WO2022137619A1 - Antenna substrate - Google Patents

Antenna substrate Download PDF

Info

Publication number
WO2022137619A1
WO2022137619A1 PCT/JP2021/027510 JP2021027510W WO2022137619A1 WO 2022137619 A1 WO2022137619 A1 WO 2022137619A1 JP 2021027510 W JP2021027510 W JP 2021027510W WO 2022137619 A1 WO2022137619 A1 WO 2022137619A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
build
reinforcing
antenna
layers
Prior art date
Application number
PCT/JP2021/027510
Other languages
French (fr)
Japanese (ja)
Inventor
道和 冨田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2022137619A1 publication Critical patent/WO2022137619A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to an antenna substrate.
  • This application claims priority based on Japanese Patent Application No. 2020-21930 filed in Japan on December 21, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses an antenna substrate having a plurality of layers including a core layer and a build-up layer laminated on the core layer.
  • a glass cloth may be included in a part of the layers for reinforcement.
  • the configuration in which the build-up layer does not contain the glass cloth is more advantageous than the configuration in which the build-up layer contains the glass cloth in terms of transmission characteristics.
  • the build-up layer does not contain the glass cloth, there is a problem that the strength of the antenna substrate is lowered.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an antenna substrate capable of both improving transmission characteristics and ensuring strength.
  • the antenna substrate includes an antenna, a feeding pattern electrically connected to the antenna, a first reinforcing material, and a first base material, and has a first surface.
  • a core layer having a second surface opposite to the first surface, a reinforcing layer containing a second reinforcing material and a second base material, and arranged so as to face the first surface of the core layer, and the above.
  • An upper build-up portion having at least one non-reinforcing layer arranged between the core layer and the reinforcing layer and having at least one non-reinforcing material, and at least arranged facing the second surface and containing no reinforcing material. It comprises a lower build-up portion having one second non-reinforcing layer.
  • the first non-reinforced layer is included in the upper build-up portion.
  • the antenna By arranging the antenna on the surface of the first non-reinforced layer, better transmission characteristics can be obtained as compared with the case where the antenna is arranged on the surface of the layer containing a reinforcing material such as glass cloth.
  • the reinforcing layer containing the second reinforcing material in addition to the core layer containing the first reinforcing material, the strength of the antenna substrate can be ensured. From the above, it is possible to provide an antenna substrate that achieves both improvement in transmission characteristics and assurance of strength.
  • the upper build-up portion and the reinforcing layer may be adhesively fixed by an adhesive layer.
  • the thickness of the reinforcing layer may be larger than the thickness of the core layer.
  • the material of the first reinforcing material and the material of the second reinforcing material may be the same, and the material of the first base material and the material of the second base material may be the same.
  • At least one of the upper build-up portion and the lower build-up portion may further have a reinforcing layer containing a reinforcing material.
  • At least one of the first non-reinforced layer and the second non-reinforced layer may be formed with filled vias whose inside is filled by plating.
  • At least one of the upper build-up portion and the lower build-up portion is provided with two non-reinforcing layers adjacent to each other, and at least a part of the feeding pattern is adjacent to the two. It may be located between one non-reinforcing layer and may be in contact with each of the two adjacent non-reinforcing layers.
  • the distance between the reinforcing layer and the core layer may be larger than the distance between the antenna and the core layer.
  • an antenna substrate capable of both improving transmission characteristics and ensuring strength.
  • the antenna substrate 1 includes a core layer 10, an upper build-up portion 20, a lower build-up portion 30, an adhesive layer 40, and a reinforcing layer 50.
  • the core layer 10 has a first surface 11 and a second surface 12 opposite to the first surface 11.
  • the reinforcing layer 50 is arranged so as to face the first surface 11.
  • the wording "arranged facing each other" described in the present specification means that the two members are arranged facing each other. That is, the wording "arranged facing each other" includes the case where an inclusion is present between the two members and the case where the inclusion is not present between the two members.
  • FIG. 1 is a cross-sectional view of the antenna substrate 1 along the stacking direction. Viewing from the stacking direction is called "planar view”. The stacking direction does not always match the vertical direction.
  • the lower build-up portion 30, the core layer 10, the upper build-up portion 20, the adhesive layer 40, and the reinforcing layer 50 are laminated in this order from the lower end to the upper end of the antenna substrate 1.
  • the antenna board 1 includes an antenna A, a feeding path 60, and a pad P.
  • the antenna A is a pattern formed by conductors (for example, a patch antenna), and is configured to transmit and receive high-frequency radio signals (for example, 60 GHz band).
  • the antenna A is arranged on the upper side (reinforcing layer 50 side) of the core layer 10. The position of the antenna A can be changed as appropriate.
  • the antenna A may be formed between the upper build-up portion 20 and the adhesive layer 40, for example, as shown in FIG.
  • the pad P is formed on the surface of the antenna substrate 1. In the example of FIG. 1, the pad P is formed on the lower surface of the lower build-up portion 30 (the lower surface of the third lower build-up layer 33). Terminals and the like of electronic components are soldered to the pad P.
  • a solder resist (not shown) may be provided around the pad P.
  • the feeding path 60 electrically connects the antenna A and the pad P.
  • the feeding path 60 shown in FIG. 1 includes feeding vias 61, 62, 64, 65, 66, 68, 69 and feeding patterns 63, 67.
  • the power supply pattern 63 is also referred to as a first power supply pattern.
  • the power supply pattern 67 is also referred to as a second power supply pattern 67.
  • the feeding via 61 extends downward from the antenna A and is connected to the feeding via 62.
  • the feeding pattern 63 is formed on the upper surface of the first upper build-up layer 21, which will be described later, and connects the feeding via 62 and the feeding via 64.
  • the feeding via 65 is formed in the core layer 10, and connects the feeding via 64 and the feeding via 66.
  • the feeding pattern 67 is formed on the lower surface of the first lower build-up layer 31, which will be described later, and connects the feeding via 66 and the feeding via 68.
  • the feeding via 69 connects the feeding via 68 and the pad P.
  • the configuration of the feeding path 60 can be appropriately changed.
  • feeding via 61, 62, 64, 65, 66, 68, 69 may be simply referred to as “feeding via 61 or the like".
  • the characteristic impedance of the feed patterns 63 and 67 is matched to, for example, 50 ⁇ . It is desirable that the feeding patterns 63 and 67 are arranged on the surface of the layer that does not contain the glass cloth from the viewpoint of improving the transmission characteristics. Further, from the viewpoint of impedance matching, it is desirable that the thickness of the feeding patterns 63 and 67 is about 100 ⁇ m.
  • the grounding pattern G is arranged in the region between the two layers adjacent to each other among the plurality of layers constituting the antenna substrate 1. However, the grounding pattern G may not be arranged in all the regions between the two layers. A plurality of grounding patterns G may be arranged so as to sandwich the feeding patterns 63 and 67 in the stacking direction.
  • a plurality of ground vias electrically connected to the ground pattern G may be arranged so as to surround the power feeding via 61 and the like.
  • a plurality of ground vias may be arranged so as to surround the feeding patterns 63 and 67 in a plan view.
  • each of the core layer 10 and the reinforcing layer 50 contains a base material and a reinforcing material.
  • the base material contained in the core layer 10 may be particularly referred to as a "first base material”
  • the base material contained in the reinforcing layer 50 may be particularly referred to as a "second base material”.
  • the reinforcing material contained in the core layer 10 may be particularly referred to as a "first reinforcing material”
  • the reinforcing material contained in the reinforcing layer 50 may be particularly referred to as a "second reinforcing material”.
  • the glass cloth is used as the reinforcing material (the first reinforcing material and the second reinforcing material)
  • a reinforcing material other than the glass cloth may be adopted.
  • the material of the first reinforcing material and the material of the second reinforcing material do not have to be the same as each other.
  • the ordinal numbers such as "first" and "second” in the present specification are attached to avoid confusion of the constituent elements, and the quantity is not limited.
  • Epoxy or PPE can be used as the first base material of the core layer 10 and the second base material of the reinforcing layer 50. That is, the core layer 10 and the reinforcing layer 50 are layers formed by impregnating a reinforcing material (glass cloth or the like) with a base material (epoxy, PPE or the like).
  • the core layer 10 and the reinforcing layer 50 may be a so-called prepreg material (Pre-Impregnated Material).
  • the thickness of the core layer 10 and the reinforcing layer 50 is preferably 100 ⁇ m or more in consideration of the strength.
  • the core layer 10 and the reinforcing layer 50 are thick to some extent. However, if the core layer 10 is too thick, problems may occur, so an appropriate value is selected.
  • the core layer 10 contains a first base material and a first reinforcing material.
  • the core layer 10 is provided with a feeding via 65.
  • the feeding via 65 is formed by, for example, processing the core layer 10 with a drill or the like to form a through hole, and filling the inside of the through hole with metal.
  • the diameter of the feeding via 65 is preferably 0.15 mm or less. As a result, it is possible to suppress a decrease in the strength of the core layer 10, which greatly contributes to the strength of the antenna substrate 1.
  • the coefficient of linear expansion of the core layer 10 in the direction orthogonal to the stacking direction (the direction in which the core layer 10 extends) is preferably 10 to 20 ppm / ° C., depending on the copper (Cu) that is the material of the wiring. As a result, the amount of expansion or contraction due to the temperature change becomes equal between the wiring and the core layer 10, and the thermal reliability can be improved.
  • the upper build-up portion 20 is laminated on the upper surface of the core layer 10, and the lower build-up portion 30 is laminated on the lower surface of the core layer 10.
  • the number of layers included in each build-up unit 20 and 30 can be appropriately changed, but is preferably two or more. Further, it is preferable that the number of layers included in the upper build-up unit 20 and the number of layers included in the lower build-up unit 30 are the same.
  • the upper build-up unit 20 and the lower build-up unit 30 each include three layers. As a result, the structure of the antenna substrate 1 in the middle of manufacturing becomes symmetrical in the stacking direction with the core layer 10 as the center. Therefore, it is possible to prevent the antenna substrate 1 from being warped.
  • the three layers included in the upper build-up portion 20 are divided into the first upper build-up layer 21, the second upper build-up layer 22, and the third upper build-up layer 23 in order from the layer closest to the core layer 10. Is called.
  • the three layers included in the lower build-up unit 30 are, in order from the layer closest to the core layer 10, the first lower build-up layer 31, the second lower build-up layer 32, and the third lower build. It is referred to as an up layer 33.
  • the first upper build-up layer 21 and the first lower build-up layer 31 are formed at the same time with the second upper build-up layer 22.
  • the second lower build-up layer 32 is formed at the same time
  • the third upper build-up layer 23 and the third lower build-up layer 33 are formed at the same time.
  • the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 are all non-reinforced layers that do not contain a reinforcing material (glass cloth or the like).
  • the upper build-up layers 21 to 23 are arranged so as to face the first surface 11.
  • the lower build-up layers 31 to 33 are arranged so as to face the second surface 12.
  • the upper build-up layers 21 to 23 may be referred to as first non-reinforced layers 21 to 23.
  • the lower build-up layers 31 to 33 may be referred to as second non-reinforced layers 31 to 33.
  • For the non-reinforced layer it is not easy to control the coefficient of linear expansion.
  • the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 may contain an inorganic filler or the like. Thereby, the linear expansion coefficients of the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 may be adjusted, and the linear expansion coefficients may be matched with other layers included in the antenna substrate 1. In this case, the difference between the layers of the expansion amount or the contraction amount when the temperature change occurs becomes small, and improvement in thermal reliability can be expected.
  • the material for forming the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 for example, a material having the following characteristics at 60 GHz is suitable.
  • Relative permittivity Approximately 2 to 4 Dielectric loss tangent: 0.01 or less
  • a material having the following characteristics at 60 GHz is used. , More suitable.
  • Relative permittivity Approximately 3 Dielectric loss tangent: 0.005 or less
  • Specific examples of the materials forming the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 include resins such as epoxy and PPE.
  • the thickness of the upper build-up layers 21 to 23 included in the upper build-up portion 20 and the lower build-up layers 31 to 33 included in the lower build-up portion 30 may be 100 ⁇ m or more in consideration of strength. preferable. From the viewpoint of high frequency design (matching of characteristic impedance, widening of the wide band of antenna A), it is desirable that the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 have a certain thickness. However, if these layers are too thick, problems may occur, so select an appropriate value for the thickness.
  • Feeding vias 64, 62, and 61 are formed on the upper build-up layers 21 to 23, respectively.
  • Feeding vias 66, 68, and 69 are formed in the lower build-up layers 31 to 33, respectively.
  • These feeding vias are preferably LVH (Laser Via Hole). More specifically, it is preferable that these feeding vias have a structure in which through holes are formed in each layer so that the diameter is 0.15 mm or less by laser processing, and the inside of the through holes is filled by plating.
  • the feeding vias formed in the build-up portions 20 and 30 are preferably filled vias whose insides are filled by plating.
  • the diameter of the through hole is 0.15 mm or less, it is possible to suppress a decrease in strength of the antenna substrate 1 due to the formation of a large feeding via in the upper build-up layers 21 to 23 or the lower build-up layers 31 to 33.
  • the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 are non-reinforced layers that do not contain a reinforcing material such as glass cloth.
  • the upper build-up layers 21 to 23 are the first non-reinforced layers 21 to 23
  • the lower build-up layers 31 to 33 are the second non-reinforced layers 31 to 33. Therefore, it is possible to suppress the occurrence of constriction in the through hole due to the fact that a part of the glass cloth or the like remains without being scraped during laser processing. As a result, a good shape of the feeding via can be obtained even with a fine diameter. Further, by filling the inside of the through hole with plating, the strength of the antenna substrate 1 can be further increased.
  • the thickness of the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 is preferably 150 ⁇ m or less so that air bubbles or the like do not occur when the inside of the through hole is filled with plating.
  • the structure and forming method of the feeding via are an example.
  • the feeding via may have a structure in which the inner peripheral surface of the through hole is conformally plated, the through hole is filled with a resin, and a lid is formed by plating.
  • the reinforcing layer 50 is located above the upper build-up portion 20.
  • the reinforcing layer 50 is adhesively fixed to the upper build-up portion 20 by the adhesive layer 40.
  • the material of the adhesive layer 40 for example, a resin (epoxy, PPE, etc.) that does not contain a reinforcing material such as glass cloth can be adopted.
  • the material of the adhesive layer 40 may be the same prepreg material as the core layer 10, or may be another adhesive.
  • the third upper build-up layer 23 may be formed of a thermoplastic resin.
  • the reinforcing layer 50 and the third upper build-up layer 23 can be thermocompression bonded in a state where the reinforcing layer 50 is laminated on the surface of the third upper build-up layer 23. That is, the reinforcing layer 50 can be adhesively fixed to the upper build-up portion 20 without the adhesive layer 40. Therefore, the adhesive layer 40 is not essential.
  • the thickness of the reinforcing layer 50 is preferably larger than the thickness of the core layer 10.
  • the thickness (dimension in the stacking direction) of the core layer 10 is set to a certain value or less from the viewpoint of ensuring the characteristics as a high frequency substrate.
  • the limitation on the thickness of the reinforcing layer 50 is looser than the limitation on the thickness of the core layer 10. Therefore, the thickness of the reinforcing layer 50 can be easily made larger than the thickness of the core layer 10. Considering the difference in expansion coefficient, it is desirable that the material of the reinforcing layer 50 is the same as the material of the core layer 10.
  • the material of the second reinforcing material contained in the reinforcing layer 50 is preferably the same as the material of the first reinforcing material contained in the core layer 10.
  • the material of the second base material contained in the reinforcing layer 50 is preferably the same as the material of the first base material contained in the core layer 10.
  • the antenna substrate 1 may be manufactured by another manufacturing method.
  • a prepreg material to be the core layer 10 is prepared.
  • the feeding via 65 is formed. Specifically, for example, a fine drill having a diameter of 0.1 mm or the like is used to form a through hole in the core layer 10, and the inside of the through hole is filled with metal. Further, a ground contact pattern G is formed on the upper surface and the lower surface of the core layer 10.
  • the build-up materials are sequentially attached to both sides (upper surface and lower surface) of the core layer 10 in the stacking direction to form a symmetrical structure in the stacking direction. From the viewpoint of preventing warpage, it is more preferable that the thickness of each build-up material is the same as each other.
  • a wiring pattern is formed on the surface of the build-up material, and vias are formed on the build-up material.
  • the first upper build-up layer 21 and the first lower build-up layer 31 are attached to both sides of the core layer 10 at the same time.
  • the feeding vias 64 and 66 are formed by laser processing and plating fill.
  • the power supply patterns 63 and 67 are formed on the upper surface of the first upper build-up layer 21 and the lower surface of the first lower build-up layer 31, respectively.
  • the second upper build-up layer 22 and the second lower build-up layer 32 are simultaneously attached to the upper surface of the first upper build-up layer 21 and the lower surface of the first lower build-up layer 31, respectively.
  • formation of the grounding pattern G, attachment of the build-up layers 23 and 33, and the like are sequentially performed.
  • the reinforcing layer 50 is attached to the upper build-up portion 20 by the adhesive layer 40.
  • the antenna substrate 1 is cut into a predetermined size by processing a router or the like. At this time, the occurrence of cracks is suppressed by providing the reinforcing layer 50 including the reinforcing material.
  • the antenna substrate 1 of the present embodiment includes the antenna A, the feeding patterns 63 and 67 electrically connected to the antenna A, the first reinforcing material, and the first base material, and has a first surface.
  • a core layer 10 having a second surface 12 opposite to the first surface 11 and a reinforcing layer 50 containing a second reinforcing material and a second base material and arranged facing the first surface 11 and a core.
  • Reinforcement arranged between the layer 10 and the reinforcement layer 50 and having an upper build-up portion 20 having at least one first non-reinforcing layer 21-23 without reinforcement and an arrangement facing the second surface 12. It comprises a lower build-up portion 30 having at least one second non-reinforced layer 31-33 containing no material.
  • the first non-reinforced layer 23 is included in the upper build-up portion 20, by arranging the antenna A on the surface of the first non-reinforced layer 23, a reinforcing material such as glass cloth can be provided. Good transmission characteristics can be obtained as compared with the case where the antenna A is arranged on the surface of the including layer. Further, by providing the reinforcing layer 50 including the second reinforcing material in addition to the core layer 10 containing the first reinforcing material, the strength of the antenna substrate 1 can be ensured. From the above, it is possible to provide an antenna substrate 1 that achieves both improvement in transmission characteristics and assurance of strength.
  • the upper build-up portion 20 and the reinforcing layer 50 are adhesively fixed by the adhesive layer 40.
  • the reinforcing layer 50 can be adhesively fixed after the outermost layer (third upper build-up layer 23 in FIG. 1) of the upper build-up portion 20 is thermocompression bonded.
  • the thickness of the reinforcing layer 50 is larger than the thickness of the core layer 10, the strength of the antenna substrate 1 can be increased more reliably. Since the transmission characteristic limitation on the thickness of the reinforcing layer 50 is looser than the transmission characteristic limitation on the thickness of the core layer 10, it is easy to increase the thickness of the reinforcing layer 50.
  • the material of the first reinforcing material contained in the core layer 10 and the material of the second reinforcing material contained in the reinforcing layer 50 are the same, and the material of the first base material and the reinforcing layer 50 included in the core layer 10 are the same.
  • the material of the second base material contained may be the same.
  • the linear expansion coefficients of the core layer 10 and the reinforcing layer 50 are substantially the same, and it is possible to prevent the antenna substrate 1 from being warped due to a temperature change.
  • substantially the same includes the case where it can be regarded as the same if the manufacturing error is removed.
  • first non-reinforced layers 21 to 23 (upper build-up layers 21 to 23) of the upper build-up portion 20 and the second non-reinforced layers 31 to 33 (lower build-up layers 31 to 33) of the lower build-up portion 30.
  • at least one layer may be formed with a filled via (feeding via 61 or the like) whose inside is filled by plating. According to this configuration, the strength of the antenna substrate 1 can be further increased.
  • At least one of the upper build-up portion 20 and the lower build-up portion 30 has two non-reinforced layers (for example, the upper build-up layer (first non-reinforced layer) 21, 22), or the lower one, which does not contain a reinforcing material.
  • Side build-up layers (second non-reinforced layers) 31, 32.) May be provided adjacent to each other.
  • at least a part of the feeding patterns 63 and 67 may be located between the two adjacent non-reinforced layers and may be in contact with each of the two adjacent non-reinforced layers. According to this configuration, it is possible to prevent the feeding patterns 63 and 67 from being affected by the non-uniformity of the density of the glass cloth and adversely affecting the transmission characteristics of the high frequency signal.
  • the reinforcing layer 50 is arranged at a position farther from the core layer 10 than the antenna A.
  • the distance between the reinforcing layer 50 and the core layer 10 is larger than the distance between the antenna A and the core layer 10.
  • the antenna A is located between the two layers (core layer 10 and reinforcing layer 50) containing the reinforcing material.
  • the portion between the two layers including the reinforcing material is not easily affected by bending deformation and the like. Therefore, it is possible to suppress bending deformation and the like from acting on the antenna A, and to stabilize the transmission / reception characteristics of the antenna A.
  • the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 are the first non-reinforced layers 21 to 23 and the second non-reinforced layers 31 to 33 containing no reinforcing material.
  • some layers of the upper build-up portion 20 or some layers of the lower build-up portion 30 may contain a reinforcing material (glass cloth or the like).
  • at least one of the upper build-up portion 20 and the lower build-up portion 30 may have a reinforcing layer having a reinforcing material.
  • at least one layer included in the upper build-up section 20 and at least one layer included in the lower build-up section 30 are designated as non-reinforced layers.
  • the positions of the reinforced layer and the non-reinforced layer in the upper build-up portion 20 and the lower build-up portion 30 are preferably symmetrical in the stacking direction with the core layer 10 as the center.
  • the upper build-up layer 23 is a reinforced layer and the upper build-up layers 21 and 22 are non-reinforced layers (first non-reinforced layer)
  • the lower build-up layer 33 is a reinforced layer and the lower build-up layer 31.
  • 32 is preferably a non-reinforced layer (second non-reinforced layer).
  • the strength of the antenna substrate 1 can be further improved. Further, if the antenna A is arranged on the surface of the non-reinforced layer of the upper build-up portion 20 and the lower build-up portion 30, it is possible to improve the transmission characteristics and secure the strength at the same time.
  • each of the upper build-up unit 20 and the lower build-up unit 30 has two adjacent non-reinforced layers.
  • only one of the upper build-up section 20 and the lower build-up section 30 may have two adjacent non-reinforced layers. Even in this case, it is possible to reduce the adverse effect on the transmission characteristics of the high frequency signal.
  • Antenna board 10 ... Core layer 11 ... 1st surface 12 ... 2nd surface 20 ... Upper build-up part 21-23 ... Upper build-up layer (1st non-reinforced layer) 30 ... Lower build-up part 31-33 ... Lower build-up layer (second non-reinforced layer) 40 ...
  • Adhesive layer 50 ... Reinforcing layer 61, 62, 64, 65, 66, 68, 69 ... Feeding via (filled via) 63, 67 ... Feeding pattern A ... Antenna Z ... Stacking direction

