.
  • the shape of the zinc oxide particles is not particularly limited, and any shape such as spherical, rod-shaped, needle-shaped, spindle-shaped, and plate-shaped can be used. In this embodiment, zinc oxide particles having the same shape may be used, or two or more different shapes may be mixed and used.
  • the average primary particle diameter in the case of rod-shaped, needle-shaped, or spindle-shaped particles is defined by a geometric mean value of the length (or height) of the major axis and the length (or width) of the minor axis.
  • the content of zinc oxide particles directly affects the concentration of the zinc oxide dispersion and affects the storage stability, viscosity, pH, etc. of the cosmetic composition described later, these points should be taken into consideration. It may be set appropriately. Usually, it is preferably in the range of 10% by mass to 70% by mass, more preferably in the range of 20% by mass to 50% by mass, and in the range of 30% by mass to 40% by mass with respect to the total mass of the zinc oxide dispersion. More preferred. By setting the content of zinc oxide particles to 10% by mass or more, it is possible to suppress a decrease in concentration. On the other hand, by setting the content of the zinc oxide particles to 70% by mass or less, it is possible to prevent the dispersibility of the zinc oxide particles from being lowered and the handleability from being deteriorated due to the increase in viscosity.
  • sodium polyacrylate functions as a dispersant for zinc oxide particles.
  • the dispersibility of zinc oxide particles can be improved.
  • sodium polyacrylate conforms to the standards stipulated by the Pharmaceutical Affairs Law and the like. Therefore, by using sodium polyacrylate as a dispersant, the biotoxicity of the zinc oxide dispersion can be reduced.
  • the mass average molecular weight of sodium polyacrylate is 10,000 or less, preferably 1500 to 10000, and more preferably 2000 to 8000.
  • the mass average molecular weight of sodium polyacrylate is 10,000 or less, preferably 1500 to 10000, and more preferably 2000 to 8000.
  • the content ratio of the zinc oxide particles of the present embodiment to sodium polyacrylate is preferably 1: 0.01 to 1: 0.5 on a mass basis, and 1: 0.02 to 1: 0.2. Is more preferable.
  • the content ratio is preferably 1: 0.01 to 1: 0.5 on a mass basis, and 1: 0.02 to 1: 0.2. Is more preferable.
  • By setting the content ratio to 1: 0.01 or more it is possible to prevent a decrease in the dispersibility of the zinc oxide particles.
  • the content ratio to 1: 0.5 or less it is possible to prevent a decrease in the dispersion stability of the zinc oxide particles.
  • sodium polyacrylate is relatively less likely to generate bubbles when added to a dispersion medium described later, for example, as compared with other conventional dispersants. Therefore, in the zinc oxide dispersion of the present embodiment, the addition of the defoaming agent can be omitted.
  • the zinc oxide dispersion according to the present embodiment contains a dispersion medium for dispersing zinc oxide particles, and the dispersion medium includes a mixed solvent consisting only of water and propylene glycol and / or glycerin. Used.
  • water examples include pure water such as ion-exchanged water, ultrafiltration water, reverse osmosis water, and distilled water, or water from which ionic impurities such as ultrapure water have been removed.
  • water sterilized by irradiation with ultraviolet rays or addition of hydrogen peroxide is suitable because it can prevent the growth of mold and bacteria for a long period of time.
  • the compounding ratio of propylene glycol to the dispersion medium is in the range of 0.3 / 1 to 0.9 / 1 on a mass basis, and is preferably 0.4 / 1 to 0.8 / 1. , More preferably 0.5 / 1 to 0.7 / 1.
  • the compounding ratio of glycerin to the dispersion medium is in the range of 0.1 / 1 to 0.8 / 1 on a mass basis, preferably 0.1 / 1 to 0.7 / 1. , More preferably 0.1 / 1 to 0.6 / 1.
  • Dispersion of sodium polyacrylate adsorbed on the surface of zinc oxide particles by setting the blending ratio of propylene glycol to the dispersion medium of 0.3 / 1 or more and the blending ratio of glycerin to the dispersion medium of 0.1 / 1 or more.
  • the wettability to the medium can be improved.
  • the zinc oxide particles on which sodium polyacrylate is adsorbed are wetted on the surface, and the decrease in the cohesive force is promoted.
  • reaggregation due to overdispersion of zinc oxide particles can be suppressed or reduced, and the value of the average dispersed particle size D99 of zinc oxide particles (99% of the integrated particle size in the volume integrated particle size distribution) becomes large. Can be prevented.
  • the viscosity of the zinc oxide dispersion becomes too large. Can be prevented.
  • the content of the dispersion medium is preferably in the range of 29% by mass to 89% by mass, more preferably in the range of 50% by mass to 80% by mass, and 60% by mass to 70% by mass with respect to the total mass of the zinc oxide dispersion.
  • the range of% is particularly preferable.
  • the average dispersed particle size D10 of the dispersed zinc oxide particles is preferably in the range of 5 nm to 100 nm, more preferably in the range of 10 nm to 60 nm. preferable.
  • the average dispersed particle size D50 of the zinc oxide particles is preferably in the range of 20 nm to 500 nm, and more preferably in the range of 40 nm to 100 nm.
  • the dispersed particle size D99 of the zinc oxide particles (the particle size of 99% in the integrated particle size distribution in the volume integrated particle size distribution) is preferably 350 nm or less, more preferably 30 nm to 300 nm, and particularly preferably 50 nm to 200 nm.
  • D10 to 5 nm or more or D50 to 20 nm or more
  • deterioration of the storage stability of the zinc oxide dispersion can be prevented.
  • D10 to 100 nm or less, D50 to 500 nm or less, or D99 to 350 nm or less separation, sedimentation and aggregation of zinc oxide particles can be prevented, and the storage stability of the zinc oxide dispersion can be maintained.
  • the average dispersed particle diameters D10, D50 and D99 of the zinc oxide particles are values measured by a dynamic light scattering method using Microtrac UPA-EX150 (trade name, manufactured by Nikkiso Co., Ltd.).
  • the mixing method and the order of addition of zinc oxide particles, sodium polyacrylate, a dispersion medium and other additives to be blended as necessary are not particularly limited.
  • a mixed solvent consisting only of zinc oxide particles, sodium polyacrylate and water as a dispersion medium and propylene glycol and / or glycerin is mixed at a time, and the mixed solution is subjected to dispersion treatment using a normal disperser. May be.
  • the term "dispersion treatment” as used herein means that a mixture containing zinc oxide particles, sodium polyacrylate, a dispersion medium and other additives to be blended as necessary is finely pulverized by a wet dispersion method. It means distributed processing.
  • the disperser used for the dispersion treatment is not particularly limited, and examples thereof include a ball mill, a roll mill, a sand mill, a bead mill, a paint shaker, and a nanomizer.
  • the dispersion time in the dispersion processing is not particularly limited, and may be appropriately set so that at least one of D10, D50, and D99 has a target value.
  • the defoaming step for reducing or eliminating the bubbles can be omitted, and the manufacturing efficiency can be further improved. Further, since the inclusion of the defoaming agent can be omitted, the production of the zinc oxide dispersion becomes easier.
  • the zinc oxide dispersion of the present embodiment includes not only the form of the final product cosmetic composition (details will be described later) but also the form of the dispersion liquid for preparing the cosmetic composition.
  • the titanium oxide dispersion according to the present embodiment contains at least titanium oxide (TiO 2 ) particles as a dispersant, sodium polyacrylate as a dispersant for the titanium oxide particles, and a dispersion medium.
  • the titanium oxide particles are used as a white pigment, have an ultraviolet shielding function, have a small specific gravity and a large refractive index as compared with other known white pigments. Titanium oxide particles are also chemically and physically stable. Therefore, the titanium oxide particles are excellent in hiding and coloring properties, and are also excellent in durability against acids, alkalis, and other environments.
  • the titanium oxide particles having a crystal structure of anatase type (tetragonal crystal), rutile type (tetragonal crystal) or blue kite type (orthorhombic crystal) can be used.
  • titanium oxide having a rutile-type crystal structure is preferable from the viewpoint of improving concealment.
  • titanium oxide having a rutile-type crystal structure has a high refractive index of visible light (wavelength range 360 nm to 830 nm), so that color development can be improved.
  • titanium oxide having an anatase-type crystal structure has a function as a photocatalyst
  • the function of a photocatalyst can be added.
  • the titanium oxide particles mean crystalline titanium oxide particles unless otherwise specified.
  • titanium oxide particles examples include titanium oxide particles surface-treated with a compound such as silicon dioxide hydrate (hydrous silica), hydrogen dimethicone, triethoxycaprylylsilane, aluminum hydroxide, and stearic acid.
  • examples thereof include titanium oxide particles that have not been surface-treated.
  • titanium oxide particles it is preferable to use titanium oxide particles that have not been surface-treated in the present embodiment. Hydroxyl groups are usually present on the surface of unsurface-treated titanium oxide particles. Therefore, the surface of the titanium oxide particles is hydrophilic. Therefore, by using the titanium oxide particles that have not been surface-treated, it is possible to bring the average dispersed particle size of the dispersed titanium oxide particles closer to the average primary particle size of the titanium oxide particles.
  • hydrophilic means that a functional group or the like having an affinity for water is present on the surface of the titanium oxide particles.
  • STR-100A-LP STR-100C-LP
  • STR-100W-LP STR-100C-LF
  • STR. -100W-OTS STR-100W (G)
  • STR-40-OTS STR-40N
  • STR-100N trade names, all manufactured by Sakai Chemical Industry Co., Ltd.
  • STR-40N and STR-100N which have not been surface-treated are preferable.
  • the average primary particle diameter (volume average particle diameter) of the titanium oxide particles is preferably 20 nm to 400 nm, more preferably 30 nm to 200 nm, and particularly preferably 40 nm to 100 nm.
  • the average primary particle size is preferably 20 nm to 400 nm, more preferably 30 nm to 200 nm, and particularly preferably 40 nm to 100 nm.
  • the average primary particle diameter is an arithmetic average diameter obtained by observing titanium oxide particles with an electron microscope.
  • titanium oxide particles having a monodisperse particle size distribution are used, but the present invention is not limited to this, and titanium oxide particles having a polydisperse particle size distribution may be used. Further, two or more kinds of pigments having a monodisperse particle size distribution may be mixed and used.
  • the shape of the titanium oxide particles is not particularly limited, and any shape such as a spherical shape, a rod shape, a needle shape, a spindle shape, and a plate shape can be used. In the present embodiment, titanium oxide particles having the same shape may be used, or two or more different shapes may be mixed and used.
  • the average primary particle diameter in the case of rod-shaped, needle-shaped, or spindle-shaped particles is defined by a geometric mean value of the length (or height) of the major axis and the length (or width) of the minor axis.
  • the content of the titanium oxide particles directly affects the concentration of the titanium oxide dispersion and affects the storage stability, viscosity, pH, etc. of the cosmetic composition described later, these points are taken into consideration. And set as appropriate. Usually, it is preferably in the range of 10% by mass to 70% by mass, more preferably in the range of 20% by mass to 50% by mass, and in the range of 30% by mass to 40% by mass with respect to the total mass of the titanium oxide dispersion. More preferred.
  • the ultraviolet shielding function of the titanium oxide particles can be satisfactorily maintained.
  • the content of the titanium oxide particles to 50% by mass or less, it is possible to prevent the titanium oxide particles from settling.
  • sodium polyacrylate functions as a dispersant for titanium oxide particles.
  • the dispersibility of titanium oxide particles can be improved.
  • sodium polyacrylate conforms to the standards stipulated by the Pharmaceutical Affairs Law and the like. Therefore, by using sodium polyacrylate as a dispersant, the biotoxicity of the titanium oxide dispersion can be reduced.
  • the content ratio of the titanium oxide particles of the present embodiment to sodium polyacrylate is preferably 1: 0.01 to 1: 0.5 on a mass basis, and 1: 0.02 to 1: 0.2. Is more preferable.
  • the content ratio is preferably 1: 0.01 to 1: 0.5 on a mass basis, and 1: 0.02 to 1: 0.2. Is more preferable.
  • By setting the content ratio to 1: 0.01 or more it is possible to prevent a decrease in the dispersibility of the titanium oxide particles.
  • the content ratio to 1: 0.5 or less it is possible to prevent a decrease in the dispersion stability of the titanium oxide particles.
  • sodium polyacrylate is relatively less likely to generate bubbles when added to a dispersion medium described later, for example, as compared with other conventional dispersants. Therefore, in the titanium oxide dispersion of the present embodiment, the addition of the defoaming agent can be omitted.
  • the titanium oxide dispersion according to the present embodiment contains a dispersion medium for dispersing titanium oxide particles, and the dispersion medium is composed only of water and 1,3-butylene glycol and / or glycerin. A mixed solvent is used.
  • the same water as that used in the zinc oxide dispersion can be used. Therefore, the detailed description thereof will be omitted.
  • the compounding ratio of 1,3-butylene glycol to the dispersion medium is in the range of 0.1 / 1 to 0.9 / 1 on a mass basis, and is preferably 0.2. It is 1/1 to 0.9 / 1, more preferably 0.4 / 1 to 0.9 / 1.
  • the compounding ratio of glycerin to the dispersion medium is in the range of 0.1 / 1 to 0.9 / 1 on a mass basis, and is preferably 0.2 / 1 to 0.9 / 1. , More preferably 0.3 / 1 to 0.9 / 1.
  • Polyacrylic acid adsorbed on the surface of titanium oxide particles by setting the blending ratio of 1,3-butylene glycol to the dispersion medium to 0.1 / 1 or more and the blending ratio of glycerin to the dispersion medium of 0.1 / 1 or more.
  • the wettability of sodium acid to a dispersion medium can be improved.
  • the titanium oxide particles on which sodium polyacrylate is adsorbed are wetted, and the decrease in cohesive force is promoted.
  • reaggregation due to overdispersion of the titanium oxide particles can be suppressed or reduced, and the value of the dispersed particle diameter D99 of the titanium oxide particles can be prevented from increasing.
  • the viscosity of the titanium oxide dispersion is increased by setting the blending ratio of 1,3-butylene glycol to the dispersion medium to 0.9 / 1 or less and the blending ratio of glycerin to the dispersion medium to 0.9 / 1 or less. It can be prevented from becoming too large.
  • the content of the dispersion medium is preferably in the range of 29% by mass to 89% by mass, more preferably in the range of 50% by mass to 80% by mass, and 60% by mass to 70% by mass with respect to the total mass of the titanium oxide dispersion.
  • the range of% is particularly preferable.
  • the average dispersed particle size D10 of the dispersed titanium oxide particles is preferably in the range of 5 nm to 100 nm, and more preferably in the range of 10 nm to 60 nm.
  • the average dispersed particle size D50 of the titanium oxide particles is preferably in the range of 20 nm to 500 nm, more preferably in the range of 40 nm to 100 nm.
  • the average dispersed particle size D99 of the titanium oxide particles is preferably 350 nm or less, more preferably 30 nm to 300 nm, and particularly preferably 50 nm to 200 nm.
  • the average dispersed particle diameters D10, D50 and D99 of the titanium oxide particles are values measured by a dynamic light scattering method using Microtrac UPA-EX150 (trade name, manufactured by Nikkiso Co., Ltd.).
  • the titanium oxide dispersion of the present embodiment can be produced by the same method as the zinc oxide dispersion. Therefore, the detailed description thereof will be omitted.
  • the zinc oxide dispersion and the titanium oxide dispersion of the present embodiment can all be composed of components conforming to the standards of the Pharmaceutical Affairs Law and the like, and have low biotoxicity. Therefore, the zinc oxide dispersion or the titanium oxide dispersion of the present embodiment (hereinafter, referred to as “zinc oxide dispersion or the like”) can be contained in, for example, a cosmetic composition and used. Specifically, since the zinc oxide particles and the titanium oxide particles also function as an ultraviolet shielding agent, the zinc oxide dispersion or the like of the present embodiment is blended into a cosmetic composition having an O / W (Oil in Water) formulation. Can be done.
  • the cosmetic composition of the present embodiment may contain other additives as needed, in addition to the zinc oxide dispersion and the like.
  • Other additives that can be incorporated into cosmetic compositions are not particularly limited, and examples thereof include moisturizers, plasticizers, silicones, mineral fillers, clays, preservatives, and fragrances. These additives may be used alone or in combination of two or more.
  • the content of the additive is not particularly limited and can be appropriately set as needed.
  • the cosmetic composition of the present embodiment can be applied to a sunscreen or the like. Further, in the cosmetic composition of the present embodiment, the values of the average dispersed particle diameters D10, D50 and D99 of the zinc oxide particles and the titanium oxide particles (hereinafter referred to as "zinc oxide particles and the like") are small, and the zinc oxide is zinc oxide. Since it has excellent dispersibility of particles and the like, even if the cosmetic composition is applied on the skin, it is possible to suppress or reduce the occurrence of the so-called whitening phenomenon in which a white film remains on the skin during and after application. can. Further, even when the cosmetic composition is allowed to stand for a certain period of time, the separation, sedimentation and aggregation of the zinc oxide particles and the like can be reduced or prevented.
  • the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles were measured, respectively.
  • the results are shown in Table 1. Unless otherwise specified, the numerical values in Table 1 are expressed in mass% with respect to the total mass of the zinc oxide dispersion.
  • FINEX-50 trade name, average primary particle diameter of about 20 nm, no surface treatment
  • dispersant sodium polyacrylate TEGO Dispers 715W (mass average molecular weight 3000) manufactured by Evonik was used.
  • a disperser paint shaker, manufactured by Asada Iron Works Co., Ltd.
  • Dispersion processing was performed. As a result, the zinc oxide dispersion according to this example was prepared.
  • Example 1-1 the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the produced zinc oxide dispersion were measured, respectively. The results are shown in Table 1.
  • Comparative Example 1-1 In Comparative Example 1-1, only pure water was used as the dispersion medium. Other than that, as in Example 1, each material is placed in a container so that the blending ratio is as shown in Table 1, and a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) is used at room temperature for 72 hours (dispersion). Time) Distributed processing was performed. As a result, the zinc oxide dispersion according to this comparative example was prepared.
  • Example 1-1 the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the produced zinc oxide dispersion were measured, respectively. The results are shown in Table 1.
  • Example 1-1 put each material in a container so that the blending ratio is as shown in Table 1, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 72 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 1.
  • Example 1-1 put each material in a container so that the blending ratio is as shown in Table 1, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 72 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 1.
  • a disperser paint shaker, manufactured by Asada Iron Works Co., Ltd.
  • Dispersion processing of (dispersion time) was performed.
  • the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 1.
  • Example 1-1 put each material in a container so that the blending ratio is as shown in Table 1, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 72 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 1.
  • Example 1-3 to 1-6 the compounding ratio of propylene glycol and pure water (propylene glycol / dispersion medium) in the dispersion medium was changed as shown in Table 2, respectively.
  • the zinc oxide dispersion according to each example was prepared in the same manner as in Example 1-1.
  • Example 2 the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the produced zinc oxide dispersions of each example were measured. The results are shown in Table 2.
  • Comparative Examples 1-6 to 1-8 In Comparative Examples 1-6 to 1-8, the compounding ratio of propylene glycol and pure water (propylene glycol / dispersion medium) in the dispersion medium was changed as shown in Table 2. Other than that, the zinc oxide dispersion according to each Comparative Example was prepared in the same manner as in Example 1-1. However, in Comparative Example 1-8, the zinc oxide nanoparticles could not be dispersed in the mixed solvent.
  • Example 1-1 the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the prepared zinc oxide dispersions of Comparative Examples 1-6 and 1-7 were measured, respectively. The results are shown in Table 2.
  • Example 1-7 to 1-12 the compounding ratio of glycerin and pure water (glycerin / dispersion medium) in the dispersion medium was changed as shown in Table 3.
  • the zinc oxide dispersion according to each example was prepared in the same manner as in Example 1-2.
  • Example 3 the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the produced zinc oxide dispersions of each example were measured. The results are shown in Table 3.
  • Comparative Example 1-9 In Comparative Example 1-9, the compounding ratio of glycerin and pure water (glycerin / dispersion medium) in the dispersion medium was changed to 0.98 / 1. Other than that, the zinc oxide nanoparticles were dispersed in the same manner as in Example 1-2, but the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 3.
  • the blending ratios of these materials were as shown in Table 4.
  • Zirconia beads were also put into the container, and the titanium oxide nanoparticles were dispersed at room temperature using a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.).
  • the dispersion time was 96 hours.
  • the titanium oxide dispersion according to this example was prepared.
  • the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles were measured, respectively.
  • the results are shown in Table 4. Unless otherwise specified, the numerical values in Table 4 are expressed in mass% with respect to the total mass of the titanium oxide dispersion.
  • titanium oxide nanoparticles As the titanium oxide nanoparticles, STR40N (trade name, average primary particle diameter of about 40 nm, no surface treatment) manufactured by Sakai Chemical Industry Co., Ltd. was used.
  • dispersant sodium polyacrylate As the dispersant sodium polyacrylate, TEGO Dispers 715W (mass average molecular weight 3000) manufactured by Evonik was used.
  • Example 2-1 put each material in a container so that the blending ratio is as shown in Table 4, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 96 hours at room temperature. (Dispersion time) Dispersion processing was performed. As a result, the titanium oxide dispersion according to this example was prepared.
  • Example 2-1 the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles in the produced titanium oxide dispersion were measured. The results are shown in Table 4.
  • Comparative Example 2-1 In Comparative Example 2-1 only pure water was used as the dispersion medium. Other than that, as in Example 2-1, put each material in a container so that the blending ratio is as shown in Table 4, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 96 hours at room temperature. (Dispersion time) Dispersion processing was performed. As a result, the titanium oxide dispersion according to this comparative example was prepared.
  • Example 2-1 the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles in the produced titanium oxide dispersion were measured. The results are shown in Table 4.
  • a disperser paint shaker, manufactured by Asada Iron Works Co., Ltd.
  • Dispersion processing of (dispersion time) was performed.
  • the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 4.
  • a disperser paint shaker, manufactured by Asada Iron Works Co., Ltd.
  • Dispersion processing of (dispersion time) was performed.
  • the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 4.
  • a disperser paint shaker, manufactured by Asada Iron Works Co., Ltd.
  • Dispersion processing of (dispersion time) was performed.
  • the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 4.
  • Examples 2-3 to 2-8 In Examples 2-3 to 2-8, the compounding ratio of 1,3-butylene glycol and pure water (1,3-butylene glycol / dispersion medium) in the dispersion medium is as shown in Table 5, respectively. changed. Other than that, the titanium oxide dispersion according to each example was prepared in the same manner as in Example 2-1.
  • Example 2-1 the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles in the prepared titanium oxide dispersion of each example were measured. The results are shown in Table 5.
  • Comparative Example 2-5 In Comparative Example 2-5, the compounding ratio of 1,3-butylene glycol and pure water (1,3-butylene glycol / dispersion medium) in the dispersion medium was changed to 0.98 / 1. Other than that, the titanium oxide nanoparticles were dispersed in the same manner as in Example 2-1 but the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 5.
  • Examples 2-9 to 2-14 the compounding ratio of glycerin and pure water (glycerin / dispersion medium) in the dispersion medium was changed as shown in Table 6.
  • the titanium oxide dispersion according to each example was prepared in the same manner as in Example 2-2.
  • Example 2-2 the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles in the prepared titanium oxide dispersion of each example were measured. The results are shown in Table 6.
  • Comparative Example 2-6 In Comparative Example 2-6, the mixing ratio of glycerin and pure water (glycerin / dispersion medium) in the dispersion medium was changed as shown in Table 6. Other than that, the titanium oxide nanoparticles were dispersed in the same manner as in Example 2-2, but the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 6.
  • the mass average molecular weight of sodium polyacrylate is a value obtained by gel permeation chromatography (GPC) using polyethylene oxide (PEO) / polyethylene glycol (PEG) as a standard product.
  • the average primary particle diameters of the zinc oxide nanoparticles and the titanium oxide nanoparticles and the average dispersed particle diameters D10, D50 and D99 in each Example and Comparative Example are Microtrack UPA-EX150 (trade name, manufactured by Nikkiso Co., Ltd.). Was measured by the dynamic light scattering method.
  • the dispersion medium is pure water as in Comparative Example 1-1
  • zinc oxide nanoparticles can be dispersed, but the value of D99 exceeds 300 nm.
  • the zinc oxide nanoparticles were dispersed in the mixed solvent. I could't get it.
  • the dispersion medium is pure water as in Comparative Example 2-1 the titanium oxide nanoparticles can be dispersed, but the value of D99 exceeds 300 nm. Further, in the case of Comparative Examples 2-2 to 2-4 in which a mixed solvent consisting only of pure water and an organic solvent other than 1,3-butylene glycol and glycerin was used as the dispersion medium, titanium oxide nanoparticles were mixed as the mixed solvent. could not be dispersed inside.

Abstract

Provided are a zinc oxide dispersion, a titanium oxide dispersion and a cosmetic composition, each of which has excellent dispersibility and each of which does not undergo the formation of coarse particles due to the reaggregation of excessively dispersed particles of zinc oxide particles or titanium oxide particles while maintaining excellent biological detrimental properties. The zinc oxide dispersion of the present invention comprises zinc oxide particles, sodium polyacrylate having a mass average molecular weight of less than 10,000, and a dispersion medium only composed of water, propylene glycol and/or glycerin, in which the blend ratio of propylene glycol to the dispersion medium is 0.3/1 to 0.9/1, and the blend ratio of glycerin to the dispersion medium is 0.1/1 to 0.8/1; and the titanium oxide dispersion comprises titanium oxide particles, the sodium polyacrylate, and a dispersion medium only composed of water, 1,3-butylene glycol and/or glycerin, in which the blend ratio of 1,3-butylene glycol to the dispersion medium is 0.1/1 to 0.9/1 and the blend ratio of glycerin to the dispersion medium is 0.1/1 to 0.9/1.

Description

酸化亜鉛分散体、酸化チタン分散体及び化粧品組成物Zinc oxide dispersion, titanium oxide dispersion and cosmetic composition
 本発明は酸化亜鉛分散体、酸化チタン分散体及び化粧品組成物に関し、より詳細には、良好な生体非為害性が維持され、かつ過分散粒子の再凝集による粗大粒子の形成を抑制した酸化亜鉛分散体、酸化チタン分散体及び化粧品組成物に関する。 The present invention relates to a zinc oxide dispersion, a titanium oxide dispersion and a cosmetic composition. More specifically, the present invention maintains good biotoxicity and suppresses the formation of coarse particles due to reaggregation of overdispersed particles. The present invention relates to a dispersion, a titanium oxide dispersion and a cosmetic composition.
 酸化亜鉛粒子又は酸化チタン粒子(以下、「酸化亜鉛粒子等」という。)をナノメーターサイズの平均分散粒子径で分散させた分散体は、当該酸化亜鉛粒子及び酸化チタン粒子が紫外線遮蔽剤として機能するため、日焼け止め剤等の化粧品組成物に用いられている。また、酸化亜鉛粒子等を分散させた分散体は、化粧品組成物の製造工程の簡略化、及び高品質化を可能にする。 Zinc oxide particles or titanium oxide particles (hereinafter referred to as "zinc oxide particles, etc.") are dispersed in a nanometer-sized average dispersed particle size, and the zinc oxide particles and titanium oxide particles function as an ultraviolet shielding agent. Therefore, it is used in cosmetic compositions such as sunscreens. Further, the dispersion in which zinc oxide particles and the like are dispersed makes it possible to simplify the manufacturing process of the cosmetic composition and improve the quality.
 一方、近年は、特にO/W(oil-in-water)型エマルジョンの日焼け止め剤等に配合することができ、生体為害性の低い分散体の要望も高まっている。そのため、酸化亜鉛粒子等の分散体に対しても需要が高まっているが、当該分散体を用いた日焼け止め剤の場合、分散している酸化亜鉛粒子等の分散粒子径は十分に小さくない。そのため、これを皮膚上に塗布すると、塗布時及び塗布後に白い膜が皮膚上に残る、いわゆる白浮きが生じるという問題がある。また、酸化亜鉛粒子等の分散体を含む化粧品組成物を一定期間静置した場合には、酸化亜鉛粒子等が沈降するという問題もある。 On the other hand, in recent years, there has been an increasing demand for dispersions that can be blended with sunscreens of O / W (oil-in-water) type emulsions and have low biotoxicity. Therefore, the demand for dispersions such as zinc oxide particles is increasing, but in the case of sunscreens using the dispersions, the dispersed particle diameters of the dispersed zinc oxide particles and the like are not sufficiently small. Therefore, when this is applied on the skin, there is a problem that a white film remains on the skin at the time of application and after application, that is, so-called whitening occurs. Further, when the cosmetic composition containing a dispersion of zinc oxide particles or the like is allowed to stand for a certain period of time, there is also a problem that the zinc oxide particles or the like settle.
 この問題に対し、例えば特許文献1には、分散剤として質量平均分子量が10000以下のポリアクリル酸ナトリウムを用い、顔料として当該分散剤と相性の良い表面性状を有する酸化亜鉛粒子を用いた顔料組成物が記載されている。この特許文献1によれば、顔料組成物中で分散している酸化亜鉛粒子の平均分散粒径D50を十分小さい値に抑制することができ、その結果、顔料組成物をインクジェット用水性インク組成物の他、化粧組成物にも適用できることが記載されている。 To solve this problem, for example, in Patent Document 1, a pigment composition using sodium polyacrylate having a mass average molecular weight of 10,000 or less as a dispersant and zinc oxide particles having a surface texture compatible with the dispersant as a pigment. The thing is listed. According to Patent Document 1, the average dispersed particle size D50 of the zinc oxide particles dispersed in the pigment composition can be suppressed to a sufficiently small value, and as a result, the pigment composition is used as an aqueous ink composition for inkjet. In addition, it is described that it can be applied to cosmetic compositions.
 しかし、特許文献1に記載の顔料組成物であっても、分散した酸化亜鉛粒子が再凝集する過分散の抑制が十分ではない。そのため、特許文献1に記載の顔料組成物では、酸化亜鉛粒子の分散粒子径D99(体積積算粒度分布における積算粒度で99%の粒径)の値が大きくなる場合があるという問題がある。 However, even with the pigment composition described in Patent Document 1, the suppression of overdispersion in which dispersed zinc oxide particles reaggregate is not sufficient. Therefore, in the pigment composition described in Patent Document 1, there is a problem that the value of the dispersed particle size D99 (the particle size of 99% in the integrated particle size distribution in the volume integrated particle size distribution) of the zinc oxide particles may be large.
特開2018-188518号公報Japanese Unexamined Patent Publication No. 2018-188518
 本発明は前記問題点に鑑みなされたものであり、その目的は、優れた生体非為害性を保持しつつ、酸化亜鉛粒子又は酸化チタン粒子の過分散粒子の再凝集による粗大粒子の形成を抑制し、分散性に優れた酸化亜鉛分散体、酸化チタン分散体及び化粧品組成物を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to suppress the formation of coarse particles due to reaggregation of zinc oxide particles or overdispersed particles of titanium oxide particles while maintaining excellent biotoxicity. Further, it is an object of the present invention to provide a zinc oxide dispersion, a titanium oxide dispersion and a cosmetic composition having excellent dispersibility.
 本発明に係る酸化亜鉛分散体は、前記の課題を解決するために、酸化亜鉛粒子と、質量平均分子量が10000未満のポリアクリル酸ナトリウムからなる前記酸化亜鉛粒子の分散剤と、前記酸化亜鉛粒子を分散させる分散媒とを含み、前記分散媒が水と、プロピレングリコール及び/又はグリセリンとのみからなり、前記プロピレングリコールの前記分散媒に対する配合比(プロピレングリコール/分散媒)が、質量基準で0.3/1~0.9/1の範囲内であり、前記グリセリンの前記分散媒に対する配合比(グリセリン/分散媒)が、質量基準で0.1/1~0.8/1の範囲内であることを特徴とする。 In order to solve the above-mentioned problems, the zinc oxide dispersion according to the present invention comprises zinc oxide particles, a dispersant of the zinc oxide particles composed of sodium polyacrylate having a mass average molecular weight of less than 10,000, and the zinc oxide particles. The dispersion medium comprises only water and propylene glycol and / or glycerin, and the compounding ratio of the propylene glycol to the dispersion medium (propylene glycol / dispersion medium) is 0 on a mass basis. It is in the range of .3 / 1 to 0.9 / 1, and the compounding ratio of the glycerin to the dispersion medium (glycerin / dispersion medium) is in the range of 0.1 / 1 to 0.8 / 1 on a mass basis. It is characterized by being.
 前記の構成によれば、酸化亜鉛粒子の分散剤として質量平均分子量が10000以下のポリアクリル酸ナトリウムを用い、酸化亜鉛粒子を分散させる分散媒として、水とプロピレングリコール及び/又はグリセリンとのみからなるものを用いる。この様な構成であると、過分散の酸化亜鉛粒子が再凝集することにより粗大粒子が形成されるのを抑制することができる。その結果、従来よりも平均分散粒子径D99(体積積算粒度分布における積算粒度で99%の粒径)の値を大幅に低減した酸化亜鉛分散体を提供することができる。また、本発明の分散媒は水とプロピレングリコール及び/又はグリセリンとを混合した混合溶媒であり、水のみを分散媒に用いた場合と比較しても、良好な生体非為害性の維持が図られる。 According to the above configuration, sodium polyacrylate having a mass average molecular weight of 10,000 or less is used as a dispersant for zinc oxide particles, and only water, propylene glycol and / or glycerin are used as a dispersion medium for dispersing zinc oxide particles. Use things. With such a configuration, it is possible to suppress the formation of coarse particles due to the reaggregation of overdispersed zinc oxide particles. As a result, it is possible to provide a zinc oxide dispersion in which the value of the average dispersed particle size D99 (the particle size of 99% in the integrated particle size distribution in the volume integrated particle size distribution) is significantly reduced as compared with the conventional case. Further, the dispersion medium of the present invention is a mixed solvent in which water is mixed with propylene glycol and / or glycerin, and even when only water is used as the dispersion medium, good biotoxicity can be maintained. Be done.
 さらに前記の構成では、プロピレングリコールの分散媒に対する配合比を質量基準で0.3/1~0.9/1の範囲内とし、グリセリンの分散媒に対する配合比を質量基準で0.1/1~0.8/1の範囲内とする。プロピレングリコールの配合比を0.3/1以上にし、グリセリンの配合比を0.1/1以上にすることで、酸化亜鉛粒子の表面に吸着したポリアクリル酸ナトリウムの分散媒に対する濡れ性を向上させることができる。これにより、表面にポリアクリル酸ナトリウムが吸着した酸化亜鉛粒子が濡れて、その凝集力の低下が促進される。その結果、酸化亜鉛粒子の過分散による再凝集を抑制又は低減することができ、酸化亜鉛粒子の分散粒子径D99の値が大きくなるのを防止することができる。また、プロピレングリコールの配合比を0.9/1以下にし、グリセリンの配合比を0.8/1以下にすることで、酸化亜鉛分散体の粘度が大きくなり過ぎるのを防止することができる。 Further, in the above configuration, the compounding ratio of propylene glycol to the dispersion medium is in the range of 0.3 / 1 to 0.9 / 1 on a mass basis, and the compounding ratio of glycerin to the dispersion medium is 0.1 / 1 on a mass basis. It shall be within the range of ~ 0.8 / 1. By setting the blending ratio of propylene glycol to 0.3 / 1 or more and the blending ratio of glycerin to 0.1 / 1 or more, the wettability of sodium polyacrylate adsorbed on the surface of zinc oxide particles to the dispersion medium is improved. Can be made to. As a result, the zinc oxide particles on which sodium polyacrylate is adsorbed are wetted on the surface, and the decrease in the cohesive force is promoted. As a result, reaggregation due to overdispersion of the zinc oxide particles can be suppressed or reduced, and the value of the dispersed particle diameter D99 of the zinc oxide particles can be prevented from increasing. Further, by setting the blending ratio of propylene glycol to 0.9 / 1 or less and the blending ratio of glycerin to 0.8 / 1 or less, it is possible to prevent the viscosity of the zinc oxide dispersion from becoming too high.
 また前記構成に於いて、前記酸化亜鉛粒子は、表面処理されていない酸化亜鉛粒子であることが好ましい。これにより、分散する酸化亜鉛粒子の平均分散粒子径が大きくなるのを抑制し、平均一次粒子径に近づけることが可能になる。また、保存安定性の低下も防止することができる。 Further, in the above configuration, the zinc oxide particles are preferably zinc oxide particles that have not been surface-treated. As a result, it is possible to suppress the increase in the average dispersed particle size of the dispersed zinc oxide particles and bring the zinc oxide particles closer to the average primary particle size. In addition, it is possible to prevent a decrease in storage stability.
 また前記構成に於いては、前記酸化亜鉛粒子と前記ポリアクリル酸ナトリウムとの含有比が、質量基準で1:0.01~1:0.5の範囲内であることが好ましい。前記含有比を1:0.01以上にすることにより、酸化亜鉛粒子の分散性の低下を防止することができる。その一方、前記含有比を1:0.5以下にすることにより、酸化亜鉛粒子の分散安定性の低下を防止することができる。 Further, in the above configuration, it is preferable that the content ratio of the zinc oxide particles and the sodium polyacrylate is in the range of 1: 0.01 to 1: 0.5 on a mass basis. By setting the content ratio to 1: 0.01 or more, it is possible to prevent a decrease in the dispersibility of the zinc oxide particles. On the other hand, by setting the content ratio to 1: 0.5 or less, it is possible to prevent a decrease in the dispersion stability of the zinc oxide particles.
 さらに、前記の構成に於いては、分散した前記酸化亜鉛粒子の平均分散粒子径D99が350nm以下であることが好ましい。これにより、酸化亜鉛粒子の分離や沈降及び凝集を防止し、酸化亜鉛分散体の保存安定性の維持が図れる。 Further, in the above configuration, it is preferable that the average dispersed particle diameter D99 of the dispersed zinc oxide particles is 350 nm or less. As a result, the separation, sedimentation and aggregation of zinc oxide particles can be prevented, and the storage stability of the zinc oxide dispersion can be maintained.
 本発明に係る酸化チタン分散体は、前記の課題を解決するために、酸化チタン粒子と、質量平均分子量が10000未満のポリアクリル酸ナトリウムからなる前記酸化チタン粒子の分散剤と、前記酸化チタン粒子を分散させる分散媒とを含み、前記分散媒が水と、1,3-ブチレングリコール及び/又はグリセリンとのみからなり、前記1,3-ブチレングリコールの前記分散媒に対する配合比(1,3-ブチレングリコール/分散媒)が、質量基準で0.1/1~0.9/1の範囲内であり、前記グリセリンの前記分散媒に対する配合比(グリセリン/分散媒)が、質量基準で0.1/1~0.9/1の範囲内であることを特徴とする。 In order to solve the above-mentioned problems, the titanium oxide dispersion according to the present invention comprises titanium oxide particles, a dispersant of the titanium oxide particles composed of sodium polyacrylate having a mass average molecular weight of less than 10,000, and the titanium oxide particles. The dispersion medium comprises only water and 1,3-butylene glycol and / or glycerin, and the compounding ratio of the 1,3-butylene glycol to the dispersion medium (1,3-butylene glycol). Butylene glycol / dispersion medium) is in the range of 0.1 / 1 to 0.9 / 1 on a mass basis, and the compounding ratio of the glycerin to the dispersion medium (glycerin / dispersion medium) is 0. It is characterized in that it is in the range of 1/1 to 0.9 / 1.
 前記の構成によれば、酸化チタン粒子の分散剤として質量平均分子量が10000以下のポリアクリル酸ナトリウムを用い、酸化チタン粒子を分散させる分散媒として、水と1,3-ブチレングリコール及び/又はグリセリンとのみからなるものを用いる。これにより、前記構成では、過分散の酸化チタン粒子が再凝集することにより粗大粒子が形成されるのを抑制することができる。その結果、前記構成であると、従来よりも平均分散粒子径D99(体積積算粒度分布における積算粒度で99%の粒径)の値を大幅に低減した酸化チタン分散体を提供することができる。また、本発明の分散媒は水と1,3-ブチレングリコール及び/又はグリセリンとを混合した混合溶媒であり、例えば、プロピレングリコールを分散媒に用いた場合と比較して、皮膚刺激性を低減することができる。さらに、本発明の酸化チタン分散体は、水のみからなる分散媒を用いた場合と比較して、良好な生体非為害性の維持が図られる。 According to the above configuration, sodium polyacrylate having a mass average molecular weight of 10,000 or less is used as a dispersant for titanium oxide particles, and water and 1,3-butylene glycol and / or glycerin are used as a dispersion medium for dispersing titanium oxide particles. Use only those consisting of and. Thereby, in the above configuration, it is possible to suppress the formation of coarse particles due to the reaggregation of the overdispersed titanium oxide particles. As a result, with the above configuration, it is possible to provide a titanium oxide dispersion in which the value of the average dispersed particle size D99 (particle size of 99% in the integrated particle size distribution in the volume integrated particle size distribution) is significantly reduced as compared with the conventional case. Further, the dispersion medium of the present invention is a mixed solvent in which water and 1,3-butylene glycol and / or glycerin are mixed, and the skin irritation is reduced as compared with the case where propylene glycol is used as the dispersion medium, for example. can do. Further, the titanium oxide dispersion of the present invention can maintain good biotoxicity as compared with the case of using a dispersion medium consisting only of water.
 さらに前記の構成では、1,3-ブチレングリコールの分散媒に対する配合比を質量基準で0.1/1~0.9/1の範囲内とし、グリセリンの分散媒に対する配合比を質量基準で0.1/1~0.9/1の範囲内とする。1,3-ブチレングリコールの配合比を0.1/1以上にし、グリセリンの配合比を0.1/1以上にすることで、酸化チタン粒子の表面に吸着したポリアクリル酸ナトリウムの分散媒に対する濡れ性を向上させることができる。これにより、表面にポリアクリル酸ナトリウムが吸着した酸化チタン粒子が濡れて、その凝集力の低下が促進される。その結果、酸化チタン粒子の過分散による再凝集を抑制又は低減することができ、酸化チタン粒子の分散粒子径D99の値が大きくなるのを防止することができる。また、1,3-ブチレングリコールの配合比を0.9/1以下にし、グリセリンの配合比を0.9/1以下にすることで、酸化チタン分散体の粘度が大きくなり過ぎるのを防止することができる。 Further, in the above configuration, the compounding ratio of 1,3-butylene glycol to the dispersion medium is in the range of 0.1 / 1 to 0.9 / 1 on the mass basis, and the compounding ratio of glycerin to the dispersion medium is 0 on the mass basis. It shall be in the range of 1/1 to 0.9 / 1. By setting the blending ratio of 1,3-butylene glycol to 0.1 / 1 or more and the blending ratio of glycerin to 0.1 / 1 or more, the dispersion medium of sodium polyacrylate adsorbed on the surface of the titanium oxide particles is used. Wetness can be improved. As a result, the titanium oxide particles on which sodium polyacrylate is adsorbed are wetted, and the decrease in cohesive force is promoted. As a result, reaggregation due to overdispersion of the titanium oxide particles can be suppressed or reduced, and the value of the dispersed particle diameter D99 of the titanium oxide particles can be prevented from increasing. Further, by setting the blending ratio of 1,3-butylene glycol to 0.9 / 1 or less and the blending ratio of glycerin to 0.9 / 1 or less, it is possible to prevent the viscosity of the titanium oxide dispersion from becoming too high. be able to.
 また前記構成に於いて、前記酸化チタン粒子は、表面処理されていない酸化チタン粒子であることが好ましい。これにより、分散する酸化チタン粒子の平均分散粒子径が大きくなるのを抑制し、平均一次粒子径に近づけることが可能になる。また、保存安定性の低下も防止することができる。 Further, in the above configuration, the titanium oxide particles are preferably titanium oxide particles that have not been surface-treated. This suppresses the increase in the average dispersed particle size of the dispersed titanium oxide particles and makes it possible to approach the average primary particle size. In addition, it is possible to prevent a decrease in storage stability.
 また前記構成に於いては、前記酸化チタン粒子と前記ポリアクリル酸ナトリウムとの含有比が、質量基準で1:0.01~1:0.5の範囲内であることが好ましい。前記含有比を1:0.01以上にすることにより、酸化チタン粒子の分散性の低下を防止することができる。その一方、前記含有比を1:0.5以下にすることにより、酸化チタン粒子の分散安定性の低下を防止することができる。 Further, in the above configuration, the content ratio of the titanium oxide particles to the sodium polyacrylate is preferably in the range of 1: 0.01 to 1: 0.5 on a mass basis. By setting the content ratio to 1: 0.01 or more, it is possible to prevent a decrease in the dispersibility of the titanium oxide particles. On the other hand, by setting the content ratio to 1: 0.5 or less, it is possible to prevent a decrease in the dispersion stability of the titanium oxide particles.
 さらに、前記の構成に於いては、分散した前記酸化チタン粒子の平均分散粒子径D99が350nm以下であることが好ましい。これにより、酸化チタン粒子の分離や沈降及び凝集を防止し、酸化チタン分散体の保存安定性の維持が図れる。 Further, in the above configuration, it is preferable that the average dispersed particle diameter D99 of the dispersed titanium oxide particles is 350 nm or less. As a result, the separation, sedimentation and aggregation of the titanium oxide particles can be prevented, and the storage stability of the titanium oxide dispersion can be maintained.
 本発明に係る化粧品組成物は、前記の課題を解決するために、前記酸化亜鉛分散体又は前記酸化チタン分散体を含むことを特徴とする。 The cosmetic composition according to the present invention is characterized by containing the zinc oxide dispersion or the titanium oxide dispersion in order to solve the above-mentioned problems.
 前記構成に於ける酸化亜鉛分散体及び酸化チタン分散体は、従来の分散体と比べて、分散させる酸化亜鉛粒子や酸化チタン粒子の平均分散粒子径D99の値を大幅に低減させた分散体である。そのため、これらの分散体を含む本発明の化粧品組成物では、従来の化粧品組成物と比べ、塗布時及び塗布後に白い膜が皮膚上に残る、いわゆる白浮きが発生するのを低減又は防止することができる。 The zinc oxide dispersion and the titanium oxide dispersion in the above configuration are dispersions in which the values of the average dispersed particle diameter D99 of the zinc oxide particles and the titanium oxide particles to be dispersed are significantly reduced as compared with the conventional dispersion. be. Therefore, the cosmetic composition of the present invention containing these dispersions reduces or prevents the occurrence of so-called whitening, in which a white film remains on the skin during and after application, as compared with the conventional cosmetic composition. Can be done.
 本発明によれば、酸化亜鉛粒子の分散剤として質量平均分子量が10000以下のポリアクリル酸ナトリウムを用い、酸化亜鉛粒子を分散させる分散媒として水とプロピレングリコール及び/又はグリセリンとのみからなる混合溶媒を用いる。これにより、過分散の酸化亜鉛粒子が再凝集して粗大粒子が形成されるのを抑制し、酸化亜鉛粒子の平均分散粒子径D99の値を低減させることができる。また、分散媒に用いるプロピレングリコール及びグリセリンは人体に対して安全性を有する化合物である。そのため、本発明によれば、良好な生体非為害性を維持しつつ、分散性に優れた酸化亜鉛分散体を提供することができる。また本発明によれば、当該酸化亜鉛分散体を含有させることで、白浮きの発生を低減又は防止した化粧品組成物を提供することができる。 According to the present invention, sodium polyacrylate having a mass average molecular weight of 10,000 or less is used as a dispersant for zinc oxide particles, and a mixed solvent consisting only of water and propylene glycol and / or glycerin as a dispersion medium for dispersing zinc oxide particles. Is used. As a result, it is possible to suppress the reaggregation of the overdispersed zinc oxide particles to form coarse particles, and reduce the value of the average dispersed particle diameter D99 of the zinc oxide particles. Propylene glycol and glycerin used as dispersion media are compounds having safety to the human body. Therefore, according to the present invention, it is possible to provide a zinc oxide dispersion having excellent dispersibility while maintaining good biotoxicity. Further, according to the present invention, it is possible to provide a cosmetic composition in which the occurrence of whitening is reduced or prevented by containing the zinc oxide dispersion.
 また、本発明によれば、酸化チタン粒子の分散剤として質量平均分子量が10000以下のポリアクリル酸ナトリウムを用い、酸化チタン粒子を分散させる分散媒として水と1,3-ブチレングリコール及び/又はグリセリンとのみからなる混合溶媒を用いる。これにより、過分散の酸化チタン粒子が再凝集して粗大粒子が形成されるのを抑制し、酸化チタン粒子の平均分散粒子径D99の値を低減させることができる。また、分散媒に用いる1,3-ブチレングリコール及びグリセリンは人体に対して安全性を有する化合物である。特に1,3-ブチレングリコールは、例えば、プロピレングリコールを用いた場合と比較して、酸化チタン分散体の皮膚刺激性を低減することができる。そのため、本発明によれば、良好な生体非為害性を維持しつつ、分散性に優れた酸化チタン分散体を提供することができる。また本発明によれば、当該酸化チタン分散体を含有させることで、白浮きの発生を低減又は防止し、かつ、皮膚刺激性の低減が可能な化粧品組成物を提供することができる。 Further, according to the present invention, sodium polyacrylate having a mass average molecular weight of 10,000 or less is used as a dispersant for titanium oxide particles, and water and 1,3-butylene glycol and / or glycerin are used as a dispersion medium for dispersing titanium oxide particles. A mixed solvent consisting only of and is used. As a result, it is possible to suppress the reaggregation of the overdispersed titanium oxide particles to form coarse particles, and reduce the value of the average dispersed particle diameter D99 of the titanium oxide particles. Further, 1,3-butylene glycol and glycerin used as a dispersion medium are compounds having safety to the human body. In particular, 1,3-butylene glycol can reduce the skin irritation of the titanium oxide dispersion as compared with the case of using propylene glycol, for example. Therefore, according to the present invention, it is possible to provide a titanium oxide dispersion having excellent dispersibility while maintaining good biotoxicity. Further, according to the present invention, it is possible to provide a cosmetic composition capable of reducing or preventing the occurrence of whitening and reducing skin irritation by containing the titanium oxide dispersion.
(酸化亜鉛分散体及びその製造方法)
 本実施の形態に係る酸化亜鉛分散体は、分散質としての酸化亜鉛(ZnO)粒子と、酸化亜鉛粒子の分散剤としてのポリアクリル酸ナトリウムと、分散媒とを少なくとも含む。
(Zinc oxide dispersion and its manufacturing method)
The zinc oxide dispersion according to the present embodiment contains at least zinc oxide (ZnO) particles as a dispersant, sodium polyacrylate as a dispersant for zinc oxide particles, and a dispersion medium.
 酸化亜鉛粒子としては、例えば、二酸化ケイ素の水和物(含水シリカ)、ハイドロゲンジメチコン、トリエトキシカプリリルシラン、水酸化アルミニウム等の化合物により表面処理が施された酸化亜鉛粒子や、当該表面処理が施されていない酸化亜鉛粒子が挙げられる。これらの酸化亜鉛粒子のうち、本実施の形態に於いては表面処理が施されていない酸化亜鉛粒子を用いることが好ましい。表面処理が施されていない酸化亜鉛粒子であると、表面処理が施された酸化亜鉛粒子と比べ、酸化亜鉛粒子の平均分散粒子径を一層小さくすることができ、良好な保存安定性を維持することができる。また、分散した酸化亜鉛粒子の平均分散粒子径を、当該酸化亜鉛粒子の平均一次粒子径に近づけることが可能になる。尚、本発明に於いて酸化亜鉛粒子とは、特に断らない限り結晶性の酸化亜鉛粒子を意味する。 Examples of the zinc oxide particles include zinc oxide particles surface-treated with a compound such as silicon dioxide hydrate (hydrous silica), hydrogen dimethicone, triethoxycaprylylsilane, and aluminum hydroxide, and the surface treatment thereof. Examples include zinc oxide particles that have not been treated. Of these zinc oxide particles, it is preferable to use zinc oxide particles that have not been surface-treated in the present embodiment. When the zinc oxide particles are not surface-treated, the average dispersed particle size of the zinc oxide particles can be further reduced as compared with the surface-treated zinc oxide particles, and good storage stability is maintained. be able to. Further, the average dispersed particle size of the dispersed zinc oxide particles can be brought close to the average primary particle size of the zinc oxide particles. In the present invention, the zinc oxide particles mean crystalline zinc oxide particles unless otherwise specified.
 酸化亜鉛粒子としては市販品を用いることも可能であり、その様な市販品としては、例えば、NANOFINE-50LP、FINEX-33W、FINEX-52W-LP2、FINEX-33W-LP2、FINEX-50S-LP2、FINEX-30S-LPT、FINEX-50-OTS、FINEX-50、FINEX-30、FINEX-25(何れも商品名。堺化学工業(株)製)等が挙げられる。これらの市販品のうち、本実施の形態では、表面処理が施されていないFINEX-50、FINEX-30及びFINEX-25が好ましい。 Commercially available products can also be used as the zinc oxide particles, and such commercially available products include, for example, NANOFINE-50LP, FINEX-33W, FINEX-52W-LP2, FINEX-33W-LP2, and FINEX-50S-LP2. , FINEX-30S-LPT, FINEX-50-OTS, FINEX-50, FINEX-30, FINEX-25 (all trade names, manufactured by Sakai Chemical Industry Co., Ltd.) and the like. Among these commercially available products, in the present embodiment, FINEX-50, FINEX-30 and FINEX-25 which have not been surface-treated are preferable.
 酸化亜鉛粒子の平均一次粒子径(体積平均粒子径)としては、20nm~400nmが好ましく、30nm~200nmがより好ましく、40nm~100nmが特に好ましい。前記平均一次粒子径を20nm以上にすることにより、透明性の向上が図れ、十分な隠蔽性を確保することができる。その一方、前記平均一次粒子径を400nm以下にすることにより、粗粒の低減が図れ、酸化亜鉛粒子の沈降を防止することができる。 The average primary particle diameter (volume average particle diameter) of the zinc oxide particles is preferably 20 nm to 400 nm, more preferably 30 nm to 200 nm, and particularly preferably 40 nm to 100 nm. By setting the average primary particle diameter to 20 nm or more, transparency can be improved and sufficient concealment can be ensured. On the other hand, by setting the average primary particle diameter to 400 nm or less, coarse particles can be reduced and zinc oxide particles can be prevented from settling.
 尚、本明細書に於いて「平均一次粒子径」とは一次粒子の平均粒子径を意味し、一次粒子とは一般的に粉末を構成する最も小さい粒子のことをいい、単結晶又はそれに近い結晶子が集まって形成している粒子を含む意味である。 In the present specification, the "average primary particle size" means the average particle size of the primary particles, and the primary particles generally refer to the smallest particles constituting the powder, and are single crystals or close to them. It means that it includes particles formed by aggregating crystallites.
 また、前記平均一次粒子径は酸化亜鉛粒子を電子顕微鏡で観察して求めた算術平均径である。本実施の形態に於いては、単分散の粒径分布を持つ酸化亜鉛粒子を用いるが、本発明はこれに限定されず、多分散の粒径分布を持つ酸化亜鉛粒子を用いてもよい。また、単分散の粒径分布を持つ酸化亜鉛粒子を2種以上混合して使用してもよい。 The average primary particle diameter is an arithmetic average diameter obtained by observing zinc oxide particles with an electron microscope. In the present embodiment, zinc oxide particles having a monodisperse particle size distribution are used, but the present invention is not limited to this, and zinc oxide particles having a polydisperse particle size distribution may be used. Further, two or more kinds of zinc oxide particles having a monodisperse particle size distribution may be mixed and used.
 酸化亜鉛粒子の形状は特に限定されず、球状、棒状、針状、紡錘状、板状等の任意の形状のものを使用することができる。本実施の形態に於いては同種の形状の酸化亜鉛粒子を用いてもよく、2種以上の異なる形状のものを混合して用いてもよい。尚、棒状、針状、紡錘状粒子である場合の前記平均一次粒子径は長軸の長さ(又は高さ)と短軸の長さ(又は幅)の相乗平均値で規定する。 The shape of the zinc oxide particles is not particularly limited, and any shape such as spherical, rod-shaped, needle-shaped, spindle-shaped, and plate-shaped can be used. In this embodiment, zinc oxide particles having the same shape may be used, or two or more different shapes may be mixed and used. The average primary particle diameter in the case of rod-shaped, needle-shaped, or spindle-shaped particles is defined by a geometric mean value of the length (or height) of the major axis and the length (or width) of the minor axis.
 酸化亜鉛粒子の含有量は酸化亜鉛分散体の濃度に直接影響するものであり、後述の化粧品組成物の保存性や粘度、pH等に影響を及ぼすものであることから、これらの点を考慮して適宜設定すればよい。通常は、酸化亜鉛分散体の全質量に対し10質量%~70質量%の範囲内が好ましく、20質量%~50質量%の範囲内がより好ましく、30質量%~40質量%の範囲内がさらに好ましい。酸化亜鉛粒子の含有量を10質量%以上にすることにより、濃度の低下を抑制することができる。その一方、酸化亜鉛粒子の含有量を70質量%以下にすることにより、酸化亜鉛粒子の分散性の低下や粘度上昇による取扱い性の悪化を防止することができる。 Since the content of zinc oxide particles directly affects the concentration of the zinc oxide dispersion and affects the storage stability, viscosity, pH, etc. of the cosmetic composition described later, these points should be taken into consideration. It may be set appropriately. Usually, it is preferably in the range of 10% by mass to 70% by mass, more preferably in the range of 20% by mass to 50% by mass, and in the range of 30% by mass to 40% by mass with respect to the total mass of the zinc oxide dispersion. More preferred. By setting the content of zinc oxide particles to 10% by mass or more, it is possible to suppress a decrease in concentration. On the other hand, by setting the content of the zinc oxide particles to 70% by mass or less, it is possible to prevent the dispersibility of the zinc oxide particles from being lowered and the handleability from being deteriorated due to the increase in viscosity.
 酸化亜鉛分散体に於いて、ポリアクリル酸ナトリウムは酸化亜鉛粒子の分散剤として機能する。ポリアクリル酸ナトリウムを配合することにより、酸化亜鉛粒子の分散性の向上が図れる。また、ポリアクリル酸ナトリウムは、薬事法等で定める基準に適合するものである。従って、ポリアクリル酸ナトリウムを分散剤として用いることにより、酸化亜鉛分散体の生体為害性を低減することができる。 In the zinc oxide dispersion, sodium polyacrylate functions as a dispersant for zinc oxide particles. By blending sodium polyacrylate, the dispersibility of zinc oxide particles can be improved. In addition, sodium polyacrylate conforms to the standards stipulated by the Pharmaceutical Affairs Law and the like. Therefore, by using sodium polyacrylate as a dispersant, the biotoxicity of the zinc oxide dispersion can be reduced.
 ポリアクリル酸ナトリウムの質量平均分子量は10000以下であり、好ましくは1500~10000、より好ましくは2000~8000である。ポリアクリル酸ナトリウムの質量平均分子量を10000以下にすることにより、酸化亜鉛粒子の表面に吸着するポリアクリル酸ナトリウムの分子鎖が過度に長くなるのを防止する。その結果、酸化亜鉛粒子同士が架橋されて凝集するのを低減することができる。尚、ポリアクリル酸ナトリウムの質量平均分子量を1500以上にすることにより、酸化亜鉛粒子の表面に吸着したポリアクリル酸ナトリウムが立体障害等による反発力を十分に発揮させることを可能にする。その結果、酸化亜鉛粒子同士が再凝集するのを抑制することができる。ポリアクリル酸ナトリウムの質量平均分子量は、例えば、後述する実施例に記載の測定方法により得られる値である。 The mass average molecular weight of sodium polyacrylate is 10,000 or less, preferably 1500 to 10000, and more preferably 2000 to 8000. By setting the mass average molecular weight of sodium polyacrylate to 10,000 or less, it is possible to prevent the molecular chain of sodium polyacrylate adhering to the surface of the zinc oxide particles from becoming excessively long. As a result, it is possible to reduce the possibility that the zinc oxide particles are crosslinked and aggregated. By setting the mass average molecular weight of sodium polyacrylate to 1500 or more, it is possible for sodium polyacrylate adsorbed on the surface of zinc oxide particles to sufficiently exert a repulsive force due to steric damage or the like. As a result, it is possible to prevent the zinc oxide particles from reaggregating with each other. The mass average molecular weight of sodium polyacrylate is, for example, a value obtained by the measuring method described in Examples described later.
 本実施の形態の酸化亜鉛粒子とポリアクリル酸ナトリウムとの含有比は、質量基準で1:0.01~1:0.5であることが好ましく、1:0.02~1:0.2であることがより好ましい。前記含有比を1:0.01以上にすることにより、酸化亜鉛粒子の分散性の低下を防止することができる。その一方、前記含有比を1:0.5以下にすることにより、酸化亜鉛粒子の分散安定性の低下を防止することができる。 The content ratio of the zinc oxide particles of the present embodiment to sodium polyacrylate is preferably 1: 0.01 to 1: 0.5 on a mass basis, and 1: 0.02 to 1: 0.2. Is more preferable. By setting the content ratio to 1: 0.01 or more, it is possible to prevent a decrease in the dispersibility of the zinc oxide particles. On the other hand, by setting the content ratio to 1: 0.5 or less, it is possible to prevent a decrease in the dispersion stability of the zinc oxide particles.
 尚、ポリアクリル酸ナトリウムは、例えば、後述する分散媒に添加する際に、他の従来の分散剤と比べ、比較的気泡が発生しにくい。そのため、本実施の形態の酸化亜鉛分散体に於いては消泡剤の添加を省略することができる。 Note that sodium polyacrylate is relatively less likely to generate bubbles when added to a dispersion medium described later, for example, as compared with other conventional dispersants. Therefore, in the zinc oxide dispersion of the present embodiment, the addition of the defoaming agent can be omitted.
 本実施の形態に係る酸化亜鉛分散体に於いては、酸化亜鉛粒子を分散させるための分散媒が含まれ、この分散媒としては水と、プロピレングリコール及び/又はグリセリンとのみからなる混合溶媒が用いられる。 The zinc oxide dispersion according to the present embodiment contains a dispersion medium for dispersing zinc oxide particles, and the dispersion medium includes a mixed solvent consisting only of water and propylene glycol and / or glycerin. Used.
 水としては、例えば、イオン交換水、限外ろ過水、逆浸透水、蒸留水等の純水、又は超純水等のイオン性不純物を除去したものが挙げられる。特に、紫外線照射又は過酸化水素添加等により滅菌処理した水は、長期間にわたってカビやバクテリアの発生を防止することができるので好適である。 Examples of water include pure water such as ion-exchanged water, ultrafiltration water, reverse osmosis water, and distilled water, or water from which ionic impurities such as ultrapure water have been removed. In particular, water sterilized by irradiation with ultraviolet rays or addition of hydrogen peroxide is suitable because it can prevent the growth of mold and bacteria for a long period of time.
 プロピレングリコールの分散媒に対する配合比(プロピレングリコール/分散媒)は、質量基準で0.3/1~0.9/1の範囲内であり、好ましくは0.4/1~0.8/1、より好ましくは0.5/1~0.7/1である。また、グリセリンの分散媒に対する配合比(グリセリン/分散媒)は、質量基準で0.1/1~0.8/1の範囲内であり、好ましくは0.1/1~0.7/1、より好ましくは0.1/1~0.6/1である。プロピレングリコールの分散媒に対する配合比を0.3/1以上にし、グリセリンの分散媒に対する配合比を0.1/1以上にすることで、酸化亜鉛粒子の表面に吸着したポリアクリル酸ナトリウムの分散媒に対する濡れ性を向上させることができる。これにより、表面にポリアクリル酸ナトリウムが吸着した酸化亜鉛粒子が濡れて、その凝集力の低下が促進される。その結果、酸化亜鉛粒子の過分散による再凝集を抑制又は低減することができ、酸化亜鉛粒子の平均分散粒子径D99(体積積算粒度分布における積算粒度で99%の粒径)の値が大きくなるのを防止することができる。その一方、プロピレングリコールの分散媒に対する配合比を0.9/1以下にし、グリセリンの分散媒に対する配合比を0.8/1以下にすることで、酸化亜鉛分散体の粘度が大きくなり過ぎるのを防止することができる。 The compounding ratio of propylene glycol to the dispersion medium (propylene glycol / dispersion medium) is in the range of 0.3 / 1 to 0.9 / 1 on a mass basis, and is preferably 0.4 / 1 to 0.8 / 1. , More preferably 0.5 / 1 to 0.7 / 1. The compounding ratio of glycerin to the dispersion medium (glycerin / dispersion medium) is in the range of 0.1 / 1 to 0.8 / 1 on a mass basis, preferably 0.1 / 1 to 0.7 / 1. , More preferably 0.1 / 1 to 0.6 / 1. Dispersion of sodium polyacrylate adsorbed on the surface of zinc oxide particles by setting the blending ratio of propylene glycol to the dispersion medium of 0.3 / 1 or more and the blending ratio of glycerin to the dispersion medium of 0.1 / 1 or more. The wettability to the medium can be improved. As a result, the zinc oxide particles on which sodium polyacrylate is adsorbed are wetted on the surface, and the decrease in the cohesive force is promoted. As a result, reaggregation due to overdispersion of zinc oxide particles can be suppressed or reduced, and the value of the average dispersed particle size D99 of zinc oxide particles (99% of the integrated particle size in the volume integrated particle size distribution) becomes large. Can be prevented. On the other hand, by setting the blending ratio of propylene glycol to the dispersion medium to 0.9 / 1 or less and the blending ratio of glycerin to the dispersion medium to 0.8 / 1 or less, the viscosity of the zinc oxide dispersion becomes too large. Can be prevented.
 分散媒の含有量は、酸化亜鉛分散体の全質量に対し、29質量%~89質量%の範囲内が好ましく、50質量%~80質量%の範囲内がより好ましく、60質量%~70質量%の範囲内が特に好ましい。 The content of the dispersion medium is preferably in the range of 29% by mass to 89% by mass, more preferably in the range of 50% by mass to 80% by mass, and 60% by mass to 70% by mass with respect to the total mass of the zinc oxide dispersion. The range of% is particularly preferable.
 分散状態にある酸化亜鉛粒子の平均分散粒子径D10(体積基準積算粒度分布に於ける積算粒度で10%の粒子径)は、5nm~100nmの範囲内が好ましく、10nm~60nmの範囲内がより好ましい。また、酸化亜鉛粒子の平均分散粒子径D50(体積基準積算粒度分布に於ける積算粒度で50%の粒子径)は、20nm~500nmの範囲内が好ましく、40nm~100nmの範囲内がより好ましい。さらに、酸化亜鉛粒子の分散粒子径D99(体積積算粒度分布における積算粒度で99%の粒径)は350nm以下が好ましく、30nm~300nmがより好ましく、50nm~200nmが特に好ましい。D10を5nm以上、又はD50を20nm以上にすることにより、酸化亜鉛分散体の保存安定性の悪化を防止することができる。その一方、D10を100nm以下、D50を500nm以下、又はD99を350nm以下にすることにより、酸化亜鉛粒子の分離や沈降及び凝集を防止し、酸化亜鉛分散体の保存安定性の維持が図れる。尚、酸化亜鉛粒子の平均分散粒子径D10、D50及びD99は、マイクロトラックUPA-EX150(商品名、日機装(株)製)を用いて動的光散乱法により測定した値である。 The average dispersed particle size D10 of the dispersed zinc oxide particles (particle size of 10% in the integrated particle size distribution in the volume-based integrated particle size distribution) is preferably in the range of 5 nm to 100 nm, more preferably in the range of 10 nm to 60 nm. preferable. The average dispersed particle size D50 of the zinc oxide particles (particle size of 50% in the integrated particle size distribution in the volume-based integrated particle size distribution) is preferably in the range of 20 nm to 500 nm, and more preferably in the range of 40 nm to 100 nm. Further, the dispersed particle size D99 of the zinc oxide particles (the particle size of 99% in the integrated particle size distribution in the volume integrated particle size distribution) is preferably 350 nm or less, more preferably 30 nm to 300 nm, and particularly preferably 50 nm to 200 nm. By setting D10 to 5 nm or more or D50 to 20 nm or more, deterioration of the storage stability of the zinc oxide dispersion can be prevented. On the other hand, by setting D10 to 100 nm or less, D50 to 500 nm or less, or D99 to 350 nm or less, separation, sedimentation and aggregation of zinc oxide particles can be prevented, and the storage stability of the zinc oxide dispersion can be maintained. The average dispersed particle diameters D10, D50 and D99 of the zinc oxide particles are values measured by a dynamic light scattering method using Microtrac UPA-EX150 (trade name, manufactured by Nikkiso Co., Ltd.).
 本実施の形態の酸化亜鉛分散体の製造方法に於いて、酸化亜鉛粒子、ポリアクリル酸ナトリウム、分散媒及び必要に応じて配合するその他の添加剤の混合方法や添加順序は、特に限定されない。例えば、酸化亜鉛粒子、ポリアクリル酸ナトリウム及び分散媒として水とプロピレングリコール及び/又はグリセリンとのみからなる混合溶媒を一度に混合し、この混合液に対し通常の分散機を用いて分散処理を施してもよい。 In the method for producing a zinc oxide dispersion of the present embodiment, the mixing method and the order of addition of zinc oxide particles, sodium polyacrylate, a dispersion medium and other additives to be blended as necessary are not particularly limited. For example, a mixed solvent consisting only of zinc oxide particles, sodium polyacrylate and water as a dispersion medium and propylene glycol and / or glycerin is mixed at a time, and the mixed solution is subjected to dispersion treatment using a normal disperser. May be.
 ここで、本明細書に於いて「分散処理」とは、酸化亜鉛粒子、ポリアクリル酸ナトリウム、分散媒及び必要に応じて配合するその他の添加剤を含む混合物を、湿式分散方式で微粉砕し分散する処理のことを意味する。分散処理に用いる分散機としては特に限定されず、例えば、ボールミル、ロールミル、サンドミル、ビーズミル、ペイントシェーカー、ナノマイザー等が挙げられる。 Here, the term "dispersion treatment" as used herein means that a mixture containing zinc oxide particles, sodium polyacrylate, a dispersion medium and other additives to be blended as necessary is finely pulverized by a wet dispersion method. It means distributed processing. The disperser used for the dispersion treatment is not particularly limited, and examples thereof include a ball mill, a roll mill, a sand mill, a bead mill, a paint shaker, and a nanomizer.
 分散処理に於ける分散時間は特に限定されず、前記D10、D50及びD99の少なくとも何れかが目的の値となる様に適宜設定すればよい。 The dispersion time in the dispersion processing is not particularly limited, and may be appropriately set so that at least one of D10, D50, and D99 has a target value.
 尚、本実施の形態に於いては、酸化亜鉛粒子の分散剤としてポリアクリル酸ナトリウムを用いることにより、酸化亜鉛分散体に気泡が発生するのを抑制することができる。そのため、当該気泡を低減又は消失させるための消泡工程を省略することができ、製造効率の向上が一層図れる。また、消泡剤の含有も省略できるので、酸化亜鉛分散体の製造が一層容易になる。 In the present embodiment, by using sodium polyacrylate as a dispersant for zinc oxide particles, it is possible to suppress the generation of bubbles in the zinc oxide dispersion. Therefore, the defoaming step for reducing or eliminating the bubbles can be omitted, and the manufacturing efficiency can be further improved. Further, since the inclusion of the defoaming agent can be omitted, the production of the zinc oxide dispersion becomes easier.
 本実施の形態の酸化亜鉛分散体は、最終製品たる化粧品組成物(詳細については後述する)の形態の他、当該化粧品組成物を調製するための分散液の形態をも包含するものである。 The zinc oxide dispersion of the present embodiment includes not only the form of the final product cosmetic composition (details will be described later) but also the form of the dispersion liquid for preparing the cosmetic composition.
(酸化チタン分散体及びその製造方法)
 本実施の形態に係る酸化チタン分散体は、分散質としての酸化チタン(TiO)粒子と、酸化チタン粒子の分散剤としてのポリアクリル酸ナトリウムと、分散媒とを少なくとも含む。
(Titanium oxide dispersion and its manufacturing method)
The titanium oxide dispersion according to the present embodiment contains at least titanium oxide (TiO 2 ) particles as a dispersant, sodium polyacrylate as a dispersant for the titanium oxide particles, and a dispersion medium.
 前記酸化チタン粒子は白色顔料として用いられるものであり、紫外線遮蔽機能を有しており、他の公知の白色顔料と比較して比重が小さく、屈折率が大きい。また、酸化チタン粒子は化学的・物理的にも安定である。そのため、酸化チタン粒子は隠蔽性や着色性に優れ、さらに酸やアルカリ、その他の環境に対する耐久性にも優れている。 The titanium oxide particles are used as a white pigment, have an ultraviolet shielding function, have a small specific gravity and a large refractive index as compared with other known white pigments. Titanium oxide particles are also chemically and physically stable. Therefore, the titanium oxide particles are excellent in hiding and coloring properties, and are also excellent in durability against acids, alkalis, and other environments.
 本実施の形態に於いて、酸化チタン粒子としては結晶構造がアナターゼ型(正方晶)、ルチル型(正方晶)又はブルーカイト型(斜方晶)の何れのものも使用可能である。但し、本実施の形態の酸化チタン分散体を化粧品組成物に適用する場合、隠蔽性向上の観点からは、ルチル型結晶構造の酸化チタンが好ましい。また、ルチル型結晶構造の酸化チタンは可視光(波長域360nm~830nm)の屈折率も高いため発色性の向上も図れる。一方、アナターゼ型結晶構造の酸化チタンは光触媒としての機能を有するため、これを本実施の形態の酸化チタン分散体に用いた場合には、光触媒の機能を付加することができる。尚、本発明に於いて酸化チタン粒子とは、特に断らない限り結晶性の酸化チタン粒子を意味する。 In the present embodiment, the titanium oxide particles having a crystal structure of anatase type (tetragonal crystal), rutile type (tetragonal crystal) or blue kite type (orthorhombic crystal) can be used. However, when the titanium oxide dispersion of the present embodiment is applied to a cosmetic composition, titanium oxide having a rutile-type crystal structure is preferable from the viewpoint of improving concealment. Further, titanium oxide having a rutile-type crystal structure has a high refractive index of visible light (wavelength range 360 nm to 830 nm), so that color development can be improved. On the other hand, since titanium oxide having an anatase-type crystal structure has a function as a photocatalyst, when this is used for the titanium oxide dispersion of the present embodiment, the function of a photocatalyst can be added. In the present invention, the titanium oxide particles mean crystalline titanium oxide particles unless otherwise specified.
 酸化チタン粒子としては、例えば、二酸化ケイ素の水和物(含水シリカ)、ハイドロゲンジメチコン、トリエトキシカプリリルシラン、水酸化アルミニウム、ステアリン酸等の化合物により表面処理が施された酸化チタン粒子や、当該表面処理が施されていない酸化チタン粒子が挙げられる。これらの酸化チタン粒子のうち、本実施の形態に於いては表面処理が施されていない酸化チタン粒子を用いることが好ましい。表面処理が施されていない酸化チタン粒子の表面には、通常、ヒドロキシル基が存在している。そのため、酸化チタン粒子の表面は親水性を示す。従って、表面処理が施されていない酸化チタン粒子を用いることにより、分散した酸化チタン粒子の平均分散粒子径を、当該酸化チタン粒子の平均一次粒子径に近づけることが可能になる。尚、本発明に於いて「親水性」とは、酸化チタン粒子の表面に於いて水に対する親和性を有する官能基等が存在することをいう。 Examples of the titanium oxide particles include titanium oxide particles surface-treated with a compound such as silicon dioxide hydrate (hydrous silica), hydrogen dimethicone, triethoxycaprylylsilane, aluminum hydroxide, and stearic acid. Examples thereof include titanium oxide particles that have not been surface-treated. Of these titanium oxide particles, it is preferable to use titanium oxide particles that have not been surface-treated in the present embodiment. Hydroxyl groups are usually present on the surface of unsurface-treated titanium oxide particles. Therefore, the surface of the titanium oxide particles is hydrophilic. Therefore, by using the titanium oxide particles that have not been surface-treated, it is possible to bring the average dispersed particle size of the dispersed titanium oxide particles closer to the average primary particle size of the titanium oxide particles. In the present invention, "hydrophilic" means that a functional group or the like having an affinity for water is present on the surface of the titanium oxide particles.
 酸化チタン粒子としては市販品を用いることも可能であり、その様な市販品としては、例えば、STR-100A-LP、STR-100C-LP、STR-100W-LP、STR-100C-LF、STR-100W-OTS、STR-100W(G)、STR-40-OTS、STR-40N、STR-100N(何れも商品名。堺化学工業(株)製)等が挙げられる。これらの市販品のうち、本実施の形態では、表面処理が施されていないSTR-40N及びSTR-100Nが好ましい。 Commercially available products can be used as the titanium oxide particles, and such commercially available products include, for example, STR-100A-LP, STR-100C-LP, STR-100W-LP, STR-100C-LF, and STR. -100W-OTS, STR-100W (G), STR-40-OTS, STR-40N, STR-100N (trade names, all manufactured by Sakai Chemical Industry Co., Ltd.) and the like can be mentioned. Among these commercially available products, in the present embodiment, STR-40N and STR-100N which have not been surface-treated are preferable.
 前記酸化チタン粒子の平均一次粒子径(体積平均粒子径)としては、20nm~400nmが好ましく、30nm~200nmがより好ましく、40nm~100nmが特に好ましい。前記平均一次粒子径を20nm以上にすることにより、透明性の向上が図れる。また、十分な隠蔽性を確保することもできる。その一方、前記平均一次粒子径を400nm以下にすることにより、粗粒の低減が図れ、酸化チタン粒子の沈降を防止することができる。 The average primary particle diameter (volume average particle diameter) of the titanium oxide particles is preferably 20 nm to 400 nm, more preferably 30 nm to 200 nm, and particularly preferably 40 nm to 100 nm. By setting the average primary particle size to 20 nm or more, transparency can be improved. In addition, sufficient concealment can be ensured. On the other hand, by setting the average primary particle diameter to 400 nm or less, coarse particles can be reduced and precipitation of titanium oxide particles can be prevented.
 尚、前記平均一次粒子径は酸化チタン粒子を電子顕微鏡で観察して求めた算術平均径である。本実施の形態に於いては、単分散の粒径分布を持つ酸化チタン粒子を用いるが、本発明はこれに限定されず、多分散の粒径分布を持つ酸化チタン粒子を用いてもよい。また、単分散の粒径分布を持つ顔料を2種以上混合して使用してもよい。 The average primary particle diameter is an arithmetic average diameter obtained by observing titanium oxide particles with an electron microscope. In the present embodiment, titanium oxide particles having a monodisperse particle size distribution are used, but the present invention is not limited to this, and titanium oxide particles having a polydisperse particle size distribution may be used. Further, two or more kinds of pigments having a monodisperse particle size distribution may be mixed and used.
 酸化チタン粒子の形状は特に限定されず、球状、棒状、針状、紡錘状、板状等の任意の形状のものを使用することができる。本実施の形態に於いては同種の形状の酸化チタン粒子を用いてもよく、2種以上の異なる形状のものを混合して用いてもよい。尚、棒状、針状、紡錘状粒子である場合の前記平均一次粒子径は長軸の長さ(又は高さ)と短軸の長さ(又は幅)の相乗平均値で規定する。 The shape of the titanium oxide particles is not particularly limited, and any shape such as a spherical shape, a rod shape, a needle shape, a spindle shape, and a plate shape can be used. In the present embodiment, titanium oxide particles having the same shape may be used, or two or more different shapes may be mixed and used. The average primary particle diameter in the case of rod-shaped, needle-shaped, or spindle-shaped particles is defined by a geometric mean value of the length (or height) of the major axis and the length (or width) of the minor axis.
 前記酸化チタン粒子の含有量は酸化チタン分散体の濃度に直接影響するものであり、後述の化粧品組成物の保存性や粘度、pH等に影響を及ぼすものであることから、これらの点を考慮して適宜設定すればよい。通常は、酸化チタン分散体の全質量に対し10質量%~70質量%の範囲内が好ましく、20質量%~50質量%の範囲内がより好ましく、30質量%~40質量%の範囲内がさらに好ましい。前記酸化チタン分散体の含有量を20質量%以上にすることにより、酸化チタン粒子が有する紫外線遮蔽機能を良好に維持することができる。その一方、酸化チタン粒子の含有量を50質量%以下にすることにより、酸化チタン粒子の沈降を防止することができる。 Since the content of the titanium oxide particles directly affects the concentration of the titanium oxide dispersion and affects the storage stability, viscosity, pH, etc. of the cosmetic composition described later, these points are taken into consideration. And set as appropriate. Usually, it is preferably in the range of 10% by mass to 70% by mass, more preferably in the range of 20% by mass to 50% by mass, and in the range of 30% by mass to 40% by mass with respect to the total mass of the titanium oxide dispersion. More preferred. By setting the content of the titanium oxide dispersion to 20% by mass or more, the ultraviolet shielding function of the titanium oxide particles can be satisfactorily maintained. On the other hand, by setting the content of the titanium oxide particles to 50% by mass or less, it is possible to prevent the titanium oxide particles from settling.
 酸化チタン分散体に於いて、ポリアクリル酸ナトリウムは酸化チタン粒子の分散剤として機能する。ポリアクリル酸ナトリウムを配合することにより、酸化チタン粒子の分散性の向上が図れる。また、ポリアクリル酸ナトリウムは、薬事法等で定める基準に適合するものである。従って、ポリアクリル酸ナトリウムを分散剤として用いることにより、酸化チタン分散体の生体為害性を低減することができる。 In the titanium oxide dispersion, sodium polyacrylate functions as a dispersant for titanium oxide particles. By blending sodium polyacrylate, the dispersibility of titanium oxide particles can be improved. In addition, sodium polyacrylate conforms to the standards stipulated by the Pharmaceutical Affairs Law and the like. Therefore, by using sodium polyacrylate as a dispersant, the biotoxicity of the titanium oxide dispersion can be reduced.
 本実施の形態の酸化チタン粒子とポリアクリル酸ナトリウムとの含有比は、質量基準で1:0.01~1:0.5であることが好ましく、1:0.02~1:0.2であることがより好ましい。前記含有比を1:0.01以上にすることにより、酸化チタン粒子の分散性の低下を防止することができる。その一方、前記含有比を1:0.5以下にすることにより、酸化チタン粒子の分散安定性の低下を防止することができる。 The content ratio of the titanium oxide particles of the present embodiment to sodium polyacrylate is preferably 1: 0.01 to 1: 0.5 on a mass basis, and 1: 0.02 to 1: 0.2. Is more preferable. By setting the content ratio to 1: 0.01 or more, it is possible to prevent a decrease in the dispersibility of the titanium oxide particles. On the other hand, by setting the content ratio to 1: 0.5 or less, it is possible to prevent a decrease in the dispersion stability of the titanium oxide particles.
 尚、ポリアクリル酸ナトリウムは、例えば、後述する分散媒に添加する際に、他の従来の分散剤と比べ、比較的気泡が発生しにくい。そのため、本実施の形態の酸化チタン分散体に於いては消泡剤の添加を省略することができる。 Note that sodium polyacrylate is relatively less likely to generate bubbles when added to a dispersion medium described later, for example, as compared with other conventional dispersants. Therefore, in the titanium oxide dispersion of the present embodiment, the addition of the defoaming agent can be omitted.
 ポリアクリル酸ナトリウムのその他の事項については、酸化亜鉛分散体を説明する際に述べたのと同様である。従って、その詳細な説明を省略する。 Other matters of sodium polyacrylate are the same as those described when explaining the zinc oxide dispersion. Therefore, the detailed description thereof will be omitted.
 本実施の形態に係る酸化チタン分散体に於いては、酸化チタン粒子を分散させるための分散媒が含まれ、この分散媒としては水と、1,3-ブチレングリコール及び/又はグリセリンとのみからなる混合溶媒が用いられる。 The titanium oxide dispersion according to the present embodiment contains a dispersion medium for dispersing titanium oxide particles, and the dispersion medium is composed only of water and 1,3-butylene glycol and / or glycerin. A mixed solvent is used.
 水としては、酸化亜鉛分散体で使用するものと同様のものを用いることができる。従って、その詳細な説明を省略する。 As the water, the same water as that used in the zinc oxide dispersion can be used. Therefore, the detailed description thereof will be omitted.
 1,3-ブチレングリコールの分散媒に対する配合比(1,3-ブチレングリコール/分散媒)は、質量基準で0.1/1~0.9/1の範囲内であり、好ましくは0.2/1~0.9/1、より好ましくは0.4/1~0.9/1である。また、グリセリンの分散媒に対する配合比(グリセリン/分散媒)は、質量基準で0.1/1~0.9/1の範囲内であり、好ましくは0.2/1~0.9/1、より好ましくは0.3/1~0.9/1である。1,3-ブチレングリコールの分散媒に対する配合比を0.1/1以上にし、グリセリンの分散媒に対する配合比を0.1/1以上にすることで、酸化チタン粒子の表面に吸着したポリアクリル酸ナトリウムの分散媒に対する濡れ性を向上させることができる。これにより、表面にポリアクリル酸ナトリウムが吸着した酸化チタン粒子が濡れて、その凝集力の低下が促進される。その結果、酸化チタン粒子の過分散による再凝集を抑制又は低減することができ、酸化チタン粒子の分散粒子径D99の値が大きくなるのを防止することができる。その一方、1,3-ブチレングリコールの分散媒に対する配合比を0.9/1以下にし、グリセリンの分散媒に対する配合比を0.9/1以下にすることで、酸化チタン分散体の粘度が大きくなり過ぎるのを防止することができる。 The compounding ratio of 1,3-butylene glycol to the dispersion medium (1,3-butylene glycol / dispersion medium) is in the range of 0.1 / 1 to 0.9 / 1 on a mass basis, and is preferably 0.2. It is 1/1 to 0.9 / 1, more preferably 0.4 / 1 to 0.9 / 1. The compounding ratio of glycerin to the dispersion medium (glycerin / dispersion medium) is in the range of 0.1 / 1 to 0.9 / 1 on a mass basis, and is preferably 0.2 / 1 to 0.9 / 1. , More preferably 0.3 / 1 to 0.9 / 1. Polyacrylic acid adsorbed on the surface of titanium oxide particles by setting the blending ratio of 1,3-butylene glycol to the dispersion medium to 0.1 / 1 or more and the blending ratio of glycerin to the dispersion medium of 0.1 / 1 or more. The wettability of sodium acid to a dispersion medium can be improved. As a result, the titanium oxide particles on which sodium polyacrylate is adsorbed are wetted, and the decrease in cohesive force is promoted. As a result, reaggregation due to overdispersion of the titanium oxide particles can be suppressed or reduced, and the value of the dispersed particle diameter D99 of the titanium oxide particles can be prevented from increasing. On the other hand, the viscosity of the titanium oxide dispersion is increased by setting the blending ratio of 1,3-butylene glycol to the dispersion medium to 0.9 / 1 or less and the blending ratio of glycerin to the dispersion medium to 0.9 / 1 or less. It can be prevented from becoming too large.
 分散媒の含有量は、酸化チタン分散体の全質量に対し、29質量%~89質量%の範囲内が好ましく、50質量%~80質量%の範囲内がより好ましく、60質量%~70質量%の範囲内が特に好ましい。 The content of the dispersion medium is preferably in the range of 29% by mass to 89% by mass, more preferably in the range of 50% by mass to 80% by mass, and 60% by mass to 70% by mass with respect to the total mass of the titanium oxide dispersion. The range of% is particularly preferable.
 分散状態にある酸化チタン粒子の平均分散粒子径D10は、5nm~100nmの範囲内が好ましく、10nm~60nmの範囲内がより好ましい。また、酸化チタン粒子の平均分散粒子径D50は、20nm~500nmの範囲内が好ましく、40nm~100nmの範囲内がより好ましい。さらに、酸化チタン粒子の平均分散粒子径D99は350nm以下が好ましく、30nm~300nmがより好ましく、50nm~200nmが特に好ましい。D10を5nm以上、又はD50を20nm以上にすることにより、酸化チタン分散体の保存安定性の悪化を防止することができる。その一方、D10を100nm以下、D50を500nm以下、又はD99を350nm以下にすることにより、酸化チタン粒子の分離や沈降及び凝集を防止し、酸化チタン分散体の保存安定性の維持が図れる。尚、酸化チタン粒子の平均分散粒子径D10、D50及びD99は、マイクロトラックUPA-EX150(商品名、日機装(株)製)を用いて動的光散乱法により測定した値である。 The average dispersed particle size D10 of the dispersed titanium oxide particles is preferably in the range of 5 nm to 100 nm, and more preferably in the range of 10 nm to 60 nm. The average dispersed particle size D50 of the titanium oxide particles is preferably in the range of 20 nm to 500 nm, more preferably in the range of 40 nm to 100 nm. Further, the average dispersed particle size D99 of the titanium oxide particles is preferably 350 nm or less, more preferably 30 nm to 300 nm, and particularly preferably 50 nm to 200 nm. By setting D10 to 5 nm or more or D50 to 20 nm or more, deterioration of the storage stability of the titanium oxide dispersion can be prevented. On the other hand, by setting D10 to 100 nm or less, D50 to 500 nm or less, or D99 to 350 nm or less, separation, sedimentation and aggregation of titanium oxide particles can be prevented, and the storage stability of the titanium oxide dispersion can be maintained. The average dispersed particle diameters D10, D50 and D99 of the titanium oxide particles are values measured by a dynamic light scattering method using Microtrac UPA-EX150 (trade name, manufactured by Nikkiso Co., Ltd.).
 本実施の形態の酸化チタン分散体は、酸化亜鉛分散体と同様の方法により製造可能である。従って、その詳細な説明を省略する。 The titanium oxide dispersion of the present embodiment can be produced by the same method as the zinc oxide dispersion. Therefore, the detailed description thereof will be omitted.
(化粧品組成物)
 本実施の形態の酸化亜鉛分散体及び酸化チタン分散体は、薬事法等の基準に適合した成分で全て構成することができ、生体為害性が低い。そのため、本実施の形態の酸化亜鉛分散体又は酸化チタン分散体(以下、「酸化亜鉛分散体等」という。)を、例えば、化粧品組成物に含有させて用いることができる。具体的には、酸化亜鉛粒子及び酸化チタン粒子が紫外線遮蔽剤としても機能するため、本実施の形態の酸化亜鉛分散体等をO/W(Oil in Water)処方の化粧品組成物に配合することができる。
(Cosmetic composition)
The zinc oxide dispersion and the titanium oxide dispersion of the present embodiment can all be composed of components conforming to the standards of the Pharmaceutical Affairs Law and the like, and have low biotoxicity. Therefore, the zinc oxide dispersion or the titanium oxide dispersion of the present embodiment (hereinafter, referred to as “zinc oxide dispersion or the like”) can be contained in, for example, a cosmetic composition and used. Specifically, since the zinc oxide particles and the titanium oxide particles also function as an ultraviolet shielding agent, the zinc oxide dispersion or the like of the present embodiment is blended into a cosmetic composition having an O / W (Oil in Water) formulation. Can be done.
 本実施の形態の化粧品組成物は、酸化亜鉛分散体等の他に、適宜必要に応じてその他の添加剤を含んでもよい。化粧品組成物に配合可能なその他の添加剤としては特に限定されず、例えば、保湿剤、可塑剤、シリコーン、鉱物性フィラー、クレイ、防腐剤及び香料等が挙げられる。これらの添加剤は1種単独で、又は2種以上を併用することができる。 The cosmetic composition of the present embodiment may contain other additives as needed, in addition to the zinc oxide dispersion and the like. Other additives that can be incorporated into cosmetic compositions are not particularly limited, and examples thereof include moisturizers, plasticizers, silicones, mineral fillers, clays, preservatives, and fragrances. These additives may be used alone or in combination of two or more.
 前記添加剤の含有量は特に限定されず、適宜必要に応じて設定することができる。 The content of the additive is not particularly limited and can be appropriately set as needed.
 本実施の形態の化粧品組成物は、日焼け止め剤等に適用することができる。また、本実施の形態の化粧品組成物は、酸化亜鉛粒子及び酸化チタン粒子(以下、「酸化亜鉛粒子等」という。)の平均分散粒子径D10、D50及びD99の値が小さく、かつ、酸化亜鉛粒子等の分散性に優れているので、当該化粧品組成物を皮膚上に塗布しても、塗布時及び塗布後に白い膜が皮膚上に残る、いわゆる白浮き現象の発生を抑制又は低減することができる。さらに、化粧品組成物を一定期間静置した場合にも、当該酸化亜鉛粒子等の分離、沈降及び凝集を低減、又は防止することができる。 The cosmetic composition of the present embodiment can be applied to a sunscreen or the like. Further, in the cosmetic composition of the present embodiment, the values of the average dispersed particle diameters D10, D50 and D99 of the zinc oxide particles and the titanium oxide particles (hereinafter referred to as "zinc oxide particles and the like") are small, and the zinc oxide is zinc oxide. Since it has excellent dispersibility of particles and the like, even if the cosmetic composition is applied on the skin, it is possible to suppress or reduce the occurrence of the so-called whitening phenomenon in which a white film remains on the skin during and after application. can. Further, even when the cosmetic composition is allowed to stand for a certain period of time, the separation, sedimentation and aggregation of the zinc oxide particles and the like can be reduced or prevented.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、以下の実施例に記載されている材料や含有量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定するものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, contents, etc. described in the following examples are not limited to those of the present invention unless otherwise specified.
(実施例1-1)
 先ず、酸化亜鉛ナノ粒子、分散剤としてのポリアクリル酸ナトリウム、分散媒としての純水及びプロピレングリコールからなる混合溶媒((プロピレングリコール/分散媒)=0.63/1)を容器に入れた。これらの材料の配合割合は、表1に示す通りとした。また、容器にはジルコニアビーズも投入し、分散機(ペイントシェーカー、浅田鉄工株式会社製)を用いて常温下で酸化亜鉛ナノ粒子の分散処理を行った。分散時間(分散機による振盪時間)は72時間とした。これにより、本実施例に係る酸化亜鉛分散体を作製した。
(Example 1-1)
First, a mixed solvent consisting of zinc oxide nanoparticles, sodium polyacrylate as a dispersant, pure water as a dispersion medium and propylene glycol ((propylene glycol / dispersion medium) = 0.63 / 1) was placed in a container. The blending ratio of these materials was as shown in Table 1. Zirconia beads were also put into the container, and zinc oxide nanoparticles were dispersed at room temperature using a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.). The dispersion time (shaking time by the disperser) was 72 hours. As a result, the zinc oxide dispersion according to this example was prepared.
 また、作製した酸化亜鉛分散体に於いては、酸化亜鉛ナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表1に示す。表1中の数値は、特に表記がない限り、酸化亜鉛分散体の全質量に対する質量%で表したものである。 Further, in the produced zinc oxide dispersion, the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles were measured, respectively. The results are shown in Table 1. Unless otherwise specified, the numerical values in Table 1 are expressed in mass% with respect to the total mass of the zinc oxide dispersion.
 尚、酸化亜鉛ナノ粒子としては、堺化学工業(株)製のFINEX-50(商品名、平均一次粒子径約20nm、表面処理なし)を用いた。また、分散剤であるポリアクリル酸ナトリウムとしては、Evonik社製のTEGO Dispers 715W(質量平均分子量3000)を用いた。 As the zinc oxide nanoparticles, FINEX-50 (trade name, average primary particle diameter of about 20 nm, no surface treatment) manufactured by Sakai Chemical Industry Co., Ltd. was used. As the dispersant sodium polyacrylate, TEGO Dispers 715W (mass average molecular weight 3000) manufactured by Evonik was used.
(実施例1-2)
 実施例1-2に於いては、分散媒として純水及びグリセリンからなる混合溶媒((グリセリン/分散媒)=0.63/1)を用いた。それ以外は、実施例1-1と同様、表1に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で72時間(分散時間)分散処理を行った。これにより、本実施例に係る酸化亜鉛分散体を作製した。
(Example 1-2)
In Example 1-2, a mixed solvent composed of pure water and glycerin ((glycerin / dispersion medium) = 0.63 / 1) was used as the dispersion medium. Other than that, as in Example 1-1, put each material in a container so that the blending ratio is as shown in Table 1, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 72 hours at room temperature. (Dispersion time) Dispersion processing was performed. As a result, the zinc oxide dispersion according to this example was prepared.
 さらに、実施例1-1と同様にして、作製した酸化亜鉛分散体に於ける酸化亜鉛ナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表1に示す。 Further, in the same manner as in Example 1-1, the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the produced zinc oxide dispersion were measured, respectively. The results are shown in Table 1.
(比較例1-1)
 比較例1-1に於いては、分散媒として純水のみを用いた。それ以外は、実施例1と同様、表1に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で72時間(分散時間)分散処理を行った。これにより、本比較例に係る酸化亜鉛分散体を作製した。
(Comparative Example 1-1)
In Comparative Example 1-1, only pure water was used as the dispersion medium. Other than that, as in Example 1, each material is placed in a container so that the blending ratio is as shown in Table 1, and a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) is used at room temperature for 72 hours (dispersion). Time) Distributed processing was performed. As a result, the zinc oxide dispersion according to this comparative example was prepared.
 さらに、実施例1-1と同様にして、作製した酸化亜鉛分散体に於ける酸化亜鉛ナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表1に示す。 Further, in the same manner as in Example 1-1, the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the produced zinc oxide dispersion were measured, respectively. The results are shown in Table 1.
(比較例1-2)
 比較例1-2に於いては、分散媒として純水及び1,3-ブチレングリコールからなる混合溶媒((1,3-ブチレングリコール/分散媒)=0.63/1)を用いた。それ以外は、実施例1-1と同様、表1に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で72時間(分散時間)の分散処理を行った。但し、酸化亜鉛ナノ粒子を混合溶媒中に分散させることはできなかった。結果を表1に示す。
(Comparative Example 1-2)
In Comparative Example 1-2, a mixed solvent composed of pure water and 1,3-butylene glycol ((1,3-butylene glycol / dispersion medium) = 0.63 / 1) was used as the dispersion medium. Other than that, as in Example 1-1, put each material in a container so that the blending ratio is as shown in Table 1, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 72 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 1.
(比較例1-3)
 比較例1-3に於いては、分散媒として純水及びジプロピレングリコールからなる混合溶媒((ジプロピレングリコール/分散媒)=0.63/1)を用いた。それ以外は、実施例1-1と同様、表1に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で72時間(分散時間)の分散処理を行った。但し、酸化亜鉛ナノ粒子を混合溶媒中に分散させることはできなかった。結果を表1に示す。
(Comparative Example 1-3)
In Comparative Example 1-3, a mixed solvent composed of pure water and dipropylene glycol ((dipropylene glycol / dispersion medium) = 0.63 / 1) was used as the dispersion medium. Other than that, as in Example 1-1, put each material in a container so that the blending ratio is as shown in Table 1, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 72 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 1.
(比較例1-4)
 比較例1-4に於いては、分散媒として純水及びポリエチレングリコール200からなる混合溶媒((ポリエチレングリコール200/分散媒)=0.63/1)を用いた。それ以外は、実施例1-1と同様、表1に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で72時間(分散時間)の分散処理を行った。但し、酸化亜鉛ナノ粒子を混合溶媒中に分散させることはできなかった。結果を表1に示す。
(Comparative Example 1-4)
In Comparative Example 1-4, a mixed solvent composed of pure water and polyethylene glycol 200 ((polyethylene glycol 200 / dispersion medium) = 0.63 / 1) was used as the dispersion medium. Other than that, as in Example 1-1, put each material in a container so that the blending ratio is as shown in Table 1, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 72 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 1.
(比較例1-5)
 比較例1-5に於いては、分散媒として純水及びエタノールからなる混合溶媒((エタノール/分散媒)=0.63/1)を用いた。それ以外は、実施例1-1と同様、表1に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で72時間(分散時間)の分散処理を行った。但し、酸化亜鉛ナノ粒子を混合溶媒中に分散させることはできなかった。結果を表1に示す。
(Comparative Example 1-5)
In Comparative Example 1-5, a mixed solvent composed of pure water and ethanol ((ethanol / dispersion medium) = 0.63 / 1) was used as the dispersion medium. Other than that, as in Example 1-1, put each material in a container so that the blending ratio is as shown in Table 1, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 72 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1-3~1-6)
 実施例1-3~1-6に於いてはそれぞれ、分散媒に於けるプロピレングリコールと純水の配合比(プロピレングリコール/分散媒)を表2に示す通りに変更した。それ以外は、実施例1-1と同様にして、各実施例に係る酸化亜鉛分散体を作製した。
(Examples 1-3 to 1-6)
In Examples 1-3 to 1-6, the compounding ratio of propylene glycol and pure water (propylene glycol / dispersion medium) in the dispersion medium was changed as shown in Table 2, respectively. Other than that, the zinc oxide dispersion according to each example was prepared in the same manner as in Example 1-1.
 さらに、実施例1-1と同様にして、作製した各実施例の酸化亜鉛分散体に於ける酸化亜鉛ナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表2に示す。 Further, in the same manner as in Example 1-1, the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the produced zinc oxide dispersions of each example were measured. The results are shown in Table 2.
(比較例1-6~1-8)
 比較例1-6~1-8に於いては、分散媒に於けるプロピレングリコールと純水の配合比(プロピレングリコール/分散媒)を表2に示す通りに変更した。それ以外は、実施例1-1と同様にして、各比較例に係る酸化亜鉛分散体を作製した。但し、比較例1-8については、酸化亜鉛ナノ粒子を混合溶媒中に分散させることはできなかった。
(Comparative Examples 1-6 to 1-8)
In Comparative Examples 1-6 to 1-8, the compounding ratio of propylene glycol and pure water (propylene glycol / dispersion medium) in the dispersion medium was changed as shown in Table 2. Other than that, the zinc oxide dispersion according to each Comparative Example was prepared in the same manner as in Example 1-1. However, in Comparative Example 1-8, the zinc oxide nanoparticles could not be dispersed in the mixed solvent.
 さらに、実施例1-1と同様にして、作製した比較例1-6及び1-7の酸化亜鉛分散体に於ける酸化亜鉛ナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表2に示す。 Further, in the same manner as in Example 1-1, the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the prepared zinc oxide dispersions of Comparative Examples 1-6 and 1-7 were measured, respectively. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1-7~1-12)
 実施例1-7~1-12に於いてはそれぞれ、分散媒に於けるグリセリンと純水の配合比(グリセリン/分散媒)を表3に示す通りに変更した。それ以外は、実施例1-2と同様にして、各実施例に係る酸化亜鉛分散体を作製した。
(Examples 1-7 to 1-12)
In Examples 1-7 to 1-12, the compounding ratio of glycerin and pure water (glycerin / dispersion medium) in the dispersion medium was changed as shown in Table 3. Other than that, the zinc oxide dispersion according to each example was prepared in the same manner as in Example 1-2.
 さらに、実施例1-2と同様にして、作製した各実施例の酸化亜鉛分散体に於ける酸化亜鉛ナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表3に示す。 Further, in the same manner as in Example 1-2, the average dispersed particle diameters D10, D50 and D99 of the zinc oxide nanoparticles in the produced zinc oxide dispersions of each example were measured. The results are shown in Table 3.
(比較例1-9)
 比較例1-9に於いては、分散媒に於けるグリセリンと純水の配合比(グリセリン/分散媒)を0.98/1に変更した。それ以外は、実施例1-2と同様にして酸化亜鉛ナノ粒子の分散処理を行ったが、当該酸化亜鉛ナノ粒子を混合溶媒中に分散させることはできなかった。結果を表3に示す。
(Comparative Example 1-9)
In Comparative Example 1-9, the compounding ratio of glycerin and pure water (glycerin / dispersion medium) in the dispersion medium was changed to 0.98 / 1. Other than that, the zinc oxide nanoparticles were dispersed in the same manner as in Example 1-2, but the zinc oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例2-1)
 先ず、酸化チタンナノ粒子、分散剤としてのポリアクリル酸ナトリウム、分散媒としての純水及びグリセリンからなる混合溶媒((グリセリン/分散媒)=0.63/1)を容器に入れた。これらの材料の配合割合は、表4に示す通りとした。また、容器にはジルコニアビーズも投入し、分散機(ペイントシェーカー、浅田鉄工株式会社製)を用いて常温下で酸化チタンナノ粒子の分散処理を行った。分散時間(分散機による振盪時間)は96時間とした。これにより、本実施例に係る酸化チタン分散体を作製した。
(Example 2-1)
First, a mixed solvent consisting of titanium oxide nanoparticles, sodium polyacrylate as a dispersant, pure water as a dispersion medium, and glycerin ((glycerin / dispersion medium) = 0.63 / 1) was placed in a container. The blending ratios of these materials were as shown in Table 4. Zirconia beads were also put into the container, and the titanium oxide nanoparticles were dispersed at room temperature using a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.). The dispersion time (shaking time by the disperser) was 96 hours. As a result, the titanium oxide dispersion according to this example was prepared.
 また、作製した酸化チタン分散体に於いては、酸化チタンナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表4に示す。表4中の数値は、特に表記がない限り、酸化チタン分散体の全質量に対する質量%で表したものである。 Further, in the produced titanium oxide dispersion, the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles were measured, respectively. The results are shown in Table 4. Unless otherwise specified, the numerical values in Table 4 are expressed in mass% with respect to the total mass of the titanium oxide dispersion.
 尚、酸化チタンナノ粒子としては、堺化学工業(株)製のSTR40N(商品名、平均一次粒子径約40nm、表面処理なし)を用いた。また、分散剤であるポリアクリル酸ナトリウムとしては、Evonik社製のTEGO Dispers 715W(質量平均分子量3000)を用いた。 As the titanium oxide nanoparticles, STR40N (trade name, average primary particle diameter of about 40 nm, no surface treatment) manufactured by Sakai Chemical Industry Co., Ltd. was used. As the dispersant sodium polyacrylate, TEGO Dispers 715W (mass average molecular weight 3000) manufactured by Evonik was used.
(実施例2-2)
 実施例2-2に於いては、分散媒として純水及び1,3-ブチレングリコールからなる混合溶媒((1,3-ブチレングリコール/分散媒)=0.63/1)を用いた。それ以外は、実施例2-1と同様、表4に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で96時間(分散時間)分散処理を行った。これにより、本実施例に係る酸化チタン分散体を作製した。
(Example 2-2)
In Example 2-2, a mixed solvent composed of pure water and 1,3-butylene glycol ((1,3-butylene glycol / dispersion medium) = 0.63 / 1) was used as the dispersion medium. Other than that, as in Example 2-1, put each material in a container so that the blending ratio is as shown in Table 4, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 96 hours at room temperature. (Dispersion time) Dispersion processing was performed. As a result, the titanium oxide dispersion according to this example was prepared.
 さらに、実施例2-1と同様にして、作製した酸化チタン分散体に於ける酸化チタンナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表4に示す。 Further, in the same manner as in Example 2-1 the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles in the produced titanium oxide dispersion were measured. The results are shown in Table 4.
(比較例2-1)
 比較例2-1に於いては、分散媒として純水のみを用いた。それ以外は、実施例2-1と同様、表4に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で96時間(分散時間)分散処理を行った。これにより、本比較例に係る酸化チタン分散体を作製した。
(Comparative Example 2-1)
In Comparative Example 2-1 only pure water was used as the dispersion medium. Other than that, as in Example 2-1, put each material in a container so that the blending ratio is as shown in Table 4, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 96 hours at room temperature. (Dispersion time) Dispersion processing was performed. As a result, the titanium oxide dispersion according to this comparative example was prepared.
 さらに、実施例2-1と同様にして、作製した酸化チタン分散体に於ける酸化チタンナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表4に示す。 Further, in the same manner as in Example 2-1 the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles in the produced titanium oxide dispersion were measured. The results are shown in Table 4.
(比較例2-2)
 比較例2-2に於いては、分散媒として純水及びジプロピレングリコールからなる混合溶媒((ジプロピレングリコール/分散媒)=0.63/1)を用いた。それ以外は、実施例2-1と同様、表4に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で96時間(分散時間)の分散処理を行った。但し、酸化チタンナノ粒子を混合溶媒中に分散させることはできなかった。結果を表4に示す。
(Comparative Example 2-2)
In Comparative Example 2-2, a mixed solvent composed of pure water and dipropylene glycol ((dipropylene glycol / dispersion medium) = 0.63 / 1) was used as the dispersion medium. Other than that, as in Example 2-1, put each material in a container so that the blending ratio is as shown in Table 4, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 96 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 4.
(比較例2-3)
 比較例2-3に於いては、分散媒として純水及びポリエチレングリコール200からなる混合溶媒((ポリエチレングリコール200/分散媒)=0.63/1)を用いた。それ以外は、実施例2-1と同様、表4に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で96時間(分散時間)の分散処理を行った。但し、酸化チタンナノ粒子を混合溶媒中に分散させることはできなかった。結果を表4に示す。
(Comparative Example 2-3)
In Comparative Example 2-3, a mixed solvent composed of pure water and polyethylene glycol 200 ((polyethylene glycol 200 / dispersion medium) = 0.63 / 1) was used as the dispersion medium. Other than that, as in Example 2-1, put each material in a container so that the blending ratio is as shown in Table 4, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 96 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 4.
(比較例2-4)
 比較例2-4に於いては、分散媒として純水及びエタノールからなる混合溶媒((エタノール/分散媒)=0.63/1)を用いた。それ以外は、実施例2-1と同様、表4に示す配合割合となる様に、各材料を容器に入れ、分散機(ペイントシェーカー、浅田鉄工株式会社製)にて、常温下で96時間(分散時間)の分散処理を行った。但し、酸化チタンナノ粒子を混合溶媒中に分散させることはできなかった。結果を表4に示す。
(Comparative Example 2-4)
In Comparative Example 2-4, a mixed solvent composed of pure water and ethanol ((ethanol / dispersion medium) = 0.63 / 1) was used as the dispersion medium. Other than that, as in Example 2-1, put each material in a container so that the blending ratio is as shown in Table 4, and use a disperser (paint shaker, manufactured by Asada Iron Works Co., Ltd.) for 96 hours at room temperature. Dispersion processing of (dispersion time) was performed. However, the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例2-3~2-8)
 実施例2-3~2-8に於いてはそれぞれ、分散媒に於ける1,3-ブチレングリコールと純水の配合比(1,3-ブチレングリコール/分散媒)を表5に示す通りに変更した。それ以外は、実施例2-1と同様にして、各実施例に係る酸化チタン分散体を作製した。
(Examples 2-3 to 2-8)
In Examples 2-3 to 2-8, the compounding ratio of 1,3-butylene glycol and pure water (1,3-butylene glycol / dispersion medium) in the dispersion medium is as shown in Table 5, respectively. changed. Other than that, the titanium oxide dispersion according to each example was prepared in the same manner as in Example 2-1.
 さらに、実施例2-1と同様にして、作製した各実施例の酸化チタン分散体に於ける酸化チタンナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表5に示す。 Further, in the same manner as in Example 2-1 the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles in the prepared titanium oxide dispersion of each example were measured. The results are shown in Table 5.
(比較例2-5)
 比較例2-5に於いては、分散媒に於ける1,3-ブチレングリコールと純水の配合比(1,3-ブチレングリコール/分散媒)を0.98/1に変更した。それ以外は、実施例2-1と同様にして酸化チタンナノ粒子の分散処理を行ったが、当該酸化チタンナノ粒子を混合溶媒中に分散させることはできなかった。結果を表5に示す。
(Comparative Example 2-5)
In Comparative Example 2-5, the compounding ratio of 1,3-butylene glycol and pure water (1,3-butylene glycol / dispersion medium) in the dispersion medium was changed to 0.98 / 1. Other than that, the titanium oxide nanoparticles were dispersed in the same manner as in Example 2-1 but the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例2-9~2-14)
 実施例2-9~2-14に於いてはそれぞれ、分散媒に於けるグリセリンと純水の配合比(グリセリン/分散媒)を表6に示す通りに変更した。それ以外は、実施例2-2と同様にして、各実施例に係る酸化チタン分散体を作製した。
(Examples 2-9 to 2-14)
In Examples 2-9 to 2-14, the compounding ratio of glycerin and pure water (glycerin / dispersion medium) in the dispersion medium was changed as shown in Table 6. Other than that, the titanium oxide dispersion according to each example was prepared in the same manner as in Example 2-2.
 さらに、実施例2-2と同様にして、作製した各実施例の酸化チタン分散体に於ける酸化チタンナノ粒子の平均分散粒子径D10、D50及びD99をそれぞれ測定した。結果を表6に示す。 Further, in the same manner as in Example 2-2, the average dispersed particle diameters D10, D50 and D99 of the titanium oxide nanoparticles in the prepared titanium oxide dispersion of each example were measured. The results are shown in Table 6.
(比較例2-6)
 比較例2-6に於いては、分散媒に於けるグリセリンと純水の配合比(グリセリン/分散媒)を表6に示す通りに変更した。それ以外は、実施例2-2と同様にして酸化チタンナノ粒子の分散処理を行ったが、当該酸化チタンナノ粒子を混合溶媒中に分散させることはできなかった。結果を表6に示す。
(Comparative Example 2-6)
In Comparative Example 2-6, the mixing ratio of glycerin and pure water (glycerin / dispersion medium) in the dispersion medium was changed as shown in Table 6. Other than that, the titanium oxide nanoparticles were dispersed in the same manner as in Example 2-2, but the titanium oxide nanoparticles could not be dispersed in the mixed solvent. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(ポリアクリル酸ナトリウムの質量平均分子量の測定)
 ポリアクリル酸ナトリウムの質量平均分子量は、ポリエチレンオキサイド(PEO)/ポリエチレングリコール(PEG)を標準品として、ゲルパーミエーションクロマトグラフィー(GPC)により求められる値である。
(Measurement of mass average molecular weight of sodium polyacrylate)
The mass average molecular weight of sodium polyacrylate is a value obtained by gel permeation chromatography (GPC) using polyethylene oxide (PEO) / polyethylene glycol (PEG) as a standard product.
(酸化亜鉛ナノ粒子及び酸化チタンナノ粒子の平均一次粒子径及び平均分散粒子径の測定)
 各実施例及び比較例に於ける酸化亜鉛ナノ粒子及び酸化チタンナノ粒子の平均一次粒子径、並びに平均分散粒子径D10、D50及びD99は、マイクロトラックUPA-EX150(商品名、日機装(株)製)を用いて動的光散乱法により測定した。
(Measurement of average primary particle size and average dispersed particle size of zinc oxide nanoparticles and titanium oxide nanoparticles)
The average primary particle diameters of the zinc oxide nanoparticles and the titanium oxide nanoparticles and the average dispersed particle diameters D10, D50 and D99 in each Example and Comparative Example are Microtrack UPA-EX150 (trade name, manufactured by Nikkiso Co., Ltd.). Was measured by the dynamic light scattering method.
 また、測定した酸化亜鉛ナノ粒子の平均分散粒子径D50及びD99に基づき、以下の基準により分散性の評価を行った。結果を表1~表3に示す。
 ◎:D50<60nm、かつD99<200nm
 ○:◎、△及び×の何れの条件にも該当しない場合
 △:D50>100nm、又はD99>300nm
 ×:分散せず
Further, based on the measured average dispersed particle diameters D50 and D99 of the zinc oxide nanoparticles, the dispersibility was evaluated according to the following criteria. The results are shown in Tables 1 to 3.
⊚: D50 <60 nm and D99 <200 nm
○: When none of the conditions of ◎, △ and × is met Δ: D50> 100 nm or D99> 300 nm
×: Not dispersed
 さらに、測定した酸化チタンナノ粒子の平均分散粒子径D50及びD99に基づき、以下の基準により分散性の評価を行った。結果を表4~表6に示す。
 ◎:D50<80nm、かつD99<200nm
 ○:◎、△及び×の何れの条件にも該当しない場合
 △:D50>100nm、又はD99>300nm
 ×:分散せず
Furthermore, based on the measured average dispersed particle diameters D50 and D99 of the titanium oxide nanoparticles, the dispersibility was evaluated according to the following criteria. The results are shown in Tables 4 to 6.
⊚: D50 <80 nm and D99 <200 nm
○: When none of the conditions of ◎, △ and × is met Δ: D50> 100 nm or D99> 300 nm
×: Not dispersed
(結果)
 表1に示す実施例1-1及び1-2の実験結果から分かる通り、分散媒として純水とプロピレングリコール又はグリセリンとのみからなる混合溶媒を用いた場合、酸化亜鉛ナノ粒子のD10、D50及びD99の値を何れも良好に低減させることができた。特に、酸化亜鉛ナノ粒子D50の値を60nm未満、かつD99の値を200nm未満にすることができ、プロピレングリコール及びグリセリンが酸化亜鉛ナノ粒子の分散性向上に寄与していることが分かった。その一方、比較例1-1の様に分散媒が純水である場合には、酸化亜鉛ナノ粒子を分散させることができるものの、D99の値は300nmを超える結果となった。さらに、分散媒として、純水と、プロピレングリコール及びグリセリン以外の有機溶媒とのみからなる混合溶媒を用いた比較例1-2~1-5の場合では、酸化亜鉛ナノ粒子を混合溶媒中に分散させることができなかった。
(result)
As can be seen from the experimental results of Examples 1-1 and 1-2 shown in Table 1, when a mixed solvent consisting only of pure water and propylene glycol or glycerin was used as the dispersion medium, the zinc oxide nanoparticles D10, D50 and All of the values of D99 could be satisfactorily reduced. In particular, it was found that the value of the zinc oxide nanoparticles D50 could be less than 60 nm and the value of D99 could be less than 200 nm, and that propylene glycol and glycerin contributed to the improvement of the dispersibility of the zinc oxide nanoparticles. On the other hand, when the dispersion medium is pure water as in Comparative Example 1-1, zinc oxide nanoparticles can be dispersed, but the value of D99 exceeds 300 nm. Further, in the case of Comparative Examples 1-2 to 1-5 in which a mixed solvent consisting only of pure water and an organic solvent other than propylene glycol and glycerin was used as the dispersion medium, the zinc oxide nanoparticles were dispersed in the mixed solvent. I couldn't get it.
 また、表2に示す実施例1-3~1-6の実験結果から分かる通り、分散媒として純水とプロピレングリコールとのみからなる混合溶媒を用い、かつ、プロピレングリコールの配合比を分散媒に対し0.13/1~0.89/1の範囲内にすることで、D99の値を十分に低減することができた。これにより、実施例1-3~1-6の酸化亜鉛分散体では、過分散の酸化亜鉛ナノ粒子が再凝集により粗大粒子化するのを有効に抑制できることが確認できた。 Further, as can be seen from the experimental results of Examples 1-3 to 1-6 shown in Table 2, a mixed solvent consisting only of pure water and propylene glycol was used as the dispersion medium, and the blending ratio of propylene glycol was used as the dispersion medium. On the other hand, the value of D99 could be sufficiently reduced by setting it in the range of 0.13 / 1 to 0.89 / 1. As a result, it was confirmed that the zinc oxide dispersions of Examples 1-3 to 1-6 can effectively suppress the overdispersed zinc oxide nanoparticles from becoming coarse particles due to reaggregation.
 さらに、表3に示す実施例1-7~1-12の実験結果から分かる通り、分散媒として純水とグリセリンとのみからなる混合溶媒を用い、かつ、グリセリンの配合比を分散媒に対し0.13/1~0.89/1の範囲内にした場合にも、D99の値を十分に低減させることができた。これにより、実施例1-3~1-6の酸化亜鉛分散体でも、過分散の酸化亜鉛ナノ粒子が再凝集により粗大粒子化するのを有効に抑制できることが確認できた。 Further, as can be seen from the experimental results of Examples 1-7 to 1-12 shown in Table 3, a mixed solvent consisting only of pure water and glycerin is used as the dispersion medium, and the blending ratio of glycerin is 0 with respect to the dispersion medium. Even when the value was within the range of .13/1 to 0.89/1, the value of D99 could be sufficiently reduced. As a result, it was confirmed that even in the zinc oxide dispersions of Examples 1-3 to 1-6, the overdispersed zinc oxide nanoparticles can be effectively suppressed from becoming coarse particles due to reaggregation.
 表4に示す実施例2-1及び2-2の実験結果から分かる通り、分散媒として純水と1,3-ブチレングリコール又はグリセリンとのみからなる混合溶媒を用いた場合、酸化チタンナノ粒子のD10、D50及びD99の値を何れも良好に低減させることができた。特に、酸化チタンナノ粒子D50の値を80nm未満、かつD99の値を200nm未満にすることができ、1,3-ブチレングリコール及びグリセリンが酸化チタンナノ粒子の分散性向上に寄与していることが分かった。その一方、比較例2-1の様に分散媒が純水である場合には、酸化チタンナノ粒子を分散させることができるものの、D99の値は300nmを超える結果となった。さらに、分散媒として、純水と、1,3-ブチレングリコール及びグリセリン以外の有機溶媒とのみからなる混合溶媒を用いた比較例2-2~2-4の場合では、酸化チタンナノ粒子を混合溶媒中に分散させることができなかった。 As can be seen from the experimental results of Examples 2-1 and 2-2 shown in Table 4, when a mixed solvent consisting only of pure water and 1,3-butylene glycol or glycerin was used as the dispersion medium, D10 of titanium oxide nanoparticles was used. , D50 and D99 could all be satisfactorily reduced. In particular, it was found that the value of the titanium oxide nanoparticles D50 could be less than 80 nm and the value of D99 could be less than 200 nm, and that 1,3-butylene glycol and glycerin contributed to the improvement of the dispersibility of the titanium oxide nanoparticles. .. On the other hand, when the dispersion medium is pure water as in Comparative Example 2-1 the titanium oxide nanoparticles can be dispersed, but the value of D99 exceeds 300 nm. Further, in the case of Comparative Examples 2-2 to 2-4 in which a mixed solvent consisting only of pure water and an organic solvent other than 1,3-butylene glycol and glycerin was used as the dispersion medium, titanium oxide nanoparticles were mixed as the mixed solvent. Could not be dispersed inside.
 また、表5に示す実施例2-3~2-8の実験結果から分かる通り、分散媒として純水と1,3-ブチレングリコールとのみからなる混合溶媒を用い、かつ、1,3-ブチレングリコールの配合比を分散媒に対し0.13/1~0.89/1の範囲内にすることで、D99の値を十分に低減させることができた。これにより、実施例2-3~2-8の酸化チタン分散体では、過分散の酸化チタンナノ粒子が再凝集により粗大粒子化するのを有効に抑制できることが確認できた。 Further, as can be seen from the experimental results of Examples 2-3 to 2-8 shown in Table 5, a mixed solvent consisting only of pure water and 1,3-butylene glycol was used as the dispersion medium, and 1,3-butylene was used. By setting the blending ratio of glycol in the range of 0.13 / 1 to 0.89 / 1 with respect to the dispersion medium, the value of D99 could be sufficiently reduced. As a result, it was confirmed that the titanium oxide dispersions of Examples 2-3 to 2-8 can effectively suppress the overdispersed titanium oxide nanoparticles from becoming coarse particles due to reaggregation.
 さらに、表6に示す実施例2-9~2-14の実験結果から分かる通り、分散媒として純水とグリセリンとのみからなる混合溶媒を用い、かつ、グリセリンの配合比を分散媒に対し0.13/1~0.89/1の範囲内にした場合にも、D99の値を十分に低減することができた。これにより、実施例2-9~2-14の酸化チタン分散体でも、過分散の酸化チタンナノ粒子が再凝集により粗大粒子化するのを有効に抑制できることが確認できた。 Further, as can be seen from the experimental results of Examples 2-9 to 2-14 shown in Table 6, a mixed solvent consisting only of pure water and glycerin is used as the dispersion medium, and the blending ratio of glycerin is 0 with respect to the dispersion medium. Even when the value was within the range of .13/1 to 0.89/1, the value of D99 could be sufficiently reduced. As a result, it was confirmed that even in the titanium oxide dispersions of Examples 2-9 to 2-14, it was possible to effectively suppress the overdispersed titanium oxide nanoparticles from becoming coarse particles due to reaggregation.

Claims (9)

  1.  酸化亜鉛粒子と、
     質量平均分子量が10000未満のポリアクリル酸ナトリウムからなる前記酸化亜鉛粒子の分散剤と、
     前記酸化亜鉛粒子を分散させる分散媒とを含み、
     前記分散媒が水と、プロピレングリコール及び/又はグリセリンとのみからなり、
     前記プロピレングリコールの前記分散媒に対する配合比(プロピレングリコール/分散媒)が、質量基準で0.3/1~0.9/1の範囲内であり、
     前記グリセリンの前記分散媒に対する配合比(グリセリン/分散媒)が、質量基準で0.1/1~0.8/1の範囲内である酸化亜鉛分散体。
    With zinc oxide particles,
    The dispersant of the zinc oxide particles made of sodium polyacrylate having a mass average molecular weight of less than 10,000, and the dispersant.
    It contains a dispersion medium for dispersing the zinc oxide particles.
    The dispersion medium consists only of water and propylene glycol and / or glycerin.
    The compounding ratio of the propylene glycol to the dispersion medium (propylene glycol / dispersion medium) is in the range of 0.3 / 1 to 0.9 / 1 on a mass basis.
    A zinc oxide dispersion in which the compounding ratio of the glycerin to the dispersion medium (glycerin / dispersion medium) is in the range of 0.1 / 1 to 0.8 / 1 on a mass basis.
  2.  前記酸化亜鉛粒子は、表面処理されていない酸化亜鉛粒子である請求項1に記載の酸化亜鉛分散体。 The zinc oxide dispersion according to claim 1, wherein the zinc oxide particles are zinc oxide particles that have not been surface-treated.
  3.  前記酸化亜鉛粒子と前記ポリアクリル酸ナトリウムとの含有比が、質量基準で1:0.01~1:0.5の範囲内である請求項1又は2に記載の酸化亜鉛分散体。 The zinc oxide dispersion according to claim 1 or 2, wherein the content ratio of the zinc oxide particles to the sodium polyacrylate is in the range of 1: 0.01 to 1: 0.5 on a mass basis.
  4.  分散した前記酸化亜鉛粒子の平均分散粒子径D99が350nm以下である請求項1~3の何れか1項に記載の酸化亜鉛分散体。 The zinc oxide dispersion according to any one of claims 1 to 3, wherein the dispersed zinc oxide particles have an average dispersed particle diameter D99 of 350 nm or less.
  5.  酸化チタン粒子と、
     質量平均分子量が10000未満のポリアクリル酸ナトリウムからなる前記酸化チタン粒子の分散剤と、
     前記酸化チタン粒子を分散させる分散媒とを含み、
     前記分散媒が水と、1,3-ブチレングリコール及び/又はグリセリンとのみからなり、
     前記1,3-ブチレングリコールの前記分散媒に対する配合比(1,3-ブチレングリコール/分散媒)が、質量基準で0.1/1~0.9/1の範囲内であり、
     前記グリセリンの前記分散媒に対する配合比(グリセリン/分散媒)が、質量基準で0.1/1~0.9/1の範囲内である酸化チタン分散体。
    Titanium oxide particles and
    The dispersant of the titanium oxide particles made of sodium polyacrylate having a mass average molecular weight of less than 10,000, and the dispersant.
    A dispersion medium for dispersing the titanium oxide particles is included.
    The dispersion medium consists only of water and 1,3-butylene glycol and / or glycerin.
    The compounding ratio of the 1,3-butylene glycol to the dispersion medium (1,3-butylene glycol / dispersion medium) is in the range of 0.1 / 1 to 0.9 / 1 on a mass basis.
    A titanium oxide dispersion in which the compounding ratio of the glycerin to the dispersion medium (glycerin / dispersion medium) is in the range of 0.1 / 1 to 0.9 / 1 on a mass basis.
  6.  前記酸化チタン粒子は、表面処理されていない酸化チタン粒子である請求項5に記載の酸化チタン分散体。 The titanium oxide dispersion according to claim 5, wherein the titanium oxide particles are titanium oxide particles that have not been surface-treated.
  7.  前記酸化チタン粒子と前記ポリアクリル酸ナトリウムとの含有比が、質量基準で1:0.01~1:0.5の範囲内である請求項5又は6に記載の酸化チタン分散体。 The titanium oxide dispersion according to claim 5 or 6, wherein the content ratio of the titanium oxide particles to the sodium polyacrylate is in the range of 1: 0.01 to 1: 0.5 on a mass basis.
  8.  分散した前記酸化チタン粒子の平均分散粒子径D99が350nm以下である請求項5~7の何れか1項に記載の酸化チタン分散体。 The titanium oxide dispersion according to any one of claims 5 to 7, wherein the dispersed average dispersed particle diameter D99 of the dispersed titanium oxide particles is 350 nm or less.
  9.  請求項1~4の何れか1項に記載の酸化亜鉛分散体、又は請求項5~8の何れか1項に記載の酸化チタン分散体を含む化粧品組成物。 A cosmetic composition containing the zinc oxide dispersion according to any one of claims 1 to 4 or the titanium oxide dispersion according to any one of claims 5 to 8.
PCT/JP2021/039486 2020-12-24 2021-10-26 Zinc oxide dispersion, titanium oxide dispersion, and cosmetic composition WO2022137786A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020214868A JP2022100722A (en) 2020-12-24 2020-12-24 Zinc oxide dispersion, titanium oxide dispersion, and cosmetic composition
JP2020-214868 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022137786A1 true WO2022137786A1 (en) 2022-06-30

Family

ID=82159002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039486 WO2022137786A1 (en) 2020-12-24 2021-10-26 Zinc oxide dispersion, titanium oxide dispersion, and cosmetic composition

Country Status (2)

Country Link
JP (1) JP2022100722A (en)
WO (1) WO2022137786A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212315A (en) * 1988-12-16 1990-08-23 Tioxide Group Plc Titanium dioxide didspersion
JPH11279524A (en) * 1997-10-27 1999-10-12 Kao Corp Zinc oxide dispersion
JP2018188518A (en) * 2017-04-28 2018-11-29 株式会社Screenホールディングス Pigment composition and aqueous ink composition for inkjet
JP2018188417A (en) * 2017-04-28 2018-11-29 株式会社Screenホールディングス Latent image printed matter of solid formulation and imaging method therefor
CN110946774A (en) * 2019-12-26 2020-04-03 江苏纳欧新材料有限公司 Adding TiO2MBBT aqueous dispersion slurry
JP2021046493A (en) * 2019-09-18 2021-03-25 株式会社Screenホールディングス Pigment composition, cosmetic composition, and inkjet ink composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212315A (en) * 1988-12-16 1990-08-23 Tioxide Group Plc Titanium dioxide didspersion
JPH11279524A (en) * 1997-10-27 1999-10-12 Kao Corp Zinc oxide dispersion
JP2018188518A (en) * 2017-04-28 2018-11-29 株式会社Screenホールディングス Pigment composition and aqueous ink composition for inkjet
JP2018188417A (en) * 2017-04-28 2018-11-29 株式会社Screenホールディングス Latent image printed matter of solid formulation and imaging method therefor
JP2021046493A (en) * 2019-09-18 2021-03-25 株式会社Screenホールディングス Pigment composition, cosmetic composition, and inkjet ink composition
CN110946774A (en) * 2019-12-26 2020-04-03 江苏纳欧新材料有限公司 Adding TiO2MBBT aqueous dispersion slurry

Also Published As

Publication number Publication date
JP2022100722A (en) 2022-07-06

Similar Documents

Publication Publication Date Title
JP4836232B2 (en) Method for producing silica-coated fine particle titanium oxide or silica-coated fine particle zinc oxide
US8357426B2 (en) Single step milling and surface coating process for preparing stable nanodispersions
TWI251014B (en) Aqueous dispersion containing pyrogenically produced metal oxide particles and phosphates
US20100310871A1 (en) Mesoporous Zinc Oxide Powder and Method for Production Thereof
JP6847754B2 (en) Pigment composition and water-based ink composition for inkjet
JP3224750B2 (en) Fine particle titanium dioxide silicone dispersion
JP5526690B2 (en) Dispersion containing zinc oxide or titanium oxide
JP2005529940A (en) High concentration aqueous dispersion containing hydrophobic metal oxide fine particles and dispersion aid
CN107001063B (en) Silica-coated zinc oxide, method for producing same, composition containing silica-coated zinc oxide, and cosmetic material
AU2009203996B2 (en) Mesoporous zinc oxide powder and method for production thereof
JPH07257923A (en) High concentration titanium dioxide aqeous dispersion
EP1953197A1 (en) Hydrophobic Metal and Metal Oxide Particles with Unique Optical Properties
EP3747965B1 (en) Titanium dioxide aqueous dispersion and method for producing same
JP6859949B2 (en) Silicon oxide-coated zinc oxide, silicon oxide-coated zinc oxide-containing composition, cosmetics
WO2022137786A1 (en) Zinc oxide dispersion, titanium oxide dispersion, and cosmetic composition
JP7326683B2 (en) Pigment composition, cosmetic composition and inkjet ink composition
JP2015105257A (en) Surface modification inorganic oxide microparticle dispersion composition, and water system cosmetic
JPH07165534A (en) Iron-containing ultrafine particulate titanium dioxide dispersion
JP2008273759A (en) Zinc oxide and method for producing the same and ultraviolet shielding composition using the same
JPH08104512A (en) Ultraviolet shielding material consisting of zinc oxide-containing spherical silica and cosmetic material
JP2009051831A (en) Ultraviolet shielding inorganic particle dispersion
KR20170067995A (en) High SPF powder foundation cosmetic composition
CN113474292A (en) High hiding white pigment for low viscosity dispersion medium and method for producing same
WO1998016193A1 (en) Dispersion of particulate titanium dioxide in silicone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909943

Country of ref document: EP

Kind code of ref document: A1