WO2022137533A1 - Power supply circuit - Google Patents

Power supply circuit Download PDF

Info

Publication number
WO2022137533A1
WO2022137533A1 PCT/JP2020/048823 JP2020048823W WO2022137533A1 WO 2022137533 A1 WO2022137533 A1 WO 2022137533A1 JP 2020048823 W JP2020048823 W JP 2020048823W WO 2022137533 A1 WO2022137533 A1 WO 2022137533A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
power supply
battery module
closed
Prior art date
Application number
PCT/JP2020/048823
Other languages
French (fr)
Japanese (ja)
Inventor
和征 榊原
Original Assignee
株式会社EViP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社EViP filed Critical 株式会社EViP
Priority to PCT/JP2020/048823 priority Critical patent/WO2022137533A1/en
Publication of WO2022137533A1 publication Critical patent/WO2022137533A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a power supply circuit.
  • Patent Document 1 discloses a technique for suppressing voltage fluctuations in a power line to a three-phase motor.
  • An object of the present invention is to provide a technique capable of suppressing a discharge current from a battery power source.
  • the main invention of the present invention for solving the above problems is a power supply circuit, in which AC power is applied to a plurality of coils for driving a motor from a battery power source having a plurality of battery modules, and each of the coils is independent.
  • a controller that turns the switch on and off so as to supply power from the battery module belonging to the first closed circuit and another second closed circuit to the coil that cannot supply power. It is characterized by being prepared.
  • the discharge current from the battery power source can be suppressed.
  • the battery module 2 is an energization cutoff element for energizing or stopping the discharge current of a high voltage rated battery cell group 1H composed of a plurality of lithium ion secondary battery cells. It is connected to the terminal 5 via the FET 4.
  • the module controller 3 detects the voltage of the battery cell group 1H or the current of the battery cell group 1H, that is, the voltage appearing across the shunt resistance 6, and turns the FET 4 on or off according to the voltage or the current. Operate to control the output or stop of the discharge from the terminal 5.
  • the module controller 3 may detect the temperature of the battery cell group 1H by using a temperature sensor (not shown) arranged in the vicinity of the battery cell group 1H.
  • the motor system 103 has a high voltage power line that outputs a DC voltage output by the battery modules 2U, 2V, and 2W having the same configuration as the battery module 2 shown in FIG. It is applied to the inverters 6U, 6V, and 6W via 5U, 5V, and 5W, respectively.
  • the inverters 6U, 6V, and 6W input high DC voltages from the battery modules 2U, 2V, and 2W, respectively, convert them into AC voltage, and convert the single-phase AC voltage into three phases in the motor. , 7V, and 7W, respectively, to generate a rotating magnetic field between the magnetic pole coils to control the rotation of the rotor.
  • Insulating communication lines 8a, 8b and 8g are arranged between the inverters 6U and 6V and between the inverters 6V and 6W, respectively.
  • the insulating communication line 8g can be a ground line.
  • the insulating signal 8 shifts the phase of the three single-phase AC voltages output from the three inverters to a desired electric angle to generate a rotating magnetic field between the three-phase magnetic pole coils in the motor to rotate the rotor. Used to control.
  • one of the inverters 6U and 6V (host side) applies a voltage to the light emitting portion of the photocoupler 8H, and the other (slave side) detects the voltage of the light receiving portion of the photocoupler 8S for insulation. Digital communication is established.
  • the light receiving unit outputs or stops the voltage according to the light emission or stop of the light emitting unit inside the photocoupler 8, and transmits the high and low waveforms of the voltage to the slave side as a predetermined insulating communication signal.
  • an AC voltage can be output and the AC voltage can be applied to the magnetic pole coil 7 by PWM switching control or the like according to an instruction of an insulating communication signal received from the host side via the photocoupler 8. That is, the host side can collectively control the AC voltage outputs of the two phases so as to shift the phases of the AC voltage applied to the magnetic pole coil 7U and the magnetic pole coil 7V to a desired electrical accuracy.
  • the switching frequency of the insulating communication signal from the host side to the slave side can be made higher than the switching frequency of the PWM control.
  • the module controller 3 of at least one battery module in the battery module belonging to the three-phase independent closed circuit needs to stop the discharge by detecting some abnormality or the like.
  • the main controller 9 detects the presence of the one battery module whose discharge output is stopped by using the insulating communication signal 10. Instructs all battery modules belonging to the phase closed circuit to stop the discharge output, and stops the discharge output of all battery modules including other battery modules that have not stopped discharging in conjunction with each other, resulting in an abnormal state of the battery module. Prevent expansion.
  • the motor system 104 (a) as the first state uses three inverters belonging to three closed circuits and an insulating communication signal 13 in the motor system 103, respectively, as shown in FIG. It has a configuration in which a function for performing communication and a switch 12 for controlling energization or stoppage of energization between or within phases of different closed circuits are added. As shown in FIG. 3, the switch 12 is set on and off so that power is supplied independently from the power supply modules 2U, 2V, and 2W to the inverters 6U, 6V, and 6W, respectively.
  • the first state is the state of the motor system during normal operation.
  • the main controller 9 communicates with the inverters 6U, 6V, and 6W by an insulating communication signal 13 using, for example, a photocoupler, detects the control state of each inverter, and if necessary, the module controller in each battery module. Instruct 3 to output or stop the discharge from the terminal 5.
  • the module controller 3 operates the FET 4 in the battery module to be turned on or off to control the discharge voltage of the battery cell group 1H to be output or stopped from the terminal 5. Further, the main controller 9 can operate the opening / closing of the switch 12 by using the insulating control signal 11.
  • the main controller 9 detects in Steps 1 and 2 that power cannot be supplied from the U-phase battery module 2U of the three phases to the inverter 6U by using the insulating communication signal 10 and the insulating communication signal 13.
  • Step1 YES
  • Step2 YES
  • Step 3 it is detected in Step 3 whether or not the V phase electrically adjacent to the U phase can be fed.
  • Step 4 the process proceeds to Step 4 and the FET 4 in the battery module 2U is turned off by using the insulating communication signal 10 to the battery module 2U.
  • Step 4' Instructed to stop the discharge output from the terminal 5 of the battery module 2U, and in Step 4', operate the switch 12 using the insulating signal 11 to belong to the V phase and belong to the U phase.
  • the circuit connection state between the V-phase and the U-phase shown in FIG. 4 for newly forming the power supply line to the inverter 6U and the magnetic pole coil 7U is established.
  • Step3 when it is determined that the V-phase power supply is not possible (Step3: NO), the process proceeds to Step5, and the U-phase and V-phase battery modules 2U and 2V are operated to turn off the FET4, respectively, to operate the battery module 2U. , Instructed to stop the output from the 2V terminal 5, and operated the opening and closing of the switch 12 using the insulating signal 11 from the battery module 2W belonging to the W phase to the inverter 6V and the magnetic pole coil 7V belonging to the V phase. In the circuit connection state shown in FIG. 5, a new power supply line is formed from the battery module 2V belonging to the V phase to the inverter 6U and the magnetic pole coil 7U belonging to the U phase. do.
  • Step 7 the main controller 9 detects the control state of the three inverters using the insulating communication signal 13, and determines that the output of the three inverters is stopped, that is, the state in which the motor is stopped. Proceed to Step 8 and use the insulating communication signal 10 to turn off the FET 4 in each battery module to all the battery modules belonging to the three phases to instruct all the battery modules to stop the discharge output from the terminals 5. Stop the discharge output of the battery module.
  • the main controller 9 detects the control state of the three inverters using the insulating communication signal 13, and determines that the output of the three inverters is stopped, that is, the state in which the motor is stopped.
  • Step 8 and use the insulating communication signal 10 to turn off the FET 4 in each battery module to all the battery modules belonging to the three phases to instruct all the battery modules to stop the discharge output from the terminals 5. Stop the discharge output of the battery module.
  • the switch 12 is schematically shown as a contact switch, but a semiconductor switch such as an FET may be used, for example.
  • the battery module 2V or the battery module 2W supplies power to the inverter 6U and the magnetic pole coil 7U in place of the battery module 2U.
  • the battery module 2V or the battery module 2W simultaneously bears the power supply for two phases including the inverter 6V and the magnetic pole coil 7V belonging to the same phase, or the inverter 6W and the magnetic pole coil 7W, so that the three-phase magnetic pole coil Even if the rotation torque of the rotor due to the magnetic pole coil 7V or the magnetic pole coil 7W tends to decrease slightly, if the power supply of the remaining other phases is normal, the motor control by all three phases, that is, It does not significantly affect the running performance of electric vehicles.
  • the electric vehicle equipped with the motor system 104 of the present invention can self-retract the electric vehicle to a safe place by the operation of the driver in an emergency, and can secure the reliability of the battery power supply. ..
  • a plurality of independent closed circuits for each of the coils which apply AC power to a plurality of coils for driving a motor from a battery power source having a plurality of battery modules.
  • a switch connecting the closed circuits and When a state in which power cannot be supplied from the battery module to the coil is detected in the first closed circuit, which is one of the plurality of closed circuits, a second closed circuit different from the first closed circuit is detected.
  • a controller that turns the switch on and off so as to supply power from the battery module belonging to the closed circuit of 2 to the coil that cannot supply power.
  • a power supply circuit characterized by being equipped with.
  • the power supply circuit according to item 1. The controller controls to stop the discharge output from all the battery modules when the drive stop of the motor is detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

[Problem] To make it possible to suppress discharge current from a battery power supply. [Solution] This power supply circuit comprises: a plurality of closed circuits which supply AC power from a battery power supply having a plurality of battery modules to a plurality of coils for driving a motor and are independent for the respective coils; switches for connecting between the closed circuits; and a controller which, when detecting a state in which power feeding from the battery module to the coils becomes impossible in a first closed circuit that is one of the plurality of closed circuits, turns on/off the switches so as to supply power from the battery module belonging to a second closed circuit other than the first closed circuit to the coil to which the power feeding has become impossible.

Description

電源回路Power circuit
 本発明は、電源回路に関する。 The present invention relates to a power supply circuit.
 近年、地球環境への配慮から、内燃機関すなわちエンジンで駆動する自動車がモータで駆動する電気自動車またはエンジンとモータで駆動するハイブリッド自動車に置き換わりつつある。電気自動車やハイブリッド自動車では3相モータが用いられており、特許文献1には、3相モータへの電力ラインにおける電圧変動を抑制する技術が開示されている。 In recent years, due to consideration for the global environment, internal combustion engines, that is, automobiles driven by engines are being replaced by electric vehicles driven by motors or hybrid vehicles driven by engines and motors. A three-phase motor is used in an electric vehicle or a hybrid vehicle, and Patent Document 1 discloses a technique for suppressing voltage fluctuations in a power line to a three-phase motor.
特開2019-140824号公報Japanese Unexamined Patent Publication No. 2019-140824
 従来技術のモータシステムでは、電池電源から昇圧コンバータへ入力する放電電流が非常に大きくなりがちである。 In the conventional motor system, the discharge current input from the battery power supply to the boost converter tends to be very large.
 本発明は、電池電源からの放電電流を抑制することができる技術を提供することを目的とする。 An object of the present invention is to provide a technique capable of suppressing a discharge current from a battery power source.
 上記課題を解決するための本発明の主たる発明は、電源回路であって、複数の電池モジュールを有する電池電源からモータ駆動のための複数のコイルに交流電力を与える、前記コイルのそれぞれについて独立した複数の閉回路と、前記閉回路間を接続するスイッチと、前記複数の閉回路の内の1つである第1の閉回路において前記電池モジュールから前記コイルへの給電が不能となった状態を検知した場合に、前記第1の閉回路と別の第2の閉回路に属する前記電池モジュールから、前記給電不能となった前記コイルへ電力供給を行うように前記スイッチをオンオフさせるコントローラと、を備えることを特徴とする。 The main invention of the present invention for solving the above problems is a power supply circuit, in which AC power is applied to a plurality of coils for driving a motor from a battery power source having a plurality of battery modules, and each of the coils is independent. A state in which power cannot be supplied from the battery module to the coil in a plurality of closed circuits, a switch connecting the closed circuits, and a first closed circuit which is one of the plurality of closed circuits. When detected, a controller that turns the switch on and off so as to supply power from the battery module belonging to the first closed circuit and another second closed circuit to the coil that cannot supply power. It is characterized by being prepared.
 本発明によれば電池電源からの放電電流を抑制することができる。 According to the present invention, the discharge current from the battery power source can be suppressed.
本実施形態に係る電池モジュール2の構成の概略を示す回路ブロック図である。It is a circuit block diagram which shows the outline of the structure of the battery module 2 which concerns on this embodiment. 本実施形態に係るモータシステム103の構成の概略を示す回路ブロック図である。It is a circuit block diagram which shows the outline of the structure of the motor system 103 which concerns on this embodiment. 本実施形態に係る第1状態としてのモータシステム104(a)の構成および状態の概略を示す回路ブロック図である。It is a circuit block diagram which shows the outline of the structure and state of the motor system 104 (a) as the 1st state which concerns on this embodiment. 本実施形態に係る第2状態としてのモータシステム104(b)の構成および状態の概略を示す回路ブロック図である。It is a circuit block diagram which shows the outline of the structure and state of the motor system 104 (b) as the 2nd state which concerns on this embodiment. 本実施形態に係る第3状態としてのモータシステム104(c)の構成および状態の概略を示す回路ブロック図である。It is a circuit block diagram which shows the outline of the structure and state of the motor system 104 (c) as the 3rd state which concerns on this embodiment. 本実施形態に係るモータシステム104のメインコントローラ9の制御の概略を示すフローチャート図である。It is a flowchart which shows the outline of the control of the main controller 9 of the motor system 104 which concerns on this embodiment. 本発明の実施形態における位相同期のための回路ブロック図である。It is a circuit block diagram for phase synchronization in embodiment of this invention.
 本実施形態に係る電池モジュール2は、図1に示すように、複数のリチウムイオン二次電池セルで成る高電圧定格の電池セル群1Hを、その放電電流を通電または停止するための通電遮断素子としてのFET4を介して端子5に接続する。モジュールコントローラ3は、電池セル群1Hの電圧、または、電池セル群1Hの電流、すなわち、シャント抵抗6の両端に現れる電圧を検知して、前記電圧または前記電流に応じてFET4をオンまたはオフに操作し端子5からの放電の出力または停止を制御する。なお、モジュールコントローラ3は電池セル群1Hの近傍に配置された図示しない温度センサを用いて電池セル群1Hの温度を検知しても良い。 As shown in FIG. 1, the battery module 2 according to the present embodiment is an energization cutoff element for energizing or stopping the discharge current of a high voltage rated battery cell group 1H composed of a plurality of lithium ion secondary battery cells. It is connected to the terminal 5 via the FET 4. The module controller 3 detects the voltage of the battery cell group 1H or the current of the battery cell group 1H, that is, the voltage appearing across the shunt resistance 6, and turns the FET 4 on or off according to the voltage or the current. Operate to control the output or stop of the discharge from the terminal 5. The module controller 3 may detect the temperature of the battery cell group 1H by using a temperature sensor (not shown) arranged in the vicinity of the battery cell group 1H.
 本実施形態に係る従来技術に従うモータシステム103は、図2に示すように、図1に示す電池モジュール2と同じ構成を有する電池モジュール2U、2V、および2Wが出力する直流電圧を高電圧パワーライン5U、5V、および5Wを介してインバータ6U、6V、および6Wへそれぞれ印加する。インバータ6U、6V、および6Wは、前記電池モジュール2U、2V、および2Wからそれぞれ高電圧の直流電圧を入力し交流電圧に変換し単相交流電圧をモータ内の3相に配置される磁極コイル7U、7V、および7Wへそれぞれ印加し前記磁極コイル間に回転磁界を発生させてロータの回転を制御する。インバータ6Uおよび6Vの間、ならびにインバータ6V及び6Wの間にはそれぞれ、絶縁性通信ライン8a、8b及び8gが配される。絶縁性通信ライン8gはグランド線とすることができる。絶縁性信号8は、前記3個のインバータから出力される3個の単相交流電圧の位相を所望の電気角度にずらしてモータ内の3相の磁極コイル間に回転磁界を生成しロータを回転制御するために用いる。図7に示すように、インバータ6U及び6Vの一方(ホスト側)がフォトカプラ8Hの発光部に電圧を印加し、他方(スレーブ側)がフォトカプラ8Sの受光部の電圧を検知して絶縁性デジタル通信が成立する。フォトカプラ8はその内部の発光部の発光または停止に応じて受光部が電圧の出力または停止を行い、その電圧の高低波形を所定の絶縁性通信信号としてスレーブ側へ送信する。スレーブ側では、例えば、ホスト側からフォトカプラ8を介して受信した絶縁性通信信号の指示に従い、PWMスイッチング制御などにより、交流電圧を出力しその交流電圧を磁極コイル7に印加することができる。すなわち、ホスト側は、磁極コイル7U、および、磁極コイル7Vに印加される交流電圧の位相を所望の電気確度にずらすように2相分の交流電圧出力をまとめて制御することができる。この際、ホスト側からスレーブ側への絶縁性通信信号のスイッチング周波数は前記PWM制御のスイッチング周波数よりも高くすることができる。 As shown in FIG. 2, the motor system 103 according to the prior art according to the present embodiment has a high voltage power line that outputs a DC voltage output by the battery modules 2U, 2V, and 2W having the same configuration as the battery module 2 shown in FIG. It is applied to the inverters 6U, 6V, and 6W via 5U, 5V, and 5W, respectively. The inverters 6U, 6V, and 6W input high DC voltages from the battery modules 2U, 2V, and 2W, respectively, convert them into AC voltage, and convert the single-phase AC voltage into three phases in the motor. , 7V, and 7W, respectively, to generate a rotating magnetic field between the magnetic pole coils to control the rotation of the rotor. Insulating communication lines 8a, 8b and 8g are arranged between the inverters 6U and 6V and between the inverters 6V and 6W, respectively. The insulating communication line 8g can be a ground line. The insulating signal 8 shifts the phase of the three single-phase AC voltages output from the three inverters to a desired electric angle to generate a rotating magnetic field between the three-phase magnetic pole coils in the motor to rotate the rotor. Used to control. As shown in FIG. 7, one of the inverters 6U and 6V (host side) applies a voltage to the light emitting portion of the photocoupler 8H, and the other (slave side) detects the voltage of the light receiving portion of the photocoupler 8S for insulation. Digital communication is established. In the photocoupler 8, the light receiving unit outputs or stops the voltage according to the light emission or stop of the light emitting unit inside the photocoupler 8, and transmits the high and low waveforms of the voltage to the slave side as a predetermined insulating communication signal. On the slave side, for example, an AC voltage can be output and the AC voltage can be applied to the magnetic pole coil 7 by PWM switching control or the like according to an instruction of an insulating communication signal received from the host side via the photocoupler 8. That is, the host side can collectively control the AC voltage outputs of the two phases so as to shift the phases of the AC voltage applied to the magnetic pole coil 7U and the magnetic pole coil 7V to a desired electrical accuracy. At this time, the switching frequency of the insulating communication signal from the host side to the slave side can be made higher than the switching frequency of the PWM control.
 前記モータシステム103においては、3相の独立した閉回路に属する電池モジュール内の少なくとも1個の電池モジュールのモジュールコントローラ3が何等かの異常等の検知により放電停止が必要であると判断してその電池モジュール内のFET4をオフに操作してその放電出力を停止すると、メインコントローラ9は、絶縁性通信信号10を用いて前記放電出力を停止した前記1個の電池モジュールの存在を検知し、3相の閉回路に属する全ての電池モジュールに対して放電出力の停止を指示して、放電停止していない他の電池モジュールを含む全ての電池モジュールの放電出力を連動停止し電池モジュールの異常状態の拡大を防止する。 In the motor system 103, it is determined that the module controller 3 of at least one battery module in the battery module belonging to the three-phase independent closed circuit needs to stop the discharge by detecting some abnormality or the like. When the FET 4 in the battery module is turned off to stop the discharge output, the main controller 9 detects the presence of the one battery module whose discharge output is stopped by using the insulating communication signal 10. Instructs all battery modules belonging to the phase closed circuit to stop the discharge output, and stops the discharge output of all battery modules including other battery modules that have not stopped discharging in conjunction with each other, resulting in an abnormal state of the battery module. Prevent expansion.
 本実施形態に係る第1状態としてのモータシステム104(a)は、図3に示すように、モータシステム103に3個の閉回路に属する3個のインバータと絶縁性通信信号13を用いてそれぞれ通信を行う機能、および、異なる閉回路の相間または相内の通電または通電停止を制御するスイッチ12を付加した構成である。スイッチ12は、図3に示すように、電源モジュール2U、2V、および、2Wからインバータ6U、6V、6Wにそれぞれ独立に給電されるようにオンオフ設定されている。第1状態が、通常運転中のモータシステムの状態である。 As shown in FIG. 3, the motor system 104 (a) as the first state according to the present embodiment uses three inverters belonging to three closed circuits and an insulating communication signal 13 in the motor system 103, respectively, as shown in FIG. It has a configuration in which a function for performing communication and a switch 12 for controlling energization or stoppage of energization between or within phases of different closed circuits are added. As shown in FIG. 3, the switch 12 is set on and off so that power is supplied independently from the power supply modules 2U, 2V, and 2W to the inverters 6U, 6V, and 6W, respectively. The first state is the state of the motor system during normal operation.
 メインコントローラ9は、例えばフォトカプラ等を用いた絶縁性通信信号13によりインバータ6U、6V、および6Wとそれぞれ通信を行い、各インバータの制御状態を検知し必要に応じて各電池モジュール内のモジュールコントローラ3へ端子5からの放電を出力または停止するよう指示する。前記指示を受信したモジュールコントローラ3は前記電池モジュール内のFET4をオンまたはオフに操作して電池セル群1Hの放電電圧を端子5から出力または停止するように制御する。また、メインコントローラ9は、絶縁性制御信号11を用いて前記スイッチ12の開閉をそれぞれ操作することができる。 The main controller 9 communicates with the inverters 6U, 6V, and 6W by an insulating communication signal 13 using, for example, a photocoupler, detects the control state of each inverter, and if necessary, the module controller in each battery module. Instruct 3 to output or stop the discharge from the terminal 5. Upon receiving the instruction, the module controller 3 operates the FET 4 in the battery module to be turned on or off to control the discharge voltage of the battery cell group 1H to be output or stopped from the terminal 5. Further, the main controller 9 can operate the opening / closing of the switch 12 by using the insulating control signal 11.
 モータシステム104のメインコントローラ9の制御について、次に、図5のフローチャート図を用いて説明する。 Next, the control of the main controller 9 of the motor system 104 will be described with reference to the flowchart of FIG.
 メインコントローラ9は、Step1、2にて、絶縁性通信信号10および絶縁性通信信号13を用いて3相の内のU相の電池モジュール2Uからインバータ6Uへの給電が不能になった状態を検知および判定した場合(Step1:YES、Step2:YES)、Step3にて、U相と電気的に隣り合うV相の給電が可能な状態であるか否かを検知する。V相の給電が可能である状態を判定した場合には(Step3:YES)、Step4に進み電池モジュール2Uへ絶縁性通信信号10を用いて前記電池モジュール2U内のFET4をオフに操作して前記電池モジュール2Uの端子5からの放電出力を停止することを指示し、および、Step4’にて、絶縁性信号11を用いてスイッチ12を操作してV相に属する電池モジュール2VからU相に属するインバータ6Uおよび磁極コイル7Uへの電力供給ラインを新たに形成するための図4に示すV相およびU相の相間の回路接続状態にする。 The main controller 9 detects in Steps 1 and 2 that power cannot be supplied from the U-phase battery module 2U of the three phases to the inverter 6U by using the insulating communication signal 10 and the insulating communication signal 13. When it is determined (Step1: YES, Step2: YES), it is detected in Step 3 whether or not the V phase electrically adjacent to the U phase can be fed. When it is determined that the V-phase power supply is possible (Step 3: YES), the process proceeds to Step 4 and the FET 4 in the battery module 2U is turned off by using the insulating communication signal 10 to the battery module 2U. Instructed to stop the discharge output from the terminal 5 of the battery module 2U, and in Step 4', operate the switch 12 using the insulating signal 11 to belong to the V phase and belong to the U phase. The circuit connection state between the V-phase and the U-phase shown in FIG. 4 for newly forming the power supply line to the inverter 6U and the magnetic pole coil 7U is established.
 一方、前記V相の給電も可能でない状態を判定した場合には(Step3:NO)、Step5に進み、U相およびV相電池モジュール2U、2VへそれぞれFET4をオフに操作して前記電池モジュール2U、2Vの端子5からの出力停止することを指示し、および、絶縁性信号11を用いてスイッチ12の開閉を操作してW相に属する電池モジュール2WからV相に属するインバータ6Vおよび磁極コイル7Vへの電力供給ラインを新たに形成するとともに、V相に属する電池モジュール2VからU相に属するインバータ6Uおよび磁極コイル7Uへの電力供給ラインを新たに形成するための図5に示す回路接続状態にする。 On the other hand, when it is determined that the V-phase power supply is not possible (Step3: NO), the process proceeds to Step5, and the U-phase and V-phase battery modules 2U and 2V are operated to turn off the FET4, respectively, to operate the battery module 2U. , Instructed to stop the output from the 2V terminal 5, and operated the opening and closing of the switch 12 using the insulating signal 11 from the battery module 2W belonging to the W phase to the inverter 6V and the magnetic pole coil 7V belonging to the V phase. In the circuit connection state shown in FIG. 5, a new power supply line is formed from the battery module 2V belonging to the V phase to the inverter 6U and the magnetic pole coil 7U belonging to the U phase. do.
 Step4’またはStep5’にて、相間の回路接続を行うことにより、前記給電が不能になったU相のインバータ6Uおよび磁極コイル7Uへの給電が維持されて3個のインバータは3相モータの制御を継続できる。さらに、Step7にて、メインコントローラ9は絶縁性通信信号13を用いて3個のインバータの制御状態を検知して、前記3個のインバータが出力停止、すなわち、モータが駆動停止した状態を判定するとStep8へ進み3相に属する全ての電池モジュールへ絶縁性通信信号10を用いて各電池モジュール内のFET4をオフに操作して全ての電池モジュールの端子5からの放電出力の停止を指示し全ての電池モジュールの放電出力を停止する。これによって、運転者の操作により電気自動車を緊急時に安全な場所へ自走退避した後で確実に電池電源の放電に起因する異常状態の拡大のような信頼性の低下を防止できる。 By making a circuit connection between the phases in Step 4'or Step 5', the power supply to the U-phase inverter 6U and the magnetic pole coil 7U for which the power supply is disabled is maintained, and the three inverters control the three-phase motor. Can be continued. Further, in Step 7, the main controller 9 detects the control state of the three inverters using the insulating communication signal 13, and determines that the output of the three inverters is stopped, that is, the state in which the motor is stopped. Proceed to Step 8 and use the insulating communication signal 10 to turn off the FET 4 in each battery module to all the battery modules belonging to the three phases to instruct all the battery modules to stop the discharge output from the terminals 5. Stop the discharge output of the battery module. As a result, it is possible to reliably prevent the deterioration of reliability such as the expansion of the abnormal state due to the discharge of the battery power supply after the electric vehicle is self-propelled and evacuated to a safe place in an emergency by the operation of the driver.
 なお、図3ないし図5では、前記スイッチ12について模式的に有接点スイッチを図示して説明したが、例えばFETのような半導体スイッチを用いても良い。 Note that, in FIGS. 3 to 5, the switch 12 is schematically shown as a contact switch, but a semiconductor switch such as an FET may be used, for example.
 なお、前述のStep4’またはStep5’では、電池モジュール2Vまたは電池モジュール2Wが電池モジュール2Uに代わってインバータ6Uおよび磁極コイル7Uへの給電を行う。この際、前記電池モジュール2Vまたは電池モジュール2Wが同相に属するインバータ6Vおよび磁極コイル7V、または、インバータ6Wおよび磁極コイル7Wも含む2相分の給電を同時に負担することに伴い3相の磁極コイルの内、磁極コイル7Vまたは磁極コイル7Wに起因するロータの回転トルクが部分的に若干低下する傾向があっても、残る他相の給電が正常であれば、3相全体によるモータの制御、すなわち、電気自動車の走行性能に大きく影響しない。 In the above-mentioned Step 4'or Step 5', the battery module 2V or the battery module 2W supplies power to the inverter 6U and the magnetic pole coil 7U in place of the battery module 2U. At this time, the battery module 2V or the battery module 2W simultaneously bears the power supply for two phases including the inverter 6V and the magnetic pole coil 7V belonging to the same phase, or the inverter 6W and the magnetic pole coil 7W, so that the three-phase magnetic pole coil Even if the rotation torque of the rotor due to the magnetic pole coil 7V or the magnetic pole coil 7W tends to decrease slightly, if the power supply of the remaining other phases is normal, the motor control by all three phases, that is, It does not significantly affect the running performance of electric vehicles.
 以上より、本発明のモータシステム104を搭載した電気自動車は、緊急時に運転者の操作により電気自動車を安全な場所へ自走退避し、かつ、電池電源の信頼性を確保することが可能となる。 From the above, the electric vehicle equipped with the motor system 104 of the present invention can self-retract the electric vehicle to a safe place by the operation of the driver in an emergency, and can secure the reliability of the battery power supply. ..
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。 The above-described embodiment is merely an example for facilitating the understanding of the present invention, and is not intended to limit the interpretation of the present invention. It goes without saying that the present invention can be modified and improved without departing from the spirit thereof, and the present invention includes its equivalents.
 なお、本明細書には少なくとも以下の事項が開示されている。
[項目1]
 複数の電池モジュールを有する電池電源からモータ駆動のための複数のコイルに交流電力を与える、前記コイルのそれぞれについて独立した複数の閉回路と、
 前記閉回路間を接続するスイッチと、
 前記複数の閉回路の内の1つである第1の閉回路において前記電池モジュールから前記コイルへの給電が不能となった状態を検知した場合に、前記第1の閉回路とは別の第2の閉回路に属する前記電池モジュールから、前記給電不能となった前記コイルへ電力供給を行うように前記スイッチをオンオフさせるコントローラと、
 を備えることを特徴とする電源回路。
[項目2]
 項目1に記載の電源回路であって、
 前記コントローラは、前記モータの駆動停止を検出した場合に、全ての前記電池モジュールからの放電出力を停止するように制御すること、
 を特徴とする電源回路。
In addition, at least the following matters are disclosed in this specification.
[Item 1]
A plurality of independent closed circuits for each of the coils, which apply AC power to a plurality of coils for driving a motor from a battery power source having a plurality of battery modules.
A switch connecting the closed circuits and
When a state in which power cannot be supplied from the battery module to the coil is detected in the first closed circuit, which is one of the plurality of closed circuits, a second closed circuit different from the first closed circuit is detected. A controller that turns the switch on and off so as to supply power from the battery module belonging to the closed circuit of 2 to the coil that cannot supply power.
A power supply circuit characterized by being equipped with.
[Item 2]
The power supply circuit according to item 1.
The controller controls to stop the discharge output from all the battery modules when the drive stop of the motor is detected.
A power supply circuit featuring.
  1 電池セル群
  2U、2V、2W 電池モジュール
  3U、3V、3W 低電圧パワーライン
  4U、4V、4W 昇圧コンバータ
  5U、5V、5W 高電圧パワーライン
  6U、6V、6W インバータ
  7U、7V、7W 磁極コイル
  8a、8b、8g 、絶縁性通信ライン
  103、104 モータシステム
1 Battery cell group 2U, 2V, 2W Battery module 3U, 3V, 3W Low voltage power line 4U, 4V, 4W Boost converter 5U, 5V, 5W High voltage power line 6U, 6V, 6W Inverter 7U, 7V, 7W Magnetic pole coil 8a , 8b, 8g, Insulated Communication Line 103, 104 Motor System

Claims (2)

  1.  複数の電池モジュールを有する電池電源からモータ駆動のための複数のコイルに交流電力を与える、前記コイルのそれぞれについて独立した複数の閉回路と、
     前記閉回路間を接続するスイッチと、
     前記複数の閉回路の内の1つである第1の閉回路において前記電池モジュールから前記コイルへの給電が不能となった状態を検知した場合に、前記第1の閉回路とは別の第2の閉回路に属する前記電池モジュールから、前記給電不能となった前記コイルへ電力供給を行うように前記スイッチをオンオフさせるコントローラと、
     を備えることを特徴とする電源回路。
    A plurality of independent closed circuits for each of the coils, which apply AC power to a plurality of coils for driving a motor from a battery power source having a plurality of battery modules.
    A switch connecting the closed circuits and
    When a state in which power cannot be supplied from the battery module to the coil is detected in the first closed circuit, which is one of the plurality of closed circuits, a second closed circuit different from the first closed circuit is detected. A controller that turns the switch on and off so as to supply power from the battery module belonging to the closed circuit 2 to the coil that cannot supply power.
    A power supply circuit characterized by being equipped with.
  2.  請求項1に記載の電源回路であって、
     前記コントローラは、前記モータの駆動停止を検出した場合に、全ての前記電池モジュールからの放電出力を停止するように制御すること、
     を特徴とする電源回路。
    The power supply circuit according to claim 1.
    The controller controls to stop the discharge output from all the battery modules when the drive stop of the motor is detected.
    A power supply circuit featuring.
PCT/JP2020/048823 2020-12-25 2020-12-25 Power supply circuit WO2022137533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048823 WO2022137533A1 (en) 2020-12-25 2020-12-25 Power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048823 WO2022137533A1 (en) 2020-12-25 2020-12-25 Power supply circuit

Publications (1)

Publication Number Publication Date
WO2022137533A1 true WO2022137533A1 (en) 2022-06-30

Family

ID=82157957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048823 WO2022137533A1 (en) 2020-12-25 2020-12-25 Power supply circuit

Country Status (1)

Country Link
WO (1) WO2022137533A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070551A (en) * 2011-09-26 2013-04-18 Nec Computertechno Ltd Multiple output uninterruptible power supply device
JP2018088811A (en) * 2013-11-14 2018-06-07 ソニー株式会社 Power supply system, power control device, power supply method, and power control method
JP2019004621A (en) * 2017-06-15 2019-01-10 株式会社東芝 Synchronous motor system and synchronous motor system controller
JP2020162220A (en) * 2019-03-25 2020-10-01 株式会社デンソー Motor control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070551A (en) * 2011-09-26 2013-04-18 Nec Computertechno Ltd Multiple output uninterruptible power supply device
JP2018088811A (en) * 2013-11-14 2018-06-07 ソニー株式会社 Power supply system, power control device, power supply method, and power control method
JP2019004621A (en) * 2017-06-15 2019-01-10 株式会社東芝 Synchronous motor system and synchronous motor system controller
JP2020162220A (en) * 2019-03-25 2020-10-01 株式会社デンソー Motor control device

Similar Documents

Publication Publication Date Title
US8508180B2 (en) Motor drive apparatus
CN110063012B (en) Inverter control device
US9793710B2 (en) Energy storing device with cooling elements, and method for cooling energy storing cells
US11077761B2 (en) Power supply system for vehicle
US9331515B2 (en) System for charging an energy store, and method for operating the charging system
WO2022131019A1 (en) Power conversion device
JP2007028803A (en) Control unit of electric vehicle
US11303145B2 (en) Charging system
WO2015004948A1 (en) Discharge control device
US20130314045A1 (en) Charging an energy store
JP2015159684A (en) rotary electric machine control device
WO2021161794A1 (en) Control circuit of power converter
JP6348424B2 (en) Power converter
CN111095778A (en) Inverter control device
US9425723B2 (en) System comprising an electrically excited machine
US9088240B2 (en) Energy storage device for a separately excited electrical machine
WO2022137533A1 (en) Power supply circuit
US9035612B2 (en) Method for transferring energy between at least two energy storage cells in a controllable energy store
JP7354958B2 (en) Power converter control circuit
US11012021B2 (en) Inverter device and control circuit therefor, and motor driving system
WO2022137532A1 (en) Power supply circuit
JP2021035090A (en) Inverter control device
Lin et al. Dual permanent magnet synchronous motor drive with a fault-tolerant inverter based on an improved width modulation scheme
JP2021010230A (en) Power converter
WO2024053424A1 (en) Power conversion apparatus and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP