WO2022137777A1 - Projection device and projection method - Google Patents

Projection device and projection method Download PDF

Info

Publication number
WO2022137777A1
WO2022137777A1 PCT/JP2021/039347 JP2021039347W WO2022137777A1 WO 2022137777 A1 WO2022137777 A1 WO 2022137777A1 JP 2021039347 W JP2021039347 W JP 2021039347W WO 2022137777 A1 WO2022137777 A1 WO 2022137777A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
lens
light
modulation unit
projected
Prior art date
Application number
PCT/JP2021/039347
Other languages
French (fr)
Japanese (ja)
Inventor
紘也 高田
尚志 水本
藤男 奥村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2022137777A1 publication Critical patent/WO2022137777A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • This disclosure relates to a projection device or the like that projects projected light.
  • the projected light projected from the projection device diffuses as the distance increases, and the energy density decreases.
  • the energy density decreases.
  • Patent Document 1 discloses a projection type display device capable of changing the size of a projected image.
  • the apparatus of Patent Document 1 projects an image toward the projection surface and captures the image projected on the projection surface.
  • the apparatus of Patent Document 1 identifies the position of the indicated light projected on the image based on the captured image.
  • the apparatus of Patent Document 1 sets the projection range of the image to a range including the image area corresponding to the specified position, and changes the projection range of the image according to this setting.
  • Patent Document 2 discloses a liquid crystal projector device that illuminates a liquid crystal panel with light from a light source and projects an image on the liquid crystal panel onto a screen surface via a floodlight lens.
  • the device of Patent Document 2 converts an input video into a horizontally long video, and displays the converted video on a liquid crystal panel.
  • the projection range can be changed without lowering the energy density on the projection surface having the same distance from the projector.
  • the energy density of the projected light decreases as the distance from the projector increases.
  • Patent Document 2 by converting an input image into a horizontally long image by a laterally extending lens system, an image having an original aspect ratio is displayed when it is projected obliquely at a predetermined angle with respect to the screen. be able to. However, in the method of Patent Document 2, if the irradiation angle of light with respect to the screen is deviated, a distorted image is displayed on the screen.
  • An object of the present disclosure is to provide a projection device or the like capable of projecting projected light having a high energy density to a distant object without distortion.
  • the projection device of one aspect of the present disclosure includes a light source that emits parallel light, a spatial light modulator having a modulation unit that modulates the phase of the parallel light emitted from the light source, and a plurality of projectors having a major axis in the first direction.
  • the modulation section is tied in the region, and the phase image corresponding to the image set according to the tying aspect ratio of the modulation section is set in each of the plurality of regions tied to the modulation section, and the phase image is formed.
  • It includes a control unit that controls the light source so that parallel light is emitted toward the set modulation unit, and a projection lens that projects the light modulated by the modulation unit according to the tying aspect ratio of the modulation unit. It is equipped with a projection optical system.
  • the computer tiles the modulator of the spatial light modulator in a plurality of regions having a major axis in the first direction, in accordance with the tying aspect ratio of the modulator.
  • a phase image corresponding to the set image is set in each of a plurality of regions tied to the modulation section, and the light source is controlled so that parallel light is emitted toward the modulation section in which the phase image is set.
  • the light modulated by the modulator is projected using a projection optical system including a projection lens that projects according to the tying aspect ratio of the modulator.
  • a projection device or the like capable of projecting projected light having a high energy density to a distant object without distortion.
  • the projection device of the present embodiment is a projection device using a phase modulation type spatial light modulation element.
  • the projection device of the present embodiment projects projected light having a high energy density whose projection range is compressed in one direction in a normal shape without distortion.
  • FIG. 1 is a conceptual diagram showing an example of the configuration of the projection device 10 of the present embodiment.
  • the projection device 10 includes a light source 11, a spatial light modulator 13, a control unit 15, and a projection optical system 17.
  • the light source 11, the spatial light modulator 13, and the projection optical system 17 constitute a projection unit 100.
  • FIG. 1 is conceptual and does not accurately represent the positional relationship between each component, the traveling direction of light, and the like.
  • the light source 11 includes an emitter 111 and a collimator 112.
  • the emitter 111 emits the laser beam 101 in a predetermined wavelength band according to the control of the control unit 15.
  • the wavelength of the laser beam 101 emitted from the light source 11 is not particularly limited.
  • the emitter 111 emits a laser beam 101 in a visible or infrared wavelength band.
  • the laser class can be raised, so that the sensitivity can be improved by about an order of magnitude compared to other wavelength bands.
  • an infrared laser beam 101 having a wavelength band of 1.55 micrometers ( ⁇ m) can be emitted.
  • a high-power laser light source of about 100 milliwatts (mW) can be used. The longer the wavelength of the laser beam 101, the larger the diffraction angle and the higher the energy can be set.
  • the collimator 112 converts the laser beam 101 emitted from the emitter 111 into parallel light 102.
  • the laser beam 101 emitted from the emitter 111 is converted into parallel light 102 by the collimator 112 and emitted from the light source 11.
  • the parallel light 102 emitted from the light source 11 travels toward the modulation unit 130 of the spatial light modulator 13.
  • the incident angle of the parallel light 102 is set non-perpendicular to the modulation unit 130 of the spatial light modulator 13.
  • the emission axis of the parallel light 102 emitted from the light source 11 is oblique with respect to the modulation unit 130 of the spatial light modulator 13. If the emission axis of the parallel light 102 is slanted with respect to the modulation unit 130 of the spatial light modulator 13, the parallel light 102 can be incident without using a beam splitter. Therefore, the efficiency of light utilization can be improved. Further, if the emission axis of the parallel light 102 is set diagonally with respect to the modulation unit 130 of the spatial light modulator 13, the size of the projection unit 100 can be made compact.
  • the spatial light modulator 13 has a modulator 130 to which the parallel light 102 is irradiated.
  • a pattern corresponding to the detected light is set according to the control of the control unit 15.
  • the spatial light modulator 13 is realized by a spatial light modulator using a ferroelectric liquid crystal display, a homogenius liquid crystal display, a vertically oriented liquid crystal display, or the like.
  • the spatial light modulator 13 can be realized by LCOS (Liquid Crystal on Silicon).
  • the spatial light modulator 13 may be realized by a MEMS (Micro Electro Mechanical System).
  • phase modulation type spatial light modulator 13 energy can be concentrated on the image portion by operating so as to sequentially switch the locations where the projected light 107 is projected. Therefore, when the phase modulation type spatial light modulator 13 is used, if the output of the light source 11 is the same, the image can be displayed brighter than other methods.
  • FIG. 2 is a conceptual diagram for explaining a general area division (also referred to as tiling) of the modulation unit 130 of the spatial light modulator 13.
  • the example of FIG. 2 relates to general tiling that divides the modulator 130 into a plurality of square areas.
  • the modulation unit 130 is divided into a plurality of regions having a horizontal and vertical aspect ratio of 1: 1.
  • a plurality of tiles to which the phase image generated by the iterative Fourier transform is assigned are set in the modulation unit 130.
  • Each of the plurality of tiles is composed of a plurality of pixels.
  • a phase image corresponding to the projected image is displayed on each of the plurality of tiles.
  • the phase images displayed on each of the plurality of tiles may be the same or different.
  • each of the plurality of tiles is composed of 256 ⁇ 256 pixels or 512 ⁇ 512 pixels.
  • the total number of pixels of the modulation unit 130 is 1080 ⁇ 1920 pixels and the number of pixels of each tile is 256 ⁇ 256 pixels, four tiles in the vertical direction and seven tiles in the horizontal direction are assigned to the modulation unit 130. Will be.
  • the number of pixels constituting the tile is set to a resolution of 2 to the nth power (n is a natural number) in order to improve the calculation speed of the phase image.
  • a phase image generated by the iterative Fourier transform is tiled in each of the plurality of tiles assigned to the modulation unit 130.
  • each of the plurality of tiles displays a pre-generated phase image.
  • the modulation unit 130 is irradiated with the parallel light 102 in a state where the phase image is set for the plurality of tiles, the modulation light 103 forming an image corresponding to the phase image of each tile is emitted. If the number of tiles is less than 6, the projected image may be distorted. Therefore, the number of tiles is preferably set to 6 or more.
  • FIG. 3 is a conceptual diagram showing an example of projecting the projected light 107 from the projection device 10 at a projection angle ⁇ .
  • the image for one pixel is enlarged on the projection surface S2 farther away. Therefore, the energy density of the image for one pixel is lower on the distant projection surface S2 than on the projection surface S1.
  • the projection angle ⁇ of the projected light 107 it is required to reduce the projection angle ⁇ of the projected light 107.
  • the projection angle ⁇ of the projected light 107 is made too small, the effective range of the communication target and the distance measuring target becomes narrow. Therefore, in the present embodiment, in order to make the energy density of the projected light more distant while maintaining the effective range of the projected light 107, the projected light whose projection range is compressed in one direction is projected.
  • the control unit 15 controls the light source 11 and the spatial light modulator.
  • the control unit 15 sets the phase image corresponding to the projected image in the modulation unit 130 according to the aspect ratio of the tyling set in the modulation unit 130 of the spatial light modulator 13.
  • the control unit 15 sets a phase image corresponding to an image according to an application such as image display, communication, and distance measurement in the modulation unit 130.
  • the phase image of the projected image is stored in advance in a storage unit (not shown).
  • the shape and size of the projected image are not particularly limited.
  • the control unit 15 drives the emitter 111 of the light source 11 in a state where the phase image corresponding to the projected image is set in the modulation unit 130.
  • the parallel light 102 emitted from the light source 11 is irradiated to the modulation unit 130 of the spatial light modulator 13 at the timing when the phase image is set in the modulation unit 130 of the spatial light modulator 13.
  • the parallel light 102 irradiated to the modulation unit 130 of the spatial light modulator 13 is modulated by the modulation unit 130 of the spatial light modulator 13.
  • the modulated light 103 modulated by the modulation unit 130 of the spatial light modulator 13 is transmitted as projected light 107 corresponding to the pattern displayed on the modulation unit 130 of the spatial light modulator 13.
  • the control unit 15 changes the parameters that determine the difference between the phase of the parallel light 102 irradiated to the modulation unit 130 of the spatial light modulator 13 and the phase of the modulation light 103 reflected by the modulation unit 130. Drives the modulator 13.
  • the parameters that determine the difference between the phase of the parallel light 102 applied to the modulation unit 130 of the phase modulation type spatial light modulator 13 and the phase of the modulation light 103 reflected by the modulation unit 130 are, for example, the refractive index and the optical path. It is a parameter related to optical characteristics such as length.
  • the control unit 15 changes the refractive index of the modulation unit 130 by changing the voltage applied to the modulation unit 130 of the spatial light modulator 13.
  • the parallel light 102 irradiated to the modulation unit 130 is appropriately diffracted based on the refractive index of each part of the modulation unit 130. That is, the phase distribution of the parallel light 102 irradiated to the modulation unit 130 of the phase modulation type spatial light modulator 13 is modulated according to the optical characteristics of the modulation unit 130.
  • the method of driving the spatial light modulator 13 by the control unit 15 is determined according to the modulation method of the spatial light modulator 13.
  • FIGS. 4A, 4B, 4C, and 4D are conceptual diagrams for explaining the tiling of the modulation unit 130 of the spatial light modulator 13 in the present embodiment.
  • Each tile in the tiling of FIGS. 4A, 4B, and 4C has a rectangular shape with a larger number of pixels in the horizontal direction than in the vertical direction.
  • a phase image corresponding to the horizontally stretched image is set for each tile.
  • Each tile in the tiling of FIG. 4D has a rectangular shape in which the number of vertical pixels is larger than that in the horizontal direction.
  • a phase image corresponding to the vertically stretched image is set for each tile.
  • the more tiles set in the modulation unit 130 the clearer the image can be displayed, but when the number of pixels of each tile decreases, the resolution decreases. Therefore, the tile size and number set in the modulation unit 130 are set according to the application.
  • the projection optical system 17 is an optical system that projects the modulated light 103 modulated by the modulation unit 130 of the spatial light modulator 13 as the projection light 107. As shown in FIG. 1, the projection optical system 17 has a Fourier transform lens 171 and an aperture 173, and a projection lens 175.
  • the Fourier transform lens 171 is an optical lens that forms an image formed when the modulated light 103 modulated by the spatial light modulator 13 is projected at infinity at a focal position near the aperture 173.
  • the Fourier transform lens 171 has a portion (not shown) that shields the 0th-order light.
  • a virtual lens may be used instead of the Fourier transform lens 171.
  • the phase image corresponding to the image formed by the projected light 107 projected from the projection device 10 and the virtual lens image that focuses the modulated light 103 at the focal position near the aperture 173 are combined.
  • the image may be set in the modulation unit 130.
  • the Fourier transform lens 171 is omitted.
  • it is preferably configured so that the 0th-order light is removed.
  • the aperture 173 is a frame that shields the higher-order light contained in the light focused by the Fourier transform lens 171 and limits the outer edge of the display area.
  • the opening of the aperture 173 is opened smaller than the outer circumference of the display area at the position of the aperture 173, and is installed so as to block the peripheral area of the image at the position of the aperture 173.
  • the opening of the aperture 173 is formed in a rectangular or circular shape.
  • the aperture 173 is preferably installed at the focal position of the Fourier transform lens 171.
  • the aperture 173 may be deviated from the focal position of the Fourier transform lens 171 as long as the higher-order light can be shielded and the display area can be limited. Further, a portion for shielding the 0th-order light included in the modulated light 103 may be provided inside the opening of the aperture 173.
  • the projection lens 175 is an optical lens that magnifies the light focused by the Fourier transform lens 171 in correspondence with the projected image.
  • the projection lens 175 may be composed of a single lens or a lens in which a plurality of lenses are combined.
  • an image corresponding to the phase image set in the modulation unit 130 of the spatial light modulator 13 is formed on the projected surface at the same ratio as the aspect ratio of the plurality of regions tied to the modulation unit 130.
  • the projected light 107 is magnified so as to be.
  • the projection lens 175 compresses an image corresponding to the phase image set in the modulation unit 130 in the minor axis direction of the image. Further, the projection lens 175 may enlarge the image corresponding to the phase image set in the modulation unit 130 in the long axis direction of the image.
  • the projection lens 175 includes at least one cylindrical lens.
  • the projection lens 175 is configured by combining a first lens that expands in the first direction and a second lens that compresses in the second direction orthogonal to the first direction according to the aspect ratio of the projected image.
  • the compression ratio of the first lens and the magnification ratio of the second lens are set so as to correspond to the aspect ratio of the projected image.
  • the projection lens 175 has a first lens that magnifies in the first direction at the first magnifying power and a second magnifying power in the second direction that is orthogonal to the first direction, corresponding to the aspect ratio of the projected image. It has a configuration in combination with a second lens that magnifies.
  • the first magnification and the second magnification are configured to correspond to the aspect ratio of the projected image.
  • the projection lens 175 magnifies an image corresponding to the phase image set in the modulation unit 130 along the long axis direction (first direction) of the image, or magnifies the image in the short axis direction (second direction) of the image. ), It is not limited to a cylindrical lens as long as it can be compressed.
  • the projection lens 175 may include a free-form surface lens, a rod lens, a Powell lens, and the like.
  • the projection lens 175 may include a lens array such as a cylindrical lens array.
  • the projection lens 175 may include a liquid crystal lens that can dynamically change the magnification and compression ratio in any direction.
  • FIG. 5A, 5B, and 5C are for explaining an image corresponding to a phase image displayed on a plurality of tiles set in a modulation unit 130 of the spatial light modulator 13 of the projection device 10 of the present embodiment. It is a conceptual diagram.
  • FIG. 5A is an example of a strip-shaped image stretched in the lateral direction.
  • the modulation unit 130 may be tiling as shown in FIGS. 4A, 4B, or 4C.
  • FIG. 5B shows projection when the modulated light 103 modulated by the modulation unit 130 is projected by a normal projection lens that uniformly magnifies the phase image forming the image of FIG. 5A in a state where the phase image is set in the modulation unit 130. It is an image formed by a surface.
  • the modulated light 103 modulated by the modulation unit 130 is projected at the same magnification in the horizontal plane and in the plane perpendicular to the horizontal plane. Therefore, as shown in FIG. 5B, an image stretched in a direction perpendicular to the horizontal plane (vertical direction) is projected.
  • FIG. 5C shows a projection surface when the modulated light 103 modulated by the modulation unit 130 is projected by the projection lens 175 of the present embodiment in a state where the phase image forming the image of FIG. 5A is set in the modulation unit 130. It is an image formed by.
  • the modulated light 103 modulated by the modulation unit 130 is projected at different magnifications in the horizontal plane and in the plane perpendicular to the horizontal plane. .. Therefore, as shown in FIG. 5C, an image having a normal aspect ratio in the vertical and horizontal aspects is projected without distortion.
  • FIGS. 5A, 5B, and 5C give examples corresponding to a vertically compressed projection region
  • the method of the present embodiment can be applied to a projection region enlarged in any direction.
  • the compression direction / enlargement direction of the projection area may be set according to the application such as communication and distance measurement.
  • the projection area may be expanded in a direction horizontal to the water surface.
  • the projection area may be expanded in a three-dimensional direction.
  • the projection direction when passing through a vertically long narrow gate, the projection direction may be expanded in a direction perpendicular to the horizontal plane.
  • [Cyrindrical lens 1] 6 and 7 are conceptual diagrams showing an example of a projection device 10A having a projection optical system 17A including a projection lens 175A in which the first lens L11 and the second lens L12 are combined.
  • the light source 11, the spatial light modulator 13, and the projection optical system 17A constitute a projection unit 100A.
  • the light trajectories in FIGS. 6 and 7 are conceptual and do not accurately represent the actual light trajectories.
  • the first lens L11 and the second lens L12 constituting the projection lens 175A are cylindrical lenses.
  • 6 and 7 show an example in which the projection lens 175A is composed of two cylindrical lenses, but the projection lens 175A may be configured by combining three or more lenses. Further, although FIGS. 6 and 7 show an example of combining a plano-convex cylindrical lens, the projection lens 175A may include a plano-concave lens.
  • the projection lens 175A may include at least one cylindrical lens.
  • the first lens L11 has a columnar shape having a center of curvature in the horizontal plane.
  • the cylinder axis of the first lens L11 is perpendicular to the horizontal plane.
  • the first lens L11 is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface.
  • the curved surface (incident surface) of the first lens L11 is directed to the spatial light modulator 13.
  • the plane (exiting surface) of the first lens L11 is directed to the second lens L12.
  • the light incident on the first lens L11 from the incident surface is magnified in the horizontal plane and emitted from the exit surface.
  • the light emitted from the exit surface of the first lens L11 travels toward the incident surface of the second lens L12.
  • the second lens L12 has a columnar shape having a center of curvature in a plane perpendicular to the horizontal plane.
  • the cylinder axis of the second lens L12 is in the horizontal plane and is orthogonal to the cylinder axis of the first lens L11.
  • the second lens L12 is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface.
  • the plane (incident surface) of the second lens L12 is directed to the first lens L11.
  • the curved surface (exiting surface) of the second lens L12 is directed in the projection direction of the projected light 107A.
  • the light incident on the second lens L12 from the incident surface is compressed in the vertical direction in the plane perpendicular to the horizontal plane and emitted from the exit surface.
  • the light emitted from the exit surface of the second lens L12 is projected as the projected light 107A in the projection range corresponding to the aspect ratio of the tyling set in the modulation unit 130 of the spatial light modulator
  • the first lens L11 and the second lens L12 constituting the projection lens 175A are configured according to the tying aspect ratio of the modulation unit 130 of the spatial light modulator 13. Therefore, the projected light 107A projected from the projection lens 175A forms a normal image without distortion on the projection surface.
  • [Cyrindrical lens 2] 8 and 9 are conceptual diagrams showing an example of a projection device 10B having a projection optical system 17B including a projection lens 175B in which the first lens L21 and the second lens L22 are combined.
  • the light source 11, the spatial light modulator 13, and the projection optical system 17B constitute a projection unit 100B. It should be noted that the light trajectories in FIGS. 8 and 9 are conceptual and do not accurately represent the actual light trajectories.
  • the first lens L21 and the second lens L22 constituting the projection lens 175B are cylindrical lenses.
  • 8 and 9 show an example in which the projection lens 175B is composed of two cylindrical lenses, but the projection lens 175B may be configured by combining three or more lenses. Further, although FIGS. 8 and 9 show an example of combining a plano-convex cylindrical lens, the projection lens 175B may include a plano-concave lens.
  • the projection lens 175B may include at least one cylindrical lens.
  • the first lens L21 has a columnar shape having a center of curvature in a plane perpendicular to the horizontal plane.
  • the cylinder axis of the first lens L21 is in the horizontal plane.
  • the first lens L21 is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface.
  • the plane (incident surface) of the first lens L21 is directed to the spatial light modulator 13.
  • the curved surface (exiting surface) of the first lens L21 is directed toward the second lens L22.
  • the light incident on the first lens L21 from the incident surface is compressed in a plane perpendicular to the horizontal plane and emitted from the emitting surface.
  • the light emitted from the exit surface of the first lens L21 travels toward the incident surface of the second lens L22.
  • the second lens L22 has a columnar shape having a center of curvature in the horizontal plane.
  • the cylinder axis of the second lens L22 is perpendicular to the horizontal plane and orthogonal to the cylinder axis of the first lens L21.
  • the second lens L22 is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface.
  • the curved surface (incident surface) of the second lens L22 is directed toward the first lens L21.
  • the plane (exiting surface) of the second lens L22 is directed in the projection direction of the projected light 107B.
  • the light incident on the second lens L22 from the incident surface is magnified in the horizontal plane and emitted from the exit surface.
  • the light emitted from the emission surface of the second lens L22 is projected as the projected light 107B in the projection range corresponding to the aspect ratio of the tyling set in the modulation unit 130 of the spatial light modulator 13.
  • the first lens L21 and the second lens L22 constituting the projection lens 175B are configured according to the tying aspect ratio of the modulation unit 130 of the spatial light modulator 13. Therefore, the projected light 107B projected from the projection lens 175B forms a normal image without distortion on the projection surface.
  • [Free-form surface lens] 10 and 11 are conceptual diagrams showing an example of a projection device 10C having a projection optical system 17C including a projection lens 175C in which the first lens L31 and the second lens L32 are combined.
  • the light source 11, the spatial light modulator 13, and the projection optical system 17C constitute a projection unit 100C.
  • the light trajectories in FIGS. 10 and 11 are conceptual and do not accurately represent the actual light trajectories.
  • the projection lens 175C is configured by one free-form surface lens is shown, but the projection lens 175C may include at least one free-form surface lens, and may be configured by combining two or more lenses.
  • the projection lens 175C has a configuration in which a first lens L31 which is a cylindrical lens and a second lens L32 which is a free curved surface lens are combined.
  • 10 and 11 show an example in which the projection lens 175C is composed of the first lens L31 and the second lens L32, but the projection lens 175C may be configured by combining three or more lenses.
  • FIGS. 10 and 11 show an example of combining a plano-convex lens
  • the projection lens 175C may include a plano-concave lens.
  • the projection lens 175C may include at least one cylindrical lens and at least one free-form surface lens.
  • the first lens L31 has a columnar shape having a center of curvature in the horizontal plane.
  • the cylinder axis of the first lens L31 is perpendicular to the horizontal plane.
  • the first lens L31 is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface.
  • the curved surface (incident surface) of the first lens L31 is directed to the spatial light modulator 13.
  • the plane (exiting surface) of the first lens L31 is directed to the second lens L32.
  • the light incident on the first lens L31 from the incident surface is magnified in the horizontal plane and emitted from the exit surface.
  • the light emitted from the exit surface of the first lens L31 travels toward the incident surface of the second lens L32.
  • the second lens L32 has a columnar shape having two centers of curvature in a vertical plane perpendicular to the horizontal plane.
  • the curvature of the upper part of the second lens L32 is smaller than the curvature of the lower part.
  • the lower focal point of the second lens L32 is formed closer to the second lens L32 than the upper focal point of the second lens L32. Therefore, at the same distance from the second lens L32, the projected light 107 projected from the upper part of the projection lens 175C is relatively dense, and the projected light 107 projected from the lower part of the projection lens 175C is relatively coarse.
  • the cylinder axis of the second lens L32 is in the horizontal plane and is orthogonal to the cylinder axis of the first lens L31.
  • the second lens L32 is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface.
  • the plane (incident surface) of the second lens L32 is directed to the first lens L31.
  • the curved surface (exiting surface) of the second lens L32 is directed in the projection direction of the projected light 107C.
  • the light incident on the second lens L32 from the incident surface is compressed in the direction perpendicular to the curvature of the emitting surface in the plane perpendicular to the horizontal plane, and is emitted from the emitting surface.
  • the light emitted from the emission surface of the second lens L32 is projected as the projected light 107 in the projection range corresponding to the aspect ratio of the tyling set in the modulation unit 130 of the spatial light modulator 13.
  • the projected light 107 projected from the projection lens 175C is magnified according to the curvature of the emission surface of the second lens L32.
  • the projected light 107C projected from the upper part of the projection lens 175C having a small curvature is magnified downward, and the projected light 107C projected from the lower part of the projection lens 175C having a large curvature is magnified upward.
  • the projected light 107C projected from the upper part of the projection lens 175C is relatively dense, and the projected light 107C projected from the lower part of the projection lens 175C is relatively coarse.
  • the projection lens 175C is set according to the tiling aspect ratio of the modulation unit 130 of the spatial light modulator 13. Therefore, the projected light 107 projected from the projection lens 175C forms a normal image without distortion on the projection surface.
  • the magnification of the projected light 107 can be set according to the projection direction.
  • the projection lens 175C is used, the dense projection light 107 can be projected in the direction in which the object is far away, and the sparse projection light 107 can be projected in the direction in which the object is near.
  • the second lens L32 of the projection lens 175C may be configured to have three or more curvatures. The curvature of the second lens L32 may be formed according to the distance to the object and the direction of the object.
  • the projection range is set to be horizontally long
  • the modulation unit 130 of the spatial light modulator 13 may be tiling as shown in FIG. 4D, and the projection lens 175 may be arranged so that the projection range is vertically long.
  • the projection lens 175 arranged so that the projection range is horizontally long is rotated by 90 degrees around the emission axis and arranged, the projection range becomes vertically long.
  • a liquid crystal lens may be used as the projection lens 175. If a liquid crystal lens is used as the projection lens 175, the projection angle can be actively changed.
  • FIG. 12 is a flowchart for explaining an example of the operation of the control unit 15.
  • the control unit 15 sets the phase image for projecting the projected light in the modulation unit 130 of the spatial light modulator 13 in accordance with the tyling of the modulation unit 130 of the spatial light modulator 13. (Step S11).
  • the control unit 15 drives and controls the light source 11 to emit the laser beam 101 (step S12).
  • the laser light 101 emitted from the light source 11 is modulated by the modulation unit 130 of the spatial light modulator 13, and is projected from the projection device 10 as the projection light 107 via the projection optical system 17.
  • the projected light 107 projected from the projection device 10 displays an image to be projected in a normal shape without distortion in a projection range compressed in the uniaxial direction.
  • step S13 When continuing the projection of the projected light 107 (Yes in step S13), the process returns to step S11. On the other hand, when the projection of the projected light 107 is stopped (No in step S13), the process according to the flowchart of FIG. 12 is completed.
  • FIG. 13 is a conceptual diagram for explaining the projection example 1 of the projected light by the projection device 10.
  • FIG. 13 is a side view of the projection device 10 that projects the projected light.
  • the projected light magnified in the horizontal direction is projected from the projection device 10 arranged above from the horizontal direction to the lower side.
  • the projection device 10 projects the projection light so that the projection angle gradually widens from the horizontal plane to the lower side.
  • the projected light having a sufficient energy density is projected in a wide range from a short distance to a long distance.
  • the pixels constituting the image formed by the projected light are diffused and enlarged as the distance from the projection device 10 increases. Therefore, for a long-distance object, it is preferable to reduce the projection angle and increase the energy density of the projected light.
  • the projection angle is made larger than that for a long-distance object, the decrease in the energy density of the projected light reaching the object is small.
  • the projection angle may be increased with respect to the lower side where the object at a short distance is located as compared with the long distance. Rather than uniformly projecting the projected light over the entire projection area, changing the projection angle according to the distance to the object as in this projection example can reduce the energy for projecting the projected light. ..
  • FIG. 14 is a conceptual diagram for explaining the projection example 2 of the projected light by the projection device 10.
  • FIG. 14 is a side view of the projection device 10 that projects the projected light.
  • the projection light arranged three-dimensionally is projected from the projection device 10 arranged below from the horizontal direction to the upper side.
  • the projection device 10 projects the projection light so that the projection angle gradually widens from the direction diagonally above the horizontal plane to the vertical direction.
  • the broken line in FIG. 14 conceptually shows a surface in which the pixels constituting the image formed by the projected light have the same size.
  • the projected light is projected from the ground station toward the flying object.
  • the projectile which is the object, is three-dimensionally dispersed and located from a short distance to a long distance. Therefore, it is preferable that the projected light having a sufficient energy density is projected in a wide range from a short distance to a long distance.
  • the pixels constituting the image formed by the projected light are diffused and enlarged as the distance from the projection device 10 increases. Therefore, for a long-distance object, it is preferable to reduce the projection angle and increase the energy density of the projected light.
  • the projection angle may be increased with respect to the upper side where the object at a short distance is located as compared with the distance at a long distance. Rather than uniformly projecting the projected light over the entire projection area, changing the projection angle according to the distance to the object as in the projection example can reduce the energy for projecting the projected light. ..
  • FIG. 15 is a conceptual diagram for explaining the projection example 3 of the projected light by the projection device 10.
  • FIG. 15 is a side view of a drone equipped with a projection device 10 that projects projected light.
  • a three-dimensionally magnified projection light is projected from the projection device 10 mounted on the drone.
  • This projection example is an example assuming communication between the drone and the ground station.
  • the projection device 10 projects the projection light so that the projection angle gradually widens from the diagonally downward direction of the horizontal plane to the vertical direction.
  • the broken line in FIG. 15 conceptually shows a surface in which the pixels constituting the image formed by the projected light have the same size.
  • the projected light is projected from the drone flying over the sky toward the ground station on the ground.
  • the positional relationship between the drone and the ground station changes one by one. Therefore, in the communication between the drone and the ground station, it is preferable that the projected light having a sufficient energy density is projected in a wide range from a short distance to a long distance.
  • the pixels constituting the image formed by the projected light are diffused and enlarged as the distance from the projection device 10 increases. Therefore, when the drone and the ground station are far apart, it is preferable to reduce the projection angle and increase the energy density of the projected light.
  • the projection angle may be increased. Rather than uniformly projecting the projected light over the entire projection area, changing the projection angle according to the distance between the drone and the ground station as in this projection example is the energy for projecting the projected light. Can be reduced.
  • FIG. 16 is a conceptual diagram for explaining the projection example 4 of the projected light by the projection device 10.
  • FIG. 16 is a view of an automobile equipped with a projection device 10 for projecting projected light as viewed from above.
  • the projection light in which the central portion in front of the automobile is emphasized is projected from the projection device 10 mounted on the automobile.
  • This projection example is an example assuming distance measurement of an automobile.
  • the projection device 10 projects the projection light so that the projection angle gradually widens from the front of the automobile to the diagonally front.
  • the broken line in FIG. 16 conceptually shows a surface in which the pixels constituting the image formed by the projected light have the same size.
  • the projection light is projected forward from the projection device 10 mounted on the automobile.
  • the positional relationship with the object in front of the automobile is important, and it is preferable that the distance can be measured farther in front of the vehicle. Therefore, in the distance measurement of an automobile, it is preferable that the projected light having a sufficient energy density is projected in the region in front of the automobile.
  • the pixels constituting the image formed by the projected light are diffused and enlarged as the distance from the projection device 10 increases. Therefore, it is preferable to reduce the projection angle and increase the energy density of the projected light in the front of the automobile.
  • the projection angle may be increased diagonally forward or laterally as compared with the front of the automobile. Rather than uniformly projecting the projected light over the entire projection area, changing the projection angle according to the distance to the automobile as in this projection example can reduce the energy for projecting the projected light.
  • the projection device of the present embodiment includes a light source, a spatial light modulator, a control unit, and a projection optical system.
  • the light source emits parallel light.
  • the spatial light modulator has a modulator that modulates the phase of parallel light emitted from a light source.
  • the control unit tiles the modulation unit in a plurality of regions having a major axis in the first direction.
  • the control unit sets a phase image corresponding to the image set according to the tiling aspect ratio of the modulation unit in each of the plurality of regions tiling in the modulation unit.
  • the control unit controls the light source so that the parallel light is emitted toward the modulation unit in which the phase image is set.
  • the projection optical system includes a projection lens that projects the light modulated by the modulator in accordance with the tying aspect ratio of the modulator.
  • the projection device of the present embodiment projects the light modulated by the modulation unit of the spatial light modulator in accordance with the tying of the modulation unit. Since the projected light projected by the projection device of the present embodiment is projected in a projection range matched to the tiling of the modulation unit, a high energy density can be maintained even at a longer distance. Further, since the projection range of the projected light projected from the projection device of the present embodiment is compressed according to the tyling set in the modulation section of the spatial light modulation section, the image formed by the projected light is compressed. There is no distortion. Therefore, according to the projection device of the present embodiment, the projected light having a high energy density can be projected to a distant object without distortion.
  • the projection lens compresses and projects the light modulated by the modulation unit in the second direction orthogonal to the first direction. According to this aspect, since the projected light compressed in the second direction can be projected according to the tiling aspect of the modulation unit, a distortion-free image can be projected.
  • the projection lens has a structure in which a lens that magnifies the light modulated by the modulation unit in the first direction and a lens that compresses the light in the second direction are combined. According to this aspect, since the projected light enlarged in the first direction and compressed in the second direction can be projected, a more distortion-free image can be projected.
  • the projection lens has a structure in which a plurality of lenses including at least one cylindrical lens are combined.
  • the projection lens includes a first cylindrical lens and a second cylindrical lens arranged so that their cylinder axes are orthogonal to each other.
  • the first cylindrical lens is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface.
  • the second cylindrical lens is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface.
  • the projection lens includes a first cylindrical lens and a second cylindrical lens arranged so that their cylinder axes are orthogonal to each other.
  • the first cylindrical lens is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface.
  • the second cylindrical lens is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface.
  • the projection lens has at least one emission surface having at least two curvatures and projects light modulated by the modulator in accordance with the tying aspect ratio of the modulator.
  • the projection lens has a cylindrical lens and a free-form surface lens arranged so that the cylindrical lens and the cylinder axis are orthogonal to each other.
  • a free-form surface lens magnifies light that has passed through a cylindrical lens in at least two directions at different magnifications. According to this aspect, since the enlargement ratio of the projected light can be set according to the direction of the object and the distance to the object, the projected light can be projected to the object in various directions and distances without distortion.
  • the projection lens includes a liquid crystal lens controlled to compress / magnify the light modulated by the modulation unit according to the aspect ratio of the tyling of the modulation unit.
  • the direction in which the projected light is expanded / compressed can be dynamically changed according to the change in the tyling set for the modulation of the spatial light modulator.
  • the projection device of this embodiment is mounted on a communication device that uses a spatial optical signal.
  • the communication device equipped with the projection device of the present embodiment includes a light receiving device (not shown) that receives a spatial optical signal transmitted from another communication device.
  • the light receiving device receives a spatial optical signal transmitted from another communication device and decodes the received spatial optical signal.
  • the communication method using the communication device equipped with the projection device of the present embodiment is not particularly limited.
  • the projection device of this embodiment is mounted on a distance measuring device that uses spatial light.
  • the distance measuring device equipped with the projection device of the present embodiment includes a light receiving device (not shown) that receives the reflected light of the projected light reflected by the object.
  • the light receiving device receives the reflected light of the projected light reflected by the object, and measures the distance to the object by using the received reflected light.
  • the method of measuring the distance by the distance measuring device equipped with the projection device of the present embodiment is not particularly limited.
  • the projection device of the present embodiment is a simplification of the projection device of the first embodiment.
  • FIG. 17 is a conceptual diagram showing an example of the configuration of the projection device 20 of the present embodiment.
  • the projection device 20 includes a light source 21, a spatial light modulator 23, a control unit 25, and a projection optical system 27.
  • the light source 21 emits parallel light.
  • the spatial light modulator 23 has a modulator 230 that modulates the phase of the parallel light emitted from the light source 21.
  • the control unit 25 tiles the modulation unit 230 in a plurality of regions having a major axis in the first direction.
  • the control unit 25 sets a phase image corresponding to the image set according to the tiling aspect ratio of the modulation unit 230 in each of the plurality of regions tied to the modulation unit 230.
  • the control unit 25 controls the light source 21 so that parallel light is emitted toward the modulation unit 230 in which the phase image is set.
  • the projection optical system 27 includes a projection lens 275 that projects the light modulated by the modulation unit 230 according to the aspect ratio of the tying of the modulation unit 230.
  • the projection device of the present embodiment projects the light modulated by the modulation unit of the spatial light modulator in accordance with the tying of the modulation unit. Since the projected light projected by the projection device of the present embodiment is projected in a projection range matched to the tiling of the modulation unit, a high energy density can be maintained even at a longer distance. Further, since the projection range of the projected light projected from the projection device of the present embodiment is compressed according to the tyling set in the modulation section of the spatial light modulation section, the image formed by the projected light is compressed. There is no distortion. Therefore, according to the projection device of the present embodiment, the projected light having a high energy density can be projected to a distant object without distortion.
  • the information processing apparatus 90 of FIG. 18 is a configuration example for executing the processing of the control unit of each embodiment, and does not limit the scope of the present disclosure.
  • the information processing device 90 includes a processor 91, a main storage device 92, an auxiliary storage device 93, an input / output interface 95, and a communication interface 96.
  • the interface is abbreviated as I / F (Interface).
  • the processor 91, the main storage device 92, the auxiliary storage device 93, the input / output interface 95, and the communication interface 96 are connected to each other via the bus 98 so as to be capable of data communication. Further, the processor 91, the main storage device 92, the auxiliary storage device 93, and the input / output interface 95 are connected to a network such as the Internet or an intranet via the communication interface 96.
  • the processor 91 expands the program stored in the auxiliary storage device 93 or the like to the main storage device 92, and executes the expanded program.
  • the software program installed in the information processing apparatus 90 may be used.
  • the processor 91 executes processing by the control unit according to the present embodiment.
  • the main storage device 92 has an area in which the program is expanded.
  • the main storage device 92 may be a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, a non-volatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured / added as the main storage device 92.
  • DRAM Dynamic Random Access Memory
  • MRAM Magnetic Random Access Memory
  • the auxiliary storage device 93 stores various data.
  • the auxiliary storage device 93 is composed of a local disk such as a hard disk or a flash memory. It is also possible to store various data in the main storage device 92 and omit the auxiliary storage device 93.
  • the input / output interface 95 is an interface for connecting the information processing device 90 and peripheral devices.
  • the communication interface 96 is an interface for connecting to an external system or device through a network such as the Internet or an intranet based on a standard or a specification.
  • the input / output interface 95 and the communication interface 96 may be shared as an interface for connecting to an external device.
  • the information processing device 90 may be configured to connect an input device such as a keyboard, a mouse, or a touch panel, if necessary. These input devices are used to input information and settings. When the touch panel is used as an input device, the display screen of the display device may also serve as the interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input / output interface 95.
  • the information processing apparatus 90 may be equipped with a display device for displaying information.
  • a display device it is preferable that the information processing device 90 is provided with a display control device (not shown) for controlling the display of the display device.
  • the display device may be connected to the information processing device 90 via the input / output interface 95.
  • the information processing device 90 may be equipped with a drive device.
  • the drive device mediates between the processor 91 and the recording medium (program recording medium), such as reading data and programs from the recording medium and writing the processing result of the information processing device 90 to the recording medium.
  • the drive device may be connected to the information processing device 90 via the input / output interface 95.
  • the above is an example of the hardware configuration for enabling the control unit according to each embodiment of the present invention.
  • the hardware configuration of FIG. 18 is an example of a hardware configuration for executing arithmetic processing of the control unit according to each embodiment, and does not limit the scope of the present invention.
  • a program for causing a computer to execute a process related to a control unit according to each embodiment is also included in the scope of the present invention.
  • a program recording medium on which a program according to each embodiment is recorded is also included in the scope of the present invention.
  • the recording medium can be realized by, for example, an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the recording medium may be realized by a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card, a magnetic recording medium such as a flexible disk, or another recording medium.
  • a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card
  • a magnetic recording medium such as a flexible disk, or another recording medium.
  • the components of the control unit of each embodiment can be arbitrarily combined. Further, the components of the control unit of each embodiment may be realized by software or by a circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Projection Apparatus (AREA)

Abstract

In order to project projection light with high energy density onto a distant object without distortion, this projection device comprises: a light source that emits parallel light; a spatial light modulator having a modulation unit that modulates the phase of the parallel light emitted from the light source; a control unit that tiles the modulation unit into a plurality of regions each having a long axis in a first direction, sets phase images corresponding to images set according to the aspect ratio of the tiling of the modulation unit in the respective plurality of regions tiled in the modulation unit, and controls the light source such that the modulation unit in which the phase images are set is irradiated with the parallel light; and a projection optical system including a projection lens that projects the light modulated by the modulation unit according to the aspect ratio of the tiling of the modulation unit.

Description

投射装置および投射方法Projection device and projection method
 本開示は、投射光を投射する投射装置等に関する。 This disclosure relates to a projection device or the like that projects projected light.
 投射装置から投射された投射光は、遠方ほど拡散してエネルギー密度が低下する。例えば、空間光を用いる空間光通信や、投射光を用いる測距においては、できる限り遠方まで、歪の無い正常な投射光が、十分なエネルギー密度で投射されることが求められる。 The projected light projected from the projection device diffuses as the distance increases, and the energy density decreases. For example, in spatial optical communication using spatial light and distance measurement using projected light, it is required that normal projected light without distortion is projected with sufficient energy density as far as possible.
 特許文献1には、投射する画像のサイズを変更できる投射型表示装置について開示されている。特許文献1の装置は、投射面に向けて画像を投射し、投射面に投射された画像を撮像する。特許文献1の装置は、撮像画像に基づいて、画像上に投射された指示光の位置を特定する。特許文献1の装置は、画像の投射範囲を、特定された位置に対応する画像領域を含む範囲に設定し、この設定に応じて画像の投射範囲を変更する。 Patent Document 1 discloses a projection type display device capable of changing the size of a projected image. The apparatus of Patent Document 1 projects an image toward the projection surface and captures the image projected on the projection surface. The apparatus of Patent Document 1 identifies the position of the indicated light projected on the image based on the captured image. The apparatus of Patent Document 1 sets the projection range of the image to a range including the image area corresponding to the specified position, and changes the projection range of the image according to this setting.
 特許文献2には、光源からの光により液晶パネルを照明し、投光レンズを介して液晶パネル上の画像をスクリーン面上に投射する液晶プロジェクタ装置について開示されている。特許文献2の装置は、入力映像を横長映像へ変換し、横長に変換した映像を液晶パネルに表示させる。 Patent Document 2 discloses a liquid crystal projector device that illuminates a liquid crystal panel with light from a light source and projects an image on the liquid crystal panel onto a screen surface via a floodlight lens. The device of Patent Document 2 converts an input video into a horizontally long video, and displays the converted video on a liquid crystal panel.
特開2012-108479号公報Japanese Unexamined Patent Publication No. 2012-108479 特開平9-275538号公報Japanese Unexamined Patent Publication No. 9-275538
 特許文献1の手法によれば、プロジェクタからの距離が同一の投射面においては、エネルギー密度を低下させずに投射範囲を変更できる。しかしながら、特許文献1の手法では、プロジェクタからの距離が離れるほど、投射された光のエネルギー密度が低下してしまう。 According to the method of Patent Document 1, the projection range can be changed without lowering the energy density on the projection surface having the same distance from the projector. However, in the method of Patent Document 1, the energy density of the projected light decreases as the distance from the projector increases.
 特許文献2の手法によれば、横方向伸長レンズ系によって入力映像を横長映像へ変換することによって、スクリーンに対して所定の角度で斜めに投射した際に、本来の縦横比の画像を表示させることができる。しかしながら、特許文献2の手法では、スクリーンに対する光の照射角がずれると、歪んだ画像がスクリーンに表示されてしまう。 According to the method of Patent Document 2, by converting an input image into a horizontally long image by a laterally extending lens system, an image having an original aspect ratio is displayed when it is projected obliquely at a predetermined angle with respect to the screen. be able to. However, in the method of Patent Document 2, if the irradiation angle of light with respect to the screen is deviated, a distorted image is displayed on the screen.
 本開示の目的は、エネルギー密度の高い投射光を、遠方の対象に対して歪みなく投射できる投射装置等を提供することにある。 An object of the present disclosure is to provide a projection device or the like capable of projecting projected light having a high energy density to a distant object without distortion.
 本開示の一態様の投射装置は、平行光を出射する光源と、光源から出射された平行光の位相を変調する変調部を有する空間光変調器と、第1方向に長軸を有する複数の領域で変調部をタイリングし、変調部のタイリングのアスペクト比に合わせて設定された画像に対応する位相画像を、変調部にタイリングされた複数の領域の各々に設定し、位相画像が設定された変調部に向けて平行光が照射されるように光源を制御する制御部と、変調部で変調された光を、変調部のタイリングのアスペクト比に合わせて投射する投射レンズを含む投射光学系と、を備える。 The projection device of one aspect of the present disclosure includes a light source that emits parallel light, a spatial light modulator having a modulation unit that modulates the phase of the parallel light emitted from the light source, and a plurality of projectors having a major axis in the first direction. The modulation section is tied in the region, and the phase image corresponding to the image set according to the tying aspect ratio of the modulation section is set in each of the plurality of regions tied to the modulation section, and the phase image is formed. It includes a control unit that controls the light source so that parallel light is emitted toward the set modulation unit, and a projection lens that projects the light modulated by the modulation unit according to the tying aspect ratio of the modulation unit. It is equipped with a projection optical system.
 本開示の一態様の投射方法においては、コンピュータが、第1方向に長軸を有する複数の領域で、空間光変調器の変調部をタイリングし、変調部のタイリングのアスペクト比に合わせて設定された画像に対応する位相画像を、変調部にタイリングされた複数の領域の各々に設定し、位相画像が設定された変調部に向けて平行光が照射されるように光源を制御し、変調部のタイリングのアスペクト比に合わせて投射する投射レンズを含む投射光学系を用いて、変調部で変調された光を投射する。 In one aspect of the projection method of the present disclosure, the computer tiles the modulator of the spatial light modulator in a plurality of regions having a major axis in the first direction, in accordance with the tying aspect ratio of the modulator. A phase image corresponding to the set image is set in each of a plurality of regions tied to the modulation section, and the light source is controlled so that parallel light is emitted toward the modulation section in which the phase image is set. , The light modulated by the modulator is projected using a projection optical system including a projection lens that projects according to the tying aspect ratio of the modulator.
 本開示によれば、エネルギー密度の高い投射光を、遠方の対象に対して歪みなく投射できる投射装置等を提供することが可能になる。 According to the present disclosure, it is possible to provide a projection device or the like capable of projecting projected light having a high energy density to a distant object without distortion.
第1の実施形態に係る投射装置の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the structure of the projection apparatus which concerns on 1st Embodiment. 空間光変調器の変調部の一般的なタイリングについて説明するための概念図である。It is a conceptual diagram for demonstrating the general tiling of the modulation part of a spatial light modulator. 第1の実施形態に係る投射装置から投射された投射光によって形成される画像を構成する画素の大きさについて説明するための概念図である。It is a conceptual diagram for demonstrating the size of the pixel which constitutes the image formed by the projection light projected from the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の空間光変調器の変調部のタイリングについて説明するための概念図である。It is a conceptual diagram for demonstrating the tiling of the modulation part of the spatial light modulator of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の空間光変調器の変調部のタイリングについて説明するための概念図である。It is a conceptual diagram for demonstrating the tiling of the modulation part of the spatial light modulator of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の空間光変調器の変調部のタイリングについて説明するための概念図である。It is a conceptual diagram for demonstrating the tiling of the modulation part of the spatial light modulator of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の空間光変調器の変調部のタイリングについて説明するための概念図である。It is a conceptual diagram for demonstrating the tiling of the modulation part of the spatial light modulator of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の空間光変調器の変調部に横長の画像に対応する位相画像が設定された状態で投射される投射光によって形成される画像の表示状態について説明するための概念図である。To explain the display state of an image formed by the projected light projected in a state where a phase image corresponding to a horizontally long image is set in a modulation unit of the spatial light modulator of the projection device according to the first embodiment. It is a conceptual diagram. 第1の実施形態に係る投射装置の空間光変調器の変調部に横長の画像に対応する位相画像が設定された状態で投射される投射光によって形成される画像の表示状態について説明するための概念図である。To explain the display state of an image formed by the projected light projected in a state where a phase image corresponding to a horizontally long image is set in a modulation unit of the spatial light modulator of the projection device according to the first embodiment. It is a conceptual diagram. 第1の実施形態に係る投射装置の空間光変調器の変調部に横長の画像に対応する位相画像が設定された状態で投射される投射光によって形成される画像の表示状態について説明するための概念図である。To explain the display state of an image formed by the projected light projected in a state where a phase image corresponding to a horizontally long image is set in a modulation unit of the spatial light modulator of the projection device according to the first embodiment. It is a conceptual diagram. 第1の実施形態に係る投射装置の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the structure of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置が備える投射光学系の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the structure of the projection optical system provided in the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の構成の別の一例を示す概念図である。It is a conceptual diagram which shows another example of the structure of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置が備える投射光学系の構成の別の一例を示す概念図である。It is a conceptual diagram which shows another example of the structure of the projection optical system provided in the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の構成のさらに別の一例を示す概念図である。It is a conceptual diagram which shows still another example of the structure of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置が備える投射光学系の構成のさらに別の一例を示す概念図である。It is a conceptual diagram which shows still another example of the structure of the projection optical system provided in the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の制御部の動作の一例について説明するための概念図である。It is a conceptual diagram for demonstrating an example of the operation of the control part of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の投射例1について説明するための概念図である。It is a conceptual diagram for demonstrating the projection example 1 of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の投射例2について説明するための概念図である。It is a conceptual diagram for demonstrating the projection example 2 of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の投射例3について説明するための概念図である。It is a conceptual diagram for demonstrating the projection example 3 of the projection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る投射装置の投射例4について説明するための概念図である。It is a conceptual diagram for demonstrating the projection example 4 of the projection apparatus which concerns on 1st Embodiment. 第2の実施形態に係る投射装置の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the structure of the projection apparatus which concerns on 2nd Embodiment. 各実施形態の制御部の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the control part of each embodiment.
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, although the embodiments described below have technically preferable limitations for carrying out the present invention, the scope of the invention is not limited to the following. In all the drawings used in the following embodiments, the same reference numerals are given to the same parts unless there is a specific reason. Further, in the following embodiments, repeated explanations may be omitted for similar configurations and operations.
 (第1の実施形態)
 まず、第1の実施形態に係る投射装置の構成について、図面を参照しながら説明する。本実施形態の投射装置は、位相変調型の空間光変調素子を用いた投射装置である。本実施形態の投射装置は、投射範囲が一方向に圧縮されたエネルギー密度の高い投射光を、歪みなく正常な形状で投射する。
(First Embodiment)
First, the configuration of the projection device according to the first embodiment will be described with reference to the drawings. The projection device of the present embodiment is a projection device using a phase modulation type spatial light modulation element. The projection device of the present embodiment projects projected light having a high energy density whose projection range is compressed in one direction in a normal shape without distortion.
 (構成)
 図1は、本実施形態の投射装置10の構成の一例を示す概念図である。投射装置10は、光源11、空間光変調器13、制御部15、および投射光学系17を有する。光源11、空間光変調器13、および投射光学系17は、投射部100を構成する。図1は、概念的なものであり、各構成要素間の位置関係や、光の進行方向などを正確に表したものではない。
(Constitution)
FIG. 1 is a conceptual diagram showing an example of the configuration of the projection device 10 of the present embodiment. The projection device 10 includes a light source 11, a spatial light modulator 13, a control unit 15, and a projection optical system 17. The light source 11, the spatial light modulator 13, and the projection optical system 17 constitute a projection unit 100. FIG. 1 is conceptual and does not accurately represent the positional relationship between each component, the traveling direction of light, and the like.
 光源11は、出射器111とコリメータ112を含む。出射器111は、制御部15の制御に応じて、所定の波長帯のレーザ光101を出射する。光源11から出射されるレーザ光101の波長は、特に限定されない。例えば、出射器111は、可視や赤外の波長帯のレーザ光101を出射する。例えば、800~900ナノメートル(nm)の近赤外線であれば、レーザクラスを上げられるので、他の波長帯よりも1桁くらい感度を向上できる。例えば、ガリウムヒ素(GaN)系レーザ光源を用いれば、1.55マイクロメートル(μm)の波長帯の赤外線のレーザ光101を出射できる。1.55μmの波長帯の赤外線ならば、100ミリワット(mW)程度の高出力のレーザ光源を用いることができる。レーザ光101の波長が長い方が、回折角を大きくでき、高いエネルギーに設定できる。 The light source 11 includes an emitter 111 and a collimator 112. The emitter 111 emits the laser beam 101 in a predetermined wavelength band according to the control of the control unit 15. The wavelength of the laser beam 101 emitted from the light source 11 is not particularly limited. For example, the emitter 111 emits a laser beam 101 in a visible or infrared wavelength band. For example, in the case of near-infrared rays of 800 to 900 nanometers (nm), the laser class can be raised, so that the sensitivity can be improved by about an order of magnitude compared to other wavelength bands. For example, if a gallium arsenide (GaN) -based laser light source is used, an infrared laser beam 101 having a wavelength band of 1.55 micrometers (μm) can be emitted. For infrared rays in the wavelength band of 1.55 μm, a high-power laser light source of about 100 milliwatts (mW) can be used. The longer the wavelength of the laser beam 101, the larger the diffraction angle and the higher the energy can be set.
 コリメータ112は、出射器111から出射されたレーザ光101を平行光102に変換する。出射器111から出射されたレーザ光101は、コリメータ112によって平行光102に変換され、光源11から出射される。光源11から出射された平行光102は、空間光変調器13の変調部130に向けて進行する。 The collimator 112 converts the laser beam 101 emitted from the emitter 111 into parallel light 102. The laser beam 101 emitted from the emitter 111 is converted into parallel light 102 by the collimator 112 and emitted from the light source 11. The parallel light 102 emitted from the light source 11 travels toward the modulation unit 130 of the spatial light modulator 13.
 図1のように、平行光102の入射角は、空間光変調器13の変調部130に対して非垂直に設定される。光源11から出射される平行光102の出射軸は、空間光変調器13の変調部130に対して斜めである。空間光変調器13の変調部130に対して平行光102の出射軸を斜めにすれば、ビームスプリッタを用いなくても平行光102を入射できる。そのため、光の利用効率を向上させることができる。また、空間光変調器13の変調部130に対して、平行光102の出射軸を斜めに設定すれば、投射部100の大きさをコンパクトにできる。 As shown in FIG. 1, the incident angle of the parallel light 102 is set non-perpendicular to the modulation unit 130 of the spatial light modulator 13. The emission axis of the parallel light 102 emitted from the light source 11 is oblique with respect to the modulation unit 130 of the spatial light modulator 13. If the emission axis of the parallel light 102 is slanted with respect to the modulation unit 130 of the spatial light modulator 13, the parallel light 102 can be incident without using a beam splitter. Therefore, the efficiency of light utilization can be improved. Further, if the emission axis of the parallel light 102 is set diagonally with respect to the modulation unit 130 of the spatial light modulator 13, the size of the projection unit 100 can be made compact.
 空間光変調器13は、平行光102が照射される変調部130を有する。空間光変調器13の変調部130には、制御部15の制御に応じて、検出光に応じたパターンが設定される。例えば、空間光変調器13は、強誘電性液晶やホモジーニアス液晶、垂直配向液晶などを用いた空間光変調器によって実現される。例えば、空間光変調器13は、LCOS(Liquid Crystal on Silicon)によって実現できる。また、空間光変調器13は、MEMS(Micro Electro Mechanical System)によって実現されてもよい。 The spatial light modulator 13 has a modulator 130 to which the parallel light 102 is irradiated. In the modulation unit 130 of the spatial light modulator 13, a pattern corresponding to the detected light is set according to the control of the control unit 15. For example, the spatial light modulator 13 is realized by a spatial light modulator using a ferroelectric liquid crystal display, a homogenius liquid crystal display, a vertically oriented liquid crystal display, or the like. For example, the spatial light modulator 13 can be realized by LCOS (Liquid Crystal on Silicon). Further, the spatial light modulator 13 may be realized by a MEMS (Micro Electro Mechanical System).
 位相変調型の空間光変調器13では、投射光107を投射する箇所を順次切り替えるように動作させることによって、エネルギーを像の部分に集中することができる。そのため、位相変調型の空間光変調器13を用いる場合、光源11の出力が同じであれば、その他の方式と比べて画像を明るく表示させることができる。 In the phase modulation type spatial light modulator 13, energy can be concentrated on the image portion by operating so as to sequentially switch the locations where the projected light 107 is projected. Therefore, when the phase modulation type spatial light modulator 13 is used, if the output of the light source 11 is the same, the image can be displayed brighter than other methods.
 図2は、一般的な、空間光変調器13の変調部130の領域分け(タイリングとも呼ぶ)について説明するための概念図である。図2の例は、変調部130を複数の正方形の領域に分ける、一般的なタイリングに関する。図2の例において、変調部130は、横縦のアスペクト比が1:1の複数の領域に分割される。変調部130には、反復フーリエ変換によって生成された位相画像が割り当てられる複数のタイルが設定される。複数のタイルの各々は、複数の画素によって構成される。複数のタイルの各々には、投射される画像に対応する位相画像が表示される。複数のタイルの各々に表示される位相画像は、同じであってもよいし、異なっていてもよい。例えば、複数のタイルの各々は、256×256画素や、512×512画素で構成される。例えば、変調部130の全体の画素数が1080×1920画素であり、各タイルの画素数が256×256画素である場合、縦方向に4つ、横方向に7つのタイルが変調部130に割り当てられる。一般的なタイリングでは、位相画像の計算速度を向上するために、タイルを構成する画素数は2のn乗の解像度に設定される(nは自然数)。 FIG. 2 is a conceptual diagram for explaining a general area division (also referred to as tiling) of the modulation unit 130 of the spatial light modulator 13. The example of FIG. 2 relates to general tiling that divides the modulator 130 into a plurality of square areas. In the example of FIG. 2, the modulation unit 130 is divided into a plurality of regions having a horizontal and vertical aspect ratio of 1: 1. A plurality of tiles to which the phase image generated by the iterative Fourier transform is assigned are set in the modulation unit 130. Each of the plurality of tiles is composed of a plurality of pixels. A phase image corresponding to the projected image is displayed on each of the plurality of tiles. The phase images displayed on each of the plurality of tiles may be the same or different. For example, each of the plurality of tiles is composed of 256 × 256 pixels or 512 × 512 pixels. For example, when the total number of pixels of the modulation unit 130 is 1080 × 1920 pixels and the number of pixels of each tile is 256 × 256 pixels, four tiles in the vertical direction and seven tiles in the horizontal direction are assigned to the modulation unit 130. Will be. In general tiling, the number of pixels constituting the tile is set to a resolution of 2 to the nth power (n is a natural number) in order to improve the calculation speed of the phase image.
 変調部130に割り当てられた複数のタイルの各々には、反復フーリエ変換によって生成された位相画像がタイリングされる。例えば、複数のタイルの各々には、予め生成された位相画像が表示される。複数のタイルに位相画像が設定された状態で、変調部130に平行光102が照射されると、各タイルの位相画像に対応する画像を形成する変調光103が出射される。タイルの数が6個未満の場合、投射される画像が乱れることがある。そのため、タイルの数は、6個以上に設定されることが好ましい。 A phase image generated by the iterative Fourier transform is tiled in each of the plurality of tiles assigned to the modulation unit 130. For example, each of the plurality of tiles displays a pre-generated phase image. When the modulation unit 130 is irradiated with the parallel light 102 in a state where the phase image is set for the plurality of tiles, the modulation light 103 forming an image corresponding to the phase image of each tile is emitted. If the number of tiles is less than 6, the projected image may be distorted. Therefore, the number of tiles is preferably set to 6 or more.
 図3は、投射装置10から投射光107を投射角θで投射する一例を示す概念図である。投射装置10から近い投射面S1と比べて、遠方の投射面S2では、1画素分の画像が拡大される。そのため、投射面S1と比べて、遠方の投射面S2においては、1画素分の画像のエネルギー密度が低下する。投射光のエネルギー密度が低下しすぎた位置では、通信や測距を行うことができなくなる。そのため、より遠方まで投射光のエネルギー密度を有効にするために、投射光107の投射角θを小さくすることが求められる。しかしながら、投射光107の投射角θを小さくしすぎると、通信対象や測距対象の有効範囲が狭くなってしまう。そのため、本実施形態においては、投射光107の有効範囲を保ちつつ、より遠方まで投射光のエネルギー密度を有効にするために、投射範囲が一方向に圧縮された投射光を投射する。 FIG. 3 is a conceptual diagram showing an example of projecting the projected light 107 from the projection device 10 at a projection angle θ. Compared with the projection surface S1 closer to the projection device 10, the image for one pixel is enlarged on the projection surface S2 farther away. Therefore, the energy density of the image for one pixel is lower on the distant projection surface S2 than on the projection surface S1. At a position where the energy density of the projected light is too low, communication and distance measurement cannot be performed. Therefore, in order to make the energy density of the projected light more distant, it is required to reduce the projection angle θ of the projected light 107. However, if the projection angle θ of the projected light 107 is made too small, the effective range of the communication target and the distance measuring target becomes narrow. Therefore, in the present embodiment, in order to make the energy density of the projected light more distant while maintaining the effective range of the projected light 107, the projected light whose projection range is compressed in one direction is projected.
 制御部15は、光源11および空間光変調器を制御する。制御部15は、空間光変調器13の変調部130に設定されたタイリングのアスペクト比に合わせて、投射される画像に対応する位相画像を変調部130に設定する。例えば、制御部15は、画像表示や通信、測距など、用途に応じた画像に対応する位相画像を変調部130に設定する。投射される画像の位相画像は、図示しない記憶部に予め記憶させておく。投射される画像の形状や大きさには、特に限定を加えない。制御部15は、投射される画像に対応する位相画像が変調部130に設定された状態で、光源11の出射器111を駆動させる。その結果、空間光変調器13の変調部130に位相画像が設定されたタイミングに合わせて、光源11から出射された平行光102が空間光変調器13の変調部130に照射される。空間光変調器13の変調部130に照射された平行光102は、空間光変調器13の変調部130において変調される。空間光変調器13の変調部130において変調された変調光103は、空間光変調器13の変調部130に表示されたパターンに対応する投射光107として送光される。 The control unit 15 controls the light source 11 and the spatial light modulator. The control unit 15 sets the phase image corresponding to the projected image in the modulation unit 130 according to the aspect ratio of the tyling set in the modulation unit 130 of the spatial light modulator 13. For example, the control unit 15 sets a phase image corresponding to an image according to an application such as image display, communication, and distance measurement in the modulation unit 130. The phase image of the projected image is stored in advance in a storage unit (not shown). The shape and size of the projected image are not particularly limited. The control unit 15 drives the emitter 111 of the light source 11 in a state where the phase image corresponding to the projected image is set in the modulation unit 130. As a result, the parallel light 102 emitted from the light source 11 is irradiated to the modulation unit 130 of the spatial light modulator 13 at the timing when the phase image is set in the modulation unit 130 of the spatial light modulator 13. The parallel light 102 irradiated to the modulation unit 130 of the spatial light modulator 13 is modulated by the modulation unit 130 of the spatial light modulator 13. The modulated light 103 modulated by the modulation unit 130 of the spatial light modulator 13 is transmitted as projected light 107 corresponding to the pattern displayed on the modulation unit 130 of the spatial light modulator 13.
 制御部15は、空間光変調器13の変調部130に照射される平行光102の位相と、変調部130で反射される変調光103の位相との差分を決定づけるパラメータが変化するように空間光変調器13を駆動する。位相変調型の空間光変調器13の変調部130に照射される平行光102の位相と、変調部130で反射される変調光103の位相との差分を決定づけるパラメータは、例えば、屈折率や光路長などの光学的特性に関するパラメータである。例えば、制御部15は、空間光変調器13の変調部130に印可する電圧を変化させることによって、変調部130の屈折率を変化させる。変調部130の屈折率を変化させれば、変調部130に照射された平行光102は、変調部130の各部の屈折率に基づいて適宜回折される。すなわち、位相変調型の空間光変調器13の変調部130に照射された平行光102の位相分布は、変調部130の光学的特性に応じて変調される。なお、制御部15による空間光変調器13の駆動方法は、空間光変調器13の変調方式に応じて決定される。 The control unit 15 changes the parameters that determine the difference between the phase of the parallel light 102 irradiated to the modulation unit 130 of the spatial light modulator 13 and the phase of the modulation light 103 reflected by the modulation unit 130. Drives the modulator 13. The parameters that determine the difference between the phase of the parallel light 102 applied to the modulation unit 130 of the phase modulation type spatial light modulator 13 and the phase of the modulation light 103 reflected by the modulation unit 130 are, for example, the refractive index and the optical path. It is a parameter related to optical characteristics such as length. For example, the control unit 15 changes the refractive index of the modulation unit 130 by changing the voltage applied to the modulation unit 130 of the spatial light modulator 13. If the refractive index of the modulation unit 130 is changed, the parallel light 102 irradiated to the modulation unit 130 is appropriately diffracted based on the refractive index of each part of the modulation unit 130. That is, the phase distribution of the parallel light 102 irradiated to the modulation unit 130 of the phase modulation type spatial light modulator 13 is modulated according to the optical characteristics of the modulation unit 130. The method of driving the spatial light modulator 13 by the control unit 15 is determined according to the modulation method of the spatial light modulator 13.
 図4A、図4B、図4C、および図4Dは、本実施形態における、空間光変調器13の変調部130のタイリングについて説明するための概念図である。図4A、図4B、および図4Cのタイリングにおける各タイルは、縦に比べて横の画素数が大きい長方形の形状を有する。図4A、図4B、および図4Cのタイリングにおいては、水平方向に引き伸ばされた画像に対応する位相画像が、各タイルに設定される。図4Dのタイリングにおける各タイルは、横に比べて縦の画素数が大きい長方形の形状を有する。図4Dのタイリングにおいては、垂直方向に引き伸ばされた画像に対応する位相画像が、各タイルに設定される。変調部130に設定されるタイルが多いほど、鮮明な画像を表示させることができるが、各タイルの画素数が低下すると解像度が低下する。そのため、変調部130に設定されるタイル大きさや数は、用途に応じて設定される。 4A, 4B, 4C, and 4D are conceptual diagrams for explaining the tiling of the modulation unit 130 of the spatial light modulator 13 in the present embodiment. Each tile in the tiling of FIGS. 4A, 4B, and 4C has a rectangular shape with a larger number of pixels in the horizontal direction than in the vertical direction. In the tiling of FIGS. 4A, 4B, and 4C, a phase image corresponding to the horizontally stretched image is set for each tile. Each tile in the tiling of FIG. 4D has a rectangular shape in which the number of vertical pixels is larger than that in the horizontal direction. In the tiling of FIG. 4D, a phase image corresponding to the vertically stretched image is set for each tile. The more tiles set in the modulation unit 130, the clearer the image can be displayed, but when the number of pixels of each tile decreases, the resolution decreases. Therefore, the tile size and number set in the modulation unit 130 are set according to the application.
 投射光学系17は、空間光変調器13の変調部130において変調された変調光103を投射光107として投射する光学系である。図1のように、投射光学系17は、フーリエ変換レンズ171、アパーチャ173、および投射レンズ175を有する。 The projection optical system 17 is an optical system that projects the modulated light 103 modulated by the modulation unit 130 of the spatial light modulator 13 as the projection light 107. As shown in FIG. 1, the projection optical system 17 has a Fourier transform lens 171 and an aperture 173, and a projection lens 175.
 フーリエ変換レンズ171は、空間光変調器13によって変調された変調光103を無限遠に投射した際に形成される像を、アパーチャ173の近傍の焦点位置に結像させる光学レンズである。フーリエ変換レンズ171は、0次光を遮蔽する部分(図示しない)を有する。なお、フーリエ変換レンズ171の代わりに、仮想レンズを用いてもよい。仮想レンズを用いる場合は、投射装置10から投射される投射光107によって形成される画像に対応する位相画像と、アパーチャ173の近傍の焦点位置に変調光103を集光させる仮想レンズ画像との合成画像を、変調部130に設定すればよい。仮想レンズを用いる場合、フーリエ変換レンズ171は省略される。仮想レンズを用いる場合、0次光が除去されるように構成されることが好ましい。 The Fourier transform lens 171 is an optical lens that forms an image formed when the modulated light 103 modulated by the spatial light modulator 13 is projected at infinity at a focal position near the aperture 173. The Fourier transform lens 171 has a portion (not shown) that shields the 0th-order light. A virtual lens may be used instead of the Fourier transform lens 171. When a virtual lens is used, the phase image corresponding to the image formed by the projected light 107 projected from the projection device 10 and the virtual lens image that focuses the modulated light 103 at the focal position near the aperture 173 are combined. The image may be set in the modulation unit 130. When a virtual lens is used, the Fourier transform lens 171 is omitted. When a virtual lens is used, it is preferably configured so that the 0th-order light is removed.
 アパーチャ173は、フーリエ変換レンズ171によって集束された光に含まれる高次光を遮蔽し、表示領域の外縁を制限する枠である。アパーチャ173の開口部は、アパーチャ173の位置における表示領域の外周よりも小さく開口され、アパーチャ173の位置における画像の周辺領域を遮るように設置される。例えば、アパーチャ173の開口部は、矩形状や円形状に形成される。アパーチャ173は、フーリエ変換レンズ171の焦点位置に設置されることが好ましい。なお、高次光を遮蔽でき、表示領域を制限できれば、アパーチャ173は、フーリエ変換レンズ171の焦点位置からずれていても構わない。また、アパーチャ173の開口部の内側に、変調光103に含まれる0次光を遮蔽する部分を設けてもよい。 The aperture 173 is a frame that shields the higher-order light contained in the light focused by the Fourier transform lens 171 and limits the outer edge of the display area. The opening of the aperture 173 is opened smaller than the outer circumference of the display area at the position of the aperture 173, and is installed so as to block the peripheral area of the image at the position of the aperture 173. For example, the opening of the aperture 173 is formed in a rectangular or circular shape. The aperture 173 is preferably installed at the focal position of the Fourier transform lens 171. The aperture 173 may be deviated from the focal position of the Fourier transform lens 171 as long as the higher-order light can be shielded and the display area can be limited. Further, a portion for shielding the 0th-order light included in the modulated light 103 may be provided inside the opening of the aperture 173.
 投射レンズ175は、フーリエ変換レンズ171によって集束された光を、投射される画像に対応させて拡大する光学レンズである。投射レンズ175は、単一のレンズで構成されてもよいし、複数のレンズを組み合わせたレンズで構成されてもよい。投射レンズ175は、空間光変調器13の変調部130に設定された位相画像に対応する画像が、変調部130にタイリングされた複数の領域のアスペクト比と同じ比率で、被投射面において形成されるように、投射光107を拡大する。投射レンズ175は、変調部130に設定された位相画像に対応する画像を、その画像の短軸方向に圧縮する。また、投射レンズ175は、変調部130に設定された位相画像に対応する画像を、その画像の長軸方向に拡大してもよい。 The projection lens 175 is an optical lens that magnifies the light focused by the Fourier transform lens 171 in correspondence with the projected image. The projection lens 175 may be composed of a single lens or a lens in which a plurality of lenses are combined. In the projection lens 175, an image corresponding to the phase image set in the modulation unit 130 of the spatial light modulator 13 is formed on the projected surface at the same ratio as the aspect ratio of the plurality of regions tied to the modulation unit 130. The projected light 107 is magnified so as to be. The projection lens 175 compresses an image corresponding to the phase image set in the modulation unit 130 in the minor axis direction of the image. Further, the projection lens 175 may enlarge the image corresponding to the phase image set in the modulation unit 130 in the long axis direction of the image.
 例えば、投射レンズ175は、少なくとも一つのシリンドリカルレンズを含む。例えば、投射レンズ175は、投射される画像のアスペクト比に対応させて、第1方向に拡大する第1レンズと、第1方向に直交する第2方向に圧縮する第2レンズとを組み合わせた構成を有する。第1レンズの圧縮率と、第2レンズの拡大率は、投射される画像のアスペクト比に対応するように設定される。例えば、投射レンズ175は、投射される画像のアスペクト比に対応させて、第1方向に第1拡大率で拡大する第1レンズと、第1方向に直交する第2方向に第2拡大率で拡大する第2レンズとを組み合わせた構成を有する。第1拡大率と第2拡大率は、投射される画像のアスペクト比に対応するように構成される。 For example, the projection lens 175 includes at least one cylindrical lens. For example, the projection lens 175 is configured by combining a first lens that expands in the first direction and a second lens that compresses in the second direction orthogonal to the first direction according to the aspect ratio of the projected image. Has. The compression ratio of the first lens and the magnification ratio of the second lens are set so as to correspond to the aspect ratio of the projected image. For example, the projection lens 175 has a first lens that magnifies in the first direction at the first magnifying power and a second magnifying power in the second direction that is orthogonal to the first direction, corresponding to the aspect ratio of the projected image. It has a configuration in combination with a second lens that magnifies. The first magnification and the second magnification are configured to correspond to the aspect ratio of the projected image.
 なお、投射レンズ175は、変調部130に設定された位相画像に対応する画像を、その画像の長軸方向(第1方向)に沿って拡大したり、その画像の短軸方向(第2方向)に沿って圧縮したりできれば、シリンドリカルレンズに限定されない。例えば、投射レンズ175は、自由曲面レンズや、ロッドレンズ、パウエルレンズなどを含んでもよい。例えば、投射レンズ175は、シリンドリカルレンズアレイのようなレンズアレイを含んでもよい。例えば、投射レンズ175は、任意の方向の拡大率や圧縮率を動的に変更可能な液晶レンズを含んでもよい。 The projection lens 175 magnifies an image corresponding to the phase image set in the modulation unit 130 along the long axis direction (first direction) of the image, or magnifies the image in the short axis direction (second direction) of the image. ), It is not limited to a cylindrical lens as long as it can be compressed. For example, the projection lens 175 may include a free-form surface lens, a rod lens, a Powell lens, and the like. For example, the projection lens 175 may include a lens array such as a cylindrical lens array. For example, the projection lens 175 may include a liquid crystal lens that can dynamically change the magnification and compression ratio in any direction.
 図5A、図5B、および図5Cは、本実施形態の投射装置10の空間光変調器13の変調部130に設定される複数のタイルに表示させた位相画像に対応する画像について説明するための概念図である。図5Aは、横方向に引き伸ばされた帯状の画像の一例である。図5Aの画像を投射するためには、図4A、図4B、または図4Cのように、変調部130をタイリングすればよい。 5A, 5B, and 5C are for explaining an image corresponding to a phase image displayed on a plurality of tiles set in a modulation unit 130 of the spatial light modulator 13 of the projection device 10 of the present embodiment. It is a conceptual diagram. FIG. 5A is an example of a strip-shaped image stretched in the lateral direction. In order to project the image of FIG. 5A, the modulation unit 130 may be tiling as shown in FIGS. 4A, 4B, or 4C.
 図5Bは、図5Aの画像を形成する位相画像を変調部130に設定した状態で、変調部130によって変調された変調光103を、均一に拡大する通常の投射レンズで投射した際に、投射面で形成される画像である。図5Bのように、通常の投射レンズを用いると、変調部130によって変調された変調光103が、水平面内と、水平面に対する垂直面内とで同じ拡大率で投射される。そのため、図5Bのように、水平面に対して垂直な方向(縦方向)に引き伸ばされた画像が投射される。 FIG. 5B shows projection when the modulated light 103 modulated by the modulation unit 130 is projected by a normal projection lens that uniformly magnifies the phase image forming the image of FIG. 5A in a state where the phase image is set in the modulation unit 130. It is an image formed by a surface. As shown in FIG. 5B, when a normal projection lens is used, the modulated light 103 modulated by the modulation unit 130 is projected at the same magnification in the horizontal plane and in the plane perpendicular to the horizontal plane. Therefore, as shown in FIG. 5B, an image stretched in a direction perpendicular to the horizontal plane (vertical direction) is projected.
 図5Cは、図5Aの画像を形成する位相画像を変調部130に設定した状態で、変調部130によって変調された変調光103を、本実施形態の投射レンズ175で投射した際に、投射面で形成される画像である。図5Cのように、本実施形態の投射レンズ175を用いると、変調部130によって変調された変調光103が、水平面内と、水平面に対して垂直な面内とで異なる拡大率で投射される。そのため、図5Cのように、縦横のアスペクト比が正常な画像が、歪みなく投射される。 FIG. 5C shows a projection surface when the modulated light 103 modulated by the modulation unit 130 is projected by the projection lens 175 of the present embodiment in a state where the phase image forming the image of FIG. 5A is set in the modulation unit 130. It is an image formed by. As shown in FIG. 5C, when the projection lens 175 of the present embodiment is used, the modulated light 103 modulated by the modulation unit 130 is projected at different magnifications in the horizontal plane and in the plane perpendicular to the horizontal plane. .. Therefore, as shown in FIG. 5C, an image having a normal aspect ratio in the vertical and horizontal aspects is projected without distortion.
 図5A、図5B、および図5Cには、縦方向に圧縮された投射領域に対応する例を挙げたが、本実施形態の手法は、任意の方向に拡大された投射領域に適用できる。投射領域の圧縮方向/拡大方向は、通信や測距などの用途に応じて設定されればよい。例えば、船舶間の通信や、自動車の測距であれば、水面に対して水平な方向に、投射領域を拡大すればよい。例えば、ドローン間の通信であれば、3次元的な方向に、投射領域を拡大すればよい。例えば、縦長の狭いゲートを通過する場合であれば、水平面に対して垂直な方向に、投射方向を拡大すればよい。 Although FIGS. 5A, 5B, and 5C give examples corresponding to a vertically compressed projection region, the method of the present embodiment can be applied to a projection region enlarged in any direction. The compression direction / enlargement direction of the projection area may be set according to the application such as communication and distance measurement. For example, in the case of communication between ships or distance measurement of an automobile, the projection area may be expanded in a direction horizontal to the water surface. For example, in the case of communication between drones, the projection area may be expanded in a three-dimensional direction. For example, when passing through a vertically long narrow gate, the projection direction may be expanded in a direction perpendicular to the horizontal plane.
 次に、本実施形態の投射レンズ175の具体例について、一例をあげて説明する。以下においては、本実施形態の投射レンズ175の具体例として、シリンドリカルレンズと自由曲面レンズについて説明する。 Next, a specific example of the projection lens 175 of the present embodiment will be described with an example. Hereinafter, a cylindrical lens and a free-form surface lens will be described as specific examples of the projection lens 175 of the present embodiment.
 〔シリンドリカルレンズ1〕
 図6および図7は、第1レンズL11と第2レンズL12を組み合わせた投射レンズ175Aを含む投射光学系17Aを有する投射装置10Aの一例を示す概念図である。光源11、空間光変調器13、および投射光学系17Aは、投射部100Aを構成する。なお、図6および図7における光の軌跡は概念的なものであって、実際の光の軌跡を正確に表すものではない。
[Cyrindrical lens 1]
6 and 7 are conceptual diagrams showing an example of a projection device 10A having a projection optical system 17A including a projection lens 175A in which the first lens L11 and the second lens L12 are combined. The light source 11, the spatial light modulator 13, and the projection optical system 17A constitute a projection unit 100A. The light trajectories in FIGS. 6 and 7 are conceptual and do not accurately represent the actual light trajectories.
 投射レンズ175Aを構成する第1レンズL11と第2レンズL12は、シリンドリカルレンズである。図6および図7には、投射レンズ175Aを2つのシリンドリカルレンズで構成する例を示すが、投射レンズ175Aは、3つ以上のレンズを組み合わせて構成されてもよい。また、図6および図7には、平凸シリンドリカルレンズを組み合わせる例を示すが、投射レンズ175Aは、平凹レンズを含んでもよい。投射レンズ175Aは、少なくとも一つのシリンドリカルレンズを含めばよい。 The first lens L11 and the second lens L12 constituting the projection lens 175A are cylindrical lenses. 6 and 7 show an example in which the projection lens 175A is composed of two cylindrical lenses, but the projection lens 175A may be configured by combining three or more lenses. Further, although FIGS. 6 and 7 show an example of combining a plano-convex cylindrical lens, the projection lens 175A may include a plano-concave lens. The projection lens 175A may include at least one cylindrical lens.
 第1レンズL11は、水平面内に曲率中心を有する円柱状の形状である。第1レンズL11のシリンダー軸は、水平面に対して垂直である。第1レンズL11は、曲面が入射面になり、その曲面に対向する平面が出射面になるように配置される。第1レンズL11の曲面(入射面)は、空間光変調器13に向けられる。第1レンズL11の平面(出射面)は、第2レンズL12に向けられる。入射面から第1レンズL11に入射した光は、水平面内で拡大されて、出射面から出射される。第1レンズL11の出射面から出射された光は、第2レンズL12の入射面に向けて進行する。 The first lens L11 has a columnar shape having a center of curvature in the horizontal plane. The cylinder axis of the first lens L11 is perpendicular to the horizontal plane. The first lens L11 is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface. The curved surface (incident surface) of the first lens L11 is directed to the spatial light modulator 13. The plane (exiting surface) of the first lens L11 is directed to the second lens L12. The light incident on the first lens L11 from the incident surface is magnified in the horizontal plane and emitted from the exit surface. The light emitted from the exit surface of the first lens L11 travels toward the incident surface of the second lens L12.
 第2レンズL12は、水平面内に対して垂直な面内に曲率中心を有する円柱状の形状である。第2レンズL12のシリンダー軸は、水平面内にあり、第1レンズL11のシリンダー軸と直交する。第2レンズL12は、曲面に対向する平面が入射面になり、曲面が出射面になるように配置される。第2レンズL12の平面(入射面)は、第1レンズL11に向けられる。第2レンズL12の曲面(出射面)は、投射光107Aの投射方向に向けられる。入射面から第2レンズL12に入射した光は、水平面に対して垂直な面内で、垂直方向に圧縮され、出射面から出射される。第2レンズL12の出射面から出射された光は、空間光変調器13の変調部130に設定されたタイリングのアスペクト比に対応する投射範囲の投射光107Aとして投射される。 The second lens L12 has a columnar shape having a center of curvature in a plane perpendicular to the horizontal plane. The cylinder axis of the second lens L12 is in the horizontal plane and is orthogonal to the cylinder axis of the first lens L11. The second lens L12 is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface. The plane (incident surface) of the second lens L12 is directed to the first lens L11. The curved surface (exiting surface) of the second lens L12 is directed in the projection direction of the projected light 107A. The light incident on the second lens L12 from the incident surface is compressed in the vertical direction in the plane perpendicular to the horizontal plane and emitted from the exit surface. The light emitted from the exit surface of the second lens L12 is projected as the projected light 107A in the projection range corresponding to the aspect ratio of the tyling set in the modulation unit 130 of the spatial light modulator 13.
 投射レンズ175Aを構成する第1レンズL11と第2レンズL12は、空間光変調器13の変調部130のタイリングのアスペクト比に合わせて構成される。そのため、投射レンズ175Aから投射された投射光107Aは、投射面において、歪みのない正常な画像を形成する。 The first lens L11 and the second lens L12 constituting the projection lens 175A are configured according to the tying aspect ratio of the modulation unit 130 of the spatial light modulator 13. Therefore, the projected light 107A projected from the projection lens 175A forms a normal image without distortion on the projection surface.
 〔シリンドリカルレンズ2〕
 図8および図9は、第1レンズL21と第2レンズL22を組み合わせた投射レンズ175Bを含む投射光学系17Bを有する投射装置10Bの一例を示す概念図である。光源11、空間光変調器13、および投射光学系17Bは、投射部100Bを構成する。なお、図8および図9における光の軌跡は概念的なものであって、実際の光の軌跡を正確に表すものではない。
[Cyrindrical lens 2]
8 and 9 are conceptual diagrams showing an example of a projection device 10B having a projection optical system 17B including a projection lens 175B in which the first lens L21 and the second lens L22 are combined. The light source 11, the spatial light modulator 13, and the projection optical system 17B constitute a projection unit 100B. It should be noted that the light trajectories in FIGS. 8 and 9 are conceptual and do not accurately represent the actual light trajectories.
 投射レンズ175Bを構成する第1レンズL21と第2レンズL22は、シリンドリカルレンズである。図8および図9には、投射レンズ175Bを2つのシリンドリカルレンズで構成する例を示すが、投射レンズ175Bは、3つ以上のレンズを組み合わせて構成されてもよい。また、図8および図9には、平凸シリンドリカルレンズを組み合わせる例を示すが、投射レンズ175Bは、平凹レンズを含んでもよい。投射レンズ175Bは、少なくとも一つのシリンドリカルレンズを含めばよい。 The first lens L21 and the second lens L22 constituting the projection lens 175B are cylindrical lenses. 8 and 9 show an example in which the projection lens 175B is composed of two cylindrical lenses, but the projection lens 175B may be configured by combining three or more lenses. Further, although FIGS. 8 and 9 show an example of combining a plano-convex cylindrical lens, the projection lens 175B may include a plano-concave lens. The projection lens 175B may include at least one cylindrical lens.
 第1レンズL21は、水平面内に対して垂直な面内に曲率中心を有する円柱状の形状である。第1レンズL21のシリンダー軸は、水平面内にある。第1レンズL21は、曲面に対向する平面が入射面になり、その曲面が出射面になるように配置される。第1レンズL21の平面(入射面)は、空間光変調器13に向けられる。第1レンズL21の曲面(出射面)は、第2レンズL22に向けられる。入射面から第1レンズL21に入射した光は、水平面内に対して垂直な面内で圧縮されて、出射面から出射される。第1レンズL21の出射面から出射された光は、第2レンズL22の入射面に向けて進行する。 The first lens L21 has a columnar shape having a center of curvature in a plane perpendicular to the horizontal plane. The cylinder axis of the first lens L21 is in the horizontal plane. The first lens L21 is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface. The plane (incident surface) of the first lens L21 is directed to the spatial light modulator 13. The curved surface (exiting surface) of the first lens L21 is directed toward the second lens L22. The light incident on the first lens L21 from the incident surface is compressed in a plane perpendicular to the horizontal plane and emitted from the emitting surface. The light emitted from the exit surface of the first lens L21 travels toward the incident surface of the second lens L22.
 第2レンズL22は、水平面内に曲率中心を有する円柱状の形状である。第2レンズL22のシリンダー軸は、水平面に対して垂直であり、第1レンズL21のシリンダー軸と直交する。第2レンズL22は、曲面が入射面になり、その曲面に対向する平面が出射面になるように配置される。第2レンズL22の曲面(入射面)は、第1レンズL21に向けられる。第2レンズL22の平面(出射面)は、投射光107Bの投射方向に向けられる。入射面から第2レンズL22に入射した光は、水平面内で拡大され、出射面から出射される。第2レンズL22の出射面から出射された光は、空間光変調器13の変調部130に設定されたタイリングのアスペクト比に対応する投射範囲の投射光107Bとして投射される。 The second lens L22 has a columnar shape having a center of curvature in the horizontal plane. The cylinder axis of the second lens L22 is perpendicular to the horizontal plane and orthogonal to the cylinder axis of the first lens L21. The second lens L22 is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface. The curved surface (incident surface) of the second lens L22 is directed toward the first lens L21. The plane (exiting surface) of the second lens L22 is directed in the projection direction of the projected light 107B. The light incident on the second lens L22 from the incident surface is magnified in the horizontal plane and emitted from the exit surface. The light emitted from the emission surface of the second lens L22 is projected as the projected light 107B in the projection range corresponding to the aspect ratio of the tyling set in the modulation unit 130 of the spatial light modulator 13.
 投射レンズ175Bを構成する第1レンズL21と第2レンズL22は、空間光変調器13の変調部130のタイリングのアスペクト比に合わせて構成される。そのため、投射レンズ175Bから投射された投射光107Bは、投射面において、歪みのない正常な画像を形成する。 The first lens L21 and the second lens L22 constituting the projection lens 175B are configured according to the tying aspect ratio of the modulation unit 130 of the spatial light modulator 13. Therefore, the projected light 107B projected from the projection lens 175B forms a normal image without distortion on the projection surface.
 〔自由曲面レンズ〕
 図10および図11は、第1レンズL31と第2レンズL32を組み合わせた投射レンズ175Cを含む投射光学系17Cを有する投射装置10Cの一例を示す概念図である。光源11、空間光変調器13、および投射光学系17Cは、投射部100Cを構成する。なお、図10および図11における光の軌跡は概念的なものであって、実際の光の軌跡を正確に表すものではない。ここでは、投射レンズ175Cを1つの自由曲面レンズで構成する例を示すが、投射レンズ175Cは、少なくとも一つの自由曲面レンズを含めばよく、2つ以上のレンズを組み合わせて構成されてもよい。
[Free-form surface lens]
10 and 11 are conceptual diagrams showing an example of a projection device 10C having a projection optical system 17C including a projection lens 175C in which the first lens L31 and the second lens L32 are combined. The light source 11, the spatial light modulator 13, and the projection optical system 17C constitute a projection unit 100C. It should be noted that the light trajectories in FIGS. 10 and 11 are conceptual and do not accurately represent the actual light trajectories. Here, an example in which the projection lens 175C is configured by one free-form surface lens is shown, but the projection lens 175C may include at least one free-form surface lens, and may be configured by combining two or more lenses.
 投射レンズ175Cは、シリンドリカルレンズである第1レンズL31と、自由曲面レンズである第2レンズL32とを組み合わせた構成を有する。図10および図11には、投射レンズ175Cを第1レンズL31と第2レンズL32で構成する例を示すが、投射レンズ175Cは、3つ以上のレンズが組み合わせて構成されてもよい。また、図10および図11には、平凸レンズを組み合わせる例を示すが、投射レンズ175Cは、平凹レンズを含んでもよい。投射レンズ175Cは、少なくとも一つのシリンドリカルレンズと、少なくとも一つの自由曲面レンズとを含めばよい。 The projection lens 175C has a configuration in which a first lens L31 which is a cylindrical lens and a second lens L32 which is a free curved surface lens are combined. 10 and 11 show an example in which the projection lens 175C is composed of the first lens L31 and the second lens L32, but the projection lens 175C may be configured by combining three or more lenses. Further, although FIGS. 10 and 11 show an example of combining a plano-convex lens, the projection lens 175C may include a plano-concave lens. The projection lens 175C may include at least one cylindrical lens and at least one free-form surface lens.
 第1レンズL31は、水平面内に曲率中心を有する円柱状の形状である。第1レンズL31のシリンダー軸は、水平面に対して垂直である。第1レンズL31は、曲面が入射面になり、その曲面に対向する平面が出射面になるように配置される。第1レンズL31の曲面(入射面)は、空間光変調器13に向けられる。第1レンズL31の平面(出射面)は、第2レンズL32に向けられる。入射面から第1レンズL31に入射した光は、水平面内で拡大されて、出射面から出射される。第1レンズL31の出射面から出射された光は、第2レンズL32の入射面に向けて進行する。 The first lens L31 has a columnar shape having a center of curvature in the horizontal plane. The cylinder axis of the first lens L31 is perpendicular to the horizontal plane. The first lens L31 is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface. The curved surface (incident surface) of the first lens L31 is directed to the spatial light modulator 13. The plane (exiting surface) of the first lens L31 is directed to the second lens L32. The light incident on the first lens L31 from the incident surface is magnified in the horizontal plane and emitted from the exit surface. The light emitted from the exit surface of the first lens L31 travels toward the incident surface of the second lens L32.
 第2レンズL32は、水平面に垂直な垂直面内に二つの曲率中心を有する柱状の形状である。第2レンズL32の上部の曲率は、下部の曲率と比べて小さい。第2レンズL32の上部の焦点と比べて、第2レンズL32の下部の焦点の方が、第2レンズL32に近い位置に形成される。そのため、第2レンズL32から同一の距離において、投射レンズ175Cの上部から投射された投射光107は相対的に密であり、投射レンズ175Cの下部から投射された投射光107は相対的に粗である。第2レンズL32のシリンダー軸は、水平面内にあり、第1レンズL31のシリンダー軸と直交する。第2レンズL32は、曲面に対向する平面が入射面になり、曲面が出射面になるように配置される。第2レンズL32の平面(入射面)は、第1レンズL31に向けられる。第2レンズL32の曲面(出射面)は、投射光107Cの投射方向に向けられる。入射面から第2レンズL32に入射した光は、水平面に対して垂直な面内で、出射面の曲率に応じて垂直方向に圧縮され、出射面から出射される。第2レンズL32の出射面から出射された光は、空間光変調器13の変調部130に設定されたタイリングのアスペクト比に対応する投射範囲の投射光107として投射される。 The second lens L32 has a columnar shape having two centers of curvature in a vertical plane perpendicular to the horizontal plane. The curvature of the upper part of the second lens L32 is smaller than the curvature of the lower part. The lower focal point of the second lens L32 is formed closer to the second lens L32 than the upper focal point of the second lens L32. Therefore, at the same distance from the second lens L32, the projected light 107 projected from the upper part of the projection lens 175C is relatively dense, and the projected light 107 projected from the lower part of the projection lens 175C is relatively coarse. be. The cylinder axis of the second lens L32 is in the horizontal plane and is orthogonal to the cylinder axis of the first lens L31. The second lens L32 is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface. The plane (incident surface) of the second lens L32 is directed to the first lens L31. The curved surface (exiting surface) of the second lens L32 is directed in the projection direction of the projected light 107C. The light incident on the second lens L32 from the incident surface is compressed in the direction perpendicular to the curvature of the emitting surface in the plane perpendicular to the horizontal plane, and is emitted from the emitting surface. The light emitted from the emission surface of the second lens L32 is projected as the projected light 107 in the projection range corresponding to the aspect ratio of the tyling set in the modulation unit 130 of the spatial light modulator 13.
 投射レンズ175Cから投射された投射光107は、第2レンズL32の出射面の曲率に応じて拡大される。曲率が小さい投射レンズ175Cの上部から投射された投射光107Cは下方に向けて拡大され、曲率が大きい投射レンズ175Cの下部から投射された投射光107Cは上方に向けて拡大される。投射レンズ175Cの上部から投射された投射光107Cは相対的に密であり、投射レンズ175Cの下部から投射された投射光107Cは相対的に粗である。投射レンズ175Cは、空間光変調器13の変調部130のタイリングのアスペクト比に合わせて設定される。そのため、投射レンズ175Cから投射された投射光107は、投射面において、歪みのない正常な画像を形成する。 The projected light 107 projected from the projection lens 175C is magnified according to the curvature of the emission surface of the second lens L32. The projected light 107C projected from the upper part of the projection lens 175C having a small curvature is magnified downward, and the projected light 107C projected from the lower part of the projection lens 175C having a large curvature is magnified upward. The projected light 107C projected from the upper part of the projection lens 175C is relatively dense, and the projected light 107C projected from the lower part of the projection lens 175C is relatively coarse. The projection lens 175C is set according to the tiling aspect ratio of the modulation unit 130 of the spatial light modulator 13. Therefore, the projected light 107 projected from the projection lens 175C forms a normal image without distortion on the projection surface.
 自由曲面レンズである第2レンズL32を含む投射レンズ175Cを用いれば、投射方向に応じて、投射光107の拡大率を設定できる。例えば、投射レンズ175Cを用いれば、対象物が遠方にある方向には密な投射光107が投射され、対象物が近方にある方向には疎な投射光107が投射されるように構成できる。例えば、投射レンズ175Cの第2レンズL32は、三つ以上の曲率を持つように構成してもよい。第2レンズL32の曲率は、対象物との距離や、対象物の方向に応じて形成されればよい。 If a projection lens 175C including a second lens L32, which is a free-form surface lens, is used, the magnification of the projected light 107 can be set according to the projection direction. For example, if the projection lens 175C is used, the dense projection light 107 can be projected in the direction in which the object is far away, and the sparse projection light 107 can be projected in the direction in which the object is near. .. For example, the second lens L32 of the projection lens 175C may be configured to have three or more curvatures. The curvature of the second lens L32 may be formed according to the distance to the object and the direction of the object.
 以上においては、投射範囲が横長に設定された例を示したが、本実施形態の手法は、投射範囲が縦長に設定された場合にも適用できる。投射範囲が縦長に設定された場合は、空間光変調器13の変調部130を、図4Dのようにタイリングし、投射範囲が縦長になるように投射レンズ175を配置すればよい。例えば、投射範囲が横長になるように配置された投射レンズ175を、出射軸の周りに90度回転させて配置すれば、投射範囲が縦長になる。また、投射レンズ175として、液晶レンズを用いてもよい。投射レンズ175として液晶レンズを用いれば、投射角をアクティブに変更できる。 In the above, the example in which the projection range is set to be horizontally long is shown, but the method of the present embodiment can be applied even when the projection range is set to be vertically long. When the projection range is set to be vertically long, the modulation unit 130 of the spatial light modulator 13 may be tiling as shown in FIG. 4D, and the projection lens 175 may be arranged so that the projection range is vertically long. For example, if the projection lens 175 arranged so that the projection range is horizontally long is rotated by 90 degrees around the emission axis and arranged, the projection range becomes vertically long. Further, a liquid crystal lens may be used as the projection lens 175. If a liquid crystal lens is used as the projection lens 175, the projection angle can be actively changed.
 (動作)
 次に、本実施形態の投射装置10の動作について図面を参照しながら説明する。以下においては、投射装置10の制御部15の動作について説明する。
(motion)
Next, the operation of the projection device 10 of the present embodiment will be described with reference to the drawings. Hereinafter, the operation of the control unit 15 of the projection device 10 will be described.
 図12は、制御部15の動作の一例について説明するためのフローチャートである。図12において、まず、制御部15は、投射光を投射するための位相画像を、空間光変調器13の変調部130のタイリングに合わせて、空間光変調器13の変調部130に設定する(ステップS11)。 FIG. 12 is a flowchart for explaining an example of the operation of the control unit 15. In FIG. 12, first, the control unit 15 sets the phase image for projecting the projected light in the modulation unit 130 of the spatial light modulator 13 in accordance with the tyling of the modulation unit 130 of the spatial light modulator 13. (Step S11).
 次に、制御部15は、光源11を駆動制御して、レーザ光101を出射させる(ステップS12)。光源11から出射されたレーザ光101は、空間光変調器13の変調部130で変調され、投射光学系17を介して、投射光107として投射装置10から投射される。投射装置10から投射された投射光107は、一軸方向に圧縮された投射範囲において、投射目的の画像を歪みなく正常な形状で表示させる。 Next, the control unit 15 drives and controls the light source 11 to emit the laser beam 101 (step S12). The laser light 101 emitted from the light source 11 is modulated by the modulation unit 130 of the spatial light modulator 13, and is projected from the projection device 10 as the projection light 107 via the projection optical system 17. The projected light 107 projected from the projection device 10 displays an image to be projected in a normal shape without distortion in a projection range compressed in the uniaxial direction.
 投射光107の投射を継続する場合(ステップS13でYes)、ステップS11に戻る。一方、投射光107の投射を停止する場合(ステップS13でNo)、図12のフローチャートに沿った処理は終了である。 When continuing the projection of the projected light 107 (Yes in step S13), the process returns to step S11. On the other hand, when the projection of the projected light 107 is stopped (No in step S13), the process according to the flowchart of FIG. 12 is completed.
 (投射例)
 次に、投射装置10による投射光の投射について、一例を挙げて説明する。以下においては、通信や測距の対象を対象物と呼ぶ。また、以下の投射例においては、投射方向を示す線を示すが、それらの線は概念的なものであって、実際の投射光の軌跡を正確に表すものではない。
(Projection example)
Next, the projection of the projected light by the projection device 10 will be described with an example. In the following, the object of communication or distance measurement is referred to as an object. Further, in the following projection examples, lines indicating the projection direction are shown, but these lines are conceptual and do not accurately represent the trajectory of the actual projected light.
 〔投射例1〕
 図13は、投射装置10による投射光の投射例1について説明するための概念図である。図13は、投射光を投射する投射装置10を横方向から見た図である。本投射例では、上方に配置された投射装置10から、水平方向から下方にかけて、水平方向に拡大された投射光を投射する。本投射例において、投射装置10は、水平面から下方にかけて、投射角が徐々に広がるように投射光を投射する。
[Projection example 1]
FIG. 13 is a conceptual diagram for explaining the projection example 1 of the projected light by the projection device 10. FIG. 13 is a side view of the projection device 10 that projects the projected light. In this projection example, the projected light magnified in the horizontal direction is projected from the projection device 10 arranged above from the horizontal direction to the lower side. In this projection example, the projection device 10 projects the projection light so that the projection angle gradually widens from the horizontal plane to the lower side.
 例えば、プラントや船舶間等の通信においては、近距離から遠距離まで、対象物が分散して位置する。そのため、近距離から遠距離に至るまで、幅広い領域で十分なエネルギー密度の投射光が投射されることが好ましい。投射光によって形成される画像を構成する画素は、投射装置10から離れるほど拡散されて大きくなる。そのため、遠距離の対象物に対しては、投射角を小さくして投射光のエネルギー密度を高めることが好ましい。一方、近距離の対象物に対しては、遠距離の対象物に対する場合より投射角を大きくしても、その対象物に到達する投射光のエネルギー密度の低下は小さい。そのため、遠距離と比べて、近距離の対象物が位置する下方に対しては、投射角を大きくしてもよい。投射領域全体に向けて均一に投射光を投射するよりも、本投射例のように対象物との距離に応じて投射角を変化させた方が、投射光を投射するためのエネルギーを低減できる。 For example, in communication between plants and ships, objects are dispersed and located from a short distance to a long distance. Therefore, it is preferable that the projected light having a sufficient energy density is projected in a wide range from a short distance to a long distance. The pixels constituting the image formed by the projected light are diffused and enlarged as the distance from the projection device 10 increases. Therefore, for a long-distance object, it is preferable to reduce the projection angle and increase the energy density of the projected light. On the other hand, for a short-distance object, even if the projection angle is made larger than that for a long-distance object, the decrease in the energy density of the projected light reaching the object is small. Therefore, the projection angle may be increased with respect to the lower side where the object at a short distance is located as compared with the long distance. Rather than uniformly projecting the projected light over the entire projection area, changing the projection angle according to the distance to the object as in this projection example can reduce the energy for projecting the projected light. ..
 〔投射例2〕
 図14は、投射装置10による投射光の投射例2について説明するための概念図である。図14は、投射光を投射する投射装置10を横方向から見た図である。本投射例では、下方に配置された投射装置10から、水平方向から上方にかけて、三次元的に拡大された投射光を投射する。本投射例において、投射装置10は、水平面の斜め上方の方向から上下方向にかけて、投射角が徐々に広がるように投射光を投射する。図14の破線は、投射光によって形成される画像を構成する画素の大きさが等しくなる面を概念的に示すものである。
[Projection example 2]
FIG. 14 is a conceptual diagram for explaining the projection example 2 of the projected light by the projection device 10. FIG. 14 is a side view of the projection device 10 that projects the projected light. In this projection example, the projection light arranged three-dimensionally is projected from the projection device 10 arranged below from the horizontal direction to the upper side. In this projection example, the projection device 10 projects the projection light so that the projection angle gradually widens from the direction diagonally above the horizontal plane to the vertical direction. The broken line in FIG. 14 conceptually shows a surface in which the pixels constituting the image formed by the projected light have the same size.
 例えば、ドローン等の飛翔体と地上局との通信において、地上局から飛翔体に向けて投射光を投射する。対象物である飛翔体は、近距離から遠距離まで、三次元的に分散して位置する。そのため、近距離から遠距離に至るまで、幅広い領域で十分なエネルギー密度の投射光が投射されることが好ましい。投射光によって形成される画像を構成する画素は、投射装置10から離れるほど拡散されて大きくなる。そのため、遠距離の対象物に対しては、投射角を小さくして投射光のエネルギー密度を高めることが好ましい。一方、近距離の対象物に対しては、遠距離の対象物に対する場合より投射角を大きくしても、その対象物に到達する投射光のエネルギー密度の低下は小さい。そのため、遠距離と比べて、近距離の対象物が位置する上方に対しては、投射角を大きくしてもよい。本投射領域全体に向けて均一に投射光を投射するよりも、投射例のように対象物との距離に応じて投射角を変化させた方が、投射光を投射するためのエネルギーを低減できる。 For example, in communication between a flying object such as a drone and a ground station, the projected light is projected from the ground station toward the flying object. The projectile, which is the object, is three-dimensionally dispersed and located from a short distance to a long distance. Therefore, it is preferable that the projected light having a sufficient energy density is projected in a wide range from a short distance to a long distance. The pixels constituting the image formed by the projected light are diffused and enlarged as the distance from the projection device 10 increases. Therefore, for a long-distance object, it is preferable to reduce the projection angle and increase the energy density of the projected light. On the other hand, for a short-distance object, even if the projection angle is made larger than that for a long-distance object, the decrease in the energy density of the projected light reaching the object is small. Therefore, the projection angle may be increased with respect to the upper side where the object at a short distance is located as compared with the distance at a long distance. Rather than uniformly projecting the projected light over the entire projection area, changing the projection angle according to the distance to the object as in the projection example can reduce the energy for projecting the projected light. ..
 〔投射例3〕
 図15は、投射装置10による投射光の投射例3について説明するための概念図である。図15は、投射光を投射する投射装置10が搭載されたドローンを横方向から見た図である。本投射例では、ドローンに搭載された投射装置10から、三次元的に拡大された投射光を投射する。本投射例は、ドローンと地上局との間の通信を想定した例である。本投射例において、投射装置10は、水平面の斜め下方の方向から上下方向にかけて、投射角が徐々に広がるように投射光を投射する。図15の破線は、投射光によって形成される画像を構成する画素の大きさが等しくなる面を概念的に示すものである。
[Projection example 3]
FIG. 15 is a conceptual diagram for explaining the projection example 3 of the projected light by the projection device 10. FIG. 15 is a side view of a drone equipped with a projection device 10 that projects projected light. In this projection example, a three-dimensionally magnified projection light is projected from the projection device 10 mounted on the drone. This projection example is an example assuming communication between the drone and the ground station. In this projection example, the projection device 10 projects the projection light so that the projection angle gradually widens from the diagonally downward direction of the horizontal plane to the vertical direction. The broken line in FIG. 15 conceptually shows a surface in which the pixels constituting the image formed by the projected light have the same size.
 例えば、ドローンと地上局との間の通信において、上空を飛翔するドローンから、地上の地上局に向けて投射光を投射する。ドローンと地上局の位置関係は逐一変化する。そのため、ドローンと地上局との間の通信においては、近距離から遠距離に至るまで、幅広い領域で十分なエネルギー密度の投射光が投射されることが好ましい。投射光によって形成される画像を構成する画素は、投射装置10から離れるほど拡散されて大きくなる。そのため、ドローンと地上局との距離が離れている場合は、投射角を小さくして投射光のエネルギー密度を高めることが好ましい。一方、ドローンと地上局との距離が近い場合は、距離が離れている場合より投射角を大きくしても、地上局に到達する投射光のエネルギー密度の低下は小さい。そのため、ドローンと地上局との距離が離れている場合と比べて、ドローンと地上局との距離が近い場合は、投射角を大きくしてもよい。投射領域全体に向けて均一に投射光を投射するよりも、本投射例のようにドローンと地上局と間の距離に応じて投射角を変化させた方が、投射光を投射するためのエネルギーを低減できる。 For example, in the communication between the drone and the ground station, the projected light is projected from the drone flying over the sky toward the ground station on the ground. The positional relationship between the drone and the ground station changes one by one. Therefore, in the communication between the drone and the ground station, it is preferable that the projected light having a sufficient energy density is projected in a wide range from a short distance to a long distance. The pixels constituting the image formed by the projected light are diffused and enlarged as the distance from the projection device 10 increases. Therefore, when the drone and the ground station are far apart, it is preferable to reduce the projection angle and increase the energy density of the projected light. On the other hand, when the distance between the drone and the ground station is short, the decrease in the energy density of the projected light reaching the ground station is small even if the projection angle is made larger than when the distance is large. Therefore, when the distance between the drone and the ground station is shorter than when the distance between the drone and the ground station is short, the projection angle may be increased. Rather than uniformly projecting the projected light over the entire projection area, changing the projection angle according to the distance between the drone and the ground station as in this projection example is the energy for projecting the projected light. Can be reduced.
 〔投射例4〕
 図16は、投射装置10による投射光の投射例4について説明するための概念図である。図16は、投射光を投射する投射装置10が搭載された自動車を上方向から見た図である。本投射例では、自動車に搭載された投射装置10から、自動車の前方の中央部分が強調された投射光を投射する。本投射例は、自動車の測距を想定した例である。本投射例において、投射装置10は、自動車の前方から斜め前方にかけて、投射角が徐々に広がるように投射光を投射する。図16の破線は、投射光によって形成される画像を構成する画素の大きさが等しくなる面を概念的に示すものである。
[Projection example 4]
FIG. 16 is a conceptual diagram for explaining the projection example 4 of the projected light by the projection device 10. FIG. 16 is a view of an automobile equipped with a projection device 10 for projecting projected light as viewed from above. In this projection example, the projection light in which the central portion in front of the automobile is emphasized is projected from the projection device 10 mounted on the automobile. This projection example is an example assuming distance measurement of an automobile. In this projection example, the projection device 10 projects the projection light so that the projection angle gradually widens from the front of the automobile to the diagonally front. The broken line in FIG. 16 conceptually shows a surface in which the pixels constituting the image formed by the projected light have the same size.
 例えば、自動車の測距においては、自動車に搭載された投射装置10から、前方に向けて投射光を投射する。自動車の測距においては、自動車の前方における対象物との位置関係が重要であり、前方に関してより遠くまで測距できることが好ましい。そのため、自動車の測距においては、自動車の前方の領域で十分なエネルギー密度の投射光が投射されることが好ましい。投射光によって形成される画像を構成する画素は、投射装置10から離れるほど拡散されて大きくなる。そのため、自動車の前方に関しては、投射角を小さくして投射光のエネルギー密度を高めることが好ましい。一方、自動車の斜め前方や側方に関しては、前方と比べて距離が近いので、前方と比べて投射角を大きくしても、投射光のエネルギー密度の低下は小さい。そのため、自動車の前方と比べて、斜め前方や側方は、投射角を大きくしてもよい。投射領域全体に向けて均一に投射光を投射するよりも、本投射例のように自動車との距離に応じて投射角を変化させた方が、投射光を投射するためのエネルギーを低減できる。 For example, in the distance measurement of an automobile, the projection light is projected forward from the projection device 10 mounted on the automobile. In the distance measurement of an automobile, the positional relationship with the object in front of the automobile is important, and it is preferable that the distance can be measured farther in front of the vehicle. Therefore, in the distance measurement of an automobile, it is preferable that the projected light having a sufficient energy density is projected in the region in front of the automobile. The pixels constituting the image formed by the projected light are diffused and enlarged as the distance from the projection device 10 increases. Therefore, it is preferable to reduce the projection angle and increase the energy density of the projected light in the front of the automobile. On the other hand, since the distance is closer to the diagonally front and side of the automobile than to the front, the decrease in the energy density of the projected light is small even if the projection angle is increased as compared to the front. Therefore, the projection angle may be increased diagonally forward or laterally as compared with the front of the automobile. Rather than uniformly projecting the projected light over the entire projection area, changing the projection angle according to the distance to the automobile as in this projection example can reduce the energy for projecting the projected light.
 以上のように、本実施形態の投射装置は、光源、空間光変調器、制御部、および投射光学系を備える。光源は、平行光を出射する。空間光変調器は、光源から出射された平行光の位相を変調する変調部を有する。制御部は、第1方向に長軸を有する複数の領域で変調部をタイリングする。制御部は、変調部のタイリングのアスペクト比に合わせて設定された画像に対応する位相画像を、変調部にタイリングされた複数の領域の各々に設定する。制御部は、位相画像が設定された変調部に向けて平行光が照射されるように光源を制御する。投射光学系は、変調部で変調された光を、変調部のタイリングのアスペクト比に合わせて投射する投射レンズを含む。 As described above, the projection device of the present embodiment includes a light source, a spatial light modulator, a control unit, and a projection optical system. The light source emits parallel light. The spatial light modulator has a modulator that modulates the phase of parallel light emitted from a light source. The control unit tiles the modulation unit in a plurality of regions having a major axis in the first direction. The control unit sets a phase image corresponding to the image set according to the tiling aspect ratio of the modulation unit in each of the plurality of regions tiling in the modulation unit. The control unit controls the light source so that the parallel light is emitted toward the modulation unit in which the phase image is set. The projection optical system includes a projection lens that projects the light modulated by the modulator in accordance with the tying aspect ratio of the modulator.
 本実施形態の投射装置は、空間光変調器の変調部で変調された光を、変調部のタイリングに合わせて投射する。本実施形態の投射装置によって投射された投射光は、変調部のタイリングに合わせた投射範囲で投射されるため、より遠方においても高いエネルギー密度を維持できる。また、本実施形態の投射装置から投射された投射光の投射範囲は、空間光変調部の変調部に設定されたタイリングに合わせて圧縮されるため、その投射光によって形成される画像には歪がない。そのため、本実施形態の投射装置によれば、エネルギー密度の高い投射光を、遠方の対象に対して歪みなく投射できる。 The projection device of the present embodiment projects the light modulated by the modulation unit of the spatial light modulator in accordance with the tying of the modulation unit. Since the projected light projected by the projection device of the present embodiment is projected in a projection range matched to the tiling of the modulation unit, a high energy density can be maintained even at a longer distance. Further, since the projection range of the projected light projected from the projection device of the present embodiment is compressed according to the tyling set in the modulation section of the spatial light modulation section, the image formed by the projected light is compressed. There is no distortion. Therefore, according to the projection device of the present embodiment, the projected light having a high energy density can be projected to a distant object without distortion.
 本実施形態の一態様において、投射レンズは、変調部で変調された光を、第1方向と直交する第2方向に圧縮して投射する。本態様によれば、変調部のタイリングのアスペクトに合わせて第2方向に圧縮された投射光を投射できるので、歪の無い画像を投射できる。 In one aspect of the present embodiment, the projection lens compresses and projects the light modulated by the modulation unit in the second direction orthogonal to the first direction. According to this aspect, since the projected light compressed in the second direction can be projected according to the tiling aspect of the modulation unit, a distortion-free image can be projected.
 本実施形態の一態様において、投射レンズは、変調部で変調された光を、第1方向に拡大するレンズと、第2方向に圧縮するレンズとを組み合わせた構造を有する。本態様によれば、第1方向に拡大され、第2方向に圧縮された投射光を投射できるので、より歪の無い画像を投射できる。 In one aspect of the present embodiment, the projection lens has a structure in which a lens that magnifies the light modulated by the modulation unit in the first direction and a lens that compresses the light in the second direction are combined. According to this aspect, since the projected light enlarged in the first direction and compressed in the second direction can be projected, a more distortion-free image can be projected.
 本実施形態の一態様において、投射レンズは、少なくとも一つのシリンドリカルレンズを含む複数のレンズを組み合わせた構造を有する。例えば、投射レンズは、互いのシリンダー軸が直交する関係で配置された第1シリンドリカルレンズおよび第2シリンドリカルレンズを含む。第1シリンドリカルレンズは、曲面が入射面となり、曲面に対向する平面が出射面となるように配置される。第2シリンドリカルレンズは、曲面に対向する平面が入射面となり、曲面が出射面となるように配置される。本態様によれば、エネルギー密度の高い投射光を、簡易な構成で、遠方の対象に対して歪みなく投射できる。 In one aspect of the present embodiment, the projection lens has a structure in which a plurality of lenses including at least one cylindrical lens are combined. For example, the projection lens includes a first cylindrical lens and a second cylindrical lens arranged so that their cylinder axes are orthogonal to each other. The first cylindrical lens is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface. The second cylindrical lens is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface. According to this aspect, the projected light having a high energy density can be projected to a distant object without distortion with a simple configuration.
 本実施形態の一態様において、投射レンズは、互いのシリンダー軸が直交するように配置された第1シリンドリカルレンズおよび第2シリンドリカルレンズを含む。第1シリンドリカルレンズは、曲面に対向する平面が入射面となり、曲面が出射面となるように配置される。第2シリンドリカルレンズは、曲面が入射面となり、曲面に対向する平面が出射面となるように配置される。本態様によれば、エネルギー密度の高い投射光を、簡易な構成で、遠方の対象に対して歪みなく投射できる。 In one embodiment of the present embodiment, the projection lens includes a first cylindrical lens and a second cylindrical lens arranged so that their cylinder axes are orthogonal to each other. The first cylindrical lens is arranged so that the plane facing the curved surface is the incident surface and the curved surface is the exit surface. The second cylindrical lens is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface. According to this aspect, the projected light having a high energy density can be projected to a distant object without distortion with a simple configuration.
 本実施形態の一態様において、投射レンズは、少なくとも二つの曲率を有する出射面を有し、変調部のタイリングのアスペクト比に合わせて、変調部で変調された光を投射する、少なくとも一つの自由曲面レンズを含む。例えば、投射レンズは、シリンドリカルレンズと、シリンドリカルレンズとシリンダー軸が直交するように配置された自由曲面レンズとを有する。自由曲面レンズは、シリンドリカルレンズを通過した光を、少なくとも二つの方向に向けて異なる拡大率で拡大する。本態様によれば、対象物の方向や対象物との距離に応じて、投射光の拡大率を設定できるので、様々な方向や距離にある対象に対して、投射光を歪みなく投射できる。 In one embodiment of the present embodiment, the projection lens has at least one emission surface having at least two curvatures and projects light modulated by the modulator in accordance with the tying aspect ratio of the modulator. Includes free-form curved lens. For example, the projection lens has a cylindrical lens and a free-form surface lens arranged so that the cylindrical lens and the cylinder axis are orthogonal to each other. A free-form surface lens magnifies light that has passed through a cylindrical lens in at least two directions at different magnifications. According to this aspect, since the enlargement ratio of the projected light can be set according to the direction of the object and the distance to the object, the projected light can be projected to the object in various directions and distances without distortion.
 本実施形態の一態様において、投射レンズは、変調部のタイリングのアスペクト比に合わせて、変調部で変調された光を圧縮/拡大するように制御される液晶レンズを含む。本態様によれば、空間光変調器の変調に設定されるタイリングの変化に合わせて、投射光を拡大/圧縮する方向を動的に変更できる。 In one aspect of the present embodiment, the projection lens includes a liquid crystal lens controlled to compress / magnify the light modulated by the modulation unit according to the aspect ratio of the tyling of the modulation unit. According to this aspect, the direction in which the projected light is expanded / compressed can be dynamically changed according to the change in the tyling set for the modulation of the spatial light modulator.
 例えば、本実施形態の投射装置は、空間光信号を用いる通信装置に搭載される。本実施形態の投射装置を搭載する通信装置は、他の通信装置から送信された空間光信号を受光する受光装置(図示しない)を備える。受光装置は、他の通信装置から送信された空間光信号を受光し、受光された空間光信号をデコードする。本実施形態の投射装置を搭載する通信装置による通信手法については、特に限定を加えない。 For example, the projection device of this embodiment is mounted on a communication device that uses a spatial optical signal. The communication device equipped with the projection device of the present embodiment includes a light receiving device (not shown) that receives a spatial optical signal transmitted from another communication device. The light receiving device receives a spatial optical signal transmitted from another communication device and decodes the received spatial optical signal. The communication method using the communication device equipped with the projection device of the present embodiment is not particularly limited.
 例えば、本実施形態の投射装置は、空間光を用いる測距装置に搭載される。本実施形態の投射装置を搭載する測距装置は、対象物によって反射された投射光の反射光を受光する受光装置(図示しない)を備える。受光装置は、対象物によって反射された投射光の反射光を受光し、受光された反射光を用いて、対象物との距離を測距する。本実施形態の投射装置を搭載する測距装置による距離の計測手法については、特に限定を加えない。 For example, the projection device of this embodiment is mounted on a distance measuring device that uses spatial light. The distance measuring device equipped with the projection device of the present embodiment includes a light receiving device (not shown) that receives the reflected light of the projected light reflected by the object. The light receiving device receives the reflected light of the projected light reflected by the object, and measures the distance to the object by using the received reflected light. The method of measuring the distance by the distance measuring device equipped with the projection device of the present embodiment is not particularly limited.
 (第2の実施形態)
 次に、第2の実施形態に係る投射装置について図面を参照しながら説明する。本実施形態の投射装置は、第1の実施形態の投射装置を簡略化したものである。
(Second embodiment)
Next, the projection device according to the second embodiment will be described with reference to the drawings. The projection device of the present embodiment is a simplification of the projection device of the first embodiment.
 (構成)
 図17は、本実施形態の投射装置20の構成の一例を示す概念図である。投射装置20は、光源21、空間光変調器23、制御部25、および投射光学系27を備える。
(Constitution)
FIG. 17 is a conceptual diagram showing an example of the configuration of the projection device 20 of the present embodiment. The projection device 20 includes a light source 21, a spatial light modulator 23, a control unit 25, and a projection optical system 27.
 光源21は、平行光を出射する。空間光変調器23は、光源21から出射された平行光の位相を変調する変調部230を有する。制御部25は、第1方向に長軸を有する複数の領域で変調部230をタイリングする。制御部25は、変調部230のタイリングのアスペクト比に合わせて設定された画像に対応する位相画像を、変調部230にタイリングされた複数の領域の各々に設定する。制御部25は、位相画像が設定された変調部230に向けて平行光が照射されるように光源21を制御する。投射光学系27は、変調部230で変調された光を、変調部230のタイリングのアスペクト比に合わせて投射する投射レンズ275を含む。 The light source 21 emits parallel light. The spatial light modulator 23 has a modulator 230 that modulates the phase of the parallel light emitted from the light source 21. The control unit 25 tiles the modulation unit 230 in a plurality of regions having a major axis in the first direction. The control unit 25 sets a phase image corresponding to the image set according to the tiling aspect ratio of the modulation unit 230 in each of the plurality of regions tied to the modulation unit 230. The control unit 25 controls the light source 21 so that parallel light is emitted toward the modulation unit 230 in which the phase image is set. The projection optical system 27 includes a projection lens 275 that projects the light modulated by the modulation unit 230 according to the aspect ratio of the tying of the modulation unit 230.
 以上のように、本実施形態の投射装置は、空間光変調器の変調部で変調された光を、変調部のタイリングに合わせて投射する。本実施形態の投射装置によって投射された投射光は、変調部のタイリングに合わせた投射範囲で投射されるため、より遠方においても高いエネルギー密度を維持できる。また、本実施形態の投射装置から投射された投射光の投射範囲は、空間光変調部の変調部に設定されたタイリングに合わせて圧縮されるため、その投射光によって形成される画像には歪がない。そのため、本実施形態の投射装置によれば、エネルギー密度の高い投射光を、遠方の対象に対して歪みなく投射できる。 As described above, the projection device of the present embodiment projects the light modulated by the modulation unit of the spatial light modulator in accordance with the tying of the modulation unit. Since the projected light projected by the projection device of the present embodiment is projected in a projection range matched to the tiling of the modulation unit, a high energy density can be maintained even at a longer distance. Further, since the projection range of the projected light projected from the projection device of the present embodiment is compressed according to the tyling set in the modulation section of the spatial light modulation section, the image formed by the projected light is compressed. There is no distortion. Therefore, according to the projection device of the present embodiment, the projected light having a high energy density can be projected to a distant object without distortion.
 (ハードウェア)
 ここで、本開示の各実施形態に係る制御部の処理を実行するハードウェア構成について、図18の情報処理装置90を一例として挙げて説明する。なお、図18の情報処理装置90は、各実施形態の制御部の処理を実行するための構成例であって、本開示の範囲を限定するものではない。
(hardware)
Here, the hardware configuration for executing the processing of the control unit according to each embodiment of the present disclosure will be described by taking the information processing apparatus 90 of FIG. 18 as an example. The information processing apparatus 90 of FIG. 18 is a configuration example for executing the processing of the control unit of each embodiment, and does not limit the scope of the present disclosure.
 図18のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96を備える。図18においては、インターフェースをI/F(Interface)と略して表記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96は、バス98を介して互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。 As shown in FIG. 18, the information processing device 90 includes a processor 91, a main storage device 92, an auxiliary storage device 93, an input / output interface 95, and a communication interface 96. In FIG. 18, the interface is abbreviated as I / F (Interface). The processor 91, the main storage device 92, the auxiliary storage device 93, the input / output interface 95, and the communication interface 96 are connected to each other via the bus 98 so as to be capable of data communication. Further, the processor 91, the main storage device 92, the auxiliary storage device 93, and the input / output interface 95 are connected to a network such as the Internet or an intranet via the communication interface 96.
 プロセッサ91は、補助記憶装置93等に格納されたプログラムを主記憶装置92に展開し、展開されたプログラムを実行する。本実施形態においては、情報処理装置90にインストールされたソフトウェアプログラムを用いる構成とすればよい。プロセッサ91は、本実施形態に係る制御部による処理を実行する。 The processor 91 expands the program stored in the auxiliary storage device 93 or the like to the main storage device 92, and executes the expanded program. In the present embodiment, the software program installed in the information processing apparatus 90 may be used. The processor 91 executes processing by the control unit according to the present embodiment.
 主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリとすればよい。また、MRAM(Magnetoresistive Random Access Memory)などの不揮発性メモリを主記憶装置92として構成・追加してもよい。 The main storage device 92 has an area in which the program is expanded. The main storage device 92 may be a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, a non-volatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured / added as the main storage device 92.
 補助記憶装置93は、種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって構成される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。 The auxiliary storage device 93 stores various data. The auxiliary storage device 93 is composed of a local disk such as a hard disk or a flash memory. It is also possible to store various data in the main storage device 92 and omit the auxiliary storage device 93.
 入出力インターフェース95は、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。入出力インターフェース95および通信インターフェース96は、外部機器と接続するインターフェースとして共通化してもよい。 The input / output interface 95 is an interface for connecting the information processing device 90 and peripheral devices. The communication interface 96 is an interface for connecting to an external system or device through a network such as the Internet or an intranet based on a standard or a specification. The input / output interface 95 and the communication interface 96 may be shared as an interface for connecting to an external device.
 情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器を接続するように構成してもよい。それらの入力機器は、情報や設定の入力に使用される。なお、タッチパネルを入力機器として用いる場合は、表示機器の表示画面が入力機器のインターフェースを兼ねる構成とすればよい。プロセッサ91と入力機器との間のデータ通信は、入出力インターフェース95に仲介させればよい。 The information processing device 90 may be configured to connect an input device such as a keyboard, a mouse, or a touch panel, if necessary. These input devices are used to input information and settings. When the touch panel is used as an input device, the display screen of the display device may also serve as the interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input / output interface 95.
 また、情報処理装置90には、情報を表示するための表示機器を備え付けてもよい。表示機器を備え付ける場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられていることが好ましい。表示機器は、入出力インターフェース95を介して情報処理装置90に接続すればよい。 Further, the information processing apparatus 90 may be equipped with a display device for displaying information. When a display device is provided, it is preferable that the information processing device 90 is provided with a display control device (not shown) for controlling the display of the display device. The display device may be connected to the information processing device 90 via the input / output interface 95.
 また、情報処理装置90には、ドライブ装置を備え付けてもよい。ドライブ装置は、プロセッサ91と記録媒体(プログラム記録媒体)との間で、記録媒体からのデータやプログラムの読み込み、情報処理装置90の処理結果の記録媒体への書き込みなどを仲介する。ドライブ装置は、入出力インターフェース95を介して情報処理装置90に接続すればよい。 Further, the information processing device 90 may be equipped with a drive device. The drive device mediates between the processor 91 and the recording medium (program recording medium), such as reading data and programs from the recording medium and writing the processing result of the information processing device 90 to the recording medium. The drive device may be connected to the information processing device 90 via the input / output interface 95.
 以上が、本発明の各実施形態に係る制御部を可能とするためのハードウェア構成の一例である。なお、図18のハードウェア構成は、各実施形態に係る制御部の演算処理を実行するためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。また、各実施形態に係る制御部に関する処理をコンピュータに実行させるプログラムも本発明の範囲に含まれる。さらに、各実施形態に係るプログラムを記録したプログラム記録媒体も本発明の範囲に含まれる。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。また、記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体や、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現してもよい。プロセッサが実行するプログラムが記録媒体に記録されている場合、その記録媒体はプログラム記録媒体に相当する。 The above is an example of the hardware configuration for enabling the control unit according to each embodiment of the present invention. The hardware configuration of FIG. 18 is an example of a hardware configuration for executing arithmetic processing of the control unit according to each embodiment, and does not limit the scope of the present invention. Further, a program for causing a computer to execute a process related to a control unit according to each embodiment is also included in the scope of the present invention. Further, a program recording medium on which a program according to each embodiment is recorded is also included in the scope of the present invention. The recording medium can be realized by, for example, an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc). Further, the recording medium may be realized by a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card, a magnetic recording medium such as a flexible disk, or another recording medium. When the program executed by the processor is recorded on the recording medium, the recording medium corresponds to the program recording medium.
 各実施形態の制御部の構成要素は、任意に組み合わせることができる。また、各実施形態の制御部の構成要素は、ソフトウェアによって実現してもよいし、回路によって実現してもよい。 The components of the control unit of each embodiment can be arbitrarily combined. Further, the components of the control unit of each embodiment may be realized by software or by a circuit.
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various modifications that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the present invention.
 この出願は、2020年12月21日に出願された日本出願特願2020-210947を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2020-210497 filed on December 21, 2020, and incorporates all of its disclosures herein.
 10、20  投射装置
 11、21  光源
 13、23  空間光変調器
 15、25  制御部
 17、27  投射光学系
 100、200  投射部
 130、230  変調部
 171  フーリエ変換レンズ
 173  アパーチャ
 175、275  投射レンズ
10, 20 Projection device 11, 21 Light source 13, 23 Spatial light modulator 15, 25 Control unit 17, 27 Projection optical system 100, 200 Projection unit 130, 230 Modulation unit 171 Fourier transform lens 173 Aperture 175, 275 Projection lens

Claims (10)

  1.  平行光を出射する光源と、
     前記光源から出射された平行光の位相を変調する変調部を有する空間光変調器と、
     第1方向に長軸を有する複数の領域で前記変調部をタイリングし、前記変調部のタイリングのアスペクト比に合わせて設定された画像に対応する位相画像を、前記変調部にタイリングされた前記複数の領域の各々に設定し、前記位相画像が設定された前記変調部に向けて前記平行光が照射されるように前記光源を制御する制御部と、
     前記変調部で変調された光を、前記変調部のタイリングのアスペクト比に合わせて投射する投射レンズを含む投射光学系と、を備える投射装置。
    A light source that emits parallel light and
    A spatial light modulator having a modulator that modulates the phase of parallel light emitted from the light source, and
    The modulation unit is tied in a plurality of regions having a major axis in the first direction, and a phase image corresponding to an image set according to the tying aspect ratio of the modulation unit is tied to the modulation unit. A control unit that is set in each of the plurality of regions and controls the light source so that the parallel light is emitted toward the modulation unit in which the phase image is set.
    A projection device including a projection optical system including a projection lens that projects light modulated by the modulation unit according to the aspect ratio of the tying of the modulation unit.
  2.  前記投射レンズは、
     前記変調部で変調された光を、前記第1方向と直交する第2方向に圧縮して投射する請求項1に記載の投射装置。
    The projection lens is
    The projection device according to claim 1, wherein the light modulated by the modulation unit is compressed and projected in a second direction orthogonal to the first direction.
  3.  前記投射レンズは、
     前記変調部で変調された光を、前記第1方向に拡大するレンズと、前記第2方向に圧縮するレンズとを組み合わせた構造を有する請求項2に記載の投射装置。
    The projection lens is
    The projection device according to claim 2, further comprising a structure in which a lens that expands the light modulated by the modulation unit in the first direction and a lens that compresses the light in the second direction are combined.
  4.  前記投射レンズは、
     少なくとも一つのシリンドリカルレンズを含む複数のレンズを組み合わせた構造を有する請求項2または3に記載の投射装置。
    The projection lens is
    The projection device according to claim 2 or 3, which has a structure in which a plurality of lenses including at least one cylindrical lens are combined.
  5.  前記投射レンズは、
     互いのシリンダー軸が直交するように配置された第1シリンドリカルレンズおよび第2シリンドリカルレンズを含み、
     前記第1シリンドリカルレンズは、曲面が入射面となり、曲面に対向する平面が出射面となるように配置され、
     前記第2シリンドリカルレンズは、曲面に対向する平面が入射面となり、曲面が出射面となるように配置される請求項4に記載の投射装置。
    The projection lens is
    It includes a first cylindrical lens and a second cylindrical lens arranged so that their cylinder axes are orthogonal to each other.
    The first cylindrical lens is arranged so that the curved surface is the incident surface and the plane facing the curved surface is the exit surface.
    The projection device according to claim 4, wherein the second cylindrical lens is arranged so that a plane facing a curved surface serves as an entrance surface and the curved surface serves as an emission surface.
  6.  前記投射レンズは、
     互いのシリンダー軸が直交するように配置された第1シリンドリカルレンズおよび第2シリンドリカルレンズを含み、
     前記第1シリンドリカルレンズは、曲面に対向する平面が入射面となり、曲面が出射面となるように配置され、
     前記第2シリンドリカルレンズは、曲面が入射面となり、曲面に対向する平面が出射面となるように配置される請求項4に記載の投射装置。
    The projection lens is
    It includes a first cylindrical lens and a second cylindrical lens arranged so that their cylinder axes are orthogonal to each other.
    The first cylindrical lens is arranged so that the plane facing the curved surface is the entrance surface and the curved surface is the exit surface.
    The projection device according to claim 4, wherein the second cylindrical lens is arranged so that a curved surface serves as an entrance surface and a plane facing the curved surface serves as an emission surface.
  7.  前記投射レンズは、
     少なくとも二つの曲率を有する出射面を有し、前記変調部のタイリングのアスペクト比に合わせて、前記変調部で変調された光を投射する、少なくとも一つの自由曲面レンズを含む請求項4に記載の投射装置。
    The projection lens is
    The fourth aspect of claim 4 includes at least one free-form surface lens having an emission surface having at least two curvatures and projecting light modulated by the modulation unit according to the tyling aspect ratio of the modulation unit. Projection device.
  8.  前記投射レンズは、
     前記シリンドリカルレンズと、
     前記シリンドリカルレンズとシリンダー軸が直交するように配置された前記自由曲面レンズとを有し、
     前記自由曲面レンズは、
     前記シリンドリカルレンズを通過した光を、少なくとも二つの方向に向けて異なる拡大率で拡大する請求項7に記載の投射装置。
    The projection lens is
    With the cylindrical lens
    It has the cylindrical lens and the free-form surface lens arranged so that the cylinder axes are orthogonal to each other.
    The free-form surface lens is
    The projection device according to claim 7, wherein the light that has passed through the cylindrical lens is magnified in at least two directions at different magnifications.
  9.  前記投射レンズは、
     前記変調部のタイリングのアスペクト比に合わせて、前記変調部で変調された光を圧縮/拡大するように制御される液晶レンズを含む請求項1乃至3のいずれか一項に記載の投射装置。
    The projection lens is
    The projection device according to any one of claims 1 to 3, further comprising a liquid crystal lens controlled to compress / expand the light modulated by the modulation unit according to the tiling aspect ratio of the modulation unit. ..
  10.  第1方向に長軸を有する複数の領域で、空間光変調器の変調部をタイリングし、
     前記変調部のタイリングのアスペクト比に合わせて設定された画像に対応する位相画像を、前記変調部にタイリングされた前記複数の領域の各々に設定し、
     前記位相画像が設定された前記変調部に向けて平行光が照射されるように光源を制御し、
     前記変調部のタイリングのアスペクト比に合わせて投射する投射レンズを含む投射光学系を用いて、前記変調部で変調された光を投射する投射方法。
    Tiling the modulator of the spatial light modulator in multiple regions with a major axis in the first direction
    A phase image corresponding to the image set according to the aspect ratio of the tiling of the modulation unit is set in each of the plurality of regions tiling in the modulation unit.
    The light source is controlled so that the parallel light is emitted toward the modulation unit in which the phase image is set.
    A projection method for projecting light modulated by the modulation unit by using a projection optical system including a projection lens that projects the light according to the aspect ratio of the tying of the modulation unit.
PCT/JP2021/039347 2020-12-21 2021-10-25 Projection device and projection method WO2022137777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020210947 2020-12-21
JP2020-210947 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022137777A1 true WO2022137777A1 (en) 2022-06-30

Family

ID=82158983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039347 WO2022137777A1 (en) 2020-12-21 2021-10-25 Projection device and projection method

Country Status (1)

Country Link
WO (1) WO2022137777A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003636A (en) * 2004-06-17 2006-01-05 Canon Inc Illumination optical system and projection display device using same
JP2015184581A (en) * 2014-03-25 2015-10-22 大日本印刷株式会社 Illumination device, projection device and irradiation device
US20190293800A1 (en) * 2018-03-26 2019-09-26 Rosemount Aerospace Inc. Array of independently-controllable laser diode bars for scanning a linear illumination pattern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003636A (en) * 2004-06-17 2006-01-05 Canon Inc Illumination optical system and projection display device using same
JP2015184581A (en) * 2014-03-25 2015-10-22 大日本印刷株式会社 Illumination device, projection device and irradiation device
US20190293800A1 (en) * 2018-03-26 2019-09-26 Rosemount Aerospace Inc. Array of independently-controllable laser diode bars for scanning a linear illumination pattern

Similar Documents

Publication Publication Date Title
JP4786291B2 (en) Optical tweezers
CN107850867A (en) Dynamic holographic depth of focus printing equipment
US10620511B2 (en) Projection device, projection system, and interface apparatus
TW201506521A (en) Projection-type footage display device
US11487117B2 (en) Display apparatus having wide viewing window
US11392014B2 (en) Projection device, interface device, and projection method
US9229430B2 (en) Device for recording and reproducing holographic 3D image, and method for recording and reproducing holographic 3D image
JP2019532676A5 (en)
WO2018101097A1 (en) Projection device, projection method, and program recording medium
JP2023513459A (en) Optical imaging system, device and around view display device for floating display
KR102257712B1 (en) Holographic light detection and survey
WO2022137777A1 (en) Projection device and projection method
JP6949927B2 (en) Light transmitter, communication system, and light transmission method
US20240171711A1 (en) Projection device, control method, and recording medium
WO2023026520A1 (en) Projection device, projection control method, and recording medium
RU2508567C1 (en) Optical device with fourier transform optical elements for single-step recording of multiple microholograms using prism systems
JP2744494B2 (en) Speckle utilization measuring device
JP2013195802A (en) Holographic stereogram recording device and method
WO2021181933A1 (en) Management system
US20090021813A1 (en) System and method for electronically displaying holographic images
WO2023047448A1 (en) Communication control device, communication device, communication control method, and recording medium
JP2013195801A (en) Holographic stereogram recording device and method
KR102562527B1 (en) Floating hologram system using holographic optical element
JP7043047B2 (en) Stereoscopic image display device
CN113393407B (en) Method and device for acquiring microscopic image information of sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP