WO2022137655A1 - Vehicle shock absorber and suspension device - Google Patents

Vehicle shock absorber and suspension device Download PDF

Info

Publication number
WO2022137655A1
WO2022137655A1 PCT/JP2021/032390 JP2021032390W WO2022137655A1 WO 2022137655 A1 WO2022137655 A1 WO 2022137655A1 JP 2021032390 W JP2021032390 W JP 2021032390W WO 2022137655 A1 WO2022137655 A1 WO 2022137655A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock absorber
cylinder
vehicle
reservoir
vehicle shock
Prior art date
Application number
PCT/JP2021/032390
Other languages
French (fr)
Japanese (ja)
Inventor
勇太 松原
Original Assignee
Kybモーターサイクルサスペンション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kybモーターサイクルサスペンション株式会社 filed Critical Kybモーターサイクルサスペンション株式会社
Publication of WO2022137655A1 publication Critical patent/WO2022137655A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • B62K25/06Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms
    • B62K25/08Axle suspensions for mounting axles resiliently on cycle frame or fork with telescopic fork, e.g. including auxiliary rocking arms for front wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details

Definitions

  • the present invention relates to a vehicle shock absorber and a suspension device.
  • the vehicle shock absorber is interposed between the vehicle body and the wheels to generate damping force during expansion and contraction to suppress vibration between the vehicle body and the wheels. Further, the shock absorber for a vehicle may be used by being incorporated in a suspension device that supports a steering wheel on the front side of a saddle-mounted vehicle.
  • Such a vehicle shock absorber has, for example, an outer tube connected to the vehicle body side, an inner tube slidably inserted into the outer tube and connected to the wheel side, and a reservoir cylinder at the upper end of the outer tube.
  • a cylinder connected via a cylinder, a first piston that is slidably inserted into the cylinder and divides the inside of the cylinder into an extension side chamber and a compression side chamber, and a first piston that is connected to the first piston and is movably inserted into the cylinder.
  • a cylindrical first rod whose lower end is connected to the inner tube, a tubular second rod connected to a cap that closes the upper end of the outer tube, and a reservoir cylinder attached to the outer periphery of the second rod. It is provided with a second piston that separates the cylinder from the cylinder and a free piston that is slidably inserted into the reservoir cylinder to divide the inside of the reservoir cylinder into an air chamber and a liquid chamber.
  • the vehicle shock absorber configured in this way allows the liquid to pass through the passages provided in the first piston and the second piston during expansion and contraction, and gives resistance to the flow of the liquid passing through the passages by a leaf valve to itself. Generates a damping force that prevents the expansion and contraction of the piston.
  • an elongated rod-shaped conductor member mounted on the tip of the second rod and a conductor member housed in the first rod and inside the conductor member.
  • a stroke sensor equipped with an elongated cylindrical coil unit through which the vehicle is movably inserted, and detects stroke displacement during expansion and contraction in order to grasp the running state and other aspects of the vehicle (for example, Patent Document 1). reference).
  • the position of the conductor member is detected by the coil unit fixed to the inner tube connected to the wheel side, and the electric signal generated by the coil unit is transmitted to the control device or the like.
  • the wiring connected to the coil unit is drawn out from the lower end of the inner tube and connected to a control device or the like installed on the vehicle body side.
  • the wiring is inevitably arranged near the road surface on which the vehicle travels because the wiring is pulled out from the wheel side of the vehicle shock absorber. It may interfere and deteriorate.
  • the stroke sensor is composed of a conductor member connected to the outer tube attached to the vehicle body side via the second rod and a coil unit fixed to the inner tube attached to the wheel side. Therefore, when a bending moment is input to the shock absorber for a vehicle, the conductor member and the coil unit may come into contact with each other and deteriorate.
  • a conductor member and a coil unit having a length of at least the stroke length are required, and the stroke sensor is required. Will be long and the cost will increase.
  • the conventional vehicle shock absorber has problems such as deterioration of the stroke sensor and an increase in cost, and the suspension device incorporating the vehicle shock absorber also has the same problem.
  • an object of the present invention is to provide a vehicle shock absorber and a suspension device that can protect the stroke sensor and reduce the cost.
  • the vehicle shock absorber of the present invention has a cylinder that can be connected to the vehicle body side of the vehicle, and is inserted into the cylinder so as to be movable in the axial direction, and the inside of the cylinder is divided into an extension side chamber and a compression side chamber.
  • a shock absorber body having a piston partitioned into a piston, a rod having one end connected to the piston and movably inserted into the cylinder in the axial direction, and a rod having the other end connectable to the wheel side of the vehicle, a reservoir cylinder and a reservoir.
  • a stroke sensor is provided, and the stroke sensor has a detector connected to a free piston and a probe connected to one end of the reservoir cylinder and housed in the reservoir cylinder to detect the position of the detected element.
  • the position of the detector that moves integrally with the free piston can be detected by the probe, and the free piston has a one-to-one relationship with the axial position of the rod with respect to the cylinder. Since the axial position in the reservoir can be detected, the stroke displacement of the vehicle shock absorber can be detected.
  • the wiring of the stroke sensor can be arranged at a position away from the road surface. ..
  • the stroke sensor since the stroke sensor is housed in the reservoir and the displacement of the free piston is detected, the stroke sensor does not have to be long and is bent into the vehicle shock absorber.
  • the probe can be protected because it is less susceptible to deformation even when a moment is applied, and the stroke sensor only needs to detect the stroke displacement of the free piston in the reservoir, so it should be at least the total length of the rod or cylinder.
  • the overall length of the probe can be shortened compared to conventional vehicle shock absorbers that must be set.
  • FIG. 1 is a cross-sectional view of a vehicle shock absorber according to a first embodiment of the present invention applied to a front fork.
  • FIG. 2 is a front view of the suspension device of the present invention applied to a saddle-mounted vehicle.
  • FIG. 3 is a cross-sectional view of another front fork in the suspension device of the present invention.
  • FIG. 4 is an enlarged cross-sectional view of a reservoir portion of the vehicle shock absorber according to the first embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view of a reservoir portion of a vehicle shock absorber according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a vehicle shock absorber according to a third embodiment of the present invention applied to a front fork.
  • the vehicle shock absorber D1 includes a shock absorber main body 1, a reservoir 2, and a stroke sensor 3. Further, as shown in FIG. 2, the vehicle shock absorber D1 of the first embodiment has an outer tube 4 as a vehicle body side tube connected to a vehicle body B of a saddle-type vehicle V as a vehicle, and an outer tube. It is housed in a stretchable body T1 provided with an inner tube 5 as an axle side tube connected to a front wheel W which is a steering wheel of a saddle-mounted vehicle V by being slidably inserted into the 4 and is accommodated in the stretchable body T1. Together with the body T1, it constitutes the front fork F1.
  • the front fork F1 is slidably inserted into the outer tube 4 as a vehicle body side tube connected to the vehicle body B of the saddle-mounted vehicle V and the outer tube 4.
  • a stretchable body T2 provided with an inner tube 5 as an axle side tube connected to a front wheel W which is a steering wheel of a saddle-mounted vehicle V, and a damping force variable shock absorber D2 housed in the stretchable body T2. It constitutes a suspension device S for suspending the front wheel W of the saddle-mounted vehicle V in a pair with another front fork F2 provided with the above.
  • the front fork F1 accommodating the vehicle shock absorber D1 of the first embodiment will be specifically described.
  • the front fork F1 is a telescopic type and inverted type telescopic body including an outer tube 4 and an inner tube 5 slidably inserted into the outer tube 4. It is equipped with T1.
  • the telescopic body T1 expands and contracts.
  • the vehicle shock absorber D1 housed inside the outer tube 4 and the inner tube 5 also expands and contracts to generate a damping force.
  • the telescopic body T1 may be an upright type in which the outer tube is the axle side tube and the inner tube is the vehicle body side tube.
  • the upper end of the outer tube 4, which is the upper end of the stretchable body T1 is closed by the cap 6.
  • the lower end of the inner tube 5, which is the lower end of the stretchable body T1 is closed by the bracket 7 on the axle side.
  • an annular sealing member 8 that is in sliding contact with the outer periphery of the inner tube 5 is provided on the inner circumference of the lower end of the outer tube 4, and the space inside the outer tube 4 and the inner tube 5 is a closed space. ..
  • the inside of the stretchable body T1 is a closed space, and the shock absorber D1 for a vehicle is housed in the stretchable body T1. Further, the outside of the shock absorber D1 for a vehicle inside the telescopic body T1 is a liquid storage chamber R3 for storing the liquid together with the gas.
  • the vehicle shock absorber D1 includes a shock absorber main body 1, a reservoir 2, and a stroke sensor 3.
  • the shock absorber main body 1 has a cylinder 10, a piston 11 that is movably inserted into the cylinder 10 and is divided into an extension side chamber R1 and a compression side chamber R2 in which the inside of the cylinder 10 is filled with a liquid, and one end thereof. It includes a rod 12 that is connected to the piston 11 and is movably inserted into the cylinder 10 in the axial direction.
  • the upper end of the cylinder 10 in FIG. 1 in the shock absorber body 1 is connected to the outer tube 4 via the reservoir cylinder 13 forming the reservoir 2, and is indirectly saddle-mounted via the outer tube 4 and the reservoir cylinder 13. It can be connected to the vehicle body B in the vehicle V. Further, the lower middle end of FIG. 1 of the rod 12 is connected to a bracket 7 that closes the lower end of the inner tube 5, and can be indirectly connected to the axle of the front wheel W of the saddle-mounted vehicle V via the bracket 7. ing.
  • the cylinder 10 of the shock absorber main body 1 can be connected to the vehicle body B of the saddle-mounted vehicle V, and the rod 12 can be connected to the front wheel W which is the wheel of the saddle-mounted vehicle V.
  • the cylinder 10 may be directly connected to the vehicle body B, or the rod 12 may be directly connected to the axle of the wheel.
  • the reservoir 2 has a reservoir cylinder 13, a cap 6 that closes one end of the reservoir cylinder 13, and an air chamber that is movably inserted into the reservoir cylinder 13 in the axial direction and is filled with gas in the reservoir cylinder 13. It is provided with a free piston 14 that is divided into a liquid chamber L that is filled with G and a liquid and communicates with the compression side chamber R2.
  • the liquid used for the shock absorber D1 for a vehicle is a hydraulic oil in the present embodiment, but a liquid other than the hydraulic oil can also be used.
  • the gas is preferably an inert gas such as nitrogen, but the atmosphere can also be used.
  • the cylinder 10 has a cylindrical shape, and a reservoir cylinder 13 is screwed to the outer periphery of the upper end.
  • the reservoir cylinder 13 has a diameter larger than that of the cylinder 10, and the screw portion 13a provided on the outer periphery of the upper end is screwed to the inner circumference of the upper end of the outer tube 4 and connected to the outer tube 4. ing.
  • a cap 6 is screwed into the upper end opening of the reservoir cylinder 13 to close the outer tube 4 and the upper end opening of the reservoir cylinder 13.
  • a cylindrical rod guide 15 through which the rod 12 is inserted is mounted on the inner circumference of the lower end of the cylinder 10, and the lower end of the cylinder 10 is closed.
  • the lower end of the rod 12 is connected to a bracket 7 that closes the lower end of the outer tube 4, and the upper end side is inserted into the cylinder 10. Further, on the inner circumference of the inner tube 5 which is the upper end of the bracket 7, a tubular oil lock case 17 provided with a flange-shaped spring receiver 17a for supporting the lower end of the suspension spring 16 is mounted on the outer circumference. ..
  • a spring receiver 18 that supports the upper end of the suspension spring 16 is mounted on the outer periphery of the cylinder 10.
  • the spring receiver 18 has a cylindrical shape in which the upper end fitted to the outer periphery of the cylinder 10 has the minimum diameter and the diameter increases toward the lower side, and the spring receiver 18 is provided with a hole 18a on the side portion.
  • the suspension spring 16 is interposed between the spring receiver 17a and the spring receiver 18 in the oil lock case 17.
  • the spring receiver 18 is mounted on the outer periphery of the cylinder 10 in a state where the movement of the spring receiver 18 is restricted upward with respect to the cylinder 10, and the force received from the suspension spring 16 is transmitted to the outer tube 4 via the cylinder 10. There is. Therefore, the suspension spring 16 exerts an elastic force that pushes the outer tube 4 upward and the inner tube 5 downward to separate them from each other.
  • annular oil lock piece 15a is attached to the outer periphery of the lower end of FIG. 1 of the rod guide 15.
  • the oil lock piece 15a attached to the outer periphery of the rod guide 15 invades the oil lock case 17.
  • An appropriate gap is provided between the outer circumference of the oil lock piece 15a and the inner circumference of the oil lock case 17, and resistance is provided to the flow of hydraulic oil flowing out from the inside of the oil lock case 17.
  • a piston 11 is mounted on the outer periphery of the upper end of the rod 12 inserted into the cylinder 10.
  • the piston 11 is in sliding contact with the inner circumference of the cylinder 10 and can move in the axial direction which is the vertical direction with respect to the cylinder 10.
  • the inside of the cylinder 10 is divided into the extension side chamber R1 and the compression side chamber R2. It is partitioned.
  • the piston 11 includes an extension side port 11a and a compression side port 11b that communicate the extension side chamber R1 and the compression side chamber R2.
  • An extension side leaf valve 20 that opens and closes the outlet end of the extension side port 11a is laminated on the compression side chamber R2 side of the piston 11 in a state of being fixed to the outer periphery of the rod 12, and is laminated on the extension side chamber R1 side of the piston 11.
  • the check valve 21 that opens and closes the outlet end of the compression side port 11b is laminated in a state of being fixed to the outer periphery of the rod 12.
  • the extension side leaf valve 20 is a laminated leaf valve configured by laminating a plurality of annular plates in the vehicle shock absorber D1 of the present embodiment, and the inner circumference is fixed to the outer circumference of the rod 12 to form an outer circumference. Side deflection is allowed. Further, the extension side leaf valve 20 gives resistance to the flow of the hydraulic oil when the hydraulic oil moves from the extension side chamber R1 to the compression side chamber R2 via the extension side port 11a, and the hydraulic oil flows from the compression side chamber R2 to the extension side chamber R1. Stop moving towards.
  • the check valve 21 is formed of an annular plate in the vehicle shock absorber D1 of the present embodiment, and the inner circumference is fixed to the outer periphery of the rod 12 to allow bending on the outer peripheral side. Further, the check valve 21 allows the flow of hydraulic oil moving from the compression side chamber R2 to the extension side chamber R1 via the compression side port 11b without substantially resistance, and the hydraulic oil moves from the extension side chamber R1 to the compression side chamber R2. To prevent.
  • the check valve 21 may be a damping valve that gives resistance to the flow of hydraulic oil passing through the compression side port 11b.
  • the rod 12 is hollow and has a passage P that bypasses the extension side port 11a and the compression side port 11b of the piston 11 and communicates the extension side chamber R1 and the compression side chamber R2. It is provided with a needle valve N capable of changing the flow path area of the above.
  • the needle valve N can move in the rod 12 in the axial direction by the rotation operation of the adjuster A provided at the lower end of the bracket 7, and the flow path area of the passage P can be changed.
  • the reservoir 2 includes a reservoir cylinder 13, a cap 6, and a free piston 14, and also includes a tubular rod 22 made of a non-magnetic material, one end of which is connected to the cap 6 and housed in the reservoir cylinder 13.
  • the free piston 14 is annular and is slidably mounted on the outer circumference of the tubular rod 22. The outer circumference is slidably contacted with the inner circumference of the reservoir cylinder 13, and the inside of the reservoir cylinder 13 is the air chamber G and the liquid chamber L. It is divided into.
  • the tubular rod 22 is made of aluminum in the vehicle shock absorber D1 of the present embodiment. Since the tubular rod 22 may be made of a non-magnetic material, it may be made of non-magnetic stainless steel such as SUS304 or synthetic resin if there is no problem in terms of strength, in addition to aluminum. Further, a valve holding member 26 to which the valve case 23 is mounted together with the base valve 24 and the check valve 25 is screwed to the outer periphery of the lower end of the cylindrical rod 22 in FIG.
  • valve case 23 has an annular shape, and as described above, is attached to the outer periphery of the lower end of the middle end of FIG. 1 of the cylindrical rod 22 connected to the cap 6 via the valve holding member 26.
  • the valve case 23 is axially positioned by the tubular rod 22 and housed in the reservoir cylinder 13.
  • the valve case 23 is fitted to the inner circumference of the reservoir cylinder 13, and is immovably fixed to the cylinder 10 by the tubular rod 22.
  • the inside of the reservoir cylinder 13 is filled with the compression side chamber R2 and the reservoir 2. It is divided into.
  • the valve case 23 includes a discharge port 23a that communicates the compression side chamber R2 and the liquid chamber L, and a suction port 23b that communicates the compression side chamber R2 and the liquid chamber L. ..
  • a base valve 24 that opens and closes the outlet end of the discharge port 23a is laminated on the liquid chamber L side of the valve case 23 in a state of being fixed to the outer periphery of the tubular rod 22, and is laminated on the compression side chamber R2 side of the valve case 23.
  • the base valve 24 is a laminated leaf valve configured by laminating a plurality of annular plates in the vehicle shock absorber D1 of the present embodiment, and the inner circumference is fixed to the outer circumference of the tubular rod 22 to be the outer circumference. Side deflection is allowed. Further, the base valve 24 allows only the flow of the hydraulic oil moving from the compression side chamber R2 to the liquid chamber L via the discharge port 23a to give resistance to the flow of the hydraulic oil, and the hydraulic oil is the compression side chamber R2. Prevents movement from to the extension chamber R1.
  • the check valve 25 is formed of an annular plate in the vehicle shock absorber D1 of the present embodiment, and the inner circumference is fixed to the outer circumference of the tubular rod 22 to allow bending on the outer peripheral side. Further, the check valve 25 allows the flow of hydraulic oil moving from the liquid chamber L to the compression side chamber R2 via the suction port 23b without substantially resistance, and the hydraulic oil moves from the compression side chamber R2 toward the liquid chamber L. To prevent.
  • the base valve 24, the valve case 23, and the check valve 25 configured in this way are assembled to the shaft portion 26a of the valve holding member 26 and screwed to the tip of the shaft portion 26a at the lower end of FIG. Is fixed to the valve holding member 26.
  • the valve holding member 26 is screwed to the outer periphery of the tubular rod 22 in FIG. 4 and assembled to the tubular rod 22.
  • a bottomed cylindrical free piston 14 is slidably mounted on the outer circumference of the tubular rod 22 and above the valve case 23 in FIG. 1.
  • the bottom portion 14a of the free piston 14 is annular, and a tubular rod 22 is inserted on the inner peripheral side.
  • the free piston 14 has a cylinder portion 14b slidably contacted with the inner circumference of the reservoir cylinder 13, and the inside of the reservoir cylinder 13 is divided into a liquid chamber L filled with hydraulic oil and an air chamber G filled with gas. is doing.
  • a pressure spring 28 made of a coil spring is interposed between the bottom 14a of the free piston 14 and the cap 6 in a compressed state, and the free piston 14 is inside the pressure spring 28 and the air chamber G.
  • a spring receiver 29 is interposed between the bottom portion 14a of the free piston 14 and the pressure spring 28.
  • the spring receiver 29 includes a tubular portion 29a arranged in an annular gap between the pressure spring 28 and the tubular rod 22, and a flange 29b provided on the outer periphery of the lower end of FIG. 4 of the tubular portion 29a.
  • the flange 29b supports the end of the pressure spring 28. Therefore, the spring receiver 29 is always pressed against the bottom 14a of the free piston 14 by the urging force of the pressure spring 28, and when the free piston 14 moves in the axial direction with respect to the tubular rod 22, it is integrated with the free piston 14. It is displaced with respect to the cylindrical rod 22.
  • the free piston 14 is urged by the pressure spring 28 to apply a compressive force to the liquid chamber L, so that the cylinder communicates with the liquid chamber L.
  • the extension side chamber R1 and the compression side chamber R2 in 10 are pressurized to increase the rigidity of the oil column. Since the gas is dissolved in the hydraulic oil, the hydraulic oil exhibits elasticity, and when the apparent elastic modulus of the hydraulic oil becomes low, the damping force generation response of the vehicle shock absorber D1 deteriorates, but as described above, the cylinder. By pressurizing the inside of 10, the rigidity of the oil column can be increased and the damping force generation response of the vehicle shock absorber D1 can be improved.
  • a hole 13b leading to the outside of the vehicle shock absorber D1 is provided on the side of the reservoir cylinder 13 of the cylinder 10.
  • the hole 13b is maintained in a state of being closed by the free piston 14 when the cylinder portion 14b of the free piston 14 faces each other, but the amount of hydraulic oil in the liquid chamber L becomes larger than the specified amount and the free piston
  • the hydraulic oil in the liquid chamber L is discharged to the liquid storage chamber R3 outside the vehicle shock absorber D1 through the hole 13b, and the pressure inside the cylinder 10 becomes excessively high. Can be prevented.
  • the stroke sensor 3 is a sensor body 3a held by the cap 6, a rod-shaped probe 3b extending from the sensor body 3a and inserted into the tubular rod 22, and a detector to be mounted on the spring receiver 29. It is equipped with an annular magnet 3c.
  • the stroke sensor 3 is a magnetostrictive sensor provided with a sensor body 3a having an electronic circuit that gives a pulse signal to the magnetostrictive wire in the probe 3b to detect the position of the magnet 3c.
  • the stroke sensor 3 includes a detector that is held by a component that can move in the reservoir cylinder 13 in the axial direction together with the free piston 14 or the free piston 14, and a probe that can detect the position of the detector.
  • the magnet 3c to be detected may be directly mounted on the free piston 14, or may be mounted on a component that can move in the reservoir cylinder 13 in the axial direction together with the free piston 14. ..
  • the cap 6 is screwed to the inner circumference of the upper end in FIG. 4 of the reservoir cylinder 13, and is opened from the upper end in FIG. 4 to accommodate the sensor body 3a of the stroke sensor 3 and the accommodating recess 6a.
  • the middle and lower ends are provided with a tubular portion 6b into which the outer periphery of the upper end of the tubular rod 22 is screwed, and a through hole 6c that opens from the bottom of the accommodating recess 6a and leads into the tubular portion 6b.
  • the sensor body 3a in the stroke sensor 3 is housed in the housing recess 6a of the cap 6 and is fixed by the seal member 6d mounted on the inner circumference of the upper end of the housing recess 6a.
  • the seal member 6d prevents the intrusion of water, dust, etc. into the accommodating recess 6a, and fixes and protects the sensor body 3a.
  • the seal of the accommodating recess 6a and the fixing and protection of the sensor main body 3a may be realized by a seal member other than the above-mentioned seal member 6d.
  • the wiring 3d extending from the sensor main body 3a penetrates the seal member 6d and is drawn out to the outside of the front fork F1 and is connected to an external device (not shown).
  • the sensor body 3a is held by the cap 6 and integrated with the probe 3b, but the probe 3b is integrated with the free piston 14 or the free piston 14 and is a reservoir cylinder. As long as the position of the detected element held by the component that can move in the axial direction in 13 can be detected, the probe 3b may be separated from the probe 3b. Therefore, the probe 3b may be housed in the vehicle shock absorber D1 and the sensor main body 3a may be arranged outside the vehicle shock absorber D1 or the front fork F1.
  • the magnet 3c is adhered to the inner circumference of the cylinder portion 29a of the spring receiver 29 which is integrally displaced with the free piston 14 and is displaced in the axial direction with respect to the reservoir cylinder 13. ing. Although the magnet 3c is held by the spring receiver 29 in this way, it may be directly attached to the free piston 14. When the free piston 14 is urged by a gas spring that utilizes the elastic force exerted by the gas in the air chamber G instead of the coil spring, the magnet 3c may be directly attached to the free piston 14. ..
  • the probe 3b projects into the tubular rod 22 through the through hole 6c of the cap 6.
  • the probe 3b is connected to the reservoir cylinder 13 via the integrated sensor body 3a and the cap 6, but the magnet is opposed to the inner circumference of the magnet 3c. If the position of 3c can be detected, it may be connected to the reservoir cylinder 13 regardless of whether it is direct or indirect.
  • the length of the probe 3b is set to the valve holding member 26 in which at least the free piston 14 is the lower stroke end in FIG. 4 with respect to the cylindrical rod 22 in the structure of the vehicle shock absorber D1 of the present embodiment.
  • the length is set so that the position of the magnet 3c, which is the detector, can be detected within the range from the abutting position to the position where the hole 13b of the reservoir cylinder 13 which is the upper stroke end in FIG. 4 is opened.
  • the probe 3b can detect the position of the magnet 3c without being disturbed by the tubular rod 22.
  • the vehicle shock absorber D1 is configured as described above, and its operation will be described below.
  • the piston 11 connected to the rod 12 with respect to the cylinder 10 moves downward in FIG. 1 due to the relative axial separation between the outer tube 4 and the inner tube 5. do.
  • the extension side chamber R1 in the cylinder 10 is compressed and contracted by the movement of the piston 11, and the compression side chamber R2 in the cylinder 10 is expanded by the movement of the piston 11.
  • the hydraulic oil in the extension side chamber R1 to be compressed pushes open the extension side leaf valve 20 and moves to the compression side chamber R2 which is expanded through the extension side port 11a of the piston 11.
  • extension side leaf valve 20 Since the extension side leaf valve 20 resists the flow of hydraulic oil passing through the extension side port 11a, the pressure of the extension side chamber R1 becomes higher than the pressure of the compression side chamber R2, and the vehicle shock absorber D1 hinders its own extension. Demonstrates the extension side damping force.
  • the rod 12 withdraws from the cylinder 10 and the hydraulic oil for the volume of the rod 12 withdrawing from the cylinder 10 is insufficient in the compression side chamber R2 in the cylinder 10. Since the hydraulic oil is insufficient in the compression side chamber R2 in this way, the pressure in the compression side chamber R2 drops below the pressure in the reservoir 2, and the check valve 25 bends to open the suction port 23b. Therefore, the hydraulic oil deficient in the compression side chamber R2 is supplied from the liquid chamber L of the reservoir 2 to the compression side chamber R2 through the suction port 23b.
  • the free piston 14 moves downward to shrink the liquid chamber L and expand the air chamber G because the hydraulic oil moves from the liquid chamber L to the compression side chamber R2, and the rod 12 exits from the cylinder 10. Compensation for the volume to be made is made.
  • the vehicle shock absorber D1 is extended together, and the extension side leaf valve 20 generates an extension side damping force that hinders the extension of the front fork F1.
  • the hydraulic oil is discharged from the cylinder 10 into the liquid chamber L, so that the free piston 14 retracts upward to expand the liquid chamber L and shrink the air chamber G, and the rod 12 causes the cylinder 10. Compensation for the volume that penetrates inside is made. Further, when the front fork F1 contracts, the cylinder 10 moves downward in FIG. 1 in the inner tube 5, and the oil level of the hydraulic oil in the liquid reservoir R3 rises with the movement of the cylinder 10 to collect the liquid.
  • the hydraulic oil in the chamber R3 may pass through the hole 18a of the spring receiver 18.
  • the hole 18a functions as a throttle valve for the flow through which the hydraulic oil passes.
  • the vehicle shock absorber D1 when the front fork F1 contracts, the vehicle shock absorber D1 also contracts, and the base valve 24 generates a compression side damping force that hinders the contraction of the front fork F1, and the oil level passes through the hole 18a of the spring receiver 18.
  • the front fork F1 can add a damping force that prevents contraction due to the spring receiver 18 to the compression side damping force of the vehicle shock absorber D1.
  • the free piston 14 moves downward in the reservoir 2 in FIG. 4, and when the vehicle shock absorber D1 contracts, the free piston 14 moves in the reservoir 2. Is moved upward in FIG.
  • the amount of movement of the free piston 14 during expansion and contraction of the vehicle shock absorber D1 is proportional to the volume of the rod 12 entering and exiting the cylinder 10.
  • the amount of movement of the free piston 14 is the volume of the rod 12 entering or exiting the cylinder 10 when the shock absorber D1 for a vehicle expands and contracts, considering the rod 12 as a solid body. It is equal to the value divided by the area facing the liquid chamber L.
  • the stroke sensor 3 can detect the position of the free piston 14, the amount of hydraulic oil entering and exiting the reservoir 2 can be grasped. Further, the axial position of the free piston 14 with respect to the reservoir cylinder 13 and the cross-sectional area of the rod 12 when the vehicle shock absorber D1 is fully extended or contracted are known because they are design matters. Since the amount of hydraulic oil entering and exiting the reservoir 2 is nothing but the volume of the rod 12 entering and exiting the cylinder 10, the current hydraulic oil in the liquid chamber L from the current position of the free piston 14 detected by the stroke sensor 3. By grasping the amount, it is possible to know how much the rod 12 currently penetrates into the cylinder 10, that is, the stroke displacement of the vehicle shock absorber D1.
  • the vehicle shock absorber D1 of the present embodiment is a cylinder 10 that can be connected to the vehicle body B side in the saddle-mounted vehicle (vehicle) V, and is inserted into the cylinder 10 so as to be movable in the axial direction.
  • a piston 11 that divides the inside into an extension side chamber R1 and a compression side chamber R2, one end of which is connected to the piston 11 and is movably inserted into the cylinder 10 in the axial direction, and the other end is a saddle-type vehicle (vehicle) V.
  • the shock absorber body 1 having the rod 12 that can be connected to the front wheel (wheel) W side, and the reservoir cylinder 13 and the reservoir cylinder 13 are movably inserted in the axial direction and the inside of the reservoir cylinder 13 is the air chamber G.
  • the reservoir 2 provided with the free piston 14 partitioned from the liquid chamber L communicated with the compression side chamber R2 and the stroke sensor 3 for detecting the stroke displacement of the shock absorber main body 1 are provided, and the stroke sensor 3 is a free piston 14. It has a magnet (detected element) 3c connected to and a rod-shaped probe 3b whose one end is connected to the reservoir cylinder 13 and housed in the reservoir cylinder 13 to detect the position of the magnet (detected element) 3c. is doing.
  • the position of the magnet 3c as a detector that moves integrally with the free piston 14 can be detected by the probe 3b, and the position of the rod 12 in the axial direction with respect to the cylinder 10 can be detected. Since the axial position of the free piston 14 having a one-to-one relationship in the reservoir 2 can be detected, the stroke displacement of the vehicle shock absorber D1 can be detected.
  • the vehicle shock absorber D1 configured in this way is provided with the stroke sensor 3 in the reservoir 2 having a degree of freedom in the installation location with respect to the shock absorber main body 1, the wiring 3d of the stroke sensor 3 is laid from the road surface.
  • the wiring 3d can be protected from flying objects by being able to be arranged at a separated position.
  • the stroke sensor 3 since the stroke sensor 3 is housed in the reservoir 2 and the displacement of the free piston 14 is detected, the stroke sensor 3 does not have to be long, and the vehicle. Even if a bending moment acts on the shock absorber D1, it is less likely to be affected by deformation, so that the probe 3b can be protected. That is, since the stroke sensor 3 only needs to detect the stroke displacement of the free piston 14 in the reservoir 2, it is compared with the conventional vehicle shock absorber that must be set to at least the total length of the rod or cylinder. The total length of the probe 3b can be shortened.
  • the total length of the probe 3b of the stroke sensor 3 can be shortened as compared with the conventional vehicle shock absorber, and the manufacturing cost can be reduced. If the area of the bottom portion 14a of the free piston 14 is made larger than the cross-sectional area of the rod 12, the displacement of the free piston 14 can be reduced with respect to the displacement of the rod 12 with respect to the cylinder 10, so that the total length of the probe 3b can be further shortened. ..
  • the stroke sensor 3 can be protected and the cost can be reduced.
  • the vehicle shock absorber D1 of the present embodiment is formed of a cap 6 in which the reservoir 2 closes one end of the reservoir cylinder 13 and a non-magnetic material having one end connected to the cap 6 and housed in the reservoir cylinder 13.
  • the free piston 14 has an annular shape and is slidably mounted on the outer periphery of the tubular rod 22 so as to be slidably contacted with the inner circumference of the reservoir cylinder 13, and the probe 3b of the stroke sensor 3 is attached. It is housed in the tubular rod 22.
  • the probe 3b is protected by the tubular rod 22 and the free piston 14 is moved in the axial direction by the tubular rod 22 even when a bending moment is applied to the vehicle shock absorber D1. Since the probe 3b can accurately detect the position of the free piston 14, the stroke displacement of the vehicle shock absorber D1 can be detected accurately.
  • the vehicle shock absorber D1 of the present embodiment is mounted on the outer periphery of the other end of the tubular rod 22 to partition the liquid chamber L and the compression side chamber R2, and discharge the pressure side chamber R2 and the liquid chamber L to communicate with each other.
  • the valve case 23 having the port 23a and the suction port 23b opens and closes the discharge port 23a, and allows only the flow of hydraulic oil (liquid) passing through the discharge port 23a from the compression side chamber R2 toward the liquid chamber L and operates. It is provided with a base valve 24 that resists the flow of oil (liquid) and a check valve 25 that opens and closes the suction port 23b and allows only the flow of hydraulic oil (liquid) from the liquid chamber L to the compression side chamber R2. ..
  • a stroke is provided in the tubular rod 22 provided for installing the base valve 24 and the check valve 25 for generating the compression side damping force of the vehicle shock absorber D1. Since the probe 3b of the sensor 3 can be installed, the stroke sensor 3 can be installed at low cost.
  • the vehicle shock absorber D1 of the present embodiment has a pressure spring (coil spring) 28 for urging the free piston 14 toward the liquid chamber L side, and the free piston 14 and the pressure spring (coil spring) 28.
  • the vehicle shock absorber D1 configured in this way, since the magnet (detected element) 3c is mounted on the inner circumference of the cylinder portion 29a of the spring receiver 29, the inside of the cylinder 10 is pressurized spring (coil spring). ) 28 can prevent the magnet (detected element) 3c from interfering with the pressurized spring (coil spring) 28 while pressurizing the magnet (detected element) 3c. Further, according to the vehicle shock absorber D1 configured in this way, since the magnet (detected element) 3c is mounted on the spring receiver 29, the size of the pressure spring (coil spring) 28 is changed. However, there is a case where the magnet (detected element) 3c can be installed only by changing the design of the spring receiver 29 without requiring the design change of the free piston 14, which is advantageous in terms of cost.
  • the vehicle shock absorber D1 of the present embodiment is configured by connecting the reservoir cylinder 13 to the vehicle body B side end of the cylinder 10, the wiring 3d of the stroke sensor 3 is connected to the road surface of the vehicle shock absorber D1. Since it can be arranged on the vehicle body B side, which is the farthest upper end, deterioration of the wiring 3d can be effectively prevented.
  • the vehicle shock absorber D1 converts vibration energy input from the outside into thermal energy while the vehicle is running to attenuate the vibration, so that heat is generated during expansion and contraction and the temperature of the internal hydraulic oil (liquid) rises. Rise. Further, the temperature of the hydraulic oil (liquid) in the vehicle shock absorber D1 also changes due to the influence of the temperature of the atmosphere surrounding the vehicle shock absorber D1. Since the volume of the hydraulic oil (liquid) changes when the temperature changes, the amount of hydraulic oil (liquid) that enters and exits the liquid chamber L of the reservoir 2 when the rod 12 strokes the cylinder 10 by a certain amount also operates. It changes according to the temperature of the oil (liquid).
  • a temperature sensor TS for detecting the temperature of the hydraulic oil (liquid) in the reservoir 2 or the cylinder 10 is provided in the vehicle shock absorber D1 and serves as a reference. The temperature is set and the difference between the reference temperature and the temperature detected by the temperature sensor TS is obtained.
  • the hydraulic oil (liquid) amount in the cylinder 10 at the reference temperature can be grasped.
  • the execution volume in the cylinder 10 By subtracting the execution volume in the cylinder 10 from the amount of hydraulic oil (liquid) in the cylinder 10, how much the rod 12 actually penetrates into the cylinder 10, that is, the actual stroke displacement of the vehicle shock absorber D1. Can be detected. Therefore, if the temperature sensor TS is provided on the vehicle shock absorber D1 to detect the temperature of the hydraulic oil (liquid), the stroke displacement of the vehicle shock absorber D1 can be detected more accurately regardless of the temperature change.
  • the stroke displacement correction by the temperature sensor TS may be performed by the above-mentioned external device that captures the signal of the stroke sensor 3, or the signal of the temperature sensor TS is input to the sensor body 3a of the stroke sensor 3 and the sensor body 3a is used. The correction process may be performed with. Further, although it is desirable that the temperature sensor TS detects the temperature in the cylinder 10 or the liquid chamber L, the temperature sensor TS may detect the temperature of the hydraulic oil (liquid) in the liquid storage chamber R3. It should be noted that the installation of the temperature sensor TS is not essential because the stroke displacement of the vehicle shock absorber D1 can be detected with a certain degree of accuracy without providing the temperature sensor TS.
  • the front fork F2 is provided with a damping force variable shock absorber D2 equipped with a damping force adjusting valve DV instead of the stroke sensor 3 in the configuration of the vehicle shock absorber D1 and the reservoir 38.
  • the same components as those of the front fork F1 already described in the description of the other front forks F2 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the other front fork F2 includes a cap 30, a tubular guide rod 31, a valve holding member 32 screwed to the outer periphery of the lower middle end of FIG. 3, which is the tip of the guide rod 31, and a valve.
  • the reservoir 38 is provided with a valve case 23, a base valve 24, a check valve 25, and a free piston 14 held by the holding member 32.
  • the damping force adjusting valve DV is attached to the needle valve 33, which can be moved in the axial direction to the annular valve seat 32d provided in the valve holding member 32, and the cap 30 to move in the axial direction by the rotation operation with respect to the cap 30.
  • It is configured to include a possible adjuster 34 and a control rod 35 that transmits the axial displacement of the adjuster 34 to the needle valve 33.
  • the cap 30 includes an accommodating portion 30a that rotatably accommodates the adjuster 34 in the axial center portion and has a screw groove on the inner circumference, and a socket 30b in which the upper end of the guide rod 31 is screwed at the lower end in FIG. There is. Further, the accommodating portion 30a is communicated with the socket 30b.
  • the adjuster 34 is screwed into the screw groove of the accommodating portion 30a and accommodated in the accommodating portion 30a, and can move in the axial direction with respect to the cap 30 when rotated by an operation from the outside.
  • the valve holding member 32 is connected to an annular connecting portion 32a which is cylindrical and is screwed to the outer periphery of the lower end in FIG. 3 of the guide rod 31, and a tubular valve holding shaft 32b extending downward from the connecting portion 32a. It includes a port 32c that opens from the outer periphery of the portion 32a and leads into the valve holding shaft 32b, and an annular valve seat 32d provided in the valve holding shaft 32b.
  • the valve holding member 32 includes a valve case 23 fitted to the outer periphery of the valve holding shaft 32b, a base valve 24, and a check valve 25 with a nut 27 screwed to the outer periphery of the lower end of the valve holding shaft 32b and a connecting portion 32a. It is held by sandwiching it with. Since the tip of the valve holding shaft 32b in the valve holding member 32 faces the compression side chamber R2 and the port 32c faces the liquid chamber L, the valve holding member 32 has a discharge port 23a in the valve holding shaft 32b and in the port 32c. A bypass path is formed by detouring and communicating the compression side chamber R2 and the liquid chamber L.
  • the needle valve 33 is provided with a needle at the tip and is inserted into the guide rod 31 so as to be movable in the axial direction, and the needle at the tip is projected into the valve holding shaft 32b of the valve holding member 32. Then, the needle valve 33 shuts off the bypass path when the needle at the tip is brought into contact with the annular valve seat 32d, and opens the bypass path when the needle is separated from the annular valve seat 32d. Further, the needle valve 33 can change the size of the flow path area of the bypass path by moving the needle away from the annular valve seat 32d and moving it closer to the annular valve seat 32d.
  • the needle valve 33 Since the pressure of the compression side chamber R2 acts on the needle at the tip of the needle valve 33, the needle valve 33 is urged by the pressure and is pressed so as to always abut on the other end of the control rod 35. Therefore, when the operator rotates and the adjuster 34 moves in the axial direction with respect to the cap 30, the needle valve 33 is also displaced in the axial direction through the control rod 35, the bypass path is opened and closed, and the flow path area is changed.
  • the flow rate of the hydraulic oil passing through the discharge port 23a during the contraction operation in which the rod 12 invades the cylinder 10 can be adjusted by changing the flow path area of the bypass path. , The damping force at the time of contraction can be adjusted.
  • the front fork F2 incorporating the damping force variable shock absorber D2 capable of adjusting the damping force during contraction and the front fork F1 incorporating the stroke sensor 3 but not having the damping force adjusting function during contraction are
  • the suspension device S is configured in pairs.
  • the suspension device S includes an outer tube 4 and an inner tube 5 inserted into the outer tube 4 so as to be movable in the axial direction, and includes a body B and a front wheel W of a saddle-type vehicle (vehicle) V.
  • a variable damping force buffer that is housed inside the other of the bodies T1 and T2 and expands and contracts as the other expansion and contraction body T2 expands and contracts to generate a damping force, and at least the damping force at the time of contraction can be adjusted.
  • a device D2 is provided, and the damping force of each of the stretchable bodies T1 and T2 at the time of contraction can be adjusted only by the variable damping force shock absorber D2. According to the suspension device configured in this way, it is possible to adjust the damping force at the time of contraction by the other damping force variable shock absorber D2 while detecting the stroke displacement by the one vehicle shock absorber D1.
  • the suspension device S configured in this way, the structure is not complicated even if the stroke sensor 3 is installed, and the damping force on the contraction side can be adjusted while detecting the stroke displacement. Further, since the stroke sensor 3 is incorporated in the reservoir 2 of the vehicle shock absorber D1, the suspension device S can protect the stroke sensor 3 and reduce the cost as in the vehicle shock absorber D1.
  • the reservoir 38 portion of the damping force variable shock absorber D2 shown in FIG. The configuration may be changed as in the vehicle shock absorber D3 of the second embodiment shown in FIG. Specifically, in the vehicle shock absorber D3 of the second embodiment, the adjuster 36 screwed to the cap 30 and the control rod 37 inserted into the guide rod 31 are formed into a tubular shape, and the probe of the stroke sensor 3 is formed.
  • vehicle shock absorber D3 is inserted into the adjuster 36 and the control rod 37, a magnet 3c as a detector is attached to the spring receiver 29, and the wiring 3e extending from the probe 3b is pulled out of the vehicle shock absorber D3 to be a vehicle shock absorber. It is connected to a sensor body (not shown) installed outside D3.
  • the configuration of the other vehicle shock absorber D3 is the same as that of the damping force variable shock absorber D2.
  • the needle valve 33 moves closer to the annular valve seat 32d and the bypass path is reached. It is possible to open and close and change the flow path area.
  • the guide rod 31 and the control rod 37 are non-magnetic materials in the case of the vehicle shock absorber D3, and the position of the magnet 3c can be detected by the probe 3b.
  • the vehicle shock absorber D4 includes a shock absorber main body 40, a reservoir 41 arranged in parallel with the shock absorber main body 40, and a stroke sensor 42.
  • the shock absorber main body 40 is inserted into the cylinder 43 so as to be movable in the axial direction, and the inside of the cylinder 43 is filled with hydraulic oil as a liquid, and the extension side chamber R4 and the compression side chamber. It includes a piston 44 divided into R5 and a rod 45 having one end connected to the piston 44 and inserted into the cylinder 43 so as to be movable in the axial direction.
  • the cylinder 43 is a cylinder whose upper end is closed in FIG. 6, and can be connected to the vehicle body of a saddle-mounted vehicle (not shown) via an eye-shaped bracket 43a provided at the upper end. Further, on the inner circumference of the lower end of the cylinder 43, a rod guide 46 that pivotally supports the rod 45 and guides the movement of the rod 45 with respect to the cylinder 43 in the axial direction is provided together with the seal member 47. On the other hand, the rod 45 can be connected to the rear wheel of a saddle-type vehicle (not shown) via an eye-shaped bracket 45a provided at the lower end of FIG.
  • the piston 44 has an extension side port 44a and a compression side port 44b that communicate the extension side chamber R4 and the compression side chamber R5, and a resistance to the flow of hydraulic oil from the extension side chamber R4 to the compression side chamber R5 provided in the extension side port 44a. It is provided with an extension side damping valve 44c and a compression side damping valve 44d provided in the compression side port 44b to resist the flow of hydraulic oil from the compression side chamber R5 to the extension side chamber R4.
  • the rod 45 is provided with a passage for communicating the extension side chamber R4 and the compression side chamber R5 by bypassing the extension side port 44a and the compression side port 44b, and a needle valve or the like capable of changing the flow path area of the passage is provided in the passage. It may be provided so that the damping force of the vehicle shock absorber D4 can be adjusted.
  • a connecting portion 43b for connecting the reservoir 41 is provided on the side portion of the upper end of the cylinder 43.
  • the reservoir 41 is formed of a reservoir cylinder 48 in which the upper end in FIG. 6 is held by the connecting portion 43b, a cap 49 for closing the lower end in the middle of FIG. 6 of the reservoir cylinder 48, and a non-magnetic material having one end attached to the cap 49.
  • the tubular rod 50 is slidably mounted on the outer periphery of the tubular rod 50, and is slidably contacted with the inner circumference of the reservoir cylinder 48 to form the inside of the reservoir cylinder 48 into the liquid chamber L1 and the air chamber G1.
  • An annular free piston 51 for partitioning and a gas spring (not shown) for urging the free piston 51 in a direction of compressing the liquid chamber L1 by the elastic force of the gas in the air chamber G1 are provided.
  • the upper liquid chamber L1 in FIG. 6 in the reservoir cylinder 48 is communicated with the compression side chamber R5 in the cylinder 43 by the discharge port 43c and the suction port 43d provided in the connecting portion 43b of the cylinder 43.
  • the discharge port 43c is provided with a base valve 43e that allows only the flow of hydraulic oil from the compression side chamber R5 to the liquid chamber L1 and provides resistance to the flow of hydraulic oil.
  • the suction port 43d is provided with a check valve 43f that allows only the flow of hydraulic oil from the liquid chamber L1 to the compression side chamber R5.
  • the connecting portion 43b in the cylinder 43 functions as a valve case.
  • the stroke sensor 42 includes a sensor body 42a held by the cap 49, a rod-shaped probe 42b extended from the sensor body 42a and inserted into the tubular rod 50 connected to the cap 49, and a free piston 51. It is provided with a magnet 42c as an annular object to be detected, which is mounted on the cylinder rod 50 and arranged on the outer periphery of the tubular rod 50. Therefore, the stroke sensor 42 can detect the current position of the free piston 51 with respect to the reservoir cylinder 48 in the axial direction.
  • the signal output by the stroke sensor 42 is input to the external device (not shown) via the wiring 42d extending from the sensor body 42a and being drawn out of the reservoir 41.
  • the piston 44 moves downward in FIG. 6 in the cylinder 43, so that the hydraulic oil in the extension side chamber R4 to be compressed is expanded. It passes through the side port 44a and the extension side damping valve 44c and moves to the compression side chamber R5. Then, since the extension side damping valve 44c gives resistance to the flow of hydraulic oil passing through the extension side port 44a, the pressure of the extension side chamber R4 becomes higher than the pressure of the compression side chamber R5, and the vehicle shock absorber D4 owns the extension. Demonstrate the extension side damping force that hinders.
  • the rod 45 withdraws from the cylinder 43, and the hydraulic oil for the volume of the rod 45 withdrawing from the cylinder 43 is insufficient in the compression side chamber R5 in the cylinder 43. Since the hydraulic oil is insufficient in the compression side chamber R5 as described above, the pressure in the compression side chamber R5 drops below the pressure in the reservoir 41, and the check valve 43f bends to open the suction port 43d. Therefore, the hydraulic oil deficient in the compression side chamber R5 is supplied from the liquid chamber L1 of the reservoir 41 to the compression side chamber R5 through the suction port 43d.
  • the free piston 51 moves upward to shrink the liquid chamber L1 and expand the air chamber G1 because the hydraulic oil moves from the liquid chamber L1 to the compression side chamber R5, and the rod 45 exits from the cylinder 43. Compensation for the volume to be made is made.
  • the piston 44 moves upward in FIG. 6 in the cylinder 43, so that the hydraulic oil in the compressed side chamber R5 is compressed to the compression side port 44b and the compression side. It passes through the damping valve 44d and moves to the extension side chamber R4.
  • the compression side damping valve 44d resists the flow of hydraulic oil through the compression side port 44b, causing a difference between the pressure in the compression side chamber R5 and the pressure in the extension side chamber R4.
  • the shock absorber D4 for a vehicle contracts, the rod 45 invades the cylinder 43, and the hydraulic oil for the volume of the rod 45 invading the cylinder 43 becomes excessive in the cylinder 43.
  • the excess hydraulic oil in the cylinder 43 in this way pushes open the base valve 43e, passes through the discharge port 43c, and moves to the liquid chamber L1 of the reservoir 41.
  • the base valve 43e resists the flow of hydraulic oil through the discharge port 43c, thus increasing the overall pressure in the cylinder 43. Therefore, the vehicle shock absorber D4 exerts a compression side damping force that hinders its own contraction by the compression side damping valve 44d and the base valve 43e.
  • the hydraulic oil is discharged from the cylinder 43 into the liquid chamber L1, so that the free piston 51 retracts upward to expand the liquid chamber L1 and shrink the air chamber G1, and the rod 45 causes the cylinder 43. Compensation for the volume that penetrates inside is made.
  • the current position of the free piston 51 can be detected by the stroke sensor 42, so that the stroke displacement of the vehicle shock absorber D4 can be detected.
  • the reservoir cylinder 48 is arranged sideways with respect to the cylinder 43 in the shock absorber main body 40 and is a separate body of the vehicle shock absorber D4 configured in this way, the stroke sensor 42 housed in the reservoir 41 is accommodated. Since the wiring 42d can be arranged at a position away from the road surface, the wiring 42d can be protected from flying objects.
  • the stroke sensor 3 since the stroke sensor 3 is housed in the reservoir 41 and the displacement of the free piston 51 is detected, the stroke sensor 3 does not have to be long, so that it is manufactured. The cost can be reduced.
  • the stroke sensor 42 can be more effectively protected because the structure is such that the bending moment does not act on the stroke sensor 42.
  • the stroke sensor 42 can be protected and the cost can be reduced.
  • the reservoir cylinder 48 is arranged in parallel with the cylinder 43 in the figure, it may be arranged laterally in a posture other than parallel to the cylinder 43. Therefore, the reservoir cylinder 48 may be arranged so as to have an axis on a plane orthogonal to the axis of the cylinder 43, for example.
  • the vehicle shock absorber D4 has a bypass path and a bypass path that communicate the compression side chamber R5 and the liquid chamber L1 by bypassing the discharge port 43c and the suction port 43d in order to enable adjustment of the damping force on the contraction side. May be provided with a variable damping valve such as a needle valve that can change the flow path area of the bypass path.

Abstract

A vehicle shock absorber (D1) comprises: a shock absorber main unit (1) having a cylinder (10) that is couplable to a vehicle-body (B) of a vehicle (V), a piston (11) that is axially movably inserted into the cylinder (10) interior and divides the cylinder (10) interior into an extension-side chamber (R1) and a compression-side chamber (R2), and a rod (12) one end of which is coupled to the piston (11) and which is axially movably inserted into the cylinder (10) interior, and another end of which is couplable to a wheel (W) side of the vehicle (V); a reservoir (2) provided with a reservoir cylinder (13), and a free piston (14) that is axially movably inserted into the reservoir cylinder (13) interior and divides the reservoir cylinder (13) interior into a gas chamber (G) and a liquid chamber (L) interconnected with the compression-side chamber (R2); and a stroke sensor (3) for detecting stroke displacement in the shock absorber main unit (1), the stroke sensor (3) having a detected element (3c) coupled to the free piston (14), and a rod-like probe (3b) coupled to the reservoir cylinder (13) at one end thereof and housed in the reservoir cylinder (13) for detecting the position of the detected element (3c).

Description

車両用緩衝器および懸架装置Vehicle shock absorbers and suspensions
 本発明は、車両用緩衝器および懸架装置に関する。 The present invention relates to a vehicle shock absorber and a suspension device.
 車両用緩衝器は、車体と車輪との間に介装されて伸縮時に減衰力を発生して車体と車輪の振動を抑制する。また、車両用緩衝器は、鞍乗型車両の前側の操向輪を支持する懸架装置に組み込まれて利用される場合もある。 The vehicle shock absorber is interposed between the vehicle body and the wheels to generate damping force during expansion and contraction to suppress vibration between the vehicle body and the wheels. Further, the shock absorber for a vehicle may be used by being incorporated in a suspension device that supports a steering wheel on the front side of a saddle-mounted vehicle.
 このような車両用緩衝器は、たとえば、車体側に連結されるアウターチューブと、アウターチューブ内に摺動自在に挿入されて車輪側に連結されるインナーチューブと、アウターチューブに上端がリザーバ筒を介して連結されるシリンダと、シリンダ内に摺動自在に挿入されるとともにシリンダ内を伸側室と圧側室とに区画する第1ピストンと、第1ピストンに連結されてシリンダ内に移動自在に挿入されるとともに下端がインナーチューブに連結される筒状の第1ロッドと、アウターチューブの上端を閉塞するキャップに連結される筒状の第2ロッドと、第2ロッドの外周に装着されてリザーバ筒とシリンダとの間を仕切る第2ピストンと、リザーバ筒内に摺動自在に挿入されてリザーバ筒内を気室と液室とに区画するフリーピストンとを備えて構成される。 Such a vehicle shock absorber has, for example, an outer tube connected to the vehicle body side, an inner tube slidably inserted into the outer tube and connected to the wheel side, and a reservoir cylinder at the upper end of the outer tube. A cylinder connected via a cylinder, a first piston that is slidably inserted into the cylinder and divides the inside of the cylinder into an extension side chamber and a compression side chamber, and a first piston that is connected to the first piston and is movably inserted into the cylinder. A cylindrical first rod whose lower end is connected to the inner tube, a tubular second rod connected to a cap that closes the upper end of the outer tube, and a reservoir cylinder attached to the outer periphery of the second rod. It is provided with a second piston that separates the cylinder from the cylinder and a free piston that is slidably inserted into the reservoir cylinder to divide the inside of the reservoir cylinder into an air chamber and a liquid chamber.
 このように構成された車両用緩衝器は、伸縮時に第1ピストンおよび第2ピストンに設けた通路を液体が通過し、この通路を通過する液体の流れに対してリーフバルブで抵抗を与えて自身の伸縮を妨げる減衰力を発生する。 The vehicle shock absorber configured in this way allows the liquid to pass through the passages provided in the first piston and the second piston during expansion and contraction, and gives resistance to the flow of the liquid passing through the passages by a leaf valve to itself. Generates a damping force that prevents the expansion and contraction of the piston.
 また、従来の車両用緩衝器では、たとえば、JP6764051Bに開示されているように、第2ロッドの先端に装着された細長い棒状の導体部材と、第1ロッド内に収容されるとともに内部に導体部材が移動自在に挿通される細長い円筒状のコイルユニットとを備えたストロークセンサを備えており、車両の走行状態その他の把握のために伸縮時のストローク変位を検知している(たとえば、特許文献1参照)。 Further, in the conventional vehicle shock absorber, for example, as disclosed in JP6764051B, an elongated rod-shaped conductor member mounted on the tip of the second rod and a conductor member housed in the first rod and inside the conductor member. Is provided with a stroke sensor equipped with an elongated cylindrical coil unit through which the vehicle is movably inserted, and detects stroke displacement during expansion and contraction in order to grasp the running state and other aspects of the vehicle (for example, Patent Document 1). reference).
特許第6764051号公報Japanese Patent No. 6764051
 このように構成された車両用緩衝器では、車輪側に連結されるインナーチューブに固定したコイルユニットで導体部材の位置を検知し、コイルユニットが発する電気信号を処理する制御装置等へ伝達するため、コイルユニットに接続された配線はインナーチューブの下端から外部へ引き出されて車体側に設置される制御装置等へ接続される。 In the vehicle shock absorber configured in this way, the position of the conductor member is detected by the coil unit fixed to the inner tube connected to the wheel side, and the electric signal generated by the coil unit is transmitted to the control device or the like. The wiring connected to the coil unit is drawn out from the lower end of the inner tube and connected to a control device or the like installed on the vehicle body side.
 このように従来の車両用緩衝器では、配線は、車両用緩衝器の車輪側から引き出される関係上、必然的に車両が走行する路面の近傍に配置されるので、車両走行中に飛来物と干渉して劣化する可能性がある。 As described above, in the conventional vehicle shock absorber, the wiring is inevitably arranged near the road surface on which the vehicle travels because the wiring is pulled out from the wheel side of the vehicle shock absorber. It may interfere and deteriorate.
 また、従来の車両用緩衝では、ストロークセンサが、車体側に取り付けられるアウターチューブに第2ロッドを介して連結される導体部材と、車輪側に取り付けられるインナーチューブに固定されるコイルユニットとで構成されているため、車両用緩衝器に曲げモーメントが入力されると導体部材とコイルユニットが接触して劣化する可能性がある。 Further, in the conventional buffer for vehicles, the stroke sensor is composed of a conductor member connected to the outer tube attached to the vehicle body side via the second rod and a coil unit fixed to the inner tube attached to the wheel side. Therefore, when a bending moment is input to the shock absorber for a vehicle, the conductor member and the coil unit may come into contact with each other and deteriorate.
 さらに、従来の車両用緩衝器では、最伸長から最収縮までの全ストローク長においてストローク変位を検知するためには、少なくともストローク長以上の長さの導体部材およびコイルユニットが必要となってストロークセンサが長くなってコストが嵩んでしまう。 Further, in the conventional vehicle shock absorber, in order to detect the stroke displacement in the total stroke length from the maximum extension to the maximum contraction, a conductor member and a coil unit having a length of at least the stroke length are required, and the stroke sensor is required. Will be long and the cost will increase.
 このように従来の車両用緩衝器では、ストロークセンサの劣化およびコストの増加といった課題があり、車両用緩衝器を組み込んだ懸架装置も同様の課題を抱えている。 As described above, the conventional vehicle shock absorber has problems such as deterioration of the stroke sensor and an increase in cost, and the suspension device incorporating the vehicle shock absorber also has the same problem.
 そこで、本発明は、ストロークセンサを保護できるとともにコストを低減可能な車両用緩衝器および懸架装置の提供を目的としている。 Therefore, an object of the present invention is to provide a vehicle shock absorber and a suspension device that can protect the stroke sensor and reduce the cost.
 上記した目的を達成するため、本発明の車両用緩衝器は、車両における車体側に連結可能なシリンダと、シリンダ内に軸方向へ移動可能に挿入されるとともにシリンダ内を伸側室と圧側室とに区画するピストンと、一端がピストンに連結されてシリンダ内に軸方向へ移動可能に挿入されるとともに他端が車両における車輪側に連結可能なロッドとを有する緩衝器本体と、リザーバ筒とリザーバ筒内に軸方向へ移動自在に挿入されるとともにリザーバ筒内を気室と圧側室に連通される液室とに区画するフリーピストンとを備えたリザーバと、緩衝器本体のストローク変位を検出するストロークセンサとを備え、ストロークセンサは、フリーピストンに連結される被検出子とリザーバ筒に一端が連結されるとともにリザーバ筒内に収容されて被検出子の位置を検知するプローブとを有している。 In order to achieve the above object, the vehicle shock absorber of the present invention has a cylinder that can be connected to the vehicle body side of the vehicle, and is inserted into the cylinder so as to be movable in the axial direction, and the inside of the cylinder is divided into an extension side chamber and a compression side chamber. A shock absorber body having a piston partitioned into a piston, a rod having one end connected to the piston and movably inserted into the cylinder in the axial direction, and a rod having the other end connectable to the wheel side of the vehicle, a reservoir cylinder and a reservoir. A reservoir equipped with a free piston that is movably inserted into the cylinder and divides the inside of the reservoir cylinder into a liquid chamber that communicates with the air chamber and the compression side chamber, and the stroke displacement of the shock absorber body is detected. A stroke sensor is provided, and the stroke sensor has a detector connected to a free piston and a probe connected to one end of the reservoir cylinder and housed in the reservoir cylinder to detect the position of the detected element. There is.
 このように構成された車両用緩衝器では、フリーピストンと一体となって移動する被検出子の位置をプローブで検知でき、シリンダに対するロッドの軸方向の位置と一対一の関係を持つフリーピストンのリザーバ内での軸方向の位置を検知できるから、車両用緩衝器のストローク変位を検知できる。 In the vehicle shock absorber configured in this way, the position of the detector that moves integrally with the free piston can be detected by the probe, and the free piston has a one-to-one relationship with the axial position of the rod with respect to the cylinder. Since the axial position in the reservoir can be detected, the stroke displacement of the vehicle shock absorber can be detected.
 そして、このように構成された車両用緩衝器は、緩衝器本体に対して設置箇所に自由度があるリザーバにストロークセンサを設けているので、ストロークセンサの配線を路面から離間した位置に配置できる。 Since the vehicle shock absorber configured in this way is provided with the stroke sensor in the reservoir having a degree of freedom in the installation location with respect to the shock absorber body, the wiring of the stroke sensor can be arranged at a position away from the road surface. ..
 また、このように構成された車両用緩衝器では、リザーバにストロークセンサを収容してフリーピストンの変位を検知しているので、ストロークセンサが長尺にならずに済み、車両用緩衝器に曲げモーメントが作用しても変形の影響を受けづらくなるためプローブを保護でき、ストロークセンサは、リザーバ内のフリーピストンのストローク変位を検知すれば足りるため、少なくともロッド或いはシリンダの全長に以上の長さに設定されなければならない従来の車両用緩衝器に比較してプローブの全長を短くできる。 Further, in the vehicle shock absorber configured in this way, since the stroke sensor is housed in the reservoir and the displacement of the free piston is detected, the stroke sensor does not have to be long and is bent into the vehicle shock absorber. The probe can be protected because it is less susceptible to deformation even when a moment is applied, and the stroke sensor only needs to detect the stroke displacement of the free piston in the reservoir, so it should be at least the total length of the rod or cylinder. The overall length of the probe can be shortened compared to conventional vehicle shock absorbers that must be set.
図1は、フロントフォークに適用した本発明の第1の実施の形態の車両用緩衝器の断面図である。FIG. 1 is a cross-sectional view of a vehicle shock absorber according to a first embodiment of the present invention applied to a front fork. 図2は、鞍乗型車両に適用された本発明の懸架装置の正面図である。FIG. 2 is a front view of the suspension device of the present invention applied to a saddle-mounted vehicle. 図3は、本発明の懸架装置における他のフロントフォークの断面図である。FIG. 3 is a cross-sectional view of another front fork in the suspension device of the present invention. 図4は、本発明の第1の実施の形態の車両用緩衝器のリザーバ部分の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a reservoir portion of the vehicle shock absorber according to the first embodiment of the present invention. 図5は、本発明の第2の実施の形態の車両用緩衝器のリザーバ部分の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a reservoir portion of a vehicle shock absorber according to a second embodiment of the present invention. 図6は、フロントフォークに適用した本発明の第3の実施の形態の車両用緩衝器の断面図である。FIG. 6 is a cross-sectional view of a vehicle shock absorber according to a third embodiment of the present invention applied to a front fork.
 以下、図に示した実施の形態に基づき、本発明を説明する。本発明の第1の実施の形態における車両用緩衝器D1は、図1および図4に示すように、緩衝器本体1と、リザーバ2と、ストロークセンサ3とを備えている。また、第1の実施の形態の車両用緩衝器D1は、図2に示すように、車両としての鞍乗型車両Vの車体Bに連結される車体側チューブとしてのアウターチューブ4と、アウターチューブ4内に摺動自在に挿入されて鞍乗型車両Vの操向輪である前輪Wに連結される車軸側チューブとしてのインナーチューブ5とを備えた伸縮体T1内に収容されており、伸縮体T1とともにフロントフォークF1を構成している。 Hereinafter, the present invention will be described based on the embodiments shown in the figure. As shown in FIGS. 1 and 4, the vehicle shock absorber D1 according to the first embodiment of the present invention includes a shock absorber main body 1, a reservoir 2, and a stroke sensor 3. Further, as shown in FIG. 2, the vehicle shock absorber D1 of the first embodiment has an outer tube 4 as a vehicle body side tube connected to a vehicle body B of a saddle-type vehicle V as a vehicle, and an outer tube. It is housed in a stretchable body T1 provided with an inner tube 5 as an axle side tube connected to a front wheel W which is a steering wheel of a saddle-mounted vehicle V by being slidably inserted into the 4 and is accommodated in the stretchable body T1. Together with the body T1, it constitutes the front fork F1.
 また、フロントフォークF1は、図1から図4に示すように、鞍乗型車両Vの車体Bに連結される車体側チューブとしてのアウターチューブ4と、アウターチューブ4内に摺動自在に挿入されて鞍乗型車両Vの操向輪である前輪Wに連結される車軸側チューブとしてのインナーチューブ5とを備えた伸縮体T2と、伸縮体T2内に収容される減衰力可変緩衝器D2とを備えた他のフロントフォークF2とともに対を成して鞍乗型車両Vの前輪Wを懸架する懸架装置Sを構成している。 Further, as shown in FIGS. 1 to 4, the front fork F1 is slidably inserted into the outer tube 4 as a vehicle body side tube connected to the vehicle body B of the saddle-mounted vehicle V and the outer tube 4. A stretchable body T2 provided with an inner tube 5 as an axle side tube connected to a front wheel W which is a steering wheel of a saddle-mounted vehicle V, and a damping force variable shock absorber D2 housed in the stretchable body T2. It constitutes a suspension device S for suspending the front wheel W of the saddle-mounted vehicle V in a pair with another front fork F2 provided with the above.
 まず、第1の実施の形態の車両用緩衝器D1を収容したフロントフォークF1について具体的に説明する。図1に示すように、フロントフォークF1は、アウターチューブ4と、アウターチューブ4内に摺動自在に挿入されるインナーチューブ5とを有して構成されるテレスコピック型であって倒立型の伸縮体T1を備える。 First, the front fork F1 accommodating the vehicle shock absorber D1 of the first embodiment will be specifically described. As shown in FIG. 1, the front fork F1 is a telescopic type and inverted type telescopic body including an outer tube 4 and an inner tube 5 slidably inserted into the outer tube 4. It is equipped with T1.
 そして、鞍乗型車両Vが凹凸のある路面を走行するなどして前輪Wが上下に振動すると、インナーチューブ5がアウターチューブ4に出入りして伸縮体T1が伸縮する。このように、伸縮体T1が伸縮すると、アウターチューブ4とインナーチューブ5との内方に収容された車両用緩衝器D1も伸縮して減衰力を発生する。なお、伸縮体T1は、アウターチューブを車軸側チューブとし、インナーチューブを車体側チューブとした正立型とされてもよい。 Then, when the front wheel W vibrates up and down due to the saddle-mounted vehicle V traveling on an uneven road surface, the inner tube 5 moves in and out of the outer tube 4, and the telescopic body T1 expands and contracts. As described above, when the stretchable body T1 expands and contracts, the vehicle shock absorber D1 housed inside the outer tube 4 and the inner tube 5 also expands and contracts to generate a damping force. The telescopic body T1 may be an upright type in which the outer tube is the axle side tube and the inner tube is the vehicle body side tube.
 伸縮体T1の上端となるアウターチューブ4の上端は、キャップ6で塞がれている。その一方、伸縮体T1の下端となるインナーチューブ5の下端は、車軸側のブラケット7で塞がれている。さらに、アウターチューブ4の下端内周には、インナーチューブ5の外周に摺接する環状のシール部材8が設けられており、アウターチューブ4とインナーチューブ5との内部の空間は閉鎖空間とされている。 The upper end of the outer tube 4, which is the upper end of the stretchable body T1, is closed by the cap 6. On the other hand, the lower end of the inner tube 5, which is the lower end of the stretchable body T1, is closed by the bracket 7 on the axle side. Further, an annular sealing member 8 that is in sliding contact with the outer periphery of the inner tube 5 is provided on the inner circumference of the lower end of the outer tube 4, and the space inside the outer tube 4 and the inner tube 5 is a closed space. ..
 このようにして伸縮体T1内は閉鎖された空間とされており、その伸縮体T1内に車両用緩衝器D1が収容されている。また、伸縮体T1内であって車両用緩衝器D1の外方は、液体を気体とともに貯留する液溜室R3とされている。 In this way, the inside of the stretchable body T1 is a closed space, and the shock absorber D1 for a vehicle is housed in the stretchable body T1. Further, the outside of the shock absorber D1 for a vehicle inside the telescopic body T1 is a liquid storage chamber R3 for storing the liquid together with the gas.
 つづいて、車両用緩衝器D1は、緩衝器本体1と、リザーバ2と、ストロークセンサ3とを備えている。緩衝器本体1は、シリンダ10と、シリンダ10内に軸方向へ移動可能に挿入されるとともにシリンダ10内を液体が充填される伸側室R1と圧側室R2とに区画するピストン11と、一端がピストン11に連結されてシリンダ10内に軸方向へ移動可能に挿入されるロッド12とを備えている。 Subsequently, the vehicle shock absorber D1 includes a shock absorber main body 1, a reservoir 2, and a stroke sensor 3. The shock absorber main body 1 has a cylinder 10, a piston 11 that is movably inserted into the cylinder 10 and is divided into an extension side chamber R1 and a compression side chamber R2 in which the inside of the cylinder 10 is filled with a liquid, and one end thereof. It includes a rod 12 that is connected to the piston 11 and is movably inserted into the cylinder 10 in the axial direction.
 緩衝器本体1におけるシリンダ10の図1中上端は、リザーバ2を形成するリザーバ筒13を介してアウターチューブ4に連結されており、アウターチューブ4およびリザーバ筒13を介して間接的に鞍乗型車両Vにおける車体Bに連結可能とされている。また、ロッド12の図1中下端は、インナーチューブ5の下端を閉塞するブラケット7に連結されており、ブラケット7を介して鞍乗型車両Vの前輪Wにおける車軸に間接的に連結可能とされている。このように緩衝器本体1のシリンダ10は、鞍乗型車両Vの車体Bに連結可能とされており、ロッド12は、鞍乗型車両Vの車輪である前輪Wに連結可能とされているが、シリンダ10を直接的に車体Bに連結可能としてもよいし、ロッド12を直接的に車輪の車軸に連結可能としてもよい。 The upper end of the cylinder 10 in FIG. 1 in the shock absorber body 1 is connected to the outer tube 4 via the reservoir cylinder 13 forming the reservoir 2, and is indirectly saddle-mounted via the outer tube 4 and the reservoir cylinder 13. It can be connected to the vehicle body B in the vehicle V. Further, the lower middle end of FIG. 1 of the rod 12 is connected to a bracket 7 that closes the lower end of the inner tube 5, and can be indirectly connected to the axle of the front wheel W of the saddle-mounted vehicle V via the bracket 7. ing. As described above, the cylinder 10 of the shock absorber main body 1 can be connected to the vehicle body B of the saddle-mounted vehicle V, and the rod 12 can be connected to the front wheel W which is the wheel of the saddle-mounted vehicle V. However, the cylinder 10 may be directly connected to the vehicle body B, or the rod 12 may be directly connected to the axle of the wheel.
 また、リザーバ2は、リザーバ筒13と、リザーバ筒13の一端を閉塞するキャップ6と、リザーバ筒13内に軸方向へ移動自在に挿入されるとともにリザーバ筒13内を気体が充填される気室Gと液体が充填されるとともに圧側室R2に連通される液室Lとに区画するフリーピストン14とを備えている。なお、車両用緩衝器D1に利用される液体は、本実施の形態では、作動油とされているが、作動油以外の液体の使用も可能である。また、気体には、窒素等の不活性ガスの利用が好ましいが大気の利用も可能である。 Further, the reservoir 2 has a reservoir cylinder 13, a cap 6 that closes one end of the reservoir cylinder 13, and an air chamber that is movably inserted into the reservoir cylinder 13 in the axial direction and is filled with gas in the reservoir cylinder 13. It is provided with a free piston 14 that is divided into a liquid chamber L that is filled with G and a liquid and communicates with the compression side chamber R2. The liquid used for the shock absorber D1 for a vehicle is a hydraulic oil in the present embodiment, but a liquid other than the hydraulic oil can also be used. Further, the gas is preferably an inert gas such as nitrogen, but the atmosphere can also be used.
 以下、車両用緩衝器D1の各部について詳細に説明する。シリンダ10は、図1に示すように、筒状であって上端外周にはリザーバ筒13が螺合されている。リザーバ筒13は、本実施の形態では、シリンダ10よりも大径とされていて、上端外周に設けられた螺子部13aをアウターチューブ4の上端内周に螺着してアウターチューブ4に連結されている。また、リザーバ筒13の上端開口部にはキャップ6が螺着されていてアウターチューブ4およびリザーバ筒13の上端開口部が閉塞される。シリンダ10の下端内周には、内周にロッド12が挿通される筒状のロッドガイド15が装着されており、シリンダ10の下端が閉塞されている。 Hereinafter, each part of the vehicle shock absorber D1 will be described in detail. As shown in FIG. 1, the cylinder 10 has a cylindrical shape, and a reservoir cylinder 13 is screwed to the outer periphery of the upper end. In the present embodiment, the reservoir cylinder 13 has a diameter larger than that of the cylinder 10, and the screw portion 13a provided on the outer periphery of the upper end is screwed to the inner circumference of the upper end of the outer tube 4 and connected to the outer tube 4. ing. Further, a cap 6 is screwed into the upper end opening of the reservoir cylinder 13 to close the outer tube 4 and the upper end opening of the reservoir cylinder 13. A cylindrical rod guide 15 through which the rod 12 is inserted is mounted on the inner circumference of the lower end of the cylinder 10, and the lower end of the cylinder 10 is closed.
 ロッド12は、図1に示すように、下端がアウターチューブ4の下端を閉塞するブラケット7に連結されており、上端側がシリンダ10内に挿入されている。また、ブラケット7の上端であってインナーチューブ5の内周には、外周に懸架ばね16の下端を支持するフランジ状のばね受17aを備えた筒状のオイルロックケース17が載置されている。 As shown in FIG. 1, the lower end of the rod 12 is connected to a bracket 7 that closes the lower end of the outer tube 4, and the upper end side is inserted into the cylinder 10. Further, on the inner circumference of the inner tube 5 which is the upper end of the bracket 7, a tubular oil lock case 17 provided with a flange-shaped spring receiver 17a for supporting the lower end of the suspension spring 16 is mounted on the outer circumference. ..
 また、シリンダ10の外周には、懸架ばね16の上端を支持するばね受18が装着されている。ばね受18は、シリンダ10の外周に嵌合する上端が最小径であって下方へ向かうほど径が拡大する筒状であって、側部に孔18aを備えている。そして、懸架ばね16は、オイルロックケース17におけるばね受17aとばね受18との間に介装されている。ばね受18は、シリンダ10の外周にシリンダ10に対して上方側への移動が規制された状態で装着されており、シリンダ10を介して懸架ばね16から受ける力をアウターチューブ4に伝達している。よって、懸架ばね16は、アウターチューブ4を上方にインナーチューブ5を下方へ押圧して両者を離間させる弾発力を発揮する。 Further, a spring receiver 18 that supports the upper end of the suspension spring 16 is mounted on the outer periphery of the cylinder 10. The spring receiver 18 has a cylindrical shape in which the upper end fitted to the outer periphery of the cylinder 10 has the minimum diameter and the diameter increases toward the lower side, and the spring receiver 18 is provided with a hole 18a on the side portion. The suspension spring 16 is interposed between the spring receiver 17a and the spring receiver 18 in the oil lock case 17. The spring receiver 18 is mounted on the outer periphery of the cylinder 10 in a state where the movement of the spring receiver 18 is restricted upward with respect to the cylinder 10, and the force received from the suspension spring 16 is transmitted to the outer tube 4 via the cylinder 10. There is. Therefore, the suspension spring 16 exerts an elastic force that pushes the outer tube 4 upward and the inner tube 5 downward to separate them from each other.
 また、ロッドガイド15の図1中下端外周には、環状のオイルロックピース15aが装着されている。アウターチューブ4とインナーチューブ5とが接近しフロントフォークF1が最収縮近傍まで収縮すると、ロッドガイド15の外周に装着されたオイルロックピース15aがオイルロックケース17内に侵入する。オイルロックピース15aの外周とオイルロックケース17の内周には、適度な隙間が設けられており、オイルロックケース17内から作動油が流出する流れに抵抗が付与される。よって、オイルロックピース15aがオイルロックケース17に侵入すると、オイルロックケース17内の圧力が上昇してフロントフォークF1のそれ以上の収縮を妨げられるので、フロントフォークF1の最収縮時の衝撃が緩和される。 Further, an annular oil lock piece 15a is attached to the outer periphery of the lower end of FIG. 1 of the rod guide 15. When the outer tube 4 and the inner tube 5 approach each other and the front fork F1 contracts to near the maximum contraction, the oil lock piece 15a attached to the outer periphery of the rod guide 15 invades the oil lock case 17. An appropriate gap is provided between the outer circumference of the oil lock piece 15a and the inner circumference of the oil lock case 17, and resistance is provided to the flow of hydraulic oil flowing out from the inside of the oil lock case 17. Therefore, when the oil lock piece 15a enters the oil lock case 17, the pressure inside the oil lock case 17 rises and further contraction of the front fork F1 is hindered, so that the impact at the time of maximum contraction of the front fork F1 is alleviated. Will be done.
 戻って、図1に示すように、シリンダ10内に挿入されたロッド12の上端の外周には、ピストン11が装着されている。ピストン11は、シリンダ10の内周に摺接しており、シリンダ10に対して上下方向となる軸方向へ移動可能であり、前述したように、シリンダ10内を伸側室R1と圧側室R2とに区画している。また、ピストン11は、伸側室R1と圧側室R2とを連通する伸側ポート11aと圧側ポート11bとを備えている。そして、ピストン11の圧側室R2側には、伸側ポート11aの出口端を開閉する伸側リーフバルブ20がロッド12の外周に固定された状態で積層され、ピストン11の伸側室R1側には、圧側ポート11bの出口端を開閉するチェックバルブ21がロッド12の外周に固定された状態で積層されている。 Returning, as shown in FIG. 1, a piston 11 is mounted on the outer periphery of the upper end of the rod 12 inserted into the cylinder 10. The piston 11 is in sliding contact with the inner circumference of the cylinder 10 and can move in the axial direction which is the vertical direction with respect to the cylinder 10. As described above, the inside of the cylinder 10 is divided into the extension side chamber R1 and the compression side chamber R2. It is partitioned. Further, the piston 11 includes an extension side port 11a and a compression side port 11b that communicate the extension side chamber R1 and the compression side chamber R2. An extension side leaf valve 20 that opens and closes the outlet end of the extension side port 11a is laminated on the compression side chamber R2 side of the piston 11 in a state of being fixed to the outer periphery of the rod 12, and is laminated on the extension side chamber R1 side of the piston 11. The check valve 21 that opens and closes the outlet end of the compression side port 11b is laminated in a state of being fixed to the outer periphery of the rod 12.
 伸側リーフバルブ20は、本実施の形態の車両用緩衝器D1では複数枚の環状板を積層して構成された積層リーフバルブとされており、内周がロッド12の外周に固定されて外周側の撓みが許容されている。また、伸側リーフバルブ20は、作動油が伸側室R1から圧側室R2へ伸側ポート11aを介して移動する際に作動油の流れに抵抗を与え、作動油が圧側室R2から伸側室R1へ向かって移動するのを阻止する。 The extension side leaf valve 20 is a laminated leaf valve configured by laminating a plurality of annular plates in the vehicle shock absorber D1 of the present embodiment, and the inner circumference is fixed to the outer circumference of the rod 12 to form an outer circumference. Side deflection is allowed. Further, the extension side leaf valve 20 gives resistance to the flow of the hydraulic oil when the hydraulic oil moves from the extension side chamber R1 to the compression side chamber R2 via the extension side port 11a, and the hydraulic oil flows from the compression side chamber R2 to the extension side chamber R1. Stop moving towards.
 チェックバルブ21は、本実施の形態の車両用緩衝器D1では環状板で構成されており、内周がロッド12の外周に固定されて外周側の撓みが許容されている。また、チェックバルブ21は、圧側室R2から伸側室R1へ圧側ポート11bを介して移動する作動油の流れを略抵抗なく許容し、作動油が伸側室R1から圧側室R2へ向かって移動するのを阻止する。なお、チェックバルブ21は、圧側ポート11bを通過する作動油の流れに抵抗を与える減衰バルブとされてもよい。 The check valve 21 is formed of an annular plate in the vehicle shock absorber D1 of the present embodiment, and the inner circumference is fixed to the outer periphery of the rod 12 to allow bending on the outer peripheral side. Further, the check valve 21 allows the flow of hydraulic oil moving from the compression side chamber R2 to the extension side chamber R1 via the compression side port 11b without substantially resistance, and the hydraulic oil moves from the extension side chamber R1 to the compression side chamber R2. To prevent. The check valve 21 may be a damping valve that gives resistance to the flow of hydraulic oil passing through the compression side port 11b.
 なお、ロッド12は、中空となっており、ピストン11の伸側ポート11aおよび圧側ポート11bを迂回して伸側室R1と圧側室R2とを連通する通路Pを備えていて、内部に当該通路Pの流路面積を変更可能なニードルバルブNを備えている。なお、ニードルバルブNは、ブラケット7の下端に設けられるアジャスタAの回転操作によってロッド12中を軸方向に移動して前記通路Pの流路面積を変更できる。 The rod 12 is hollow and has a passage P that bypasses the extension side port 11a and the compression side port 11b of the piston 11 and communicates the extension side chamber R1 and the compression side chamber R2. It is provided with a needle valve N capable of changing the flow path area of the above. The needle valve N can move in the rod 12 in the axial direction by the rotation operation of the adjuster A provided at the lower end of the bracket 7, and the flow path area of the passage P can be changed.
 リザーバ2は、リザーバ筒13、キャップ6およびフリーピストン14を備える他、一端がキャップ6に連結されてリザーバ筒13内に収容される非磁性体で形成された筒状ロッド22を備えている。フリーピストン14は、環状であって筒状ロッド22の外周に摺動自在に装着されていて、外周をリザーバ筒13の内周に摺接させてリザーバ筒13内を気室Gと液室Lとに区画している。 The reservoir 2 includes a reservoir cylinder 13, a cap 6, and a free piston 14, and also includes a tubular rod 22 made of a non-magnetic material, one end of which is connected to the cap 6 and housed in the reservoir cylinder 13. The free piston 14 is annular and is slidably mounted on the outer circumference of the tubular rod 22. The outer circumference is slidably contacted with the inner circumference of the reservoir cylinder 13, and the inside of the reservoir cylinder 13 is the air chamber G and the liquid chamber L. It is divided into.
 筒状ロッド22は、本実施の形態の車両用緩衝器D1では、アルミニウムで形成されている。なお、筒状ロッド22は、非磁性体であればよいので、アルミニウム以外にもSUS304等の非磁性のステンレス、強度面で問題が無ければ合成樹脂で形成されてもよい。また、筒状ロッド22の図1中下端外周には、バルブケース23がベースバルブ24およびチェックバルブ25とともに装着されたバルブ保持部材26が螺着されている。 The tubular rod 22 is made of aluminum in the vehicle shock absorber D1 of the present embodiment. Since the tubular rod 22 may be made of a non-magnetic material, it may be made of non-magnetic stainless steel such as SUS304 or synthetic resin if there is no problem in terms of strength, in addition to aluminum. Further, a valve holding member 26 to which the valve case 23 is mounted together with the base valve 24 and the check valve 25 is screwed to the outer periphery of the lower end of the cylindrical rod 22 in FIG.
 つづいて、バルブケース23は、環状であって、前述した通り、キャップ6に連結される筒状ロッド22の図1中下端の外周にバルブ保持部材26を介して装着されている。このようにバルブケース23は、筒状ロッド22によって軸方向に位置決められてリザーバ筒13内に収容されている。バルブケース23は、リザーバ筒13の内周に嵌合しており、筒状ロッド22によってシリンダ10に対して不動に固定されて、前述したように、リザーバ筒13内を圧側室R2とリザーバ2とに区画している。 Subsequently, the valve case 23 has an annular shape, and as described above, is attached to the outer periphery of the lower end of the middle end of FIG. 1 of the cylindrical rod 22 connected to the cap 6 via the valve holding member 26. In this way, the valve case 23 is axially positioned by the tubular rod 22 and housed in the reservoir cylinder 13. The valve case 23 is fitted to the inner circumference of the reservoir cylinder 13, and is immovably fixed to the cylinder 10 by the tubular rod 22. As described above, the inside of the reservoir cylinder 13 is filled with the compression side chamber R2 and the reservoir 2. It is divided into.
 バルブケース23は、図1および図4に示すように、圧側室R2と液室Lとを連通する排出ポート23aと、圧側室R2と液室Lとを連通する吸込ポート23bとを備えている。そして、バルブケース23の液室L側には、排出ポート23aの出口端を開閉するベースバルブ24が筒状ロッド22の外周に固定された状態で積層され、バルブケース23の圧側室R2側には、吸込ポート23bの出口端を開閉するチェックバルブ25が筒状ロッド22の外周に固定された状態で積層されている。 As shown in FIGS. 1 and 4, the valve case 23 includes a discharge port 23a that communicates the compression side chamber R2 and the liquid chamber L, and a suction port 23b that communicates the compression side chamber R2 and the liquid chamber L. .. A base valve 24 that opens and closes the outlet end of the discharge port 23a is laminated on the liquid chamber L side of the valve case 23 in a state of being fixed to the outer periphery of the tubular rod 22, and is laminated on the compression side chamber R2 side of the valve case 23. Is laminated with a check valve 25 that opens and closes the outlet end of the suction port 23b fixed to the outer periphery of the tubular rod 22.
 ベースバルブ24は、本実施の形態の車両用緩衝器D1では複数枚の環状板を積層して構成された積層リーフバルブとされており、内周が筒状ロッド22の外周に固定されて外周側の撓みが許容されている。また、ベースバルブ24は、作動油が圧側室R2から液室Lへ排出ポート23aを介して移動する流れのみを許容して、当該作動油の流れに抵抗を与えるとともに、作動油が圧側室R2から伸側室R1へ向かって移動するのを阻止する。 The base valve 24 is a laminated leaf valve configured by laminating a plurality of annular plates in the vehicle shock absorber D1 of the present embodiment, and the inner circumference is fixed to the outer circumference of the tubular rod 22 to be the outer circumference. Side deflection is allowed. Further, the base valve 24 allows only the flow of the hydraulic oil moving from the compression side chamber R2 to the liquid chamber L via the discharge port 23a to give resistance to the flow of the hydraulic oil, and the hydraulic oil is the compression side chamber R2. Prevents movement from to the extension chamber R1.
 チェックバルブ25は、本実施の形態の車両用緩衝器D1では環状板で構成されており、内周が筒状ロッド22の外周に固定されて外周側の撓みが許容されている。また、チェックバルブ25は、液室Lから圧側室R2へ吸込ポート23bを介して移動する作動油の流れを略抵抗なく許容し、作動油が圧側室R2から液室Lへ向かって移動するのを阻止する。 The check valve 25 is formed of an annular plate in the vehicle shock absorber D1 of the present embodiment, and the inner circumference is fixed to the outer circumference of the tubular rod 22 to allow bending on the outer peripheral side. Further, the check valve 25 allows the flow of hydraulic oil moving from the liquid chamber L to the compression side chamber R2 via the suction port 23b without substantially resistance, and the hydraulic oil moves from the compression side chamber R2 toward the liquid chamber L. To prevent.
 このように構成されたベースバルブ24、バルブケース23およびチェックバルブ25は、バルブ保持部材26の軸部26aに組み付けられて当該軸部26aの図4中下端となる先端に螺着されたナット27によってバルブ保持部材26に固定される。バルブ保持部材26は、筒状ロッド22の図4中の外周に螺着されて筒状ロッド22に組み付けられる。 The base valve 24, the valve case 23, and the check valve 25 configured in this way are assembled to the shaft portion 26a of the valve holding member 26 and screwed to the tip of the shaft portion 26a at the lower end of FIG. Is fixed to the valve holding member 26. The valve holding member 26 is screwed to the outer periphery of the tubular rod 22 in FIG. 4 and assembled to the tubular rod 22.
 つづいて、筒状ロッド22の外周であってバルブケース23よりも図1中上方には、有底筒状のフリーピストン14が摺動自在に装着されている。フリーピストン14の底部14aは、環状であって内周側に筒状ロッド22が挿通されている。また、フリーピストン14は、筒部14bをリザーバ筒13の内周に摺接させており、リザーバ筒13内を作動油が充填される液室Lと気体が充填される気室Gとに区画している。さらに、フリーピストン14の底部14aとキャップ6との間にはコイルばねでなる加圧ばね28が圧縮された状態で介装されていて、フリーピストン14は、加圧ばね28および気室G内の圧力によって常に液室L側を圧縮する方向に付勢されている。なお、フリーピストン14の底部14aと加圧ばね28との間には、ばね受29が介装されている。ばね受29は、加圧ばね28と筒状ロッド22との間の環状隙間に配置される筒部29aと、筒部29aの図4中下端外周に設けられたフランジ29bとを備えて環状とされており、フランジ29bで加圧ばね28の端部を支承している。よって、ばね受29は、加圧ばね28の付勢力でフリーピストン14の底部14aに常に押し付けられており、フリーピストン14が筒状ロッド22に対して軸方向へ移動するとフリーピストン14とともに一体となってる筒状ロッド22に対して変位する。 Subsequently, a bottomed cylindrical free piston 14 is slidably mounted on the outer circumference of the tubular rod 22 and above the valve case 23 in FIG. 1. The bottom portion 14a of the free piston 14 is annular, and a tubular rod 22 is inserted on the inner peripheral side. Further, the free piston 14 has a cylinder portion 14b slidably contacted with the inner circumference of the reservoir cylinder 13, and the inside of the reservoir cylinder 13 is divided into a liquid chamber L filled with hydraulic oil and an air chamber G filled with gas. is doing. Further, a pressure spring 28 made of a coil spring is interposed between the bottom 14a of the free piston 14 and the cap 6 in a compressed state, and the free piston 14 is inside the pressure spring 28 and the air chamber G. The pressure of the liquid chamber is always urged in the direction of compressing the L side of the liquid chamber. A spring receiver 29 is interposed between the bottom portion 14a of the free piston 14 and the pressure spring 28. The spring receiver 29 includes a tubular portion 29a arranged in an annular gap between the pressure spring 28 and the tubular rod 22, and a flange 29b provided on the outer periphery of the lower end of FIG. 4 of the tubular portion 29a. The flange 29b supports the end of the pressure spring 28. Therefore, the spring receiver 29 is always pressed against the bottom 14a of the free piston 14 by the urging force of the pressure spring 28, and when the free piston 14 moves in the axial direction with respect to the tubular rod 22, it is integrated with the free piston 14. It is displaced with respect to the cylindrical rod 22.
 このように、本実施の形態の車両用緩衝器D1では、フリーピストン14を加圧ばね28で付勢して、液室Lに圧縮力を作用させることで、液室Lに連通されるシリンダ10内の伸側室R1および圧側室R2を加圧して、油柱剛性を高めている。作動油には気体が溶け込んでいるために作動油は弾性を示し、作動油の見掛け上の弾性係数が低くなると車両用緩衝器D1の減衰力発生応答性が悪化するが、前述のようにシリンダ10内を加圧することで油柱剛性を高めて車両用緩衝器D1の減衰力発生応答性を向上できる。 As described above, in the vehicle shock absorber D1 of the present embodiment, the free piston 14 is urged by the pressure spring 28 to apply a compressive force to the liquid chamber L, so that the cylinder communicates with the liquid chamber L. The extension side chamber R1 and the compression side chamber R2 in 10 are pressurized to increase the rigidity of the oil column. Since the gas is dissolved in the hydraulic oil, the hydraulic oil exhibits elasticity, and when the apparent elastic modulus of the hydraulic oil becomes low, the damping force generation response of the vehicle shock absorber D1 deteriorates, but as described above, the cylinder. By pressurizing the inside of 10, the rigidity of the oil column can be increased and the damping force generation response of the vehicle shock absorber D1 can be improved.
 なお、シリンダ10のリザーバ筒13の側部には車両用緩衝器D1外に通じる孔13bが設けられている。孔13bは、フリーピストン14の筒部14bが対向している状態ではフリーピストン14によって閉塞された状態に維持されるが、液室L内の作動油量が規定量よりも多くなってフリーピストン14が孔13bよりも上方に後退すると孔13bを介して液室L内の作動油が車両用緩衝器D1外の液溜室R3へ排出され、シリンダ10内が過剰に高圧となってしまうのを防止できる。 A hole 13b leading to the outside of the vehicle shock absorber D1 is provided on the side of the reservoir cylinder 13 of the cylinder 10. The hole 13b is maintained in a state of being closed by the free piston 14 when the cylinder portion 14b of the free piston 14 faces each other, but the amount of hydraulic oil in the liquid chamber L becomes larger than the specified amount and the free piston When 14 retreats above the hole 13b, the hydraulic oil in the liquid chamber L is discharged to the liquid storage chamber R3 outside the vehicle shock absorber D1 through the hole 13b, and the pressure inside the cylinder 10 becomes excessively high. Can be prevented.
 ストロークセンサ3は、キャップ6に保持されるセンサ本体3aと、センサ本体3aから延びて筒状ロッド22内に挿通されるロッド状のプローブ3bと、ばね受29に装着される被検出子としての環状の磁石3cとを備えている。ストロークセンサ3は、本実施の形態では、プローブ3b内の磁歪線にパルス信号を与えて磁石3cの位置を検知する電子回路を有するセンサ本体3aを備えた磁歪式センサとされている。なお、ストロークセンサ3は、フリーピストン14或いはフリーピストン14とともに一体となってリザーバ筒13内を軸方向へ移動できる部品に保持される被検出子と、被検出子の位置を検知できるプローブとを有していれば、前述以外の検出原理を利用したスロトークセンサとされてもよい。このように、被検出子である磁石3cは、フリーピストン14に直接装着されてもよいし、フリーピストン14とともに一体となってリザーバ筒13内を軸方向へ移動できる部品に装着されてもよい。 The stroke sensor 3 is a sensor body 3a held by the cap 6, a rod-shaped probe 3b extending from the sensor body 3a and inserted into the tubular rod 22, and a detector to be mounted on the spring receiver 29. It is equipped with an annular magnet 3c. In the present embodiment, the stroke sensor 3 is a magnetostrictive sensor provided with a sensor body 3a having an electronic circuit that gives a pulse signal to the magnetostrictive wire in the probe 3b to detect the position of the magnet 3c. The stroke sensor 3 includes a detector that is held by a component that can move in the reservoir cylinder 13 in the axial direction together with the free piston 14 or the free piston 14, and a probe that can detect the position of the detector. If it has, it may be a slot talk sensor using a detection principle other than the above. As described above, the magnet 3c to be detected may be directly mounted on the free piston 14, or may be mounted on a component that can move in the reservoir cylinder 13 in the axial direction together with the free piston 14. ..
 キャップ6は、前述した通り、リザーバ筒13の図4中で上端内周に螺着されており、図4中上端から開口してストロークセンサ3のセンサ本体3aを収容する収容凹部6aと、図4中下端に筒状ロッド22の上端外周が螺着される筒部6bと、収容凹部6aの底部から開口して筒部6b内に通じる通孔6cとを備えている。 As described above, as described above, the cap 6 is screwed to the inner circumference of the upper end in FIG. 4 of the reservoir cylinder 13, and is opened from the upper end in FIG. 4 to accommodate the sensor body 3a of the stroke sensor 3 and the accommodating recess 6a. 4 The middle and lower ends are provided with a tubular portion 6b into which the outer periphery of the upper end of the tubular rod 22 is screwed, and a through hole 6c that opens from the bottom of the accommodating recess 6a and leads into the tubular portion 6b.
 ストロークセンサ3におけるセンサ本体3aは、キャップ6の収容凹部6a内に収容され、収容凹部6aの上端内周に装着されるシール部材6dによって固定される。シール部材6dは、収容凹部6a内への水や埃等の侵入を防止してセンサ本体3aを固定するとともに保護している。なお、収容凹部6aのシールとセンサ本体3aの固定と保護については、前述のシール部材6d以外によって実現してもよい。また、センサ本体3aから延びる配線3dは、シール部材6dを貫通してフロントフォークF1の外部へと引き出されており、図外の外部装置に接続される。 The sensor body 3a in the stroke sensor 3 is housed in the housing recess 6a of the cap 6 and is fixed by the seal member 6d mounted on the inner circumference of the upper end of the housing recess 6a. The seal member 6d prevents the intrusion of water, dust, etc. into the accommodating recess 6a, and fixes and protects the sensor body 3a. The seal of the accommodating recess 6a and the fixing and protection of the sensor main body 3a may be realized by a seal member other than the above-mentioned seal member 6d. Further, the wiring 3d extending from the sensor main body 3a penetrates the seal member 6d and is drawn out to the outside of the front fork F1 and is connected to an external device (not shown).
 センサ本体3aは、本実施の形態の車両用緩衝器D1では、キャップ6に保持されてプローブ3bと一体とされているが、プローブ3bがフリーピストン14或いはフリーピストン14とともに一体となってリザーバ筒13内を軸方向へ移動できる部品に保持される被検出子の位置を検知可能な態様であれば、プローブ3bと別体とされてもよい。よって、プローブ3bを車両用緩衝器D1内に収容しておき、センサ本体3aを車両用緩衝器D1或いはフロントフォークF1の外方へ配置する態様となっていてもよい。また、本実施の形態の車両用緩衝器D1では、磁石3cは、フリーピストン14とともに一体となってリザーバ筒13に対して軸方向に変位するばね受29の筒部29aの内周に接着されている。磁石3cは、このようにばね受29に保持されているが、フリーピストン14に直接的に装着されてもよい。なお、コイルばねの代わりに気室G内の気体が発揮する弾発力を利用した気体ばねでフリーピストン14を付勢する場合には、磁石3cは、直接フリーピストン14に装着されればよい。 In the vehicle shock absorber D1 of the present embodiment, the sensor body 3a is held by the cap 6 and integrated with the probe 3b, but the probe 3b is integrated with the free piston 14 or the free piston 14 and is a reservoir cylinder. As long as the position of the detected element held by the component that can move in the axial direction in 13 can be detected, the probe 3b may be separated from the probe 3b. Therefore, the probe 3b may be housed in the vehicle shock absorber D1 and the sensor main body 3a may be arranged outside the vehicle shock absorber D1 or the front fork F1. Further, in the vehicle shock absorber D1 of the present embodiment, the magnet 3c is adhered to the inner circumference of the cylinder portion 29a of the spring receiver 29 which is integrally displaced with the free piston 14 and is displaced in the axial direction with respect to the reservoir cylinder 13. ing. Although the magnet 3c is held by the spring receiver 29 in this way, it may be directly attached to the free piston 14. When the free piston 14 is urged by a gas spring that utilizes the elastic force exerted by the gas in the air chamber G instead of the coil spring, the magnet 3c may be directly attached to the free piston 14. ..
 プローブ3bは、キャップ6の通孔6cを通じて筒状ロッド22内に突出している。プローブ3bは、本実施の形態の車両用緩衝器D1では、一体化されているセンサ本体3aおよびキャップ6を介してリザーバ筒13に連結されているが、磁石3cの内周に対向して磁石3cの位置を検知できれば、直接的か間接的かを問わずリザーバ筒13に連結されていればよい。 The probe 3b projects into the tubular rod 22 through the through hole 6c of the cap 6. In the vehicle shock absorber D1 of the present embodiment, the probe 3b is connected to the reservoir cylinder 13 via the integrated sensor body 3a and the cap 6, but the magnet is opposed to the inner circumference of the magnet 3c. If the position of 3c can be detected, it may be connected to the reservoir cylinder 13 regardless of whether it is direct or indirect.
 なお、プローブ3bの長さは、本実施の形態の車両用緩衝器D1の構造では、少なくともフリーピストン14が筒状ロッド22に対して最も図4中下方のストロークエンドとなるバルブ保持部材26に当接する位置から最も図4中上方のストロークエンドとなるリザーバ筒13の孔13bを開放する位置までの範囲で被検出子である磁石3cの位置を検知できる長さに設定されている。また、前述した通り、筒状ロッド22は、非磁性体で形成されているので、プローブ3bは、筒状ロッド22に邪魔されずに磁石3cの位置を検知できる。 The length of the probe 3b is set to the valve holding member 26 in which at least the free piston 14 is the lower stroke end in FIG. 4 with respect to the cylindrical rod 22 in the structure of the vehicle shock absorber D1 of the present embodiment. The length is set so that the position of the magnet 3c, which is the detector, can be detected within the range from the abutting position to the position where the hole 13b of the reservoir cylinder 13 which is the upper stroke end in FIG. 4 is opened. Further, as described above, since the tubular rod 22 is made of a non-magnetic material, the probe 3b can detect the position of the magnet 3c without being disturbed by the tubular rod 22.
 車両用緩衝器D1は、以上の通り構成されており、以下にその作動について説明する。まず、フロントフォークF1が伸長する場合、アウターチューブ4とインナーチューブ5との相対的な軸方向の離間に伴って、シリンダ10に対してロッド12に連結されるピストン11が図1中下方へ移動する。シリンダ10内の伸側室R1は、ピストン11の移動によって圧縮されて縮小し、シリンダ10内の圧側室R2は、ピストン11の移動によって拡大する。圧縮される伸側室R1内の作動油は、伸側リーフバルブ20を押し開いてピストン11の伸側ポート11aを通過して拡大される圧側室R2へ移動する。伸側リーフバルブ20が伸側ポート11aを通過する作動油の流れに抵抗を与えるので、伸側室R1の圧力が圧側室R2の圧力よりも高くなり、車両用緩衝器D1は自身の伸長を妨げる伸側減衰力を発揮する。 The vehicle shock absorber D1 is configured as described above, and its operation will be described below. First, when the front fork F1 is extended, the piston 11 connected to the rod 12 with respect to the cylinder 10 moves downward in FIG. 1 due to the relative axial separation between the outer tube 4 and the inner tube 5. do. The extension side chamber R1 in the cylinder 10 is compressed and contracted by the movement of the piston 11, and the compression side chamber R2 in the cylinder 10 is expanded by the movement of the piston 11. The hydraulic oil in the extension side chamber R1 to be compressed pushes open the extension side leaf valve 20 and moves to the compression side chamber R2 which is expanded through the extension side port 11a of the piston 11. Since the extension side leaf valve 20 resists the flow of hydraulic oil passing through the extension side port 11a, the pressure of the extension side chamber R1 becomes higher than the pressure of the compression side chamber R2, and the vehicle shock absorber D1 hinders its own extension. Demonstrates the extension side damping force.
 車両用緩衝器D1の伸長時には、シリンダ10からロッド12が退出し、ロッド12がシリンダ10から退出する体積分の作動油がシリンダ10内の圧側室R2で不足する。このように圧側室R2で作動油が不足するために、圧側室R2の圧力がリザーバ2内の圧力よりも低下して、チェックバルブ25が撓んで吸込ポート23bを開放する。よって、圧側室R2で不足する作動油は、リザーバ2の液室Lから吸込ポート23bを通じて圧側室R2に供給される。リザーバ2内では、液室Lから作動油が圧側室R2へ移動するためにフリーピストン14が下方へ移動して液室Lを縮小させるとともに気室Gを拡大させ、ロッド12がシリンダ10から退出する体積の補償がなされる。このように、フロントフォークF1の伸長時には、車両用緩衝器D1がともに伸長して、伸側リーフバルブ20によってフロントフォークF1の伸長を妨げる伸側減衰力を発生する。 When the shock absorber D1 for a vehicle is extended, the rod 12 withdraws from the cylinder 10 and the hydraulic oil for the volume of the rod 12 withdrawing from the cylinder 10 is insufficient in the compression side chamber R2 in the cylinder 10. Since the hydraulic oil is insufficient in the compression side chamber R2 in this way, the pressure in the compression side chamber R2 drops below the pressure in the reservoir 2, and the check valve 25 bends to open the suction port 23b. Therefore, the hydraulic oil deficient in the compression side chamber R2 is supplied from the liquid chamber L of the reservoir 2 to the compression side chamber R2 through the suction port 23b. In the reservoir 2, the free piston 14 moves downward to shrink the liquid chamber L and expand the air chamber G because the hydraulic oil moves from the liquid chamber L to the compression side chamber R2, and the rod 12 exits from the cylinder 10. Compensation for the volume to be made is made. As described above, when the front fork F1 is extended, the vehicle shock absorber D1 is extended together, and the extension side leaf valve 20 generates an extension side damping force that hinders the extension of the front fork F1.
 つづいて、フロントフォークF1が収縮する場合、アウターチューブ4とインナーチューブ5との相対的な軸方向の接近に伴って、シリンダ10に対してロッド12に連結されるピストン11が図1中上方へ移動する。シリンダ10内の圧側室R2は、ピストン11の移動によって圧縮されて縮小し、シリンダ10内の伸側室R1は、ピストン11の移動によって拡大する。圧縮される圧側室R2内の作動油は、チェックバルブ21を押し開いてピストン11の圧側ポート11bを通過して拡大される伸側室R1へ移動する。チェックバルブ21は、圧側ポート11bを通過する作動油の流れに抵抗をほとんど与えないので、圧側室R2の圧力と伸側室R1の圧力はほぼ等圧となる。 Subsequently, when the front fork F1 contracts, the piston 11 connected to the rod 12 with respect to the cylinder 10 moves upward in FIG. 1 as the outer tube 4 and the inner tube 5 approach each other in the axial direction. Moving. The compression side chamber R2 in the cylinder 10 is compressed and contracted by the movement of the piston 11, and the extension side chamber R1 in the cylinder 10 is expanded by the movement of the piston 11. The hydraulic oil in the compressed side chamber R2 pushes open the check valve 21 and moves to the extended side chamber R1 which passes through the compression side port 11b of the piston 11 and is expanded. Since the check valve 21 gives almost no resistance to the flow of hydraulic oil passing through the compression side port 11b, the pressure in the compression side chamber R2 and the pressure in the extension side chamber R1 are substantially equal.
 車両用緩衝器D1の収縮時には、シリンダ10内へロッド12が侵入し、ロッド12がシリンダ10内へ侵入する体積分の作動油がシリンダ10内で過剰となる。このようにシリンダ10内で過剰となった作動油は、ベースバルブ24を押し開いてバルブケース23の排出ポート23aを通過してリザーバ2の液室Lへ移動する。ベースバルブ24が排出ポート23aを通過する作動油の流れに抵抗を与えるので、シリンダ10内の全体の圧力を上昇させるため、車両用緩衝器D1は自身の収縮を妨げる圧側減衰力を発揮する。リザーバ2内では、作動油がシリンダ10内から液室L内へ排出されるためにフリーピストン14が上方へ後退して液室Lを拡大させるとともに気室Gを縮小させ、ロッド12がシリンダ10内へ侵入する体積の補償がなされる。また、フロントフォークF1の収縮時には、シリンダ10がインナーチューブ5内を図1中下方へ移動し、このシリンダ10の移動に伴って液溜室R3内の作動油の油面が上昇し、液溜室R3内の作動油がばね受18の孔18aを通過する場合がある。孔18aは、作動油の通過する流れに対して絞り弁として機能する。よって、フロントフォークF1の収縮時には、車両用緩衝器D1がともに収縮して、ベースバルブ24によってフロントフォークF1の収縮を妨げる圧側減衰力を発生するとともに、油面がばね受18の孔18aを通過する場合にはフロントフォークF1は、車両用緩衝器D1の圧側減衰力にばね受18による収縮を妨げる減衰力を付加できる。 When the shock absorber D1 for a vehicle contracts, the rod 12 invades the cylinder 10, and the hydraulic oil for the volume of the rod 12 invading the cylinder 10 becomes excessive in the cylinder 10. The excess hydraulic oil in the cylinder 10 in this way pushes open the base valve 24, passes through the discharge port 23a of the valve case 23, and moves to the liquid chamber L of the reservoir 2. Since the base valve 24 resists the flow of hydraulic oil passing through the discharge port 23a, the vehicle shock absorber D1 exerts a compression side damping force that hinders its own contraction in order to increase the overall pressure in the cylinder 10. In the reservoir 2, the hydraulic oil is discharged from the cylinder 10 into the liquid chamber L, so that the free piston 14 retracts upward to expand the liquid chamber L and shrink the air chamber G, and the rod 12 causes the cylinder 10. Compensation for the volume that penetrates inside is made. Further, when the front fork F1 contracts, the cylinder 10 moves downward in FIG. 1 in the inner tube 5, and the oil level of the hydraulic oil in the liquid reservoir R3 rises with the movement of the cylinder 10 to collect the liquid. The hydraulic oil in the chamber R3 may pass through the hole 18a of the spring receiver 18. The hole 18a functions as a throttle valve for the flow through which the hydraulic oil passes. Therefore, when the front fork F1 contracts, the vehicle shock absorber D1 also contracts, and the base valve 24 generates a compression side damping force that hinders the contraction of the front fork F1, and the oil level passes through the hole 18a of the spring receiver 18. In this case, the front fork F1 can add a damping force that prevents contraction due to the spring receiver 18 to the compression side damping force of the vehicle shock absorber D1.
 ここで、車両用緩衝器D1が伸長する場合には、フリーピストン14はリザーバ2内を図4中下方へ移動し、車両用緩衝器D1が収縮する場合には、フリーピストン14はリザーバ2内を図4中上方へ移動する。車両用緩衝器D1の伸縮時におけるフリーピストン14の移動量は、シリンダ10に対して出入りするロッド12の体積に比例している。詳しくは、フリーピストン14の移動量は、ロッド12を中実として考えて、車両用緩衝器D1が伸縮する際にロッド12がシリンダ10内に侵入或いは退出した体積をフリーピストン14の底部14aの液室Lに面する面積で割った値に等しくなる。ここで、ストロークセンサ3は、フリーピストン14の位置を検知できるので、リザーバ2内に出入りする作動油量を把握できる。また、車両用緩衝器D1が最伸長或いは最収縮した際のフリーピストン14のリザーバ筒13に対する軸方向位置とロッド12の断面積については設計事項であるので既知である。そして、リザーバ2内に出入りする作動油量は、ロッド12がシリンダ10内に出入りする体積に他ならないから、ストロークセンサ3で検知したフリーピストン14の現在位置から液室L内の現在の作動油量を把握すれば、シリンダ10内に現在ロッド12がどの程度侵入しているか、つまり、車両用緩衝器D1のストローク変位を知ることができる。このように、フリーピストン14のリザーバ2内での軸方向の位置と車両用緩衝器D1のシリンダ10に対するロッド12の軸方向の位置とは、一対一の関係性があり、フリーピストン14の現在位置を検知すれば車両用緩衝器D1のストローク変位を検知できる。なお、前述の図外の外部装置は、ストロークセンサ3で検知したフリーピストン14の現在位置を処理して車両用緩衝器D1のストローク変位を得る。 Here, when the vehicle shock absorber D1 expands, the free piston 14 moves downward in the reservoir 2 in FIG. 4, and when the vehicle shock absorber D1 contracts, the free piston 14 moves in the reservoir 2. Is moved upward in FIG. The amount of movement of the free piston 14 during expansion and contraction of the vehicle shock absorber D1 is proportional to the volume of the rod 12 entering and exiting the cylinder 10. Specifically, the amount of movement of the free piston 14 is the volume of the rod 12 entering or exiting the cylinder 10 when the shock absorber D1 for a vehicle expands and contracts, considering the rod 12 as a solid body. It is equal to the value divided by the area facing the liquid chamber L. Here, since the stroke sensor 3 can detect the position of the free piston 14, the amount of hydraulic oil entering and exiting the reservoir 2 can be grasped. Further, the axial position of the free piston 14 with respect to the reservoir cylinder 13 and the cross-sectional area of the rod 12 when the vehicle shock absorber D1 is fully extended or contracted are known because they are design matters. Since the amount of hydraulic oil entering and exiting the reservoir 2 is nothing but the volume of the rod 12 entering and exiting the cylinder 10, the current hydraulic oil in the liquid chamber L from the current position of the free piston 14 detected by the stroke sensor 3. By grasping the amount, it is possible to know how much the rod 12 currently penetrates into the cylinder 10, that is, the stroke displacement of the vehicle shock absorber D1. As described above, there is a one-to-one relationship between the axial position of the free piston 14 in the reservoir 2 and the axial position of the rod 12 with respect to the cylinder 10 of the vehicle shock absorber D1. If the position is detected, the stroke displacement of the vehicle shock absorber D1 can be detected. The above-mentioned external device (not shown) processes the current position of the free piston 14 detected by the stroke sensor 3 to obtain the stroke displacement of the vehicle shock absorber D1.
 そして、本実施の形態の車両用緩衝器D1は、鞍乗型車両(車両)Vにおける車体B側に連結可能なシリンダ10と、シリンダ10内に軸方向へ移動可能に挿入されるとともにシリンダ10内を伸側室R1と圧側室R2とに区画するピストン11と、一端がピストン11に連結されてシリンダ10内に軸方向へ移動可能に挿入されるとともに他端が鞍乗型車両(車両)Vにおける前輪(車輪)W側に連結可能なロッド12とを有する緩衝器本体1と、リザーバ筒13とリザーバ筒13内に軸方向へ移動自在に挿入されるとともにリザーバ筒13内を気室Gと圧側室R2に連通される液室Lとに区画するフリーピストン14とを備えたリザーバ2と、緩衝器本体1のストローク変位を検出するストロークセンサ3とを備え、ストロークセンサ3は、フリーピストン14に連結される磁石(被検出子)3cとリザーバ筒13に一端が連結されるとともにリザーバ筒13内に収容されて磁石(被検出子)3cの位置を検知するロッド状のプローブ3bとを有している。 The vehicle shock absorber D1 of the present embodiment is a cylinder 10 that can be connected to the vehicle body B side in the saddle-mounted vehicle (vehicle) V, and is inserted into the cylinder 10 so as to be movable in the axial direction. A piston 11 that divides the inside into an extension side chamber R1 and a compression side chamber R2, one end of which is connected to the piston 11 and is movably inserted into the cylinder 10 in the axial direction, and the other end is a saddle-type vehicle (vehicle) V. The shock absorber body 1 having the rod 12 that can be connected to the front wheel (wheel) W side, and the reservoir cylinder 13 and the reservoir cylinder 13 are movably inserted in the axial direction and the inside of the reservoir cylinder 13 is the air chamber G. The reservoir 2 provided with the free piston 14 partitioned from the liquid chamber L communicated with the compression side chamber R2 and the stroke sensor 3 for detecting the stroke displacement of the shock absorber main body 1 are provided, and the stroke sensor 3 is a free piston 14. It has a magnet (detected element) 3c connected to and a rod-shaped probe 3b whose one end is connected to the reservoir cylinder 13 and housed in the reservoir cylinder 13 to detect the position of the magnet (detected element) 3c. is doing.
 このように構成された車両用緩衝器D1では、フリーピストン14と一体となって移動する被検出子としての磁石3cの位置をプローブ3bで検知でき、シリンダ10に対するロッド12の軸方向の位置と一対一の関係を持つフリーピストン14のリザーバ2内での軸方向の位置を検知できるから、車両用緩衝器D1のストローク変位を検知できる。 In the vehicle shock absorber D1 configured in this way, the position of the magnet 3c as a detector that moves integrally with the free piston 14 can be detected by the probe 3b, and the position of the rod 12 in the axial direction with respect to the cylinder 10 can be detected. Since the axial position of the free piston 14 having a one-to-one relationship in the reservoir 2 can be detected, the stroke displacement of the vehicle shock absorber D1 can be detected.
 そして、このように構成された車両用緩衝器D1は、緩衝器本体1に対して設置箇所に自由度があるリザーバ2にストロークセンサ3を設けているので、ストロークセンサ3の配線3dを路面から離間した位置に配置できるようになって配線3dを飛来物から保護できる。 Since the vehicle shock absorber D1 configured in this way is provided with the stroke sensor 3 in the reservoir 2 having a degree of freedom in the installation location with respect to the shock absorber main body 1, the wiring 3d of the stroke sensor 3 is laid from the road surface. The wiring 3d can be protected from flying objects by being able to be arranged at a separated position.
 また、このように構成された車両用緩衝器D1では、リザーバ2にストロークセンサ3を収容してフリーピストン14の変位を検知しているので、ストロークセンサ3が長尺にならずに済み、車両用緩衝器D1に曲げモーメントが作用しても変形の影響を受けづらくなるためプローブ3bを保護できる。つまり、ストロークセンサ3は、リザーバ2内のフリーピストン14のストローク変位を検知すれば足りるため、少なくともロッド或いはシリンダの全長に以上の長さに設定されなければならない従来の車両用緩衝器に比較してプローブ3bの全長を短くできる。よって、このように構成された車両用緩衝器D1によれば、ストロークセンサ3のプローブ3bの全長を従来の車両用緩衝器に比較して短くでき製造コストを低減できる。なお、ロッド12の断面積よりもフリーピストン14の底部14aの面積を大きくすれば、シリンダ10に対するロッド12の変位に対してフリーピストン14の変位を小さくできるので、よりプローブ3bの全長を短くできる。 Further, in the vehicle shock absorber D1 configured in this way, since the stroke sensor 3 is housed in the reservoir 2 and the displacement of the free piston 14 is detected, the stroke sensor 3 does not have to be long, and the vehicle. Even if a bending moment acts on the shock absorber D1, it is less likely to be affected by deformation, so that the probe 3b can be protected. That is, since the stroke sensor 3 only needs to detect the stroke displacement of the free piston 14 in the reservoir 2, it is compared with the conventional vehicle shock absorber that must be set to at least the total length of the rod or cylinder. The total length of the probe 3b can be shortened. Therefore, according to the vehicle shock absorber D1 configured in this way, the total length of the probe 3b of the stroke sensor 3 can be shortened as compared with the conventional vehicle shock absorber, and the manufacturing cost can be reduced. If the area of the bottom portion 14a of the free piston 14 is made larger than the cross-sectional area of the rod 12, the displacement of the free piston 14 can be reduced with respect to the displacement of the rod 12 with respect to the cylinder 10, so that the total length of the probe 3b can be further shortened. ..
 以上より、本実施の形態の車両用緩衝器D1によれば、ストロークセンサ3を保護できるとともにコストを低減できるのである。 From the above, according to the vehicle shock absorber D1 of the present embodiment, the stroke sensor 3 can be protected and the cost can be reduced.
 また、本実施の形態の車両用緩衝器D1は、リザーバ2がリザーバ筒13の一端を閉塞するキャップ6と、一端がキャップ6に連結されてリザーバ筒13内に収容される非磁性体で形成された筒状ロッド22とを有し、フリーピストン14が環状であって筒状ロッド22の外周に摺動自在に装着されてリザーバ筒13の内周に摺接し、ストロークセンサ3のプローブ3bが筒状ロッド22内に収容されている。このように構成された車両用緩衝器D1では、車両用緩衝器D1に曲げモーメントが負荷されてもプローブ3bが筒状ロッド22によって保護されるとともに筒状ロッド22によってフリーピストン14の軸方向移動を案内するので、プローブ3bが正確にフリーピストン14の位置を検知できるため、車両用緩衝器D1のストローク変位を精度良く検知できる。 Further, the vehicle shock absorber D1 of the present embodiment is formed of a cap 6 in which the reservoir 2 closes one end of the reservoir cylinder 13 and a non-magnetic material having one end connected to the cap 6 and housed in the reservoir cylinder 13. The free piston 14 has an annular shape and is slidably mounted on the outer periphery of the tubular rod 22 so as to be slidably contacted with the inner circumference of the reservoir cylinder 13, and the probe 3b of the stroke sensor 3 is attached. It is housed in the tubular rod 22. In the vehicle shock absorber D1 configured in this way, the probe 3b is protected by the tubular rod 22 and the free piston 14 is moved in the axial direction by the tubular rod 22 even when a bending moment is applied to the vehicle shock absorber D1. Since the probe 3b can accurately detect the position of the free piston 14, the stroke displacement of the vehicle shock absorber D1 can be detected accurately.
 さらに、本実施の形態の車両用緩衝器D1は、筒状ロッド22の他端の外周に装着されて液室Lと圧側室R2とを仕切るとともに圧側室R2と液室Lとを連通する排出ポート23aと吸込ポート23bとを有するバルブケース23と、排出ポート23aを開閉するとともに排出ポート23aを圧側室R2から液室Lへ向けて通過する作動油(液体)の流れのみを許容するとともに作動油(液体)の流れに抵抗を与えるベースバルブ24と、吸込ポート23bを開閉するとともに液室Lから圧側室R2へ向かう作動油(液体)の流れのみを許容するチェックバルブ25とを備えている。このように構成された車両用緩衝器D1によれば、車両用緩衝器D1の圧側減衰力を発生するためのベースバルブ24とチェックバルブ25の設置のために設けられる筒状ロッド22内にストロークセンサ3のプローブ3bを設置できるので、安価にストロークセンサ3を設置できる。 Further, the vehicle shock absorber D1 of the present embodiment is mounted on the outer periphery of the other end of the tubular rod 22 to partition the liquid chamber L and the compression side chamber R2, and discharge the pressure side chamber R2 and the liquid chamber L to communicate with each other. The valve case 23 having the port 23a and the suction port 23b opens and closes the discharge port 23a, and allows only the flow of hydraulic oil (liquid) passing through the discharge port 23a from the compression side chamber R2 toward the liquid chamber L and operates. It is provided with a base valve 24 that resists the flow of oil (liquid) and a check valve 25 that opens and closes the suction port 23b and allows only the flow of hydraulic oil (liquid) from the liquid chamber L to the compression side chamber R2. .. According to the vehicle shock absorber D1 configured in this way, a stroke is provided in the tubular rod 22 provided for installing the base valve 24 and the check valve 25 for generating the compression side damping force of the vehicle shock absorber D1. Since the probe 3b of the sensor 3 can be installed, the stroke sensor 3 can be installed at low cost.
 そして、本実施の形態の車両用緩衝器D1は、フリーピストン14を液室L側へ向けて付勢する加圧ばね(コイルばね)28と、フリーピストン14と加圧ばね(コイルばね)28との間に介装される環状のばね受29とを備え、ばね受29が加圧ばね(コイルばね)28の内周に配置される筒部29aと筒部29aの一端に設けられて加圧ばね(コイルばね)28の一端を支承するフランジ29bとを有し、磁石(被検出子)3cがばね受29の筒部29aの内周に装着されている。このように構成された車両用緩衝器D1によれば、磁石(被検出子)3cがばね受29の筒部29aの内周に装着されているので、シリンダ10内を加圧ばね(コイルばね)28で加圧しつつも磁石(被検出子)3cと加圧ばね(コイルばね)28との干渉を防止して磁石(被検出子)3cを保護できる。また、このように構成された車両用緩衝器D1によれば、磁石(被検出子)3cがばね受29に装着されているので、加圧ばね(コイルばね)28の寸法変更があった場合でもフリーピストン14の設計変更まで要求されずにばね受29の設計変更のみで磁石(被検出子)3cの設置が可能となる場合もあり、コスト的に有利となる。 The vehicle shock absorber D1 of the present embodiment has a pressure spring (coil spring) 28 for urging the free piston 14 toward the liquid chamber L side, and the free piston 14 and the pressure spring (coil spring) 28. An annular spring receiver 29 interposed between the and is provided, and the spring receiver 29 is provided at one end of a cylinder portion 29a and a cylinder portion 29a arranged on the inner circumference of the pressure spring (coil spring) 28. It has a flange 29b that supports one end of the compression spring (coil spring) 28, and a magnet (detected element) 3c is mounted on the inner circumference of the tubular portion 29a of the spring receiver 29. According to the vehicle shock absorber D1 configured in this way, since the magnet (detected element) 3c is mounted on the inner circumference of the cylinder portion 29a of the spring receiver 29, the inside of the cylinder 10 is pressurized spring (coil spring). ) 28 can prevent the magnet (detected element) 3c from interfering with the pressurized spring (coil spring) 28 while pressurizing the magnet (detected element) 3c. Further, according to the vehicle shock absorber D1 configured in this way, since the magnet (detected element) 3c is mounted on the spring receiver 29, the size of the pressure spring (coil spring) 28 is changed. However, there is a case where the magnet (detected element) 3c can be installed only by changing the design of the spring receiver 29 without requiring the design change of the free piston 14, which is advantageous in terms of cost.
 また、本実施の形態の車両用緩衝器D1は、リザーバ筒13がシリンダ10の車体B側端に連結されて構成されているので、ストロークセンサ3の配線3dを車両用緩衝器D1における路面から最も遠い上端となる車体B側へ配置させ得るため、配線3dの劣化を効果的に防止できる。 Further, since the vehicle shock absorber D1 of the present embodiment is configured by connecting the reservoir cylinder 13 to the vehicle body B side end of the cylinder 10, the wiring 3d of the stroke sensor 3 is connected to the road surface of the vehicle shock absorber D1. Since it can be arranged on the vehicle body B side, which is the farthest upper end, deterioration of the wiring 3d can be effectively prevented.
 なお、車両用緩衝器D1は、車両走行中に外部から入力される振動エネルギを熱エネルギに変換して振動を減衰させるため、伸縮の際に発熱して内部の作動油(液体)の温度が上昇する。また、車両用緩衝器D1を取り囲む雰囲気の温度の影響によっても車両用緩衝器D1内の作動油(液体)の温度が変化する。作動油(液体)は、温度が変化すると体積が変化するので、シリンダ10に対してロッド12が或る量だけストロークした際にリザーバ2の液室Lに出入りする作動油(液体)量も作動油(液体)の温度に応じて変化する。したがって、予め、車両用緩衝器D1に使用する作動油(液体)の熱膨張係数を把握しておき、作動油(液体)の温度を検知すれば、温度変化による体積変化分を補正して車両用緩衝器D1のストローク変位をより正確に検知できる。具体的には、たとえば、図1中の破線で示すように、車両用緩衝器D1にリザーバ2内或いはシリンダ10内の作動油(液体)の温度を検知する温度センサTSを設け、基準となる温度を設定して、当該基準温度と温度センサTSで検知した温度との差を求める。リザーバ2内の作動油(液体)量は、フリーピストン14の液室Lに面している面積にフリーピストン14の現在位置を乗じれば把握できる。熱膨張係数をβとし、前記差をtとし、リザーバ2内の作動油(液体)量をVとし、基準温度でのリザーバ2内の作動油(液体)量をVとすると、V=V/(1+β・t)となる。また、初期のシリンダ10内およびリザーバ2の液室L内の全作動油量(全液体量)は既知であるから、シリンダ10内の作動油(液体)の温度とリザーバ2内の作動油(液体)の温度とが等しいとして、全作動油量(全液体量)からVを差し引けば、基準温度におけるシリンダ10内の作動油(液性)量を把握できる。シリンダ10内の作動油(液体)量からシリンダ10内の実行容積を差し引けば、実際にロッド12がシリンダ10内にどの程度侵入しているか、つまり、車両用緩衝器D1の実際のストローク変位を検知できる。よって、車両用緩衝器D1に温度センサTSを設けて作動油(液体)の温度を検知すれば温度変化によらずして車両用緩衝器D1のストローク変位をより正確に検知できる。このように、温度センサTSで作動油(液体)の温度を検知してストローク変位を補正すれば、作動油(液体)の温度変化に対応して正確なストローク変位を求め得る。なお、温度センサTSによるストローク変位の補正は、ストロークセンサ3の信号を取り込む前述の外部装置によって行ってもよいし、ストロークセンサ3のセンサ本体3aに温度センサTSの信号を入力してセンサ本体3aで補正処理を行ってもよい。また、温度センサTSは、シリンダ10内或いは液室L内の温度を検知するのが望ましいが、液溜室R3内の作動油(液体)の温度を検知してもよい。なお、温度センサTSを設けずとも車両用緩衝器D1のストローク変位をある程度の精度で検知できるので温度センサTSの設置は必須ではない。 The vehicle shock absorber D1 converts vibration energy input from the outside into thermal energy while the vehicle is running to attenuate the vibration, so that heat is generated during expansion and contraction and the temperature of the internal hydraulic oil (liquid) rises. Rise. Further, the temperature of the hydraulic oil (liquid) in the vehicle shock absorber D1 also changes due to the influence of the temperature of the atmosphere surrounding the vehicle shock absorber D1. Since the volume of the hydraulic oil (liquid) changes when the temperature changes, the amount of hydraulic oil (liquid) that enters and exits the liquid chamber L of the reservoir 2 when the rod 12 strokes the cylinder 10 by a certain amount also operates. It changes according to the temperature of the oil (liquid). Therefore, if the coefficient of thermal expansion of the hydraulic oil (liquid) used for the vehicle shock absorber D1 is grasped in advance and the temperature of the hydraulic oil (liquid) is detected, the volume change due to the temperature change is corrected for the vehicle. The stroke displacement of the shock absorber D1 can be detected more accurately. Specifically, for example, as shown by the broken line in FIG. 1, a temperature sensor TS for detecting the temperature of the hydraulic oil (liquid) in the reservoir 2 or the cylinder 10 is provided in the vehicle shock absorber D1 and serves as a reference. The temperature is set and the difference between the reference temperature and the temperature detected by the temperature sensor TS is obtained. The amount of hydraulic oil (liquid) in the reservoir 2 can be grasped by multiplying the area of the free piston 14 facing the liquid chamber L by the current position of the free piston 14. Assuming that the coefficient of thermal expansion is β, the difference is t, the amount of hydraulic oil (liquid) in the reservoir 2 is V, and the amount of hydraulic oil (liquid) in the reservoir 2 at the reference temperature is V 0 , V 0 = It becomes V / (1 + β · t). Further, since the total amount of hydraulic oil (total amount of liquid) in the initial cylinder 10 and the liquid chamber L of the reservoir 2 is known, the temperature of the hydraulic oil (liquid) in the cylinder 10 and the hydraulic oil in the reservoir 2 (the total amount of liquid) are known. Assuming that the temperature of the liquid) is equal, if V 0 is subtracted from the total hydraulic oil amount (total liquid amount), the hydraulic oil (liquid) amount in the cylinder 10 at the reference temperature can be grasped. By subtracting the execution volume in the cylinder 10 from the amount of hydraulic oil (liquid) in the cylinder 10, how much the rod 12 actually penetrates into the cylinder 10, that is, the actual stroke displacement of the vehicle shock absorber D1. Can be detected. Therefore, if the temperature sensor TS is provided on the vehicle shock absorber D1 to detect the temperature of the hydraulic oil (liquid), the stroke displacement of the vehicle shock absorber D1 can be detected more accurately regardless of the temperature change. In this way, if the temperature of the hydraulic oil (liquid) is detected by the temperature sensor TS and the stroke displacement is corrected, an accurate stroke displacement can be obtained in response to the temperature change of the hydraulic oil (liquid). The stroke displacement correction by the temperature sensor TS may be performed by the above-mentioned external device that captures the signal of the stroke sensor 3, or the signal of the temperature sensor TS is input to the sensor body 3a of the stroke sensor 3 and the sensor body 3a is used. The correction process may be performed with. Further, although it is desirable that the temperature sensor TS detects the temperature in the cylinder 10 or the liquid chamber L, the temperature sensor TS may detect the temperature of the hydraulic oil (liquid) in the liquid storage chamber R3. It should be noted that the installation of the temperature sensor TS is not essential because the stroke displacement of the vehicle shock absorber D1 can be detected with a certain degree of accuracy without providing the temperature sensor TS.
 つづいて、懸架装置Sにおいて既に詳細に説明したフロントフォークF1と対を成す他のフロントフォークF2について説明する。フロントフォークF2は、図3に示したように、車両用緩衝器D1の構成とリザーバ38においてストロークセンサ3を備える代わりに減衰力調整バルブDVを備えた減衰力可変緩衝器D2を備えている点で異なっている。したがって、他のフロントフォークF2の説明においてすでに説明したフロントフォークF1と同様の構成については同一の符号を付すこととして詳しい説明を省略する。 Next, another front fork F2 paired with the front fork F1 already described in detail in the suspension device S will be described. As shown in FIG. 3, the front fork F2 is provided with a damping force variable shock absorber D2 equipped with a damping force adjusting valve DV instead of the stroke sensor 3 in the configuration of the vehicle shock absorber D1 and the reservoir 38. Is different. Therefore, the same components as those of the front fork F1 already described in the description of the other front forks F2 are designated by the same reference numerals, and detailed description thereof will be omitted.
 図3に示すように、他のフロントフォークF2は、キャップ30、筒状のガイドロッド31と、ガイドロッド31の先端となる図3中下端の外周に螺着されるバルブ保持部材32と、バルブ保持部材32に保持されるバルブケース23、ベースバルブ24およびチェックバルブ25と、フリーピストン14とを備えてリザーバ38を構成している。 As shown in FIG. 3, the other front fork F2 includes a cap 30, a tubular guide rod 31, a valve holding member 32 screwed to the outer periphery of the lower middle end of FIG. 3, which is the tip of the guide rod 31, and a valve. The reservoir 38 is provided with a valve case 23, a base valve 24, a check valve 25, and a free piston 14 held by the holding member 32.
 そして、減衰力調整バルブDVは、バルブ保持部材32内に設けられた環状弁座32dに軸方向で遠近可能なニードルバルブ33と、キャップ30に装着されてキャップ30に対する回転操作によって軸方向へ移動可能なアジャスタ34と、アジャスタ34の軸方向の変位をニードルバルブ33へ伝達するコントロールロッド35とを備えて構成されている。 Then, the damping force adjusting valve DV is attached to the needle valve 33, which can be moved in the axial direction to the annular valve seat 32d provided in the valve holding member 32, and the cap 30 to move in the axial direction by the rotation operation with respect to the cap 30. It is configured to include a possible adjuster 34 and a control rod 35 that transmits the axial displacement of the adjuster 34 to the needle valve 33.
 キャップ30は、軸心部にアジャスタ34を回転可能に収容するとともに内周に螺子溝を有する収容部30aと、図3中下端にガイドロッド31の上端が螺合されるソケット30bとを備えている。また、収容部30aは、ソケット30b内に連通されている。アジャスタ34は、収容部30aの螺子溝に螺合されて収容部30a内に収容されており、外部からの操作によって回転させられるとキャップ30に対して軸方向に移動可能である。 The cap 30 includes an accommodating portion 30a that rotatably accommodates the adjuster 34 in the axial center portion and has a screw groove on the inner circumference, and a socket 30b in which the upper end of the guide rod 31 is screwed at the lower end in FIG. There is. Further, the accommodating portion 30a is communicated with the socket 30b. The adjuster 34 is screwed into the screw groove of the accommodating portion 30a and accommodated in the accommodating portion 30a, and can move in the axial direction with respect to the cap 30 when rotated by an operation from the outside.
 また、アジャスタ34の先端は、ガイドロッド31内に挿入されたコントロールロッド35に接している。バルブ保持部材32は、筒状であってガイドロッド31の図3中下端外周に螺着される環状の連結部32aと、連結部32aから下方側へ延びる筒状のバルブ保持軸32bと、連結部32aの外周から開口してバルブ保持軸32b内に通じるポート32cと、バルブ保持軸32b内に設けられた環状弁座32dとを備えている。 Further, the tip of the adjuster 34 is in contact with the control rod 35 inserted in the guide rod 31. The valve holding member 32 is connected to an annular connecting portion 32a which is cylindrical and is screwed to the outer periphery of the lower end in FIG. 3 of the guide rod 31, and a tubular valve holding shaft 32b extending downward from the connecting portion 32a. It includes a port 32c that opens from the outer periphery of the portion 32a and leads into the valve holding shaft 32b, and an annular valve seat 32d provided in the valve holding shaft 32b.
 そして、バルブ保持部材32は、バルブ保持軸32bの外周に嵌合されるバルブケース23、ベースバルブ24およびチェックバルブ25をバルブ保持軸32bの下端外周に螺着されるナット27と連結部32aとで挟持して保持している。バルブ保持部材32におけるバルブ保持軸32bの先端は圧側室R2に臨み、ポート32cは液室Lに臨んでいるので、バルブ保持部材32は、バルブ保持軸32b内とポート32cとで排出ポート23aを迂回して圧側室R2と液室Lとを連通するバイパス路を形成している。 The valve holding member 32 includes a valve case 23 fitted to the outer periphery of the valve holding shaft 32b, a base valve 24, and a check valve 25 with a nut 27 screwed to the outer periphery of the lower end of the valve holding shaft 32b and a connecting portion 32a. It is held by sandwiching it with. Since the tip of the valve holding shaft 32b in the valve holding member 32 faces the compression side chamber R2 and the port 32c faces the liquid chamber L, the valve holding member 32 has a discharge port 23a in the valve holding shaft 32b and in the port 32c. A bypass path is formed by detouring and communicating the compression side chamber R2 and the liquid chamber L.
 また、ニードルバルブ33は、先端にニードルを備えてガイドロッド31内に軸方向移動自在に挿入されており、先端のニードルをバルブ保持部材32のバルブ保持軸32b内に突出させている。そして、ニードルバルブ33は、先端のニードルを環状弁座32dに当接させると前記バイパス路を遮断し、前記ニードルを環状弁座32dから離間させた状態ではバイパス路を開く。また、ニードルバルブ33は、前記ニードルを環状弁座32dから離間させた状態で環状弁座32dへ遠近させてバイパス路の流路面積を大小変更させ得る。 Further, the needle valve 33 is provided with a needle at the tip and is inserted into the guide rod 31 so as to be movable in the axial direction, and the needle at the tip is projected into the valve holding shaft 32b of the valve holding member 32. Then, the needle valve 33 shuts off the bypass path when the needle at the tip is brought into contact with the annular valve seat 32d, and opens the bypass path when the needle is separated from the annular valve seat 32d. Further, the needle valve 33 can change the size of the flow path area of the bypass path by moving the needle away from the annular valve seat 32d and moving it closer to the annular valve seat 32d.
 ニードルバルブ33は、圧側室R2の圧力が先端のニードルに作用しているため当該圧力によって付勢されてコントロールロッド35の他端に常に当接するように押し付けられている。よって、オペレータが回転操作してキャップ30に対してアジャスタ34が軸方向へ移動すると、コントロールロッド35を通じてニードルバルブ33も軸方向へ変位してバイパス路が開閉および流路面積の変更が行われる。 Since the pressure of the compression side chamber R2 acts on the needle at the tip of the needle valve 33, the needle valve 33 is urged by the pressure and is pressed so as to always abut on the other end of the control rod 35. Therefore, when the operator rotates and the adjuster 34 moves in the axial direction with respect to the cap 30, the needle valve 33 is also displaced in the axial direction through the control rod 35, the bypass path is opened and closed, and the flow path area is changed.
 このように構成された減衰力可変緩衝器D2では、シリンダ10に対してロッド12が侵入する収縮作動時に排出ポート23aを通過する作動油の流量をバイパス路の流路面積の変更によって調節できるので、収縮時の減衰力の調整を行える。 In the damping force variable shock absorber D2 configured in this way, the flow rate of the hydraulic oil passing through the discharge port 23a during the contraction operation in which the rod 12 invades the cylinder 10 can be adjusted by changing the flow path area of the bypass path. , The damping force at the time of contraction can be adjusted.
 そして、収縮時の減衰力調整を行える減衰力可変緩衝器D2が組み込まれたフロントフォークF2と、収縮時の減衰力調整機能を備えていないがストロークセンサ3が組み込まれたフロントフォークF1とは、対を成して懸架装置Sを構成している。 The front fork F2 incorporating the damping force variable shock absorber D2 capable of adjusting the damping force during contraction and the front fork F1 incorporating the stroke sensor 3 but not having the damping force adjusting function during contraction are The suspension device S is configured in pairs.
 より具体的には、懸架装置Sは、アウターチューブ4とアウターチューブ4内に軸方向移動自在に挿入されるインナーチューブ5とを備えて鞍乗型車両(車両)Vの車体Bと前輪Wとの間に介装される一対の伸縮体T1,T2と、伸縮体T1、T2の一方の内部に収容されて一方の伸縮体T1の伸縮に伴って伸縮作動する車両用緩衝器D1と、伸縮体T1,T2の他方の内部に収容されて他方の伸縮体T2の伸縮に伴って伸縮して減衰力を発生するとともに減衰力のうち少なくとも収縮時の減衰力の調整が可能な減衰力可変緩衝器D2とを備え、各伸縮体T1,T2の収縮時の減衰力の調整が減衰力可変緩衝器D2のみで可能とされている。このように構成された懸架装置によれば、一方の車両用緩衝器D1によってストローク変位の検知をしつつも他方の減衰力可変緩衝器D2で収縮時の減衰力調整が可能であるが、収縮時の減衰力の調整が減衰力可変緩衝器D2のみで可能であるので、ストロークセンサ3を組み込んだ車両用緩衝器D1に収縮時の減衰力を調整する減衰力調整バルブを設置せずに済む。よって、このように構成された懸架装置Sによれば、ストロークセンサ3を設置しても構造が複雑とならず、ストローク変位の検知をしつつも収縮側の減衰力調整が可能となる。また、ストロークセンサ3が車両用緩衝器D1のリザーバ2に組み込まれているので、懸架装置Sは、車両用緩衝器D1と同様に、ストロークセンサ3を保護できるとともにコストを低減できる。 More specifically, the suspension device S includes an outer tube 4 and an inner tube 5 inserted into the outer tube 4 so as to be movable in the axial direction, and includes a body B and a front wheel W of a saddle-type vehicle (vehicle) V. A pair of telescopic bodies T1 and T2 interposed between them, a vehicle shock absorber D1 that is housed inside one of the stretchable bodies T1 and T2 and expands and contracts as the one stretchable body T1 expands and contracts, and expands and contracts. A variable damping force buffer that is housed inside the other of the bodies T1 and T2 and expands and contracts as the other expansion and contraction body T2 expands and contracts to generate a damping force, and at least the damping force at the time of contraction can be adjusted. A device D2 is provided, and the damping force of each of the stretchable bodies T1 and T2 at the time of contraction can be adjusted only by the variable damping force shock absorber D2. According to the suspension device configured in this way, it is possible to adjust the damping force at the time of contraction by the other damping force variable shock absorber D2 while detecting the stroke displacement by the one vehicle shock absorber D1. Since the damping force at the time can be adjusted only with the damping force variable shock absorber D2, it is not necessary to install a damping force adjusting valve for adjusting the damping force at the time of contraction in the vehicle shock absorber D1 incorporating the stroke sensor 3. .. Therefore, according to the suspension device S configured in this way, the structure is not complicated even if the stroke sensor 3 is installed, and the damping force on the contraction side can be adjusted while detecting the stroke displacement. Further, since the stroke sensor 3 is incorporated in the reservoir 2 of the vehicle shock absorber D1, the suspension device S can protect the stroke sensor 3 and reduce the cost as in the vehicle shock absorber D1.
 なお、一つのフロントフォークF3にて車両用緩衝器D3のストローク変位と収縮側の減衰力の調整を行えるようにするには、たとえば、図3に示した減衰力可変緩衝器D2のリザーバ38部分の構成を図5に示した第2の実施の形態の車両用緩衝器D3の如く変更してもよい。具体的には、第2の実施の形態の車両用緩衝器D3では、キャップ30に螺着したアジャスタ36とガイドロッド31内に挿通されるコントロールロッド37とを筒状として、ストロークセンサ3のプローブ3bをアジャスタ36内およびコントロールロッド37内に挿通し、ばね受29に被検出子としての磁石3cを装着し、プローブ3bから延びる配線3eを車両用緩衝器D3の外へ引き出して車両用緩衝器D3の外部に設置される図外のセンサ本体に接続させている。他の車両用緩衝器D3の構成は、減衰力可変緩衝器D2と同様の構成となっている。 In order to enable the stroke displacement of the vehicle shock absorber D3 and the damping force on the contraction side to be adjusted with one front fork F3, for example, the reservoir 38 portion of the damping force variable shock absorber D2 shown in FIG. The configuration may be changed as in the vehicle shock absorber D3 of the second embodiment shown in FIG. Specifically, in the vehicle shock absorber D3 of the second embodiment, the adjuster 36 screwed to the cap 30 and the control rod 37 inserted into the guide rod 31 are formed into a tubular shape, and the probe of the stroke sensor 3 is formed. 3b is inserted into the adjuster 36 and the control rod 37, a magnet 3c as a detector is attached to the spring receiver 29, and the wiring 3e extending from the probe 3b is pulled out of the vehicle shock absorber D3 to be a vehicle shock absorber. It is connected to a sensor body (not shown) installed outside D3. The configuration of the other vehicle shock absorber D3 is the same as that of the damping force variable shock absorber D2.
 このように構成された車両用緩衝器D3では、オペレータがアジャスタ36をキャップ30に対して回転操作して軸方向へ移動させるとニードルバルブ33が環状弁座32dに対して遠近してバイパス路の開閉と流路面積の変更とが可能である。また、ガイドロッド31とコントロールロッド37とは、車両用緩衝器D3の場合、非磁性体とされており、プローブ3bで磁石3cの位置を検知できる。 In the vehicle shock absorber D3 configured in this way, when the operator rotates the adjuster 36 with respect to the cap 30 to move it in the axial direction, the needle valve 33 moves closer to the annular valve seat 32d and the bypass path is reached. It is possible to open and close and change the flow path area. Further, the guide rod 31 and the control rod 37 are non-magnetic materials in the case of the vehicle shock absorber D3, and the position of the magnet 3c can be detected by the probe 3b.
 以上、このように構成された車両用緩衝器D3を利用すれば、構造は複雑となるものの1つのフロントフォークF3にてストローク変位の検知と収縮側の減衰力の調整が可能となる。 As described above, if the vehicle shock absorber D3 configured in this way is used, although the structure is complicated, it is possible to detect the stroke displacement and adjust the damping force on the contraction side with one front fork F3.
 最後に、本発明の第3の実施の形態における車両用緩衝器D4について説明する。車両用緩衝器D4は、図6に示すように、緩衝器本体40と、緩衝器本体40に対して並列に配置されるリザーバ41と、ストロークセンサ42とを備えて構成されている。 Finally, the vehicle shock absorber D4 according to the third embodiment of the present invention will be described. As shown in FIG. 6, the vehicle shock absorber D4 includes a shock absorber main body 40, a reservoir 41 arranged in parallel with the shock absorber main body 40, and a stroke sensor 42.
 緩衝器本体40は、図6に示すように、シリンダ43と、シリンダ43内に軸方向へ移動可能に挿入されるとともにシリンダ43内を液体としての作動油が充填される伸側室R4と圧側室R5とに区画するピストン44と、一端がピストン44に連結されてシリンダ43内に軸方向へ移動可能に挿入されるロッド45とを備えている。 As shown in FIG. 6, the shock absorber main body 40 is inserted into the cylinder 43 so as to be movable in the axial direction, and the inside of the cylinder 43 is filled with hydraulic oil as a liquid, and the extension side chamber R4 and the compression side chamber. It includes a piston 44 divided into R5 and a rod 45 having one end connected to the piston 44 and inserted into the cylinder 43 so as to be movable in the axial direction.
 シリンダ43は、図6中上端が閉塞された筒体であって上端に設けられたアイ型のブラケット43aを介して図示しない鞍乗型車両の車体に連結可能とされている。また、シリンダ43の下端内周には、ロッド45を軸支してロッド45のシリンダ43に対する軸方向の移動を案内するロッドガイド46がシール部材47とともに設けられている。他方、ロッド45は、図6中下端に設けられたアイ型のブラケット45aを介して図示しない鞍乗型車両の後輪に連結可能とされている。 The cylinder 43 is a cylinder whose upper end is closed in FIG. 6, and can be connected to the vehicle body of a saddle-mounted vehicle (not shown) via an eye-shaped bracket 43a provided at the upper end. Further, on the inner circumference of the lower end of the cylinder 43, a rod guide 46 that pivotally supports the rod 45 and guides the movement of the rod 45 with respect to the cylinder 43 in the axial direction is provided together with the seal member 47. On the other hand, the rod 45 can be connected to the rear wheel of a saddle-type vehicle (not shown) via an eye-shaped bracket 45a provided at the lower end of FIG.
 ピストン44には、伸側室R4と圧側室R5とを連通する伸側ポート44aおよび圧側ポート44bと、伸側ポート44aに設けられて伸側室R4から圧側室R5へ向かう作動油の流れに抵抗を与える伸側減衰バルブ44cと、圧側ポート44bに設けられて圧側室R5から伸側室R4へ向かう作動油の流れに抵抗を与える圧側減衰バルブ44dとを備えている。なお、ロッド45に伸側ポート44aおよび圧側ポート44bを迂回して伸側室R4と圧側室R5とを連通する通路を設けて、当該通路に当該通路の流路面積を変更可能なニードルバルブ等を設けて車両用緩衝器D4の減衰力の調整を可能としてもよい。 The piston 44 has an extension side port 44a and a compression side port 44b that communicate the extension side chamber R4 and the compression side chamber R5, and a resistance to the flow of hydraulic oil from the extension side chamber R4 to the compression side chamber R5 provided in the extension side port 44a. It is provided with an extension side damping valve 44c and a compression side damping valve 44d provided in the compression side port 44b to resist the flow of hydraulic oil from the compression side chamber R5 to the extension side chamber R4. The rod 45 is provided with a passage for communicating the extension side chamber R4 and the compression side chamber R5 by bypassing the extension side port 44a and the compression side port 44b, and a needle valve or the like capable of changing the flow path area of the passage is provided in the passage. It may be provided so that the damping force of the vehicle shock absorber D4 can be adjusted.
 シリンダ43の上端の側部には、リザーバ41を連結する連結部43bが設けられている。他方、リザーバ41は、図6中上端が連結部43bに保持されるリザーバ筒48と、リザーバ筒48の図6中下端を閉塞するキャップ49と、キャップ49に一端が取り付けられる非磁性体で形成された筒状ロッド50と、可能であって筒状ロッド50の外周に摺動自在に装着されてリザーバ筒48の内周に摺接してリザーバ筒48内を液室L1と気室G1とに区画する環状のフリーピストン51と、気室G1内の気体の弾発力によって液室L1を圧縮する方向へフリーピストン51を付勢する気体ばね(符示せず)とを備えている。 A connecting portion 43b for connecting the reservoir 41 is provided on the side portion of the upper end of the cylinder 43. On the other hand, the reservoir 41 is formed of a reservoir cylinder 48 in which the upper end in FIG. 6 is held by the connecting portion 43b, a cap 49 for closing the lower end in the middle of FIG. 6 of the reservoir cylinder 48, and a non-magnetic material having one end attached to the cap 49. The tubular rod 50 is slidably mounted on the outer periphery of the tubular rod 50, and is slidably contacted with the inner circumference of the reservoir cylinder 48 to form the inside of the reservoir cylinder 48 into the liquid chamber L1 and the air chamber G1. An annular free piston 51 for partitioning and a gas spring (not shown) for urging the free piston 51 in a direction of compressing the liquid chamber L1 by the elastic force of the gas in the air chamber G1 are provided.
 リザーバ筒48内の図6中上方の液室L1は、シリンダ43の連結部43b内に設けられた排出ポート43cと吸込ポート43dとによりシリンダ43内の圧側室R5に連通されている。また、排出ポート43cには、圧側室R5から液室L1へ向かう作動油の流れのみを許容するとともに作動油の前記流れに対して抵抗を与えるベースバルブ43eが設けられている。さらに、吸込ポート43dには、液室L1から圧側室R5へ向かう作動油の流れのみを許容するチェックバルブ43fが設けられている。このようにシリンダ43における連結部43bは、バルブケースとして機能している。 The upper liquid chamber L1 in FIG. 6 in the reservoir cylinder 48 is communicated with the compression side chamber R5 in the cylinder 43 by the discharge port 43c and the suction port 43d provided in the connecting portion 43b of the cylinder 43. Further, the discharge port 43c is provided with a base valve 43e that allows only the flow of hydraulic oil from the compression side chamber R5 to the liquid chamber L1 and provides resistance to the flow of hydraulic oil. Further, the suction port 43d is provided with a check valve 43f that allows only the flow of hydraulic oil from the liquid chamber L1 to the compression side chamber R5. As described above, the connecting portion 43b in the cylinder 43 functions as a valve case.
 また、ストロークセンサ42は、キャップ49に保持されたセンサ本体42aと、センサ本体42aから延長されてキャップ49に連結された筒状ロッド50内に挿入されるロッド状のプローブ42bと、フリーピストン51に装着されて筒状ロッド50の外周に配置される環状の被検出子としての磁石42cとを備えている。よって、ストロークセンサ42は、フリーピストン51のリザーバ筒48に対する軸方向の現在位置を検知できる。なお、ストロークセンサ42の出力する信号は、センサ本体42aから延びてリザーバ41の外方へ引き出される配線42dを介して図外の前記外部装置へ入力される。 Further, the stroke sensor 42 includes a sensor body 42a held by the cap 49, a rod-shaped probe 42b extended from the sensor body 42a and inserted into the tubular rod 50 connected to the cap 49, and a free piston 51. It is provided with a magnet 42c as an annular object to be detected, which is mounted on the cylinder rod 50 and arranged on the outer periphery of the tubular rod 50. Therefore, the stroke sensor 42 can detect the current position of the free piston 51 with respect to the reservoir cylinder 48 in the axial direction. The signal output by the stroke sensor 42 is input to the external device (not shown) via the wiring 42d extending from the sensor body 42a and being drawn out of the reservoir 41.
 このように構成された車両用緩衝器D4における緩衝器本体40が伸長する場合には、ピストン44がシリンダ43内で図6中下方へ移動するため、圧縮される伸側室R4の作動油は伸側ポート44aおよび伸側減衰バルブ44cを通過して圧側室R5へ移動する。そして、伸側減衰バルブ44cが伸側ポート44aを通過する作動油の流れに抵抗を与えるので、伸側室R4の圧力が圧側室R5の圧力よりも高くなり、車両用緩衝器D4は自身の伸長を妨げる伸側減衰力を発揮する。 When the shock absorber body 40 in the vehicle shock absorber D4 configured in this way is extended, the piston 44 moves downward in FIG. 6 in the cylinder 43, so that the hydraulic oil in the extension side chamber R4 to be compressed is expanded. It passes through the side port 44a and the extension side damping valve 44c and moves to the compression side chamber R5. Then, since the extension side damping valve 44c gives resistance to the flow of hydraulic oil passing through the extension side port 44a, the pressure of the extension side chamber R4 becomes higher than the pressure of the compression side chamber R5, and the vehicle shock absorber D4 owns the extension. Demonstrate the extension side damping force that hinders.
 車両用緩衝器D4の伸長時には、シリンダ43からロッド45が退出し、ロッド45がシリンダ43から退出する体積分の作動油がシリンダ43内の圧側室R5で不足する。このように圧側室R5で作動油が不足するために、圧側室R5の圧力がリザーバ41内の圧力よりも低下して、チェックバルブ43fが撓んで吸込ポート43dを開放する。よって、圧側室R5で不足する作動油は、リザーバ41の液室L1から吸込ポート43dを通じて圧側室R5に供給される。リザーバ41内では、液室L1から作動油が圧側室R5へ移動するためにフリーピストン51が上方へ移動して液室L1を縮小させるとともに気室G1を拡大させ、ロッド45がシリンダ43から退出する体積の補償がなされる。 When the shock absorber D4 for a vehicle is extended, the rod 45 withdraws from the cylinder 43, and the hydraulic oil for the volume of the rod 45 withdrawing from the cylinder 43 is insufficient in the compression side chamber R5 in the cylinder 43. Since the hydraulic oil is insufficient in the compression side chamber R5 as described above, the pressure in the compression side chamber R5 drops below the pressure in the reservoir 41, and the check valve 43f bends to open the suction port 43d. Therefore, the hydraulic oil deficient in the compression side chamber R5 is supplied from the liquid chamber L1 of the reservoir 41 to the compression side chamber R5 through the suction port 43d. In the reservoir 41, the free piston 51 moves upward to shrink the liquid chamber L1 and expand the air chamber G1 because the hydraulic oil moves from the liquid chamber L1 to the compression side chamber R5, and the rod 45 exits from the cylinder 43. Compensation for the volume to be made is made.
 また、車両用緩衝器D4における緩衝器本体40が収縮する場合には、ピストン44がシリンダ43内で図6中上方へ移動するため、圧縮される圧側室R5の作動油は圧側ポート44bおよび圧側減衰バルブ44dを通過して伸側室R4へ移動する。圧側減衰バルブ44dは、圧側ポート44bを通過する作動油の流れに抵抗を与えて、圧側室R5の圧力と伸側室R4の圧力とに差を生じさせる。 Further, when the shock absorber body 40 in the vehicle shock absorber D4 contracts, the piston 44 moves upward in FIG. 6 in the cylinder 43, so that the hydraulic oil in the compressed side chamber R5 is compressed to the compression side port 44b and the compression side. It passes through the damping valve 44d and moves to the extension side chamber R4. The compression side damping valve 44d resists the flow of hydraulic oil through the compression side port 44b, causing a difference between the pressure in the compression side chamber R5 and the pressure in the extension side chamber R4.
 車両用緩衝器D4の収縮時には、シリンダ43内へロッド45が侵入し、ロッド45がシリンダ43内へ侵入する体積分の作動油がシリンダ43内で過剰となる。このようにシリンダ43内で過剰となった作動油は、ベースバルブ43eを押し開いて排出ポート43cを通過してリザーバ41の液室L1へ移動する。ベースバルブ43eが排出ポート43cを通過する作動油の流れに抵抗を与えるので、シリンダ43内の全体の圧力を上昇させる。よって、車両用緩衝器D4は、圧側減衰バルブ44dおよびベースバルブ43eによって、自身の収縮を妨げる圧側減衰力を発揮する。リザーバ41内では、作動油がシリンダ43内から液室L1内へ排出されるためにフリーピストン51が上方へ後退して液室L1を拡大させるとともに気室G1を縮小させ、ロッド45がシリンダ43内へ侵入する体積の補償がなされる。 When the shock absorber D4 for a vehicle contracts, the rod 45 invades the cylinder 43, and the hydraulic oil for the volume of the rod 45 invading the cylinder 43 becomes excessive in the cylinder 43. The excess hydraulic oil in the cylinder 43 in this way pushes open the base valve 43e, passes through the discharge port 43c, and moves to the liquid chamber L1 of the reservoir 41. The base valve 43e resists the flow of hydraulic oil through the discharge port 43c, thus increasing the overall pressure in the cylinder 43. Therefore, the vehicle shock absorber D4 exerts a compression side damping force that hinders its own contraction by the compression side damping valve 44d and the base valve 43e. In the reservoir 41, the hydraulic oil is discharged from the cylinder 43 into the liquid chamber L1, so that the free piston 51 retracts upward to expand the liquid chamber L1 and shrink the air chamber G1, and the rod 45 causes the cylinder 43. Compensation for the volume that penetrates inside is made.
 そして、本実施の形態の車両用緩衝器D4にあっても、フリーピストン51の現在位置は、ストロークセンサ42によって検知できるので、車両用緩衝器D4のストローク変位を検知できる。 Even in the vehicle shock absorber D4 of the present embodiment, the current position of the free piston 51 can be detected by the stroke sensor 42, so that the stroke displacement of the vehicle shock absorber D4 can be detected.
 このように構成された車両用緩衝器D4は、緩衝器本体40におけるシリンダ43に対してリザーバ筒48が側方に配置されて別体となっているので、リザーバ41に収容されるストロークセンサ42の配線42dを路面から離間した位置に配置できるので、配線42dを飛来物から保護できる。 Since the reservoir cylinder 48 is arranged sideways with respect to the cylinder 43 in the shock absorber main body 40 and is a separate body of the vehicle shock absorber D4 configured in this way, the stroke sensor 42 housed in the reservoir 41 is accommodated. Since the wiring 42d can be arranged at a position away from the road surface, the wiring 42d can be protected from flying objects.
 また、このように構成された車両用緩衝器D4では、リザーバ41にストロークセンサ3を収容してフリーピストン51の変位を検知しているので、ストロークセンサ3が長尺にならずに済むので製造コストを低減できる。 Further, in the vehicle shock absorber D4 configured in this way, since the stroke sensor 3 is housed in the reservoir 41 and the displacement of the free piston 51 is detected, the stroke sensor 3 does not have to be long, so that it is manufactured. The cost can be reduced.
 さらに、車両用緩衝器D4によれば、リザーバ筒48がシリンダ43とは別体となっているので緩衝器本体40に曲げモーメントが作用してもリザーバ41に曲げモーメントが殆ど負荷されない。よって、車両用緩衝器D4によれば、ストロークセンサ42に曲げモーメントが作用しない構造となっているのでストロークセンサ42をより効果的に保護できる。 Further, according to the vehicle shock absorber D4, since the reservoir cylinder 48 is separate from the cylinder 43, even if a bending moment acts on the shock absorber main body 40, the bending moment is hardly loaded on the reservoir 41. Therefore, according to the vehicle shock absorber D4, the stroke sensor 42 can be more effectively protected because the structure is such that the bending moment does not act on the stroke sensor 42.
 以上より、本実施の形態の車両用緩衝器D4によれば、ストロークセンサ42を保護できるとともにコストを低減できるのである。なお、リザーバ筒48は、図示したところでは、シリンダ43と平行に配置されているが、シリンダ43に対して平行以外の姿勢で側方に配置されてもよい。したがって、リザーバ筒48は、たとえば、シリンダ43の軸線に対して直交する平面上に軸線を持つように配置されもよい。また、車両用緩衝器D4は、収縮側の減衰力の調整を可能とするべく、圧側室R5と液室L1とを排出ポート43cおよび吸込ポート43dを迂回して連通するバイパス路と、バイパス路にバイパス路の流路面積を変更可能なニードルバルブ等の可変減衰バルブを備えていてもよい。 From the above, according to the vehicle shock absorber D4 of the present embodiment, the stroke sensor 42 can be protected and the cost can be reduced. Although the reservoir cylinder 48 is arranged in parallel with the cylinder 43 in the figure, it may be arranged laterally in a posture other than parallel to the cylinder 43. Therefore, the reservoir cylinder 48 may be arranged so as to have an axis on a plane orthogonal to the axis of the cylinder 43, for example. Further, the vehicle shock absorber D4 has a bypass path and a bypass path that communicate the compression side chamber R5 and the liquid chamber L1 by bypassing the discharge port 43c and the suction port 43d in order to enable adjustment of the damping force on the contraction side. May be provided with a variable damping valve such as a needle valve that can change the flow path area of the bypass path.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形および変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, they can be modified, modified and modified as long as they do not deviate from the claims.
 本願は、2020年12月21日に日本国特許庁に出願された特願2020-210919に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2020-210919 filed with the Japan Patent Office on December 21, 2020, and the entire contents of this application are incorporated herein by reference.

Claims (8)

  1.  車両用緩衝器であって、
     車両における車体側に連結可能なシリンダと、前記シリンダ内に軸方向へ移動可能に挿入されるとともに前記シリンダ内を液体が充填される伸側室と圧側室とに区画するピストンと、一端が前記ピストンに連結されて前記シリンダ内に軸方向へ移動可能に挿入されるとともに他端が前記車両における車輪側に連結可能なロッドとを有する緩衝器本体と、
     リザーバ筒と、前記リザーバ筒内に軸方向へ移動自在に挿入されるとともに前記リザーバ筒内を気室と前記圧側室に連通される液室とに区画するフリーピストンとを備えたリザーバと、
     前記緩衝器本体のストローク変位を検出するストロークセンサとを備え、
     前記ストロークセンサは、前記フリーピストンに連結される被検出子と、前記リザーバ筒に一端が連結されるとともに前記リザーバ筒内に収容されて前記被検出子の位置を検知するプローブとを有する
     車両用緩衝器。
    It ’s a shock absorber for vehicles.
    A cylinder that can be connected to the vehicle body side of the vehicle, a piston that is movably inserted into the cylinder and is divided into an extension side chamber and a compression side chamber in which the inside of the cylinder is filled with liquid, and one end of the piston. A shock absorber body having a rod connected to the cylinder and movably inserted into the cylinder and having a rod whose other end can be connected to the wheel side of the vehicle.
    A reservoir having a reservoir cylinder and a free piston that is axially movably inserted into the reservoir cylinder and divides the inside of the reservoir cylinder into an air chamber and a liquid chamber that communicates with the compression side chamber.
    It is equipped with a stroke sensor that detects the stroke displacement of the shock absorber body.
    The stroke sensor is for a vehicle having a detector connected to the free piston and a probe having one end connected to the reservoir cylinder and housed in the reservoir cylinder to detect the position of the detector. Shock absorber.
  2.  請求項1に記載の車両用緩衝器であって、
     前記リザーバは、
     前記リザーバ筒の一端を閉塞するキャップと、
     一端が前記キャップに連結されて前記リザーバ筒内に収容される非磁性体で形成された筒状ロッドとを有し、
     前記フリーピストンは環状であって前記筒状ロッドの外周に摺動自在に装着されて前記リザーバ筒の内周に摺接し、
     前記プローブは、前記筒状ロッド内に収容される
     車両用緩衝器。
    The vehicle shock absorber according to claim 1.
    The reservoir is
    A cap that closes one end of the reservoir cylinder and
    It has a tubular rod formed of a non-magnetic material, one end of which is connected to the cap and housed in the reservoir cylinder.
    The free piston is annular and is slidably mounted on the outer circumference of the tubular rod and slidably contacts the inner circumference of the reservoir cylinder.
    The probe is a vehicle shock absorber housed in the tubular rod.
  3.  請求項2に記載の車両用緩衝器であって、
     前記筒状ロッドの他端側に連結されて前記液室と前記圧側室とを仕切るとともに前記圧側室と前記液室とを連通する排出ポートと吸込ポートとを有するバルブケースと、
     前記排出ポートを開閉するとともに前記排出ポートを前記圧側室から前記液室へ向けて通過する前記液体の流れのみを許容するとともに前記液体の流れに抵抗を与えるベースバルブと、
     前記吸込ポートを開閉するとともに前記液室から前記圧側室へ向かう前記液体の流れのみを許容するチェックバルブとを備えた
     車両用緩衝器。
    The vehicle shock absorber according to claim 2.
    A valve case that is connected to the other end side of the tubular rod and has a discharge port and a suction port that separate the liquid chamber from the compression side chamber and communicate the compression side chamber and the liquid chamber with each other.
    A base valve that opens and closes the discharge port, allows only the flow of the liquid that passes through the discharge port from the compression side chamber toward the liquid chamber, and provides resistance to the flow of the liquid.
    A vehicle shock absorber provided with a check valve that opens and closes the suction port and allows only the flow of the liquid from the liquid chamber to the compression side chamber.
  4.  請求項1に記載の車両用緩衝器であって、
     前記フリーピストンを前記液室側へ向けて付勢するコイルばねと、
     前記フリーピストンと前記コイルばねとの間に介装される環状のばね受とを備え、
     前記ばね受は、前記コイルばねの内周に配置される筒部と、筒部の一端に設けられて前記コイルばねの一端を支承するフランジとを有し、
     前記被検出子は、前記ばね受の筒部の内周に装着されている
     車両用緩衝器。
    The vehicle shock absorber according to claim 1.
    A coil spring that urges the free piston toward the liquid chamber side,
    An annular spring receiver interposed between the free piston and the coil spring is provided.
    The spring receiver has a tubular portion arranged on the inner circumference of the coil spring and a flange provided at one end of the tubular portion to support one end of the coil spring.
    The detector is a vehicle shock absorber mounted on the inner circumference of the cylinder portion of the spring receiver.
  5.  請求項1に記載の車両用緩衝器であって、
     前記リザーバ筒は、前記シリンダの車体側端に連結されている
     車両用緩衝器。
    The vehicle shock absorber according to claim 1.
    The reservoir cylinder is a vehicle shock absorber connected to the vehicle body side end of the cylinder.
  6.  請求項1に記載の車両用緩衝器であって、
     前記リザーバ筒は、前記シリンダの側方に配置される
     車両用緩衝器。
    The vehicle shock absorber according to claim 1.
    The reservoir cylinder is a vehicle shock absorber arranged on the side of the cylinder.
  7.  請求項1に記載の車両用緩衝器であって、
     前記液体の温度を検知する温度センサを備えた
     車両用緩衝器。
    The vehicle shock absorber according to claim 1.
    A vehicle shock absorber provided with a temperature sensor that detects the temperature of the liquid.
  8.  懸架装置であって、
     アウターチューブと、前記アウターチューブ内に軸方向移動自在に挿入されるインナーチューブとを備えて車両の車体と前輪との間に介装される一対の伸縮体と、
     前記伸縮体のうち一方の内部に収容されて前記一方の伸縮体の伸縮に伴って伸縮作動する請求項1、2、3、4、5または7に記載の車両用緩衝器と、
     前記伸縮体のうち他方の内部に収容されて前記他方の伸縮体の伸縮に伴って伸縮して減衰力を発生するとともに前記減衰力のうち少なくとも収縮時の減衰力の調整が可能な減衰力可変緩衝器とを備え、
     前記各伸縮体の収縮時の減衰力の調整が前記減衰力可変緩衝器のみで可能である
     懸架装置。
    It ’s a suspension device,
    A pair of telescopic bodies interposed between the vehicle body and the front wheels, including an outer tube and an inner tube that is axially movable and inserted into the outer tube.
    The vehicle shock absorber according to claim 1, 2, 3, 4, 5 or 7, which is housed inside one of the stretchable bodies and expands and contracts with the expansion and contraction of the one stretchable body.
    The damping force is variable, which is housed inside the other of the stretchable bodies and expands and contracts as the other stretchable body expands and contracts to generate a damping force, and at least the damping force at the time of contraction can be adjusted. Equipped with a shock absorber,
    A suspension device capable of adjusting the damping force of each stretchable body at the time of contraction only by the variable damping force shock absorber.
PCT/JP2021/032390 2020-12-21 2021-09-03 Vehicle shock absorber and suspension device WO2022137655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020210919A JP2022097782A (en) 2020-12-21 2020-12-21 Vehicle shock absorber and suspension device
JP2020-210919 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022137655A1 true WO2022137655A1 (en) 2022-06-30

Family

ID=82157461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032390 WO2022137655A1 (en) 2020-12-21 2021-09-03 Vehicle shock absorber and suspension device

Country Status (2)

Country Link
JP (1) JP2022097782A (en)
WO (1) WO2022137655A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116593U (en) * 1977-02-25 1978-09-16
JPH02286931A (en) * 1989-04-28 1990-11-27 Eagle Ind Co Ltd Shock absorber
JPH0510368A (en) * 1991-07-05 1993-01-19 Yamaha Motor Co Ltd Stroke detecting device for tubular attenuator
US20130228401A1 (en) * 2010-11-20 2013-09-05 Zf Friedrichshafen Ag Vibration damper having a sensor device
JP2015052335A (en) * 2013-09-06 2015-03-19 カヤバ工業株式会社 Suspension device
JP2016176487A (en) * 2015-03-18 2016-10-06 Kybモーターサイクルサスペンション株式会社 Front fork
JP2020143684A (en) * 2019-03-04 2020-09-10 Kyb株式会社 Damper

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116593U (en) * 1977-02-25 1978-09-16
JPH02286931A (en) * 1989-04-28 1990-11-27 Eagle Ind Co Ltd Shock absorber
JPH0510368A (en) * 1991-07-05 1993-01-19 Yamaha Motor Co Ltd Stroke detecting device for tubular attenuator
US20130228401A1 (en) * 2010-11-20 2013-09-05 Zf Friedrichshafen Ag Vibration damper having a sensor device
JP2015052335A (en) * 2013-09-06 2015-03-19 カヤバ工業株式会社 Suspension device
JP2016176487A (en) * 2015-03-18 2016-10-06 Kybモーターサイクルサスペンション株式会社 Front fork
JP2020143684A (en) * 2019-03-04 2020-09-10 Kyb株式会社 Damper

Also Published As

Publication number Publication date
JP2022097782A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
US9765842B2 (en) Suspension device
US9855811B2 (en) Vehicle suspension system
US8905409B2 (en) Stroke detection device for front fork in motorcycle and motorcycle equipped with stroke detection device
EP3401568B1 (en) Front fork
JP6012372B2 (en) Height adjustment device for motorcycles
CN111108302B (en) Front fork and method for manufacturing front fork
US20080053764A1 (en) Front fork
US9488243B2 (en) Damper with a vehicle height adjusting function
JP5559713B2 (en) Shock absorber for saddle riding vehicle
EP1878648B1 (en) Vehicle with a damper position sensor
US8820494B2 (en) Hydraulic shock absorbing apparatus of vehicle
EP1666347B1 (en) Suspension device for vehicle
WO2022137655A1 (en) Vehicle shock absorber and suspension device
WO2010109697A1 (en) Hydraulic buffer
JP2017155915A (en) Suspension device
JP6637806B2 (en) Suspension system
US8474582B2 (en) Cushion device and motorcycle
US20050127587A1 (en) Hydraulic shock absorbing apparatus of vehicle
JP2021081025A (en) Buffer
US20230060765A1 (en) Shock absorber
JP5872347B2 (en) Hydraulic shock absorber
JP5395746B2 (en) Fluid pressure buffer
JP2001280399A (en) Hydraulic shock absorber
JP2015052335A (en) Suspension device
JP2005088708A (en) Hydraulic shock absorber of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909813

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909813

Country of ref document: EP

Kind code of ref document: A1