Abstract

This antenna substrate comprises: an antenna; a power supply pattern; a core layer; a connection layer; an upper build-up part; and a lower build-up part. The power supply pattern is electrically connected to the antenna. The core layer includes a first reinforcement material and a first base material, and has a first surface and a second surface on the opposite side to the first surface. The connection layer includes a second reinforcement material and a second base material, and is disposed to face the first surface. The upper build-up part has at least one first non-reinforced layer which does not contain a reinforcement material, and is disposed between the core layer and a reinforcement layer. The lower build-up part has at least one second non-reinforced layer which does not contain a reinforcement material, and is disposed so as to face the second surface.

Description

アンテナ基板Antenna board
 本発明は、アンテナ基板に関する。
 本願は、2020年12月21日に、日本に出願された特願2020-210930号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an antenna substrate.
This application claims priority based on Japanese Patent Application No. 2020-21930 filed in Japan on December 21, 2020, the contents of which are incorporated herein by reference.
 特許文献1には、コア層と、コア層に積層されたビルドアップ層と、を含む複数の層を備えたアンテナ基板が開示されている。このようなアンテナ基板においては、補強のために、一部の層にガラスクロスを含ませる場合がある。 Patent Document 1 discloses an antenna substrate having a plurality of layers including a core layer and a build-up layer laminated on the core layer. In such an antenna substrate, a glass cloth may be included in a part of the layers for reinforcement.
日本国特開2020-136485号公報Japanese Patent Application Laid-Open No. 2020-136485
 ミリ波帯などの高周波信号を扱うアンテナ基板では、ビルドアップ層にガラスクロスが含まれると、ガラスクロスの密度の不均一が伝送特性のバラつきを引き起こす。このため、ビルドアップ層にガラスクロスが含まれない構成は、ビルドアップ層にガラスクロスが含まれる構成よりも、伝送特性の観点においては有利である。しかしながら、ビルドアップ層にガラスクロスが含まれない場合、アンテナ基板の強度が低下するという課題があった。 In an antenna board that handles high frequency signals such as millimeter wave bands, if the build-up layer contains glass cloth, the non-uniformity of the density of the glass cloth causes variations in transmission characteristics. Therefore, the configuration in which the build-up layer does not contain the glass cloth is more advantageous than the configuration in which the build-up layer contains the glass cloth in terms of transmission characteristics. However, when the build-up layer does not contain the glass cloth, there is a problem that the strength of the antenna substrate is lowered.
 本発明はこのような事情を考慮してなされ、伝送特性の向上および強度の確保を両立可能なアンテナ基板を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an antenna substrate capable of both improving transmission characteristics and ensuring strength.
 上記課題を解決するために、本発明の一態様に係るアンテナ基板は、アンテナと、前記アンテナに電気的に接続された給電パターンと、第1強化材および第1基材を含み、第1面および前記第1面とは反対側の第2面を有するコア層と、第2強化材および第2基材を含み、前記コア層の前記第1面と向かい合って配置された補強層と、前記コア層と前記補強層との間に配置され、強化材を含まない少なくとも1つの第1非強化層を有する上側ビルドアップ部と、前記第2面と向かい合って配置され、強化材を含まない少なくとも1つの第2非強化層を有する下側ビルドアップ部と、を備える。 In order to solve the above problems, the antenna substrate according to one aspect of the present invention includes an antenna, a feeding pattern electrically connected to the antenna, a first reinforcing material, and a first base material, and has a first surface. A core layer having a second surface opposite to the first surface, a reinforcing layer containing a second reinforcing material and a second base material, and arranged so as to face the first surface of the core layer, and the above. An upper build-up portion having at least one non-reinforcing layer arranged between the core layer and the reinforcing layer and having at least one non-reinforcing material, and at least arranged facing the second surface and containing no reinforcing material. It comprises a lower build-up portion having one second non-reinforcing layer.
 上記態様によれば、上側ビルドアップ部に第1非強化層が含まれている。この第1非強化層の表面にアンテナを配置することで、ガラスクロスなどの強化材を含む層の表面にアンテナを配置する場合と比較して、良好な伝送特性が得られる。また、第1強化材を含むコア層に加えて、第2強化材を含む補強層を備えていることで、アンテナ基板の強度を確保することができる。以上より、伝送特性の向上および強度の確保を両立したアンテナ基板を提供できる。 According to the above aspect, the first non-reinforced layer is included in the upper build-up portion. By arranging the antenna on the surface of the first non-reinforced layer, better transmission characteristics can be obtained as compared with the case where the antenna is arranged on the surface of the layer containing a reinforcing material such as glass cloth. Further, by providing the reinforcing layer containing the second reinforcing material in addition to the core layer containing the first reinforcing material, the strength of the antenna substrate can be ensured. From the above, it is possible to provide an antenna substrate that achieves both improvement in transmission characteristics and assurance of strength.
 ここで、前記上側ビルドアップ部と前記補強層とが接着層によって接着固定されていてもよい。 Here, the upper build-up portion and the reinforcing layer may be adhesively fixed by an adhesive layer.
 また、前記補強層の厚みは前記コア層の厚みよりも大きくてもよい。 Further, the thickness of the reinforcing layer may be larger than the thickness of the core layer.
 また、前記第1強化材の材質と前記第2強化材の材質とが同一であり、前記第1基材の材質と前記第2基材の材質とが同一であってもよい。 Further, the material of the first reinforcing material and the material of the second reinforcing material may be the same, and the material of the first base material and the material of the second base material may be the same.
 また、前記上側ビルドアップ部と前記下側ビルドアップ部との少なくとも一方は、強化材が含まれている強化層をさらに有してもよい。 Further, at least one of the upper build-up portion and the lower build-up portion may further have a reinforcing layer containing a reinforcing material.
 また、前記第1非強化層と前記第2非強化層との少なくとも一方には、めっきによって内部が充填されたフィルドビアが形成されていてもよい。 Further, at least one of the first non-reinforced layer and the second non-reinforced layer may be formed with filled vias whose inside is filled by plating.
 また、前記上側ビルドアップ部および前記下側ビルドアップ部の少なくとも一方には、強化材を含まない2つの非強化層が隣接して設けられ、前記給電パターンの少なくとも一部が、前記隣接した2つの非強化層の間に位置するとともに前記隣接した2つの非強化層のおのおのに接していてもよい。 Further, at least one of the upper build-up portion and the lower build-up portion is provided with two non-reinforcing layers adjacent to each other, and at least a part of the feeding pattern is adjacent to the two. It may be located between one non-reinforcing layer and may be in contact with each of the two adjacent non-reinforcing layers.
 また、前記補強層と前記コア層との間の距離は、前記アンテナと前記コア層との間の距離よりも大きくてもよい。 Further, the distance between the reinforcing layer and the core layer may be larger than the distance between the antenna and the core layer.
 本発明の上記態様によれば、伝送特性の向上および強度の確保を両立可能なアンテナ基板を提供することができる。 According to the above aspect of the present invention, it is possible to provide an antenna substrate capable of both improving transmission characteristics and ensuring strength.
本実施形態に係るアンテナ基板の断面図である。It is sectional drawing of the antenna board which concerns on this embodiment.
 以下、本実施形態のアンテナ基板について図面に基づいて説明する。
 図1に示すように、アンテナ基板1は、コア層10と、上側ビルドアップ部20と、下側ビルドアップ部30と、接着層40と、補強層50と、を備えている。コア層10は、第1面11と、第1面11とは反対側の第2面12と、を有する。
 補強層50は、第1面11と向かいあって配置されている。なお、本明細書に記載の文言「向かい合って配置」は、2つの部材が向かい合って配置されていることを意味している。つまり、文言「向かい合って配置」には、2つの部材の間に介在物が存在している場合も、2つの部材の間に介在物が存在していない場合も含まれる。
Hereinafter, the antenna substrate of this embodiment will be described with reference to the drawings.
As shown in FIG. 1, the antenna substrate 1 includes a core layer 10, an upper build-up portion 20, a lower build-up portion 30, an adhesive layer 40, and a reinforcing layer 50. The core layer 10 has a first surface 11 and a second surface 12 opposite to the first surface 11.
The reinforcing layer 50 is arranged so as to face the first surface 11. The wording "arranged facing each other" described in the present specification means that the two members are arranged facing each other. That is, the wording "arranged facing each other" includes the case where an inclusion is present between the two members and the case where the inclusion is not present between the two members.
(方向定義)
 本明細書では、各層が積層された方向を「積層方向」と称する。積層方向は、Z軸によって表される。積層方向に沿って、コア層10から補強層50に向かう方向を上方または+Z方向と称する。+Z方向と反対の方向を下方または-Z方向と称する。第1面11は、コア層10の上面であり、第2面12は、コア層10の下面である。図1は、積層方向に沿ったアンテナ基板1の断面図である。積層方向から見ることを「平面視」という。なお、積層方向は、必ずしも鉛直方向とは一致しない。
 下側ビルドアップ部30、コア層10、上側ビルドアップ部20、接着層40、および補強層50は、アンテナ基板1の下端から上端に向けて、この順に積層されている。
(Direction definition)
In the present specification, the direction in which each layer is laminated is referred to as a "stacking direction". The stacking direction is represented by the Z axis. The direction from the core layer 10 to the reinforcing layer 50 along the stacking direction is referred to as an upward direction or a + Z direction. The direction opposite to the + Z direction is referred to as the downward direction or the -Z direction. The first surface 11 is the upper surface of the core layer 10, and the second surface 12 is the lower surface of the core layer 10. FIG. 1 is a cross-sectional view of the antenna substrate 1 along the stacking direction. Viewing from the stacking direction is called "planar view". The stacking direction does not always match the vertical direction.
The lower build-up portion 30, the core layer 10, the upper build-up portion 20, the adhesive layer 40, and the reinforcing layer 50 are laminated in this order from the lower end to the upper end of the antenna substrate 1.
(アンテナ)
 アンテナ基板1は、アンテナAと、給電経路60と、パッドPと、を備えている。アンテナAは、導体によって形成されたパターン(例えばパッチアンテナ)であり、高周波の無線信号(例えば60GHz帯)を送受信するように構成されている。アンテナAは、コア層10の上側(補強層50側)に配置されている。アンテナAの位置は適宜変更可能である。アンテナAは、例えば、図1のように、上側ビルドアップ部20と接着層40との間に形成されてもよい。パッドPは、アンテナ基板1の表面に形成される。図1の例では、下側ビルドアップ部30の下面(第3下側ビルドアップ層33の下面)にパッドPが形成されている。パッドPには、電子部品の端子等がはんだ付けされる。パッドPの周囲に、不図示のソルダーレジストが設けられてもよい。給電経路60は、アンテナAとパッドPとを電気的に接続している。
(antenna)
The antenna board 1 includes an antenna A, a feeding path 60, and a pad P. The antenna A is a pattern formed by conductors (for example, a patch antenna), and is configured to transmit and receive high-frequency radio signals (for example, 60 GHz band). The antenna A is arranged on the upper side (reinforcing layer 50 side) of the core layer 10. The position of the antenna A can be changed as appropriate. The antenna A may be formed between the upper build-up portion 20 and the adhesive layer 40, for example, as shown in FIG. The pad P is formed on the surface of the antenna substrate 1. In the example of FIG. 1, the pad P is formed on the lower surface of the lower build-up portion 30 (the lower surface of the third lower build-up layer 33). Terminals and the like of electronic components are soldered to the pad P. A solder resist (not shown) may be provided around the pad P. The feeding path 60 electrically connects the antenna A and the pad P.
 図1に示す給電経路60は、給電ビア61、62、64、65、66、68、69と、給電パターン63、67と、を含んでいる。給電パターン63は、第1給電パターンとも称される。給電パターン67は、第2給電パターン67とも称される。給電ビア61はアンテナAから下側に延びており、給電ビア62に接続されている。給電パターン63は、後述する第1上側ビルドアップ層21の上面に形成されており、給電ビア62と給電ビア64とを接続している。給電ビア65はコア層10に形成されており、給電ビア64と給電ビア66とを接続している。給電パターン67は、後述する第1下側ビルドアップ層31の下面に形成されており、給電ビア66と給電ビア68とを接続している。給電ビア69は給電ビア68とパッドPとを接続している。ただし、アンテナAとパッドPとを電気的に接続できれば、給電経路60の構成は適宜変更可能である。以下の説明において、「給電ビア61、62、64、65、66、68、69」を単に「給電ビア61等」と称する場合がある。 The feeding path 60 shown in FIG. 1 includes feeding vias 61, 62, 64, 65, 66, 68, 69 and feeding patterns 63, 67. The power supply pattern 63 is also referred to as a first power supply pattern. The power supply pattern 67 is also referred to as a second power supply pattern 67. The feeding via 61 extends downward from the antenna A and is connected to the feeding via 62. The feeding pattern 63 is formed on the upper surface of the first upper build-up layer 21, which will be described later, and connects the feeding via 62 and the feeding via 64. The feeding via 65 is formed in the core layer 10, and connects the feeding via 64 and the feeding via 66. The feeding pattern 67 is formed on the lower surface of the first lower build-up layer 31, which will be described later, and connects the feeding via 66 and the feeding via 68. The feeding via 69 connects the feeding via 68 and the pad P. However, if the antenna A and the pad P can be electrically connected, the configuration of the feeding path 60 can be appropriately changed. In the following description, "feeding via 61, 62, 64, 65, 66, 68, 69" may be simply referred to as "feeding via 61 or the like".
 給電パターン63,67の特性インピーダンスは、例えば50Ωに整合されている。給電パターン63、67は、伝送特性向上の観点から、ガラスクロスが含まれていない層の表面に配置されることが望ましい。また、インピーダンス整合の観点から、給電パターン63、67の厚みは、100μm程度であることが望ましい。図1に示すように、アンテナ基板1を構成する複数の層のうち、互いに隣接する2つの層の間の領域には、接地パターンGが配置されている。ただし、上記2つの層の間の領域の全てに接地パターンGが配置されていなくてもよい。積層方向において給電パターン63,67を間に挟むように、複数の接地パターンGを配置してもよい。また、給電ビア61等を取り囲むように、接地パターンGに電気的に接続された複数の接地ビア(不図示)を配置してもよい。同様に、平面視において給電パターン63,67を取り囲むように、複数の接地ビア(不図示)を配置してもよい。 The characteristic impedance of the feed patterns 63 and 67 is matched to, for example, 50Ω. It is desirable that the feeding patterns 63 and 67 are arranged on the surface of the layer that does not contain the glass cloth from the viewpoint of improving the transmission characteristics. Further, from the viewpoint of impedance matching, it is desirable that the thickness of the feeding patterns 63 and 67 is about 100 μm. As shown in FIG. 1, the grounding pattern G is arranged in the region between the two layers adjacent to each other among the plurality of layers constituting the antenna substrate 1. However, the grounding pattern G may not be arranged in all the regions between the two layers. A plurality of grounding patterns G may be arranged so as to sandwich the feeding patterns 63 and 67 in the stacking direction. Further, a plurality of ground vias (not shown) electrically connected to the ground pattern G may be arranged so as to surround the power feeding via 61 and the like. Similarly, a plurality of ground vias (not shown) may be arranged so as to surround the feeding patterns 63 and 67 in a plan view.
(基材および強化材)
 コア層10および補強層50のそれぞれには、基材および強化材が含まれている。本明細書では、コア層10に含まれる基材を特に「第1基材」と称し、補強層50に含まれる基材を特に「第2基材」と称する場合がある。また、コア層10に含まれる強化材を特に「第1強化材」と称し、補強層50に含まれる強化材を特に「第2強化材」と称する場合がある。以下では、強化材(第1強化材および第2強化材)としてガラスクロスを用いる場合について説明するが、ガラスクロス以外の強化材を採用してもよい。また、第1強化材の材質と第2強化材の材質とが互いに同一でなくてもよい。なお、本明細書における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付しており、数量を限定しない。
(Base material and reinforcing material)
Each of the core layer 10 and the reinforcing layer 50 contains a base material and a reinforcing material. In the present specification, the base material contained in the core layer 10 may be particularly referred to as a "first base material", and the base material contained in the reinforcing layer 50 may be particularly referred to as a "second base material". Further, the reinforcing material contained in the core layer 10 may be particularly referred to as a "first reinforcing material", and the reinforcing material contained in the reinforcing layer 50 may be particularly referred to as a "second reinforcing material". Hereinafter, the case where the glass cloth is used as the reinforcing material (the first reinforcing material and the second reinforcing material) will be described, but a reinforcing material other than the glass cloth may be adopted. Further, the material of the first reinforcing material and the material of the second reinforcing material do not have to be the same as each other. The ordinal numbers such as "first" and "second" in the present specification are attached to avoid confusion of the constituent elements, and the quantity is not limited.
 コア層10の第1基材および補強層50の第2基材としては、エポキシあるいはPPEを採用できる。すなわち、コア層10、補強層50は、強化材(ガラスクロス等)に基材(エポキシやPPE等)を含浸させることで形成された層である。コア層10、補強層50はいわゆるプリプレグ材(Pre-Impregnated Material)であってもよい。コア層10、補強層50の厚さは、強度を考慮すると100μm以上であることが望ましい。高周波設計(特性インピーダンスの整合、アンテナAの広帯域化)の観点においても、コア層10および補強層50がある程度厚いほうが望ましい。ただし、コア層10が厚すぎると不具合が生じる場合があるため、適切な値を選択する。 Epoxy or PPE can be used as the first base material of the core layer 10 and the second base material of the reinforcing layer 50. That is, the core layer 10 and the reinforcing layer 50 are layers formed by impregnating a reinforcing material (glass cloth or the like) with a base material (epoxy, PPE or the like). The core layer 10 and the reinforcing layer 50 may be a so-called prepreg material (Pre-Impregnated Material). The thickness of the core layer 10 and the reinforcing layer 50 is preferably 100 μm or more in consideration of the strength. From the viewpoint of high frequency design (matching of characteristic impedance, widening of the wide band of antenna A), it is desirable that the core layer 10 and the reinforcing layer 50 are thick to some extent. However, if the core layer 10 is too thick, problems may occur, so an appropriate value is selected.
(コア層)
 コア層10は、第1基材および第1強化材を含んでいる。コア層10には、給電ビア65が設けられている。給電ビア65は、例えば、コア層10をドリルなどで加工して貫通孔を形成し、当該貫通孔の内側に金属を充填して形成される。給電ビア65の直径(貫通孔の内径)は、0.15mm以下であることが好ましい。これにより、アンテナ基板1の強度に大きく寄与するコア層10の強度低下を抑制できる。
(Core layer)
The core layer 10 contains a first base material and a first reinforcing material. The core layer 10 is provided with a feeding via 65. The feeding via 65 is formed by, for example, processing the core layer 10 with a drill or the like to form a through hole, and filling the inside of the through hole with metal. The diameter of the feeding via 65 (inner diameter of the through hole) is preferably 0.15 mm or less. As a result, it is possible to suppress a decrease in the strength of the core layer 10, which greatly contributes to the strength of the antenna substrate 1.
 積層方向に直交する方向(コア層10が延在する方向)におけるコア層10の線膨張係数は、配線の材質である銅(Cu)に合わせて、10~20ppm/℃であることが好ましい。これにより、温度変化に伴う膨張量または収縮量が配線とコア層10との間で同等になり、熱的信頼性を向上させることができる。 The coefficient of linear expansion of the core layer 10 in the direction orthogonal to the stacking direction (the direction in which the core layer 10 extends) is preferably 10 to 20 ppm / ° C., depending on the copper (Cu) that is the material of the wiring. As a result, the amount of expansion or contraction due to the temperature change becomes equal between the wiring and the core layer 10, and the thermal reliability can be improved.
(上側ビルドアップ部および下側ビルドアップ部)
 上側ビルドアップ部20はコア層10の上面に積層され、下側ビルドアップ部30はコア層10の下面に積層されている。各ビルドアップ部20、30に含まれる層の数は、適宜変更可能であるが、2つ以上であることが好ましい。また、上側ビルドアップ部20に含まれる層の数と下側ビルドアップ部30に含まれる層の数とは同じであることが好ましい。例えば図1では、上側ビルドアップ部20および下側ビルドアップ部30にはそれぞれ3つの層が含まれている。これにより、製造途中におけるアンテナ基板1の構造が、コア層10を中心として積層方向において対称となる。したがって、アンテナ基板1に反りが生じることを抑制できる。
(Upper build-up part and lower build-up part)
The upper build-up portion 20 is laminated on the upper surface of the core layer 10, and the lower build-up portion 30 is laminated on the lower surface of the core layer 10. The number of layers included in each build-up unit 20 and 30 can be appropriately changed, but is preferably two or more. Further, it is preferable that the number of layers included in the upper build-up unit 20 and the number of layers included in the lower build-up unit 30 are the same. For example, in FIG. 1, the upper build-up unit 20 and the lower build-up unit 30 each include three layers. As a result, the structure of the antenna substrate 1 in the middle of manufacturing becomes symmetrical in the stacking direction with the core layer 10 as the center. Therefore, it is possible to prevent the antenna substrate 1 from being warped.
 図1において、上側ビルドアップ部20に含まれる3つの層を、コア層10に近い層から順に、第1上側ビルドアップ層21、第2上側ビルドアップ層22、および第3上側ビルドアップ層23と称する。同様に、下側ビルドアップ部30に含まれる3つの層を、コア層10に近い層から順に、第1下側ビルドアップ層31、第2下側ビルドアップ層32、および第3下側ビルドアップ層33と称する。上側ビルドアップ部20および下側ビルドアップ部30をビルドアップ工法で形成する場合、第1上側ビルドアップ層21と第1下側ビルドアップ層31が同時に形成され、第2上側ビルドアップ層22と第2下側ビルドアップ層32が同時に形成され、第3上側ビルドアップ層23と第3下側ビルドアップ層33が同時に形成される。 In FIG. 1, the three layers included in the upper build-up portion 20 are divided into the first upper build-up layer 21, the second upper build-up layer 22, and the third upper build-up layer 23 in order from the layer closest to the core layer 10. Is called. Similarly, the three layers included in the lower build-up unit 30 are, in order from the layer closest to the core layer 10, the first lower build-up layer 31, the second lower build-up layer 32, and the third lower build. It is referred to as an up layer 33. When the upper build-up portion 20 and the lower build-up portion 30 are formed by the build-up method, the first upper build-up layer 21 and the first lower build-up layer 31 are formed at the same time with the second upper build-up layer 22. The second lower build-up layer 32 is formed at the same time, and the third upper build-up layer 23 and the third lower build-up layer 33 are formed at the same time.
 上側ビルドアップ層21~23および下側ビルドアップ層31~33は、いずれも、強化材(ガラスクロス等)を含まない非強化層である。上側ビルドアップ層21~23は、第1面11と向かい合って配置されている。下側ビルドアップ層31~33は、第2面12と向かい合って配置されている。上側ビルドアップ層21~23を、第1非強化層21~23と称する場合がある。下側ビルドアップ層31~33を、第2非強化層31~33と称する場合がある。非強化層については、線膨張係数の制御が容易ではない。このため、線膨張係数が小さい材質(例えば50ppm/℃以下)を、非強化層の材質として選択することが特に好ましい。
 上側ビルドアップ層21~23、下側ビルドアップ層31~33には、無機フィラーなどを含ませてもよい。これにより、上側ビルドアップ層21~23、下側ビルドアップ層31~33の線膨張係数を調整し、当該線膨張係数をアンテナ基板1に含まれる他の層と整合させてもよい。この場合、温度変化が生じたときの膨張量あるいは収縮量の層間の差が小さくなり、熱的信頼性の向上が期待できる。
The upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 are all non-reinforced layers that do not contain a reinforcing material (glass cloth or the like). The upper build-up layers 21 to 23 are arranged so as to face the first surface 11. The lower build-up layers 31 to 33 are arranged so as to face the second surface 12. The upper build-up layers 21 to 23 may be referred to as first non-reinforced layers 21 to 23. The lower build-up layers 31 to 33 may be referred to as second non-reinforced layers 31 to 33. For the non-reinforced layer, it is not easy to control the coefficient of linear expansion. Therefore, it is particularly preferable to select a material having a small coefficient of linear expansion (for example, 50 ppm / ° C. or less) as the material of the non-reinforced layer.
The upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 may contain an inorganic filler or the like. Thereby, the linear expansion coefficients of the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 may be adjusted, and the linear expansion coefficients may be matched with other layers included in the antenna substrate 1. In this case, the difference between the layers of the expansion amount or the contraction amount when the temperature change occurs becomes small, and improvement in thermal reliability can be expected.
 上側ビルドアップ層21~23、下側ビルドアップ層31~33を形成する材質としては、60GHzにおいて例えば以下のような特性を有する材質が好適である。
比誘電率:2~4程度
誘電正接:0.01以下
 上側ビルドアップ層21~23、下側ビルドアップ層31~33を形成する材質としては、60GHzにおいて例えば以下のような特性を有する材質が、さらに好適である。
比誘電率:3程度
誘電正接:0.005以下
 上側ビルドアップ層21~23および下側ビルドアップ層31~33を形成する材質の具体例としては、エポキシやPPEなどの樹脂が挙げられる。
As the material for forming the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33, for example, a material having the following characteristics at 60 GHz is suitable.
Relative permittivity: Approximately 2 to 4 Dielectric loss tangent: 0.01 or less As a material for forming the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33, for example, a material having the following characteristics at 60 GHz is used. , More suitable.
Relative permittivity: Approximately 3 Dielectric loss tangent: 0.005 or less Specific examples of the materials forming the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 include resins such as epoxy and PPE.
 上側ビルドアップ部20に含まれる上側ビルドアップ層21~23、および下側ビルドアップ部30に含まれる下側ビルドアップ層31~33の厚みは、強度を考慮して、100μm以上であることが好ましい。高周波設計(特性インピーダンスの整合、アンテナAの広帯域化)の観点において、上側ビルドアップ層21~23、および下側ビルドアップ層31~33は、ある程度の厚さを有することが望ましい。ただし、これらの層が厚すぎると不具合が生じる場合があるため、厚さとして適切な値を選択する。 The thickness of the upper build-up layers 21 to 23 included in the upper build-up portion 20 and the lower build-up layers 31 to 33 included in the lower build-up portion 30 may be 100 μm or more in consideration of strength. preferable. From the viewpoint of high frequency design (matching of characteristic impedance, widening of the wide band of antenna A), it is desirable that the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 have a certain thickness. However, if these layers are too thick, problems may occur, so select an appropriate value for the thickness.
 上側ビルドアップ層21~23には、それぞれ、給電ビア64、62、61が形成されている。下側ビルドアップ層31~33には、それぞれ、給電ビア66、68、69が形成されている。これらの給電ビアは、LVH(Laser Via Hole)であることが好ましい。より詳しくは、これらの給電ビアは、レーザ加工によって、直径が0.15mm以下となるように各層に貫通孔を形成し、貫通孔の内側をめっきによって充填した構造を有することが好ましい。言い換えると、ビルドアップ部20、30に形成される給電ビアは、めっきによって内部が充填されたフィルドビアであることが好ましい。貫通孔の直径が0.15mm以下であることで、上側ビルドアップ層21~23または下側ビルドアップ層31~33に大きな給電ビアを形成することによるアンテナ基板1の強度低下を抑制できる。 Feeding vias 64, 62, and 61 are formed on the upper build-up layers 21 to 23, respectively. Feeding vias 66, 68, and 69 are formed in the lower build-up layers 31 to 33, respectively. These feeding vias are preferably LVH (Laser Via Hole). More specifically, it is preferable that these feeding vias have a structure in which through holes are formed in each layer so that the diameter is 0.15 mm or less by laser processing, and the inside of the through holes is filled by plating. In other words, the feeding vias formed in the build-up portions 20 and 30 are preferably filled vias whose insides are filled by plating. When the diameter of the through hole is 0.15 mm or less, it is possible to suppress a decrease in strength of the antenna substrate 1 due to the formation of a large feeding via in the upper build-up layers 21 to 23 or the lower build-up layers 31 to 33.
 また、上側ビルドアップ層21~23および下側ビルドアップ層31~33は、ガラスクロス等の強化材を含まない非強化層である。言い換えれば、上側ビルドアップ層21~23は、第1非強化層21~23であり、下側ビルドアップ層31~33は、第2非強化層31~33である。したがって、レーザ加工の際にガラスクロス等の一部が削れずに残ることによる、貫通孔におけるくびれの発生が抑制される。これにより、微細径でも良好な給電ビアの形状が得られる。さらに、貫通孔の内側をめっきによって充填することで、アンテナ基板1の強度をより高めることができる。貫通孔の内側をめっきで充填する際に、気泡などが生じないように、上側ビルドアップ層21~23、下側ビルドアップ層31~33の厚みは150μm以下とすることが好ましい。なお、上記の給電ビアの構造や形成方法は一例である。例えば、給電ビアは、貫通孔の内周面をコンフォーマルめっきした後で貫通孔を樹脂で埋め、めっきで蓋を形成した構造を有していてもよい。 Further, the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 are non-reinforced layers that do not contain a reinforcing material such as glass cloth. In other words, the upper build-up layers 21 to 23 are the first non-reinforced layers 21 to 23, and the lower build-up layers 31 to 33 are the second non-reinforced layers 31 to 33. Therefore, it is possible to suppress the occurrence of constriction in the through hole due to the fact that a part of the glass cloth or the like remains without being scraped during laser processing. As a result, a good shape of the feeding via can be obtained even with a fine diameter. Further, by filling the inside of the through hole with plating, the strength of the antenna substrate 1 can be further increased. The thickness of the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 is preferably 150 μm or less so that air bubbles or the like do not occur when the inside of the through hole is filled with plating. The structure and forming method of the feeding via are an example. For example, the feeding via may have a structure in which the inner peripheral surface of the through hole is conformally plated, the through hole is filled with a resin, and a lid is formed by plating.
(補強層)
 補強層50は、上側ビルドアップ部20の上側に位置している。図1では、接着層40によって、補強層50が上側ビルドアップ部20に接着固定されている。接着層40の材質としては、例えばガラスクロス等の強化材を含まない樹脂(エポキシやPPE等)を採用できる。あるいは、接着層40の材質は、コア層10と同様のプリプレグ材であってもよいし、その他の接着剤であってもよい。
(Reinforcing layer)
The reinforcing layer 50 is located above the upper build-up portion 20. In FIG. 1, the reinforcing layer 50 is adhesively fixed to the upper build-up portion 20 by the adhesive layer 40. As the material of the adhesive layer 40, for example, a resin (epoxy, PPE, etc.) that does not contain a reinforcing material such as glass cloth can be adopted. Alternatively, the material of the adhesive layer 40 may be the same prepreg material as the core layer 10, or may be another adhesive.
 なお、例えば第3上側ビルドアップ層23は、熱可塑性樹脂により形成されていてもよい。この場合、補強層50を第3上側ビルドアップ層23の表面に積層した状態で補強層50および第3上側ビルドアップ層23を熱圧着できる。つまり、接着層40が無くても、補強層50を上側ビルドアップ部20に接着固定できる。したがって、接着層40は必須ではない。 For example, the third upper build-up layer 23 may be formed of a thermoplastic resin. In this case, the reinforcing layer 50 and the third upper build-up layer 23 can be thermocompression bonded in a state where the reinforcing layer 50 is laminated on the surface of the third upper build-up layer 23. That is, the reinforcing layer 50 can be adhesively fixed to the upper build-up portion 20 without the adhesive layer 40. Therefore, the adhesive layer 40 is not essential.
 補強層50の厚みは、コア層10の厚みよりも大きいことが好ましい。コア層10の厚み(積層方向における寸法)は、高周波基板としての特性を確保する観点から、一定の値以下とされる。一方、補強層50の厚みに対する制限はコア層10の厚みに対する制限よりも緩い。このため、補強層50の厚みは、コア層10の厚みよりも容易に大きくできる。膨張係数差を考慮すると、補強層50の材質は、コア層10の材質と同一であることが望ましい。すなわち、補強層50に含まれる第2強化材の材質は、コア層10に含まれる第1強化材の材質と同一であることが好ましい。同様に、補強層50に含まれる第2基材の材質は、コア層10に含まれる第1基材の材質と同一であることが好ましい。 The thickness of the reinforcing layer 50 is preferably larger than the thickness of the core layer 10. The thickness (dimension in the stacking direction) of the core layer 10 is set to a certain value or less from the viewpoint of ensuring the characteristics as a high frequency substrate. On the other hand, the limitation on the thickness of the reinforcing layer 50 is looser than the limitation on the thickness of the core layer 10. Therefore, the thickness of the reinforcing layer 50 can be easily made larger than the thickness of the core layer 10. Considering the difference in expansion coefficient, it is desirable that the material of the reinforcing layer 50 is the same as the material of the core layer 10. That is, the material of the second reinforcing material contained in the reinforcing layer 50 is preferably the same as the material of the first reinforcing material contained in the core layer 10. Similarly, the material of the second base material contained in the reinforcing layer 50 is preferably the same as the material of the first base material contained in the core layer 10.
(製造方法)
 次に、以上のように構成されたアンテナ基板1の製造方法の一例を説明する。ただし、他の製造方法によってアンテナ基板1を製造してもよい。
 まず、コア層10となるプリプレグ材を用意する。次いで、給電ビア65を形成する。具体的には、例えば直径0.1mm等の微細なドリルを用いて、コア層10に貫通孔を形成し、貫通孔の内側を金属で充填する。また、コア層10の上面および下面に接地パターンGを形成する。
(Production method)
Next, an example of the manufacturing method of the antenna substrate 1 configured as described above will be described. However, the antenna substrate 1 may be manufactured by another manufacturing method.
First, a prepreg material to be the core layer 10 is prepared. Next, the feeding via 65 is formed. Specifically, for example, a fine drill having a diameter of 0.1 mm or the like is used to form a through hole in the core layer 10, and the inside of the through hole is filled with metal. Further, a ground contact pattern G is formed on the upper surface and the lower surface of the core layer 10.
 次に、コア層10の積層方向における両面(上面および下面)に、ビルドアップ材を順次貼り付け、積層方向において対称な構造とする。反りを防止する観点から、各ビルドアップ材の厚みは、互いに同じであることが、より好ましい。必要に応じて、ビルドアップ材の表面に配線パターンを形成したり、ビルドアップ材にビアを形成したりする。
 図1の例では、第1上側ビルドアップ層21および第1下側ビルドアップ層31をコア層10の両側に同時に貼り付ける。また、レーザ加工およびめっきフィルによって、給電ビア64、66を形成する。また、第1上側ビルドアップ層21の上面および第1下側ビルドアップ層31の下面に、給電パターン63、67をそれぞれ形成する。
Next, the build-up materials are sequentially attached to both sides (upper surface and lower surface) of the core layer 10 in the stacking direction to form a symmetrical structure in the stacking direction. From the viewpoint of preventing warpage, it is more preferable that the thickness of each build-up material is the same as each other. If necessary, a wiring pattern is formed on the surface of the build-up material, and vias are formed on the build-up material.
In the example of FIG. 1, the first upper build-up layer 21 and the first lower build-up layer 31 are attached to both sides of the core layer 10 at the same time. Further, the feeding vias 64 and 66 are formed by laser processing and plating fill. Further, the power supply patterns 63 and 67 are formed on the upper surface of the first upper build-up layer 21 and the lower surface of the first lower build-up layer 31, respectively.
 次に、第2上側ビルドアップ層22および第2下側ビルドアップ層32を、第1上側ビルドアップ層21の上面および第1下側ビルドアップ層31の下面に、それぞれ同時に貼り付ける。以下同様に、ビルドアップ層22、32へのビア加工、接地パターンGの形成、ビルドアップ層23、33の貼り付け、等を順次行う。 Next, the second upper build-up layer 22 and the second lower build-up layer 32 are simultaneously attached to the upper surface of the first upper build-up layer 21 and the lower surface of the first lower build-up layer 31, respectively. Similarly, via processing to the build-up layers 22 and 32, formation of the grounding pattern G, attachment of the build-up layers 23 and 33, and the like are sequentially performed.
 次に、接着層40によって、補強層50を上側ビルドアップ部20に貼り付ける。最後に、ルータ加工等によって、アンテナ基板1を所定の大きさに切断する。この際、強化材を含む補強層50が設けられていることで、クラックの発生が抑制される。 Next, the reinforcing layer 50 is attached to the upper build-up portion 20 by the adhesive layer 40. Finally, the antenna substrate 1 is cut into a predetermined size by processing a router or the like. At this time, the occurrence of cracks is suppressed by providing the reinforcing layer 50 including the reinforcing material.
 以上説明したように、本実施形態のアンテナ基板1は、アンテナAと、アンテナAに電気的に接続された給電パターン63、67と、第1強化材および第1基材を含み、第1面11および第1面11とは反対側の第2面12を有するコア層10と、第2強化材および第2基材を含み、第1面11と向かい合って配置された補強層50と、コア層10と補強層50との間に配置され、強化材を含まない少なくとも1つの第1非強化層21~23を有する上側ビルドアップ部20と、第2面12と向かい合って配置された、強化材を含まない少なくとも1つの第2非強化層31~33を有する下側ビルドアップ部30と、を備える。この構成によれば、上側ビルドアップ部20に第1非強化層23が含まれているため、この第1非強化層23の表面にアンテナAを配置することで、ガラスクロスなどの強化材を含む層の表面にアンテナAを配置する場合と比較して、良好な伝送特性が得られる。また、第1強化材を含むコア層10に加えて、第2強化材を含む補強層50を備えていることで、アンテナ基板1の強度を確保することができる。以上より、伝送特性の向上および強度の確保を両立したアンテナ基板1を提供できる。 As described above, the antenna substrate 1 of the present embodiment includes the antenna A, the feeding patterns 63 and 67 electrically connected to the antenna A, the first reinforcing material, and the first base material, and has a first surface. A core layer 10 having a second surface 12 opposite to the first surface 11 and a reinforcing layer 50 containing a second reinforcing material and a second base material and arranged facing the first surface 11 and a core. Reinforcement arranged between the layer 10 and the reinforcement layer 50 and having an upper build-up portion 20 having at least one first non-reinforcing layer 21-23 without reinforcement and an arrangement facing the second surface 12. It comprises a lower build-up portion 30 having at least one second non-reinforced layer 31-33 containing no material. According to this configuration, since the first non-reinforced layer 23 is included in the upper build-up portion 20, by arranging the antenna A on the surface of the first non-reinforced layer 23, a reinforcing material such as glass cloth can be provided. Good transmission characteristics can be obtained as compared with the case where the antenna A is arranged on the surface of the including layer. Further, by providing the reinforcing layer 50 including the second reinforcing material in addition to the core layer 10 containing the first reinforcing material, the strength of the antenna substrate 1 can be ensured. From the above, it is possible to provide an antenna substrate 1 that achieves both improvement in transmission characteristics and assurance of strength.
 また、上側ビルドアップ部20と補強層50とが接着層40によって接着固定されている。この構成によれば、上側ビルドアップ部20のうち最も外側の層(図1では第3上側ビルドアップ層23)が熱圧着された後に、補強層50を接着固定することができる。 Further, the upper build-up portion 20 and the reinforcing layer 50 are adhesively fixed by the adhesive layer 40. According to this configuration, the reinforcing layer 50 can be adhesively fixed after the outermost layer (third upper build-up layer 23 in FIG. 1) of the upper build-up portion 20 is thermocompression bonded.
 また、補強層50の厚みがコア層10の厚みよりも大きいことで、アンテナ基板1の強度をより確実に高めることができる。補強層50の厚みに対する伝送特性上の制限は、コア層10の厚みに対する伝送特性上の制限よりも緩いため、補強層50の厚みを大きくすることは容易である。 Further, since the thickness of the reinforcing layer 50 is larger than the thickness of the core layer 10, the strength of the antenna substrate 1 can be increased more reliably. Since the transmission characteristic limitation on the thickness of the reinforcing layer 50 is looser than the transmission characteristic limitation on the thickness of the core layer 10, it is easy to increase the thickness of the reinforcing layer 50.
 また、コア層10に含まれる第1強化材の材質と補強層50に含まれる第2強化材の材質とが同一であり、コア層10に含まれる第1基材の材質と補強層50に含まれる第2基材の材質とが同一であってもよい。この場合、コア層10と補強層50との線膨張係数が実質的に同じになり、温度変化に伴ってアンテナ基板1に反りが生じることを抑制できる。なお、「実質的に同じ」には、製造誤差を取り除けば同じであるとみなせる場合も含まれる。 Further, the material of the first reinforcing material contained in the core layer 10 and the material of the second reinforcing material contained in the reinforcing layer 50 are the same, and the material of the first base material and the reinforcing layer 50 included in the core layer 10 are the same. The material of the second base material contained may be the same. In this case, the linear expansion coefficients of the core layer 10 and the reinforcing layer 50 are substantially the same, and it is possible to prevent the antenna substrate 1 from being warped due to a temperature change. In addition, "substantially the same" includes the case where it can be regarded as the same if the manufacturing error is removed.
 また、上側ビルドアップ部20の第1非強化層21~23(上側ビルドアップ層21~23)と下側ビルドアップ部30の第2非強化層31~33(下側ビルドアップ層31~33)とのうち少なくとも1つの層には、めっきによって内部が充填されたフィルドビア(給電ビア61等)が形成されていてもよい。この構成によれば、アンテナ基板1の強度をより高めることができる。 Further, the first non-reinforced layers 21 to 23 (upper build-up layers 21 to 23) of the upper build-up portion 20 and the second non-reinforced layers 31 to 33 (lower build-up layers 31 to 33) of the lower build-up portion 30. ) And at least one layer may be formed with a filled via (feeding via 61 or the like) whose inside is filled by plating. According to this configuration, the strength of the antenna substrate 1 can be further increased.
 また、上側ビルドアップ部20および下側ビルドアップ部30の少なくとも一方には、強化材を含まない2つの非強化層(例えば上側ビルドアップ層(第1非強化層)21、22。あるいは、下側ビルドアップ層(第2非強化層)31、32。)が隣接して設けられていてもよい。さらに、給電パターン63、67の少なくとも一部は、前記隣接した2つの非強化層の間に位置するとともに前記隣接した2つの非強化層のおのおのに接していてもよい。この構成によれば、給電パターン63、67が、ガラスクロスの密度の不均一によって影響を受け、高周波信号の伝送特性に悪影響を及ぼすことを抑制できる。 Further, at least one of the upper build-up portion 20 and the lower build-up portion 30 has two non-reinforced layers (for example, the upper build-up layer (first non-reinforced layer) 21, 22), or the lower one, which does not contain a reinforcing material. Side build-up layers (second non-reinforced layers) 31, 32.) May be provided adjacent to each other. Further, at least a part of the feeding patterns 63 and 67 may be located between the two adjacent non-reinforced layers and may be in contact with each of the two adjacent non-reinforced layers. According to this configuration, it is possible to prevent the feeding patterns 63 and 67 from being affected by the non-uniformity of the density of the glass cloth and adversely affecting the transmission characteristics of the high frequency signal.
 また、本実施形態のアンテナ基板1は、補強層50はアンテナAよりもコア層10から離れた位置に配置されている。言い換えれば、補強層50とコア層10との間の距離は、アンテナAとコア層10との間の距離よりも大きい。この構成によれば、強化材を含む2つの層(コア層10および補強層50)の間にアンテナAが位置する。強化材を含む2つの層の間の部分は、曲げ変形などが影響しにくい。したがって、アンテナAに曲げ変形等が作用することが抑制され、アンテナAの送受信特性を安定させることができる。 Further, in the antenna substrate 1 of the present embodiment, the reinforcing layer 50 is arranged at a position farther from the core layer 10 than the antenna A. In other words, the distance between the reinforcing layer 50 and the core layer 10 is larger than the distance between the antenna A and the core layer 10. According to this configuration, the antenna A is located between the two layers (core layer 10 and reinforcing layer 50) containing the reinforcing material. The portion between the two layers including the reinforcing material is not easily affected by bending deformation and the like. Therefore, it is possible to suppress bending deformation and the like from acting on the antenna A, and to stabilize the transmission / reception characteristics of the antenna A.
 なお、本発明の技術的範囲は、前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、前記実施形態では、上側ビルドアップ層21~23、下側ビルドアップ層31~33が、強化材を含まない第1非強化層21~23、第2非強化層31~33であると説明した。しかしながら、上側ビルドアップ部20の一部の層または下側ビルドアップ部30の一部の層が、強化材(ガラスクロス等)を含んでもよい。言い換えれば、上側ビルドアップ部20と下側ビルドアップ部30との少なくとも一方は、強化材を有する強化層を有していてもよい。この場合も、上側ビルドアップ部20に含まれる少なくとも1つの層、および下側ビルドアップ部30に含まれる少なくとも1つの層を非強化層とする。 For example, in the above embodiment, the upper build-up layers 21 to 23 and the lower build-up layers 31 to 33 are the first non-reinforced layers 21 to 23 and the second non-reinforced layers 31 to 33 containing no reinforcing material. explained. However, some layers of the upper build-up portion 20 or some layers of the lower build-up portion 30 may contain a reinforcing material (glass cloth or the like). In other words, at least one of the upper build-up portion 20 and the lower build-up portion 30 may have a reinforcing layer having a reinforcing material. Also in this case, at least one layer included in the upper build-up section 20 and at least one layer included in the lower build-up section 30 are designated as non-reinforced layers.
 上側ビルドアップ部20および下側ビルドアップ部30における強化層および非強化層の位置は、コア層10を中心として積層方向において対称であることが好ましい。例えば、上側ビルドアップ層23が強化層で上側ビルドアップ層21、22が非強化層(第1非強化層)である場合、下側ビルドアップ層33が強化層であり下側ビルドアップ層31、32が非強化層(第2非強化層)であることが好ましい。これにより、製造途中におけるアンテナ基板1の構造を、コア層10を中心として上下対称にすることができ、反り等の発生を抑制できる。 The positions of the reinforced layer and the non-reinforced layer in the upper build-up portion 20 and the lower build-up portion 30 are preferably symmetrical in the stacking direction with the core layer 10 as the center. For example, when the upper build-up layer 23 is a reinforced layer and the upper build-up layers 21 and 22 are non-reinforced layers (first non-reinforced layer), the lower build-up layer 33 is a reinforced layer and the lower build-up layer 31. , 32 is preferably a non-reinforced layer (second non-reinforced layer). As a result, the structure of the antenna substrate 1 in the middle of manufacturing can be made vertically symmetrical with the core layer 10 as the center, and the occurrence of warpage and the like can be suppressed.
 このように、上側ビルドアップ部20または下側ビルドアップ部30の一部の層に強化材が含まれている場合、アンテナ基板1の更なる強度向上を図ることができる。また、上側ビルドアップ部20および下側ビルドアップ部30のうち非強化層の表面にアンテナAを配置すれば、伝送特性の向上および強度の確保を両立可能である。 As described above, when the reinforcing material is contained in a part of the upper build-up portion 20 or the lower build-up portion 30, the strength of the antenna substrate 1 can be further improved. Further, if the antenna A is arranged on the surface of the non-reinforced layer of the upper build-up portion 20 and the lower build-up portion 30, it is possible to improve the transmission characteristics and secure the strength at the same time.
 また、前記実施形態においては、上側ビルドアップ部20および下側ビルドアップ部30のそれぞれが、隣接する2つの非強化層を有していた。しかし、上側ビルドアップ部20および下側ビルドアップ部30のいずれか一方のみが、隣接する2つの非強化層を有していてもよい。この場合においても、高周波信号の伝送特性に生じる悪影響を低減することができる。 Further, in the above embodiment, each of the upper build-up unit 20 and the lower build-up unit 30 has two adjacent non-reinforced layers. However, only one of the upper build-up section 20 and the lower build-up section 30 may have two adjacent non-reinforced layers. Even in this case, it is possible to reduce the adverse effect on the transmission characteristics of the high frequency signal.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。 In addition, it is possible to replace the constituent elements in the above-described embodiment with well-known constituent elements as appropriate without departing from the spirit of the present invention, and the above-described embodiments and modifications may be appropriately combined.
1…アンテナ基板 10…コア層 11…第1面 12…第2面 20…上側ビルドアップ部 21~23…上側ビルドアップ層(第1非強化層) 30…下側ビルドアップ部 31~33…下側ビルドアップ層(第2非強化層) 40…接着層 50…補強層 61、62、64、65、66、68、69…給電ビア(フィルドビア) 63、67…給電パターン A…アンテナ Z…積層方向 1 ... Antenna board 10 ... Core layer 11 ... 1st surface 12 ... 2nd surface 20 ... Upper build-up part 21-23 ... Upper build-up layer (1st non-reinforced layer) 30 ... Lower build-up part 31-33 ... Lower build-up layer (second non-reinforced layer) 40 ... Adhesive layer 50 ... Reinforcing layer 61, 62, 64, 65, 66, 68, 69 ... Feeding via (filled via) 63, 67 ... Feeding pattern A ... Antenna Z ... Stacking direction

Claims (8)

  1.  アンテナと、
     前記アンテナに電気的に接続された給電パターンと、
     第1強化材および第1基材を含み、第1面および前記第1面とは反対側の第2面を有するコア層と、
     第2強化材および第2基材を含み、前記第1面と向かい合って配置された補強層と、
     前記コア層と前記補強層との間に配置され、強化材を含まない少なくとも1つの第1非強化層を有する上側ビルドアップ部と、
     前記第2面と向かい合って配置され、強化材を含まない少なくとも1つの第2非強化層を有する下側ビルドアップ部と、を備える、アンテナ基板。
    With the antenna
    The feeding pattern electrically connected to the antenna and
    A core layer containing a first reinforcing material and a first substrate and having a first surface and a second surface opposite to the first surface.
    A reinforcing layer containing a second reinforcing material and a second base material and arranged facing the first surface,
    An upper build-up portion located between the core layer and the reinforcing layer and having at least one first non-reinforcing layer that does not contain a reinforcing material.
    An antenna substrate comprising a lower build-up portion that is disposed facing the second surface and has at least one second non-reinforcing layer that does not contain a reinforcing material.
  2.  前記上側ビルドアップ部と前記補強層とが接着層によって接着固定されている、請求項1に記載のアンテナ基板。 The antenna substrate according to claim 1, wherein the upper build-up portion and the reinforcing layer are adhesively fixed by an adhesive layer.
  3.  前記補強層の厚みは前記コア層の厚みよりも大きい、請求項1または2に記載のアンテナ基板。 The antenna substrate according to claim 1 or 2, wherein the thickness of the reinforcing layer is larger than the thickness of the core layer.
  4.  前記第1強化材の材質と前記第2強化材の材質とが同一であり、
     前記第1基材の材質と前記第2基材の材質とが同一である、請求項1から3のいずれか1項に記載のアンテナ基板。
    The material of the first reinforcing material and the material of the second reinforcing material are the same,
    The antenna substrate according to any one of claims 1 to 3, wherein the material of the first base material and the material of the second base material are the same.
  5.  前記上側ビルドアップ部と前記下側ビルドアップ部との少なくとも一方は、強化材が含まれている強化層をさらに有する、請求項1から4のいずれか1項に記載のアンテナ基板。 The antenna substrate according to any one of claims 1 to 4, wherein at least one of the upper build-up portion and the lower build-up portion further has a reinforcing layer containing a reinforcing material.
  6.  前記第1非強化層と前記第2非強化層との少なくとも一方には、めっきによって内部が充填されたフィルドビアが形成されている、請求項1から5のいずれか1項に記載のアンテナ基板。 The antenna substrate according to any one of claims 1 to 5, wherein a filled via whose inside is filled by plating is formed on at least one of the first non-reinforced layer and the second non-reinforced layer.
  7.  前記上側ビルドアップ部および前記下側ビルドアップ部の少なくとも一方には、強化材を含まない2つの非強化層が隣接して設けられ、
     前記給電パターンの少なくとも一部が、前記隣接した2つの非強化層の間に位置するとともに前記隣接した2つの非強化層のおのおのに接している、請求項1から6のいずれか1項に記載のアンテナ基板。
    Two non-reinforcing layers containing no reinforcing material are provided adjacent to each other on at least one of the upper build-up portion and the lower build-up portion.
    13. Antenna board.
  8.  前記補強層と前記コア層との間の距離は、前記アンテナと前記コア層との間の距離よりも大きい、請求項1から7のいずれか1項に記載のアンテナ基板。 The antenna substrate according to any one of claims 1 to 7, wherein the distance between the reinforcing layer and the core layer is larger than the distance between the antenna and the core layer.
PCT/JP2021/027510 2020-12-21 2021-07-26 Antenna substrate WO2022137619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-210930 2020-12-21
JP2020210930A JP2024016307A (en) 2020-12-21 2020-12-21 antenna board

Publications (1)

Publication Number Publication Date
WO2022137619A1 true WO2022137619A1 (en) 2022-06-30

Family

ID=82158915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027510 WO2022137619A1 (en) 2020-12-21 2021-07-26 Antenna substrate

Country Status (2)

Country Link
JP (1) JP2024016307A (en)
WO (1) WO2022137619A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260335A (en) * 2008-03-28 2009-11-05 Ngk Spark Plug Co Ltd Multi-layer wiring board and manufacturing method thereof
JP2014029914A (en) * 2012-07-31 2014-02-13 Ibiden Co Ltd Printed wiring board
JP2016152325A (en) * 2015-02-18 2016-08-22 イビデン株式会社 Printed wiring board
WO2018030544A1 (en) * 2016-08-12 2018-02-15 日立化成株式会社 Interlayer insulating film and method for producing same
JP2020088318A (en) * 2018-11-30 2020-06-04 イビデン株式会社 Inspection method for wiring board and manufacturing method for wiring board
JP2020202248A (en) * 2019-06-07 2020-12-17 イビデン株式会社 Wiring board and method of manufacturing wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260335A (en) * 2008-03-28 2009-11-05 Ngk Spark Plug Co Ltd Multi-layer wiring board and manufacturing method thereof
JP2014029914A (en) * 2012-07-31 2014-02-13 Ibiden Co Ltd Printed wiring board
JP2016152325A (en) * 2015-02-18 2016-08-22 イビデン株式会社 Printed wiring board
WO2018030544A1 (en) * 2016-08-12 2018-02-15 日立化成株式会社 Interlayer insulating film and method for producing same
JP2020088318A (en) * 2018-11-30 2020-06-04 イビデン株式会社 Inspection method for wiring board and manufacturing method for wiring board
JP2020202248A (en) * 2019-06-07 2020-12-17 イビデン株式会社 Wiring board and method of manufacturing wiring board

Also Published As

Publication number Publication date
JP2024016307A (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US10779394B2 (en) Method of manufacturing printed circuit board
US7488903B2 (en) Method for manufacturing circuit modules and circuit module
US9332644B2 (en) High-frequency transmission line and electronic device
US11652272B2 (en) Chip antenna
JP6602324B2 (en) Wireless device
WO2013084496A1 (en) Wireless module
JP2017215197A (en) Radio-frequency substrate
WO2020124436A1 (en) Packaged antenna substrate, manufacturing method therefor, packaged antenna, and terminal
JPWO2013121732A1 (en) Wireless module
WO2022137619A1 (en) Antenna substrate
JP2004056144A (en) Printed wiring board
WO2021070462A1 (en) Antenna module
US20230217592A1 (en) Circuit board
CN112638032B (en) Circuit board and antenna device compatible with digital circuit and radio frequency circuit
JP7422360B2 (en) semiconductor package
JP7234017B2 (en) multilayer circuit board
JP2023511399A (en) circuit board
WO2022070856A1 (en) Wiring substrate and electronic device
US20230262893A1 (en) Circuit board, manufacturing method thereof, and electronic device
JP7325303B2 (en) wireless module
US20230319980A1 (en) Circuit board and method of manufacturing circuit board
US20240057253A1 (en) Circuit board
EP4287792A1 (en) Semiconductor package
US20230262890A1 (en) Circuit board structure
US20240074056A1 (en) Printed wiring board and printed wiring board manufacturing substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP