WO2022137741A1 - Fuel supply device - Google Patents

Fuel supply device Download PDF

Info

Publication number
WO2022137741A1
WO2022137741A1 PCT/JP2021/037792 JP2021037792W WO2022137741A1 WO 2022137741 A1 WO2022137741 A1 WO 2022137741A1 JP 2021037792 W JP2021037792 W JP 2021037792W WO 2022137741 A1 WO2022137741 A1 WO 2022137741A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
flow rate
motor
fuel supply
Prior art date
Application number
PCT/JP2021/037792
Other languages
French (fr)
Japanese (ja)
Inventor
義彦 本田
善和 宮部
良彦 川崎
文宏 永滝
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Publication of WO2022137741A1 publication Critical patent/WO2022137741A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel

Definitions

  • the techniques disclosed herein relate to fuel supply equipment.
  • Patent Document 1 discloses a fuel supply device.
  • the fuel supply device of Patent Document 1 includes a fuel pump that discharges fuel, a fuel supply passage that supplies fuel discharged from the fuel pump to the fuel injection device, and an discharge passage that discharges a part of the fuel flowing through the fuel supply passage. It is a pressure regulator that opens and closes the discharge passage, and when the pressure of the fuel in the fuel supply passage exceeds a predetermined allowable pressure, it is opened and a part of the fuel in the fuel supply passage is discharged from the discharge passage. It is equipped with a pressure regulator.
  • the fuel supply device may be equipped with two types of pressure regulators.
  • the fuel supply device has a first pressure regulator that opens when the fuel pressure in the fuel supply passage exceeds the low pressure first allowable pressure, and a second allowable pressure in which the fuel pressure in the fuel supply passage becomes high. It may be equipped with a second pressure adjusting device that opens when the pressure exceeds the pressure.
  • the pressure of the fuel in the fuel supply passage is not known, so that the discharge flow rate of the fuel pump may be unnecessarily increased. As a result, the power consumption of the fuel pump may be unnecessarily large.
  • the present specification provides a technique capable of controlling the fuel pressure with a simple configuration while suppressing power consumption.
  • the fuel supply device disclosed in the present specification is a fuel that supplies fuel to a fuel pump that discharges fuel by rotation of a motor and a high-pressure pump that discharges fuel at a higher pressure than the fuel pump.
  • the supply passage, the first discharge passage for discharging a part of the fuel flowing through the fuel supply passage, the second discharge passage for discharging a part of the fuel flowing through the fuel supply passage, and the first discharge passage are opened and closed.
  • the first pressure adjusting device which is an open state when the pressure of the fuel in the fuel supply passage becomes equal to or higher than a predetermined first allowable pressure, and discharges the fuel from the first discharging passage.
  • a flow limiting unit that raises the pressure of the fuel in the supply passage and a second pressure adjusting device that opens and closes the second discharge passage, and the pressure of the fuel in the fuel supply passage is higher than the first allowable pressure. It includes the second pressure adjusting device that is opened when the pressure exceeds a predetermined second allowable pressure and discharges fuel from the second discharge passage, and a control unit that controls the motor of the fuel pump.
  • the control unit has relational information indicating the relationship between the rotation speed or voltage and the current of the motor corresponding to the discharge flow rate of the fuel discharged from the fuel pump, and the characteristics of the relational information corresponding to the allowable discharge flow rate.
  • the first change point in which the motor changes is stored, and the rotation speed, voltage, or current of the motor can be controlled based on the stored relationship information and the first change point.
  • the control unit controls the rotation speed, voltage, or current of the motor based on the relational information in the region below the first change point.
  • the motor of the fuel pump can be controlled according to the required discharge flow rate.
  • the discharge flow rate of the fuel is possible to prevent the discharge flow rate of the fuel from increasing unnecessarily, and it is possible to suppress the power consumption of the fuel pump from increasing unnecessarily.
  • the fuel pressure is possible to become unnecessarily high.
  • the rotation speed, voltage or current of the motor is controlled so that the discharge flow rate is small. This makes it possible to reduce the power consumption of the fuel pump and supply low pressure fuel to the high pressure pump.
  • the fuel pressure can be adjusted to an appropriate pressure without using a pressure sensor.
  • the motor is controlled based on the relational information in the region below the first change point. This makes it possible to control the motor in a region where the pressure of the fuel discharged from the fuel pump is low. As a result, the power consumption of the fuel pump can be suppressed. Even if the pressure of the fuel discharged from the fuel pump is low, the high pressure fuel can be discharged from the high pressure pump. From the above, according to the above fuel supply device, it is possible to control the fuel pressure with a simple configuration while suppressing power consumption.
  • the control unit has a second change in which the characteristics of the related information change according to the discharge flow rate of the fuel discharged from the fuel pump when the pressure of the fuel in the fuel supply passage becomes the second allowable pressure. You may remember the points.
  • the control unit may control the rotation speed, voltage, or current of the motor based on the relational information in the region of the second change point or higher.
  • the temperature of the fuel in the fuel supply passage may rise due to the heat of the high-pressure pump.
  • the fuel tends to evaporate. Therefore, when the fuel temperature is equal to or higher than a predetermined reference temperature, the motor is controlled based on the relational information in the region of the second change point or higher.
  • the motor can be controlled in a region where the pressure of the fuel discharged from the fuel pump is high. As a result, the pressure of the fuel in the fuel supply passage can be increased, and the fuel can be made difficult to evaporate.
  • the control unit may control the rotation speed, voltage, or current of the motor based on the relational information in the region above the predetermined reference point calculated from the first change point.
  • the reference point is a second change in which the characteristics of the related information change according to the discharge flow rate of the fuel discharged from the fuel pump when the pressure of the fuel in the fuel supply passage becomes the second allowable pressure. It may be located in the area above the point.
  • the motor can be controlled in the region where the pressure of the fuel discharged from the fuel pump is high.
  • the pressure of the fuel in the fuel supply passage can be increased, and the fuel can be made difficult to evaporate.
  • control unit corrects the stored relationship information based on the relationship between the motor rotation speed or voltage and current corresponding to the discharge flow rate when the fuel pump actually discharges fuel. good.
  • the actual fuel properties and the state of the fuel pump when the fuel pump operates can be reflected in the related information.
  • the discharge flow rate of the fuel pump can be controlled with high accuracy.
  • the control unit corrects the stored first change point based on the relationship between the rotation speed or the voltage and the current of the motor corresponding to the discharge flow rate when the fuel pump actually discharges the fuel. You may.
  • the actual fuel properties and the state of the fuel pump when the fuel pump operates can be reflected in the first change point.
  • the discharge flow rate of the fuel pump can be controlled with high accuracy.
  • the control unit includes a first graph showing the relationship between the rotation speed or voltage and current of the motor corresponding to a discharge flow rate lower than the allowable discharge flow rate when the fuel pump actually discharges fuel, and the allowable discharge rate.
  • a first graph showing the relationship between the rotation speed or voltage and current of the motor corresponding to a discharge flow rate lower than the allowable discharge flow rate when the fuel pump actually discharges fuel, and the allowable discharge rate.
  • the correction of the first change point can be performed with high accuracy.
  • the control unit may calculate the graph change point based on the intersection of the extrapolated line of the first graph and the extrapolated line of the second graph.
  • the fuel supply device may be mounted on a vehicle equipped with an engine.
  • the control unit may correct the stored related information at least once during the operation of the engine.
  • the actual fuel properties during engine operation and the state of the fuel pump can be reflected in the related information.
  • A A graph showing the relationship between the discharge flow rate of the fuel pump and the pressure of the fuel in the fuel supply passage, and (b) a graph showing the relationship between the discharge flow rate of the fuel pump and the current of the motor. It is a graph which shows the relationship between the discharge flow rate of a fuel pump, and the current of a motor.
  • It is a schematic diagram of the fuel supply device which concerns on the modification. It is a graph which shows the relationship between the discharge flow rate of a fuel pump and the current of a motor which concerns on a modification.
  • FIG. 1 is a schematic diagram of the fuel supply device 1 according to the embodiment.
  • the fuel supply device 1 includes a fuel pump 10, a fuel supply passage 30, a high-pressure pump 44, and a fuel injection device 42. Further, the fuel supply device 1 includes an FPC (Fuel Pump Controler) 52 and an ECU (Engine Control Unit) 50.
  • FPC Full Pump Controler
  • ECU Engine Control Unit
  • the fuel supply device 1 is mounted on a vehicle equipped with an engine 40.
  • the fuel supply device 1 is mounted on, for example, a direct-injection gasoline vehicle that directly injects high-pressure fuel into the cylinder of the engine 40.
  • the fuel supply device 1 is a device for supplying fuel to the engine 40 of the vehicle.
  • the fuel supply device 1 includes a temperature sensor 46 arranged in the engine room of the vehicle.
  • the temperature sensor 46 is, for example, a water temperature sensor, an oil temperature sensor, an intake air temperature sensor, or the like.
  • the water temperature sensor can detect the temperature of the cooling water of the engine 40.
  • the oil temperature sensor 46 can detect the temperature of the oil in the engine 40.
  • the intake air temperature sensor can detect the temperature of the air sucked into the engine 40. Information on the detected temperature of the temperature sensor 46 is transmitted to the ECU 50.
  • the fuel pump 10 is arranged in the fuel tank 12 and includes a suction port 102 and a discharge port 104.
  • the fuel tank 12 stores liquid fuel (for example, gasoline) for supplying the engine 40.
  • the fuel pump 10 sucks the fuel in the fuel tank 12 from the suction port 102 and discharges it from the discharge port 104.
  • a fuel supply passage 30 is connected to the discharge port 104 of the fuel pump 10.
  • the fuel pump 10 discharges the fuel in the fuel tank 12 to the fuel supply passage 30.
  • the fuel pump 10 includes, for example, a motor 16 and an impeller (not shown), and the impeller rotates due to the rotation of the motor 16 to suck in and discharge the fuel in the fuel tank 12.
  • the motor 16 is, for example, a sensorless brushless motor or a brushless motor with a sensor, and is a three-phase motor.
  • the motor 16 includes a plurality of (for example, three) coils (not shown), and rotates when a current flows through the plurality of coils in order.
  • the current of the motor 16 (current flowing through a plurality of coils) is detected by a current sensor (not shown).
  • the current sensor includes a resistance for detection (not shown), and detects the current of the motor 16 (current flowing through a plurality of coils) based on the resistance value of the resistance.
  • the larger the current of the motor 16 the higher the rotation speed of the motor 16 (that is, the higher the rotation speed), and the higher the flow rate of the fuel discharged from the fuel pump 10.
  • the smaller the current of the motor 16, the smaller the rotation speed of the motor 16 (that is, the slower the rotation speed), and the smaller the discharge flow rate of the fuel pump 10.
  • the motor 16 is a sensorless motor, the rotation speed of the motor 16 is detected, for example, based on the induced voltage at the time of rotation of the motor 16.
  • the motor 16 of the fuel pump 10 is driven by the FPC 52.
  • the FPC 52 includes a drive circuit 56 for rotationally driving the motor 16.
  • the drive circuit 56 of the FPC 52 controls the motor 16 based on the input signal input from the ECU 50.
  • the drive circuit 56 includes a power supply 64 and a plurality of (for example, six) switches 62. By switching the on and off of the plurality of switches 62 of the drive circuit 56 in order, a current flows through the plurality of coils of the motor 16 in order. This causes the motor 16 to rotate. Since the principle of rotation of the motor 16 is well known, detailed description thereof will be omitted.
  • the current of the motor 16 of the fuel pump 10 depends on the duty ratio of the input signal input from the ECU 50 to the FPC 52.
  • FIG. 2 is a diagram showing an example of an input signal input to the FPC 52.
  • the input signal shown in FIG. 2 is a signal for switching on and off of any one switch 62 of the FPC 52.
  • the larger the duty ratio of the input signal input to the FPC 52 the larger the ratio of the on-time of the switch 62, and the smaller the duty ratio, the smaller the ratio of the on-time of the switch 62.
  • the current of the motor 16 increases as the duty ratio of the input signal input to the FPC 52 increases, and decreases as the duty ratio of the input signal decreases.
  • the rotation speed of the motor 16 also depends on the duty ratio of the input signal input from the ECU 50 to the FPC 52.
  • the rotation speed of the motor 16 increases as the duty ratio of the input signal input to the FPC 52 increases, and decreases as the duty ratio of the input signal decreases.
  • the discharge flow rate of the fuel pump 10 corresponds to the rotation speed of the motor 16.
  • the upstream end of the fuel supply passage 30 is connected to the discharge port 104 of the fuel pump 10.
  • the fuel discharged from the fuel pump 10 flows through the fuel supply passage 30.
  • the downstream end of the fuel supply passage 30 is connected to the fuel injection device 42 attached to the engine 40.
  • the fuel supply passage 30 supplies the fuel discharged from the fuel pump 10 to the fuel injection device 42. Fuel is injected from the fuel injection device 42 into the engine 40.
  • the fuel supply passage 30 is provided with a check valve 24 and a high pressure pump 44.
  • the check valve 24 allows fuel to flow from the upstream side (fuel pump 10 side) to the downstream side (engine 40 side) of the check valve 24, and the fuel flows from the downstream side to the upstream side of the check valve 24. Is prohibited from flowing.
  • the high-pressure pump 44 boosts and discharges the fuel supplied through the fuel supply passage 30.
  • the high-pressure pump 44 discharges fuel at a higher pressure than the fuel pump 10. When the high-pressure pump 44 is operating, high-pressure fuel is injected from the fuel injection device 42 into the engine 40.
  • the first discharge passage 32 and the second discharge passage 34 are connected to the fuel supply passage 30. As the pressure of the fuel in the fuel supply passage 30 increases, the pressure of the fuel in the first discharge passage 32 and the pressure of the fuel in the second discharge passage 34 also increase. When the pressure of the fuel in the fuel supply passage 30 becomes low, the pressure of the fuel in the first discharge passage 32 and the pressure of the fuel in the second discharge passage 34 also become low.
  • the upstream end of the first discharge passage 32 is connected to the fuel supply passage 30 on the upstream side (fuel pump 10 side) of the check valve 24. A part of the fuel flowing through the fuel supply passage 30 on the upstream side of the check valve 24 flows into the first discharge passage 32.
  • the downstream end of the first discharge passage 32 is arranged in the fuel tank 12. The fuel that has flowed through the first discharge passage 32 is discharged into the fuel tank 12 from the downstream end of the first discharge passage 32.
  • the first discharge passage 32 is a passage for discharging a part of the fuel flowing through the fuel supply passage 30 on the upstream side of the check valve 24 into the fuel tank 12.
  • the first pressure adjusting device 20 is provided in the first discharge passage 32.
  • the first pressure adjusting device 20 is composed of, for example, an on-off valve that opens and closes the first discharge passage 32.
  • the first pressure adjusting device 20 is opened when the pressure of the fuel in the first discharging passage 32 on the upstream side (fuel supply passage 30 side) of the first pressure adjusting device 20 becomes equal to or higher than the predetermined first allowable pressure.
  • the predetermined first allowable pressure can be appropriately set.
  • the first allowable pressure is a pressure lower than the second allowable pressure described later.
  • the first pressure adjusting device 20 When the first pressure adjusting device 20 is opened, a part of the fuel in the fuel supply passage 30 on the upstream side of the check valve 24 is discharged into the fuel tank 12 through the first discharge passage 32. This prevents the pressure of the fuel in the fuel supply passage 30 from becoming excessively high. When the first pressure adjusting device 20 is closed, fuel is not discharged through the first discharge passage 32.
  • a throttle 26 (an example of a flow limiting unit) is provided in the first discharge passage 32 on the downstream side (fuel tank 12 side) of the first pressure adjusting device 20.
  • the throttle 26 limits the flow of fuel through the first discharge passage 32.
  • the throttle 26 limits the flow of fuel flowing from the upstream side (fuel supply passage 30 side) to the downstream side (fuel tank 12 side) of the throttle 26.
  • the pressure of the fuel in the first discharge passage 32 on the upstream side of the throttle 26 is higher than the pressure of the fuel in the first discharge passage 32 (or in the fuel tank 12) on the downstream side of the throttle 26.
  • the throttle 26 increases the pressure of the fuel in the fuel supply passage 30 by limiting the flow of the fuel through the first discharge passage 32.
  • the rate of increase in fuel pressure can be appropriately set based on the opening diameter of the throttle 26.
  • the upstream end of the second discharge passage 34 is connected to the fuel supply passage 30 on the downstream side (engine 40 side) of the check valve 24. A part of the fuel flowing through the fuel supply passage 30 on the downstream side of the check valve 24 flows into the second discharge passage 34.
  • the downstream end of the second discharge passage 34 is arranged in the fuel tank 12. The fuel that has flowed through the second discharge passage 34 is discharged into the fuel tank 12 from the downstream end of the second discharge passage 34.
  • the second discharge passage 34 is a passage for discharging a part of the fuel flowing through the fuel supply passage 30 on the downstream side of the check valve 24 into the fuel tank 12.
  • a second pressure adjusting device 22 is provided in the second discharge passage 34.
  • the second pressure adjusting device 22 is composed of, for example, an on-off valve that opens and closes the second discharge passage 34.
  • the second pressure adjusting device 22 is opened when the pressure of the fuel in the second discharge passage 34 on the upstream side (fuel supply passage 30 side) of the second pressure adjusting device 22 becomes equal to or higher than the predetermined second allowable pressure.
  • the predetermined second allowable pressure can be appropriately set.
  • the second allowable pressure is a pressure higher than the first allowable pressure in the first pressure adjusting device 20 described above.
  • the ECU 50 of the fuel supply device 1 includes, for example, a CPU and a memory 54 (ROM or RAM), and executes predetermined control or processing based on a program stored in the memory 54.
  • the ECU 50 inputs an input signal for rotationally driving the motor 16 of the fuel pump 10 to the FPC 52. Specifically, the ECU 50 inputs an input signal for switching on / off of a plurality of switches 62 in the drive circuit 56 of the FPC 52 to the FPC 52.
  • the ECU 50 inputs an input signal having a predetermined duty ratio to the FPC 52. Further, the ECU 50 can estimate the temperature of the fuel in the fuel supply passage 30 supplied to the high pressure pump 44 based on the detected temperature of the temperature sensor 46.
  • the fuel pump 10 in the fuel tank 12 sucks in the fuel in the fuel tank 12 and discharges it into the fuel supply passage 30.
  • the fuel discharged from the fuel pump 10 to the fuel supply passage 30 flows through the fuel supply passage 30 and is supplied to the high pressure pump 44.
  • the high-pressure pump 44 increases the pressure of the supplied fuel and discharges the fuel.
  • the fuel discharged from the high-pressure pump 44 is injected from the fuel injection device 42 into the engine 40. As a result, fuel is supplied to the engine 40.
  • 3A and 3B are a graph showing the relationship between (a) the discharge flow rate (X-axis) of the fuel pump 10 and the fuel pressure (Y-axis) in the fuel supply passage 30, and (b) the discharge flow rate of the fuel pump 10. It is a graph which shows the relationship between (X-axis) and the current (Y-axis) of a motor 16.
  • the discharge flow rate (X-axis) of the fuel pump 10 corresponds to the rotation speed of the motor 16 of the fuel pump 10. Further, the rotation speed of the motor 16 of the fuel pump 10 corresponds to the duty ratio of the input signal input to the FPC 52.
  • the pressure of the fuel inside becomes low.
  • the smaller the duty ratio of the input signal the smaller the rotation speed of the motor 16, and the smaller the discharge flow rate of the fuel pump 10, the smaller the current of the motor 16.
  • the first pressure The adjusting device 20 and the second pressure adjusting device 22 are closed, and the pressure of the fuel in the fuel supply passage 30 is relatively low.
  • the pressure of the fuel in the fuel supply passage 30 becomes the first allowable pressure P1 or more, and the pressure causes the first.
  • the first pressure adjusting device 20 that opens and closes the discharge passage 32 is opened. When the first pressure adjusting device 20 is opened, a part of the fuel flowing through the fuel supply passage 30 is discharged into the fuel tank 12 through the first discharge passage 32. As a result, it is possible to prevent the pressure of the fuel in the fuel supply passage 30 from increasing.
  • the fuel supply passage when the discharge flow rate of the fuel pump 10 becomes the second allowable discharge flow rate F2 or more when the first pressure adjusting device 20 is in the open state, the fuel supply passage.
  • the pressure of the fuel in 30 becomes higher.
  • the flow of fuel flowing through the first discharge passage 32 is restricted by the throttle 26 provided in the first discharge passage 32, whereby the fuel in the first discharge passage 32 and the fuel supply passage 30 is restricted. The pressure rises.
  • the pressure of the fuel in the fuel supply passage 30 becomes the second allowable rate.
  • the pressure becomes P2 or higher, and the pressure causes the second pressure adjusting device 22 that opens and closes the second discharge passage 34 to open.
  • the second pressure adjusting device 22 is opened, a part of the fuel flowing through the fuel supply passage 30 is discharged into the fuel tank 12 through the second discharge passage 34. As a result, it is possible to prevent the pressure of the fuel in the fuel supply passage 30 from increasing.
  • the ECU 50 of the fuel supply device 1 can store the graph shown in FIG. 3B as related information in the memory 54 during the operation of the fuel supply device 1.
  • the ECU 50 controls the discharge flow rate of the fuel pump 10 by inputting a predetermined input signal to the FPC 52.
  • the ECU 50 controls the pressure of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 by controlling the discharge flow rate of the fuel pump 10.
  • the ECU 50 stores the graph shown in FIG. 4 as related information in the memory 54.
  • the relationship information is generated, for example, during the operation of the fuel supply device 1. In the variant, the relationship information may be generated based on experimentation or analysis. Further, the relational information may be the relational information after the relational information correction processing (see FIG. 6) described later is executed.
  • the ECU 50 inputs an input signal to the FPC 52 based on the relational information shown in FIG. As shown in FIG. 4, the larger the duty ratio of the input signal input to the FPC 52, the higher the rotation speed of the motor 16 of the fuel pump 10 and the larger the discharge flow rate of the fuel pump 10. In addition, the current of the motor 16 becomes large. The smaller the duty ratio of the input signal, the smaller the rotation speed of the motor 16 of the fuel pump 10, and the smaller the discharge flow rate of the fuel pump 10. Further, the current of the motor 16 becomes small.
  • the ECU 50 stores the low-side change point T1, the intermediate change point T2, and the high-side change point T3 in which the characteristics of the related information change in the memory 54.
  • the low side change point T1, the intermediate change point T2, and the high side change point T3 are points where the slope and intercept of the graph of the relational information change.
  • the low side change point T1 is a point where the characteristics of the related information change according to the first allowable discharge flow rate F1.
  • the intermediate change point T2 is a point where the characteristics of the related information change according to the second allowable discharge flow rate F2.
  • the high side change point T3 is a point where the characteristics of the related information change in accordance with the third allowable discharge flow rate F3.
  • the ECU 50 stores the first reference value D1, the second reference value D2, and the third reference value D3 in the memory 54 regarding the duty ratio of the input signal input to the FPC 52.
  • the first reference value D1, the second reference value D2, and the third reference value D3 correspond to the low side change point T1, the intermediate change point T2, and the high side change point T3, respectively.
  • the first reference value D1 is the duty ratio of the input signal corresponding to the first allowable discharge flow rate F1.
  • the second reference value D2 is the duty ratio of the input signal corresponding to the second allowable discharge flow rate F2
  • the third reference value D3 is the duty ratio of the input signal corresponding to the third allowable discharge flow rate F3.
  • the ECU 50 further stores in the memory 54 the rotation speed of the motor 16 corresponding to each change point T1, T2, T3, the discharge flow rate of the fuel pump 10, and the current of the motor 16.
  • the ECU 50 determines the discharge flow rate of the fuel pump 10 based on, for example, information regarding the load of the engine 40. For example, the ECU 50 determines the discharge flow rate of the fuel pump 10 based on the air-fuel ratio of the exhaust gas discharged from the engine 40. The ECU 50 inputs a duty ratio input signal corresponding to the determined discharge flow rate of the fuel pump 10 to the FPC 52 based on the relational information shown in FIG.
  • the ECU 50 inputs an input signal of the duty ratio D1 corresponding to the first allowable discharge flow rate F1 to the FPC 52.
  • fuel having a discharge flow rate (for example, F1) corresponding to the duty ratio (for example, D1) of the input signal is discharged from the fuel pump 10.
  • the fuel discharged from the fuel pump 10 flows through the fuel supply passage 30 and is supplied to the high pressure pump 44.
  • the high-pressure pump 44 boosts and discharges the supplied fuel.
  • the fuel discharged from the high-pressure pump 44 is injected from the fuel injection device 42 into the engine 40.
  • the ECU 50 may determine an input signal to be input to the FPC 52 based on the reference values D1-D4 stored in the memory 54. For example, when the ECU 50 discharges fuel having a discharge flow rate less than the second allowable discharge flow rate F2 from the fuel pump 10, the ECU 50 determines an input signal to be input to the FPC 52 as an input signal having a duty ratio less than the second reference value D2. .. The ECU 50 inputs an input signal having a duty ratio less than the determined second reference value D2 to the FPC 52.
  • the ECU 50 determines the input signal to be input to the FPC 52 as an input signal having a duty ratio of the third reference value D3 or higher. ..
  • the ECU 50 inputs an input signal having a duty ratio equal to or higher than the determined third reference value D3 to the FPC 52.
  • the ECU 50 may determine the discharge flow rate of the fuel pump 10 based on the temperature of the fuel in the fuel supply passage 30 supplied to the high pressure pump 44. Specifically, when the fuel temperature is less than a predetermined reference temperature (for example, 70 ° C.), the ECU 50 determines the discharge flow rate of the fuel pump 10 to be less than the second allowable discharge flow rate F2.
  • the predetermined reference temperature can be appropriately set according to the type and properties of the fuel.
  • the fuel temperature is estimated by the ECU 50 based on the temperature detected by the temperature sensor 46.
  • the ECU 50 controls the motor 16 of the fuel pump 10 based on the relational information in the region below the intermediate change point T2 corresponding to the second allowable discharge flow rate F2.
  • the ECU 50 inputs an input signal having a duty ratio less than the second reference value D2 corresponding to the intermediate change point T2 to the FPC 52.
  • the rotation speed of the motor 16 of the fuel pump 10 becomes a rotation speed less than the rotation speed R2 corresponding to the intermediate change point T2.
  • the discharge flow rate of the fuel pump 10 becomes a discharge flow rate less than the second allowable discharge flow rate F2 corresponding to the intermediate change point T2.
  • the current of the motor 16 becomes a current less than the current C2 corresponding to the intermediate change point T2. Then, the pressure of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 is suppressed to be low (see FIG. 3).
  • the FPC 52 is directed toward a target rotation speed set by the duty ratio of the input signal instructed by the ECU 50 based on the rotation speed of the motor 16 detected based on the induced voltage.
  • the motor 16 is controlled at any time.
  • the ECU 50 sets the rotation speed of the motor 16 so that the discharge flow rate of the fuel pump 10 is less than the second allowable discharge flow rate F2 (that is, the rotation speed of the motor 16 is less than R2). Feedback control is performed at any time.
  • the FPC 52 may control the duty ratio of the input signal at any time based on the current of the motor 16 detected by the current sensor. As a result, the FPC 52 feeds back the current of the motor 16 at any time so that the discharge flow rate of the fuel pump 10 becomes less than the second allowable discharge flow rate F2 (that is, the current of the motor 16 becomes less than C2). Control. Further, the FPC 52 aims at the target rotation speed set by the duty ratio of the input signal instructed by the ECU 50 based on the current of the motor 16 detected by the current sensor and the rotation speed-current map stored in the ECU 50. The motor 16 may be controlled at any time.
  • the ECU 50 controls the motor 16 of the fuel pump 10 based on the relationship information in the region of the high side change point T3 or higher corresponding to the third allowable discharge flow rate F3.
  • the ECU 50 inputs an input signal having a duty ratio of the third reference value D3 or more corresponding to the high side change point T3 to the FPC 52.
  • the rotation speed of the motor 16 of the fuel pump 10 becomes the rotation speed of the rotation speed R3 or more corresponding to the high side change point T3.
  • the discharge flow rate of the fuel pump 10 becomes a discharge flow rate equal to or higher than the third allowable discharge flow rate F3 corresponding to the high side change point T3.
  • the current of the motor 16 becomes a current equal to or higher than the current C3 corresponding to the high side change point T3.
  • the pressure of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 becomes a pressure equal to or higher than the second allowable pressure P2 corresponding to the high-side change point T3 (see FIG. 3).
  • the ECU 50 controls the motor 16 based on the relational information in the region below the intermediate change point T2.
  • the intermediate change point T2 is a point where the characteristics of the related information change according to the second allowable discharge flow rate F2. According to this configuration, the motor 16 can be controlled in a region where the pressure of the fuel discharged from the fuel pump 10 is low. As a result, the power consumption of the fuel pump 10 can be suppressed. Even if the pressure of the fuel discharged from the fuel pump 10 is low, the high pressure fuel can be discharged from the high pressure pump 44. Therefore, it is possible to control the fuel pressure with a simple configuration while suppressing power consumption.
  • the pressure of the fuel can be controlled to some extent by the presence of the first pressure adjusting device 20 and the second pressure adjusting device 22, but further by inputting an input signal to the FPC 52 based on the related information.
  • the fuel pressure can be controlled accurately.
  • power consumption can be suppressed.
  • the ECU 50 controls the motor 16 based on the relational information in the region of the high side change point T3 or higher.
  • the high side change point T3 is a point where the characteristics of the related information change in accordance with the third allowable discharge flow rate F3.
  • the third allowable discharge flow rate F3 is the discharge flow rate of the fuel pump 10 when the pressure of the fuel in the fuel supply passage 30 becomes the second allowable pressure P2. According to this configuration, the motor 16 can be controlled in a region where the pressure of the fuel discharged from the fuel pump 10 is high. As a result, the pressure of the fuel in the fuel supply passage 30 can be increased, and the fuel can be made difficult to evaporate.
  • the relationship information correction process is a process for correcting the relationship information (see FIG. 4) stored in the memory 54.
  • the relationship between the discharge flow rate of the fuel pump 10 and the current of the motor 16 may change depending on, for example, the properties of the fuel or the degree of deterioration of the fuel pump 10. That is, the relationship between the rotation speed of the motor 16 of the fuel pump 10 and the current of the motor 16 and the relationship between the duty ratio of the input signal and the current of the motor 16 may change. Therefore, these relationships may differ between the past and the present. For example, even if the discharge flow rate of the fuel pump 10, the rotation speed of the motor 16, and the duty ratio of the input signal are the same in the past and present, the current current of the motor 16 may be larger than the past current. In this case, in the fuel supply device 1, the ECU 50 can correct the related information stored in the memory 54.
  • the ECU 50 stores the relational information Hn -1 before the correction.
  • the relationship information H n-1 before correction is, for example, information generated when the fuel pump 10 discharges fuel in the past.
  • the relationship information H n-1 before correction may be information generated based on an experiment or analysis.
  • the relational information Hn -1 before the correction may be the relational information after the relational information correction processing (see FIG. 6) has been executed in the past.
  • the relationship information H n-1 before correction includes information of a plurality of graphs G1 n-1 , G2 n-1 , G3 n-1 , and G4 n-1 .
  • Graph G1 n-1 is a graph in the range of less than the first allowable discharge flow rate F1.
  • the graph G2 n-1 is a graph in the range of the first allowable discharge flow rate F1 or more and less than the second allowable discharge flow rate F2
  • the graph G3 n-1 is the second allowable discharge flow rate F2 or more and the third allowable discharge flow rate F2 or less. It is a graph in the range of less than the flow rate F3, and the graph G4 n-1 is a graph in the range of the third allowable discharge flow rate F3 or more.
  • the relationship information H n-1 before correction includes information on a plurality of graph change points T1 n-1 , T2 n-1 , and T3 n-1 .
  • the graph change point T1 n-1 is a portion where the graph G1 n-1 changes to the graph G2 n-1 .
  • the graph change point T2 n-1 is a portion where the graph G2 n-1 changes to the graph G3 n-1 , and the graph change point T3 n-1 changes from the graph G3 n-1 to the graph G4 n-1 . It's a changing part.
  • FIG. 6 is a flowchart of the related information correction process according to the embodiment.
  • the relationship information correction process is started, for example, when the high-pressure pump 44 of the fuel supply device 1 is started, and is executed during the operation of the high-pressure pump 44.
  • the ECU 50 determines whether or not a predetermined execution condition is satisfied. For example, when the engine 40 is operating and the fuel pump 10 is operating, a predetermined execution condition is satisfied. If YES in S2, the ECU 50 proceeds to S4, and if NO, waits.
  • the FPC 52 controls the fuel pump 10 so that the discharge flow rate of the fuel pump 10 becomes a predetermined target discharge flow rate.
  • the target discharge flow rate is an arbitrary discharge flow rate.
  • the FPC 52 controls the fuel pump 10 with a discharge flow rate equal to or higher than the third allowable discharge flow rate F3 as a target discharge flow rate.
  • the pressure of the fuel in the fuel supply passage 30 becomes the second allowable pressure P2 or more (see FIG. 3).
  • the discharge flow rate of the fuel pump 10 corresponds to the rotation speed of the motor 16. Therefore, in S4, the FPC 52 controls the motor 16 so that the rotation speed of the motor 16 becomes a predetermined target rotation speed.
  • the target rotation speed corresponds to the target discharge flow rate.
  • the ECU 50 specifies the duty ratio of the input signal when the discharge flow rate of the fuel pump 10 reaches the target discharge flow rate (that is, when the rotation speed of the motor 16 reaches the target rotation speed).
  • the ECU 50 specifies the current of the motor 16 when the discharge flow rate of the fuel pump 10 reaches the target discharge flow rate (that is, when the rotation speed of the motor 16 reaches the target rotation speed).
  • the relationship between the discharge flow rate of the fuel pump 10, the rotation speed of the motor 16, the duty ratio of the input signal, and the current of the motor 16 is specified.
  • the ECU 50 stores the specified relationship in the memory 54.
  • the ECU 50 determines whether or not the current of the motor 16 specified in S6 is within a predetermined allowable range. The ECU 50 proceeds to S10 if YES in S8, and proceeds to S30 if NO in S8. In S30 after NO in S8, the ECU 50 turns on the warning light.
  • the warning light is provided, for example, on the instrument panel of the vehicle. The processing of S8 may be omitted.
  • the ECU 50 lowers the target discharge flow rate of the fuel pump 10 to set a new target discharge flow rate (that is, lowers the target rotation speed of the motor 16 to set a new target rotation speed). ).
  • the target discharge flow rate and the target rotation speed reduction range can be set as appropriate.
  • the FPC 52 fuels the fuel pump 10 so that the discharge flow rate becomes the new target discharge flow rate (that is, the rotation speed of the motor 16 becomes the new target rotation speed). Control the pump 10.
  • the ECU 50 specifies the duty ratio of the input signal when the discharge flow rate of the fuel pump 10 reaches the target discharge flow rate (that is, when the rotation speed of the motor 16 reaches the target rotation speed).
  • the ECU 50 determines the current of the motor 16 when the discharge flow rate of the fuel pump 10 reaches the target discharge flow rate (that is, when the rotation speed of the motor 16 reaches the target rotation rate). To identify.
  • the processing of S10, S12, and S14 the relationship between the discharge flow rate of the fuel pump 10, the rotation speed of the motor 16, the duty ratio of the input signal, and the current of the motor 16 is specified.
  • the ECU 50 stores the specified relationship in the memory 54.
  • the ECU 50 repeats the above processes of S10, S12, and S14 over a predetermined range.
  • the discharge flow rate of the fuel pump 10 is in the range of the third allowable discharge flow rate F3 or more (see FIG. 5), the range of less than the third allowable discharge flow rate F3 and the range of the second allowable discharge flow rate F2 or more, and the second allowable discharge flow rate.
  • the processing of S10, S12, and S14 is repeated for the range of less than F2 and the first allowable discharge flow rate F1 or more, and the range of less than the first allowable discharge flow rate F1.
  • the number of repetitions is not particularly limited.
  • the ECU 50 calculates a plurality of graphs G4 n , G3 n , G2 n , and G1 n (see FIG. 5).
  • the ECU 50 can calculate the graph G3 n by repeating the processes of S10, S12, and S14 over a range in which the discharge flow rate of the fuel pump 10 is less than the third allowable discharge flow rate F3 and the second allowable discharge flow rate F2 or more.
  • the ECU 50 calculates the graph G2 n by repeating the above processes of S10, S12, and S14 over a range in which the discharge flow rate of the fuel pump 10 is less than the second allowable discharge flow rate F2 and equal to or larger than the first allowable discharge flow rate F1.
  • the ECU 50 calculates graphs G3 n and G2 n based on, for example, mathematical processing. The same applies to the other plurality of graphs G4 n and G1 n . In the modified example, the ECU 50 may be configured to calculate only a part of the graphs. The ECU 50 does not necessarily have to calculate all the graphs G4 n , G3 n , G2 n , and G1 n .
  • the ECU 50 calculates a plurality of graph change points T3 n , T2 n , and T1 n (see FIG. 5). For example, when the graphs G3 n and G2 n are straight lines, the ECU 50 calculates the intersection of the graphs G3 n and G2 n as the graph change point T2 n . Further, as shown in FIG. 7, when the graphs G3 n and G2 n are curves, the ECU 50 sets the intersection of the extrapolation line L3 of the graph G3 n and the extrapolation line L2 of the graph G2 n as the graph change point T2. It may be calculated as n .
  • the ECU 50 calculates the graph change point T2 n based on, for example, mathematical processing. The same applies to the other plurality of graph change points T3 n and T1 n . In the modified example, the ECU 50 may be configured to calculate only a part of the graph change points. The ECU 50 does not necessarily have to calculate all the graph change points T3 n , T2 n , and T1 n .
  • the ECU 50 corrects the relational information Hn -1 stored in the memory 54 based on the information acquired in the processes of the above S16 and S18.
  • the ECU 50 can correct the relational information Hn -1 based on, for example, mathematical processing.
  • the method for correcting the relational information H n-1 is not particularly limited.
  • the ECU 50 is based on the difference between the current C2 n of the motor 16 corresponding to the graph change point T2 n shown in FIG. 5 and the current C2 n - 1 of the motor 16 corresponding to the graph change point T2 n-1 .
  • the relationship information H n-1 may be corrected.
  • the ECU 50 may translate the relationship information H n-1 by the difference between C2 n and C2 n-1 .
  • the ECU 50 can acquire the corrected relationship information Hn .
  • the ECU 50 may correct the intermediate change point T2 n-1 before correction to a new intermediate change point T2 n .
  • the ECU 50 may correct the relationship information H n-1 based on the difference between the currents C2 n and C2 n-1 of the motor 16 and the difference between C3 n and C3 n-1 .
  • the ECU 50 may reflect the slope of the graph G3 n in each of the graphs G1 n-1 , G2 n-1 , and G4 n-1 at a predetermined ratio. As a result, the ECU 50 may acquire the corrected relationship information Hn .
  • the ECU 50 may correct the relational information H n-1 based on the graph G4 n .
  • the ECU 50 may reflect the difference between the graph G4 n and the graph G4 n-1 in each of the graphs G1 n-1 , G2 n-1 , and G3 n-1 at a predetermined ratio.
  • the relational information Hn -1 is corrected based on the relationship between the rotation speed and the current of the motor 16 corresponding to the discharge flow rate when the fuel pump 10 actually discharges the fuel. Therefore, the actual properties of the fuel and the state of the fuel pump 10 can be reflected in the corrected relationship information Hn .
  • the fuel pump 10 can be controlled with high accuracy. Therefore, it is possible to reliably aim at the pressure adjusting region of the first pressure adjusting device 20 and the pressure adjusting region of the second pressure adjusting device 22, and it is possible to accurately control the fuel discharge flow rate and the pressure.
  • the intermediate change point T2 n-1 is set based on the relationship between the rotation speed and the current of the motor 16 corresponding to the discharge flow rate when the fuel pump 10 actually discharges the fuel.
  • the actual properties of the fuel and the state of the fuel pump 10 can be reflected in the corrected intermediate change point T2 n .
  • the fuel discharge flow rate and the pressure can be controlled with high accuracy.
  • the graph G3 n is calculated by calculating the graph change point T2 n based on the intersection of the extrapolation line L3 of the graph G3 n and the extrapolation line L2 of the graph G2 n . Even if the graph G2 n is a curve, the intermediate change point T2 n-1 can be corrected with high accuracy.
  • the ECU 50 may execute the above-mentioned relational information correction process (see FIG. 6) a plurality of times while the engine 40 of the vehicle is operating.
  • the relational information n-1 at least once during the operation of the engine 40, the actual properties of the fuel during the operation of the engine 40 and the state of the fuel pump 10 can be reflected in the relational information Hn .
  • the graphs shown in FIGS. 4 and 5 are examples of “relationship information”.
  • the intermediate change point T2 is an example of the "first change point”.
  • the high side change point T3 is an example of the "second change point”.
  • Graph G2 n is an example of the “first graph”.
  • Graph G3 n is an example of the “second graph”.
  • the ECU 50 and the FPC 52 are examples of the control unit.
  • the second discharge passage 34 is connected to the fuel supply passage 30 on the downstream side of the check valve 24 (see FIG. 1), but in the modified example, as shown in FIG.
  • the second discharge passage 34 may be connected to the fuel supply passage 30 on the upstream side of the check valve 24.
  • the fuel supply device 1 may include a plurality of (for example, two) first discharge passages 32.
  • One first discharge passage 32 is connected to the fuel supply passage 30 on the upstream side of the check valve 24, and the other first discharge passage 32 is connected to the fuel supply passage 30 on the downstream side of the check valve 24. It may have been done.
  • the temperature sensor 46 may be configured to directly detect the temperature of the fuel in the fuel supply passage 30 supplied to the high pressure pump 44.
  • the ECU 50 may be configured to actually measure the temperature of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 based on the detected temperature of the temperature sensor 46.
  • the ECU 50 controls the discharge flow rate of the fuel pump 10 by controlling the rotation speed of the motor 16.
  • the ECU 50 may be configured to control the discharge flow rate of the fuel pump 10 by controlling the voltage of the motor 16 (that is, the voltage applied to the motor 16).
  • the rotation speed of the X-axis motor 16 in the graphs shown in FIGS. 3B, 4 and 5 is replaced with the voltage of the motor 16.
  • the ECU 50 may store a predetermined reference point V in the memory 54 for the related information.
  • the predetermined reference point V is a point in the region of the high side change point T3 or higher in the relational information.
  • the reference point V is calculated based on the intermediate change point T2.
  • the ECU 50 calculates the reference point V from the intermediate change point T2 during the control of the fuel supply device 1.
  • the method for calculating the reference point V is not particularly limited.
  • the ECU 50 may store the fourth reference value D4 in the memory 54 for the duty ratio of the input signal input to the FPC 52.
  • the fourth reference value D4 corresponds to the reference point V.
  • the fourth reference value D4 is the duty ratio of the input signal corresponding to the predetermined discharge flow rate F4 equal to or higher than the third allowable discharge flow rate F3.
  • the ECU 50 may further store the rotation speed of the motor 16 corresponding to the reference point V, the discharge flow rate of the fuel pump 10, and the current of the motor 16 in the memory 54.
  • the ECU 50 may control the motor 16 of the fuel pump 10 based on the relational information in the region of the reference point V or higher.
  • the ECU 50 inputs an input signal having a duty ratio of the fourth reference value D4 or more corresponding to the reference point V to the FPC 52.
  • the rotation speed of the motor 16 of the fuel pump 10 becomes the rotation speed of the rotation speed R4 or more corresponding to the reference point V.
  • the discharge flow rate of the fuel pump 10 becomes a discharge flow rate equal to or higher than the discharge flow rate F4 corresponding to the reference point V.
  • the current of the motor 16 becomes a current equal to or higher than the current C4 corresponding to the reference point V.
  • the pressure of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 becomes a pressure equal to or higher than the second allowable pressure P2 (see FIG. 3).
  • the motor 16 can be controlled in a region where the pressure of the fuel discharged from the fuel pump 10 is high. As a result, the pressure of the fuel in the fuel supply passage 30 can be increased, and the fuel can be made difficult to evaporate.
  • the ECU 50 does not have to store the low side change point T1 and the high side change point T3 in the memory 54.
  • Fuel supply device 10: Fuel pump, 12: Fuel tank, 16: Motor, 20: First pressure regulator, 22: Second pressure regulator, 24: Check valve, 26: Squeeze, 30: Fuel supply Passage, 32: 1st discharge passage, 34: 2nd discharge passage, 36: branch passage, 40: engine, 42: fuel injection device, 44: high pressure pump, 46: temperature sensor, 50: ECU, 52: FPC, 54 :memory

Abstract

A control unit according to the present invention stores relationship information indicating a relationship between the rotational speed or the voltage of a motor corresponding to the discharge flow rate of fuel discharged from a fuel pump, and electric current, and a first change point at which a characteristic of the relationship information changes in accordance with a permitted discharge flow rate, and is capable of controlling the rotational speed of the motor, the voltage, or the electric current on the basis of the stored relationship information and first change point. If the temperature of the fuel is less than a predetermined reference temperature, the control unit controls the rotational speed of the motor, the voltage, or the current on the basis of the relationship information in a region less than the first change point.

Description

燃料供給装置Fuel supply device
 本明細書に開示する技術は、燃料供給装置に関する。 The techniques disclosed herein relate to fuel supply equipment.
 特許文献1に燃料供給装置が開示されている。特許文献1の燃料供給装置は、燃料を吐出する燃料ポンプと、燃料ポンプから吐出された燃料を燃料噴射装置に供給する燃料供給通路と、燃料供給通路を流れる燃料の一部を排出する排出通路と、排出通路を開閉する圧力調整装置であって、燃料供給通路内の燃料の圧力が所定の許容圧力以上になると開状態になって燃料供給通路内の燃料の一部を排出通路から排出する圧力調整装置と、を備えている。 Patent Document 1 discloses a fuel supply device. The fuel supply device of Patent Document 1 includes a fuel pump that discharges fuel, a fuel supply passage that supplies fuel discharged from the fuel pump to the fuel injection device, and an discharge passage that discharges a part of the fuel flowing through the fuel supply passage. It is a pressure regulator that opens and closes the discharge passage, and when the pressure of the fuel in the fuel supply passage exceeds a predetermined allowable pressure, it is opened and a part of the fuel in the fuel supply passage is discharged from the discharge passage. It is equipped with a pressure regulator.
特開2017-002803号公報Japanese Unexamined Patent Publication No. 2017-002803
 燃料供給装置が2種類の圧力調整装置を備えていることがある。例えば、燃料供給装置が、燃料供給通路内の燃料の圧力が低圧の第1許容圧力以上になると開状態になる第1圧力調整装置と、燃料供給通路内の燃料の圧力が高圧の第2許容圧力以上になると開状態になる第2圧力調整装置とを備えていることがある。この構成では、燃料ポンプから燃料を吐出する際に、燃料供給通路内の燃料の圧力が分からないので燃料ポンプの吐出流量を不要に多くしてしまうことがある。その結果、燃料ポンプの消費電力が不要に大きくなることがある。また、燃料供給通路内の燃料の圧力を検出するために圧力センサを利用することも考えられるが、圧力センサを利用すると構成が複雑になると共にコストが高くなる。そこで本明細書は、消費電力を抑制しつつ簡素な構成で燃料の圧力を制御することができる技術を提供する。 The fuel supply device may be equipped with two types of pressure regulators. For example, the fuel supply device has a first pressure regulator that opens when the fuel pressure in the fuel supply passage exceeds the low pressure first allowable pressure, and a second allowable pressure in which the fuel pressure in the fuel supply passage becomes high. It may be equipped with a second pressure adjusting device that opens when the pressure exceeds the pressure. In this configuration, when the fuel is discharged from the fuel pump, the pressure of the fuel in the fuel supply passage is not known, so that the discharge flow rate of the fuel pump may be unnecessarily increased. As a result, the power consumption of the fuel pump may be unnecessarily large. It is also conceivable to use a pressure sensor to detect the pressure of the fuel in the fuel supply passage, but using the pressure sensor complicates the configuration and increases the cost. Therefore, the present specification provides a technique capable of controlling the fuel pressure with a simple configuration while suppressing power consumption.
 本明細書に開示する燃料供給装置は、モータの回転により燃料を吐出する燃料ポンプと、前記燃料ポンプから吐出された燃料を、前記燃料ポンプよりも高圧で燃料を吐出する高圧ポンプに供給する燃料供給通路と、前記燃料供給通路を流れる燃料の一部を排出する第1排出通路と、前記燃料供給通路を流れる燃料の一部を排出する第2排出通路と、前記第1排出通路を開閉する第1圧力調整装置であって、前記燃料供給通路内の燃料の圧力が所定の第1許容圧力以上になると開状態になって前記第1排出通路から燃料を排出する前記第1圧力調整装置と、前記第1圧力調整装置が開状態のときに前記燃料ポンプから吐出される燃料の吐出流量が所定の許容吐出流量以上になると前記第1排出通路を流れる燃料の流れを制限することにより前記燃料供給通路内の燃料の圧力を上昇させる流れ制限部と、前記第2排出通路を開閉する第2圧力調整装置であって、前記燃料供給通路内の燃料の圧力が前記第1許容圧力よりも高い所定の第2許容圧力以上になると開状態になって前記第2排出通路から燃料を排出する前記第2圧力調整装置と、前記燃料ポンプの前記モータを制御する制御部と、を備えている。前記制御部は、前記燃料ポンプから吐出される燃料の吐出流量に対応する前記モータの回転数又は電圧と電流との関係を示す関係情報と、前記許容吐出流量に対応して前記関係情報の特性が変化する第1変化点と、を記憶しており、記憶している前記関係情報と前記第1変化点とに基づいて前記モータの回転数、電圧又は電流を制御可能である。前記制御部は、燃料の温度が所定の基準温度未満である場合は、前記第1変化点未満の領域の前記関係情報に基づいて前記モータの回転数、電圧又は電流を制御する。 The fuel supply device disclosed in the present specification is a fuel that supplies fuel to a fuel pump that discharges fuel by rotation of a motor and a high-pressure pump that discharges fuel at a higher pressure than the fuel pump. The supply passage, the first discharge passage for discharging a part of the fuel flowing through the fuel supply passage, the second discharge passage for discharging a part of the fuel flowing through the fuel supply passage, and the first discharge passage are opened and closed. The first pressure adjusting device, which is an open state when the pressure of the fuel in the fuel supply passage becomes equal to or higher than a predetermined first allowable pressure, and discharges the fuel from the first discharging passage. When the discharge flow rate of the fuel discharged from the fuel pump becomes equal to or higher than a predetermined allowable discharge flow rate when the first pressure adjusting device is in the open state, the fuel flow is restricted by limiting the flow of the fuel flowing through the first discharge passage. A flow limiting unit that raises the pressure of the fuel in the supply passage and a second pressure adjusting device that opens and closes the second discharge passage, and the pressure of the fuel in the fuel supply passage is higher than the first allowable pressure. It includes the second pressure adjusting device that is opened when the pressure exceeds a predetermined second allowable pressure and discharges fuel from the second discharge passage, and a control unit that controls the motor of the fuel pump. The control unit has relational information indicating the relationship between the rotation speed or voltage and the current of the motor corresponding to the discharge flow rate of the fuel discharged from the fuel pump, and the characteristics of the relational information corresponding to the allowable discharge flow rate. The first change point in which the motor changes is stored, and the rotation speed, voltage, or current of the motor can be controlled based on the stored relationship information and the first change point. When the temperature of the fuel is lower than the predetermined reference temperature, the control unit controls the rotation speed, voltage, or current of the motor based on the relational information in the region below the first change point.
 この構成によれば、燃料ポンプから燃料を吐出する際に、必要な吐出流量に対応して燃料ポンプのモータを制御することができる。これにより、燃料の吐出流量が不要に多くなることを抑制することができ、燃料ポンプの消費電力が不要に大きくなることを抑制することができる。また、燃料の圧力が不要に高くなることを抑制することができる。例えば、高圧ポンプに低い圧力の燃料を供給する場合には、少ない吐出流量になるようにモータの回転数、電圧又は電流を制御する。これにより、燃料ポンプの消費電力を低くして、低い圧力の燃料を高圧ポンプに供給することができる。圧力センサを利用しなくても燃料の圧力を適切な圧力にすることができる。 According to this configuration, when the fuel is discharged from the fuel pump, the motor of the fuel pump can be controlled according to the required discharge flow rate. As a result, it is possible to prevent the discharge flow rate of the fuel from increasing unnecessarily, and it is possible to suppress the power consumption of the fuel pump from increasing unnecessarily. In addition, it is possible to prevent the fuel pressure from becoming unnecessarily high. For example, when supplying low pressure fuel to a high pressure pump, the rotation speed, voltage or current of the motor is controlled so that the discharge flow rate is small. This makes it possible to reduce the power consumption of the fuel pump and supply low pressure fuel to the high pressure pump. The fuel pressure can be adjusted to an appropriate pressure without using a pressure sensor.
 また、燃料の温度が低い場合は、燃料が蒸発し難いので、燃料供給通路内の燃料の圧力を低くすることができる。そのため、燃料の温度が所定の基準温度未満である場合は、第1変化点未満の領域の関係情報に基づいてモータを制御する。これにより、燃料ポンプから吐出される燃料の圧力が低くなる領域でモータを制御することができる。その結果、燃料ポンプの消費電力を抑制することができる。燃料ポンプから吐出される燃料の圧力が低くても高圧ポンプから高圧の燃料を吐出することができる。以上より、上記の燃料供給装置によれば、消費電力を抑制しつつ簡素な構成で燃料の圧力を制御することができる。 Also, when the temperature of the fuel is low, the fuel does not easily evaporate, so the pressure of the fuel in the fuel supply passage can be lowered. Therefore, when the fuel temperature is lower than the predetermined reference temperature, the motor is controlled based on the relational information in the region below the first change point. This makes it possible to control the motor in a region where the pressure of the fuel discharged from the fuel pump is low. As a result, the power consumption of the fuel pump can be suppressed. Even if the pressure of the fuel discharged from the fuel pump is low, the high pressure fuel can be discharged from the high pressure pump. From the above, according to the above fuel supply device, it is possible to control the fuel pressure with a simple configuration while suppressing power consumption.
 前記制御部は、前記燃料供給通路内の燃料の圧力が前記第2許容圧力になるときに前記燃料ポンプから吐出される燃料の吐出流量に対応して前記関係情報の特性が変化する第2変化点を記憶していてもよい。前記制御部は、燃料の温度が前記基準温度以上である場合は、前記第2変化点以上の領域の前記関係情報に基づいて前記モータの回転数、電圧又は電流を制御してもよい。 The control unit has a second change in which the characteristics of the related information change according to the discharge flow rate of the fuel discharged from the fuel pump when the pressure of the fuel in the fuel supply passage becomes the second allowable pressure. You may remember the points. When the temperature of the fuel is equal to or higher than the reference temperature, the control unit may control the rotation speed, voltage, or current of the motor based on the relational information in the region of the second change point or higher.
 高圧ポンプを備える構成では、高圧ポンプの熱によって燃料供給通路内の燃料の温度が高くなることがある。燃料の温度が高い場合は燃料が蒸発し易くなる。そこで、燃料の温度が所定の基準温度以上である場合は、第2変化点以上の領域の関係情報に基づいてモータを制御する。この構成によれば、燃料ポンプから吐出される燃料の圧力が高くなる領域でモータを制御することができる。その結果、燃料供給通路内の燃料の圧力を高くすることができ、燃料が蒸発し難い状態にすることができる。 In a configuration equipped with a high-pressure pump, the temperature of the fuel in the fuel supply passage may rise due to the heat of the high-pressure pump. When the temperature of the fuel is high, the fuel tends to evaporate. Therefore, when the fuel temperature is equal to or higher than a predetermined reference temperature, the motor is controlled based on the relational information in the region of the second change point or higher. According to this configuration, the motor can be controlled in a region where the pressure of the fuel discharged from the fuel pump is high. As a result, the pressure of the fuel in the fuel supply passage can be increased, and the fuel can be made difficult to evaporate.
 前記制御部は、前記第1変化点から算出される所定の基準点以上の領域の前記関係情報に基づいて前記モータの回転数、電圧又は電流を制御してもよい。前記基準点は、前記燃料供給通路内の燃料の圧力が前記第2許容圧力になるときに前記燃料ポンプから吐出される燃料の吐出流量に対応して前記関係情報の特性が変化する第2変化点以上の領域に位置していてもよい。 The control unit may control the rotation speed, voltage, or current of the motor based on the relational information in the region above the predetermined reference point calculated from the first change point. The reference point is a second change in which the characteristics of the related information change according to the discharge flow rate of the fuel discharged from the fuel pump when the pressure of the fuel in the fuel supply passage becomes the second allowable pressure. It may be located in the area above the point.
 この構成によれば、燃料ポンプから吐出される燃料の圧力が高くなる領域でモータを制御することができる。その結果、燃料供給通路内の燃料の圧力を高くすることができ、燃料が蒸発し難い状態にすることができる。 According to this configuration, the motor can be controlled in the region where the pressure of the fuel discharged from the fuel pump is high. As a result, the pressure of the fuel in the fuel supply passage can be increased, and the fuel can be made difficult to evaporate.
 前記制御部は、前記燃料ポンプが実際に燃料を吐出したときの吐出流量に対応する前記モータの回転数又は電圧と電流との関係に基づいて、記憶している前記関係情報を補正してもよい。 Even if the control unit corrects the stored relationship information based on the relationship between the motor rotation speed or voltage and current corresponding to the discharge flow rate when the fuel pump actually discharges fuel. good.
 この構成によれば、燃料ポンプが動作するときの実際の燃料の性状や燃料ポンプの状態を関係情報に反映させることができる。この関係情報に基づいて燃料ポンプのモータを制御することにより、燃料ポンプの吐出流量を精度良く制御することができる。 According to this configuration, the actual fuel properties and the state of the fuel pump when the fuel pump operates can be reflected in the related information. By controlling the motor of the fuel pump based on this related information, the discharge flow rate of the fuel pump can be controlled with high accuracy.
 前記制御部は、前記燃料ポンプが実際に燃料を吐出したときの吐出流量に対応する前記モータの回転数又は電圧と電流との関係に基づいて、記憶している前記第1変化点を補正してもよい。 The control unit corrects the stored first change point based on the relationship between the rotation speed or the voltage and the current of the motor corresponding to the discharge flow rate when the fuel pump actually discharges the fuel. You may.
 この構成によれば、燃料ポンプが動作するときの実際の燃料の性状や燃料ポンプの状態を第1変化点に反映させることができる。この第1変化点に基づいて燃料ポンプのモータを制御することにより、燃料ポンプの吐出流量を精度良く制御することができる。 According to this configuration, the actual fuel properties and the state of the fuel pump when the fuel pump operates can be reflected in the first change point. By controlling the motor of the fuel pump based on this first change point, the discharge flow rate of the fuel pump can be controlled with high accuracy.
 前記制御部は、前記燃料ポンプが実際に燃料を吐出したときの前記許容吐出流量未満の吐出流量に対応する前記モータの回転数又は電圧と電流との関係を示す第1グラフと、前記許容吐出流量以上の吐出流量に対応する前記モータの回転数又は電圧と電流との関係を示す第2グラフと、のグラフ変化点と、記憶している前記第1変化点との差に基づいて、記憶している前記第1変化点を補正してもよい。 The control unit includes a first graph showing the relationship between the rotation speed or voltage and current of the motor corresponding to a discharge flow rate lower than the allowable discharge flow rate when the fuel pump actually discharges fuel, and the allowable discharge rate. Stored based on the difference between the graph change point of the second graph showing the relationship between the rotation speed or voltage and the current of the motor corresponding to the discharge flow rate equal to or higher than the flow rate, and the stored first change point. The first change point may be corrected.
 この構成によれば、第1変化点の補正を精度良く行うことができる。 According to this configuration, the correction of the first change point can be performed with high accuracy.
 前記制御部は、前記第1グラフの外挿線と前記第2グラフの外挿線との交点に基づいて前記グラフ変化点を算出してもよい。 The control unit may calculate the graph change point based on the intersection of the extrapolated line of the first graph and the extrapolated line of the second graph.
 第1グラフと第2グラフが曲線であっても第1変化点の補正を精度良く行うことができる。 Even if the first graph and the second graph are curves, the correction of the first change point can be performed with high accuracy.
 燃料供給装置は、エンジンを備える車両に搭載されていてもよい。前記制御部は、前記エンジンの動作中に、記憶している前記関係情報を少なくとも1回補正してもよい。 The fuel supply device may be mounted on a vehicle equipped with an engine. The control unit may correct the stored related information at least once during the operation of the engine.
 この構成によれば、エンジンの動作中の実際の燃料の性状や燃料ポンプの状態を関係情報に反映させることができる。 According to this configuration, the actual fuel properties during engine operation and the state of the fuel pump can be reflected in the related information.
実施例に係る燃料供給装置の模式図である。It is a schematic diagram of the fuel supply device which concerns on Example. FPCに入力される入力信号の一例を示す図である。It is a figure which shows an example of the input signal input to FPC. (a)燃料ポンプの吐出流量と燃料供給通路内の燃料の圧力との関係を示すグラフ、及び、(b)燃料ポンプの吐出流量とモータの電流との関係を示すグラフである。(A) A graph showing the relationship between the discharge flow rate of the fuel pump and the pressure of the fuel in the fuel supply passage, and (b) a graph showing the relationship between the discharge flow rate of the fuel pump and the current of the motor. 燃料ポンプの吐出流量とモータの電流との関係を示すグラフである。It is a graph which shows the relationship between the discharge flow rate of a fuel pump, and the current of a motor. 実施例に係る関係情報補正処理を説明する図である。It is a figure explaining the relational information correction processing which concerns on Example. 実施例に係る関係情報補正処理のフローチャートである。It is a flowchart of the relational information correction processing which concerns on Example. グラフ変化点を算出する方法の一例を示す図である。It is a figure which shows an example of the method of calculating a graph change point. 変形例に係る燃料供給装置の模式図である。It is a schematic diagram of the fuel supply device which concerns on the modification. 変形例に係る燃料ポンプの吐出流量とモータの電流との関係を示すグラフである。It is a graph which shows the relationship between the discharge flow rate of a fuel pump and the current of a motor which concerns on a modification.
 実施例に係る燃料供給装置1について図面を参照して説明する。図1は、実施例に係る燃料供給装置1の模式図である。図1に示すように、燃料供給装置1は、燃料ポンプ10と、燃料供給通路30と、高圧ポンプ44と、燃料噴射装置42とを備えている。また、燃料供給装置1は、FPC(Fuel Pump Controler)52と、ECU(Engine Control Unit)50とを備えている。 The fuel supply device 1 according to the embodiment will be described with reference to the drawings. FIG. 1 is a schematic diagram of the fuel supply device 1 according to the embodiment. As shown in FIG. 1, the fuel supply device 1 includes a fuel pump 10, a fuel supply passage 30, a high-pressure pump 44, and a fuel injection device 42. Further, the fuel supply device 1 includes an FPC (Fuel Pump Controler) 52 and an ECU (Engine Control Unit) 50.
 燃料供給装置1は、エンジン40を備えている車両に搭載される。燃料供給装置1は、例えば、高圧の燃料をエンジン40のシリンダ内に直接噴射する直噴型のガソリン自動車に搭載される。燃料供給装置1は、車両のエンジン40に燃料を供給するための装置である。 The fuel supply device 1 is mounted on a vehicle equipped with an engine 40. The fuel supply device 1 is mounted on, for example, a direct-injection gasoline vehicle that directly injects high-pressure fuel into the cylinder of the engine 40. The fuel supply device 1 is a device for supplying fuel to the engine 40 of the vehicle.
 燃料供給装置1は、車両のエンジンルーム内に配置されている温度センサ46を備えている。温度センサ46は、例えば、水温センサ、油温センサ、吸気温センサ等である。水温センサは、エンジン40の冷却水の温度を検出することができる。油温センサ46は、エンジン40のオイルの温度を検出することができる。吸気温センサは、エンジン40に吸入される空気の温度を検出することができる。温度センサ46の検出温度の情報はECU50に送信される。 The fuel supply device 1 includes a temperature sensor 46 arranged in the engine room of the vehicle. The temperature sensor 46 is, for example, a water temperature sensor, an oil temperature sensor, an intake air temperature sensor, or the like. The water temperature sensor can detect the temperature of the cooling water of the engine 40. The oil temperature sensor 46 can detect the temperature of the oil in the engine 40. The intake air temperature sensor can detect the temperature of the air sucked into the engine 40. Information on the detected temperature of the temperature sensor 46 is transmitted to the ECU 50.
 燃料ポンプ10は、燃料タンク12内に配置されており、吸入口102と吐出口104を備えている。燃料タンク12には、エンジン40に供給するための液体の燃料(例えばガソリン)が貯留されている。燃料ポンプ10は、燃料タンク12内の燃料を吸入口102から吸入して吐出口104から吐出する。燃料ポンプ10の吐出口104は燃料供給通路30が接続されている。燃料ポンプ10は、燃料タンク12内の燃料を燃料供給通路30に吐出する。 The fuel pump 10 is arranged in the fuel tank 12 and includes a suction port 102 and a discharge port 104. The fuel tank 12 stores liquid fuel (for example, gasoline) for supplying the engine 40. The fuel pump 10 sucks the fuel in the fuel tank 12 from the suction port 102 and discharges it from the discharge port 104. A fuel supply passage 30 is connected to the discharge port 104 of the fuel pump 10. The fuel pump 10 discharges the fuel in the fuel tank 12 to the fuel supply passage 30.
 燃料ポンプ10は、例えばモータ16とインペラ(図示省略)を備えており、モータ16の回転によりインペラが回転することによって燃料タンク12内の燃料を吸入して吐出する。モータ16は、例えばセンサレスブラシレスモータ又はセンサ付きブラシレスモータであり、三相モータである。モータ16は、複数(例えば3つ)のコイル(図示省略)を備えており、複数のコイルに順に電流が流れることにより回転する。モータ16の電流(複数のコイルに流れる電流)は、電流センサにより検出される(図示省略)。電流センサは、検出用の抵抗(図示省略)を備えており、その抵抗の抵抗値に基づいてモータ16の電流(複数のコイルに流れる電流)を検出する。燃料ポンプ10では、モータ16の電流が大きいほどモータ16の回転数が大きくなり(即ち、回転速度が速くなり)、燃料ポンプ10から吐出される燃料の流量が多くなる。モータ16の電流が小さいほどモータ16の回転数が小さくなり(即ち、回転速度が遅くなり)、燃料ポンプ10の吐出流量が少なくなる。モータ16がセンサレスモータの場合は、モータ16の回転数は、例えばモータ16の回転時の誘起電圧に基づいて検出される。 The fuel pump 10 includes, for example, a motor 16 and an impeller (not shown), and the impeller rotates due to the rotation of the motor 16 to suck in and discharge the fuel in the fuel tank 12. The motor 16 is, for example, a sensorless brushless motor or a brushless motor with a sensor, and is a three-phase motor. The motor 16 includes a plurality of (for example, three) coils (not shown), and rotates when a current flows through the plurality of coils in order. The current of the motor 16 (current flowing through a plurality of coils) is detected by a current sensor (not shown). The current sensor includes a resistance for detection (not shown), and detects the current of the motor 16 (current flowing through a plurality of coils) based on the resistance value of the resistance. In the fuel pump 10, the larger the current of the motor 16, the higher the rotation speed of the motor 16 (that is, the higher the rotation speed), and the higher the flow rate of the fuel discharged from the fuel pump 10. The smaller the current of the motor 16, the smaller the rotation speed of the motor 16 (that is, the slower the rotation speed), and the smaller the discharge flow rate of the fuel pump 10. When the motor 16 is a sensorless motor, the rotation speed of the motor 16 is detected, for example, based on the induced voltage at the time of rotation of the motor 16.
 燃料ポンプ10のモータ16は、FPC52によって駆動される。FPC52は、モータ16を回転駆動するための駆動回路56を備えている。FPC52の駆動回路56は、ECU50から入力される入力信号に基づいてモータ16を制御する。駆動回路56は、電源64と、複数(例えば6つ)のスイッチ62とを備えている。駆動回路56の複数のスイッチ62のオンとオフが順に切り替わることによりモータ16の複数のコイルに順に電流が流れる。これによりモータ16が回転する。モータ16が回転する原理については、よく知られているので詳細な説明を省略する。 The motor 16 of the fuel pump 10 is driven by the FPC 52. The FPC 52 includes a drive circuit 56 for rotationally driving the motor 16. The drive circuit 56 of the FPC 52 controls the motor 16 based on the input signal input from the ECU 50. The drive circuit 56 includes a power supply 64 and a plurality of (for example, six) switches 62. By switching the on and off of the plurality of switches 62 of the drive circuit 56 in order, a current flows through the plurality of coils of the motor 16 in order. This causes the motor 16 to rotate. Since the principle of rotation of the motor 16 is well known, detailed description thereof will be omitted.
 燃料ポンプ10のモータ16の電流は、ECU50からFPC52に入力される入力信号のデューティ比に依存する。図2は、FPC52に入力される入力信号の一例を示す図である。図2に示す入力信号は、FPC52の任意の1つのスイッチ62のオンとオフを切り替えるための信号である。図2に示すように、FPC52に入力される入力信号のデューティ比が大きいほどスイッチ62のオン時間の比率が大きく、デューティ比が小さいほどスイッチ62のオン時間の比率が小さい。モータ16の電流は、FPC52に入力される入力信号のデューティ比が大きいほど大きく、入力信号のデューティ比が小さいほど小さくなる。また、モータ16の回転数も、ECU50からFPC52に入力される入力信号のデューティ比に依存する。モータ16の回転数は、FPC52に入力される入力信号のデューティ比が大きいほど大きく、入力信号のデューティ比が小さいほど小さくなる。燃料ポンプ10の吐出流量は、モータ16の回転数に対応している。 The current of the motor 16 of the fuel pump 10 depends on the duty ratio of the input signal input from the ECU 50 to the FPC 52. FIG. 2 is a diagram showing an example of an input signal input to the FPC 52. The input signal shown in FIG. 2 is a signal for switching on and off of any one switch 62 of the FPC 52. As shown in FIG. 2, the larger the duty ratio of the input signal input to the FPC 52, the larger the ratio of the on-time of the switch 62, and the smaller the duty ratio, the smaller the ratio of the on-time of the switch 62. The current of the motor 16 increases as the duty ratio of the input signal input to the FPC 52 increases, and decreases as the duty ratio of the input signal decreases. The rotation speed of the motor 16 also depends on the duty ratio of the input signal input from the ECU 50 to the FPC 52. The rotation speed of the motor 16 increases as the duty ratio of the input signal input to the FPC 52 increases, and decreases as the duty ratio of the input signal decreases. The discharge flow rate of the fuel pump 10 corresponds to the rotation speed of the motor 16.
 図1に示すように、燃料供給通路30は、その上流端部が燃料ポンプ10の吐出口104に接続されている。燃料ポンプ10から吐出された燃料が燃料供給通路30を流れる。燃料供給通路30の下流端部は、エンジン40に取り付けられている燃料噴射装置42に接続されている。燃料供給通路30は、燃料ポンプ10から吐出された燃料を燃料噴射装置42に供給する。燃料噴射装置42からエンジン40に燃料が噴射される。 As shown in FIG. 1, the upstream end of the fuel supply passage 30 is connected to the discharge port 104 of the fuel pump 10. The fuel discharged from the fuel pump 10 flows through the fuel supply passage 30. The downstream end of the fuel supply passage 30 is connected to the fuel injection device 42 attached to the engine 40. The fuel supply passage 30 supplies the fuel discharged from the fuel pump 10 to the fuel injection device 42. Fuel is injected from the fuel injection device 42 into the engine 40.
 燃料供給通路30には逆止弁24と高圧ポンプ44が設けられている。逆止弁24は、逆止弁24よりも上流側(燃料ポンプ10側)から下流側(エンジン40側)に燃料が流れることを許容し、逆止弁24よりも下流側から上流側に燃料が流れることを禁止する。高圧ポンプ44は、燃料供給通路30を通じて供給される燃料を昇圧して吐出する。高圧ポンプ44は、燃料ポンプ10よりも高圧で燃料を吐出する。高圧ポンプ44が動作している状態では燃料噴射装置42からエンジン40に高圧の燃料が噴射される。 The fuel supply passage 30 is provided with a check valve 24 and a high pressure pump 44. The check valve 24 allows fuel to flow from the upstream side (fuel pump 10 side) to the downstream side (engine 40 side) of the check valve 24, and the fuel flows from the downstream side to the upstream side of the check valve 24. Is prohibited from flowing. The high-pressure pump 44 boosts and discharges the fuel supplied through the fuel supply passage 30. The high-pressure pump 44 discharges fuel at a higher pressure than the fuel pump 10. When the high-pressure pump 44 is operating, high-pressure fuel is injected from the fuel injection device 42 into the engine 40.
 燃料供給通路30には第1排出通路32と第2排出通路34が接続されている。燃料供給通路30内の燃料の圧力が高くなると、それと共に第1排出通路32内の燃料の圧力、及び、第2排出通路34内の燃料の圧力も高くなる。燃料供給通路30内の燃料の圧力が低くなると、それと共に第1排出通路32内の燃料の圧力、及び、第2排出通路34内の燃料の圧力も低くなる。 The first discharge passage 32 and the second discharge passage 34 are connected to the fuel supply passage 30. As the pressure of the fuel in the fuel supply passage 30 increases, the pressure of the fuel in the first discharge passage 32 and the pressure of the fuel in the second discharge passage 34 also increase. When the pressure of the fuel in the fuel supply passage 30 becomes low, the pressure of the fuel in the first discharge passage 32 and the pressure of the fuel in the second discharge passage 34 also become low.
 第1排出通路32は、その上流端部が逆止弁24よりも上流側(燃料ポンプ10側)の燃料供給通路30に接続されている。逆止弁24よりも上流側の燃料供給通路30を流れる燃料の一部が第1排出通路32に流入する。第1排出通路32の下流端部は、燃料タンク12内に配置されている。第1排出通路32を流れた燃料が第1排出通路32の下流端部から燃料タンク12内に排出される。第1排出通路32は、逆止弁24よりも上流側の燃料供給通路30を流れる燃料の一部を燃料タンク12内に排出するための通路である。 The upstream end of the first discharge passage 32 is connected to the fuel supply passage 30 on the upstream side (fuel pump 10 side) of the check valve 24. A part of the fuel flowing through the fuel supply passage 30 on the upstream side of the check valve 24 flows into the first discharge passage 32. The downstream end of the first discharge passage 32 is arranged in the fuel tank 12. The fuel that has flowed through the first discharge passage 32 is discharged into the fuel tank 12 from the downstream end of the first discharge passage 32. The first discharge passage 32 is a passage for discharging a part of the fuel flowing through the fuel supply passage 30 on the upstream side of the check valve 24 into the fuel tank 12.
 第1排出通路32には第1圧力調整装置20が設けられている。第1圧力調整装置20は、例えば、第1排出通路32を開閉する開閉弁により構成されている。第1圧力調整装置20は、第1圧力調整装置20よりも上流側(燃料供給通路30側)の第1排出通路32内の燃料の圧力が所定の第1許容圧力以上になると開状態になり、第1許容圧力未満になると閉状態になる。所定の第1許容圧力は適宜設定可能である。第1許容圧力は、後述する第2許容圧力よりも低い圧力である。第1圧力調整装置20が開状態になると、逆止弁24よりも上流側の燃料供給通路30内の燃料の一部が第1排出通路32を通じて燃料タンク12内に排出される。これにより、燃料供給通路30内の燃料の圧力が過剰に高くなることが抑制される。第1圧力調整装置20が閉状態になると、第1排出通路32を通じて燃料が排出されなくなる。 The first pressure adjusting device 20 is provided in the first discharge passage 32. The first pressure adjusting device 20 is composed of, for example, an on-off valve that opens and closes the first discharge passage 32. The first pressure adjusting device 20 is opened when the pressure of the fuel in the first discharging passage 32 on the upstream side (fuel supply passage 30 side) of the first pressure adjusting device 20 becomes equal to or higher than the predetermined first allowable pressure. , When the pressure becomes less than the first allowable pressure, the closed state is obtained. The predetermined first allowable pressure can be appropriately set. The first allowable pressure is a pressure lower than the second allowable pressure described later. When the first pressure adjusting device 20 is opened, a part of the fuel in the fuel supply passage 30 on the upstream side of the check valve 24 is discharged into the fuel tank 12 through the first discharge passage 32. This prevents the pressure of the fuel in the fuel supply passage 30 from becoming excessively high. When the first pressure adjusting device 20 is closed, fuel is not discharged through the first discharge passage 32.
 第1圧力調整装置20よりも下流側(燃料タンク12側)の第1排出通路32には絞り26(流れ制限部の一例)が設けられている。絞り26は、第1排出通路32を流れる燃料の流れを制限する。絞り26は、絞り26よりも上流側(燃料供給通路30側)から下流側(燃料タンク12側)に流れる燃料の流れを制限する。絞り26よりも上流側の第1排出通路32内の燃料の圧力は、絞り26よりも下流側の第1排出通路32内(又は燃料タンク12内)の燃料の圧力よりも高い。第1排出通路32を流れる燃料の流量が多くなるにしたがって、絞り26よりも上流側の第1排出通路32内の燃料の圧力が高くなる。絞り26は、第1排出通路32を流れる燃料の流れを制限することにより燃料供給通路30内の燃料の圧力を上昇させる。燃料の圧力の上昇率は、絞り26の開口径に基づいて適宜設定可能である。 A throttle 26 (an example of a flow limiting unit) is provided in the first discharge passage 32 on the downstream side (fuel tank 12 side) of the first pressure adjusting device 20. The throttle 26 limits the flow of fuel through the first discharge passage 32. The throttle 26 limits the flow of fuel flowing from the upstream side (fuel supply passage 30 side) to the downstream side (fuel tank 12 side) of the throttle 26. The pressure of the fuel in the first discharge passage 32 on the upstream side of the throttle 26 is higher than the pressure of the fuel in the first discharge passage 32 (or in the fuel tank 12) on the downstream side of the throttle 26. As the flow rate of the fuel flowing through the first discharge passage 32 increases, the pressure of the fuel in the first discharge passage 32 on the upstream side of the throttle 26 increases. The throttle 26 increases the pressure of the fuel in the fuel supply passage 30 by limiting the flow of the fuel through the first discharge passage 32. The rate of increase in fuel pressure can be appropriately set based on the opening diameter of the throttle 26.
 第2排出通路34は、その上流端部が逆止弁24よりも下流側(エンジン40側)の燃料供給通路30に接続されている。逆止弁24よりも下流側の燃料供給通路30を流れる燃料の一部が第2排出通路34に流入する。第2排出通路34の下流端部は、燃料タンク12内に配置されている。第2排出通路34を流れた燃料が第2排出通路34の下流端部から燃料タンク12内に排出される。第2排出通路34は、逆止弁24よりも下流側の燃料供給通路30を流れる燃料の一部を燃料タンク12内に排出するための通路である。 The upstream end of the second discharge passage 34 is connected to the fuel supply passage 30 on the downstream side (engine 40 side) of the check valve 24. A part of the fuel flowing through the fuel supply passage 30 on the downstream side of the check valve 24 flows into the second discharge passage 34. The downstream end of the second discharge passage 34 is arranged in the fuel tank 12. The fuel that has flowed through the second discharge passage 34 is discharged into the fuel tank 12 from the downstream end of the second discharge passage 34. The second discharge passage 34 is a passage for discharging a part of the fuel flowing through the fuel supply passage 30 on the downstream side of the check valve 24 into the fuel tank 12.
 第2排出通路34には第2圧力調整装置22が設けられている。第2圧力調整装置22は、例えば、第2排出通路34を開閉する開閉弁により構成されている。第2圧力調整装置22は、第2圧力調整装置22よりも上流側(燃料供給通路30側)の第2排出通路34内の燃料の圧力が所定の第2許容圧力以上になると開状態になり、第2許容圧力未満になると閉状態になる。所定の第2許容圧力は適宜設定可能である。第2許容圧力は、上述した第1圧力調整装置20における第1許容圧力よりも高い圧力である。第2圧力調整装置22が開状態になると、逆止弁24よりも下流側の燃料供給通路30内の燃料の一部が第2排出通路34を通じて燃料タンク12内に排出される。これにより、燃料供給通路30内の燃料の圧力が過剰に高くなることが抑制される。第2圧力調整装置22が閉状態になると、第2排出通路34を通じて燃料が排出されなくなる。 A second pressure adjusting device 22 is provided in the second discharge passage 34. The second pressure adjusting device 22 is composed of, for example, an on-off valve that opens and closes the second discharge passage 34. The second pressure adjusting device 22 is opened when the pressure of the fuel in the second discharge passage 34 on the upstream side (fuel supply passage 30 side) of the second pressure adjusting device 22 becomes equal to or higher than the predetermined second allowable pressure. , When the pressure becomes less than the second allowable pressure, the closed state is obtained. The predetermined second allowable pressure can be appropriately set. The second allowable pressure is a pressure higher than the first allowable pressure in the first pressure adjusting device 20 described above. When the second pressure adjusting device 22 is opened, a part of the fuel in the fuel supply passage 30 on the downstream side of the check valve 24 is discharged into the fuel tank 12 through the second discharge passage 34. This prevents the pressure of the fuel in the fuel supply passage 30 from becoming excessively high. When the second pressure adjusting device 22 is closed, fuel is not discharged through the second discharge passage 34.
 燃料供給装置1のECU50は、例えばCPUとメモリ54(ROMやRAM)を備えており、メモリ54に記憶されているプログラムに基づいて所定の制御や処理を実行する。ECU50は、燃料ポンプ10のモータ16を回転駆動するための入力信号をFPC52に入力する。具体的には、ECU50は、FPC52の駆動回路56における複数のスイッチ62のオンとオフを切り替えるための入力信号をFPC52に入力する。ECU50は、所定のデューティ比の入力信号をFPC52に入力する。また、ECU50は、温度センサ46の検出温度に基づいて高圧ポンプ44に供給される燃料供給通路30内の燃料の温度を推測することができる。 The ECU 50 of the fuel supply device 1 includes, for example, a CPU and a memory 54 (ROM or RAM), and executes predetermined control or processing based on a program stored in the memory 54. The ECU 50 inputs an input signal for rotationally driving the motor 16 of the fuel pump 10 to the FPC 52. Specifically, the ECU 50 inputs an input signal for switching on / off of a plurality of switches 62 in the drive circuit 56 of the FPC 52 to the FPC 52. The ECU 50 inputs an input signal having a predetermined duty ratio to the FPC 52. Further, the ECU 50 can estimate the temperature of the fuel in the fuel supply passage 30 supplied to the high pressure pump 44 based on the detected temperature of the temperature sensor 46.
 [燃料供給装置1の動作]
 次に、燃料供給装置1の動作について説明する。上記の燃料供給装置1では、燃料タンク12内の燃料ポンプ10が、燃料タンク12内の燃料を吸入して燃料供給通路30に吐出する。燃料ポンプ10から燃料供給通路30に吐出された燃料は、燃料供給通路30を流れて高圧ポンプ44に供給される。高圧ポンプ44は、供給された燃料を高圧にして吐出する。高圧ポンプ44から吐出された燃料は、燃料噴射装置42からエンジン40に噴射される。これにより、エンジン40に燃料が供給される。
[Operation of fuel supply device 1]
Next, the operation of the fuel supply device 1 will be described. In the fuel supply device 1 described above, the fuel pump 10 in the fuel tank 12 sucks in the fuel in the fuel tank 12 and discharges it into the fuel supply passage 30. The fuel discharged from the fuel pump 10 to the fuel supply passage 30 flows through the fuel supply passage 30 and is supplied to the high pressure pump 44. The high-pressure pump 44 increases the pressure of the supplied fuel and discharges the fuel. The fuel discharged from the high-pressure pump 44 is injected from the fuel injection device 42 into the engine 40. As a result, fuel is supplied to the engine 40.
 図3は、(a)燃料ポンプ10の吐出流量(X軸)と、燃料供給通路30内の燃料の圧力(Y軸)との関係を示すグラフ、及び、(b)燃料ポンプ10の吐出流量(X軸)と、モータ16の電流(Y軸)との関係を示すグラフである。燃料ポンプ10の吐出流量(X軸)は、燃料ポンプ10のモータ16の回転数と対応している。また、燃料ポンプ10のモータ16の回転数は、FPC52に入力される入力信号のデューティ比に対応している。 3A and 3B are a graph showing the relationship between (a) the discharge flow rate (X-axis) of the fuel pump 10 and the fuel pressure (Y-axis) in the fuel supply passage 30, and (b) the discharge flow rate of the fuel pump 10. It is a graph which shows the relationship between (X-axis) and the current (Y-axis) of a motor 16. The discharge flow rate (X-axis) of the fuel pump 10 corresponds to the rotation speed of the motor 16 of the fuel pump 10. Further, the rotation speed of the motor 16 of the fuel pump 10 corresponds to the duty ratio of the input signal input to the FPC 52.
 図3(a)に示すように、燃料供給装置1では、燃料ポンプ10の吐出流量が多いほど燃料供給通路30内の燃料の圧力が高く、燃料ポンプ10の吐出流量が少ないほど燃料供給通路30内の燃料の圧力が低くなる。 As shown in FIG. 3A, in the fuel supply device 1, the larger the discharge flow rate of the fuel pump 10, the higher the pressure of the fuel in the fuel supply passage 30, and the smaller the discharge flow rate of the fuel pump 10, the higher the fuel supply passage 30. The pressure of the fuel inside becomes low.
 また、燃料供給装置1では、図3(b)に示すように、FPC52に入力される入力信号のデューティ比が大きく、モータ16の回転数が大きく、燃料ポンプ10の吐出流量が多いほど、モータ16の電流が大きくなる。また、入力信号のデューティ比が小さく、モータ16の回転数が小さく、燃料ポンプ10の吐出流量が少ないほど、モータ16の電流が小さくなる。 Further, in the fuel supply device 1, as shown in FIG. 3B, the larger the duty ratio of the input signal input to the FPC 52, the larger the rotation speed of the motor 16, and the larger the discharge flow rate of the fuel pump 10, the more the motor. The current of 16 becomes large. Further, the smaller the duty ratio of the input signal, the smaller the rotation speed of the motor 16, and the smaller the discharge flow rate of the fuel pump 10, the smaller the current of the motor 16.
 燃料供給装置1の動作について更に詳細に説明すると、燃料供給装置1では、図3(a)に示すように、燃料ポンプ10の吐出流量が第1許容吐出流量F1未満のときは、第1圧力調整装置20及び第2圧力調整装置22が閉状態であり、燃料供給通路30内の燃料の圧力が比較的低い状態である。燃料供給装置1では、燃料ポンプ10の吐出流量が第1許容吐出流量F1以上になると、それによって燃料供給通路30内の燃料の圧力が第1許容圧力P1以上になり、その圧力によって、第1排出通路32を開閉する第1圧力調整装置20が開状態になる。第1圧力調整装置20が開状態になると、燃料供給通路30を流れる燃料の一部が第1排出通路32を通じて燃料タンク12内に排出される。これにより、燃料供給通路30内の燃料の圧力が高くなることが抑制される。 Explaining the operation of the fuel supply device 1 in more detail, in the fuel supply device 1, as shown in FIG. 3A, when the discharge flow rate of the fuel pump 10 is less than the first allowable discharge flow rate F1, the first pressure The adjusting device 20 and the second pressure adjusting device 22 are closed, and the pressure of the fuel in the fuel supply passage 30 is relatively low. In the fuel supply device 1, when the discharge flow rate of the fuel pump 10 becomes the first allowable discharge flow rate F1 or more, the pressure of the fuel in the fuel supply passage 30 becomes the first allowable pressure P1 or more, and the pressure causes the first. The first pressure adjusting device 20 that opens and closes the discharge passage 32 is opened. When the first pressure adjusting device 20 is opened, a part of the fuel flowing through the fuel supply passage 30 is discharged into the fuel tank 12 through the first discharge passage 32. As a result, it is possible to prevent the pressure of the fuel in the fuel supply passage 30 from increasing.
 この燃料供給装置1では、図3(b)に示すように、燃料ポンプ10の吐出流量が第1許容吐出流量F1であるとき、その燃料ポンプ10のモータ16の電流はC1である。また、図4に示すように、そのときの入力信号のデューティ比はD1であり、モータ16の回転数はR1である。入力信号のデューティ比がD1以上になり、モータ16の回転数がR1以上になり、燃料ポンプ10の吐出流量が第1許容吐出流量F1以上になると、モータ16の電流がC1以上になる。 In this fuel supply device 1, as shown in FIG. 3B, when the discharge flow rate of the fuel pump 10 is the first allowable discharge flow rate F1, the current of the motor 16 of the fuel pump 10 is C1. Further, as shown in FIG. 4, the duty ratio of the input signal at that time is D1, and the rotation speed of the motor 16 is R1. When the duty ratio of the input signal becomes D1 or more, the rotation speed of the motor 16 becomes R1 or more, and the discharge flow rate of the fuel pump 10 becomes the first allowable discharge flow rate F1 or more, the current of the motor 16 becomes C1 or more.
 また、燃料供給装置1では、図3(a)に示すように、第1圧力調整装置20が開状態のときに燃料ポンプ10の吐出流量が第2許容吐出流量F2以上になると、燃料供給通路30内の燃料の圧力が更に高くなる。燃料供給装置1では、第1排出通路32に設けられている絞り26によって第1排出通路32を流れる燃料の流れが制限され、それによって第1排出通路32内及び燃料供給通路30内の燃料の圧力が上昇する。 Further, in the fuel supply device 1, as shown in FIG. 3A, when the discharge flow rate of the fuel pump 10 becomes the second allowable discharge flow rate F2 or more when the first pressure adjusting device 20 is in the open state, the fuel supply passage. The pressure of the fuel in 30 becomes higher. In the fuel supply device 1, the flow of fuel flowing through the first discharge passage 32 is restricted by the throttle 26 provided in the first discharge passage 32, whereby the fuel in the first discharge passage 32 and the fuel supply passage 30 is restricted. The pressure rises.
 この燃料供給装置1では、図3(b)に示すように、燃料ポンプ10の吐出流量が第2許容吐出流量F2であるとき、その燃料ポンプ10のモータ16の電流はC2である。また、図4に示すように、そのときの入力信号のデューティ比はD2であり、モータ16の回転数はR2である。入力信号のデューティ比がD2以上になり、モータ16の回転数がR2以上になり、燃料ポンプ10の吐出流量が第2許容吐出流量F2以上になると、モータ16の電流がC2以上になる。 In this fuel supply device 1, as shown in FIG. 3B, when the discharge flow rate of the fuel pump 10 is the second allowable discharge flow rate F2, the current of the motor 16 of the fuel pump 10 is C2. Further, as shown in FIG. 4, the duty ratio of the input signal at that time is D2, and the rotation speed of the motor 16 is R2. When the duty ratio of the input signal becomes D2 or more, the rotation speed of the motor 16 becomes R2 or more, and the discharge flow rate of the fuel pump 10 becomes the second allowable discharge flow rate F2 or more, the current of the motor 16 becomes C2 or more.
 更に、燃料供給装置1では、図3(a)に示すように、燃料ポンプ10の吐出流量が第3許容吐出流量F3以上になると、それによって燃料供給通路30内の燃料の圧力が第2許容圧力P2以上になり、その圧力によって、第2排出通路34を開閉する第2圧力調整装置22が開状態になる。第2圧力調整装置22が開状態になると、燃料供給通路30を流れる燃料の一部が第2排出通路34を通じて燃料タンク12内に排出される。これにより、燃料供給通路30内の燃料の圧力が高くなることが抑制される。 Further, in the fuel supply device 1, as shown in FIG. 3A, when the discharge flow rate of the fuel pump 10 becomes the third allowable discharge flow rate F3 or more, the pressure of the fuel in the fuel supply passage 30 becomes the second allowable rate. The pressure becomes P2 or higher, and the pressure causes the second pressure adjusting device 22 that opens and closes the second discharge passage 34 to open. When the second pressure adjusting device 22 is opened, a part of the fuel flowing through the fuel supply passage 30 is discharged into the fuel tank 12 through the second discharge passage 34. As a result, it is possible to prevent the pressure of the fuel in the fuel supply passage 30 from increasing.
 この燃料供給装置1では、図3(b)に示すように、燃料ポンプ10の吐出流量が第3許容吐出流量F3であるとき、その燃料ポンプ10のモータ16の電流はC3である。また、図4に示すように、そのときの入力信号のデューティ比はD3であり、モータ16の回転数はR3である。入力信号のデューティ比がD3以上になり、モータ16の回転数がR3以上になり、燃料ポンプ10の吐出流量が第3許容吐出流量F3以上になると、モータ16の電流がC3以上になる。 In this fuel supply device 1, as shown in FIG. 3B, when the discharge flow rate of the fuel pump 10 is the third allowable discharge flow rate F3, the current of the motor 16 of the fuel pump 10 is C3. Further, as shown in FIG. 4, the duty ratio of the input signal at that time is D3, and the rotation speed of the motor 16 is R3. When the duty ratio of the input signal becomes D3 or more, the rotation speed of the motor 16 becomes R3 or more, and the discharge flow rate of the fuel pump 10 becomes the third allowable discharge flow rate F3 or more, the current of the motor 16 becomes C3 or more.
 上記の燃料供給装置1では、燃料ポンプ10の吐出流量が少なくなると、上記の動作と反対の動作になる。燃料供給装置1のECU50は、燃料供給装置1の動作中に、図3(b)に示すグラフを関係情報としてメモリ54に記憶することができる。 In the above fuel supply device 1, when the discharge flow rate of the fuel pump 10 becomes small, the operation is opposite to the above operation. The ECU 50 of the fuel supply device 1 can store the graph shown in FIG. 3B as related information in the memory 54 during the operation of the fuel supply device 1.
 [燃料供給装置1の制御]
 次に、燃料供給装置1の制御について説明する。燃料供給装置1では、ECU50が、FPC52に所定の入力信号を入力することにより燃料ポンプ10の吐出流量を制御する。ECU50は、燃料ポンプ10の吐出流量を制御することにより、高圧ポンプ44に供給される燃料供給通路30内の燃料の圧力を制御する。
[Control of fuel supply device 1]
Next, the control of the fuel supply device 1 will be described. In the fuel supply device 1, the ECU 50 controls the discharge flow rate of the fuel pump 10 by inputting a predetermined input signal to the FPC 52. The ECU 50 controls the pressure of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 by controlling the discharge flow rate of the fuel pump 10.
 ECU50は、図4に示すグラフを関係情報としてメモリ54に記憶している。関係情報は、例えば燃料供給装置1の動作中に生成される。変形例では、関係情報は、実験や解析に基づいて生成されてもよい。また、関係情報は、後述する関係情報補正処理(図6参照)が実行された後の関係情報であってもよい。ECU50は、図4に示す関係情報に基づいてFPC52に入力信号を入力する。図4に示すように、FPC52に入力される入力信号のデューティ比が大きいほど、燃料ポンプ10のモータ16の回転数が大きく、燃料ポンプ10の吐出流量が大きくなる。また、モータ16の電流が大きくなる。入力信号のデューティ比が小さいほど、燃料ポンプ10のモータ16の回転数が小さく、燃料ポンプ10の吐出流量が小さくなる。また、モータ16の電流が小さくなる。 The ECU 50 stores the graph shown in FIG. 4 as related information in the memory 54. The relationship information is generated, for example, during the operation of the fuel supply device 1. In the variant, the relationship information may be generated based on experimentation or analysis. Further, the relational information may be the relational information after the relational information correction processing (see FIG. 6) described later is executed. The ECU 50 inputs an input signal to the FPC 52 based on the relational information shown in FIG. As shown in FIG. 4, the larger the duty ratio of the input signal input to the FPC 52, the higher the rotation speed of the motor 16 of the fuel pump 10 and the larger the discharge flow rate of the fuel pump 10. In addition, the current of the motor 16 becomes large. The smaller the duty ratio of the input signal, the smaller the rotation speed of the motor 16 of the fuel pump 10, and the smaller the discharge flow rate of the fuel pump 10. Further, the current of the motor 16 becomes small.
 ECU50は、関係情報について、その特性が変化する低側変化点T1、中間変化点T2、及び、高側変化点T3をメモリ54に記憶している。低側変化点T1、中間変化点T2、及び、高側変化点T3は、関係情報のグラフの傾きと切片が変化する点である。低側変化点T1は、第1許容吐出流量F1に対応して関係情報の特性が変化する点である。中間変化点T2は、第2許容吐出流量F2に対応して関係情報の特性が変化する点である。高側変化点T3は、第3許容吐出流量F3に対応して関係情報の特性が変化する点である。 The ECU 50 stores the low-side change point T1, the intermediate change point T2, and the high-side change point T3 in which the characteristics of the related information change in the memory 54. The low side change point T1, the intermediate change point T2, and the high side change point T3 are points where the slope and intercept of the graph of the relational information change. The low side change point T1 is a point where the characteristics of the related information change according to the first allowable discharge flow rate F1. The intermediate change point T2 is a point where the characteristics of the related information change according to the second allowable discharge flow rate F2. The high side change point T3 is a point where the characteristics of the related information change in accordance with the third allowable discharge flow rate F3.
 ECU50は、FPC52に入力する入力信号のデューティ比について、第1基準値D1、第2基準値D2、及び、第3基準値D3をメモリ54に記憶している。第1基準値D1、第2基準値D2、及び、第3基準値D3は、それぞれ、低側変化点T1、中間変化点T2、及び、高側変化点T3に対応している。第1基準値D1は、第1許容吐出流量F1に対応する入力信号のデューティ比である。同様に、第2基準値D2は第2許容吐出流量F2に対応する入力信号のデューティ比であり、第3基準値D3は第3許容吐出流量F3に対応する入力信号のデューティ比である。 The ECU 50 stores the first reference value D1, the second reference value D2, and the third reference value D3 in the memory 54 regarding the duty ratio of the input signal input to the FPC 52. The first reference value D1, the second reference value D2, and the third reference value D3 correspond to the low side change point T1, the intermediate change point T2, and the high side change point T3, respectively. The first reference value D1 is the duty ratio of the input signal corresponding to the first allowable discharge flow rate F1. Similarly, the second reference value D2 is the duty ratio of the input signal corresponding to the second allowable discharge flow rate F2, and the third reference value D3 is the duty ratio of the input signal corresponding to the third allowable discharge flow rate F3.
 ECU50は、更に、各変化点T1、T2、T3、に対応するモータ16の回転数、燃料ポンプ10の吐出流量、モータ16の電流をメモリ54に記憶している。 The ECU 50 further stores in the memory 54 the rotation speed of the motor 16 corresponding to each change point T1, T2, T3, the discharge flow rate of the fuel pump 10, and the current of the motor 16.
 燃料供給装置1では、ECU50が、例えばエンジン40の負荷に関する情報に基づいて燃料ポンプ10の吐出流量を決定する。例えば、ECU50は、エンジン40から排出される排ガスの空燃比に基づいて燃料ポンプ10の吐出流量を決定する。ECU50は、図4に示す関係情報に基づいて、決定した燃料ポンプ10の吐出流量に対応するデューティ比の入力信号をFPC52に入力する。 In the fuel supply device 1, the ECU 50 determines the discharge flow rate of the fuel pump 10 based on, for example, information regarding the load of the engine 40. For example, the ECU 50 determines the discharge flow rate of the fuel pump 10 based on the air-fuel ratio of the exhaust gas discharged from the engine 40. The ECU 50 inputs a duty ratio input signal corresponding to the determined discharge flow rate of the fuel pump 10 to the FPC 52 based on the relational information shown in FIG.
 例えば、ECU50は、第1許容吐出流量F1の燃料を燃料ポンプ10から吐出する場合は、第1許容吐出流量F1に対応するデューティ比D1の入力信号をFPC52に入力する。燃料供給装置1では、入力信号のデューティ比(例えばD1)に対応する吐出流量(例えばF1)の燃料が燃料ポンプ10から吐出される。燃料ポンプ10から吐出された燃料は、燃料供給通路30を流れて高圧ポンプ44に供給される。高圧ポンプ44は、供給された燃料を昇圧して吐出する。高圧ポンプ44から吐出された燃料は、燃料噴射装置42からエンジン40に噴射される。 For example, when the fuel of the first allowable discharge flow rate F1 is discharged from the fuel pump 10, the ECU 50 inputs an input signal of the duty ratio D1 corresponding to the first allowable discharge flow rate F1 to the FPC 52. In the fuel supply device 1, fuel having a discharge flow rate (for example, F1) corresponding to the duty ratio (for example, D1) of the input signal is discharged from the fuel pump 10. The fuel discharged from the fuel pump 10 flows through the fuel supply passage 30 and is supplied to the high pressure pump 44. The high-pressure pump 44 boosts and discharges the supplied fuel. The fuel discharged from the high-pressure pump 44 is injected from the fuel injection device 42 into the engine 40.
 また、ECU50は、メモリ54に記憶している各基準値D1-D4に基づいてFPC52に入力する入力信号を決定してもよい。例えば、ECU50は、第2許容吐出流量F2未満の吐出流量の燃料を燃料ポンプ10から吐出する場合は、FPC52に入力する入力信号を、第2基準値D2未満のデューティ比の入力信号に決定する。ECU50は、決定した第2基準値D2未満のデューティ比の入力信号をFPC52に入力する。 Further, the ECU 50 may determine an input signal to be input to the FPC 52 based on the reference values D1-D4 stored in the memory 54. For example, when the ECU 50 discharges fuel having a discharge flow rate less than the second allowable discharge flow rate F2 from the fuel pump 10, the ECU 50 determines an input signal to be input to the FPC 52 as an input signal having a duty ratio less than the second reference value D2. .. The ECU 50 inputs an input signal having a duty ratio less than the determined second reference value D2 to the FPC 52.
 また、ECU50は、第3許容吐出流量F3以上の吐出流量の燃料を燃料ポンプ10から吐出する場合は、FPC52に入力する入力信号を、第3基準値D3以上のデューティ比の入力信号に決定する。ECU50は、決定した第3基準値D3以上のデューティ比の入力信号をFPC52に入力する。 Further, when the fuel pump 10 discharges fuel having a discharge flow rate of the third allowable discharge flow rate F3 or higher, the ECU 50 determines the input signal to be input to the FPC 52 as an input signal having a duty ratio of the third reference value D3 or higher. .. The ECU 50 inputs an input signal having a duty ratio equal to or higher than the determined third reference value D3 to the FPC 52.
 ECU50は、高圧ポンプ44に供給される燃料供給通路30内の燃料の温度に基づいて燃料ポンプ10の吐出流量を決定してもよい。具体的には、ECU50は、燃料の温度が所定の基準温度(例えば70℃)未満である場合は、燃料ポンプ10の吐出流量を第2許容吐出流量F2未満の吐出流量に決定する。所定の基準温度は、燃料の種類や性状に応じて適宜設定可能である。燃料の温度は、温度センサ46の検出温度に基づいてECU50が推測する。 The ECU 50 may determine the discharge flow rate of the fuel pump 10 based on the temperature of the fuel in the fuel supply passage 30 supplied to the high pressure pump 44. Specifically, when the fuel temperature is less than a predetermined reference temperature (for example, 70 ° C.), the ECU 50 determines the discharge flow rate of the fuel pump 10 to be less than the second allowable discharge flow rate F2. The predetermined reference temperature can be appropriately set according to the type and properties of the fuel. The fuel temperature is estimated by the ECU 50 based on the temperature detected by the temperature sensor 46.
 ECU50は、燃料の温度が所定の基準温度未満である場合は、第2許容吐出流量F2に対応する中間変化点T2未満の領域の関係情報に基づいて燃料ポンプ10のモータ16を制御する。ECU50は、中間変化点T2に対応する第2基準値D2未満のデューティ比の入力信号をFPC52に入力する。これにより、燃料ポンプ10のモータ16の回転数が中間変化点T2に対応する回転数R2未満の回転数になる。また、燃料ポンプ10の吐出流量が中間変化点T2に対応する第2許容吐出流量F2未満の吐出流量になる。また、モータ16の電流が中間変化点T2に対応する電流C2未満の電流になる。そして、高圧ポンプ44に供給される燃料供給通路30内の燃料の圧力が低く抑制される(図3参照)。 When the fuel temperature is lower than the predetermined reference temperature, the ECU 50 controls the motor 16 of the fuel pump 10 based on the relational information in the region below the intermediate change point T2 corresponding to the second allowable discharge flow rate F2. The ECU 50 inputs an input signal having a duty ratio less than the second reference value D2 corresponding to the intermediate change point T2 to the FPC 52. As a result, the rotation speed of the motor 16 of the fuel pump 10 becomes a rotation speed less than the rotation speed R2 corresponding to the intermediate change point T2. Further, the discharge flow rate of the fuel pump 10 becomes a discharge flow rate less than the second allowable discharge flow rate F2 corresponding to the intermediate change point T2. Further, the current of the motor 16 becomes a current less than the current C2 corresponding to the intermediate change point T2. Then, the pressure of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 is suppressed to be low (see FIG. 3).
 FPC52は、モータ16がセンサレスモータである場合は、誘起電圧に基づいて検出されるモータ16の回転数に基づいて、ECU50により指示された入力信号のデューティ比で設定される目標回転数に向けてモータ16を随時制御する。これにより、ECU50は、燃料ポンプ10の吐出流量が第2許容吐出流量F2未満の吐出流量になるように(即ち、モータ16の回転数がR2未満になるように)、モータ16の回転数を随時フィードバック制御する。 When the motor 16 is a sensorless motor, the FPC 52 is directed toward a target rotation speed set by the duty ratio of the input signal instructed by the ECU 50 based on the rotation speed of the motor 16 detected based on the induced voltage. The motor 16 is controlled at any time. As a result, the ECU 50 sets the rotation speed of the motor 16 so that the discharge flow rate of the fuel pump 10 is less than the second allowable discharge flow rate F2 (that is, the rotation speed of the motor 16 is less than R2). Feedback control is performed at any time.
 変形例では、FPC52は、電流センサによって検出されるモータ16の電流に基づいて、入力信号のデューティ比を随時制御してもよい。これにより、FPC52は、燃料ポンプ10の吐出流量が第2許容吐出流量F2未満の吐出流量になるように(即ち、モータ16の電流がC2未満になるように)、モータ16の電流を随時フィードバック制御する。更に、FPC52は、電流センサによって検出されるモータ16の電流及びECU50に記憶された回転数-電流マップに基づいて、ECU50により指示された入力信号のデューティ比で設定される目標回転数に向けてモータ16を随時制御してもよい。 In the modified example, the FPC 52 may control the duty ratio of the input signal at any time based on the current of the motor 16 detected by the current sensor. As a result, the FPC 52 feeds back the current of the motor 16 at any time so that the discharge flow rate of the fuel pump 10 becomes less than the second allowable discharge flow rate F2 (that is, the current of the motor 16 becomes less than C2). Control. Further, the FPC 52 aims at the target rotation speed set by the duty ratio of the input signal instructed by the ECU 50 based on the current of the motor 16 detected by the current sensor and the rotation speed-current map stored in the ECU 50. The motor 16 may be controlled at any time.
 ECU50は、燃料の温度が所定の基準温度以上である場合は、第3許容吐出流量F3に対応する高側変化点T3以上の領域の関係情報に基づいて燃料ポンプ10のモータ16を制御する。ECU50は、高側変化点T3に対応する第3基準値D3以上のデューティ比の入力信号をFPC52に入力する。これにより、燃料ポンプ10のモータ16の回転数が高側変化点T3に対応する回転数R3以上の回転数になる。また、燃料ポンプ10の吐出流量が高側変化点T3に対応する第3許容吐出流量F3以上の吐出流量になる。また、モータ16の電流が高側変化点T3に対応する電流C3以上の電流になる。そして、高圧ポンプ44に供給される燃料供給通路30内の燃料の圧力が高側変化点T3に対応する第2許容圧力P2以上の圧力になる(図3参照)。 When the fuel temperature is equal to or higher than a predetermined reference temperature, the ECU 50 controls the motor 16 of the fuel pump 10 based on the relationship information in the region of the high side change point T3 or higher corresponding to the third allowable discharge flow rate F3. The ECU 50 inputs an input signal having a duty ratio of the third reference value D3 or more corresponding to the high side change point T3 to the FPC 52. As a result, the rotation speed of the motor 16 of the fuel pump 10 becomes the rotation speed of the rotation speed R3 or more corresponding to the high side change point T3. Further, the discharge flow rate of the fuel pump 10 becomes a discharge flow rate equal to or higher than the third allowable discharge flow rate F3 corresponding to the high side change point T3. Further, the current of the motor 16 becomes a current equal to or higher than the current C3 corresponding to the high side change point T3. Then, the pressure of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 becomes a pressure equal to or higher than the second allowable pressure P2 corresponding to the high-side change point T3 (see FIG. 3).
 [効果]
 上記の燃料供給装置1によれば、燃料ポンプ10から燃料を吐出する際に、必要な吐出流量に対応する入力信号をFPC52に入力することができる。これにより、燃料ポンプ10の吐出流量が不要に多くなることを抑制することができ、燃料ポンプ10の消費電力が不要に大きくなることを抑制することができる。また、燃料の圧力が不要に高くなることを抑制することができる。例えば、燃料噴射装置42から低い圧力の燃料を噴射する場合には、関係情報に基づいて少ない吐出流量に対応する入力信号をFPC52に入力することにより、燃料ポンプ10の消費電力を低くしつつ、低い圧力の燃料を噴射することができる。別途の圧力センサを利用しなくても燃料の圧力を適切に制御にすることができる。したがって、上記の燃料供給装置1によれば、消費電力を抑制しつつ簡素な構成で燃料の圧力を制御することができる。
[effect]
According to the fuel supply device 1 described above, when the fuel is discharged from the fuel pump 10, an input signal corresponding to a required discharge flow rate can be input to the FPC 52. As a result, it is possible to suppress the discharge flow rate of the fuel pump 10 from becoming unnecessarily large, and it is possible to suppress the power consumption of the fuel pump 10 from becoming unnecessarily large. In addition, it is possible to prevent the fuel pressure from becoming unnecessarily high. For example, when injecting low pressure fuel from the fuel injection device 42, the power consumption of the fuel pump 10 is reduced by inputting an input signal corresponding to a small discharge flow rate to the FPC 52 based on the related information. Low pressure fuel can be injected. The fuel pressure can be appropriately controlled without using a separate pressure sensor. Therefore, according to the fuel supply device 1 described above, it is possible to control the fuel pressure with a simple configuration while suppressing power consumption.
 また、燃料の温度が低い場合は、燃料が蒸発し難いので、燃料供給通路30内の燃料の圧力を低くすることができる。そのため、ECU50は、燃料の温度が所定の基準温度未満である場合は、中間変化点T2未満の領域の関係情報に基づいてモータ16を制御する。中間変化点T2は、第2許容吐出流量F2に対応して関係情報の特性が変化する点である。この構成によれば、燃料ポンプ10から吐出される燃料の圧力が低くなる領域でモータ16を制御することができる。その結果、燃料ポンプ10の消費電力を抑制することができる。燃料ポンプ10から吐出される燃料の圧力が低くても高圧ポンプ44から高圧の燃料を吐出することができる。よって、消費電力を抑制しつつ簡素な構成で燃料の圧力を制御することができる。 Further, when the temperature of the fuel is low, the fuel is difficult to evaporate, so that the pressure of the fuel in the fuel supply passage 30 can be lowered. Therefore, when the fuel temperature is lower than the predetermined reference temperature, the ECU 50 controls the motor 16 based on the relational information in the region below the intermediate change point T2. The intermediate change point T2 is a point where the characteristics of the related information change according to the second allowable discharge flow rate F2. According to this configuration, the motor 16 can be controlled in a region where the pressure of the fuel discharged from the fuel pump 10 is low. As a result, the power consumption of the fuel pump 10 can be suppressed. Even if the pressure of the fuel discharged from the fuel pump 10 is low, the high pressure fuel can be discharged from the high pressure pump 44. Therefore, it is possible to control the fuel pressure with a simple configuration while suppressing power consumption.
 燃料供給装置1では、第1圧力調整装置20と第2圧力調整装置22の存在により燃料の圧力をある程度制御することができるが、関係情報に基づいてFPC52に入力信号を入力することによって、更に精度良く燃料の圧力を制御することができる。また、消費電力も抑制することができる。 In the fuel supply device 1, the pressure of the fuel can be controlled to some extent by the presence of the first pressure adjusting device 20 and the second pressure adjusting device 22, but further by inputting an input signal to the FPC 52 based on the related information. The fuel pressure can be controlled accurately. In addition, power consumption can be suppressed.
 ECU50は、燃料の温度が基準温度以上である場合は、高側変化点T3以上の領域の関係情報に基づいてモータ16を制御する。高側変化点T3は、第3許容吐出流量F3に対応して関係情報の特性が変化する点である。第3許容吐出流量F3は、燃料供給通路30内の燃料の圧力が第2許容圧力P2になるときの燃料ポンプ10の吐出流量である。この構成によれば、燃料ポンプ10から吐出される燃料の圧力が高くなる領域でモータ16を制御することができる。その結果、燃料供給通路30内の燃料の圧力を高くすることができ、燃料が蒸発し難い状態にすることができる。 When the fuel temperature is equal to or higher than the reference temperature, the ECU 50 controls the motor 16 based on the relational information in the region of the high side change point T3 or higher. The high side change point T3 is a point where the characteristics of the related information change in accordance with the third allowable discharge flow rate F3. The third allowable discharge flow rate F3 is the discharge flow rate of the fuel pump 10 when the pressure of the fuel in the fuel supply passage 30 becomes the second allowable pressure P2. According to this configuration, the motor 16 can be controlled in a region where the pressure of the fuel discharged from the fuel pump 10 is high. As a result, the pressure of the fuel in the fuel supply passage 30 can be increased, and the fuel can be made difficult to evaporate.
 [関係情報補正処理]
 次に、燃料供給装置1で実行される関係情報補正処理について説明する。関係情報補正処理は、メモリ54に記憶されている関係情報(図4参照)を補正する処理である。
[Relationship information correction processing]
Next, the relational information correction process executed by the fuel supply device 1 will be described. The relationship information correction process is a process for correcting the relationship information (see FIG. 4) stored in the memory 54.
 燃料供給装置1では、燃料ポンプ10の吐出流量とモータ16の電流との関係が、例えば、燃料の性状や燃料ポンプ10の劣化具合等によって変化することがある。即ち、燃料ポンプ10のモータ16の回転数とモータ16の電流との関係、及び、入力信号のデューティ比とモータ16の電流との関係が変化することがある。そのため、これらの関係が、過去と現在で異なることがある。例えば、燃料ポンプ10の吐出流量、モータ16の回転数、及び、入力信号のデューティ比が過去と現在で同じであっても、モータ16の現在の電流が過去の電流よりも大きいことがある。この場合に、燃料供給装置1では、ECU50が、メモリ54に記憶している関係情報を補正することができる。 In the fuel supply device 1, the relationship between the discharge flow rate of the fuel pump 10 and the current of the motor 16 may change depending on, for example, the properties of the fuel or the degree of deterioration of the fuel pump 10. That is, the relationship between the rotation speed of the motor 16 of the fuel pump 10 and the current of the motor 16 and the relationship between the duty ratio of the input signal and the current of the motor 16 may change. Therefore, these relationships may differ between the past and the present. For example, even if the discharge flow rate of the fuel pump 10, the rotation speed of the motor 16, and the duty ratio of the input signal are the same in the past and present, the current current of the motor 16 may be larger than the past current. In this case, in the fuel supply device 1, the ECU 50 can correct the related information stored in the memory 54.
 ここでは、図5に示すように、ECU50が補正前の関係情報Hn-1を記憶しているとする。補正前の関係情報Hn-1は、例えば、燃料ポンプ10が過去に燃料を吐出したとき生成された情報である。或いは、補正前の関係情報Hn-1は、実験や解析に基づいて生成された情報であってもよい。また、補正前の関係情報Hn-1は、過去に関係情報補正処理(図6参照)が実行された後の関係情報であってもよい。 Here, as shown in FIG. 5, it is assumed that the ECU 50 stores the relational information Hn -1 before the correction. The relationship information H n-1 before correction is, for example, information generated when the fuel pump 10 discharges fuel in the past. Alternatively, the relationship information H n-1 before correction may be information generated based on an experiment or analysis. Further, the relational information Hn -1 before the correction may be the relational information after the relational information correction processing (see FIG. 6) has been executed in the past.
 補正前の関係情報Hn-1は、複数のグラフG1n-1、G2n-1、G3n-1、G4n-1の情報を含んでいる。グラフG1n-1は、第1許容吐出流量F1未満の範囲のグラフである。また、グラフG2n-1は、第1許容吐出流量F1以上かつ第2許容吐出流量F2未満の範囲のグラフであり、グラフG3n-1は、第2許容吐出流量F2以上かつ第3許容吐出流量F3未満の範囲のグラフであり、グラフG4n-1は、第3許容吐出流量F3以上の範囲のグラフである。 The relationship information H n-1 before correction includes information of a plurality of graphs G1 n-1 , G2 n-1 , G3 n-1 , and G4 n-1 . Graph G1 n-1 is a graph in the range of less than the first allowable discharge flow rate F1. Further, the graph G2 n-1 is a graph in the range of the first allowable discharge flow rate F1 or more and less than the second allowable discharge flow rate F2, and the graph G3 n-1 is the second allowable discharge flow rate F2 or more and the third allowable discharge flow rate F2 or less. It is a graph in the range of less than the flow rate F3, and the graph G4 n-1 is a graph in the range of the third allowable discharge flow rate F3 or more.
 また、補正前の関係情報Hn-1は、複数のグラフ変化点T1n-1、T2n-1、T3n-1の情報を含んでいる。グラフ変化点T1n-1は、グラフG1n-1からグラフG2n-1に変化する部分である。また、グラフ変化点T2n-1は、グラフG2n-1からグラフG3n-1に変化する部分であり、グラフ変化点T3n-1は、グラフG3n-1からグラフG4n-1に変化する部分である。 Further, the relationship information H n-1 before correction includes information on a plurality of graph change points T1 n-1 , T2 n-1 , and T3 n-1 . The graph change point T1 n-1 is a portion where the graph G1 n-1 changes to the graph G2 n-1 . Further, the graph change point T2 n-1 is a portion where the graph G2 n-1 changes to the graph G3 n-1 , and the graph change point T3 n-1 changes from the graph G3 n-1 to the graph G4 n-1 . It's a changing part.
 図6は、実施例に係る関係情報補正処理のフローチャートである。関係情報補正処理は、例えば、燃料供給装置1の高圧ポンプ44が始動すると開始され、高圧ポンプ44の動作中に実行される。図6に示すように、関係情報補正処理のS2では、ECU50が、所定の実行条件が成立したか否かを判断する。例えば、エンジン40が動作中であり、かつ、燃料ポンプ10が動作中である場合は、所定の実行条件が成立する。ECU50は、S2でYESの場合はS4に進み、NOの場合は待機する。 FIG. 6 is a flowchart of the related information correction process according to the embodiment. The relationship information correction process is started, for example, when the high-pressure pump 44 of the fuel supply device 1 is started, and is executed during the operation of the high-pressure pump 44. As shown in FIG. 6, in S2 of the relational information correction process, the ECU 50 determines whether or not a predetermined execution condition is satisfied. For example, when the engine 40 is operating and the fuel pump 10 is operating, a predetermined execution condition is satisfied. If YES in S2, the ECU 50 proceeds to S4, and if NO, waits.
 続くS4では、FPC52が、燃料ポンプ10の吐出流量が所定の目標吐出流量となるように燃料ポンプ10を制御する。目標吐出流量は任意の吐出流量である。例えば、FPC52は、第3許容吐出流量F3以上の吐出流量を目標吐出流量として燃料ポンプ10を制御する。燃料ポンプ10の吐出流量が第3許容吐出流量F3以上になると、燃料供給通路30内の燃料の圧力が第2許容圧力P2以上になる(図3参照)。 In the following S4, the FPC 52 controls the fuel pump 10 so that the discharge flow rate of the fuel pump 10 becomes a predetermined target discharge flow rate. The target discharge flow rate is an arbitrary discharge flow rate. For example, the FPC 52 controls the fuel pump 10 with a discharge flow rate equal to or higher than the third allowable discharge flow rate F3 as a target discharge flow rate. When the discharge flow rate of the fuel pump 10 becomes the third allowable discharge flow rate F3 or more, the pressure of the fuel in the fuel supply passage 30 becomes the second allowable pressure P2 or more (see FIG. 3).
 燃料ポンプ10の吐出流量はモータ16の回転数と対応している。そのため、S4では、FPC52が、モータ16の回転数を所定の目標回転数となるようにモータ16を制御する。目標回転数は目標吐出流量と対応している。また、S4では、ECU50が、燃料ポンプ10の吐出流量が目標吐出流量になったとき(即ち、モータ16の回転数が目標回転数になったとき)の入力信号のデューティ比を特定する。 The discharge flow rate of the fuel pump 10 corresponds to the rotation speed of the motor 16. Therefore, in S4, the FPC 52 controls the motor 16 so that the rotation speed of the motor 16 becomes a predetermined target rotation speed. The target rotation speed corresponds to the target discharge flow rate. Further, in S4, the ECU 50 specifies the duty ratio of the input signal when the discharge flow rate of the fuel pump 10 reaches the target discharge flow rate (that is, when the rotation speed of the motor 16 reaches the target rotation speed).
 続くS6では、ECU50が、燃料ポンプ10の吐出流量が目標吐出流量になったとき(即ち、モータ16の回転数が目標回転数になったとき)のモータ16の電流を特定する。S4とS6の処理によって、燃料ポンプ10の吐出流量、モータ16の回転数、及び、入力信号のデューティ比と、モータ16の電流との関係が特定される。ECU50は、特定した関係をメモリ54に記憶する。 In the following S6, the ECU 50 specifies the current of the motor 16 when the discharge flow rate of the fuel pump 10 reaches the target discharge flow rate (that is, when the rotation speed of the motor 16 reaches the target rotation speed). By the processing of S4 and S6, the relationship between the discharge flow rate of the fuel pump 10, the rotation speed of the motor 16, the duty ratio of the input signal, and the current of the motor 16 is specified. The ECU 50 stores the specified relationship in the memory 54.
 続くS8では、ECU50が、S6で特定したモータ16の電流が所定の許容範囲内であるか否かを判断する。ECU50は、S8でYESの場合はS10に進み、S8でNOの場合はS30に進む。S8でNOの後のS30では、ECU50が警告灯を点灯する。警告灯は、例えば車両の計器盤に設けられている。なお、S8の処理は省略してもよい。 In the following S8, the ECU 50 determines whether or not the current of the motor 16 specified in S6 is within a predetermined allowable range. The ECU 50 proceeds to S10 if YES in S8, and proceeds to S30 if NO in S8. In S30 after NO in S8, the ECU 50 turns on the warning light. The warning light is provided, for example, on the instrument panel of the vehicle. The processing of S8 may be omitted.
 S8でYESの後のS10では、ECU50が、燃料ポンプ10の目標吐出流量を下げて新たな目標吐出流量を設定する(即ち、モータ16の目標回転数を下げて新たな目標回転数を設定する)。目標吐出流量及び目標回転数の下げ幅は適宜設定可能である。続くS12では、上記のS4と同様に、FPC52が、燃料ポンプ10の吐出流量が新たな目標吐出流量となるように(即ち、モータ16の回転数が新たな目標回転数となるように)燃料ポンプ10を制御する。また、S12では、ECU50が、燃料ポンプ10の吐出流量が目標吐出流量になったとき(即ち、モータ16の回転数が目標回転数になったとき)の入力信号のデューティ比を特定する。続くS14では、上記のS6と同様に、ECU50が、燃料ポンプ10の吐出流量が目標吐出流量になったとき(即ち、モータ16の回転数が目標回転数になったとき)のモータ16の電流を特定する。 In S10 after YES in S8, the ECU 50 lowers the target discharge flow rate of the fuel pump 10 to set a new target discharge flow rate (that is, lowers the target rotation speed of the motor 16 to set a new target rotation speed). ). The target discharge flow rate and the target rotation speed reduction range can be set as appropriate. In the following S12, similarly to the above S4, the FPC 52 fuels the fuel pump 10 so that the discharge flow rate becomes the new target discharge flow rate (that is, the rotation speed of the motor 16 becomes the new target rotation speed). Control the pump 10. Further, in S12, the ECU 50 specifies the duty ratio of the input signal when the discharge flow rate of the fuel pump 10 reaches the target discharge flow rate (that is, when the rotation speed of the motor 16 reaches the target rotation speed). In the following S14, similarly to the above S6, the ECU 50 determines the current of the motor 16 when the discharge flow rate of the fuel pump 10 reaches the target discharge flow rate (that is, when the rotation speed of the motor 16 reaches the target rotation rate). To identify.
 S10とS12とS14の処理によって、燃料ポンプ10の吐出流量、モータ16の回転数、及び、入力信号のデューティ比と、モータ16の電流との関係が特定される。ECU50は、特定した関係をメモリ54に記憶する。 By the processing of S10, S12, and S14, the relationship between the discharge flow rate of the fuel pump 10, the rotation speed of the motor 16, the duty ratio of the input signal, and the current of the motor 16 is specified. The ECU 50 stores the specified relationship in the memory 54.
 その後、ECU50は、所定の範囲にわたって上記のS10、S12、S14の処理を繰り返す。ECU50は、例えば、燃料ポンプ10の吐出流量が第3許容吐出流量F3以上の範囲(図5参照)、第3許容吐出流量F3未満かつ第2許容吐出流量F2以上の範囲、第2許容吐出流量F2未満かつ第1許容吐出流量F1以上の範囲、及び、第1許容吐出流量F1未満の範囲について、S10、S12、S14の処理を繰り返す。繰り返しの回数は特に限定されない。 After that, the ECU 50 repeats the above processes of S10, S12, and S14 over a predetermined range. In the ECU 50, for example, the discharge flow rate of the fuel pump 10 is in the range of the third allowable discharge flow rate F3 or more (see FIG. 5), the range of less than the third allowable discharge flow rate F3 and the range of the second allowable discharge flow rate F2 or more, and the second allowable discharge flow rate. The processing of S10, S12, and S14 is repeated for the range of less than F2 and the first allowable discharge flow rate F1 or more, and the range of less than the first allowable discharge flow rate F1. The number of repetitions is not particularly limited.
 続くS16では、ECU50が、複数のグラフG4、G3、G2、G1を算出する(図5参照)。例えば、ECU50は、燃料ポンプ10の吐出流量が第3許容吐出流量F3未満かつ第2許容吐出流量F2以上の範囲にわたってS10、S12、S14の処理を繰り返すことによって、グラフG3を算出することができる。また、ECU50は、燃料ポンプ10の吐出流量が第2許容吐出流量F2未満かつ第1許容吐出流量F1以上の範囲にわたって上記のS10、S12、S14の処理を繰り返すことによって、グラフG2を算出することができる。ECU50は、例えば数学的な処理に基づいてグラフG3、G2を算出する。他の複数のグラフG4、G1についても同様である。なお、変形例では、ECU50が一部のグラフのみを算出する構成であってもよい。ECU50が必ずしも全てのグラフG4、G3、G2、G1を算出しなくてもよい。 In the following S16, the ECU 50 calculates a plurality of graphs G4 n , G3 n , G2 n , and G1 n (see FIG. 5). For example, the ECU 50 can calculate the graph G3 n by repeating the processes of S10, S12, and S14 over a range in which the discharge flow rate of the fuel pump 10 is less than the third allowable discharge flow rate F3 and the second allowable discharge flow rate F2 or more. can. Further, the ECU 50 calculates the graph G2 n by repeating the above processes of S10, S12, and S14 over a range in which the discharge flow rate of the fuel pump 10 is less than the second allowable discharge flow rate F2 and equal to or larger than the first allowable discharge flow rate F1. be able to. The ECU 50 calculates graphs G3 n and G2 n based on, for example, mathematical processing. The same applies to the other plurality of graphs G4 n and G1 n . In the modified example, the ECU 50 may be configured to calculate only a part of the graphs. The ECU 50 does not necessarily have to calculate all the graphs G4 n , G3 n , G2 n , and G1 n .
 続くS18では、ECU50が、複数のグラフ変化点T3、T2、T1を算出する(図5参照)。例えば、ECU50は、グラフG3、G2が直線である場合は、グラフG3、G2の交点をグラフ変化点T2として算出する。また、図7に示すように、グラフG3、G2が曲線である場合は、ECU50は、グラフG3の外挿線L3とグラフG2の外挿線L2との交点をグラフ変化点T2として算出してもよい。ECU50は、例えば数学的な処理に基づいてグラフ変化点T2を算出する。他の複数のグラフ変化点T3、T1についても同様である。なお、変形例では、ECU50が一部のグラフ変化点のみを算出する構成であってもよい。ECU50が必ずしも全てのグラフ変化点T3、T2、T1を算出しなくてもよい。 In the following S18, the ECU 50 calculates a plurality of graph change points T3 n , T2 n , and T1 n (see FIG. 5). For example, when the graphs G3 n and G2 n are straight lines, the ECU 50 calculates the intersection of the graphs G3 n and G2 n as the graph change point T2 n . Further, as shown in FIG. 7, when the graphs G3 n and G2 n are curves, the ECU 50 sets the intersection of the extrapolation line L3 of the graph G3 n and the extrapolation line L2 of the graph G2 n as the graph change point T2. It may be calculated as n . The ECU 50 calculates the graph change point T2 n based on, for example, mathematical processing. The same applies to the other plurality of graph change points T3 n and T1 n . In the modified example, the ECU 50 may be configured to calculate only a part of the graph change points. The ECU 50 does not necessarily have to calculate all the graph change points T3 n , T2 n , and T1 n .
 続くS20では、ECU50が、上記のS16とS18の処理で取得した情報に基づいて、メモリ54に記憶している関係情報Hn-1を補正する。ECU50は、例えば数学的な処理に基づいて関係情報Hn-1を補正することができる。関係情報Hn-1を補正する方法は特に限定されない。 In the subsequent S20, the ECU 50 corrects the relational information Hn -1 stored in the memory 54 based on the information acquired in the processes of the above S16 and S18. The ECU 50 can correct the relational information Hn -1 based on, for example, mathematical processing. The method for correcting the relational information H n-1 is not particularly limited.
 例えば、ECU50は、図5に示すグラフ変化点T2に対応するモータ16の電流C2と、グラフ変化点T2n-1に対応するモータ16の電流C2n-1との差に基づいて、関係情報Hn-1を補正してもよい。ECU50は、C2とC2n-1との差だけ関係情報Hn-1を平行移動してもよい。これにより、ECU50は、補正後の関係情報Hを取得することができる。また、ECU50は、補正前の中間変化点T2n-1を、新たな中間変化点T2に補正してもよい。 For example, the ECU 50 is based on the difference between the current C2 n of the motor 16 corresponding to the graph change point T2 n shown in FIG. 5 and the current C2 n - 1 of the motor 16 corresponding to the graph change point T2 n-1 . The relationship information H n-1 may be corrected. The ECU 50 may translate the relationship information H n-1 by the difference between C2 n and C2 n-1 . As a result, the ECU 50 can acquire the corrected relationship information Hn . Further, the ECU 50 may correct the intermediate change point T2 n-1 before correction to a new intermediate change point T2 n .
 また、ECU50は、モータ16の電流C2とC2n-1との差、及び、C3とC3n-1との差に基づいて、関係情報Hn-1を補正してもよい。例えば、ECU50は、グラフG3の傾きを所定の割合でグラフG1n-1、G2n-1、G4n-1のそれぞれに反映させてもよい。これにより、ECU50は、補正後の関係情報Hを取得してもよい。 Further, the ECU 50 may correct the relationship information H n-1 based on the difference between the currents C2 n and C2 n-1 of the motor 16 and the difference between C3 n and C3 n-1 . For example, the ECU 50 may reflect the slope of the graph G3 n in each of the graphs G1 n-1 , G2 n-1 , and G4 n-1 at a predetermined ratio. As a result, the ECU 50 may acquire the corrected relationship information Hn .
 また、ECU50は、グラフG4に基づいて関係情報Hn-1を補正してもよい。例えば、ECU50は、グラフG4とグラフG4n-1との差を所定の割合でグラフG1n-1、G2n-1、G3n-1のそれぞれに反映させてもよい。 Further, the ECU 50 may correct the relational information H n-1 based on the graph G4 n . For example, the ECU 50 may reflect the difference between the graph G4 n and the graph G4 n-1 in each of the graphs G1 n-1 , G2 n-1 , and G3 n-1 at a predetermined ratio.
 [効果]
 上記の燃料供給装置1によれば、燃料ポンプ10が実際に燃料を吐出したときの吐出流量に対応するモータ16の回転数と電流との関係に基づいて関係情報Hn-1を補正することにより、実際の燃料の性状や燃料ポンプ10の状態を補正後の関係情報Hに反映させることができる。補正後の関係情報Hに基づいて燃料ポンプ10を制御することにより、燃料ポンプ10を精度良く制御することができる。したがって、確実に第1圧力調整装置20の調圧域と第2圧力調整装置22の調圧域を狙うことができ、燃料の吐出流量と圧力を精度良く制御することができる。
[effect]
According to the fuel supply device 1 described above, the relational information Hn -1 is corrected based on the relationship between the rotation speed and the current of the motor 16 corresponding to the discharge flow rate when the fuel pump 10 actually discharges the fuel. Therefore, the actual properties of the fuel and the state of the fuel pump 10 can be reflected in the corrected relationship information Hn . By controlling the fuel pump 10 based on the corrected relationship information Hn , the fuel pump 10 can be controlled with high accuracy. Therefore, it is possible to reliably aim at the pressure adjusting region of the first pressure adjusting device 20 and the pressure adjusting region of the second pressure adjusting device 22, and it is possible to accurately control the fuel discharge flow rate and the pressure.
 また、上記の燃料供給装置1によれば、燃料ポンプ10が実際に燃料を吐出したときの吐出流量に対応するモータ16の回転数と電流との関係に基づいて中間変化点T2n-1を補正することにより、実際の燃料の性状や燃料ポンプ10の状態を補正後の中間変化点T2に反映させることができる。この補正後の中間変化点T2に基づいて入力信号を決定することにより、燃料の吐出流量と圧力を精度良く制御することができる。 Further, according to the fuel supply device 1 described above, the intermediate change point T2 n-1 is set based on the relationship between the rotation speed and the current of the motor 16 corresponding to the discharge flow rate when the fuel pump 10 actually discharges the fuel. By making the correction, the actual properties of the fuel and the state of the fuel pump 10 can be reflected in the corrected intermediate change point T2 n . By determining the input signal based on the corrected intermediate change point T2 n , the fuel discharge flow rate and the pressure can be controlled with high accuracy.
 また、上記の燃料供給装置1によれば、グラフG3の外挿線L3とグラフG2の外挿線L2との交点に基づいてグラフ変化点T2を算出することにより、グラフG3とグラフG2が曲線であっても中間変化点T2n-1の補正を精度良く行うことができる。 Further, according to the fuel supply device 1 described above, the graph G3 n is calculated by calculating the graph change point T2 n based on the intersection of the extrapolation line L3 of the graph G3 n and the extrapolation line L2 of the graph G2 n . Even if the graph G2 n is a curve, the intermediate change point T2 n-1 can be corrected with high accuracy.
 また、上記の燃料供給装置1では、ECU50が、車両のエンジン40の動作中に、上記の関係情報補正処理(図6参照)を複数回実行してもよい。エンジン40の動作中に関係情報n-1を少なくとも1回補正することにより、エンジン40の動作中の実際の燃料の性状や燃料ポンプ10の状態を関係情報Hに反映させることができる。 Further, in the fuel supply device 1, the ECU 50 may execute the above-mentioned relational information correction process (see FIG. 6) a plurality of times while the engine 40 of the vehicle is operating. By correcting the relational information n-1 at least once during the operation of the engine 40, the actual properties of the fuel during the operation of the engine 40 and the state of the fuel pump 10 can be reflected in the relational information Hn .
 [対応関係]
 図4及び図5に示すグラフが「関係情報」の一例である。中間変化点T2が「第1変化点」の一例である。高側変化点T3が「第2変化点」の一例である。グラフG2が「第1グラフ」の一例である。グラフG3が「第2グラフ」の一例である。ECU50及びFPC52が制御部の一例である。
[Correspondence]
The graphs shown in FIGS. 4 and 5 are examples of “relationship information”. The intermediate change point T2 is an example of the "first change point". The high side change point T3 is an example of the "second change point". Graph G2 n is an example of the “first graph”. Graph G3 n is an example of the “second graph”. The ECU 50 and the FPC 52 are examples of the control unit.
 以上、一実施例について説明したが、具体的な態様は上記実施例に限定されるものではない。以下の説明において、上記の説明における構成と同様の構成については、同一の符号を付して説明を省略する。 Although one embodiment has been described above, the specific embodiment is not limited to the above embodiment. In the following description, the same components as those in the above description will be designated by the same reference numerals and the description thereof will be omitted.
 [変形例]
 (1)上記の実施例では、第2排出通路34が逆止弁24よりも下流側の燃料供給通路30に接続されていたが(図1参照)、変形例では、図8に示すように、第2排出通路34が逆止弁24よりも上流側の燃料供給通路30に接続されていてもよい。また、変形例では、燃料供給装置1が複数(例えば2つ)の第1排出通路32を備えていてもよい。一方の第1排出通路32が逆止弁24よりも上流側の燃料供給通路30に接続されており、他方の第1排出通路32が逆止弁24よりも下流側の燃料供給通路30に接続されていてもよい。
[Modification example]
(1) In the above embodiment, the second discharge passage 34 is connected to the fuel supply passage 30 on the downstream side of the check valve 24 (see FIG. 1), but in the modified example, as shown in FIG. The second discharge passage 34 may be connected to the fuel supply passage 30 on the upstream side of the check valve 24. Further, in the modified example, the fuel supply device 1 may include a plurality of (for example, two) first discharge passages 32. One first discharge passage 32 is connected to the fuel supply passage 30 on the upstream side of the check valve 24, and the other first discharge passage 32 is connected to the fuel supply passage 30 on the downstream side of the check valve 24. It may have been done.
 (2)温度センサ46は、高圧ポンプ44に供給される燃料供給通路30内の燃料の温度を直接検出する構成であってもよい。ECU50は、温度センサ46の検出温度に基づいて高圧ポンプ44に供給される燃料供給通路30内の燃料の温度を実測する構成であってもよい。 (2) The temperature sensor 46 may be configured to directly detect the temperature of the fuel in the fuel supply passage 30 supplied to the high pressure pump 44. The ECU 50 may be configured to actually measure the temperature of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 based on the detected temperature of the temperature sensor 46.
 (3)上記の実施例では、ECU50がモータ16の回転数を制御することにより燃料ポンプ10の吐出流量を制御する構成であった。変形例では、ECU50がモータ16の電圧(即ち、モータ16に印加される電圧)を制御することにより燃料ポンプ10の吐出流量を制御する構成であってもよい。この場合、図3(b)、図4、及び、図5に示すグラフのX軸のモータ16の回転数が、モータ16の電圧に置換される。 (3) In the above embodiment, the ECU 50 controls the discharge flow rate of the fuel pump 10 by controlling the rotation speed of the motor 16. In the modified example, the ECU 50 may be configured to control the discharge flow rate of the fuel pump 10 by controlling the voltage of the motor 16 (that is, the voltage applied to the motor 16). In this case, the rotation speed of the X-axis motor 16 in the graphs shown in FIGS. 3B, 4 and 5 is replaced with the voltage of the motor 16.
 (4)ECU50は、図9に示すように、関係情報について、所定の基準点Vをメモリ54に記憶していてもよい。所定の基準点Vは、関係情報における高側変化点T3以上の領域の点である。基準点Vは、中間変化点T2に基づいて算出される。例えば、ECU50が、燃料供給装置1の制御中に中間変化点T2から基準点Vを算出する。基準点Vの算出方法は特に限定されない。 (4) As shown in FIG. 9, the ECU 50 may store a predetermined reference point V in the memory 54 for the related information. The predetermined reference point V is a point in the region of the high side change point T3 or higher in the relational information. The reference point V is calculated based on the intermediate change point T2. For example, the ECU 50 calculates the reference point V from the intermediate change point T2 during the control of the fuel supply device 1. The method for calculating the reference point V is not particularly limited.
 ECU50は、FPC52に入力する入力信号のデューティ比について、第4基準値D4をメモリ54に記憶していてもよい。第4基準値D4は、基準点Vに対応している。第4基準値D4は、第3許容吐出流量F3以上の所定の吐出流量F4に対応する入力信号のデューティ比である。ECU50は、更に、基準点Vに対応するモータ16の回転数、燃料ポンプ10の吐出流量、モータ16の電流をメモリ54に記憶していてもよい。 The ECU 50 may store the fourth reference value D4 in the memory 54 for the duty ratio of the input signal input to the FPC 52. The fourth reference value D4 corresponds to the reference point V. The fourth reference value D4 is the duty ratio of the input signal corresponding to the predetermined discharge flow rate F4 equal to or higher than the third allowable discharge flow rate F3. The ECU 50 may further store the rotation speed of the motor 16 corresponding to the reference point V, the discharge flow rate of the fuel pump 10, and the current of the motor 16 in the memory 54.
 ECU50は、燃料の温度が所定の基準温度以上である場合は、基準点V以上の領域の関係情報に基づいて燃料ポンプ10のモータ16を制御してもよい。ECU50は、基準点Vに対応する第4基準値D4以上のデューティ比の入力信号をFPC52に入力する。これにより、燃料ポンプ10のモータ16の回転数が基準点Vに対応する回転数R4以上の回転数になる。また、燃料ポンプ10の吐出流量が基準点Vに対応する吐出流量F4以上の吐出流量になる。また、モータ16の電流が基準点Vに対応する電流C4以上の電流になる。そして、高圧ポンプ44に供給される燃料供給通路30内の燃料の圧力が第2許容圧力P2以上の圧力になる(図3参照)。 When the fuel temperature is equal to or higher than a predetermined reference temperature, the ECU 50 may control the motor 16 of the fuel pump 10 based on the relational information in the region of the reference point V or higher. The ECU 50 inputs an input signal having a duty ratio of the fourth reference value D4 or more corresponding to the reference point V to the FPC 52. As a result, the rotation speed of the motor 16 of the fuel pump 10 becomes the rotation speed of the rotation speed R4 or more corresponding to the reference point V. Further, the discharge flow rate of the fuel pump 10 becomes a discharge flow rate equal to or higher than the discharge flow rate F4 corresponding to the reference point V. Further, the current of the motor 16 becomes a current equal to or higher than the current C4 corresponding to the reference point V. Then, the pressure of the fuel in the fuel supply passage 30 supplied to the high-pressure pump 44 becomes a pressure equal to or higher than the second allowable pressure P2 (see FIG. 3).
 この構成によれば、燃料ポンプ10から吐出される燃料の圧力が高くなる領域でモータ16を制御することができる。その結果、燃料供給通路30内の燃料の圧力を高くすることができ、燃料が蒸発し難い状態にすることができる。 According to this configuration, the motor 16 can be controlled in a region where the pressure of the fuel discharged from the fuel pump 10 is high. As a result, the pressure of the fuel in the fuel supply passage 30 can be increased, and the fuel can be made difficult to evaporate.
 (5)ECU50は、低側変化点T1及び高側変化点T3をメモリ54に記憶していなくてもよい。 (5) The ECU 50 does not have to store the low side change point T1 and the high side change point T3 in the memory 54.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書又は図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書又は図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples exemplified above. The technical elements described herein or in the drawings exhibit their technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques exemplified in the present specification or the drawings can achieve a plurality of purposes at the same time, and achieving one of the purposes itself has technical usefulness.
1:燃料供給装置、10:燃料ポンプ、12:燃料タンク、16:モータ、20:第1圧力調整装置、22:第2圧力調整装置、24:逆止弁、26:絞り、30:燃料供給通路、32:第1排出通路、34:第2排出通路、36:分岐通路、40:エンジン、42:燃料噴射装置、44:高圧ポンプ、46:温度センサ、50:ECU、52:FPC、54:メモリ 1: Fuel supply device, 10: Fuel pump, 12: Fuel tank, 16: Motor, 20: First pressure regulator, 22: Second pressure regulator, 24: Check valve, 26: Squeeze, 30: Fuel supply Passage, 32: 1st discharge passage, 34: 2nd discharge passage, 36: branch passage, 40: engine, 42: fuel injection device, 44: high pressure pump, 46: temperature sensor, 50: ECU, 52: FPC, 54 :memory

Claims (8)

  1.  モータの回転により燃料を吐出する燃料ポンプと、
     前記燃料ポンプから吐出された燃料を、前記燃料ポンプよりも高圧で燃料を吐出する高圧ポンプに供給する燃料供給通路と、
     前記燃料供給通路を流れる燃料の一部を排出する第1排出通路と、
     前記燃料供給通路を流れる燃料の一部を排出する第2排出通路と、
     前記第1排出通路を開閉する第1圧力調整装置であって、前記燃料供給通路内の燃料の圧力が所定の第1許容圧力以上になると開状態になって前記第1排出通路から燃料を排出する前記第1圧力調整装置と、
     前記第1圧力調整装置が開状態のときに前記燃料ポンプから吐出される燃料の吐出流量が所定の許容吐出流量以上になると前記第1排出通路を流れる燃料の流れを制限することにより前記燃料供給通路内の燃料の圧力を上昇させる流れ制限部と、
     前記第2排出通路を開閉する第2圧力調整装置であって、前記燃料供給通路内の燃料の圧力が前記第1許容圧力よりも高い所定の第2許容圧力以上になると開状態になって前記第2排出通路から燃料を排出する前記第2圧力調整装置と、
     前記燃料ポンプの前記モータを制御する制御部と、を備えており、
     前記制御部は、前記燃料ポンプから吐出される燃料の吐出流量に対応する前記モータの回転数又は電圧と電流との関係を示す関係情報と、前記許容吐出流量に対応して前記関係情報の特性が変化する第1変化点と、を記憶しており、記憶している前記関係情報と前記第1変化点とに基づいて前記モータの回転数、電圧又は電流を制御可能であり、
     前記制御部は、燃料の温度が所定の基準温度未満である場合は、前記第1変化点未満の領域の前記関係情報に基づいて前記モータの回転数、電圧又は電流を制御する、燃料供給装置。
    A fuel pump that discharges fuel by rotating the motor,
    A fuel supply passage for supplying the fuel discharged from the fuel pump to a high-pressure pump that discharges the fuel at a higher pressure than the fuel pump.
    A first discharge passage that discharges a part of the fuel flowing through the fuel supply passage, and
    A second discharge passage that discharges a part of the fuel flowing through the fuel supply passage, and
    It is a first pressure adjusting device that opens and closes the first discharge passage, and when the pressure of the fuel in the fuel supply passage becomes equal to or higher than a predetermined first allowable pressure, it is opened and the fuel is discharged from the first discharge passage. With the first pressure adjusting device
    When the discharge flow rate of the fuel discharged from the fuel pump becomes equal to or higher than a predetermined allowable discharge flow rate when the first pressure adjusting device is in the open state, the fuel supply is performed by limiting the flow of fuel flowing through the first discharge passage. A flow limiting part that raises the pressure of fuel in the passage,
    A second pressure adjusting device that opens and closes the second discharge passage, and is opened when the pressure of the fuel in the fuel supply passage becomes higher than the first allowable pressure and becomes a predetermined second allowable pressure or higher. The second pressure regulator that discharges fuel from the second discharge passage,
    A control unit for controlling the motor of the fuel pump is provided.
    The control unit has relational information indicating the relationship between the rotation speed or voltage and the current of the motor corresponding to the discharge flow rate of the fuel discharged from the fuel pump, and the characteristics of the relational information corresponding to the allowable discharge flow rate. The first change point in which the motor changes is stored, and the rotation speed, voltage, or current of the motor can be controlled based on the stored relationship information and the first change point.
    When the temperature of the fuel is lower than a predetermined reference temperature, the control unit controls the rotation speed, voltage, or current of the motor based on the relational information in the region below the first change point. ..
  2.  請求項1に記載の燃料供給装置であって、
     前記制御部は、前記燃料供給通路内の燃料の圧力が前記第2許容圧力になるときに前記燃料ポンプから吐出される燃料の吐出流量に対応して前記関係情報の特性が変化する第2変化点を記憶しており、燃料の温度が前記基準温度以上である場合は、前記第2変化点以上の領域の前記関係情報に基づいて前記モータの回転数、電圧又は電流を制御する、燃料供給装置。
    The fuel supply device according to claim 1.
    The control unit has a second change in which the characteristics of the related information change according to the discharge flow rate of the fuel discharged from the fuel pump when the pressure of the fuel in the fuel supply passage becomes the second allowable pressure. When the point is stored and the fuel temperature is equal to or higher than the reference temperature, the fuel supply controls the rotation speed, voltage or current of the motor based on the relational information in the region of the second change point or higher. Device.
  3.  請求項1又は2に記載の燃料供給装置であって、
     前記制御部は、前記第1変化点から算出される所定の基準点以上の領域の前記関係情報に基づいて前記モータの回転数、電圧又は電流を制御し、
     前記基準点は、前記燃料供給通路内の燃料の圧力が前記第2許容圧力になるときに前記燃料ポンプから吐出される燃料の吐出流量に対応して前記関係情報の特性が変化する第2変化点以上の領域に位置している、燃料供給装置。
    The fuel supply device according to claim 1 or 2.
    The control unit controls the rotation speed, voltage, or current of the motor based on the relational information in the region above the predetermined reference point calculated from the first change point.
    The reference point is a second change in which the characteristics of the related information change according to the discharge flow rate of the fuel discharged from the fuel pump when the pressure of the fuel in the fuel supply passage becomes the second allowable pressure. A fuel supply system located in the area above the point.
  4.  請求項1から3のいずれか一項に記載の燃料供給装置であって、
     前記制御部は、前記燃料ポンプが実際に燃料を吐出したときの吐出流量に対応する前記モータの回転数又は電圧と電流との関係に基づいて、記憶している前記関係情報を補正する、燃料供給装置。
    The fuel supply device according to any one of claims 1 to 3.
    The control unit corrects the stored relationship information based on the relationship between the motor rotation speed or voltage and current corresponding to the discharge flow rate when the fuel pump actually discharges fuel. Feeding device.
  5.  請求項4に記載の燃料供給装置であって、
     前記制御部は、前記燃料ポンプが実際に燃料を吐出したときの吐出流量に対応する前記モータの回転数又は電圧と電流との関係に基づいて、記憶している前記第1変化点を補正する、燃料供給装置。
    The fuel supply device according to claim 4.
    The control unit corrects the stored first change point based on the relationship between the rotation speed or voltage and the current of the motor corresponding to the discharge flow rate when the fuel pump actually discharges fuel. , Fuel supply device.
  6.  請求項5に記載の燃料供給装置であって、
     前記制御部は、前記燃料ポンプが実際に燃料を吐出したときの前記許容吐出流量未満の吐出流量に対応する前記モータの回転数又は電圧と電流との関係を示す第1グラフと、前記許容吐出流量以上の吐出流量に対応する前記モータの回転数又は電圧と電流との関係を示す第2グラフと、のグラフ変化点と、記憶している前記第1変化点との差に基づいて、記憶している前記第1変化点を補正する、燃料供給装置。
    The fuel supply device according to claim 5.
    The control unit includes a first graph showing the relationship between the rotation speed or voltage and current of the motor corresponding to a discharge flow rate lower than the allowable discharge flow rate when the fuel pump actually discharges fuel, and the allowable discharge rate. Stored based on the difference between the graph change point of the second graph showing the relationship between the rotation speed or voltage and the current of the motor corresponding to the discharge flow rate equal to or higher than the flow rate, and the stored first change point. A fuel supply device that corrects the first change point.
  7.  請求項6に記載の燃料供給装置であって、
     前記制御部は、前記第1グラフの外挿線と前記第2グラフの外挿線との交点に基づいて前記グラフ変化点を算出する、燃料供給装置。
    The fuel supply device according to claim 6.
    The control unit is a fuel supply device that calculates the graph change point based on the intersection of the extrapolated line of the first graph and the extrapolated line of the second graph.
  8.  エンジンを備える車両に搭載されている請求項4に記載の燃料供給装置であって、
     前記制御部は、前記エンジンの動作中に、記憶している前記関係情報を少なくとも1回補正する、燃料供給装置。
    The fuel supply device according to claim 4, which is mounted on a vehicle equipped with an engine.
    The control unit is a fuel supply device that corrects the stored related information at least once during the operation of the engine.
PCT/JP2021/037792 2020-12-23 2021-10-12 Fuel supply device WO2022137741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-214173 2020-12-23
JP2020214173A JP2022100039A (en) 2020-12-23 2020-12-23 Fuel supply device

Publications (1)

Publication Number Publication Date
WO2022137741A1 true WO2022137741A1 (en) 2022-06-30

Family

ID=82158961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037792 WO2022137741A1 (en) 2020-12-23 2021-10-12 Fuel supply device

Country Status (2)

Country Link
JP (1) JP2022100039A (en)
WO (1) WO2022137741A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165013A (en) * 1999-12-08 2001-06-19 Nissan Motor Co Ltd Fuel supplying device for internal combustion engine
JP2009203969A (en) * 2008-02-29 2009-09-10 Aisan Ind Co Ltd Fuel supply device
JP2010229995A (en) * 2009-03-05 2010-10-14 Toyota Motor Corp Fuel supply system of internal combustion engine
JP2011144697A (en) * 2010-01-12 2011-07-28 Aisan Industry Co Ltd Evaporated fuel treating device
WO2015136745A1 (en) * 2014-03-14 2015-09-17 日立オートモティブシステムズ株式会社 Device and method for supplying fuel in internal combustion engine
US20160138537A1 (en) * 2013-06-26 2016-05-19 Robert Bosch Gmbh Fuel delivery system with partial pressure relief valve on the drive line of a suction jet pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165013A (en) * 1999-12-08 2001-06-19 Nissan Motor Co Ltd Fuel supplying device for internal combustion engine
JP2009203969A (en) * 2008-02-29 2009-09-10 Aisan Ind Co Ltd Fuel supply device
JP2010229995A (en) * 2009-03-05 2010-10-14 Toyota Motor Corp Fuel supply system of internal combustion engine
JP2011144697A (en) * 2010-01-12 2011-07-28 Aisan Industry Co Ltd Evaporated fuel treating device
US20160138537A1 (en) * 2013-06-26 2016-05-19 Robert Bosch Gmbh Fuel delivery system with partial pressure relief valve on the drive line of a suction jet pump
WO2015136745A1 (en) * 2014-03-14 2015-09-17 日立オートモティブシステムズ株式会社 Device and method for supplying fuel in internal combustion engine

Also Published As

Publication number Publication date
JP2022100039A (en) 2022-07-05

Similar Documents

Publication Publication Date Title
JP5059894B2 (en) Fuel pump control device
JP4415275B2 (en) Fuel supply device
US20070251502A1 (en) Fuel supply apparatus for engine and control method of same apparatus
US8534265B2 (en) Fuel supply control apparatus for internal combustion engine and fuel supply control method thereof
US6367455B2 (en) Fuel supply amount controller for internal combustion engine
US20180195485A1 (en) Engine control device
JP2008291752A (en) Feedback control system
JP5780897B2 (en) Control device for internal combustion engine
US10590829B2 (en) Control device for internal combustion engine and control method for cooling device
WO2022137741A1 (en) Fuel supply device
KR20050016015A (en) Control device for engine output
JP6067295B2 (en) Control device for internal combustion engine
JP4742721B2 (en) Combustion air-fuel ratio control device for internal combustion engine
KR100412843B1 (en) purge control method for an engine
JP2020007992A (en) Controller of internal combustion engine and diagnosis method
JP2007187113A (en) Fuel supply device for internal combustion engine
WO2022209148A1 (en) Fuel supply device
JP3836000B2 (en) Fuel pressure control method
JP2019206959A (en) Fuel evaporation processing apparatus
JP2014062494A (en) Control device of internal combustion engine
US20210381463A1 (en) Fuel pressure control device for internal combustion engine
JP4917065B2 (en) Engine idle speed control device
JP2017110510A (en) Control device for internal combustion engine
JP2022133738A (en) Abnormality detection system
JP2013108503A (en) Fuel pressure control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909899

Country of ref document: EP

Kind code of ref document: A1