WO2022137510A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022137510A1
WO2022137510A1 PCT/JP2020/048765 JP2020048765W WO2022137510A1 WO 2022137510 A1 WO2022137510 A1 WO 2022137510A1 JP 2020048765 W JP2020048765 W JP 2020048765W WO 2022137510 A1 WO2022137510 A1 WO 2022137510A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
side heat
circulation circuit
compressor
Prior art date
Application number
PCT/JP2020/048765
Other languages
French (fr)
Japanese (ja)
Inventor
康剛 木村
和希 外川
浩平 葛西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022570952A priority Critical patent/JP7471460B2/en
Priority to DE112020007879.5T priority patent/DE112020007879T5/en
Priority to PCT/JP2020/048765 priority patent/WO2022137510A1/en
Priority to GB2306768.9A priority patent/GB2615469A/en
Publication of WO2022137510A1 publication Critical patent/WO2022137510A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/009Compression machines, plants or systems with reversible cycle not otherwise provided for indoor unit in circulation with outdoor unit in first operation mode, indoor unit in circulation with an other heat exchanger in second operation mode or outdoor unit in circulation with an other heat exchanger in third operation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • Patent Document 1 a heat source side heat exchanger (corresponding to the outdoor heat exchanger of Patent Document 1) that exchanges heat between a heat source heat medium such as air in an outdoor space and a refrigerant, and an indoor room.
  • a first user-side heat exchanger that exchanges heat with a first load heat medium such as air in a space (corresponding to the heat exchanger for indoor air conditioning in Patent Document 1) and a second load heat medium such as water.
  • a refrigerating cycle apparatus having a second user-side heat exchanger (corresponding to the hot water supply heat exchanger of Patent Document 1) that exchanges heat with the heat is known.
  • Such a refrigerating cycle device has a four-way valve and an electromagnetic valve for switching the flow path, and a refrigerant circulation circuit for heating the first load heat medium by switching between the four-way valve and the electromagnetic valve (refrigerant for heating operation of Patent Document 1). (Applicable to the portion through which the refrigerant flows) and the refrigerant circulation circuit for heating the second load heat medium (corresponding to the portion through which the refrigerant in the hot water supply operation of Patent Document 2 flows) are switched.
  • the object of the present disclosure is to obtain a refrigerating cycle device that suppresses a refrigerant shortage when the refrigerant circulation circuit is switched.
  • the refrigeration cycle apparatus is a heat between a compressor that sucks a refrigerant from a suction port, compresses the sucked refrigerant, and discharges the compressed refrigerant from a discharge port, and heat between the refrigerant and the first heat medium.
  • a third heat exchanger to be performed and a flow path switching device for switching a refrigerant circulation circuit in which the refrigerant circulates are provided, and the flow path switching device includes the third heat exchanger and the third heat exchanger evaporates.
  • first heat exchanger or a second heat exchanger that includes a first heat exchanger and a second heat exchanger and a first refrigerant circulation circuit that is a refrigerant circulation circuit that functions as a vessel or condenser.
  • the second refrigerant circulation circuit which is a refrigerant circulation circuit that functions as an evaporator and does not include the third heat exchanger
  • the flow path switching device forms the second refrigerant circulation circuit.
  • the third heat exchanger communicates with the flow path between the heat exchanger, which functions as the evaporator of the second refrigerant circulation circuit, and the suction port of the compressor.
  • the refrigerant accumulated in the third heat exchanger can be used as an evaporator. It can flow into the flow path between the functioning heat exchanger and the suction port of the compressor, and can suppress the refrigerant shortage when the refrigerant circulation circuit is switched.
  • refrigerant circuit diagram of the refrigerating cycle apparatus which concerns on the 1st modification of embodiment. It is a refrigerant circuit diagram of the refrigerating cycle apparatus which concerns on the 2nd modification of embodiment. It is a refrigerant circuit diagram of the refrigerating cycle apparatus which concerns on the 3rd modification of embodiment. It is a refrigerant circuit diagram of the refrigerating cycle apparatus which concerns on the 4th modification of embodiment.
  • FIG. 1 is a refrigerant circuit diagram of the refrigeration cycle device according to the embodiment.
  • the refrigeration cycle device 1000 includes a heat source machine 100, a first utilization device 200, a second utilization device 300, a remote controller 400, a first connection pipe 501, a second connection pipe 502, and a third.
  • a connecting pipe 503 and a fourth connecting pipe 504 are provided.
  • the refrigeration cycle device 1000 includes a heat source machine 100, a first utilization device 200, a second utilization device 300, a first connection pipe 501, a second connection pipe 502, a third connection pipe 503, and a fourth connection.
  • a refrigerant circulation circuit 600 through which the refrigerant circulates is formed by the pipe 504.
  • the refrigerating cycle device 1000 can perform four types of operations by switching the refrigerant circulation circuit 600, which are the first load heat medium cooling operation, the first load heat medium heating operation, and the second load, respectively. It is called heat medium heating operation and cooling heating simultaneous operation. Since the refrigerant circulation circuit 600 is different for each of the four types of operation, when separately described, the refrigerant circulation circuit 600 at the time of the first load heat medium cooling operation is referred to as the first load heat medium cooling refrigerant circulation circuit 601.
  • the refrigerant circulation circuit 600 during the first load heat medium heating operation is referred to as the first load heat medium heating refrigerant circulation circuit 602
  • the refrigerant circulation circuit 600 during the second load heat medium heating operation is referred to as the second load heat medium.
  • the heating refrigerant circulation circuit 603 and the refrigerant circulation circuit 600 at the time of simultaneous cooling and heating operation are referred to as cooling and heating simultaneous refrigerant circulation circuit 604, respectively.
  • the heat source machine 100 compresses the refrigerant and causes heat exchange between the heat source heat medium passing through the heat source machine 100 and the refrigerant.
  • the heat source unit 100 is an outdoor unit and the heat source heat medium is air in the outdoor space.
  • the heat source machine 100 includes a compressor 1, a heat source side heat exchanger 2, a pressure reducing device 3, a switching valve group 4, an accumulator 5, a closing device 6, a compressor shell temperature sensor 7, and a discharge temperature sensor 8. It has a discharge pressure sensor 9, a heat source side heat exchanger temperature sensor 10, a heat source heat medium temperature sensor 11, a heat source side liquid tube temperature sensor 12, and a control device 13.
  • the compressor 1, the heat source side heat exchanger 2, the decompression device 3, the switching valve group 4, the accumulator 5, and the closing device 6 are connected so that the refrigerant can flow through the heat source machine refrigerant pipe 110, respectively.
  • the refrigerant circulation circuit 600 is switched by the pressure reducing device 3 and the switching valve group 4 as described later, the pressure reducing device 3 and the switching valve group 4 correspond to the flow path switching device for switching the refrigerant circulation circuit.
  • the compressor 1 sucks the refrigerant from the suction port, compresses the sucked refrigerant into a high-temperature and high-pressure gas state, and discharges the compressed refrigerant from the discharge port.
  • the compressor 1 of the embodiment has a compression unit that compresses the refrigerant, an electric motor that drives the compression unit, and a shell that covers the compression unit and the electric unit.
  • the compression unit of the compressor 1 an existing compression unit such as a rotary type, a scroll type, a screw type or a vane type is used.
  • the rotation speed of the electric motor of the compressor 1 can be changed by inverter control, and the capacity of the compressor 1 can be controlled by changing the rotation speed of the electric motor.
  • the heat source side heat exchanger 2 exchanges heat between the heat source heat medium and the refrigerant passing through the flow path formed in the heat source side heat exchanger 2.
  • the heat source side heat exchanger 2 of the embodiment causes heat exchange between the air in the outdoor space and the refrigerant.
  • the heat source side heat exchanger 2 of the embodiment distributes and transfers the main heat exchanger and the sub heat exchanger that exchange heat between the air in the outdoor space and the refrigerant, and the refrigerant flowing into the main heat exchanger. It has a header and a distributor that collect the refrigerant flowing in from the heat tube.
  • the heat source side heat exchanger 2 of the embodiment is composed of a fin-and-tube type heat exchanger.
  • the fin-and-tube heat exchanger is a heat exchanger having a plurality of heat transfer tubes in which a flow path through which a refrigerant flows is formed and a plurality of heat radiation fins provided in a direction orthogonal to the heat transfer tubes.
  • a header is connected to one end of the flow path of the main heat exchanger of the heat source side heat exchanger 2, and one end of the distributor is connected to the other end.
  • one end of the flow path of the auxiliary heat exchanger is connected to the other end of the distributor. That is, in the embodiment, one end of the heat source side heat exchanger 2 is a header, and the other end is the other end of the flow path of the secondary heat exchanger.
  • the air in the outdoor space is blown to the main heat exchanger and the sub heat exchanger of the heat source side heat exchanger 2 by a blowing means such as a blower (not shown).
  • the decompression device 3 decompresses the passing refrigerant.
  • the pressure reducing device 3 of the embodiment is composed of three expansion valves, and each expansion valve is referred to as a first expansion valve 3a, a second expansion valve 3b, and a third expansion valve 3c.
  • Each expansion valve has a flow path hole forming a flow path through which the refrigerant flows and a valve body that can be moved so as to open and close the flow path hole, and the opening area of the flow path is controlled by controlling the position of the valve body.
  • the opening degree is used as an index indicating the opening area of the expansion valve. The larger the opening, the wider the opening area of the flow path of the expansion valve.
  • the opening degree is the minimum, it is ideal that the expansion valve is completely closed, but in reality, a gap is created between the flow path hole and the valve body, so that a very small amount of refrigerant leaks from the gap. Therefore, when the opening degree is the minimum, most of the refrigerant cannot pass through the expansion valve, but a very small amount of refrigerant passes through the expansion valve.
  • the switching valve group 4 switches the flow path of the refrigerant.
  • the switching valve group 4 of the embodiment is composed of two four-way valves, and each four-way valve is referred to as a first four-way valve 4a and a second four-way valve 4b.
  • the four-way valve has four ports, A port, B port, C port and D port. Further, the four-way valve can switch between a state in which the A port and the B port are communicated and the C port and the D port are communicated, and a state in which the A port and the D port are communicated and the B port and the C port are communicated. can.
  • the four ports of the first four-way valve 4a are numbered A port as 4aa, B port as 4ab, C port as 4ac, and D port as 4ad, respectively.
  • the four ports of the second four-way valve 4b are numbered A port as 4ba, B port as 4bb, C port as 4bc, and D port as 4bd, respectively.
  • the accumulator 5 When the gas-liquid mixed refrigerant flows in from the inlet, the accumulator 5 stores the liquid refrigerant inside and causes the gas refrigerant to flow out from the outlet. Therefore, the accumulator 5 includes a first load heat medium cooling refrigerant circulation circuit 601, a first load heat medium heating refrigerant circulation circuit 602, a second load heat medium heating refrigerant circulation circuit 603, and a cooling / heating simultaneous refrigerant circulation circuit 604.
  • the surplus refrigerant generated by the difference in the amount of refrigerant used in each of the refrigerant circulation circuits, or the surplus refrigerant generated in the transitional period immediately after switching the refrigerant circulation circuit 600 is stored as a liquid refrigerant.
  • the closing device 6 opens and closes the heat source machine refrigerant pipe 110. By closing the heat source machine refrigerant pipe 110 by the closing device 6, the refrigerant existing inside the heat source machine 100 does not flow out of the heat source machine 100.
  • the closing device 6 of the embodiment is composed of four stop valves, and each stop valve is referred to as a first stop valve 6a, a second stop valve 6b, a third stop valve 6c, and a fourth stop valve 6d. ..
  • the compressor shell temperature sensor 7 detects the temperature of the shell of the compressor 1.
  • the compressor shell temperature sensor 7 of the embodiment is arranged on the shell surface of the compressor 1.
  • the discharge temperature sensor 8 detects the temperature of the refrigerant discharged from the compressor 1.
  • the discharge temperature sensor 8 of the embodiment is arranged in the heat source machine refrigerant pipe 110 connected to the discharge port of the compressor 1.
  • the discharge pressure sensor 9 detects the pressure of the refrigerant discharged from the compressor 1.
  • the discharge pressure sensor 9 of the embodiment is arranged in the heat source machine refrigerant pipe 110 connected to the discharge port of the compressor 1. Further, the pressure of the refrigerant detected by the discharge pressure sensor 9 is used when deriving the condensation temperature of the refrigerant, and the discharge pressure sensor 9 has a role as a condensation temperature detecting means.
  • the heat source side heat exchanger temperature sensor 10 detects the temperature of the refrigerant flowing through the flow path formed in the heat source side heat exchanger 2.
  • the heat source side heat exchanger temperature sensor 10 of the embodiment is arranged in the heat transfer tube or the heat radiation fin of the main heat exchanger of the heat source side heat exchanger 2.
  • the heat source heat medium temperature sensor 11 detects the temperature of the heat source heat medium.
  • the heat source heat medium temperature sensor 11 of the embodiment is arranged at a position where air in the outdoor space before heat exchange is performed by the heat source side heat exchanger 2 passes through.
  • the heat source side liquid tube temperature sensor 12 detects the temperature of the liquid refrigerant flowing through the heat source side heat exchanger 2.
  • the heat source side liquid tube temperature sensor 12 of the embodiment is arranged at the other end of the flow path formed in the main heat exchanger of the heat source side heat exchanger 2 or at the distributor.
  • the control device 13 controls to operate the refrigeration cycle device 1000. A detailed description of the control device 13 will be described later.
  • the heat source machine refrigerant pipe 110 is composed of a first heat source machine refrigerant pipe 111 to an eleventh heat source machine refrigerant pipe 121.
  • One end of the first heat source machine refrigerant pipe 111 is connected to the discharge port of the compressor 1, and the other end is connected to the C port 4bc of the second four-way valve 4b. Further, the discharge temperature sensor 8 and the discharge pressure sensor 9 are arranged in the middle of the first heat source machine refrigerant pipe 111.
  • One end of the second heat source machine refrigerant pipe 112 is connected to the D port 4bd of the second four-way valve 4b, and the other end is connected to one end of the heat source side heat exchanger 2.
  • One end of the third heat source machine refrigerant pipe 113 is connected to the other end of the heat source side heat exchanger 2, and the other end is the third heat source machine refrigerant pipe 113 and the fourth heat source machine refrigerant pipe. It is connected to the branch of 114 and the fifth heat source machine refrigerant pipe 115. Further, the first expansion valve 3a is arranged in the middle of the third heat source machine refrigerant pipe 113.
  • One end of the fourth heat source machine refrigerant pipe 114 is connected to the branch of the third heat source machine refrigerant pipe 113, the fourth heat source machine refrigerant pipe 114, and the fifth heat source machine refrigerant pipe 115, and the other end.
  • the portion is connected to the first connecting pipe 501.
  • a second expansion valve 3b and a first stop valve 6a are arranged in the middle of the fourth heat source machine refrigerant pipe 114, and the second expansion valve 3b is a fourth heat source machine rather than the first stop valve 6a. It is arranged on one end side of the refrigerant pipe 114.
  • One end of the fifth heat source machine refrigerant pipe 115 is connected to a branch between the third heat source machine refrigerant pipe 113, the fourth heat source machine refrigerant pipe 114, and the fifth heat source machine refrigerant pipe 115, and the other end.
  • the portion is connected to the third connecting pipe 503.
  • a third expansion valve 3c and a second stop valve 6b are arranged in the middle of the fifth heat source machine refrigerant pipe 115, and the third expansion valve 3c is a fifth heat source machine rather than the second stop valve 6b. It is arranged on one end side of the refrigerant pipe 115.
  • One end of the sixth heat source machine refrigerant pipe 116 is connected to the second connecting pipe 502, and the other end is connected to the B port 4ab of the first four-way valve 4a. Further, a third stop valve 6c is arranged in the middle of the sixth heat source machine refrigerant pipe 116.
  • One end of the seventh heat source machine refrigerant pipe 117 is connected to the fourth connecting pipe 504, and the other end is connected to the D port 4ad of the first four-way valve 4a. Further, a fourth stop valve 6d is arranged in the middle of the seventh heat source machine refrigerant pipe 117.
  • One end of the eighth heat source machine refrigerant pipe 118 is connected to the A port 4aa of the first four-way valve 4a, and the other end is connected to the inflow port of the accumulator 5.
  • One end of the ninth heat source machine refrigerant pipe 119 is connected to the outlet of the accumulator 5, and the other end is connected to the suction port of the compressor 1.
  • One end of the tenth heat source machine refrigerant pipe 120 is connected to the C port 4ac of the first four-way valve 4a, and the other end is connected to the B port 4bb of the second four-way valve 4b.
  • One end of the eleventh heat source machine refrigerant pipe 121 is connected to the A port 4ba of the second four-way valve 4b, and the other end is connected in the middle of the eighth heat source machine refrigerant pipe 118.
  • the first utilization equipment 200 causes heat exchange between the first load heat medium passing through the first utilization equipment 200 and the refrigerant.
  • the first utilization device 200 is an indoor unit of an air conditioner, and the first load heat medium is the air in the indoor space.
  • the first utilization device 200 includes a first utilization side heat exchanger 21, a first utilization side heat exchanger temperature sensor 22, a first load heat medium temperature sensor 23, and a first utilization side liquid tube. It has a temperature sensor 24, a first user-side liquid refrigerant pipe 210, and a first user-side gas refrigerant pipe 220.
  • the first user-side heat exchanger 21 causes heat exchange between the refrigerant passing through the flow path formed in the first user-side heat exchanger 21 and the first load heat medium.
  • the first utilization side heat exchanger 21 of the embodiment causes heat exchange between the air in the indoor space and the refrigerant.
  • the first utilization-side heat exchanger 21 of the embodiment has a fin-and-tube type, a first utilization-side heat exchanger main body in which a flow path through which a refrigerant flows is formed, a distributor, and a header. ..
  • the other end of the distributor is connected to one end of the first user-side heat exchanger body, and the header is connected to the other end of the first user-side heat exchanger body.
  • one end of the first utilization side heat exchanger 21 is one end of the distributor, and the other end is the header. Further, the air in the indoor space is blown to the first user side heat exchanger main body of the first user side heat exchanger 21 by a blower means such as a blower (not shown).
  • the first user-side heat exchanger temperature sensor 22 detects the temperature of the refrigerant flowing through the flow path formed in the first user-side heat exchanger 21.
  • the first utilization side heat exchanger temperature sensor 22 of the embodiment is arranged in the heat transfer tube or the heat radiation fin of the first utilization side heat exchanger main body.
  • the first load heat medium temperature sensor 23 detects the temperature of the load heat medium passing through the first utilization device 200.
  • the first load heat medium temperature sensor 23 of the embodiment is a temperature sensor that detects the air in the indoor space, and the air in the indoor space before the heat exchange is performed by the first user side heat exchanger 21 passes through. Placed in position.
  • the first user-side liquid tube temperature sensor 24 detects the temperature of the liquid refrigerant flowing into the first user-side heat exchanger 21.
  • the first utilization side liquid pipe temperature sensor 24 of the embodiment is arranged in the middle of the first utilization side liquid refrigerant pipe 210 described later.
  • One end of the first user-side liquid refrigerant pipe 210 is connected to the first connecting pipe 501, and the other end is connected to one end of the first user-side heat exchanger 21.
  • One end of the first user-side gas refrigerant pipe 220 is connected to the other end of the first user-side heat exchanger 21, and the other end is connected to the second connecting pipe 502.
  • the second utilization equipment 300 causes heat exchange between the second load heat medium passing through the second utilization equipment 300 and the refrigerant.
  • the second utilization equipment 300 is a heat source machine of the hot water supply device, and the second load heat medium passing through the second utilization equipment 300 is water.
  • the second utilization device 300 includes a second utilization side heat exchanger 31, a second utilization side liquid tube temperature sensor 32, a second load heat medium inflow side temperature sensor 33, and a second load heat medium.
  • the second utilization side heat exchanger 31 causes heat exchange between water and the refrigerant. Further, the second utilization side heat exchanger 31 of the embodiment is a plate type heat exchanger.
  • the plate-type heat exchanger is a heat exchanger in which metal heat transfer plates having through holes formed in the thickness direction are stacked in the thickness direction.
  • the second user-side liquid tube temperature sensor 32 detects the temperature of the liquid refrigerant flowing into the second user-side heat exchanger 31.
  • the second utilization side liquid pipe temperature sensor 32 of the embodiment is arranged in the middle of the second utilization side liquid refrigerant pipe 310 which will be described later.
  • the second load heat medium inflow side temperature sensor 33 detects the temperature of the second load heat medium flowing into the second utilization side heat exchanger 31.
  • the second load heat medium inflow side temperature sensor 33 of the embodiment is arranged in the middle of the second load heat medium inflow side pipe 330 described later.
  • the second load heat medium outflow side temperature sensor 34 detects the temperature of the second load heat medium flowing out from the second user side heat exchanger 31.
  • the second load heat medium outflow side temperature sensor 34 of the embodiment is arranged in the middle of the second load heat medium outflow side pipe 340 described later.
  • One end of the second utilization-side liquid refrigerant pipe 310 is connected to the third connecting pipe 503, and the other end is connected to one end of the refrigerant flow path of the second utilization-side heat exchanger 31. Will be done.
  • One end of the second utilization-side gas refrigerant pipe 320 is connected to the other end of the refrigerant flow path of the first utilization-side heat exchanger 21, and the other end is connected to the fourth connection pipe 504. Will be done.
  • One end of the second load heat medium inflow side pipe 330 is connected to a supply source of the second load heat medium (not shown), and the other end is the load heat of the second utilization side heat exchanger 31. It is connected to one end of the medium flow path.
  • the supply source of the second load heat medium supplies the second load heat medium to the second utilization equipment 300.
  • the second load heat medium is water
  • a water source such as a water supply or a tank in which water is stored may be mentioned as a supply source of the second load heat medium.
  • Second load Connected to the terminal using the heat medium.
  • the terminal for using the second load heat medium uses the second load heat medium heat exchanged by the second use device 300.
  • the second load heat medium is water, a faucet, a shower, a tank for storing heat exchanged water, or the like can be mentioned as a terminal for using the second load heat medium.
  • the remote controller 400 is a device for the user to check or operate the state of the refrigeration cycle apparatus 1000.
  • the remote controller 400 is connected to the control device 13 so that signals can be transmitted and received.
  • the remote controller 400 of the embodiment includes a display unit and an operation unit (not shown).
  • the display unit displays information related to the operation of the refrigeration cycle device 1000, such as the type of operation of the refrigeration cycle device 1000 or the set temperature of the first utilization device 200.
  • Information related to the operation of the refrigerating cycle device 1000 is input to the operation unit by the user's operation.
  • the display unit is realized by, for example, a liquid crystal display, and the operation unit is realized by a push button switch or the like. Further, the display unit and the operation unit may be integrated, such as by using a touch panel.
  • FIG. 2 is a hardware configuration diagram relating to the control device of the refrigeration cycle device according to the embodiment.
  • the control device 13 includes a processor 13a, a memory 13b, and a hardware interface 13c.
  • the processor 13a, the memory 13b, and the hardware interface 13c are connected so that information can be exchanged.
  • the processor 13a is a device that controls components of the refrigeration cycle device 1000 such as the compressor 1 or executes data processing by executing a program stored in the memory 13b.
  • a CPU Central Processing Unit
  • the memory 13b stores the program executed by the processor 13a and the data necessary for executing the program. Further, the memory 13b is used as a work area of the processor 13a.
  • a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory is used.
  • the hardware interface 13c transmits or receives signals and components included in the refrigeration cycle device 1000.
  • the hardware interface 13c and the components that transmit or receive the signal are connected to the hardware interface 13c so that the signal can be transmitted or received by wire or wirelessly.
  • a terminal block to which a signal line is connected a GPIO (General Purpose Input / Output), or a transmitter / receiver for transmitting or receiving radio waves for wireless communication is used.
  • FIG. 3 is a functional block diagram relating to the refrigeration cycle apparatus according to the embodiment. Next, a functional block diagram of the refrigeration cycle apparatus 1000 will be described with reference to FIG.
  • the control device 13 includes a receiving unit 50, a transmitting unit 51, a storage unit 52, and a control unit 53.
  • the receiving unit 50 and the transmitting unit 51 are realized by the hardware interface 43.
  • the storage unit 52 is realized by storing various information in the memory 42.
  • the control unit 53 is realized by the processor 41 performing processing according to the program stored in the memory 42.
  • the receiving unit 50 receives the signal transmitted to the control device 13.
  • the receiving unit 50 includes a compressor shell temperature sensor 7, a discharge temperature sensor 8, a discharge pressure sensor 9, a heat source side heat exchanger temperature sensor 10, a heat source heat medium temperature sensor 11, a heat source side liquid tube temperature sensor 12, and a first unit.
  • the sensor 33, the second load heat medium outflow side temperature sensor 34, and the remote control 400 are connected.
  • the receiving unit 50 receives a signal including information detected by each sensor or a signal including information related to the user's operation input from the operation unit of the remote controller 400.
  • the transmission unit 51 transmits a control signal generated by the control unit 53 or a signal including information regarding the operation of the refrigeration cycle device 1000 to an external component of the control device 13.
  • a compressor 1, a heat source side heat exchanger 2, a pressure reducing device 3, a switching valve group 4, and a remote controller 400 are connected to the transmission unit 51.
  • the compressor 1, the heat source side heat exchanger 2, the decompression device 3, and the switching valve group 4 operate in response to the control signal transmitted from the transmission unit 51.
  • the remote controller 400 receives a signal including information on the operation of the refrigeration cycle device 1000 transmitted from the transmission unit 51, and displays the information included in the signal on the display unit.
  • the storage unit 52 stores information necessary for the control unit 53 to generate a control signal.
  • the control unit 53 generates a control signal or a signal including information on the operation of the refrigeration cycle device 1000 based on the information included in the signal received by the reception unit 50 and the information stored in the storage unit 52.
  • FIG. 4 is a refrigerant circuit diagram during the first load heat medium cooling operation of the refrigeration cycle apparatus according to the embodiment.
  • the flow path through which the refrigerant circulates is shown by a thick line.
  • the control device 13 controls the pressure reducing device 3 and the switching valve group 4 so as to form the first load heat medium cooling refrigerant circulation circuit 601.
  • the opening degree of the first expansion valve 3a is maximized, and the opening degree of the second expansion valve 3b passes through the second expansion valve 3b.
  • the refrigerant has a predetermined opening degree for depressurizing, and the opening degree of the third expansion valve 3c is controlled to be minimized.
  • the first four-way valve 4a communicates with the A port 4aa and the B port 4ab, and the C port 4ac and the D port 4ad communicate with each other.
  • the second four-way valve 4b is controlled so that the A port 4ba and the B port 4bb communicate with each other and the C port 4bc and the D port 4bd communicate with each other.
  • the compressor 1 When the compressor 1 starts operation with the first load heat medium cooling refrigerant circulation circuit 601 formed, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 1.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 1 passes through the first heat source machine refrigerant pipe 111, the second four-way valve 4b, and the second heat source machine refrigerant pipe 112 to the heat source side heat exchanger 2. Inflow.
  • the heat source side heat exchanger 2 functions as a condenser. Therefore, the refrigerant passing through the heat source side heat exchanger 2 is cooled by the heat source heat medium. That is, in the embodiment, the refrigerant passing through the heat source side heat exchanger 2 is cooled by the air in the outdoor space. The cooled refrigerant becomes a high-pressure liquid-state refrigerant and flows out from the heat source side heat exchanger 2.
  • the refrigerant flowing out from the heat source side heat exchanger 2 passes through the third heat source machine refrigerant pipe 113. Further, although the first expansion valve 3a is provided in the middle of the third heat source machine refrigerant pipe 113, the opening of the first expansion valve 3a is the maximum, so that the first expansion valve 3a passes through the first expansion valve 3a. Refrigerant pressure does not decrease.
  • the opening degree of the second expansion valve 3b is a predetermined opening degree at which the refrigerant passing through the second expansion valve 3b is depressurized, and the opening of the third expansion valve 3c.
  • the degree is the minimum. Therefore, most of the refrigerant that has passed through the third heat source machine refrigerant pipe 113 flows into the fourth heat source machine refrigerant pipe 114, and leaks into the fifth heat source machine refrigerant pipe 115 from the third expansion valve 3c. A very small amount of refrigerant flows in. The refrigerant that has flowed into the fourth heat source machine refrigerant pipe 114 passes through the second expansion valve 3b.
  • the refrigerant that has passed through the second expansion valve 3b is depressurized and changes from a high-pressure liquid state to a low-pressure gas-liquid two-phase state. It passes through the refrigerant pipe 210 and flows into the first utilization side heat exchanger 21.
  • the first user side heat exchanger 21 functions as an evaporator. Therefore, the refrigerant passing through the first utilization side heat exchanger 21 is heated by the first load heat medium. The heated refrigerant becomes a gas state and flows out from the first utilization side heat exchanger 21. Further, the first load heat medium is cooled by the refrigerant passing through the first utilization side heat exchanger 21. That is, in the embodiment, the air in the interior space is cooled by the refrigeration cycle device 1000.
  • the refrigerant flowing out from the first user-side heat exchanger 21 is the first user-side gas refrigerant pipe 220, the second connecting pipe 502, the sixth heat source machine refrigerant pipe 116, the first four-way valve 4a, and the eighth. It passes through the heat source machine refrigerant pipe 118, the accumulator 5, and the ninth heat source machine refrigerant pipe 119, and is sucked from the suction port of the compressor 1. The refrigerant sucked into the compressor 1 is discharged again in a high temperature and high pressure gas state.
  • the refrigerant flowing out from the first user-side heat exchanger 21 is in a gas-liquid two-phase state, it passes through the accumulator 5 before being sucked into the compressor 1, so that the refrigerant is sucked into the compressor 1. Is a gas-state refrigerant.
  • the accumulator 5 can suppress the failure of the compressor 1 due to the inflow of the liquid refrigerant into the compressor 1.
  • the refrigerant circulates in the first load heat medium cooling refrigerant circulation circuit 601 so that the first load heat medium can be cooled in the first load heat medium cooling operation.
  • the first load heat medium cooling operation is a cooling operation for cooling the air in the interior space.
  • the high temperature and high pressure refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 2 to heat the parts constituting the heat source side heat exchanger 2. Therefore, the first load heat medium cooling operation is also a defrosting operation for melting the frost adhering to the heat source side heat exchanger 2.
  • the fifth heat source machine refrigerant pipe 115 includes the third connecting pipe 503 and the second utilization side liquid refrigerant pipe 310. It communicates with the refrigerant flow path of the second utilization side heat exchanger 31 through the pipe. Further, in a state where the flow path switching device forms the first load heat medium cooling refrigerant circulation circuit 601, the refrigerant flow paths of the second utilization side heat exchanger 31 are the second utilization side gas refrigerant pipe 320 and the second utilization side gas refrigerant pipe 320.
  • the eighth heat source machine refrigerant which is a flow path between the evaporator (corresponding to the first user-side heat exchanger 21) in the first load heat medium cooling refrigerant circulation circuit 601 and the suction port of the compressor 1. It communicates with the pipe 118.
  • the pressure of the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the eleventh heat source machine refrigerant pipe 121 is higher than the pressure of the eighth heat source machine refrigerant pipe 118.
  • the flow path switching device forms the first load heat medium cooling refrigerant circulation circuit 601
  • the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the eleventh heat source machine refrigerant pipe 121 is the eighth heat source. It flows into the machine refrigerant pipe 118 and joins the refrigerant circulating in the first load heat medium cooling refrigerant circulation circuit 601.
  • the refrigerant present in the second utilization side heat exchanger 31 when the second load heat medium heating refrigerant circulation circuit 603 and the cooling / heating simultaneous refrigerant circulation circuit 604 are switched to the first load heat medium cooling refrigerant circulation circuit 601.
  • the refrigerant leaked from the third expansion valve 3c to the fifth heat source machine refrigerant pipe 115 does not collect in the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the eleventh heat source machine refrigerant pipe 121.
  • the first load heat medium cooling refrigerant circulation circuit 601 merges with the circulating refrigerant.
  • FIG. 5 is a refrigerant circuit diagram during the first load heat medium heating operation of the refrigeration cycle apparatus according to the embodiment.
  • the flow path through which the refrigerant circulates is shown by a thick line.
  • the control device 13 controls the pressure reducing device 3 and the switching valve group 4 so as to form the first load heat medium heating refrigerant circulation circuit 602.
  • the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized.
  • the opening degree of the expansion valve 3b is controlled to be the maximum, and the opening degree of the third expansion valve 3c is controlled to be the minimum. Further, in the switching valve group 4 in the first load heat medium heating refrigerant circulation circuit 602, the first four-way valve 4a communicates with the A port 4aa and the D port 4ad, and the B port 4ab and the C port 4ac communicate with each other. The second four-way valve 4b is controlled so that the A port 4ba and the D port 4bd communicate with each other and the B port 4bb and the C port 4bb communicate with each other.
  • the compressor 1 When the compressor 1 starts operation with the first load heat medium heating refrigerant circulation circuit 602 formed, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 1.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 1 is the first heat source machine refrigerant pipe 111, the second four-way valve 4b, the tenth heat source machine refrigerant pipe 120, the first four-way valve 4a, and the sixth. It passes through the heat source machine refrigerant pipe 116, the second connecting pipe 502, and the first user-side gas refrigerant pipe 220, and flows into the first user-side heat exchanger 21.
  • the first user-side heat exchanger 21 functions as a condenser. Therefore, the refrigerant passing through the first utilization side heat exchanger 21 is cooled by the first load heat medium.
  • the cooled refrigerant becomes a high-pressure liquid-state refrigerant and flows out from the first utilization-side heat exchanger 21.
  • the first load heat medium is heated by the refrigerant passing through the first utilization side heat exchanger 21. That is, in the embodiment, the air in the interior space is heated by the refrigeration cycle device 1000.
  • the refrigerant flowing out of the first user-side heat exchanger 21 passes through the first user-side liquid refrigerant pipe 210, the first connecting pipe 501, and the fourth heat source machine refrigerant pipe 114. Further, although the second expansion valve 3b is provided in the middle of the fourth heat source machine refrigerant pipe 114, the opening of the second expansion valve 3b is the maximum, so that the second expansion valve 3b passes through the second expansion valve 3b. Refrigerant pressure does not decrease.
  • the opening degree of the first expansion valve 3a is a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the opening of the third expansion valve 3c.
  • the degree is the minimum. Therefore, most of the refrigerant that has passed through the fourth heat source machine refrigerant pipe 114 flows into the third heat source machine refrigerant pipe 113, and leaks into the fifth heat source machine refrigerant pipe 115 from the third expansion valve 3c. A very small amount of refrigerant flows in. The refrigerant flowing into the third heat source machine refrigerant pipe 113 passes through the first expansion valve 3a.
  • the refrigerant that has passed through the first expansion valve 3a is depressurized to change from a high-pressure liquid state to a low-pressure gas-liquid two-phase state, passes through the third heat source machine refrigerant pipe 113, and flows into the heat source side heat exchanger 2.
  • the heat source side heat exchanger 2 functions as an evaporator. Therefore, the refrigerant passing through the heat source side heat exchanger 2 is heated by the heat source heat medium. That is, in the embodiment, the refrigerant passing through the heat source side heat exchanger 2 is heated by the air in the outdoor space. The heated refrigerant becomes a gas state and flows out from the heat source side heat exchanger 2.
  • the refrigerant flowing out from the heat source side heat exchanger 2 is the second heat source machine refrigerant pipe 112, the second four-way valve 4b, the eleventh heat source machine refrigerant pipe 121, the eighth heat source machine refrigerant pipe 118, the accumulator 5, and the first. It passes through the heat source machine refrigerant pipe 119 and is sucked from the suction port of the compressor 1. The refrigerant sucked into the compressor 1 is discharged again in a high temperature and high pressure gas state.
  • the refrigerant circulates in the first load heat medium heating refrigerant circulation circuit 602, so that the first load heat medium can be heated in the first load heat medium heating operation.
  • the first load heat medium heating operation is a heating operation for heating the air in the interior space.
  • the fifth heat source machine refrigerant pipe 115 includes the third connecting pipe 503 and the second utilization side liquid refrigerant pipe 310. It communicates with the refrigerant flow path of the second utilization side heat exchanger 31 through the pipe. Further, in a state where the flow path switching device forms the first load heat medium heating refrigerant circulation circuit 602, the refrigerant flow paths of the second utilization side heat exchanger 31 are the second utilization side gas refrigerant pipe 320 and the second utilization side gas refrigerant pipe 320.
  • Evaporator in the first load heat medium heating refrigerant circulation circuit 602 (corresponding to the heat source side heat exchanger 2) via the fourth connecting pipe 504, the seventh heat source machine refrigerant pipe 117, and the first four-way valve 4a. It communicates with the eighth heat source machine refrigerant pipe 118, which is a flow path between the compressor 1 and the suction port of the compressor 1.
  • the pressure of the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the first four-way valve 4a is higher than the pressure of the eighth heat source machine refrigerant pipe 118. Therefore, in a state where the flow path switching device forms the first load heat medium heating refrigerant circulation circuit 602, the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the first four-way valve 4a is the first load.
  • the refrigerant existing in the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the first four-way valve 4a flows into the eighth heat source machine refrigerant pipe 118, and the first It merges with the refrigerant circulating in the load heat medium heating refrigerant circulation circuit 602. Therefore, the refrigerant present in the second utilization side heat exchanger 31 when the second load heat medium heating refrigerant circulation circuit 603 and the cooling / heating simultaneous refrigerant circulation circuit 604 are switched to the first load heat medium heating refrigerant circulation circuit 602.
  • the refrigerant leaking from the third expansion valve 3c to the fifth heat source machine refrigerant pipe 115 does not accumulate in the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the first four-way valve 4a, and the first It merges with the refrigerant circulating in the load heat medium heating refrigerant circulation circuit 602.
  • FIG. 6 is a refrigerant circuit diagram during a second load heat medium heating operation of the refrigeration cycle apparatus according to the embodiment.
  • the flow path through which the refrigerant circulates is shown by a thick line.
  • the control device 13 controls the pressure reducing device 3 and the switching valve group 4 so as to form the second load heat medium heating refrigerant circulation circuit 603.
  • the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized.
  • the opening degree of the expansion valve 3b is controlled to be the minimum, and the opening degree of the third expansion valve 3c is controlled to be the maximum. Further, in the switching valve group 4 in the second load heat medium heating refrigerant circulation circuit 603, the first four-way valve 4a communicates with the A port 4aa and the B port 4ab, and the C port 4ac and the D port 4ad communicate with each other. The second four-way valve 4b is controlled so that the A port 4ba and the D port 4bd communicate with each other and the B port 4bb and the C port 4bb communicate with each other.
  • the second load heat medium passes from the second load heat medium inflow side pipe 330 to the load heat medium flow path of the second utilization side heat exchanger 31 and is second. It is assumed that the load flows to the heat medium outflow side pipe 340.
  • the compressor 1 When the compressor 1 starts operation with the second load heat medium heating refrigerant circulation circuit 603 formed, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 1.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 1 is the first heat source machine refrigerant pipe 111, the second four-way valve 4b, the tenth heat source machine refrigerant pipe 120, the first four-way valve 4a, and the seventh. It passes through the heat source machine refrigerant pipe 117, the fourth connecting pipe 504, and the second user-side gas refrigerant pipe 320, and flows into the refrigerant flow path of the second user-side heat exchanger 31.
  • the second user side heat exchanger 31 functions as a condenser. Therefore, the refrigerant passing through the refrigerant flow path of the second utilization side heat exchanger 31 is cooled by the second load heat medium passing through the load heat medium flow path of the second utilization side heat exchanger 31.
  • the cooled refrigerant becomes a high-pressure liquid-state refrigerant and flows out from the refrigerant flow path of the second utilization-side heat exchanger 31.
  • the second load heat medium is heated by the refrigerant passing through the second utilization side heat exchanger 31. That is, in the embodiment, the water flowing into the load heat medium flow path of the second utilization side heat exchanger 31 is heated by the refrigeration cycle device 1000.
  • the refrigerant flowing out of the second user-side heat exchanger 31 passes through the second user-side liquid refrigerant pipe 310, the third connecting pipe 503, and the fifth heat source machine refrigerant pipe 115. Further, although the third expansion valve 3c is provided in the middle of the fifth heat source machine refrigerant pipe 115, the opening of the third expansion valve 3c is the maximum, so that the third expansion valve 3c passes through the third expansion valve 3c. Refrigerant pressure does not decrease.
  • the opening degree of the first expansion valve 3a is a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the second expansion valve 3b is opened.
  • the degree is the minimum. Therefore, most of the refrigerant that has passed through the fifth heat source machine refrigerant pipe 115 flows into the third heat source machine refrigerant pipe 113, and leaks into the fourth heat source machine refrigerant pipe 114 from the second expansion valve 3b. A very small amount of refrigerant flows in. The refrigerant flowing into the third heat source machine refrigerant pipe 113 passes through the first expansion valve 3a.
  • the refrigerant that has passed through the first expansion valve 3a is depressurized to change from a high-pressure liquid state to a low-pressure gas-liquid two-phase state, passes through the third heat source machine refrigerant pipe 113, and flows into the heat source side heat exchanger 2.
  • the heat source side heat exchanger 2 functions as an evaporator. Therefore, the refrigerant passing through the heat source side heat exchanger 2 is heated by the heat source heat medium. That is, in the embodiment, the refrigerant passing through the heat source side heat exchanger 2 is heated by the air in the outdoor space. The heated refrigerant becomes a gas state and flows out from the heat source side heat exchanger 2.
  • the refrigerant flowing out from the heat source side heat exchanger 2 is the second heat source machine refrigerant pipe 112, the second four-way valve 4b, the eleventh heat source machine refrigerant pipe 121, the eighth heat source machine refrigerant pipe 118, the accumulator 5, and the first. It passes through the heat source machine refrigerant pipe 119 and is sucked from the suction port of the compressor 1. The refrigerant sucked into the compressor 1 is discharged again in a high temperature and high pressure gas state.
  • the refrigerant circulates in the second load heat medium heating refrigerant circulation circuit 603, so that the second load heat medium can be heated in the second load heat medium heating operation.
  • the second load heat medium is water
  • the second load heat medium heating operation is a hot water supply operation in which water is heated to generate hot water.
  • the fourth heat source machine refrigerant pipe 114 has the first connecting pipe 501 and the first utilization side liquid refrigerant pipe 210. It communicates with the first user-side heat exchanger 21 via. Further, in a state where the flow path switching device forms the second load heat medium heating refrigerant circulation circuit 603, the refrigerant flow paths of the first utilization side heat exchanger 21 are the first utilization side gas refrigerant pipe 220 and the second.
  • piping is provided in the first load heat medium cooling refrigerant circulation circuit 601 through which the refrigerant flows through the first utilization side heat exchanger 21, the first load heat medium heating refrigerant circulation circuit 602, and the cooling heating simultaneous refrigerant circulation circuit 604 described later.
  • the pressure in the flow path communicating from the fourth heat source machine refrigerant pipe 114 to the first four-way valve 4a is higher than the pressure in the eighth heat source machine refrigerant pipe 118. Therefore, in a state where the flow path switching device forms the second load heat medium heating refrigerant circulation circuit 603, the flow path communicating from the fourth heat source machine refrigerant pipe 114 to the first four-way valve 4a is the second load.
  • the refrigerant existing in the flow path communicating from the fourth heat source machine refrigerant pipe 114 to the first four-way valve 4a flows into the eighth heat source machine refrigerant pipe 118, and the second It merges with the refrigerant circulating in the load heat medium heating refrigerant circulation circuit 603. Therefore, when the first load heat medium cooling refrigerant circulation circuit 601, the first load heat medium heating refrigerant circulation circuit 602, and the cooling / heating simultaneous refrigerant circulation circuit 604 are switched to the second load heat medium heating refrigerant circulation circuit 603, the first load heat medium cooling refrigerant circulation circuit 601 is switched to.
  • the refrigerant existing in the first utilization side heat exchanger 21 and the refrigerant leaking from the second expansion valve 3b to the fourth heat source machine refrigerant pipe 114 are the first four-way valve 4a from the fourth heat source machine refrigerant pipe 114. It does not accumulate in the flow path that communicates with the second load heat medium heating refrigerant circulation circuit 603 and joins the circulating refrigerant.
  • FIG. 7 is a refrigerant circuit diagram during simultaneous cooling and heating operation of the refrigeration cycle device according to the embodiment.
  • the flow path through which the refrigerant circulates is shown by a thick line.
  • the control device 13 controls the pressure reducing device 3 and the switching valve group 4 so as to form the cooling and heating simultaneous refrigerant circulation circuit 604.
  • the opening degree of the first expansion valve 3a is minimized, and the opening degree of the second expansion valve 3b is reduced by the refrigerant passing through the second expansion valve 3b.
  • the opening degree becomes a predetermined value, and the opening degree of the third expansion valve 3c is controlled to be maximized.
  • the first four-way valve 4a communicates with the A port 4aa and the B port 4ab, and the C port 4ac and the D port 4ad communicate with each other.
  • the valve 4b is controlled so that the A port 4ba and the D port 4bd communicate with each other and the B port 4bb and the C port 4bb communicate with each other.
  • the second load heat medium passes from the second load heat medium inflow side pipe 330 to the load heat medium flow path of the second utilization side heat exchanger 31, and the second load heat medium. It is assumed that the flow flows to the outflow side pipe 340.
  • the compressor 1 When the compressor 1 starts operation with the cooling / heating simultaneous refrigerant circulation circuit 604 formed, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 1.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 1 is the first heat source machine refrigerant pipe 111, the second four-way valve 4b, the tenth heat source machine refrigerant pipe 120, the first four-way valve 4a, and the seventh. It passes through the heat source machine refrigerant pipe 117, the fourth connecting pipe 504, and the second user-side gas refrigerant pipe 320, and flows into the refrigerant flow path of the second user-side heat exchanger 31.
  • the second user-side heat exchanger 31 functions as a condenser. Therefore, the refrigerant passing through the refrigerant flow path of the second utilization side heat exchanger 31 is cooled by the second load heat medium passing through the load heat medium flow path of the second utilization side heat exchanger 31.
  • the cooled refrigerant becomes a high-pressure liquid-state refrigerant and flows out from the refrigerant flow path of the second utilization-side heat exchanger 31.
  • the second load heat medium is heated by the refrigerant passing through the second utilization side heat exchanger 31. That is, in the embodiment, the water flowing into the load heat medium flow path of the second utilization side heat exchanger 31 is heated by the refrigeration cycle device 1000.
  • the refrigerant flowing out of the second user-side heat exchanger 31 passes through the second user-side liquid refrigerant pipe 310, the third connecting pipe 503, and the fifth heat source machine refrigerant pipe 115. Further, although the third expansion valve 3c is provided in the middle of the fifth heat source machine refrigerant pipe 115, the opening of the third expansion valve 3c is the maximum, so that the third expansion valve 3c passes through the third expansion valve 3c. Refrigerant pressure does not decrease.
  • the opening degree of the first expansion valve 3a is the minimum
  • the opening degree of the second expansion valve 3b is a predetermined opening degree at which the refrigerant passing through the second expansion valve 3b is depressurized. be. Therefore, most of the refrigerant that has passed through the fifth heat source machine refrigerant pipe 115 flows into the fourth heat source machine refrigerant pipe 114, and leaks into the third heat source machine refrigerant pipe 113 from the first expansion valve 3a. A very small amount of refrigerant flows in. The refrigerant that has flowed into the fourth heat source machine refrigerant pipe 114 passes through the second expansion valve 3b.
  • the refrigerant that has passed through the second expansion valve 3b is depressurized and changes from a high-pressure liquid state to a low-pressure gas-liquid two-phase state. It passes through the refrigerant pipe 210 and flows into the first utilization side heat exchanger 21.
  • the first user-side heat exchanger 21 functions as an evaporator. Therefore, the refrigerant passing through the first utilization side heat exchanger 21 is heated by the first load heat medium. The heated refrigerant becomes a gas state and flows out from the first utilization side heat exchanger 21. Further, the first load heat medium is cooled by the refrigerant passing through the first utilization side heat exchanger 21. That is, in the embodiment, the air in the interior space is cooled by the refrigeration cycle device 1000.
  • the refrigerant flowing out from the first user-side heat exchanger 21 is the first user-side gas refrigerant pipe 220, the second connecting pipe 502, the sixth heat source machine refrigerant pipe 116, the first four-way valve 4a, and the eighth. It passes through the heat source machine refrigerant pipe 118, the accumulator 5, and the ninth heat source machine refrigerant pipe 119, and is sucked from the suction port of the compressor 1. The refrigerant sucked into the compressor 1 is discharged again in a high temperature and high pressure gas state.
  • the refrigerant circulates in the cooling / heating simultaneous refrigerant circulation circuit 604, so that the first load heat medium can be cooled and the second load heat medium can be heated at the same time in the cooling / heating simultaneous refrigerant operation.
  • the simultaneous cooling and heating operation cools the air in the indoor space and heats the water to generate hot water. It is a simultaneous operation of cooling and hot water supply.
  • the third heat source machine refrigerant pipe 113 communicates with the heat source side heat exchanger 2.
  • the heat source side heat exchanger 2 is the second heat source machine refrigerant pipe 112, the second four-way valve 4b, and the eleventh heat source machine. Eighth heat source, which is a flow path between the evaporator (corresponding to the first heat exchanger 21 on the user side) in the cooling / heating simultaneous refrigerant circulation circuit 604 and the suction port of the compressor 1 via the refrigerant pipe 121.
  • the machine refrigerant pipe 118 It communicates with the machine refrigerant pipe 118.
  • the first load heat medium cooling refrigerant circulation circuit 601 where the refrigerant flows through the heat source side heat exchanger 2
  • the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating refrigerant circulation circuit 603 flow through the pipes. Due to factors such as pressure loss, the pressure in the flow path communicating from the third heat source machine refrigerant pipe 113 to the eleventh heat source machine refrigerant pipe 121 is higher than the pressure in the eighth heat source machine refrigerant pipe 118.
  • the flow path switching device forms the cooling / heating simultaneous refrigerant circulation circuit 604
  • the flow path communicating from the third heat source machine refrigerant pipe 113 to the eleventh heat source machine refrigerant pipe 121 is cooled / heated simultaneous refrigerant circulation.
  • the refrigerant existing in the flow path communicating from the third heat source machine refrigerant pipe 113 to the eleventh heat source machine refrigerant pipe 121 flows into the eighth heat source machine refrigerant pipe 118 to cool and heat the simultaneous refrigerant. It merges with the refrigerant circulating in the circulation circuit 604.
  • the heat source is used.
  • the refrigerant existing in the side heat exchanger 2 and the refrigerant leaking from the first expansion valve 3a to the third heat source machine refrigerant pipe 113 are the third heat source machine refrigerant pipe 113 to the eleventh heat source machine refrigerant pipe 121. It does not accumulate in the flow path that communicates with the refrigerant, but merges with the refrigerant that circulates in the cooling / heating simultaneous refrigerant circulation circuit 604.
  • the compressor 1 that sucks the refrigerant from the suction port, compresses the sucked refrigerant, and discharges the compressed refrigerant from the discharge port, the refrigerant, and the first heat medium
  • the first heat exchanger (corresponding to heat source side heat exchanger 2) and the refrigerant and the second heat medium (corresponding to the first load heat medium) that exchange heat with the heat source heat medium (corresponding to)
  • a third heat exchanger (corresponding to the second user-side heat exchanger 31) for heat exchange and a flow path switching device (pressure reducing device 3 and switching valve group 4) for switching the refrigerant circulation circuit in which the refrigerant circulates.
  • the flow path switching device is a first refrigerant circulation circuit (second), which is a refrigerant circulation circuit including a third heat exchanger in which the third heat exchanger functions as an evaporator or a condenser. (Applicable to the load heat medium heating refrigerant circulation circuit 603 or the cooling and heating simultaneous refrigerant circulation circuit 604), and the first heat exchanger or the second heat exchanger including the first heat exchanger and the second heat exchanger.
  • a second refrigerant circulation circuit (first load heat medium cooling refrigerant circulation circuit 601 or first load heat medium heating) which is a refrigerant circulation circuit in which any one of the above functions as an evaporator and does not include a third heat exchanger.
  • the third heat exchanger functions as the evaporator of the second refrigerant circulation circuit when the second refrigerant circulation circuit is formed by the flow path switching device by switching between (corresponding to the refrigerant circulation circuit 602).
  • Heat exchanger or second heat exchanger (when the second refrigerant circulation circuit is the first load heat medium cooling refrigerant circulation circuit 601 the first user side heat exchanger 21 corresponds, and the second refrigerant When the circulation circuit is the first load heat medium heating refrigerant circulation circuit 602, the heat source side heat exchanger 2 is applicable) and the flow path between the suction port of the compressor 1 is communicated with each other.
  • the third heat exchanger is between the heat exchanger functioning as the evaporator of the second refrigerant circulation circuit and the suction port of the compressor 1.
  • the refrigerant accumulated in the heat exchanger not included in the refrigerant circulation circuit flows between the evaporator and the suction port of the compressor by having a configuration communicating with the flow path of the above. It has the effect of suppressing a shortage of refrigerant by flowing into the road and merging with the refrigerant circulating in the refrigerant circulation circuit.
  • the first heat exchanger corresponds to the heat source side heat exchanger 2 and the second heat exchanger is the first user side heat exchanger 21.
  • the third heat exchanger corresponds to the second user side heat exchanger 31, but it is not limited to this, and the first to the first as in the first case and the second case below.
  • the case where the third heat exchanger corresponds to each heat exchanger of the refrigeration cycle apparatus 1000 is also included in one aspect of the present disclosure.
  • the first heat exchanger corresponds to the first user-side heat exchanger 21
  • the second heat exchanger corresponds to the second user-side heat exchanger 31, and the third heat.
  • the exchanger corresponds to the heat source side heat exchanger 2.
  • the first refrigerant circulation circuit corresponds to the first load heat medium cooling refrigerant circulation circuit 601 and the first load heat medium heating refrigerant circulation circuit 602 or the second load heat medium heating refrigerant circulation circuit 603.
  • the second refrigerant circulation circuit corresponds to the cooling / heating simultaneous refrigerant circulation circuit 604.
  • the first heat exchanger is the heat source side heat exchanger 2
  • the second heat exchanger is the second utilization side heat exchanger 31
  • the third heat exchanger is the first.
  • the first refrigerant circulation circuit corresponds to the first load heat medium cooling refrigerant circulation circuit 601 and the first load heat medium heating refrigerant circulation circuit 602 or the cooling heating simultaneous refrigerant circulation circuit 604.
  • the second load heat medium heating refrigerant circulation circuit 603 corresponds to the refrigerant circulation circuit.
  • the refrigerant accumulated in the heat exchanger not included in the refrigerant circulation circuit is collected in the suction ports of the evaporator and the compressor. It flows into the flow path between them and merges with the refrigerant circulating in the refrigerant circulation circuit, which has the effect of suppressing a refrigerant shortage.
  • the second utilization side heat exchanger 31 functions as a condenser, and the first utilization side heat exchanger 21 evaporates.
  • the refrigerant that functions as a container and has passed through the first user-side heat exchanger 21 can be switched to the cooling / heating simultaneous refrigerant circulation circuit 604 that is sucked from the suction port of the compressor 1, and the cooling / heating simultaneous refrigerant is switched by the flow path switching device.
  • the heat source side heat exchanger 2 is not included in the cooling / heating simultaneous refrigerant circulation circuit 604, and is not included in the cooling / heating simultaneous refrigerant circulation circuit 604.
  • the heat source side heat exchanger 2 is the first utilization side heat exchanger 21 and the suction port of the compressor 1.
  • the refrigerant accumulated in the heat source side heat exchanger 2 not included in the cooling / heating simultaneous refrigerant circulation circuit 604 is the first to have a configuration communicating with the flow path between the two.
  • the heat source side heat exchanger 2 functions as a condenser and the first user side heat exchanger 21 functions as an evaporator.
  • the refrigerant that has passed through the first utilization-side heat exchanger 21 can be switched to the first load heat medium cooling refrigerant circulation circuit 601 that is sucked from the suction port of the compressor 1, and is the first by the flow path switching device.
  • the second utilization side heat exchanger 31 is not included in the first load heat medium cooling refrigerant circulation circuit 601 and is not included in the first load heat medium cooling refrigerant circulation circuit 601.
  • the second utilization side heat exchanger 31 is the first utilization side heat exchanger 21.
  • the refrigerating cycle apparatus 1000 according to the embodiment is not included in the first load heat medium cooling refrigerant circulation circuit 601 by having a configuration communicating with the flow path between the compressor 1 and the suction port of the compressor 1.
  • the refrigerant accumulated in the user-side heat exchanger 31 flows into the flow path between the first user-side heat exchanger 21 and the suction port of the compressor 1 and circulates in the first load heat medium cooling refrigerant circulation circuit 601. It has the effect of merging with the refrigerant and suppressing the shortage of the refrigerant.
  • the refrigerating cycle device 1000 includes a flow path switching device including two four-way valves 4a and 4b and three expansion valves 3a, 3b and 3c.
  • the refrigerant is the discharge port of the compressor 1, the first heat exchanger 21 on the utilization side, and at least one of the three expansion valves (expansion valve). 3a and 3b are applicable), the heat source side heat exchanger 2 and the suction port of the compressor 1 circulate in this order, and one of the three expansion valves (corresponding to the expansion valve 3c) is the discharge port of the compressor 1 and the first.
  • the flow path between the second utilization side heat exchanger 31 is blocked, and the second utilization side heat exchanger 31 communicates with the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1.
  • the refrigerant is at least one of the discharge port of the compressor 1, the second heat exchanger 31 on the utilization side, and the three expansion valves.
  • One (corresponding to expansion valves 3a and 3c) the heat source side heat exchanger 2 and the suction port of the compressor 1 circulate in this order, and one of the three expansion valves (corresponding to the expansion valve 3b) is the compressor 1.
  • the flow path between the discharge port and the first utilization side heat exchanger 21 is blocked, and the first utilization side heat exchanger 21 is the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1.
  • the refrigerant is at least one of the discharge port of the compressor 1, the second heat exchanger 31 on the user side, and the three expansion valves.
  • One (corresponding to expansion valves 3b and 3c), the first heat exchanger 21 on the user side, and the suction port of the compressor 1 circulate in this order, and one of the three expansion valves (expansion valve 3a) is the compressor 1.
  • the flow path between the discharge port and the heat source side heat exchanger 2 is blocked, and the heat source side heat exchanger 2 communicates with the flow path between the first utilization side heat exchanger 21 and the suction port of the compressor 1.
  • the refrigerant is at least one of the discharge port of the compressor 1, the heat exchanger 2 on the heat source side, and three expansion valves. (Applicable to expansion valves 3a and 3b), the first heat exchanger 21 on the user side, and the suction port of the compressor 1 circulate in this order, and one of the three expansion valves (corresponding to the expansion valve 3c) is the compressor.
  • the refrigerating cycle apparatus 1000 has a first load heat medium cooling refrigerant circulation circuit 601, a first load heat medium heating refrigerant circulation circuit 602, and a second load heat.
  • the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit, and the refrigerant It has the effect of obtaining a configuration that can suppress the shortage.
  • the flow path switching device has a four-way valve (corresponding to the second four-way valve 4b), and the four-way valve has a second load heat.
  • the medium heating refrigerant circulation circuit 603 When the medium heating refrigerant circulation circuit 603 is formed, the discharge port of the compressor 1 and the second utilization side heat exchanger 31 are communicated with each other, and the heat source side heat exchanger 2 and the suction port of the compressor 1 are connected.
  • the first load heat medium cooling refrigerant circulation circuit 601 is formed, the discharge port of the compressor 1 and the heat source side heat exchanger 2 are connected to connect the second utilization side heat exchanger 31 and the first load.
  • the temperature of the hot water supply heat exchanger is higher when comparing the temperature of the hot water supply heat exchanger and the temperature of the outdoor heat exchanger immediately after switching from the hot water supply operation to the cooling operation refrigerant circulation circuit. ..
  • temperature and pressure are in a proportional relationship. Therefore, the pressure inside the hot water supply heat exchanger and the pressure inside the outdoor heat exchanger immediately after switching from the hot water supply operation to the cooling refrigerant circulation circuit are higher than the pressure inside the hot water supply heat exchanger.
  • a normal solenoid valve has a needle and a pedestal, and moves the needle closer to the pedestal to block the flow path, and moves the needle away from the pedestal to open the flow path.
  • an opening on the high pressure side and an opening on the low pressure side are set so that pressure is applied in the direction in which the needle presses the pedestal, and the second electromagnetic valve of Patent Document 1 is an opening communicating with the discharge port of the compressor. Is connected so that the opening on the high pressure side becomes the opening on the low pressure side and the opening communicating with the hot water supply heat exchanger becomes the opening on the low pressure side.
  • the pressure inside the hot water supply heat exchanger is higher than the pressure inside the outdoor heat exchanger, so the opening on the low pressure side of the second electromagnetic valve is high pressure. The pressure is higher than that of the opening on the side, and a back pressure is generated in the second electromagnetic valve.
  • the four types of refrigerant circulation circuits of the simultaneous heating refrigerant circulation circuit 604 can be switched, but the refrigerating cycle device is not limited to the first refrigerant circulation circuit including the heat exchanger corresponding to the third heat exchanger. It is only necessary to be able to switch between the refrigerant circulation circuit corresponding to the above and the refrigerant circulation circuit corresponding to the second refrigerant circulation circuit not including the heat exchanger corresponding to the third heat exchanger.
  • the memory 13b of the control device 13 is necessary for processing a program and a program for switching to a state in which the first load heat medium heating refrigerant circulation circuit 602 is formed or a state in which the second load heat medium heating refrigerant circulation circuit 603 is formed. Data is stored, and it is not necessary to store the program for switching to the state of forming the first load heat medium cooling refrigerant circulation circuit 601 and the cooling / heating simultaneous refrigerant circulation circuit 604, and the data necessary for processing the program. ..
  • the flow path switching device does not switch to the refrigerant circulation circuit for cooling the second heat medium.
  • the refrigeration cycle device may be switched to a refrigerant circulation circuit for cooling the second heat medium.
  • the second utilization device is used as a cooler of a constant temperature water tank for storing low temperature water inside, the heat source side heat exchanger 2 functions as a condenser, and the second utilization side heat exchanger 31 is used.
  • a refrigerant circulation circuit that functions as an evaporator or a refrigerant circulation circuit that causes the first user-side heat exchanger 21 to function as a condenser and the second user-side heat exchanger 31 to function as an evaporator may be formed.
  • the opening degree of the first expansion valve 3a becomes the maximum
  • the opening degree of the second expansion valve 3b becomes the minimum
  • the opening degree of the third expansion valve 3c becomes the third.
  • the first four-way valve 4a communicates with the A port 4aa and the B port 4ab, and the C port 4ac and the D port 4ad communicate with each other.
  • the four-way valve 4b is controlled so that the A port 4ba and the B port 4bb communicate with each other and the C port 4bc and the D port 4bd communicate with each other.
  • the opening degree of the first expansion valve 3a is minimized, the opening degree of the second expansion valve 3b is maximized, and the opening degree of the third expansion valve 3c is the third.
  • both the former refrigerant circulation circuit and the latter refrigerant circulation circuit correspond to a heat exchanger not included in the refrigerant circulation circuit (in the case of the former refrigerant circulation circuit, the first user-side heat exchanger 21 corresponds to the latter.
  • the heat source side heat exchanger 2 corresponds
  • the heat exchanger functioning as the evaporator of the refrigerant circulation circuit both correspond to the second user side heat exchanger 31
  • the compressor 1 Since it is connected to the flow path between the suction port and the refrigerating cycle device in which the former refrigerant circulation circuit and the latter refrigerant circulation circuit are formed, it is possible to obtain a configuration capable of suppressing a refrigerant shortage. Play.
  • FIG. 8 is a refrigerant circuit diagram of the refrigeration cycle device according to the first modification of the embodiment.
  • the refrigerating cycle apparatus 1001 according to the first modification of the embodiment has two instead of the third expansion valve 3c in the middle of the fifth heat source machine refrigerant pipe 115. The difference is that the square valve 15 is provided. Since the refrigerant circuit of the refrigerating cycle device 1001 according to the first modification of the embodiment is the same as the refrigerant circuit of the refrigerating cycle device 1000 of the embodiment except for the above-mentioned differences, the same part will be described. Is omitted.
  • the two-way valve 15 is a valve capable of opening and closing the flow path, and is controlled by the control device 13.
  • the refrigerating cycle apparatus 1001 according to the first modification of the embodiment has the same as the refrigerating cycle apparatus 1000 according to the embodiment, the first load heat medium cooling refrigerant circulation circuit 601 and the first load heat medium heating refrigerant circulation.
  • the circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling / heating simultaneous refrigerant circulation circuit 604 can be formed.
  • the opening degree of the first expansion valve 3a becomes maximum
  • the opening degree of the second expansion valve 3b reduces the pressure of the refrigerant passing through the second expansion valve 3b.
  • a predetermined opening degree is reached, and the two-way valve 15 is controlled so as to block the flow path.
  • the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the opening degree of the second expansion valve 3b is set to a predetermined opening degree. The opening degree is maximized, and the two-way valve 15 is controlled to block the flow path.
  • the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the opening degree of the second expansion valve 3b is increased. The opening degree is minimized and the two-way valve 15 is controlled to open the flow path.
  • the opening degree of the first expansion valve 3a is minimized, and the opening degree of the second expansion valve 3b is a predetermined opening degree at which the refrigerant passing through the second expansion valve 3b is depressurized. , And the two-way valve 15 is controlled to open the flow path.
  • the refrigerating cycle apparatus 1000 according to the embodiment is the same as the refrigerating cycle apparatus 1000.
  • One load heat medium cooling refrigerant circulation circuit 601, a first load heat medium heating refrigerant circulation circuit 602, a second load heat medium heating refrigerant circulation circuit 603, and a cooling / heating simultaneous refrigerant circulation circuit 604 can be formed. It has the same effect.
  • the refrigeration cycle apparatus 1000 even when the two-way valve 15 is provided in place of the first expansion valve 3a or the two-way valve 15 is provided in place of the second expansion valve 3b, the refrigeration cycle apparatus 1000 according to the embodiment is provided. Similarly, the first load heat medium cooling refrigerant circulation circuit 601, the first load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling / heating simultaneous refrigerant circulation circuit 604 are formed. It can have the same effect.
  • the flow path switching device includes two four-way valves (four-way valves 4a and 4b) and two expansion valves (expansion).
  • a first load heat medium heating refrigerant circulation circuit 602 is formed by a flow path switching device including valves 3a, 3b, 3c) and a two-way valve 15, the refrigerant is a compressor.
  • Heat exchanger 31 on the user side, at least one of the two expansion valves, heat exchanger 2 on the heat source side, and the suction port of the compressor 1 circulate in this order, and either the two-way valve 15 or the two expansion valves.
  • One is to block the flow path between the discharge port of the compressor 1 and the first utilization side heat exchanger 21, and the first utilization side heat exchanger 21 is the heat source side heat exchanger 2 and the compressor 1.
  • a cooling / heating simultaneous refrigerant circulation circuit 604 is formed by a flow path switching device that communicates with the flow path between the suction port, the refrigerant is the discharge port of the compressor 1, the second heat exchanger 31, 2 on the user side.
  • At least one of the two expansion valves, the first heat exchanger 21 on the user side, and the suction port of the compressor 1 circulate in this order, and one of the two-way valve or the two expansion valves discharges from the compressor 1.
  • the flow path between the outlet and the heat source side heat exchanger 2 is blocked, and the heat source side heat exchanger 2 communicates with the flow path between the first utilization side heat exchanger 21 and the suction port of the compressor 1.
  • the refrigerant circulation circuit 601 is formed by the flow path switching device, the refrigerant is at least one of the discharge port of the compressor 1, the heat source side heat exchanger 2, and the two expansion valves.
  • the first utilization side heat exchanger 21 and the suction port of the compressor 1 circulate in this order, and one of the two-way valve 15 or the two expansion valves is the discharge port of the compressor 1 and the second utilization side heat.
  • the flow path between the exchanger 31 is blocked, and the second utilization side heat exchanger 31 communicates with the flow path between the first utilization side heat exchanger 21 and the suction port of the compressor 1. Even if it has, it has the following effects. That is, by having the additional configuration, the first load heat medium cooling refrigerant circulation circuit 601, the first load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and cooling heating are provided.
  • the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit, and the refrigerant shortage can be suppressed. It produces the effects that can be obtained.
  • FIG. 9 is a refrigerant circuit diagram of the refrigeration cycle device according to the second modification of the embodiment.
  • the refrigerating cycle apparatus 1002 according to the second modification of the embodiment does not have the second four-way valve 4b as compared with the refrigerating cycle apparatus 1000 of the embodiment, and the first heat source machine refrigerant pipe 111 And the tenth heat source machine refrigerant pipe 120 communicate with each other, and the first heat source machine refrigerant pipe 111 and the tenth heat source machine refrigerant pipe 120 communicate with each other.
  • the refrigerant circuit of the refrigerating cycle device 1002 according to the second modification of the embodiment is the same as the refrigerant circuit of the refrigerating cycle device 1000 of the embodiment except for the above-mentioned differences, the same part will be described. Is omitted.
  • the refrigerating cycle apparatus 1002 according to the second modification of the embodiment cannot form the first load heat medium cooling refrigerant circulation circuit 601 but is the same as the refrigerating cycle apparatus 1000 according to the embodiment.
  • the load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling / heating simultaneous refrigerant circulation circuit 604 can be formed. Therefore, similarly to the refrigerating cycle device 1000 of the embodiment, the refrigerating cycle device 1002 according to the second modification of the embodiment has the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating.
  • the refrigerant circulation circuit 603 and the cooling / heating simultaneous refrigerant circulation circuit 604 are formed, the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit to reduce the refrigerant shortage. It has an effect that can be suppressed.
  • the refrigeration cycle device 1002 according to the second modification of the embodiment also has the first expansion valve 3a and the second expansion valve. Even if any one of 3b and the third expansion valve 3c is replaced with the two-way valve 15, the first load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling and heating simultaneous refrigerant A circulation circuit 604 can be formed.
  • the flow path switching device includes a four-way valve 4a, two expansion valves, and a two-way valve, as in the refrigeration cycle device 1002 according to the second modification of the embodiment.
  • the refrigerant is at least one of the discharge port of the compressor 1, the first heat exchanger 21 on the user side, and two expansion valves.
  • the heat source side heat exchanger 2 and the suction port of the compressor 1 circulate in this order, and one of the two-way valve 15 or the two expansion valves is the discharge port of the compressor 1 and the second utilization side heat exchanger 31.
  • the second utilization side heat exchanger 31 communicates with the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1 by blocking the flow path between the two, and is seconded by the flow path switching device.
  • the refrigerant is the discharge port of the compressor 1, the second utilization side heat exchanger 31, at least one of the two expansion valves, and the heat source side heat exchanger. 2.
  • Circulating in the order of the suction port of the compressor 1, one of the two-way valve 15 or the two expansion valves is a flow path between the discharge port of the compressor 1 and the first heat exchanger 21 on the utilization side.
  • the first utilization side heat exchanger 21 communicates with the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1, and the cooling and heating simultaneous refrigerant circulation circuit 604 is provided by the flow path switching device.
  • the refrigerant is the discharge port of the compressor 1, the second heat exchanger 31 on the user side, at least one of the two expansion valves, the heat exchanger 21 on the first user side, and the suction of the compressor 1.
  • Circulating in the order of the ports either one of the two-way valve or the two expansion valves blocks the flow path between the discharge port of the compressor 1 and the heat source side heat exchanger 2, and the heat source side heat exchanger 2 blocks the flow path.
  • the following effects are obtained even when the heat exchanger 21 on the first user side and the suction port of the compressor 1 are configured to communicate with each other. That is, by having the additional configuration, when the first load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling / heating simultaneous refrigerant circulation circuit 604 are formed, respectively.
  • the refrigerant accumulated in the heat exchanger which is not included in the refrigerant circulation circuit of the above, merges with the refrigerant circulating in the refrigerant circulation circuit, and has an effect of obtaining a configuration capable of suppressing a refrigerant shortage.
  • FIG. 10 is a refrigerant circuit diagram of the refrigeration cycle device according to the third modification of the embodiment.
  • the refrigerating cycle apparatus 1003 according to the third modification of the embodiment does not have the second four-way valve 4b as compared with the refrigerating cycle apparatus 1000 of the embodiment, and the first heat source machine refrigerant pipe 111 And the tenth heat source machine refrigerant pipe 120 communicate with each other, the first heat source machine refrigerant pipe 111 and the tenth heat source machine refrigerant pipe 120 communicate with each other, and a two-way valve instead of the second expansion valve 3b.
  • the difference is that 16 is provided and a two-way valve 17 is provided instead of the third expansion valve 3c.
  • the refrigerant circuit of the refrigerating cycle device 1003 according to the third modification of the embodiment is the same as the refrigerant circuit of the refrigerating cycle device 1000 of the embodiment except for the above-mentioned differences, the same part will be described. Is omitted. Further, since the two-way valves 16 and 17 are the same as the two-way valves 15 described in the first modification of the embodiment, the description thereof will be omitted.
  • the refrigerating cycle apparatus 1003 cannot form the first load heat medium cooling refrigerant circulation circuit 601 and the cooling / heating simultaneous refrigerant circulation circuit 604, but the refrigerating according to the embodiment. Similar to the cycle device 1000, the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating refrigerant circulation circuit 603 can be formed. In the first load heat medium heating refrigerant circulation circuit 602, the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the two-way valve 16 is a flow path. Is opened, and the two-way valve 17 is controlled to block the flow path.
  • the refrigerating cycle device 1003 has the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating.
  • the refrigerant circulation circuit 603 is formed, the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit, and has an effect of suppressing the refrigerant shortage. ..
  • an expansion valve 3a for reducing the pressure of the refrigerant is provided, and the flow path switching device is a four-way valve 4a and two two-way.
  • the refrigerant is the discharge port of the compressor 1, the first utilization side heat exchanger 21, and the like.
  • the expansion valve 3a, the heat source side heat exchanger 2, and the suction port of the compressor 1 circulate in this order, and the two-way valve 17 passes through the flow path between the discharge port of the compressor 1 and the second utilization side heat exchanger 31.
  • the second utilization side heat exchanger 31 communicates with the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1, and the second load heat medium heating refrigerant circulation is performed by the flow path switching device.
  • the refrigerant circulates in the order of the discharge port of the compressor 1, the second heat exchanger 31 on the user side, the expansion valve 3a, the heat exchanger 2 on the heat source side, and the suction port of the compressor 1.
  • the square valve 16 closes the flow path between the discharge port of the compressor 1 and the first utilization side heat exchanger 21, and the first utilization side heat exchanger 21 is the heat source side heat exchanger 2 and the compressor 1.
  • FIG. 11 is a refrigerant circuit diagram of the refrigeration cycle device according to the fourth modification of the embodiment.
  • the refrigerating cycle apparatus 1003 according to the fourth modification of the embodiment does not have the second four-way valve 4b as compared with the refrigerating cycle apparatus 1000 of the embodiment, and the first heat source machine refrigerant pipe 111 And the tenth heat source machine refrigerant pipe 120 communicate with each other, and the first heat source machine refrigerant pipe 111 and the tenth heat source machine refrigerant pipe 120 communicate with each other, and the first expansion valve 3a is not provided. ..
  • the refrigerant circuit of the refrigerating cycle device 1004 according to the fourth modification of the embodiment is the same as the refrigerant circuit of the refrigerating cycle device 1000 of the embodiment except for the above-mentioned differences, the same part will be described. Is omitted.
  • the refrigerating cycle apparatus 1004 cannot form the first load heat medium cooling refrigerant circulation circuit 601 and the cooling / heating simultaneous refrigerant circulation circuit 604, but the refrigerating according to the embodiment. Similar to the cycle device 1000, the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating refrigerant circulation circuit 603 can be formed. In the first load heat medium heating refrigerant circulation circuit 602, the opening degree of the second expansion valve 3b becomes a predetermined opening degree at which the refrigerant passing through the second expansion valve 3b is depressurized, and the third expansion valve 3c has an opening degree. It is controlled so that the opening degree is minimized.
  • the opening degree of the second expansion valve 3b is minimized, and the opening degree of the third expansion valve 3c reduces the pressure of the refrigerant passing through the third expansion valve 3c. It is controlled to have a predetermined opening. Therefore, similarly to the refrigerating cycle device 1000 of the embodiment, the refrigerating cycle device 1004 according to the fourth modification of the embodiment has the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating.
  • the refrigerant circulation circuit 603 When the refrigerant circulation circuit 603 is formed, the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit, and has an effect of suppressing the refrigerant shortage. ..
  • the flow path switching device includes a four-way valve 4a and a first expansion valve (second expansion valve 3b).
  • the refrigerant is a compressor.
  • the discharge port of No. 1, the first utilization side heat exchanger 21, the first expansion valve, the heat source side heat exchanger 2, and the suction port of the compressor 1 circulate in this order, and the second expansion valve is the discharge port of the compressor 1.
  • the flow path between the heat exchanger 31 and the second utilization side heat exchanger 31 is blocked, and the second utilization side heat exchanger 31 is a flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1.
  • the refrigerant is the discharge port of the compressor 1, the second utilization side heat exchanger 31, the second expansion valve, and the like.
  • the heat source side heat exchanger 2 and the suction port of the compressor 1 circulate in this order, and the first expansion valve blocks the flow path between the discharge port of the compressor 1 and the first utilization side heat exchanger 21.
  • the first utilization-side heat exchanger 21 has the following effects even when it has a configuration in which it communicates with the flow path between the heat source-side heat exchanger 2 and the suction port of the compressor 1. That is, by having the additional configuration, when the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating refrigerant circulation circuit 603 are formed, they are not included in the respective refrigerant circulation circuits.
  • the refrigerant accumulated in the heat exchanger merges with the refrigerant circulating in the refrigerant circulation circuit, which has the effect of obtaining a configuration capable of suppressing a refrigerant shortage.

Abstract

The present disclosure obtains a refrigeration cycle device in which refrigerant deficiencies occurring when a refrigerant circulation circuit is switched are suppressed. A refrigeration cycle device according to one embodiment of the present disclosure comprises a compressor 1, a heat-source-side heat exchanger 2, a first usage-side heat exchanger 21, a second usage-side heat exchanger 31, and a flow path switching device. The flow path switching device switches between: a first refrigerant circulation circuit, which includes the second usage-side heat exchanger 31, and in which the second usage-side heat exchanger 31 functions as either an evaporator or a condenser; and a second refrigerant circulation circuit, which includes the heat-source-side heat exchanger 2 and the first usage-side heat exchanger 21 but does not include the second usage-side heat exchanger 31, and in which either the heat-source-side heat exchanger 2 or the first usage-side heat exchanger 21 functions as an evaporator. When the second refrigerant circulation circuit is formed, the second usage-side heat exchanger 31 communicates with a flow path between the heat-source-side heat exchanger 2 and the compressor, and also communicates with a flow path between the compressor 1 and the heat exchanger functioning as the evaporator of the second refrigerant circulation circuit.

Description

冷凍サイクル装置Refrigeration cycle device
 本開示は冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 従来、例えば特許文献1のように、室外空間の空気などの熱源熱媒体と冷媒との間で熱交換を行う熱源側熱交換器(特許文献1の室外側熱交換器が該当)と、室内空間の空気などの第一の負荷熱媒体と熱交換を行う第一の利用側熱交換器(特許文献1の室内側空調用熱交換器が該当)と、水などの第二の負荷熱媒体と熱交換を行う第二の利用側熱交換器(特許文献1の給湯熱交換器が該当)とを有する冷凍サイクル装置が知られている。このような冷凍サイクル装置は流路を切り替える四方弁と電磁弁を有し、四方弁と電磁弁が切り替わることによって第一の負荷熱媒体を加熱する冷媒循環回路(特許文献1の暖房運転の冷媒が流れる部分が該当)と第二の負荷熱媒体を加熱する冷媒循環回路(特許文献2の給湯運転の冷媒が流れる部分が該当)とが切り替わる。 Conventionally, as in Patent Document 1, for example, a heat source side heat exchanger (corresponding to the outdoor heat exchanger of Patent Document 1) that exchanges heat between a heat source heat medium such as air in an outdoor space and a refrigerant, and an indoor room. A first user-side heat exchanger that exchanges heat with a first load heat medium such as air in a space (corresponding to the heat exchanger for indoor air conditioning in Patent Document 1) and a second load heat medium such as water. A refrigerating cycle apparatus having a second user-side heat exchanger (corresponding to the hot water supply heat exchanger of Patent Document 1) that exchanges heat with the heat is known. Such a refrigerating cycle device has a four-way valve and an electromagnetic valve for switching the flow path, and a refrigerant circulation circuit for heating the first load heat medium by switching between the four-way valve and the electromagnetic valve (refrigerant for heating operation of Patent Document 1). (Applicable to the portion through which the refrigerant flows) and the refrigerant circulation circuit for heating the second load heat medium (corresponding to the portion through which the refrigerant in the hot water supply operation of Patent Document 2 flows) are switched.
国際公開第2017/203655号International Publication No. 2017/20365
 特許文献1の冷凍サイクル装置では、第一の負荷熱媒体を加熱する冷媒循環回路を形成した状態では第二の利用側熱交換器を含む両端が閉塞された流路(特許文献1の第2電磁弁から第3減圧装置までの流路が相当)を有し、第二の負荷熱媒体を加熱する冷媒循環回路を形成した状態では第一の利用側熱交換器を含む両端が閉塞された流路(特許文献1の第1電磁弁から第2減圧装置までの流路が相当)を有する。このように熱交換器を含む両端が閉塞した流路を有すると、冷媒循環回路を切り替えた際に両端が閉塞した流路に含まれる熱交換器に冷媒が溜まり込んでいた場合、溜まり込んでいる冷媒は運転に用いることができず、冷媒不足が生じてしまう。 In the refrigeration cycle apparatus of Patent Document 1, in a state where a refrigerant circulation circuit for heating the first load heat medium is formed, a flow path including a second utilization side heat exchanger is closed at both ends (second of Patent Document 1). In a state where the flow path from the electromagnetic valve to the third decompression device is equivalent) and a refrigerant circulation circuit for heating the second load heat medium is formed, both ends including the first utilization side heat exchanger are closed. It has a flow path (corresponding to the flow path from the first electromagnetic valve of Patent Document 1 to the second decompression device). When the flow path including the heat exchanger is closed at both ends, if the refrigerant is accumulated in the heat exchanger included in the flow path with both ends closed when the refrigerant circulation circuit is switched, the refrigerant is accumulated. The existing refrigerant cannot be used for operation, resulting in a shortage of refrigerant.
 本開示は、冷媒循環回路を切り替えた際の冷媒不足を抑制する冷凍サイクル装置を得ることを目的とする。 The object of the present disclosure is to obtain a refrigerating cycle device that suppresses a refrigerant shortage when the refrigerant circulation circuit is switched.
 本開示の一態様に係る冷凍サイクル装置は、冷媒を吸入口から吸入し吸入した冷媒を圧縮し圧縮した冷媒を吐出口から吐出する圧縮機と、冷媒と第一の熱媒体との間で熱交換を行わせる第一の熱交換器と、冷媒と第二の熱媒体との間で熱交換を行わせる第二の熱交換器と、冷媒と第三の熱媒体との間で熱交換を行わせる第三の熱交換器と、冷媒が循環する冷媒循環回路を切り替える流路切替装置と、を備え、流路切替装置は、第三の熱交換器を含み第三の熱交換器が蒸発器または凝縮器として機能する冷媒循環回路である第一の冷媒循環回路と、第一の熱交換器と第二の熱交換器を含み第一の熱交換器または第二の熱交換器のいずれか一つが蒸発器として機能し第三の熱交換器を含まない冷媒循環回路である第二の冷媒循環回路と、を切り替え、流路切替装置によって第二の冷媒循環回路が形成される場合において第三の熱交換器は第二の冷媒循環回路の蒸発器として機能する熱交換器と圧縮機の吸入口との間の流路と連通する。 The refrigeration cycle apparatus according to one aspect of the present disclosure is a heat between a compressor that sucks a refrigerant from a suction port, compresses the sucked refrigerant, and discharges the compressed refrigerant from a discharge port, and heat between the refrigerant and the first heat medium. A first heat exchanger that exchanges heat, a second heat exchanger that exchanges heat between the refrigerant and the second heat medium, and heat exchange between the refrigerant and the third heat medium. A third heat exchanger to be performed and a flow path switching device for switching a refrigerant circulation circuit in which the refrigerant circulates are provided, and the flow path switching device includes the third heat exchanger and the third heat exchanger evaporates. Either a first heat exchanger or a second heat exchanger that includes a first heat exchanger and a second heat exchanger and a first refrigerant circulation circuit that is a refrigerant circulation circuit that functions as a vessel or condenser. When one of them switches between the second refrigerant circulation circuit, which is a refrigerant circulation circuit that functions as an evaporator and does not include the third heat exchanger, and the flow path switching device forms the second refrigerant circulation circuit. The third heat exchanger communicates with the flow path between the heat exchanger, which functions as the evaporator of the second refrigerant circulation circuit, and the suction port of the compressor.
 本開示の一態様に係る冷凍サイクル装置は、第三の熱交換器を含まない第二の冷媒循環回路を形成する場合であっても第三の熱交換器に溜まり込んだ冷媒は蒸発器として機能する熱交換器と圧縮機の吸入口との間の流路に流れ込み、冷媒循環回路を切り替えた際の冷媒不足を抑制することができる。 In the refrigeration cycle apparatus according to one aspect of the present disclosure, even when the second refrigerant circulation circuit not including the third heat exchanger is formed, the refrigerant accumulated in the third heat exchanger can be used as an evaporator. It can flow into the flow path between the functioning heat exchanger and the suction port of the compressor, and can suppress the refrigerant shortage when the refrigerant circulation circuit is switched.
実施の形態に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置の制御装置に関するハードウェア構成図である。It is a hardware block diagram about the control apparatus of the refrigeration cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置に関する機能ブロック図である。It is a functional block diagram about the refrigerating cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置の第一の負荷熱媒体冷却運転時の冷媒回路図である。It is a refrigerant circuit diagram at the time of the first load heat medium cooling operation of the refrigeration cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置の第一の負荷熱媒体加熱運転時の冷媒回路図である。It is a refrigerant circuit diagram at the time of the first load heat medium heating operation of the refrigeration cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置の第二の負荷熱媒体加熱運転時の冷媒回路図である。It is a refrigerant circuit diagram at the time of the second load heat medium heating operation of the refrigerating cycle apparatus which concerns on embodiment. 実施の形態に係る冷凍サイクル装置の冷却加熱同時運転時の冷媒回路図である。It is a refrigerant circuit diagram at the time of simultaneous cooling and heating operation of the refrigerating cycle apparatus which concerns on embodiment. 実施の形態の第一の変形例に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating cycle apparatus which concerns on the 1st modification of embodiment. 実施の形態の第二の変形例に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating cycle apparatus which concerns on the 2nd modification of embodiment. 実施の形態の第三の変形例に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating cycle apparatus which concerns on the 3rd modification of embodiment. 実施の形態の第四の変形例に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating cycle apparatus which concerns on the 4th modification of embodiment.
 本開示の実施の形態に係る冷凍サイクル装置について図面に基づいて説明する。なお、本開示は以下の実施の形態のみに限定されることはなく、本開示の趣旨を逸脱しない範囲で変形または省略することが可能である。さらに、各々の実施の形態ならびに変形例に係る冷凍サイクル装置の構成ならびに付加的な構成を適宜組み合わせることも可能である。また、各図において共通する要素には同一の符号を付して重複する説明を省略する。 The refrigeration cycle apparatus according to the embodiment of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be modified or omitted without departing from the spirit of the present disclosure. Further, it is also possible to appropriately combine the configuration and the additional configuration of the refrigeration cycle apparatus according to each embodiment and the modification. Further, the same reference numerals are given to common elements in each figure, and duplicate description will be omitted.
実施の形態.
 図1は実施の形態に係る冷凍サイクル装置の冷媒回路図である。冷凍サイクル装置1000は、熱源機100と、第一の利用機器200と、第二の利用機器300と、リモコン400と、第一の連結配管501と、第二の連結配管502と、第三の連結配管503と、第四の連結配管504と、を備える。冷凍サイクル装置1000には、熱源機100と第一の利用機器200と第二の利用機器300と第一の連結配管501と第二の連結配管502と第三の連結配管503と第四の連結配管504とによって冷媒が循環する冷媒循環回路600が形成される。
Embodiment.
FIG. 1 is a refrigerant circuit diagram of the refrigeration cycle device according to the embodiment. The refrigeration cycle device 1000 includes a heat source machine 100, a first utilization device 200, a second utilization device 300, a remote controller 400, a first connection pipe 501, a second connection pipe 502, and a third. A connecting pipe 503 and a fourth connecting pipe 504 are provided. The refrigeration cycle device 1000 includes a heat source machine 100, a first utilization device 200, a second utilization device 300, a first connection pipe 501, a second connection pipe 502, a third connection pipe 503, and a fourth connection. A refrigerant circulation circuit 600 through which the refrigerant circulates is formed by the pipe 504.
 また、冷凍サイクル装置1000は、冷媒循環回路600を切り替えることで、四種類の運転を行うことができ、それぞれ第一の負荷熱媒体冷却運転、第一の負荷熱媒体加熱運転、第二の負荷熱媒体加熱運転、冷却加熱同時運転と称する。冷媒循環回路600は四種類の運転のそれぞれで異なるため、区別して説明する場合には第一の負荷熱媒体冷却運転の時の冷媒循環回路600を第一の負荷熱媒体冷却冷媒循環回路601、第一の負荷熱媒体加熱運転の時の冷媒循環回路600を第一の負荷熱媒体加熱冷媒循環回路602、第二の負荷熱媒体加熱運転の時の冷媒循環回路600を第二の負荷熱媒体加熱冷媒循環回路603、冷却加熱同時運転の時の冷媒循環回路600を冷却加熱同時冷媒循環回路604とそれぞれ称する。 Further, the refrigerating cycle device 1000 can perform four types of operations by switching the refrigerant circulation circuit 600, which are the first load heat medium cooling operation, the first load heat medium heating operation, and the second load, respectively. It is called heat medium heating operation and cooling heating simultaneous operation. Since the refrigerant circulation circuit 600 is different for each of the four types of operation, when separately described, the refrigerant circulation circuit 600 at the time of the first load heat medium cooling operation is referred to as the first load heat medium cooling refrigerant circulation circuit 601. The refrigerant circulation circuit 600 during the first load heat medium heating operation is referred to as the first load heat medium heating refrigerant circulation circuit 602, and the refrigerant circulation circuit 600 during the second load heat medium heating operation is referred to as the second load heat medium. The heating refrigerant circulation circuit 603 and the refrigerant circulation circuit 600 at the time of simultaneous cooling and heating operation are referred to as cooling and heating simultaneous refrigerant circulation circuit 604, respectively.
 熱源機100について説明する。熱源機100は冷媒を圧縮し、熱源機100を通過する熱源熱媒体と冷媒との間で熱交換を行わせる。実施の形態では熱源機100は室外機であり、熱源熱媒体は室外空間の空気であるとする。熱源機100は圧縮機1と、熱源側熱交換器2と、減圧装置3と、切替弁群4と、アキュムレータ5と、閉止装置6と、圧縮機シェル温度センサ7と、吐出温度センサ8と、吐出圧力センサ9と、熱源側熱交換器温度センサ10と、熱源熱媒体温度センサ11と、熱源側液管温度センサ12と、制御装置13と、を有する。また、熱源機100は、圧縮機1と熱源側熱交換器2と減圧装置3と切替弁群4とアキュムレータ5と閉止装置6はそれぞれ熱源機冷媒配管110によって冷媒が流れることができるように接続されている。なお、後述するように減圧装置3と切替弁群4によって冷媒循環回路600が切り替わるため、減圧装置3と切替弁群4が冷媒循環回路を切り替える流路切替装置に該当する。 The heat source machine 100 will be described. The heat source machine 100 compresses the refrigerant and causes heat exchange between the heat source heat medium passing through the heat source machine 100 and the refrigerant. In the embodiment, it is assumed that the heat source unit 100 is an outdoor unit and the heat source heat medium is air in the outdoor space. The heat source machine 100 includes a compressor 1, a heat source side heat exchanger 2, a pressure reducing device 3, a switching valve group 4, an accumulator 5, a closing device 6, a compressor shell temperature sensor 7, and a discharge temperature sensor 8. It has a discharge pressure sensor 9, a heat source side heat exchanger temperature sensor 10, a heat source heat medium temperature sensor 11, a heat source side liquid tube temperature sensor 12, and a control device 13. Further, in the heat source machine 100, the compressor 1, the heat source side heat exchanger 2, the decompression device 3, the switching valve group 4, the accumulator 5, and the closing device 6 are connected so that the refrigerant can flow through the heat source machine refrigerant pipe 110, respectively. Has been done. Since the refrigerant circulation circuit 600 is switched by the pressure reducing device 3 and the switching valve group 4 as described later, the pressure reducing device 3 and the switching valve group 4 correspond to the flow path switching device for switching the refrigerant circulation circuit.
 圧縮機1は、冷媒を吸入口から吸入し、吸入した冷媒を高温高圧のガス状態に圧縮し、圧縮した冷媒を吐出口から吐出する。また、実施の形態の圧縮機1は、冷媒を圧縮する圧縮部と、圧縮部を駆動させる電動機と、圧縮部および電動部を覆うシェルと、を有する。圧縮機1の圧縮部は、例えばロータリー式、スクロール式、スクリュー式またはベーン式などの既存の圧縮部が用いられる。圧縮機1の電動機はインバータ制御によって回転数が変更可能であり、電動機の回転数が変更することで圧縮機1は容量制御可能である。 The compressor 1 sucks the refrigerant from the suction port, compresses the sucked refrigerant into a high-temperature and high-pressure gas state, and discharges the compressed refrigerant from the discharge port. Further, the compressor 1 of the embodiment has a compression unit that compresses the refrigerant, an electric motor that drives the compression unit, and a shell that covers the compression unit and the electric unit. As the compression unit of the compressor 1, an existing compression unit such as a rotary type, a scroll type, a screw type or a vane type is used. The rotation speed of the electric motor of the compressor 1 can be changed by inverter control, and the capacity of the compressor 1 can be controlled by changing the rotation speed of the electric motor.
 熱源側熱交換器2は熱源熱媒体と熱源側熱交換器2に形成された流路を通過する冷媒との間で熱交換を行わせる。実施の形態の熱源側熱交換器2は室外空間の空気と冷媒との間で熱交換を行わせる。実施の形態の熱源側熱交換器2は、室外空間の空気と冷媒との間で熱交換を行わせる主熱交換器および副熱交換器と、主熱交換器に流入する冷媒を分配および伝熱管から流入する冷媒を集合させるヘッダおよびディストリビュータと、を有する。また、実施の形態の熱源側熱交換器2は、フィンアンドチューブ型の熱交換器で構成される。フィンアンドチューブ型の熱交換器は、冷媒が流れる流路が形成された複数の伝熱管と伝熱管と直交する方向に設けられた複数の放熱フィンとを有する熱交換器である。なお、実施の形態では熱源側熱交換器2の主熱交換器の流路の一方の端部にはヘッダ、他方の端部にはディストリビュータの一方の端部が接続される。また、ディストリビュータの他方の端部には副熱交換器の流路の一方の端部が接続される。つまり、実施の形態において、熱源側熱交換器2の一方の端部はヘッダであり、他方の端部は副熱交換器の流路の他方の端部である。また、熱源側熱交換器2の主熱交換器と副熱交換器には図示を省略した送風機などの送風手段によって室外空間の空気が送風される。 The heat source side heat exchanger 2 exchanges heat between the heat source heat medium and the refrigerant passing through the flow path formed in the heat source side heat exchanger 2. The heat source side heat exchanger 2 of the embodiment causes heat exchange between the air in the outdoor space and the refrigerant. The heat source side heat exchanger 2 of the embodiment distributes and transfers the main heat exchanger and the sub heat exchanger that exchange heat between the air in the outdoor space and the refrigerant, and the refrigerant flowing into the main heat exchanger. It has a header and a distributor that collect the refrigerant flowing in from the heat tube. Further, the heat source side heat exchanger 2 of the embodiment is composed of a fin-and-tube type heat exchanger. The fin-and-tube heat exchanger is a heat exchanger having a plurality of heat transfer tubes in which a flow path through which a refrigerant flows is formed and a plurality of heat radiation fins provided in a direction orthogonal to the heat transfer tubes. In the embodiment, a header is connected to one end of the flow path of the main heat exchanger of the heat source side heat exchanger 2, and one end of the distributor is connected to the other end. Further, one end of the flow path of the auxiliary heat exchanger is connected to the other end of the distributor. That is, in the embodiment, one end of the heat source side heat exchanger 2 is a header, and the other end is the other end of the flow path of the secondary heat exchanger. Further, the air in the outdoor space is blown to the main heat exchanger and the sub heat exchanger of the heat source side heat exchanger 2 by a blowing means such as a blower (not shown).
 減圧装置3は通過する冷媒を減圧する。実施の形態の減圧装置3は三つの膨張弁で構成され、それぞれの膨張弁を第一の膨張弁3a、第二の膨張弁3b、第三の膨張弁3cと称する。それぞれの膨張弁は冷媒が流れる流路を形成する流路孔部と流路孔部の開閉するように移動可能な弁体を有し、弁体の位置を制御することによって流路の開口面積を任意に調整可能である電子膨張弁である。また、説明のため膨張弁の開口面積を表す指標として開度を用いる。開度が大きいほど膨張弁の流路の開口面積は広くなる。開度が最大の時は開口面積が最大であり、開度が最大の場合では膨張弁を通過する冷媒は圧力が減少しないとする。また、開度が最小の時は、理想では膨張弁が完全に閉塞することが望ましいが、実際は流路孔部と弁体の間に隙間が生じるためごく少量の冷媒が隙間から漏れ出す。このため、開度が最小の場合では大部分の冷媒は膨張弁を通過できないが、ごく少量の冷媒は膨張弁を通過してしまうとする。 The decompression device 3 decompresses the passing refrigerant. The pressure reducing device 3 of the embodiment is composed of three expansion valves, and each expansion valve is referred to as a first expansion valve 3a, a second expansion valve 3b, and a third expansion valve 3c. Each expansion valve has a flow path hole forming a flow path through which the refrigerant flows and a valve body that can be moved so as to open and close the flow path hole, and the opening area of the flow path is controlled by controlling the position of the valve body. Is an electronic expansion valve that can be adjusted arbitrarily. Further, for the sake of explanation, the opening degree is used as an index indicating the opening area of the expansion valve. The larger the opening, the wider the opening area of the flow path of the expansion valve. When the opening is the maximum, the opening area is the maximum, and when the opening is the maximum, the pressure of the refrigerant passing through the expansion valve does not decrease. When the opening degree is the minimum, it is ideal that the expansion valve is completely closed, but in reality, a gap is created between the flow path hole and the valve body, so that a very small amount of refrigerant leaks from the gap. Therefore, when the opening degree is the minimum, most of the refrigerant cannot pass through the expansion valve, but a very small amount of refrigerant passes through the expansion valve.
 切替弁群4は冷媒の流路を切り替える。実施の形態の切替弁群4は二つの四方弁で構成され、それぞれの四方弁を第一の四方弁4aと第二の四方弁4bと称する。四方弁はAポート、Bポート、CポートおよびDポートの四つのポートを有している。また、四方弁は、AポートとBポートを連通させCポートとDポートを連通させた状態と、AポートとDポートを連通させBポートとCポートを連通させた状態と、を切り替えることができる。なお、第一の四方弁4aの四つのポートはそれぞれAポートを4aa、Bポートを4ab、Cポートを4ac,Dポートを4adと付番する。また、第二の四方弁4bの四つのポートはそれぞれAポートを4ba、Bポートを4bb、Cポートを4bc,Dポートを4bdと付番する。 The switching valve group 4 switches the flow path of the refrigerant. The switching valve group 4 of the embodiment is composed of two four-way valves, and each four-way valve is referred to as a first four-way valve 4a and a second four-way valve 4b. The four-way valve has four ports, A port, B port, C port and D port. Further, the four-way valve can switch between a state in which the A port and the B port are communicated and the C port and the D port are communicated, and a state in which the A port and the D port are communicated and the B port and the C port are communicated. can. The four ports of the first four-way valve 4a are numbered A port as 4aa, B port as 4ab, C port as 4ac, and D port as 4ad, respectively. The four ports of the second four-way valve 4b are numbered A port as 4ba, B port as 4bb, C port as 4bc, and D port as 4bd, respectively.
 アキュムレータ5は流入口から気液混合の冷媒が流入した場合に液冷媒を内部に貯留して流出口からガス冷媒を流出させる。このため、アキュムレータ5は、第一の負荷熱媒体冷却冷媒循環回路601、第一の負荷熱媒体加熱冷媒循環回路602、第二の負荷熱媒体加熱冷媒循環回路603ならびに冷却加熱同時冷媒循環回路604の各々の冷媒循環回路で用いられる冷媒量の違いによって生じる余剰冷媒、または冷媒循環回路600を切り替えた直後の過渡期などに生じる余剰冷媒を液冷媒として貯留する。 When the gas-liquid mixed refrigerant flows in from the inlet, the accumulator 5 stores the liquid refrigerant inside and causes the gas refrigerant to flow out from the outlet. Therefore, the accumulator 5 includes a first load heat medium cooling refrigerant circulation circuit 601, a first load heat medium heating refrigerant circulation circuit 602, a second load heat medium heating refrigerant circulation circuit 603, and a cooling / heating simultaneous refrigerant circulation circuit 604. The surplus refrigerant generated by the difference in the amount of refrigerant used in each of the refrigerant circulation circuits, or the surplus refrigerant generated in the transitional period immediately after switching the refrigerant circulation circuit 600 is stored as a liquid refrigerant.
 閉止装置6は熱源機冷媒配管110を開閉する。閉止装置6が熱源機冷媒配管110を閉塞することによって、熱源機100の内部に存在する冷媒は熱源機100の外へ流出しない。実施の形態の閉止装置6は四つのストップバルブで構成され、それぞれのストップバルブを第一のストップバルブ6a、第二のストップバルブ6b、第三のストップバルブ6c、第四のストップバルブ6dと称する。 The closing device 6 opens and closes the heat source machine refrigerant pipe 110. By closing the heat source machine refrigerant pipe 110 by the closing device 6, the refrigerant existing inside the heat source machine 100 does not flow out of the heat source machine 100. The closing device 6 of the embodiment is composed of four stop valves, and each stop valve is referred to as a first stop valve 6a, a second stop valve 6b, a third stop valve 6c, and a fourth stop valve 6d. ..
 圧縮機シェル温度センサ7は圧縮機1のシェルの温度を検出する。実施の形態の圧縮機シェル温度センサ7は圧縮機1のシェル表面に配置される。 The compressor shell temperature sensor 7 detects the temperature of the shell of the compressor 1. The compressor shell temperature sensor 7 of the embodiment is arranged on the shell surface of the compressor 1.
 吐出温度センサ8は圧縮機1から吐出された冷媒の温度を検出する。実施の形態の吐出温度センサ8は圧縮機1の吐出口に接続される熱源機冷媒配管110に配置される。 The discharge temperature sensor 8 detects the temperature of the refrigerant discharged from the compressor 1. The discharge temperature sensor 8 of the embodiment is arranged in the heat source machine refrigerant pipe 110 connected to the discharge port of the compressor 1.
 吐出圧力センサ9は圧縮機1から吐出された冷媒の圧力を検出する。実施の形態の吐出圧力センサ9は圧縮機1の吐出口に接続される熱源機冷媒配管110に配置される。また、吐出圧力センサ9が検出した冷媒の圧力は冷媒の凝縮温度を導出する際に用いられ、吐出圧力センサ9は凝縮温度検知手段としての役割を有する。 The discharge pressure sensor 9 detects the pressure of the refrigerant discharged from the compressor 1. The discharge pressure sensor 9 of the embodiment is arranged in the heat source machine refrigerant pipe 110 connected to the discharge port of the compressor 1. Further, the pressure of the refrigerant detected by the discharge pressure sensor 9 is used when deriving the condensation temperature of the refrigerant, and the discharge pressure sensor 9 has a role as a condensation temperature detecting means.
 熱源側熱交換器温度センサ10は熱源側熱交換器2に形成された流路を流れる冷媒の温度を検出する。実施の形態の熱源側熱交換器温度センサ10は熱源側熱交換器2の主熱交換器の伝熱管または放熱フィンに配置される。 The heat source side heat exchanger temperature sensor 10 detects the temperature of the refrigerant flowing through the flow path formed in the heat source side heat exchanger 2. The heat source side heat exchanger temperature sensor 10 of the embodiment is arranged in the heat transfer tube or the heat radiation fin of the main heat exchanger of the heat source side heat exchanger 2.
 熱源熱媒体温度センサ11は熱源熱媒体の温度を検出する。実施の形態の熱源熱媒体温度センサ11は熱源側熱交換器2で熱交換が行われる前の室外空間の空気が通過する位置に配置される。 The heat source heat medium temperature sensor 11 detects the temperature of the heat source heat medium. The heat source heat medium temperature sensor 11 of the embodiment is arranged at a position where air in the outdoor space before heat exchange is performed by the heat source side heat exchanger 2 passes through.
 熱源側液管温度センサ12は熱源側熱交換器2を流れる液体状態の冷媒の温度を検出する。実施の形態の熱源側液管温度センサ12は熱源側熱交換器2の主熱交換器に形成された流路の他方の端部の端部またはディストリビュータに配置される。 The heat source side liquid tube temperature sensor 12 detects the temperature of the liquid refrigerant flowing through the heat source side heat exchanger 2. The heat source side liquid tube temperature sensor 12 of the embodiment is arranged at the other end of the flow path formed in the main heat exchanger of the heat source side heat exchanger 2 or at the distributor.
 制御装置13は冷凍サイクル装置1000を運転するための制御を行う。制御装置13の詳細な説明は後述する。 The control device 13 controls to operate the refrigeration cycle device 1000. A detailed description of the control device 13 will be described later.
 熱源機冷媒配管110は第一の熱源機冷媒配管111から第十一の熱源機冷媒配管121で構成される。 The heat source machine refrigerant pipe 110 is composed of a first heat source machine refrigerant pipe 111 to an eleventh heat source machine refrigerant pipe 121.
 第一の熱源機冷媒配管111は一方の端部が圧縮機1の吐出口に接続され、他方の端部が第二の四方弁4bのCポート4bcに接続される。また、第一の熱源機冷媒配管111の途中に吐出温度センサ8と吐出圧力センサ9が配置される。 One end of the first heat source machine refrigerant pipe 111 is connected to the discharge port of the compressor 1, and the other end is connected to the C port 4bc of the second four-way valve 4b. Further, the discharge temperature sensor 8 and the discharge pressure sensor 9 are arranged in the middle of the first heat source machine refrigerant pipe 111.
 第二の熱源機冷媒配管112は一方の端部が第二の四方弁4bのDポート4bdに接続され、他方の端部が熱源側熱交換器2の一方の端部に接続される。 One end of the second heat source machine refrigerant pipe 112 is connected to the D port 4bd of the second four-way valve 4b, and the other end is connected to one end of the heat source side heat exchanger 2.
 第三の熱源機冷媒配管113は一方の端部が熱源側熱交換器2の他方の端部に接続され、他方の端部が第三の熱源機冷媒配管113と第四の熱源機冷媒配管114と第五の熱源機冷媒配管115との分岐に接続される。また、第三の熱源機冷媒配管113の途中に第一の膨張弁3aが配置される。 One end of the third heat source machine refrigerant pipe 113 is connected to the other end of the heat source side heat exchanger 2, and the other end is the third heat source machine refrigerant pipe 113 and the fourth heat source machine refrigerant pipe. It is connected to the branch of 114 and the fifth heat source machine refrigerant pipe 115. Further, the first expansion valve 3a is arranged in the middle of the third heat source machine refrigerant pipe 113.
 第四の熱源機冷媒配管114は一方の端部が第三の熱源機冷媒配管113と第四の熱源機冷媒配管114と第五の熱源機冷媒配管115との分岐に接続され、他方の端部が第一の連結配管501に接続される。また、第四の熱源機冷媒配管114の途中に第二の膨張弁3bと第一のストップバルブ6aが配置され、第二の膨張弁3bは第一のストップバルブ6aよりも第四の熱源機冷媒配管114の一方の端部側に配置される。 One end of the fourth heat source machine refrigerant pipe 114 is connected to the branch of the third heat source machine refrigerant pipe 113, the fourth heat source machine refrigerant pipe 114, and the fifth heat source machine refrigerant pipe 115, and the other end. The portion is connected to the first connecting pipe 501. Further, a second expansion valve 3b and a first stop valve 6a are arranged in the middle of the fourth heat source machine refrigerant pipe 114, and the second expansion valve 3b is a fourth heat source machine rather than the first stop valve 6a. It is arranged on one end side of the refrigerant pipe 114.
 第五の熱源機冷媒配管115は一方の端部が第三の熱源機冷媒配管113と第四の熱源機冷媒配管114と第五の熱源機冷媒配管115との分岐に接続され、他方の端部が第三の連結配管503に接続される。また、第五の熱源機冷媒配管115の途中に第三の膨張弁3cと第二のストップバルブ6bが配置され、第三の膨張弁3cは第二のストップバルブ6bよりも第五の熱源機冷媒配管115の一方の端部側に配置される。 One end of the fifth heat source machine refrigerant pipe 115 is connected to a branch between the third heat source machine refrigerant pipe 113, the fourth heat source machine refrigerant pipe 114, and the fifth heat source machine refrigerant pipe 115, and the other end. The portion is connected to the third connecting pipe 503. Further, a third expansion valve 3c and a second stop valve 6b are arranged in the middle of the fifth heat source machine refrigerant pipe 115, and the third expansion valve 3c is a fifth heat source machine rather than the second stop valve 6b. It is arranged on one end side of the refrigerant pipe 115.
 第六の熱源機冷媒配管116は一方の端部が第二の連結配管502に接続され、他方の端部が第一の四方弁4aのBポート4abに接続される。また、第六の熱源機冷媒配管116の途中には第三のストップバルブ6cが配置される。 One end of the sixth heat source machine refrigerant pipe 116 is connected to the second connecting pipe 502, and the other end is connected to the B port 4ab of the first four-way valve 4a. Further, a third stop valve 6c is arranged in the middle of the sixth heat source machine refrigerant pipe 116.
 第七の熱源機冷媒配管117は一方の端部が第四の連結配管504に接続され、他方の端部が第一の四方弁4aのDポート4adに接続される。また、第七の熱源機冷媒配管117の途中には第四のストップバルブ6dが配置される。 One end of the seventh heat source machine refrigerant pipe 117 is connected to the fourth connecting pipe 504, and the other end is connected to the D port 4ad of the first four-way valve 4a. Further, a fourth stop valve 6d is arranged in the middle of the seventh heat source machine refrigerant pipe 117.
 第八の熱源機冷媒配管118は一方の端部が第一の四方弁4aのAポート4aaに接続され、他方の端部がアキュムレータ5の流入口に接続される。 One end of the eighth heat source machine refrigerant pipe 118 is connected to the A port 4aa of the first four-way valve 4a, and the other end is connected to the inflow port of the accumulator 5.
 第九の熱源機冷媒配管119は一方の端部がアキュムレータ5の流出口に接続され、他方の端部が圧縮機1の吸入口に接続される。 One end of the ninth heat source machine refrigerant pipe 119 is connected to the outlet of the accumulator 5, and the other end is connected to the suction port of the compressor 1.
 第十の熱源機冷媒配管120は一方の端部が第一の四方弁4aのCポート4acに接続され、他方の端部が第二の四方弁4bのBポート4bbに接続される。 One end of the tenth heat source machine refrigerant pipe 120 is connected to the C port 4ac of the first four-way valve 4a, and the other end is connected to the B port 4bb of the second four-way valve 4b.
 第十一の熱源機冷媒配管121は一方の端部が第二の四方弁4bのAポート4baに接続され、他方の端部が第八の熱源機冷媒配管118の途中に接続される。 One end of the eleventh heat source machine refrigerant pipe 121 is connected to the A port 4ba of the second four-way valve 4b, and the other end is connected in the middle of the eighth heat source machine refrigerant pipe 118.
 次に第一の利用機器200について説明する。第一の利用機器200は第一の利用機器200を通過する第一の負荷熱媒体と冷媒との間で熱交換を行わせる。実施の形態では第一の利用機器200は空気調和装置の室内機であり、第一の負荷熱媒体は室内空間の空気であるとする。第一の利用機器200は、第一の利用側熱交換器21と、第一の利用側熱交換器温度センサ22と、第一の負荷熱媒体温度センサ23と、第一の利用側液管温度センサ24と、第一の利用側液冷媒配管210と、第一の利用側ガス冷媒配管220と、を有する。 Next, the first device used 200 will be described. The first utilization equipment 200 causes heat exchange between the first load heat medium passing through the first utilization equipment 200 and the refrigerant. In the embodiment, it is assumed that the first utilization device 200 is an indoor unit of an air conditioner, and the first load heat medium is the air in the indoor space. The first utilization device 200 includes a first utilization side heat exchanger 21, a first utilization side heat exchanger temperature sensor 22, a first load heat medium temperature sensor 23, and a first utilization side liquid tube. It has a temperature sensor 24, a first user-side liquid refrigerant pipe 210, and a first user-side gas refrigerant pipe 220.
 第一の利用側熱交換器21は、第一の利用側熱交換器21に形成された流路を通過する冷媒と第一の負荷熱媒体との間で熱交換を行わせる。実施の形態の第一の利用側熱交換器21は室内空間の空気と冷媒との間で熱交換を行わせる。また、実施の形態の第一の利用側熱交換器21は、フィンアンドチューブ型であり冷媒が流れる流路が形成された第一の利用側熱交換器本体と、ディストリビュータと、ヘッダとを有する。なお、第一の利用側熱交換器本体の一方の端部にはディストリビュータの他方の端部が接続され、第一の利用側熱交換器本体の他方の端部にはヘッダが接続される。つまり、実施の形態において第一の利用側熱交換器21の一方の端部はディストリビュータの一方の端部であり、他方の端部はヘッダである。また、第一の利用側熱交換器21の第一の利用側熱交換器本体には図示を省略した送風機などの送風手段によって室内空間の空気が送風される。 The first user-side heat exchanger 21 causes heat exchange between the refrigerant passing through the flow path formed in the first user-side heat exchanger 21 and the first load heat medium. The first utilization side heat exchanger 21 of the embodiment causes heat exchange between the air in the indoor space and the refrigerant. Further, the first utilization-side heat exchanger 21 of the embodiment has a fin-and-tube type, a first utilization-side heat exchanger main body in which a flow path through which a refrigerant flows is formed, a distributor, and a header. .. The other end of the distributor is connected to one end of the first user-side heat exchanger body, and the header is connected to the other end of the first user-side heat exchanger body. That is, in the embodiment, one end of the first utilization side heat exchanger 21 is one end of the distributor, and the other end is the header. Further, the air in the indoor space is blown to the first user side heat exchanger main body of the first user side heat exchanger 21 by a blower means such as a blower (not shown).
 第一の利用側熱交換器温度センサ22は第一の利用側熱交換器21に形成された流路を流れる冷媒の温度を検出する。実施の形態の第一の利用側熱交換器温度センサ22は第一の利用側熱交換器本体の伝熱管または放熱フィンに配置される。 The first user-side heat exchanger temperature sensor 22 detects the temperature of the refrigerant flowing through the flow path formed in the first user-side heat exchanger 21. The first utilization side heat exchanger temperature sensor 22 of the embodiment is arranged in the heat transfer tube or the heat radiation fin of the first utilization side heat exchanger main body.
 第一の負荷熱媒体温度センサ23は第一の利用機器200を通過する負荷熱媒体の温度を検出する。実施の形態の第一の負荷熱媒体温度センサ23は室内空間の空気を検出する温度センサであり、第一の利用側熱交換器21で熱交換が行われる前の室内空間の空気が通過する位置に配置される。 The first load heat medium temperature sensor 23 detects the temperature of the load heat medium passing through the first utilization device 200. The first load heat medium temperature sensor 23 of the embodiment is a temperature sensor that detects the air in the indoor space, and the air in the indoor space before the heat exchange is performed by the first user side heat exchanger 21 passes through. Placed in position.
 第一の利用側液管温度センサ24は第一の利用側熱交換器21に流入する液体状態の冷媒の温度を検出する。実施の形態の第一の利用側液管温度センサ24は後述する第一の利用側液冷媒配管210の途中に配置される。 The first user-side liquid tube temperature sensor 24 detects the temperature of the liquid refrigerant flowing into the first user-side heat exchanger 21. The first utilization side liquid pipe temperature sensor 24 of the embodiment is arranged in the middle of the first utilization side liquid refrigerant pipe 210 described later.
 第一の利用側液冷媒配管210は一方の端部が第一の連結配管501に接続され、他方の端部が第一の利用側熱交換器21の一方の端部に接続される。 One end of the first user-side liquid refrigerant pipe 210 is connected to the first connecting pipe 501, and the other end is connected to one end of the first user-side heat exchanger 21.
 第一の利用側ガス冷媒配管220は一方の端部が第一の利用側熱交換器21の他方の端部に接続され、他方の端部が第二の連結配管502に接続される。 One end of the first user-side gas refrigerant pipe 220 is connected to the other end of the first user-side heat exchanger 21, and the other end is connected to the second connecting pipe 502.
 次に第二の利用機器300について説明する。第二の利用機器300は第二の利用機器300を通過する第二の負荷熱媒体と冷媒との間で熱交換を行わせる。実施の形態では第二の利用機器300は給湯装置の熱源機であり、第二の利用機器300を通過する第二の負荷熱媒体は水であるとする。第二の利用機器300は、第二の利用側熱交換器31と、第二の利用側液管温度センサ32と、第二の負荷熱媒体流入側温度センサ33と、第二の負荷熱媒体流出側温度センサ34と、第二の利用側液冷媒配管310と、第二の利用側ガス冷媒配管320と、第二の負荷熱媒体流入側配管330と、第二の負荷熱媒体流出側配管340と、を有する。 Next, the second device 300 will be described. The second utilization equipment 300 causes heat exchange between the second load heat medium passing through the second utilization equipment 300 and the refrigerant. In the embodiment, it is assumed that the second utilization equipment 300 is a heat source machine of the hot water supply device, and the second load heat medium passing through the second utilization equipment 300 is water. The second utilization device 300 includes a second utilization side heat exchanger 31, a second utilization side liquid tube temperature sensor 32, a second load heat medium inflow side temperature sensor 33, and a second load heat medium. Outflow side temperature sensor 34, second use side liquid refrigerant pipe 310, second use side gas refrigerant pipe 320, second load heat medium inflow side pipe 330, second load heat medium outflow side pipe It has 340 and.
 第二の利用側熱交換器31は、冷媒流路と負荷熱媒体流路とが形成され、冷媒流路を通過する冷媒と負荷熱媒体流路を通過する第二の負荷熱媒体との間で熱交換を行わせる。実施の形態の第二の利用側熱交換器31は水と冷媒との間で熱交換を行わせる。また、実施の形態の第二の利用側熱交換器31はプレート式の熱交換器である。プレート式の熱交換器は厚み方向に貫通孔が形成された金属製の伝熱プレートを厚み方向に重ね合わせた熱交換器である。 In the second utilization side heat exchanger 31, a refrigerant flow path and a load heat medium flow path are formed, and between the refrigerant passing through the refrigerant flow path and the second load heat medium passing through the load heat medium flow path. Let the heat exchange be performed at. The second utilization side heat exchanger 31 of the embodiment causes heat exchange between water and the refrigerant. Further, the second utilization side heat exchanger 31 of the embodiment is a plate type heat exchanger. The plate-type heat exchanger is a heat exchanger in which metal heat transfer plates having through holes formed in the thickness direction are stacked in the thickness direction.
 第二の利用側液管温度センサ32は第二の利用側熱交換器31に流入する液体状態の冷媒の温度を検出する。実施の形態の第二の利用側液管温度センサ32は後述する第二の利用側液冷媒配管310の途中に配置される。 The second user-side liquid tube temperature sensor 32 detects the temperature of the liquid refrigerant flowing into the second user-side heat exchanger 31. The second utilization side liquid pipe temperature sensor 32 of the embodiment is arranged in the middle of the second utilization side liquid refrigerant pipe 310 which will be described later.
 第二の負荷熱媒体流入側温度センサ33は第二の利用側熱交換器31に流入する第二の負荷熱媒体の温度を検出する。実施の形態の第二の負荷熱媒体流入側温度センサ33は後述する第二の負荷熱媒体流入側配管330の途中に配置される。 The second load heat medium inflow side temperature sensor 33 detects the temperature of the second load heat medium flowing into the second utilization side heat exchanger 31. The second load heat medium inflow side temperature sensor 33 of the embodiment is arranged in the middle of the second load heat medium inflow side pipe 330 described later.
 第二の負荷熱媒体流出側温度センサ34は第二の利用側熱交換器31より流出する第二の負荷熱媒体の温度を検出する。実施の形態の第二の負荷熱媒体流出側温度センサ34は後述する第二の負荷熱媒体流出側配管340の途中に配置される。 The second load heat medium outflow side temperature sensor 34 detects the temperature of the second load heat medium flowing out from the second user side heat exchanger 31. The second load heat medium outflow side temperature sensor 34 of the embodiment is arranged in the middle of the second load heat medium outflow side pipe 340 described later.
 第二の利用側液冷媒配管310は一方の端部が第三の連結配管503に接続され、他方の端部が第二の利用側熱交換器31の冷媒流路の一方の端部に接続される。 One end of the second utilization-side liquid refrigerant pipe 310 is connected to the third connecting pipe 503, and the other end is connected to one end of the refrigerant flow path of the second utilization-side heat exchanger 31. Will be done.
 第二の利用側ガス冷媒配管320は一方の端部が第一の利用側熱交換器21の冷媒流路の他方の端部に接続され、他方の端部が第四の連結配管504に接続される。 One end of the second utilization-side gas refrigerant pipe 320 is connected to the other end of the refrigerant flow path of the first utilization-side heat exchanger 21, and the other end is connected to the fourth connection pipe 504. Will be done.
 第二の負荷熱媒体流入側配管330は一方の端部が図示を省略した第二の負荷熱媒体の供給源に接続され、他方の端部が第二の利用側熱交換器31の負荷熱媒体流路の一方の端部に接続される。第二の負荷熱媒体の供給源は、第二の利用機器300に第二の負荷熱媒体を供給する。第二の負荷熱媒体が水である場合は、上水道などの水源または水が貯留されたタンクなどが第二の負荷熱媒体の供給源として挙げられる。 One end of the second load heat medium inflow side pipe 330 is connected to a supply source of the second load heat medium (not shown), and the other end is the load heat of the second utilization side heat exchanger 31. It is connected to one end of the medium flow path. The supply source of the second load heat medium supplies the second load heat medium to the second utilization equipment 300. When the second load heat medium is water, a water source such as a water supply or a tank in which water is stored may be mentioned as a supply source of the second load heat medium.
 第二の負荷熱媒体流出側配管340は一方の端部が第二の利用側熱交換器31の負荷熱媒体流路の他方の端部に接続され、他方の端部が図示を省略した第二の負荷熱媒体の利用端末に接続される。第二の負荷熱媒体の利用端末は、第二の利用機器300で熱交換された第二の負荷熱媒体を利用する。第二の負荷熱媒体が水である場合は、蛇口、シャワーまたは熱交換された水を貯留するタンクなどが第二の負荷熱媒体の利用端末として挙げられる。 One end of the second load heat medium outflow side pipe 340 is connected to the other end of the load heat medium flow path of the second utilization side heat exchanger 31, and the other end is not shown. Second load Connected to the terminal using the heat medium. The terminal for using the second load heat medium uses the second load heat medium heat exchanged by the second use device 300. When the second load heat medium is water, a faucet, a shower, a tank for storing heat exchanged water, or the like can be mentioned as a terminal for using the second load heat medium.
 次にリモコン400について説明する。リモコン400は利用者が冷凍サイクル装置1000の状態を確認または操作するための装置である。リモコン400は制御装置13と信号の送受信が可能なように接続されている。実施の形態のリモコン400は、図示を省略した表示部と操作部を備える。表示部は例えば冷凍サイクル装置1000の運転の種類または第一の利用機器200の設定温度などの冷凍サイクル装置1000の運転に関わる情報を表示する。操作部はユーザーの操作によって冷凍サイクル装置1000の運転に関わる情報が入力される。表示部は例えば液晶ディスプレイなどで実現され、操作部は押しボタンスイッチなどで実現される。また、タッチパネルで実現するなど表示部と操作部を一体化しても構わない。 Next, the remote controller 400 will be described. The remote controller 400 is a device for the user to check or operate the state of the refrigeration cycle apparatus 1000. The remote controller 400 is connected to the control device 13 so that signals can be transmitted and received. The remote controller 400 of the embodiment includes a display unit and an operation unit (not shown). The display unit displays information related to the operation of the refrigeration cycle device 1000, such as the type of operation of the refrigeration cycle device 1000 or the set temperature of the first utilization device 200. Information related to the operation of the refrigerating cycle device 1000 is input to the operation unit by the user's operation. The display unit is realized by, for example, a liquid crystal display, and the operation unit is realized by a push button switch or the like. Further, the display unit and the operation unit may be integrated, such as by using a touch panel.
 図2は実施の形態に係る冷凍サイクル装置の制御装置に関するハードウェア構成図である。図2を用いて制御装置13の詳細な説明を行う。制御装置13は、プロセッサ13aと、メモリ13bと、ハードウェアインターフェース13cと、を有する。なお、プロセッサ13aとメモリ13bとハードウェアインターフェース13cはそれぞれ情報の受け渡しが可能なように接続されている。 FIG. 2 is a hardware configuration diagram relating to the control device of the refrigeration cycle device according to the embodiment. A detailed description of the control device 13 will be given with reference to FIG. The control device 13 includes a processor 13a, a memory 13b, and a hardware interface 13c. The processor 13a, the memory 13b, and the hardware interface 13c are connected so that information can be exchanged.
 プロセッサ13aは、メモリ13bに記憶されているプログラムを実行することで圧縮機1などの冷凍サイクル装置1000が有する構成要素の制御またはデータ処理を実行する装置である。プロセッサ13aには、例えばCPU(Central Processing Unit)が用いられる。 The processor 13a is a device that controls components of the refrigeration cycle device 1000 such as the compressor 1 or executes data processing by executing a program stored in the memory 13b. For the processor 13a, for example, a CPU (Central Processing Unit) is used.
 メモリ13bは、プロセッサ13aが実行するプログラムおよびプログラムの実行に必要なデータを記憶する。また、メモリ13bはプロセッサ13aの作業領域として用いられる。メモリ13bには、例えばRAM(Randam Access Memory)、ROM(Read Only Memory)、フラッシュメモリーなどの不揮発性または揮発性の半導体メモリが用いられる。 The memory 13b stores the program executed by the processor 13a and the data necessary for executing the program. Further, the memory 13b is used as a work area of the processor 13a. As the memory 13b, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory is used.
 ハードウェアインターフェース13cは、冷凍サイクル装置1000が有する構成要素と信号の送信または受信を行う。ハードウェアインターフェース13cと信号の送信または受信を行う構成要素は有線または無線によって信号の送信または受信が可能なようにハードウェアインターフェース13cに接続されている。ハードウェアインターフェース13cには、例えば信号線が接続される端子台、GPIO(General Purpose Input/Output)または無線通信の電波を送信または受信する送受信機が用いられる。 The hardware interface 13c transmits or receives signals and components included in the refrigeration cycle device 1000. The hardware interface 13c and the components that transmit or receive the signal are connected to the hardware interface 13c so that the signal can be transmitted or received by wire or wirelessly. For the hardware interface 13c, for example, a terminal block to which a signal line is connected, a GPIO (General Purpose Input / Output), or a transmitter / receiver for transmitting or receiving radio waves for wireless communication is used.
 図3は実施の形態に係る冷凍サイクル装置に関する機能ブロック図である。次に図3を用いて冷凍サイクル装置1000の機能ブロック図について説明する。 FIG. 3 is a functional block diagram relating to the refrigeration cycle apparatus according to the embodiment. Next, a functional block diagram of the refrigeration cycle apparatus 1000 will be described with reference to FIG.
 制御装置13は、受信部50と、送信部51と、記憶部52と、制御部53と、を備える。なお、受信部50と送信部51はハードウェアインターフェース43によって実現される。また、記憶部52はメモリ42に各種情報が記憶させることによって実現される。さらに、制御部53はプロセッサ41がメモリ42に記憶されたプログラムに従って処理を行うことによって実現される。 The control device 13 includes a receiving unit 50, a transmitting unit 51, a storage unit 52, and a control unit 53. The receiving unit 50 and the transmitting unit 51 are realized by the hardware interface 43. Further, the storage unit 52 is realized by storing various information in the memory 42. Further, the control unit 53 is realized by the processor 41 performing processing according to the program stored in the memory 42.
 受信部50は、制御装置13に送信される信号を受信する。受信部50には、圧縮機シェル温度センサ7と吐出温度センサ8と吐出圧力センサ9と熱源側熱交換器温度センサ10と熱源熱媒体温度センサ11と熱源側液管温度センサ12と第一の利用側熱交換器温度センサ22と第一の負荷熱媒体温度センサ23と第一の利用側液管温度センサ24と第二の利用側液管温度センサ32と第二の負荷熱媒体流入側温度センサ33と第二の負荷熱媒体流出側温度センサ34とリモコン400が接続されている。受信部50はそれぞれのセンサが検出した情報を含む信号またはリモコン400の操作部より入力されたユーザーの操作に関する情報を含む信号を受信する。 The receiving unit 50 receives the signal transmitted to the control device 13. The receiving unit 50 includes a compressor shell temperature sensor 7, a discharge temperature sensor 8, a discharge pressure sensor 9, a heat source side heat exchanger temperature sensor 10, a heat source heat medium temperature sensor 11, a heat source side liquid tube temperature sensor 12, and a first unit. User-side heat exchanger temperature sensor 22, first load heat medium temperature sensor 23, first user-side liquid tube temperature sensor 24, second user-side liquid tube temperature sensor 32, and second load heat medium inflow side temperature. The sensor 33, the second load heat medium outflow side temperature sensor 34, and the remote control 400 are connected. The receiving unit 50 receives a signal including information detected by each sensor or a signal including information related to the user's operation input from the operation unit of the remote controller 400.
 送信部51は、後述するように制御部53で生成された制御信号または冷凍サイクル装置1000の運転に関する情報を含む信号を制御装置13の外部の構成要素に送信する。送信部51には、圧縮機1と熱源側熱交換器2と減圧装置3と切替弁群4とリモコン400とが接続されている。圧縮機1と熱源側熱交換器2と減圧装置3と切替弁群4は送信部51から送信された制御信号に応じて動作を行う。また、リモコン400は送信部51から送信された冷凍サイクル装置1000の運転に関する情報を含む信号を受信し、当該信号に含まれる情報を表示部に表示する。 As will be described later, the transmission unit 51 transmits a control signal generated by the control unit 53 or a signal including information regarding the operation of the refrigeration cycle device 1000 to an external component of the control device 13. A compressor 1, a heat source side heat exchanger 2, a pressure reducing device 3, a switching valve group 4, and a remote controller 400 are connected to the transmission unit 51. The compressor 1, the heat source side heat exchanger 2, the decompression device 3, and the switching valve group 4 operate in response to the control signal transmitted from the transmission unit 51. Further, the remote controller 400 receives a signal including information on the operation of the refrigeration cycle device 1000 transmitted from the transmission unit 51, and displays the information included in the signal on the display unit.
 記憶部52は、制御部53が制御信号を生成するために必要な情報を記憶している。 The storage unit 52 stores information necessary for the control unit 53 to generate a control signal.
 制御部53は、受信部50で受信した信号に含まれる情報および記憶部52が記憶している情報に基づいて制御信号または冷凍サイクル装置1000の運転に関する情報を含む信号を生成する。 The control unit 53 generates a control signal or a signal including information on the operation of the refrigeration cycle device 1000 based on the information included in the signal received by the reception unit 50 and the information stored in the storage unit 52.
 図4は実施の形態に係る冷凍サイクル装置の第一の負荷熱媒体冷却運転時の冷媒回路図である。なお、図4では冷媒が循環する流路を太線で示す。次に冷凍サイクル装置1000の第一の負荷熱媒体冷却運転について説明する。第一の負荷熱媒体冷却運転では制御装置13は第一の負荷熱媒体冷却冷媒循環回路601を形成するように減圧装置3と切替弁群4を制御する。第一の負荷熱媒体冷却冷媒循環回路601における減圧装置3は、第一の膨張弁3aの開度が最大になり、第二の膨張弁3bの開度が第二の膨張弁3bを通過した冷媒が減圧する所定の開度になり、第三の膨張弁3cの開度が最小になるように制御される。また、第一の負荷熱媒体冷却冷媒循環回路601における切替弁群4は、第一の四方弁4aがAポート4aaとBポート4abが連通しCポート4acとDポート4adが連通する状態となり、第二の四方弁4bがAポート4baとBポート4bbが連通しCポート4bcとDポート4bdが連通する状態となるように制御される。 FIG. 4 is a refrigerant circuit diagram during the first load heat medium cooling operation of the refrigeration cycle apparatus according to the embodiment. In FIG. 4, the flow path through which the refrigerant circulates is shown by a thick line. Next, the first load heat medium cooling operation of the refrigeration cycle apparatus 1000 will be described. In the first load heat medium cooling operation, the control device 13 controls the pressure reducing device 3 and the switching valve group 4 so as to form the first load heat medium cooling refrigerant circulation circuit 601. In the pressure reducing device 3 in the first load heat medium cooling refrigerant circulation circuit 601, the opening degree of the first expansion valve 3a is maximized, and the opening degree of the second expansion valve 3b passes through the second expansion valve 3b. The refrigerant has a predetermined opening degree for depressurizing, and the opening degree of the third expansion valve 3c is controlled to be minimized. Further, in the switching valve group 4 in the first load heat medium cooling refrigerant circulation circuit 601, the first four-way valve 4a communicates with the A port 4aa and the B port 4ab, and the C port 4ac and the D port 4ad communicate with each other. The second four-way valve 4b is controlled so that the A port 4ba and the B port 4bb communicate with each other and the C port 4bc and the D port 4bd communicate with each other.
 第一の負荷熱媒体冷却冷媒循環回路601が形成された状態で圧縮機1が運転を開始すると、圧縮機1より高温高圧のガス状態の冷媒が吐出される。圧縮機1から吐出された高温高圧のガス状態の冷媒は第一の熱源機冷媒配管111と第二の四方弁4bと第二の熱源機冷媒配管112とを通過し熱源側熱交換器2に流入する。 When the compressor 1 starts operation with the first load heat medium cooling refrigerant circulation circuit 601 formed, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 1. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 1 passes through the first heat source machine refrigerant pipe 111, the second four-way valve 4b, and the second heat source machine refrigerant pipe 112 to the heat source side heat exchanger 2. Inflow.
 第一の負荷熱媒体冷却冷媒循環回路601では熱源側熱交換器2は凝縮器として機能する。このため、熱源側熱交換器2を通過する冷媒は熱源熱媒体によって冷却される。つまり、実施の形態では熱源側熱交換器2を通過する冷媒は室外空間の空気によって冷却される。冷却された冷媒は高圧の液状態の冷媒となって熱源側熱交換器2から流出する。 In the first load heat medium cooling refrigerant circulation circuit 601 the heat source side heat exchanger 2 functions as a condenser. Therefore, the refrigerant passing through the heat source side heat exchanger 2 is cooled by the heat source heat medium. That is, in the embodiment, the refrigerant passing through the heat source side heat exchanger 2 is cooled by the air in the outdoor space. The cooled refrigerant becomes a high-pressure liquid-state refrigerant and flows out from the heat source side heat exchanger 2.
 熱源側熱交換器2から流出した冷媒は第三の熱源機冷媒配管113を通過する。また、第三の熱源機冷媒配管113の途中には第一の膨張弁3aが設けられているが、第一の膨張弁3aの開度は最大であるため第一の膨張弁3aを通過する冷媒の圧力は減少しない。 The refrigerant flowing out from the heat source side heat exchanger 2 passes through the third heat source machine refrigerant pipe 113. Further, although the first expansion valve 3a is provided in the middle of the third heat source machine refrigerant pipe 113, the opening of the first expansion valve 3a is the maximum, so that the first expansion valve 3a passes through the first expansion valve 3a. Refrigerant pressure does not decrease.
 第一の負荷熱媒体冷却冷媒循環回路601では第二の膨張弁3bの開度は第二の膨張弁3bを通過した冷媒が減圧する所定の開度であり、第三の膨張弁3cの開度は最小である。このため、第三の熱源機冷媒配管113を通過した冷媒の大部分は第四の熱源機冷媒配管114に流入し、第五の熱源機冷媒配管115には第三の膨張弁3cから漏れ出すごく少量の冷媒が流入する。第四の熱源機冷媒配管114に流入した冷媒は第二の膨張弁3bを通過する。第二の膨張弁3bを通過した冷媒は減圧されて高圧の液状態から低圧の気液二相状態となり、第四の熱源機冷媒配管114と第一の連結配管501と第一の利用側液冷媒配管210とを通過して第一の利用側熱交換器21に流入する。 In the first load heat medium cooling refrigerant circulation circuit 601, the opening degree of the second expansion valve 3b is a predetermined opening degree at which the refrigerant passing through the second expansion valve 3b is depressurized, and the opening of the third expansion valve 3c. The degree is the minimum. Therefore, most of the refrigerant that has passed through the third heat source machine refrigerant pipe 113 flows into the fourth heat source machine refrigerant pipe 114, and leaks into the fifth heat source machine refrigerant pipe 115 from the third expansion valve 3c. A very small amount of refrigerant flows in. The refrigerant that has flowed into the fourth heat source machine refrigerant pipe 114 passes through the second expansion valve 3b. The refrigerant that has passed through the second expansion valve 3b is depressurized and changes from a high-pressure liquid state to a low-pressure gas-liquid two-phase state. It passes through the refrigerant pipe 210 and flows into the first utilization side heat exchanger 21.
 第一の負荷熱媒体冷却冷媒循環回路601では第一の利用側熱交換器21は蒸発器として機能する。このため、第一の利用側熱交換器21を通過する冷媒は第一の負荷熱媒体によって加熱される。加熱された冷媒はガス状態となって第一の利用側熱交換器21から流出する。また、第一の負荷熱媒体は第一の利用側熱交換器21を通過する冷媒によって冷却される。つまり、実施の形態では室内空間の空気は冷凍サイクル装置1000によって冷却される。 In the first load heat medium cooling refrigerant circulation circuit 601 the first user side heat exchanger 21 functions as an evaporator. Therefore, the refrigerant passing through the first utilization side heat exchanger 21 is heated by the first load heat medium. The heated refrigerant becomes a gas state and flows out from the first utilization side heat exchanger 21. Further, the first load heat medium is cooled by the refrigerant passing through the first utilization side heat exchanger 21. That is, in the embodiment, the air in the interior space is cooled by the refrigeration cycle device 1000.
 第一の利用側熱交換器21から流出した冷媒は第一の利用側ガス冷媒配管220と第二の連結配管502と第六の熱源機冷媒配管116と第一の四方弁4aと第八の熱源機冷媒配管118とアキュムレータ5と第九の熱源機冷媒配管119とを通過し圧縮機1の吸入口から吸入される。圧縮機1に吸入された冷媒は、再び高温高圧のガス状態となって吐出される。 The refrigerant flowing out from the first user-side heat exchanger 21 is the first user-side gas refrigerant pipe 220, the second connecting pipe 502, the sixth heat source machine refrigerant pipe 116, the first four-way valve 4a, and the eighth. It passes through the heat source machine refrigerant pipe 118, the accumulator 5, and the ninth heat source machine refrigerant pipe 119, and is sucked from the suction port of the compressor 1. The refrigerant sucked into the compressor 1 is discharged again in a high temperature and high pressure gas state.
 また、第一の利用側熱交換器21から流出した冷媒が気液二相状態であっても、圧縮機1に吸入される前にアキュムレータ5を通過するため、圧縮機1に吸入される冷媒はガス状態の冷媒である。アキュムレータ5によって、液状態の冷媒が圧縮機1へ流入することによる圧縮機1の故障を抑制することができる。 Further, even if the refrigerant flowing out from the first user-side heat exchanger 21 is in a gas-liquid two-phase state, it passes through the accumulator 5 before being sucked into the compressor 1, so that the refrigerant is sucked into the compressor 1. Is a gas-state refrigerant. The accumulator 5 can suppress the failure of the compressor 1 due to the inflow of the liquid refrigerant into the compressor 1.
 以上のように冷媒が第一の負荷熱媒体冷却冷媒循環回路601を循環することによって、第一の負荷熱媒体冷却運転では第一の負荷熱媒体を冷却することができる。実施の形態では第一の負荷熱媒体は室内空間の空気であるため、第一の負荷熱媒体冷却運転は室内空間の空気を冷却する冷房運転である。また、第一の負荷熱媒体冷却運転では熱源側熱交換器2に圧縮機1より吐出された高温高圧の冷媒が流入し、熱源側熱交換器2を構成する部品を加熱することができる。このため、第一の負荷熱媒体冷却運転は熱源側熱交換器2に付着した霜を溶かす除霜運転でもある。 As described above, the refrigerant circulates in the first load heat medium cooling refrigerant circulation circuit 601 so that the first load heat medium can be cooled in the first load heat medium cooling operation. In the embodiment, since the first load heat medium is the air in the interior space, the first load heat medium cooling operation is a cooling operation for cooling the air in the interior space. Further, in the first load heat medium cooling operation, the high temperature and high pressure refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 2 to heat the parts constituting the heat source side heat exchanger 2. Therefore, the first load heat medium cooling operation is also a defrosting operation for melting the frost adhering to the heat source side heat exchanger 2.
 また、流路切替装置が第一の負荷熱媒体冷却冷媒循環回路601を形成する状態では、第五の熱源機冷媒配管115は第三の連結配管503と第二の利用側液冷媒配管310を介して第二の利用側熱交換器31の冷媒流路と連通している。さらに、流路切替装置が第一の負荷熱媒体冷却冷媒循環回路601を形成する状態では、第二の利用側熱交換器31の冷媒流路は、第二の利用側ガス冷媒配管320と第四の連結配管504と第七の熱源機冷媒配管117と第一の四方弁4aと第十の熱源機冷媒配管120と第二の四方弁4bと第十一の熱源機冷媒配管121とを介して、第一の負荷熱媒体冷却冷媒循環回路601における蒸発器(第一の利用側熱交換器21が該当)と圧縮機1の吸入口との間の流路である第八の熱源機冷媒配管118と連通している。後述するように冷媒が第二の利用側熱交換器31の冷媒流路を流れる第二の負荷熱媒体加熱冷媒循環回路603および冷却加熱同時冷媒循環回路604では、配管を流れる際の圧力損失などの要因により、第五の熱源機冷媒配管115から第十一の熱源機冷媒配管121まで連通する流路の圧力は第八の熱源機冷媒配管118の圧力よりも高い。このため、流路切替装置が第一の負荷熱媒体冷却冷媒循環回路601を形成する状態では、第五の熱源機冷媒配管115から第十一の熱源機冷媒配管121までを連通する流路は第一の負荷熱媒体冷却冷媒循環回路601に含まれないが、第五の熱源機冷媒配管115から第十一の熱源機冷媒配管121までを連通する流路に存在する冷媒は第八の熱源機冷媒配管118へ流れ込み第一の負荷熱媒体冷却冷媒循環回路601を循環する冷媒と合流する。したがって、第二の負荷熱媒体加熱冷媒循環回路603および冷却加熱同時冷媒循環回路604から第一の負荷熱媒体冷却冷媒循環回路601に切り替わった時に第二の利用側熱交換器31に存在する冷媒および第三の膨張弁3cから第五の熱源機冷媒配管115に漏れ出した冷媒は、第五の熱源機冷媒配管115から第十一の熱源機冷媒配管121まで連通する流路に溜まり込まず、第一の負荷熱媒体冷却冷媒循環回路601を循環する冷媒と合流する。 Further, in a state where the flow path switching device forms the first load heat medium cooling refrigerant circulation circuit 601, the fifth heat source machine refrigerant pipe 115 includes the third connecting pipe 503 and the second utilization side liquid refrigerant pipe 310. It communicates with the refrigerant flow path of the second utilization side heat exchanger 31 through the pipe. Further, in a state where the flow path switching device forms the first load heat medium cooling refrigerant circulation circuit 601, the refrigerant flow paths of the second utilization side heat exchanger 31 are the second utilization side gas refrigerant pipe 320 and the second utilization side gas refrigerant pipe 320. Via the fourth connecting pipe 504, the seventh heat source machine refrigerant pipe 117, the first four-way valve 4a, the tenth heat source machine refrigerant pipe 120, the second four-way valve 4b, and the eleventh heat source machine refrigerant pipe 121. The eighth heat source machine refrigerant, which is a flow path between the evaporator (corresponding to the first user-side heat exchanger 21) in the first load heat medium cooling refrigerant circulation circuit 601 and the suction port of the compressor 1. It communicates with the pipe 118. As will be described later, in the second load heat medium heating refrigerant circulation circuit 603 and the cooling / heating simultaneous refrigerant circulation circuit 604 in which the refrigerant flows through the refrigerant flow path of the second utilization side heat exchanger 31, pressure loss when flowing through the piping, etc. The pressure of the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the eleventh heat source machine refrigerant pipe 121 is higher than the pressure of the eighth heat source machine refrigerant pipe 118. Therefore, in a state where the flow path switching device forms the first load heat medium cooling refrigerant circulation circuit 601, the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the eleventh heat source machine refrigerant pipe 121 Although not included in the first load heat medium cooling refrigerant circulation circuit 601, the refrigerant existing in the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the eleventh heat source machine refrigerant pipe 121 is the eighth heat source. It flows into the machine refrigerant pipe 118 and joins the refrigerant circulating in the first load heat medium cooling refrigerant circulation circuit 601. Therefore, the refrigerant present in the second utilization side heat exchanger 31 when the second load heat medium heating refrigerant circulation circuit 603 and the cooling / heating simultaneous refrigerant circulation circuit 604 are switched to the first load heat medium cooling refrigerant circulation circuit 601. And the refrigerant leaked from the third expansion valve 3c to the fifth heat source machine refrigerant pipe 115 does not collect in the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the eleventh heat source machine refrigerant pipe 121. , The first load heat medium cooling refrigerant circulation circuit 601 merges with the circulating refrigerant.
 図5は実施の形態に係る冷凍サイクル装置の第一の負荷熱媒体加熱運転時の冷媒回路図である。なお、図5では冷媒が循環する流路を太線で示す。次に冷凍サイクル装置1000の第一の負荷熱媒体加熱運転について説明する。第一の負荷熱媒体加熱運転では制御装置13は第一の負荷熱媒体加熱冷媒循環回路602を形成するように減圧装置3と切替弁群4を制御する。第一の負荷熱媒体加熱冷媒循環回路602における減圧装置3は、第一の膨張弁3aの開度が第一の膨張弁3aを通過した冷媒が減圧する所定の開度になり、第二の膨張弁3bの開度が最大になり、第三の膨張弁3cの開度が最小になるように制御される。また、第一の負荷熱媒体加熱冷媒循環回路602における切替弁群4は、第一の四方弁4aがAポート4aaとDポート4adが連通しBポート4abとCポート4acが連通する状態となり、第二の四方弁4bがAポート4baとDポート4bdが連通しBポート4bbとCポート4bcが連通する状態となるように制御される。 FIG. 5 is a refrigerant circuit diagram during the first load heat medium heating operation of the refrigeration cycle apparatus according to the embodiment. In FIG. 5, the flow path through which the refrigerant circulates is shown by a thick line. Next, the first load heat medium heating operation of the refrigeration cycle apparatus 1000 will be described. In the first load heat medium heating operation, the control device 13 controls the pressure reducing device 3 and the switching valve group 4 so as to form the first load heat medium heating refrigerant circulation circuit 602. In the pressure reducing device 3 in the first load heat medium heating refrigerant circulation circuit 602, the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized. The opening degree of the expansion valve 3b is controlled to be the maximum, and the opening degree of the third expansion valve 3c is controlled to be the minimum. Further, in the switching valve group 4 in the first load heat medium heating refrigerant circulation circuit 602, the first four-way valve 4a communicates with the A port 4aa and the D port 4ad, and the B port 4ab and the C port 4ac communicate with each other. The second four-way valve 4b is controlled so that the A port 4ba and the D port 4bd communicate with each other and the B port 4bb and the C port 4bb communicate with each other.
 第一の負荷熱媒体加熱冷媒循環回路602が形成された状態で圧縮機1が運転を開始すると、圧縮機1より高温高圧のガス状態の冷媒が吐出される。圧縮機1から吐出された高温高圧のガス状態の冷媒は第一の熱源機冷媒配管111と第二の四方弁4bと第十の熱源機冷媒配管120と第一の四方弁4aと第六の熱源機冷媒配管116と第二の連結配管502と第一の利用側ガス冷媒配管220を通過し第一の利用側熱交換器21に流入する。 When the compressor 1 starts operation with the first load heat medium heating refrigerant circulation circuit 602 formed, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 1. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 1 is the first heat source machine refrigerant pipe 111, the second four-way valve 4b, the tenth heat source machine refrigerant pipe 120, the first four-way valve 4a, and the sixth. It passes through the heat source machine refrigerant pipe 116, the second connecting pipe 502, and the first user-side gas refrigerant pipe 220, and flows into the first user-side heat exchanger 21.
 第一の負荷熱媒体加熱冷媒循環回路602では第一の利用側熱交換器21は凝縮器として機能する。このため、第一の利用側熱交換器21を通過する冷媒は第一の負荷熱媒体によって冷却される。冷却された冷媒は高圧の液状態の冷媒となって第一の利用側熱交換器21から流出する。また、第一の負荷熱媒体は第一の利用側熱交換器21を通過する冷媒によって加熱される。つまり、実施の形態では室内空間の空気は冷凍サイクル装置1000によって加熱される。 In the first load heat medium heating refrigerant circulation circuit 602, the first user-side heat exchanger 21 functions as a condenser. Therefore, the refrigerant passing through the first utilization side heat exchanger 21 is cooled by the first load heat medium. The cooled refrigerant becomes a high-pressure liquid-state refrigerant and flows out from the first utilization-side heat exchanger 21. Further, the first load heat medium is heated by the refrigerant passing through the first utilization side heat exchanger 21. That is, in the embodiment, the air in the interior space is heated by the refrigeration cycle device 1000.
 第一の利用側熱交換器21から流出した冷媒は第一の利用側液冷媒配管210と第一の連結配管501と第四の熱源機冷媒配管114を通過する。また、第四の熱源機冷媒配管114の途中には第二の膨張弁3bが設けられているが、第二の膨張弁3bの開度は最大であるため第二の膨張弁3bを通過する冷媒の圧力は減少しない。 The refrigerant flowing out of the first user-side heat exchanger 21 passes through the first user-side liquid refrigerant pipe 210, the first connecting pipe 501, and the fourth heat source machine refrigerant pipe 114. Further, although the second expansion valve 3b is provided in the middle of the fourth heat source machine refrigerant pipe 114, the opening of the second expansion valve 3b is the maximum, so that the second expansion valve 3b passes through the second expansion valve 3b. Refrigerant pressure does not decrease.
 第一の負荷熱媒体加熱冷媒循環回路602では第一の膨張弁3aの開度は第一の膨張弁3aを通過した冷媒が減圧する所定の開度であり、第三の膨張弁3cの開度は最小である。このため、第四の熱源機冷媒配管114を通過した冷媒の大部分は第三の熱源機冷媒配管113に流入し、第五の熱源機冷媒配管115には第三の膨張弁3cから漏れ出すごく少量の冷媒が流入する。第三の熱源機冷媒配管113に流入した冷媒は第一の膨張弁3aを通過する。第一の膨張弁3aを通過した冷媒は減圧されて高圧の液状態から低圧の気液二相状態となり、第三の熱源機冷媒配管113を通過して熱源側熱交換器2に流入する。 In the first load heat medium heating refrigerant circulation circuit 602, the opening degree of the first expansion valve 3a is a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the opening of the third expansion valve 3c. The degree is the minimum. Therefore, most of the refrigerant that has passed through the fourth heat source machine refrigerant pipe 114 flows into the third heat source machine refrigerant pipe 113, and leaks into the fifth heat source machine refrigerant pipe 115 from the third expansion valve 3c. A very small amount of refrigerant flows in. The refrigerant flowing into the third heat source machine refrigerant pipe 113 passes through the first expansion valve 3a. The refrigerant that has passed through the first expansion valve 3a is depressurized to change from a high-pressure liquid state to a low-pressure gas-liquid two-phase state, passes through the third heat source machine refrigerant pipe 113, and flows into the heat source side heat exchanger 2.
 第一の負荷熱媒体加熱冷媒循環回路602では熱源側熱交換器2は蒸発器として機能する。このため、熱源側熱交換器2を通過する冷媒は熱源熱媒体によって加熱される。つまり、実施の形態では熱源側熱交換器2を通過する冷媒は室外空間の空気によって加熱される。加熱された冷媒はガス状態となって熱源側熱交換器2から流出する。 In the first load heat medium heating refrigerant circulation circuit 602, the heat source side heat exchanger 2 functions as an evaporator. Therefore, the refrigerant passing through the heat source side heat exchanger 2 is heated by the heat source heat medium. That is, in the embodiment, the refrigerant passing through the heat source side heat exchanger 2 is heated by the air in the outdoor space. The heated refrigerant becomes a gas state and flows out from the heat source side heat exchanger 2.
 熱源側熱交換器2から流出した冷媒は第二の熱源機冷媒配管112と第二の四方弁4bと第十一の熱源機冷媒配管121と第八の熱源機冷媒配管118とアキュムレータ5と第九の熱源機冷媒配管119とを通過し圧縮機1の吸入口から吸入される。圧縮機1に吸入された冷媒は、再び高温高圧のガス状態となって吐出される。 The refrigerant flowing out from the heat source side heat exchanger 2 is the second heat source machine refrigerant pipe 112, the second four-way valve 4b, the eleventh heat source machine refrigerant pipe 121, the eighth heat source machine refrigerant pipe 118, the accumulator 5, and the first. It passes through the heat source machine refrigerant pipe 119 and is sucked from the suction port of the compressor 1. The refrigerant sucked into the compressor 1 is discharged again in a high temperature and high pressure gas state.
 以上のように冷媒が第一の負荷熱媒体加熱冷媒循環回路602を循環することによって、第一の負荷熱媒体加熱運転では第一の負荷熱媒体を加熱することができる。実施の形態では第一の負荷熱媒体は室内空間の空気であるため、第一の負荷熱媒体加熱運転は室内空間の空気を加熱する暖房運転である。 As described above, the refrigerant circulates in the first load heat medium heating refrigerant circulation circuit 602, so that the first load heat medium can be heated in the first load heat medium heating operation. In the embodiment, since the first load heat medium is the air in the interior space, the first load heat medium heating operation is a heating operation for heating the air in the interior space.
 また、流路切替装置が第一の負荷熱媒体加熱冷媒循環回路602を形成する状態では、第五の熱源機冷媒配管115は第三の連結配管503と第二の利用側液冷媒配管310を介して第二の利用側熱交換器31の冷媒流路と連通している。さらに、流路切替装置が第一の負荷熱媒体加熱冷媒循環回路602を形成する状態では、第二の利用側熱交換器31の冷媒流路は、第二の利用側ガス冷媒配管320と第四の連結配管504と第七の熱源機冷媒配管117と第一の四方弁4aとを介して、第一の負荷熱媒体加熱冷媒循環回路602における蒸発器(熱源側熱交換器2が該当)と圧縮機1の吸入口との間の流路である第八の熱源機冷媒配管118と連通している。後述するように冷媒が第二の利用側熱交換器31の冷媒流路を流れる第二の負荷熱媒体加熱冷媒循環回路603および冷却加熱同時冷媒循環回路604では、配管を流れる際の圧力損失などの要因により、第五の熱源機冷媒配管115から第一の四方弁4aまで連通する流路の圧力は第八の熱源機冷媒配管118の圧力よりも高い。このため、流路切替装置が第一の負荷熱媒体加熱冷媒循環回路602を形成する状態では、第五の熱源機冷媒配管115から第一の四方弁4aまで連通する流路は第一の負荷熱媒体加熱冷媒循環回路602に含まれないが、第五の熱源機冷媒配管115から第一の四方弁4aまで連通する流路に存在する冷媒は第八の熱源機冷媒配管118へ流れ込み第一の負荷熱媒体加熱冷媒循環回路602を循環する冷媒と合流する。したがって、第二の負荷熱媒体加熱冷媒循環回路603および冷却加熱同時冷媒循環回路604から第一の負荷熱媒体加熱冷媒循環回路602に切り替わった時に第二の利用側熱交換器31に存在する冷媒および第三の膨張弁3cから第五の熱源機冷媒配管115に漏れ出した冷媒は、第五の熱源機冷媒配管115から第一の四方弁4aまで連通する流路に溜まり込まず、第一の負荷熱媒体加熱冷媒循環回路602を循環する冷媒と合流する。 Further, in a state where the flow path switching device forms the first load heat medium heating refrigerant circulation circuit 602, the fifth heat source machine refrigerant pipe 115 includes the third connecting pipe 503 and the second utilization side liquid refrigerant pipe 310. It communicates with the refrigerant flow path of the second utilization side heat exchanger 31 through the pipe. Further, in a state where the flow path switching device forms the first load heat medium heating refrigerant circulation circuit 602, the refrigerant flow paths of the second utilization side heat exchanger 31 are the second utilization side gas refrigerant pipe 320 and the second utilization side gas refrigerant pipe 320. Evaporator in the first load heat medium heating refrigerant circulation circuit 602 (corresponding to the heat source side heat exchanger 2) via the fourth connecting pipe 504, the seventh heat source machine refrigerant pipe 117, and the first four-way valve 4a. It communicates with the eighth heat source machine refrigerant pipe 118, which is a flow path between the compressor 1 and the suction port of the compressor 1. As will be described later, in the second load heat medium heating refrigerant circulation circuit 603 and the cooling / heating simultaneous refrigerant circulation circuit 604 in which the refrigerant flows through the refrigerant flow path of the second utilization side heat exchanger 31, pressure loss when flowing through the piping, etc. The pressure of the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the first four-way valve 4a is higher than the pressure of the eighth heat source machine refrigerant pipe 118. Therefore, in a state where the flow path switching device forms the first load heat medium heating refrigerant circulation circuit 602, the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the first four-way valve 4a is the first load. Although not included in the heat medium heating refrigerant circulation circuit 602, the refrigerant existing in the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the first four-way valve 4a flows into the eighth heat source machine refrigerant pipe 118, and the first It merges with the refrigerant circulating in the load heat medium heating refrigerant circulation circuit 602. Therefore, the refrigerant present in the second utilization side heat exchanger 31 when the second load heat medium heating refrigerant circulation circuit 603 and the cooling / heating simultaneous refrigerant circulation circuit 604 are switched to the first load heat medium heating refrigerant circulation circuit 602. The refrigerant leaking from the third expansion valve 3c to the fifth heat source machine refrigerant pipe 115 does not accumulate in the flow path communicating from the fifth heat source machine refrigerant pipe 115 to the first four-way valve 4a, and the first It merges with the refrigerant circulating in the load heat medium heating refrigerant circulation circuit 602.
 図6は実施の形態に係る冷凍サイクル装置の第二の負荷熱媒体加熱運転時の冷媒回路図である。なお、図6では冷媒が循環する流路を太線で示す。次に冷凍サイクル装置1000の第二の負荷熱媒体加熱運転について説明する。第二の負荷熱媒体加熱運転では制御装置13は第二の負荷熱媒体加熱冷媒循環回路603を形成するように減圧装置3と切替弁群4を制御する。第二の負荷熱媒体加熱冷媒循環回路603における減圧装置3は、第一の膨張弁3aの開度が第一の膨張弁3aを通過した冷媒が減圧する所定の開度になり、第二の膨張弁3bの開度が最小になり、第三の膨張弁3cの開度が最大になるように制御される。また、第二の負荷熱媒体加熱冷媒循環回路603における切替弁群4は、第一の四方弁4aがAポート4aaとBポート4abが連通しCポート4acとDポート4adが連通する状態となり、第二の四方弁4bがAポート4baとDポート4bdが連通しBポート4bbとCポート4bcが連通する状態となるように制御される。また、第二の負荷熱媒体加熱運転時には第二の負荷熱媒体が第二の負荷熱媒体流入側配管330から第二の利用側熱交換器31の負荷熱媒体流路を通過して第二の負荷熱媒体流出側配管340へ流れるとする。 FIG. 6 is a refrigerant circuit diagram during a second load heat medium heating operation of the refrigeration cycle apparatus according to the embodiment. In FIG. 6, the flow path through which the refrigerant circulates is shown by a thick line. Next, the second load heat medium heating operation of the refrigeration cycle apparatus 1000 will be described. In the second load heat medium heating operation, the control device 13 controls the pressure reducing device 3 and the switching valve group 4 so as to form the second load heat medium heating refrigerant circulation circuit 603. In the pressure reducing device 3 in the second load heat medium heating refrigerant circulation circuit 603, the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized. The opening degree of the expansion valve 3b is controlled to be the minimum, and the opening degree of the third expansion valve 3c is controlled to be the maximum. Further, in the switching valve group 4 in the second load heat medium heating refrigerant circulation circuit 603, the first four-way valve 4a communicates with the A port 4aa and the B port 4ab, and the C port 4ac and the D port 4ad communicate with each other. The second four-way valve 4b is controlled so that the A port 4ba and the D port 4bd communicate with each other and the B port 4bb and the C port 4bb communicate with each other. Further, during the second load heat medium heating operation, the second load heat medium passes from the second load heat medium inflow side pipe 330 to the load heat medium flow path of the second utilization side heat exchanger 31 and is second. It is assumed that the load flows to the heat medium outflow side pipe 340.
 第二の負荷熱媒体加熱冷媒循環回路603が形成された状態で圧縮機1が運転を開始すると、圧縮機1より高温高圧のガス状態の冷媒が吐出される。圧縮機1から吐出された高温高圧のガス状態の冷媒は第一の熱源機冷媒配管111と第二の四方弁4bと第十の熱源機冷媒配管120と第一の四方弁4aと第七の熱源機冷媒配管117と第四の連結配管504と第二の利用側ガス冷媒配管320を通過し第二の利用側熱交換器31の冷媒流路に流入する。 When the compressor 1 starts operation with the second load heat medium heating refrigerant circulation circuit 603 formed, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 1. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 1 is the first heat source machine refrigerant pipe 111, the second four-way valve 4b, the tenth heat source machine refrigerant pipe 120, the first four-way valve 4a, and the seventh. It passes through the heat source machine refrigerant pipe 117, the fourth connecting pipe 504, and the second user-side gas refrigerant pipe 320, and flows into the refrigerant flow path of the second user-side heat exchanger 31.
 第二の負荷熱媒体加熱冷媒循環回路603では第二の利用側熱交換器31は凝縮器として機能する。このため、第二の利用側熱交換器31の冷媒流路を通過する冷媒は第二の利用側熱交換器31の負荷熱媒体流路を通過する第二の負荷熱媒体によって冷却される。冷却された冷媒は高圧の液状態の冷媒となって第二の利用側熱交換器31の冷媒流路から流出する。また、第二の負荷熱媒体は第二の利用側熱交換器31を通過する冷媒によって加熱される。つまり、実施の形態では第二の利用側熱交換器31の負荷熱媒体流路に流入した水は冷凍サイクル装置1000によって加熱される。 In the second load heat medium heating refrigerant circulation circuit 603, the second user side heat exchanger 31 functions as a condenser. Therefore, the refrigerant passing through the refrigerant flow path of the second utilization side heat exchanger 31 is cooled by the second load heat medium passing through the load heat medium flow path of the second utilization side heat exchanger 31. The cooled refrigerant becomes a high-pressure liquid-state refrigerant and flows out from the refrigerant flow path of the second utilization-side heat exchanger 31. Further, the second load heat medium is heated by the refrigerant passing through the second utilization side heat exchanger 31. That is, in the embodiment, the water flowing into the load heat medium flow path of the second utilization side heat exchanger 31 is heated by the refrigeration cycle device 1000.
 第二の利用側熱交換器31から流出した冷媒は第二の利用側液冷媒配管310と第三の連結配管503と第五の熱源機冷媒配管115を通過する。また、第五の熱源機冷媒配管115の途中には第三の膨張弁3cが設けられているが、第三の膨張弁3cの開度は最大であるため第三の膨張弁3cを通過する冷媒の圧力は減少しない。 The refrigerant flowing out of the second user-side heat exchanger 31 passes through the second user-side liquid refrigerant pipe 310, the third connecting pipe 503, and the fifth heat source machine refrigerant pipe 115. Further, although the third expansion valve 3c is provided in the middle of the fifth heat source machine refrigerant pipe 115, the opening of the third expansion valve 3c is the maximum, so that the third expansion valve 3c passes through the third expansion valve 3c. Refrigerant pressure does not decrease.
 第二の負荷熱媒体加熱冷媒循環回路603では第一の膨張弁3aの開度は第一の膨張弁3aを通過した冷媒が減圧する所定の開度であり、第二の膨張弁3bの開度は最小である。このため、第五の熱源機冷媒配管115を通過した冷媒の大部分は第三の熱源機冷媒配管113に流入し、第四の熱源機冷媒配管114には第二の膨張弁3bから漏れ出すごく少量の冷媒が流入する。第三の熱源機冷媒配管113に流入した冷媒は第一の膨張弁3aを通過する。第一の膨張弁3aを通過した冷媒は減圧されて高圧の液状態から低圧の気液二相状態となり、第三の熱源機冷媒配管113を通過して熱源側熱交換器2に流入する。 In the second load heat medium heating refrigerant circulation circuit 603, the opening degree of the first expansion valve 3a is a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the second expansion valve 3b is opened. The degree is the minimum. Therefore, most of the refrigerant that has passed through the fifth heat source machine refrigerant pipe 115 flows into the third heat source machine refrigerant pipe 113, and leaks into the fourth heat source machine refrigerant pipe 114 from the second expansion valve 3b. A very small amount of refrigerant flows in. The refrigerant flowing into the third heat source machine refrigerant pipe 113 passes through the first expansion valve 3a. The refrigerant that has passed through the first expansion valve 3a is depressurized to change from a high-pressure liquid state to a low-pressure gas-liquid two-phase state, passes through the third heat source machine refrigerant pipe 113, and flows into the heat source side heat exchanger 2.
 第一の負荷熱媒体加熱冷媒循環回路602では熱源側熱交換器2は蒸発器として機能する。このため、熱源側熱交換器2を通過する冷媒は熱源熱媒体によって加熱される。つまり、実施の形態では熱源側熱交換器2を通過する冷媒は室外空間の空気によって加熱される。加熱された冷媒はガス状態となって熱源側熱交換器2から流出する。 In the first load heat medium heating refrigerant circulation circuit 602, the heat source side heat exchanger 2 functions as an evaporator. Therefore, the refrigerant passing through the heat source side heat exchanger 2 is heated by the heat source heat medium. That is, in the embodiment, the refrigerant passing through the heat source side heat exchanger 2 is heated by the air in the outdoor space. The heated refrigerant becomes a gas state and flows out from the heat source side heat exchanger 2.
 熱源側熱交換器2から流出した冷媒は第二の熱源機冷媒配管112と第二の四方弁4bと第十一の熱源機冷媒配管121と第八の熱源機冷媒配管118とアキュムレータ5と第九の熱源機冷媒配管119とを通過し圧縮機1の吸入口から吸入される。圧縮機1に吸入された冷媒は、再び高温高圧のガス状態となって吐出される。 The refrigerant flowing out from the heat source side heat exchanger 2 is the second heat source machine refrigerant pipe 112, the second four-way valve 4b, the eleventh heat source machine refrigerant pipe 121, the eighth heat source machine refrigerant pipe 118, the accumulator 5, and the first. It passes through the heat source machine refrigerant pipe 119 and is sucked from the suction port of the compressor 1. The refrigerant sucked into the compressor 1 is discharged again in a high temperature and high pressure gas state.
 以上のように冷媒が第二の負荷熱媒体加熱冷媒循環回路603を循環することによって、第二の負荷熱媒体加熱運転では第二の負荷熱媒体を加熱することができる。実施の形態では第二の負荷熱媒体は水であるため、第二の負荷熱媒体加熱運転は水を加熱して湯を生成する給湯運転である。 As described above, the refrigerant circulates in the second load heat medium heating refrigerant circulation circuit 603, so that the second load heat medium can be heated in the second load heat medium heating operation. In the embodiment, since the second load heat medium is water, the second load heat medium heating operation is a hot water supply operation in which water is heated to generate hot water.
 また、流路切替装置が第二の負荷熱媒体加熱冷媒循環回路603を形成する状態では、第四の熱源機冷媒配管114は第一の連結配管501と第一の利用側液冷媒配管210を介して第一の利用側熱交換器21と連通している。さらに、流路切替装置が第二の負荷熱媒体加熱冷媒循環回路603を形成する状態では、第一の利用側熱交換器21の冷媒流路は、第一の利用側ガス冷媒配管220と第二の連結配管502と第六の熱源機冷媒配管116と第一の四方弁4aとを介して、第二の負荷熱媒体加熱冷媒循環回路603における蒸発器(熱源側熱交換器2が該当)と圧縮機1の吸入口との間の流路である第八の熱源機冷媒配管118と連通している。冷媒が第一の利用側熱交換器21を流れる第一の負荷熱媒体冷却冷媒循環回路601と第一の負荷熱媒体加熱冷媒循環回路602と後述する冷却加熱同時冷媒循環回路604では、配管を流れる際の圧力損失などの要因により、第四の熱源機冷媒配管114から第一の四方弁4aまで連通する流路の圧力は第八の熱源機冷媒配管118の圧力よりも高い。このため、流路切替装置が第二の負荷熱媒体加熱冷媒循環回路603を形成する状態では、第四の熱源機冷媒配管114から第一の四方弁4aまで連通する流路は第二の負荷熱媒体加熱冷媒循環回路603に含まれないが、第四の熱源機冷媒配管114から第一の四方弁4aまで連通する流路に存在する冷媒は第八の熱源機冷媒配管118へ流れ込み第二の負荷熱媒体加熱冷媒循環回路603を循環する冷媒と合流する。したがって、第一の負荷熱媒体冷却冷媒循環回路601、第一の負荷熱媒体加熱冷媒循環回路602および冷却加熱同時冷媒循環回路604から第二の負荷熱媒体加熱冷媒循環回路603に切り替わった時に第一の利用側熱交換器21に存在する冷媒および第二の膨張弁3bから第四の熱源機冷媒配管114に漏れ出した冷媒は、第四の熱源機冷媒配管114から第一の四方弁4aまで連通する流路に溜まり込まず、第二の負荷熱媒体加熱冷媒循環回路603を循環する冷媒と合流する。 Further, in a state where the flow path switching device forms the second load heat medium heating refrigerant circulation circuit 603, the fourth heat source machine refrigerant pipe 114 has the first connecting pipe 501 and the first utilization side liquid refrigerant pipe 210. It communicates with the first user-side heat exchanger 21 via. Further, in a state where the flow path switching device forms the second load heat medium heating refrigerant circulation circuit 603, the refrigerant flow paths of the first utilization side heat exchanger 21 are the first utilization side gas refrigerant pipe 220 and the second. Evaporator in the second load heat medium heating refrigerant circulation circuit 603 via the second connecting pipe 502, the sixth heat source machine refrigerant pipe 116, and the first four-way valve 4a (corresponding to the heat source side heat exchanger 2). It communicates with the eighth heat source machine refrigerant pipe 118, which is a flow path between the compressor 1 and the suction port of the compressor 1. In the first load heat medium cooling refrigerant circulation circuit 601 through which the refrigerant flows through the first utilization side heat exchanger 21, the first load heat medium heating refrigerant circulation circuit 602, and the cooling heating simultaneous refrigerant circulation circuit 604 described later, piping is provided. Due to factors such as pressure loss during flow, the pressure in the flow path communicating from the fourth heat source machine refrigerant pipe 114 to the first four-way valve 4a is higher than the pressure in the eighth heat source machine refrigerant pipe 118. Therefore, in a state where the flow path switching device forms the second load heat medium heating refrigerant circulation circuit 603, the flow path communicating from the fourth heat source machine refrigerant pipe 114 to the first four-way valve 4a is the second load. Although not included in the heat medium heating refrigerant circulation circuit 603, the refrigerant existing in the flow path communicating from the fourth heat source machine refrigerant pipe 114 to the first four-way valve 4a flows into the eighth heat source machine refrigerant pipe 118, and the second It merges with the refrigerant circulating in the load heat medium heating refrigerant circulation circuit 603. Therefore, when the first load heat medium cooling refrigerant circulation circuit 601, the first load heat medium heating refrigerant circulation circuit 602, and the cooling / heating simultaneous refrigerant circulation circuit 604 are switched to the second load heat medium heating refrigerant circulation circuit 603, the first load heat medium cooling refrigerant circulation circuit 601 is switched to. The refrigerant existing in the first utilization side heat exchanger 21 and the refrigerant leaking from the second expansion valve 3b to the fourth heat source machine refrigerant pipe 114 are the first four-way valve 4a from the fourth heat source machine refrigerant pipe 114. It does not accumulate in the flow path that communicates with the second load heat medium heating refrigerant circulation circuit 603 and joins the circulating refrigerant.
 図7は実施の形態に係る冷凍サイクル装置の冷却加熱同時運転時の冷媒回路図である。なお、図7では冷媒が循環する流路を太線で示す。次に冷凍サイクル装置1000の冷却加熱同時運転について説明する。冷却加熱同時運転では制御装置13は冷却加熱同時冷媒循環回路604を形成するように減圧装置3と切替弁群4を制御する。冷却加熱同時冷媒循環回路604における減圧装置3は、第一の膨張弁3aの開度が最小になり、第二の膨張弁3bの開度が第二の膨張弁3bを通過した冷媒が減圧する所定の開度になり、第三の膨張弁3cの開度が最大になるように制御される。また、冷却加熱同時冷媒循環回路604における切替弁群4は、第一の四方弁4aがAポート4aaとBポート4abが連通しCポート4acとDポート4adが連通する状態となり、第二の四方弁4bがAポート4baとDポート4bdが連通しBポート4bbとCポート4bcが連通する状態となるように制御される。また、冷却加熱同時運転時には第二の負荷熱媒体が第二の負荷熱媒体流入側配管330から第二の利用側熱交換器31の負荷熱媒体流路を通過して第二の負荷熱媒体流出側配管340へ流れるとする。 FIG. 7 is a refrigerant circuit diagram during simultaneous cooling and heating operation of the refrigeration cycle device according to the embodiment. In FIG. 7, the flow path through which the refrigerant circulates is shown by a thick line. Next, the simultaneous cooling and heating operation of the refrigeration cycle device 1000 will be described. In the simultaneous cooling and heating operation, the control device 13 controls the pressure reducing device 3 and the switching valve group 4 so as to form the cooling and heating simultaneous refrigerant circulation circuit 604. In the pressure reducing device 3 in the cooling / heating simultaneous refrigerant circulation circuit 604, the opening degree of the first expansion valve 3a is minimized, and the opening degree of the second expansion valve 3b is reduced by the refrigerant passing through the second expansion valve 3b. The opening degree becomes a predetermined value, and the opening degree of the third expansion valve 3c is controlled to be maximized. Further, in the switching valve group 4 in the cooling / heating simultaneous refrigerant circulation circuit 604, the first four-way valve 4a communicates with the A port 4aa and the B port 4ab, and the C port 4ac and the D port 4ad communicate with each other. The valve 4b is controlled so that the A port 4ba and the D port 4bd communicate with each other and the B port 4bb and the C port 4bb communicate with each other. Further, during the simultaneous cooling and heating operation, the second load heat medium passes from the second load heat medium inflow side pipe 330 to the load heat medium flow path of the second utilization side heat exchanger 31, and the second load heat medium. It is assumed that the flow flows to the outflow side pipe 340.
 冷却加熱同時冷媒循環回路604が形成された状態で圧縮機1が運転を開始すると、圧縮機1より高温高圧のガス状態の冷媒が吐出される。圧縮機1から吐出された高温高圧のガス状態の冷媒は第一の熱源機冷媒配管111と第二の四方弁4bと第十の熱源機冷媒配管120と第一の四方弁4aと第七の熱源機冷媒配管117と第四の連結配管504と第二の利用側ガス冷媒配管320を通過し第二の利用側熱交換器31の冷媒流路に流入する。 When the compressor 1 starts operation with the cooling / heating simultaneous refrigerant circulation circuit 604 formed, the refrigerant in a high temperature and high pressure gas state is discharged from the compressor 1. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 1 is the first heat source machine refrigerant pipe 111, the second four-way valve 4b, the tenth heat source machine refrigerant pipe 120, the first four-way valve 4a, and the seventh. It passes through the heat source machine refrigerant pipe 117, the fourth connecting pipe 504, and the second user-side gas refrigerant pipe 320, and flows into the refrigerant flow path of the second user-side heat exchanger 31.
 冷却加熱同時冷媒循環回路604では第二の利用側熱交換器31は凝縮器として機能する。このため、第二の利用側熱交換器31の冷媒流路を通過する冷媒は第二の利用側熱交換器31の負荷熱媒体流路を通過する第二の負荷熱媒体によって冷却される。冷却された冷媒は高圧の液状態の冷媒となって第二の利用側熱交換器31の冷媒流路から流出する。また、第二の負荷熱媒体は第二の利用側熱交換器31を通過する冷媒によって加熱される。つまり、実施の形態では第二の利用側熱交換器31の負荷熱媒体流路に流入した水は冷凍サイクル装置1000によって加熱される。 In the cooling / heating simultaneous refrigerant circulation circuit 604, the second user-side heat exchanger 31 functions as a condenser. Therefore, the refrigerant passing through the refrigerant flow path of the second utilization side heat exchanger 31 is cooled by the second load heat medium passing through the load heat medium flow path of the second utilization side heat exchanger 31. The cooled refrigerant becomes a high-pressure liquid-state refrigerant and flows out from the refrigerant flow path of the second utilization-side heat exchanger 31. Further, the second load heat medium is heated by the refrigerant passing through the second utilization side heat exchanger 31. That is, in the embodiment, the water flowing into the load heat medium flow path of the second utilization side heat exchanger 31 is heated by the refrigeration cycle device 1000.
 第二の利用側熱交換器31から流出した冷媒は第二の利用側液冷媒配管310と第三の連結配管503と第五の熱源機冷媒配管115を通過する。また、第五の熱源機冷媒配管115の途中には第三の膨張弁3cが設けられているが、第三の膨張弁3cの開度は最大であるため第三の膨張弁3cを通過する冷媒の圧力は減少しない。 The refrigerant flowing out of the second user-side heat exchanger 31 passes through the second user-side liquid refrigerant pipe 310, the third connecting pipe 503, and the fifth heat source machine refrigerant pipe 115. Further, although the third expansion valve 3c is provided in the middle of the fifth heat source machine refrigerant pipe 115, the opening of the third expansion valve 3c is the maximum, so that the third expansion valve 3c passes through the third expansion valve 3c. Refrigerant pressure does not decrease.
 冷却加熱同時冷媒循環回路604では第一の膨張弁3aの開度は最小であり、第二の膨張弁3bの開度は第二の膨張弁3bを通過した冷媒が減圧する所定の開度である。このため、第五の熱源機冷媒配管115を通過した冷媒の大部分は第四の熱源機冷媒配管114に流入し、第三の熱源機冷媒配管113には第一の膨張弁3aから漏れ出すごく少量の冷媒が流入する。第四の熱源機冷媒配管114に流入した冷媒は第二の膨張弁3bを通過する。第二の膨張弁3bを通過した冷媒は減圧されて高圧の液状態から低圧の気液二相状態となり、第四の熱源機冷媒配管114と第一の連結配管501と第一の利用側液冷媒配管210とを通過して第一の利用側熱交換器21に流入する。 In the cooling / heating simultaneous refrigerant circulation circuit 604, the opening degree of the first expansion valve 3a is the minimum, and the opening degree of the second expansion valve 3b is a predetermined opening degree at which the refrigerant passing through the second expansion valve 3b is depressurized. be. Therefore, most of the refrigerant that has passed through the fifth heat source machine refrigerant pipe 115 flows into the fourth heat source machine refrigerant pipe 114, and leaks into the third heat source machine refrigerant pipe 113 from the first expansion valve 3a. A very small amount of refrigerant flows in. The refrigerant that has flowed into the fourth heat source machine refrigerant pipe 114 passes through the second expansion valve 3b. The refrigerant that has passed through the second expansion valve 3b is depressurized and changes from a high-pressure liquid state to a low-pressure gas-liquid two-phase state. It passes through the refrigerant pipe 210 and flows into the first utilization side heat exchanger 21.
 冷却加熱同時冷媒循環回路604では第一の利用側熱交換器21は蒸発器として機能する。このため、第一の利用側熱交換器21を通過する冷媒は第一の負荷熱媒体によって加熱される。加熱された冷媒はガス状態となって第一の利用側熱交換器21から流出する。また、第一の負荷熱媒体は第一の利用側熱交換器21を通過する冷媒によって冷却される。つまり、実施の形態では室内空間の空気は冷凍サイクル装置1000によって冷却される。 In the cooling / heating simultaneous refrigerant circulation circuit 604, the first user-side heat exchanger 21 functions as an evaporator. Therefore, the refrigerant passing through the first utilization side heat exchanger 21 is heated by the first load heat medium. The heated refrigerant becomes a gas state and flows out from the first utilization side heat exchanger 21. Further, the first load heat medium is cooled by the refrigerant passing through the first utilization side heat exchanger 21. That is, in the embodiment, the air in the interior space is cooled by the refrigeration cycle device 1000.
 第一の利用側熱交換器21から流出した冷媒は第一の利用側ガス冷媒配管220と第二の連結配管502と第六の熱源機冷媒配管116と第一の四方弁4aと第八の熱源機冷媒配管118とアキュムレータ5と第九の熱源機冷媒配管119とを通過し圧縮機1の吸入口から吸入される。圧縮機1に吸入された冷媒は、再び高温高圧のガス状態となって吐出される。 The refrigerant flowing out from the first user-side heat exchanger 21 is the first user-side gas refrigerant pipe 220, the second connecting pipe 502, the sixth heat source machine refrigerant pipe 116, the first four-way valve 4a, and the eighth. It passes through the heat source machine refrigerant pipe 118, the accumulator 5, and the ninth heat source machine refrigerant pipe 119, and is sucked from the suction port of the compressor 1. The refrigerant sucked into the compressor 1 is discharged again in a high temperature and high pressure gas state.
 以上のように冷媒が冷却加熱同時冷媒循環回路604を循環することによって、冷却加熱同時冷媒運転では第一の負荷熱媒体の冷却と第二の負荷熱媒体を加熱を同時に行うことができる。実施の形態では第一の負荷熱媒体は室内空間の空気であり第二の負荷熱媒体は水であるため、冷却加熱同時運転は、室内空間の空気の冷却と水を加熱して湯の生成を同時に行う冷房給湯同時運転である。 As described above, the refrigerant circulates in the cooling / heating simultaneous refrigerant circulation circuit 604, so that the first load heat medium can be cooled and the second load heat medium can be heated at the same time in the cooling / heating simultaneous refrigerant operation. In the embodiment, since the first load heat medium is the air in the indoor space and the second load heat medium is water, the simultaneous cooling and heating operation cools the air in the indoor space and heats the water to generate hot water. It is a simultaneous operation of cooling and hot water supply.
 また、流路切替装置が冷却加熱同時冷媒循環回路604を形成する状態では、第三の熱源機冷媒配管113は熱源側熱交換器2と連通している。さらに、流路切替装置が冷却加熱同時冷媒循環回路604を形成する状態では、熱源側熱交換器2は、第二の熱源機冷媒配管112と第二の四方弁4bと第十一の熱源機冷媒配管121とを介して、冷却加熱同時冷媒循環回路604における蒸発器(第一の利用側熱交換器21が該当)と圧縮機1の吸入口との間の流路である第八の熱源機冷媒配管118と連通している。冷媒が熱源側熱交換器2を流れる第一の負荷熱媒体冷却冷媒循環回路601と第一の負荷熱媒体加熱冷媒循環回路602と第二の負荷熱媒体加熱冷媒循環回路603では、配管を流れる際の圧力損失などの要因により、第三の熱源機冷媒配管113から第十一の熱源機冷媒配管121まで連通する流路の圧力は第八の熱源機冷媒配管118の圧力よりも高い。このため、流路切替装置が冷却加熱同時冷媒循環回路604を形成する状態では、第三の熱源機冷媒配管113から第十一の熱源機冷媒配管121まで連通する流路は冷却加熱同時冷媒循環回路604に含まれないが、第三の熱源機冷媒配管113から第十一の熱源機冷媒配管121まで連通する流路に存在する冷媒は第八の熱源機冷媒配管118へ流れ込み冷却加熱同時冷媒循環回路604を循環する冷媒と合流する。したがって、第一の負荷熱媒体冷却冷媒循環回路601、第一の負荷熱媒体加熱冷媒循環回路602および第二の負荷熱媒体加熱冷媒循環回路603から冷却加熱同時冷媒循環回路604に切り替わった時に熱源側熱交換器2に存在する冷媒および第一の膨張弁3aから第三の熱源機冷媒配管113に漏れ出した冷媒は、第三の熱源機冷媒配管113から第十一の熱源機冷媒配管121まで連通する流路に溜まり込まず、冷却加熱同時冷媒循環回路604を循環する冷媒と合流する。 Further, in a state where the flow path switching device forms the cooling / heating simultaneous refrigerant circulation circuit 604, the third heat source machine refrigerant pipe 113 communicates with the heat source side heat exchanger 2. Further, in a state where the flow path switching device forms the cooling / heating simultaneous refrigerant circulation circuit 604, the heat source side heat exchanger 2 is the second heat source machine refrigerant pipe 112, the second four-way valve 4b, and the eleventh heat source machine. Eighth heat source, which is a flow path between the evaporator (corresponding to the first heat exchanger 21 on the user side) in the cooling / heating simultaneous refrigerant circulation circuit 604 and the suction port of the compressor 1 via the refrigerant pipe 121. It communicates with the machine refrigerant pipe 118. In the first load heat medium cooling refrigerant circulation circuit 601 where the refrigerant flows through the heat source side heat exchanger 2, the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating refrigerant circulation circuit 603 flow through the pipes. Due to factors such as pressure loss, the pressure in the flow path communicating from the third heat source machine refrigerant pipe 113 to the eleventh heat source machine refrigerant pipe 121 is higher than the pressure in the eighth heat source machine refrigerant pipe 118. Therefore, in a state where the flow path switching device forms the cooling / heating simultaneous refrigerant circulation circuit 604, the flow path communicating from the third heat source machine refrigerant pipe 113 to the eleventh heat source machine refrigerant pipe 121 is cooled / heated simultaneous refrigerant circulation. Although not included in the circuit 604, the refrigerant existing in the flow path communicating from the third heat source machine refrigerant pipe 113 to the eleventh heat source machine refrigerant pipe 121 flows into the eighth heat source machine refrigerant pipe 118 to cool and heat the simultaneous refrigerant. It merges with the refrigerant circulating in the circulation circuit 604. Therefore, when the first load heat medium cooling refrigerant circulation circuit 601, the first load heat medium heating refrigerant circulation circuit 602, and the second load heat medium heating refrigerant circulation circuit 603 are switched to the cooling / heating simultaneous refrigerant circulation circuit 604, the heat source is used. The refrigerant existing in the side heat exchanger 2 and the refrigerant leaking from the first expansion valve 3a to the third heat source machine refrigerant pipe 113 are the third heat source machine refrigerant pipe 113 to the eleventh heat source machine refrigerant pipe 121. It does not accumulate in the flow path that communicates with the refrigerant, but merges with the refrigerant that circulates in the cooling / heating simultaneous refrigerant circulation circuit 604.
 以上のように実施の形態に係る冷凍サイクル装置1000は、冷媒を吸入口から吸入し吸入した冷媒を圧縮し圧縮した冷媒を吐出口から吐出する圧縮機1と、冷媒と第一の熱媒体(熱源熱媒体が該当)との間で熱交換を行わせる第一の熱交換器(熱源側熱交換器2が該当)と、冷媒と第二の熱媒体(第一の負荷熱媒体が該当)との間で熱交換を行わせる第二の熱交換器(第一の利用側熱交換器21が該当)と、冷媒と第三の熱媒体(第二の負荷熱媒体が該当)との間で熱交換を行わせる第三の熱交換器(第二の利用側熱交換器31が該当)と、冷媒が循環する冷媒循環回路を切り替える流路切替装置(減圧装置3と切替弁群4が該当)と、を備え、流路切替装置は、第三の熱交換器を含み第三の熱交換器が蒸発器または凝縮器として機能する冷媒循環回路である第一の冷媒循環回路(第二の負荷熱媒体加熱冷媒循環回路603または冷却加熱同時冷媒循環回路604が該当)と、第一の熱交換器と第二の熱交換器を含み第一の熱交換器または第二の熱交換器のいずれか一つが蒸発器として機能し第三の熱交換器を含まない冷媒循環回路である第二の冷媒循環回路(第一の負荷熱媒体冷却冷媒循環回路601または第一の負荷熱媒体加熱冷媒循環回路602が該当)と、を切り替え、流路切替装置によって第二の冷媒循環回路が形成される場合において第三の熱交換器は第二の冷媒循環回路の蒸発器として機能する第一の熱交換器または第二の熱交換器(第二の冷媒循環回路が第一の負荷熱媒体冷却冷媒循環回路601の場合は第一の利用側熱交換器21が該当し、第二の冷媒循環回路が第一の負荷熱媒体加熱冷媒循環回路602の場合は熱源側熱交換器2が該当する)と圧縮機1の吸入口との間の流路と連通する構成を有する。当該構成のうち、特に第二の冷媒循環回路が形成される場合において第三の熱交換器は第二の冷媒循環回路の蒸発器として機能する熱交換器と圧縮機1の吸入口との間の流路と連通する構成を有することによって、実施の形態に係る冷凍サイクル装置1000は冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が蒸発器と圧縮機の吸入口の間の流路に流れ込み冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる効果を奏する。 As described above, in the refrigeration cycle apparatus 1000 according to the embodiment, the compressor 1 that sucks the refrigerant from the suction port, compresses the sucked refrigerant, and discharges the compressed refrigerant from the discharge port, the refrigerant, and the first heat medium ( The first heat exchanger (corresponding to heat source side heat exchanger 2) and the refrigerant and the second heat medium (corresponding to the first load heat medium) that exchange heat with the heat source heat medium (corresponding to) Between the second heat exchanger (corresponding to the first user-side heat exchanger 21) and the refrigerant and the third heat medium (corresponding to the second load heat medium) to exchange heat with each other. A third heat exchanger (corresponding to the second user-side heat exchanger 31) for heat exchange and a flow path switching device (pressure reducing device 3 and switching valve group 4) for switching the refrigerant circulation circuit in which the refrigerant circulates. The flow path switching device is a first refrigerant circulation circuit (second), which is a refrigerant circulation circuit including a third heat exchanger in which the third heat exchanger functions as an evaporator or a condenser. (Applicable to the load heat medium heating refrigerant circulation circuit 603 or the cooling and heating simultaneous refrigerant circulation circuit 604), and the first heat exchanger or the second heat exchanger including the first heat exchanger and the second heat exchanger. A second refrigerant circulation circuit (first load heat medium cooling refrigerant circulation circuit 601 or first load heat medium heating) which is a refrigerant circulation circuit in which any one of the above functions as an evaporator and does not include a third heat exchanger. The third heat exchanger functions as the evaporator of the second refrigerant circulation circuit when the second refrigerant circulation circuit is formed by the flow path switching device by switching between (corresponding to the refrigerant circulation circuit 602). Heat exchanger or second heat exchanger (when the second refrigerant circulation circuit is the first load heat medium cooling refrigerant circulation circuit 601 the first user side heat exchanger 21 corresponds, and the second refrigerant When the circulation circuit is the first load heat medium heating refrigerant circulation circuit 602, the heat source side heat exchanger 2 is applicable) and the flow path between the suction port of the compressor 1 is communicated with each other. In this configuration, especially when the second refrigerant circulation circuit is formed, the third heat exchanger is between the heat exchanger functioning as the evaporator of the second refrigerant circulation circuit and the suction port of the compressor 1. In the refrigerating cycle apparatus 1000 according to the embodiment, the refrigerant accumulated in the heat exchanger not included in the refrigerant circulation circuit flows between the evaporator and the suction port of the compressor by having a configuration communicating with the flow path of the above. It has the effect of suppressing a shortage of refrigerant by flowing into the road and merging with the refrigerant circulating in the refrigerant circulation circuit.
 また、上述の実施の形態に係る冷凍サイクル装置1000の構成では、第一の熱交換器が熱源側熱交換器2に該当し、第二の熱交換器が第一の利用側熱交換器21に該当し、第三の熱交換器が第二の利用側熱交換器31に該当すると説明したが、これに限らず、以下の第一の場合および第二の場合のように第一から第三の熱交換器が冷凍サイクル装置1000の各熱交換器に該当する場合も本開示の一態様に含まれる。第一の場合では、第一の熱交換器が第一の利用側熱交換器21に該当し、第二の熱交換器は第二の利用側熱交換器31に該当し、第三の熱交換器は熱源側熱交換器2に該当する。第一の場合では第一の冷媒循環回路は第一の負荷熱媒体冷却冷媒循環回路601、第一の負荷熱媒体加熱冷媒循環回路602または第二の負荷熱媒体加熱冷媒循環回路603が該当し、第二の冷媒循環回路は冷却加熱同時冷媒循環回路604が該当する。第二の場合では第一の熱交換器は熱源側熱交換器2であり、第二の熱交換器は第二の利用側熱交換器31であり、第三の熱交換器は第一の利用側熱交換器21に該当する。第二の場合では第一の冷媒循環回路は第一の負荷熱媒体冷却冷媒循環回路601、第一の負荷熱媒体加熱冷媒循環回路602または冷却加熱同時冷媒循環回路604が該当し、第二の冷媒循環回路は第二の負荷熱媒体加熱冷媒循環回路603が該当する。また、第一の場合と第二の場合の両方共に、実施の形態に係る冷凍サイクル装置1000は冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が蒸発器と圧縮機の吸入口の間の流路に流れ込み冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる効果を奏する。 Further, in the configuration of the refrigeration cycle apparatus 1000 according to the above-described embodiment, the first heat exchanger corresponds to the heat source side heat exchanger 2 and the second heat exchanger is the first user side heat exchanger 21. It was explained that the third heat exchanger corresponds to the second user side heat exchanger 31, but it is not limited to this, and the first to the first as in the first case and the second case below. The case where the third heat exchanger corresponds to each heat exchanger of the refrigeration cycle apparatus 1000 is also included in one aspect of the present disclosure. In the first case, the first heat exchanger corresponds to the first user-side heat exchanger 21, the second heat exchanger corresponds to the second user-side heat exchanger 31, and the third heat. The exchanger corresponds to the heat source side heat exchanger 2. In the first case, the first refrigerant circulation circuit corresponds to the first load heat medium cooling refrigerant circulation circuit 601 and the first load heat medium heating refrigerant circulation circuit 602 or the second load heat medium heating refrigerant circulation circuit 603. The second refrigerant circulation circuit corresponds to the cooling / heating simultaneous refrigerant circulation circuit 604. In the second case, the first heat exchanger is the heat source side heat exchanger 2, the second heat exchanger is the second utilization side heat exchanger 31, and the third heat exchanger is the first. Corresponds to the user side heat exchanger 21. In the second case, the first refrigerant circulation circuit corresponds to the first load heat medium cooling refrigerant circulation circuit 601 and the first load heat medium heating refrigerant circulation circuit 602 or the cooling heating simultaneous refrigerant circulation circuit 604. The second load heat medium heating refrigerant circulation circuit 603 corresponds to the refrigerant circulation circuit. Further, in both the first case and the second case, in the refrigerating cycle apparatus 1000 according to the embodiment, the refrigerant accumulated in the heat exchanger not included in the refrigerant circulation circuit is collected in the suction ports of the evaporator and the compressor. It flows into the flow path between them and merges with the refrigerant circulating in the refrigerant circulation circuit, which has the effect of suppressing a refrigerant shortage.
 また、実施の形態に係る冷凍サイクル装置1000は、付加的な構成として、流路切替装置は第二の利用側熱交換器31が凝縮器として機能し第一の利用側熱交換器21が蒸発器として機能し第一の利用側熱交換器21を通過した冷媒が圧縮機1の吸入口から吸入される冷却加熱同時冷媒循環回路604に切り替えることができ、流路切替装置によって冷却加熱同時冷媒循環回路604が形成される場合において熱源側熱交換器2は冷却加熱同時冷媒循環回路604に含まれず冷却加熱同時冷媒循環回路604の第一の利用側熱交換器21と圧縮機1の吸入口との間の流路と連通する構成を有する。当該付加的構成のうち、流路切替装置が冷却加熱同時冷媒循環回路604を形成している場合において熱源側熱交換器2が第一の利用側熱交換器21と圧縮機1の吸入口との間の流路と連通する構成を有することによって、実施の形態に係る冷凍サイクル装置1000は冷却加熱同時冷媒循環回路604に含まれない熱源側熱交換器2に溜まり込んだ冷媒が第一の利用側熱交換器21と圧縮機1の吸入口との間の流路に流れ込み冷却加熱同時冷媒循環回路604を循環する冷媒と合流し、冷媒不足を抑制することができる効果を奏する。 Further, in the refrigeration cycle apparatus 1000 according to the embodiment, as an additional configuration, in the flow path switching apparatus, the second utilization side heat exchanger 31 functions as a condenser, and the first utilization side heat exchanger 21 evaporates. The refrigerant that functions as a container and has passed through the first user-side heat exchanger 21 can be switched to the cooling / heating simultaneous refrigerant circulation circuit 604 that is sucked from the suction port of the compressor 1, and the cooling / heating simultaneous refrigerant is switched by the flow path switching device. When the circulation circuit 604 is formed, the heat source side heat exchanger 2 is not included in the cooling / heating simultaneous refrigerant circulation circuit 604, and is not included in the cooling / heating simultaneous refrigerant circulation circuit 604. It has a structure that communicates with the flow path between and. In the additional configuration, when the flow path switching device forms the cooling / heating simultaneous refrigerant circulation circuit 604, the heat source side heat exchanger 2 is the first utilization side heat exchanger 21 and the suction port of the compressor 1. In the refrigeration cycle apparatus 1000 according to the embodiment, the refrigerant accumulated in the heat source side heat exchanger 2 not included in the cooling / heating simultaneous refrigerant circulation circuit 604 is the first to have a configuration communicating with the flow path between the two. It flows into the flow path between the heat exchanger 21 on the user side and the suction port of the compressor 1 and merges with the refrigerant circulating in the cooling / heating simultaneous refrigerant circulation circuit 604, which has the effect of suppressing the shortage of the refrigerant.
 また、実施の形態に係る冷凍サイクル装置1000は、付加的な構成として、流路切替装置は熱源側熱交換器2が凝縮器として機能し第一の利用側熱交換器21が蒸発器として機能し第一の利用側熱交換器21を通過した冷媒が圧縮機1の吸入口から吸入される第一の負荷熱媒体冷却冷媒循環回路601に切り替えることができ、流路切替装置によって第一の負荷熱媒体冷却冷媒循環回路601が形成される場合において第二の利用側熱交換器31は、第一の負荷熱媒体冷却冷媒循環回路601に含まれず、第一の負荷熱媒体冷却冷媒循環回路601の第一の利用側熱交換器21と圧縮機1の吸入口との間の流路と連通する構成を有する。当該付加的な構成のうち、流路切替装置が第一の負荷熱媒体冷却冷媒循環回路601を形成している場合において第二の利用側熱交換器31が第一の利用側熱交換器21と圧縮機1の吸入口との間の流路と連通する構成を有することによって、実施の形態に係る冷凍サイクル装置1000は第一の負荷熱媒体冷却冷媒循環回路601に含まれない第二の利用側熱交換器31に溜まり込んだ冷媒が第一の利用側熱交換器21と圧縮機1の吸入口との間の流路に流れ込み第一の負荷熱媒体冷却冷媒循環回路601を循環する冷媒と合流し、冷媒不足を抑制することができる効果を奏する。 Further, in the refrigeration cycle device 1000 according to the embodiment, as an additional configuration, in the flow path switching device, the heat source side heat exchanger 2 functions as a condenser and the first user side heat exchanger 21 functions as an evaporator. The refrigerant that has passed through the first utilization-side heat exchanger 21 can be switched to the first load heat medium cooling refrigerant circulation circuit 601 that is sucked from the suction port of the compressor 1, and is the first by the flow path switching device. When the load heat medium cooling refrigerant circulation circuit 601 is formed, the second utilization side heat exchanger 31 is not included in the first load heat medium cooling refrigerant circulation circuit 601 and is not included in the first load heat medium cooling refrigerant circulation circuit 601. It has a configuration that communicates with a flow path between the first utilization side heat exchanger 21 of 601 and the suction port of the compressor 1. Among the additional configurations, when the flow path switching device forms the first load heat medium cooling refrigerant circulation circuit 601, the second utilization side heat exchanger 31 is the first utilization side heat exchanger 21. The refrigerating cycle apparatus 1000 according to the embodiment is not included in the first load heat medium cooling refrigerant circulation circuit 601 by having a configuration communicating with the flow path between the compressor 1 and the suction port of the compressor 1. The refrigerant accumulated in the user-side heat exchanger 31 flows into the flow path between the first user-side heat exchanger 21 and the suction port of the compressor 1 and circulates in the first load heat medium cooling refrigerant circulation circuit 601. It has the effect of merging with the refrigerant and suppressing the shortage of the refrigerant.
 また、実施の形態に係る冷凍サイクル装置1000は、付加的な構成として、流路切替装置は、二つの四方弁4a、4bと三つの膨張弁3a、3b、3cとを備え、流路切替装置によって第一の負荷熱媒体加熱冷媒循環回路602が形成される場合において冷媒は圧縮機1の吐出口、第一の利用側熱交換器21、三つの膨張弁の少なくともいずれか一つ(膨張弁3a、3bが該当)、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、三つの膨張弁のいずれか一つ(膨張弁3cが該当)は圧縮機1の吐出口と第二の利用側熱交換器31との間の流路を閉塞し第二の利用側熱交換器31は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通し、流路切替装置によって第二の負荷熱媒体加熱冷媒循環回路603が形成される場合において冷媒は圧縮機1の吐出口、第二の利用側熱交換器31、三つの膨張弁の少なくともいずれか一つ(膨張弁3a、3cが該当)、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、三つの膨張弁のいずれか一つ(膨張弁3bが該当)は圧縮機1の吐出口と第一の利用側熱交換器21との間の流路を閉塞し第一の利用側熱交換器21は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通し、流路切替装置によって冷却加熱同時冷媒循環回路604が形成される場合において冷媒は圧縮機1の吐出口、第二の利用側熱交換器31、三つの膨張弁の少なくともいずれか一つ(膨張弁3b、3cが該当)、第一の利用側熱交換器21、圧縮機1の吸入口の順に循環し、三つの膨張弁のいずれか一つ(膨張弁3a)は圧縮機1の吐出口と熱源側熱交換器2との間の流路を閉塞し熱源側熱交換器2は第一の利用側熱交換器21と圧縮機1の吸入口との間の流路と連通し、流路切替装置によって第一の負荷熱媒体冷却冷媒循環回路601が形成される場合において冷媒は圧縮機1の吐出口、熱源側熱交換器2、三つの膨張弁の少なくともいずれか一つ(膨張弁3a、3bが該当)、第一の利用側熱交換器21、圧縮機1の吸入口の順に循環し、三つの膨張弁のいずれか一つ(膨張弁3cが該当)は圧縮機1の吐出口と第二の利用側熱交換器31との間の流路を閉塞し第二の利用側熱交換器31は第一の利用側熱交換器21と圧縮機1の吸入口との間の流路と連通する構成を有する。当該付加的な構成を有することによって、実施の形態に係る冷凍サイクル装置1000は、第一の負荷熱媒体冷却冷媒循環回路601、第一の負荷熱媒体加熱冷媒循環回路602、第二の負荷熱媒体加熱冷媒循環回路603および冷却加熱同時冷媒循環回路604を形成した際に、各々の冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる構成を得ることができる効果を奏する。 Further, as an additional configuration, the refrigerating cycle device 1000 according to the embodiment includes a flow path switching device including two four- way valves 4a and 4b and three expansion valves 3a, 3b and 3c. When the first load heat medium heating refrigerant circulation circuit 602 is formed, the refrigerant is the discharge port of the compressor 1, the first heat exchanger 21 on the utilization side, and at least one of the three expansion valves (expansion valve). 3a and 3b are applicable), the heat source side heat exchanger 2 and the suction port of the compressor 1 circulate in this order, and one of the three expansion valves (corresponding to the expansion valve 3c) is the discharge port of the compressor 1 and the first. The flow path between the second utilization side heat exchanger 31 is blocked, and the second utilization side heat exchanger 31 communicates with the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1. When the second load heat medium heating refrigerant circulation circuit 603 is formed by the flow path switching device, the refrigerant is at least one of the discharge port of the compressor 1, the second heat exchanger 31 on the utilization side, and the three expansion valves. One (corresponding to expansion valves 3a and 3c), the heat source side heat exchanger 2 and the suction port of the compressor 1 circulate in this order, and one of the three expansion valves (corresponding to the expansion valve 3b) is the compressor 1. The flow path between the discharge port and the first utilization side heat exchanger 21 is blocked, and the first utilization side heat exchanger 21 is the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1. When the cooling and heating simultaneous refrigerant circulation circuit 604 is formed by the flow path switching device, the refrigerant is at least one of the discharge port of the compressor 1, the second heat exchanger 31 on the user side, and the three expansion valves. One (corresponding to expansion valves 3b and 3c), the first heat exchanger 21 on the user side, and the suction port of the compressor 1 circulate in this order, and one of the three expansion valves (expansion valve 3a) is the compressor 1. The flow path between the discharge port and the heat source side heat exchanger 2 is blocked, and the heat source side heat exchanger 2 communicates with the flow path between the first utilization side heat exchanger 21 and the suction port of the compressor 1. When the first load heat medium cooling refrigerant circulation circuit 601 is formed by the flow path switching device, the refrigerant is at least one of the discharge port of the compressor 1, the heat exchanger 2 on the heat source side, and three expansion valves. (Applicable to expansion valves 3a and 3b), the first heat exchanger 21 on the user side, and the suction port of the compressor 1 circulate in this order, and one of the three expansion valves (corresponding to the expansion valve 3c) is the compressor. The flow path between the discharge port 1 and the second utilization side heat exchanger 31 is blocked, and the second utilization side heat exchanger 31 has the first utilization side heat exchanger 21 and the suction port of the compressor 1. It has a structure that communicates with the flow path between them. By having the additional configuration, the refrigerating cycle apparatus 1000 according to the embodiment has a first load heat medium cooling refrigerant circulation circuit 601, a first load heat medium heating refrigerant circulation circuit 602, and a second load heat. When the medium heating refrigerant circulation circuit 603 and the cooling / heating simultaneous refrigerant circulation circuit 604 are formed, the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit, and the refrigerant It has the effect of obtaining a configuration that can suppress the shortage.
 また、実施の形態に係る冷凍サイクル装置1000は、付加的な構成として、流路切替装置は、四方弁(第二の四方弁4bが該当)を有し、四方弁は、第二の負荷熱媒体加熱冷媒循環回路603を形成する場合には圧縮機1の吐出口と第二の利用側熱交換器31を連通し熱源側熱交換器2と圧縮機1の吸入口とを連結する状態であり、第一の負荷熱媒体冷却冷媒循環回路601を形成する場合には圧縮機1の吐出口と熱源側熱交換器2とを連結し第二の利用側熱交換器31と第一の負荷熱媒体冷却冷媒循環回路601の第一の利用側熱交換器21と圧縮機の吸入口との間の流路とを連結する状態である構成を有する。特許文献1の冷凍サイクル装置では給湯運転を実施している場合に室外側熱交換器に霜が付着することがある。この際に室外側熱交換器に付着した霜を溶かすために室外側熱交換器が凝縮器として機能する冷房運転の冷媒循環回路に切り替えて霜を溶かす除霜運転を行うことが考えられる。特許文献1の冷媒循環回路では、給湯運転から冷房運転の冷媒循環回路に切り替えた直後における給湯熱交換器の温度と室外側熱交換器の温度を比較すると給湯熱交換器の温度の方が高い。また、温度と圧力は比例の関係にある。このため、給湯運転から冷房運転の冷媒循環回路に切り替えた直後における給湯熱交換器の内部の圧力と室外側熱交換器の内部の圧力は給湯熱交換器の内部の圧力の方が高い。また、通常の電磁弁はニードルと台座を有し、ニードルを台座に近づけるように動かして流路を閉塞し、ニードルを台座に遠ざけるように動かして流路を開放する。通常の電磁弁はニードルが台座を押し付ける方向に圧力がかかるように高圧側の開口と低圧側の開口が設定されており、特許文献1の第2電磁弁は圧縮機の吐出口と連通する開口が高圧側の開口となり給湯熱交換器に連通する開口が低圧側の開口となるように接続される。しかし、給湯運転から冷房運転の冷媒循環回路に切り替えた直後は給湯熱交換器の内部の圧力が室外側熱交換器の内部の圧力よりも高いため、第2電磁弁の低圧側の開口が高圧側の開口よりも圧力が高くなり、第2電磁弁に逆圧が生じてしまう。電磁弁に逆圧が生じると電磁弁の内部ではニードルが台座から遠ざかる方向に圧力がかかり、ニードルが浮き沈みを行って台座と衝突しチャタリング音が発生する。このため、特許文献1では給湯運転から冷房運転の冷媒循環回路に切り替えた直後にチャタリング音が発生してしまう。しかし、実施の形態の冷凍サイクル装置1000では、当該付加的な構成を備えることによって第二の負荷熱媒体加熱冷媒循環回路603から第一の負荷熱媒体冷却冷媒循環回路601に切り替えた直後であっても、逆圧が生じる弁を有しておらず、チャタリング音が生じない。 Further, in the refrigeration cycle device 1000 according to the embodiment, as an additional configuration, the flow path switching device has a four-way valve (corresponding to the second four-way valve 4b), and the four-way valve has a second load heat. When the medium heating refrigerant circulation circuit 603 is formed, the discharge port of the compressor 1 and the second utilization side heat exchanger 31 are communicated with each other, and the heat source side heat exchanger 2 and the suction port of the compressor 1 are connected. When the first load heat medium cooling refrigerant circulation circuit 601 is formed, the discharge port of the compressor 1 and the heat source side heat exchanger 2 are connected to connect the second utilization side heat exchanger 31 and the first load. It has a configuration in which the flow path between the first utilization side heat exchanger 21 of the heat medium cooling refrigerant circulation circuit 601 and the suction port of the compressor is connected. In the refrigeration cycle apparatus of Patent Document 1, frost may adhere to the outdoor heat exchanger when the hot water supply operation is performed. At this time, in order to melt the frost adhering to the outdoor heat exchanger, it is conceivable to switch to the cooling operation refrigerant circulation circuit in which the outdoor heat exchanger functions as a condenser to perform the defrosting operation to melt the frost. In the refrigerant circulation circuit of Patent Document 1, the temperature of the hot water supply heat exchanger is higher when comparing the temperature of the hot water supply heat exchanger and the temperature of the outdoor heat exchanger immediately after switching from the hot water supply operation to the cooling operation refrigerant circulation circuit. .. Moreover, temperature and pressure are in a proportional relationship. Therefore, the pressure inside the hot water supply heat exchanger and the pressure inside the outdoor heat exchanger immediately after switching from the hot water supply operation to the cooling refrigerant circulation circuit are higher than the pressure inside the hot water supply heat exchanger. Further, a normal solenoid valve has a needle and a pedestal, and moves the needle closer to the pedestal to block the flow path, and moves the needle away from the pedestal to open the flow path. In a normal electromagnetic valve, an opening on the high pressure side and an opening on the low pressure side are set so that pressure is applied in the direction in which the needle presses the pedestal, and the second electromagnetic valve of Patent Document 1 is an opening communicating with the discharge port of the compressor. Is connected so that the opening on the high pressure side becomes the opening on the low pressure side and the opening communicating with the hot water supply heat exchanger becomes the opening on the low pressure side. However, immediately after switching from the hot water supply operation to the cooling operation refrigerant circulation circuit, the pressure inside the hot water supply heat exchanger is higher than the pressure inside the outdoor heat exchanger, so the opening on the low pressure side of the second electromagnetic valve is high pressure. The pressure is higher than that of the opening on the side, and a back pressure is generated in the second electromagnetic valve. When a back pressure is generated in the solenoid valve, pressure is applied inside the solenoid valve in a direction in which the needle moves away from the pedestal, and the needle rises and falls and collides with the pedestal to generate chattering noise. Therefore, in Patent Document 1, a chattering sound is generated immediately after switching from the hot water supply operation to the cooling operation refrigerant circulation circuit. However, in the refrigeration cycle apparatus 1000 of the embodiment, immediately after switching from the second load heat medium heating refrigerant circulation circuit 603 to the first load heat medium cooling refrigerant circulation circuit 601 by providing the additional configuration. However, it does not have a valve that causes back pressure, and no chattering noise is generated.
 なお、実施の形態に係る冷凍サイクル装置1000では、第一の負荷熱媒体冷却冷媒循環回路601、第一の負荷熱媒体加熱冷媒循環回路602、第二の負荷熱媒体加熱冷媒循環回路603および冷却加熱同時冷媒循環回路604の四種類の冷媒循環回路を切り替えることができるが、これに限らず、冷凍サイクル装置は第三の熱交換器に該当する熱交換器が含まれる第一の冷媒循環回路に当たる冷媒循環回路と第三の熱交換器に該当する熱交換器が含まれない第二の冷媒循環回路に当たる冷媒循環回路を切り替えることができればよい。例えば、制御装置13のメモリ13bには第一の負荷熱媒体加熱冷媒循環回路602を形成する状態または第二の負荷熱媒体加熱冷媒循環回路603を形成する状態に切り替えるプログラムおよびプログラムの処理に必要なデータを記憶しており、第一の負荷熱媒体冷却冷媒循環回路601および冷却加熱同時冷媒循環回路604を形成する状態に切り替えるプログラムおよびプログラムの処理に必要なデータを記憶していなくても良い。 In the refrigeration cycle apparatus 1000 according to the embodiment, the first load heat medium cooling refrigerant circulation circuit 601, the first load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and cooling The four types of refrigerant circulation circuits of the simultaneous heating refrigerant circulation circuit 604 can be switched, but the refrigerating cycle device is not limited to the first refrigerant circulation circuit including the heat exchanger corresponding to the third heat exchanger. It is only necessary to be able to switch between the refrigerant circulation circuit corresponding to the above and the refrigerant circulation circuit corresponding to the second refrigerant circulation circuit not including the heat exchanger corresponding to the third heat exchanger. For example, the memory 13b of the control device 13 is necessary for processing a program and a program for switching to a state in which the first load heat medium heating refrigerant circulation circuit 602 is formed or a state in which the second load heat medium heating refrigerant circulation circuit 603 is formed. Data is stored, and it is not necessary to store the program for switching to the state of forming the first load heat medium cooling refrigerant circulation circuit 601 and the cooling / heating simultaneous refrigerant circulation circuit 604, and the data necessary for processing the program. ..
 また、実施の形態に係る冷凍サイクル装置1000では、第二の利用機器300は給湯機であるため、流路切替装置は第二の熱媒体を冷却する冷媒循環回路に切り替えなかったが、これに限らず、冷凍サイクル装置は第二の熱媒体を冷却する冷媒循環回路に切り替えても構わない。例えば、冷凍サイクル装置は、第二の利用機器を内部に低温の水を貯留する恒温水槽の冷却器とし、熱源側熱交換器2を凝縮器と機能させ第二の利用側熱交換器31を蒸発器として機能させる冷媒循環回路または第一の利用側熱交換器21を凝縮器と機能させ第二の利用側熱交換器31を蒸発器として機能させる冷媒循環回路を形成しても構わない。なお、前者の冷媒循環回路の場合は、第一の膨張弁3aの開度が最大になり、第二の膨張弁3bの開度が最小となり、第三の膨張弁3cの開度が第三の膨張弁3cを通過した冷媒が減圧する所定の開度になり、第一の四方弁4aがAポート4aaとBポート4abが連通しCポート4acとDポート4adが連通する状態となり、第二の四方弁4bがAポート4baとBポート4bbが連通しCポート4bcとDポート4bdが連通する状態となるように制御される。また、後者の冷媒循環回路の場合は、第一の膨張弁3aの開度が最小になり、第二の膨張弁3bの開度が最大となり、第三の膨張弁3cの開度が第三の膨張弁3cを通過した冷媒が減圧する所定の開度になり、第一の四方弁4aがAポート4aaとDポート4adが連通しBポート4abとCポート4acが連通する状態となり、第二の四方弁4bがAポート4baとDポート4bdが連通しBポート4bbとCポート4bcが連通する状態となるように制御される。さらに、前者の冷媒循環回路および後者の冷媒循環回路のどちらとも、冷媒循環回路に含まれない熱交換器(前者の冷媒循環回路の場合は第一の利用側熱交換器21が該当し、後者の冷媒循環回路の場合は熱源側熱交換器2が該当する)は、冷媒循環回路の蒸発器として機能する熱交換器(双方ともに第二の利用側熱交換器31が該当)と圧縮機1の吸入口との間の流路に接続されるため、前者の冷媒循環回路ならびに後者の冷媒循環回路が形成される冷凍サイクル装置も冷媒不足を抑制することができる構成を得ることができる効果を奏する。 Further, in the refrigeration cycle device 1000 according to the embodiment, since the second utilization device 300 is a water supply machine, the flow path switching device does not switch to the refrigerant circulation circuit for cooling the second heat medium. Not limited to this, the refrigeration cycle device may be switched to a refrigerant circulation circuit for cooling the second heat medium. For example, in the refrigeration cycle device, the second utilization device is used as a cooler of a constant temperature water tank for storing low temperature water inside, the heat source side heat exchanger 2 functions as a condenser, and the second utilization side heat exchanger 31 is used. A refrigerant circulation circuit that functions as an evaporator or a refrigerant circulation circuit that causes the first user-side heat exchanger 21 to function as a condenser and the second user-side heat exchanger 31 to function as an evaporator may be formed. In the case of the former refrigerant circulation circuit, the opening degree of the first expansion valve 3a becomes the maximum, the opening degree of the second expansion valve 3b becomes the minimum, and the opening degree of the third expansion valve 3c becomes the third. The refrigerant that has passed through the expansion valve 3c of No. 1 has a predetermined opening for depressurizing, the first four-way valve 4a communicates with the A port 4aa and the B port 4ab, and the C port 4ac and the D port 4ad communicate with each other. The four-way valve 4b is controlled so that the A port 4ba and the B port 4bb communicate with each other and the C port 4bc and the D port 4bd communicate with each other. Further, in the latter case of the refrigerant circulation circuit, the opening degree of the first expansion valve 3a is minimized, the opening degree of the second expansion valve 3b is maximized, and the opening degree of the third expansion valve 3c is the third. The refrigerant that has passed through the expansion valve 3c of No. 1 has a predetermined opening for depressurizing, the first four-way valve 4a communicates with the A port 4aa and the D port 4ad, and the B port 4ab and the C port 4ac communicate with each other. The four-way valve 4b is controlled so that the A port 4ba and the D port 4bd communicate with each other and the B port 4bb and the C port 4bb communicate with each other. Further, both the former refrigerant circulation circuit and the latter refrigerant circulation circuit correspond to a heat exchanger not included in the refrigerant circulation circuit (in the case of the former refrigerant circulation circuit, the first user-side heat exchanger 21 corresponds to the latter. In the case of the refrigerant circulation circuit of the above, the heat source side heat exchanger 2 corresponds), the heat exchanger functioning as the evaporator of the refrigerant circulation circuit (both correspond to the second user side heat exchanger 31) and the compressor 1. Since it is connected to the flow path between the suction port and the refrigerating cycle device in which the former refrigerant circulation circuit and the latter refrigerant circulation circuit are formed, it is possible to obtain a configuration capable of suppressing a refrigerant shortage. Play.
 図8は実施の形態の第一の変形例に係る冷凍サイクル装置の冷媒回路図である。次に実施の形態の変形例について説明する。実施の形態の第一の変形例に係る冷凍サイクル装置1001は実施の形態の冷凍サイクル装置1000と比較して、第五の熱源機冷媒配管115の途中に第三の膨張弁3cの代わりに二方弁15が設けられている点が異なる。なお、実施の形態の第一の変形例に係る冷凍サイクル装置1001の冷媒回路は上述の異なる点を除いて実施の形態の冷凍サイクル装置1000の冷媒回路と同様であるため、同様の部分は説明を省略する。 FIG. 8 is a refrigerant circuit diagram of the refrigeration cycle device according to the first modification of the embodiment. Next, a modified example of the embodiment will be described. Compared with the refrigerating cycle apparatus 1000 of the embodiment, the refrigerating cycle apparatus 1001 according to the first modification of the embodiment has two instead of the third expansion valve 3c in the middle of the fifth heat source machine refrigerant pipe 115. The difference is that the square valve 15 is provided. Since the refrigerant circuit of the refrigerating cycle device 1001 according to the first modification of the embodiment is the same as the refrigerant circuit of the refrigerating cycle device 1000 of the embodiment except for the above-mentioned differences, the same part will be described. Is omitted.
 二方弁15は流路の開放および閉塞が可能な弁であり、制御装置13によって制御される。 The two-way valve 15 is a valve capable of opening and closing the flow path, and is controlled by the control device 13.
 実施の形態の第一の変形例に係る冷凍サイクル装置1001は、実施の形態に係る冷凍サイクル装置1000と同様に第一の負荷熱媒体冷却冷媒循環回路601と第一の負荷熱媒体加熱冷媒循環回路602と第二の負荷熱媒体加熱冷媒循環回路603と冷却加熱同時冷媒循環回路604とを形成することができる。第一の負荷熱媒体冷却冷媒循環回路601では、第一の膨張弁3aの開度が最大になり、第二の膨張弁3bの開度が第二の膨張弁3bを通過した冷媒が減圧する所定の開度になり、二方弁15が流路を閉塞するように制御される。第一の負荷熱媒体加熱冷媒循環回路602では、第一の膨張弁3aの開度が第一の膨張弁3aを通過した冷媒が減圧する所定の開度になり、第二の膨張弁3bの開度が最大になり、二方弁15が流路を閉塞するように制御される。第二の負荷熱媒体加熱冷媒循環回路603では、第一の膨張弁3aの開度が第一の膨張弁3aを通過した冷媒が減圧する所定の開度になり、第二の膨張弁3bの開度が最小になり、二方弁15が流路を開放するように制御される。冷却加熱同時冷媒循環回路604では、第一の膨張弁3aの開度が最小になり、第二の膨張弁3bの開度が第二の膨張弁3bを通過した冷媒が減圧する所定の開度になり、二方弁15が流路を開放するように制御される。 The refrigerating cycle apparatus 1001 according to the first modification of the embodiment has the same as the refrigerating cycle apparatus 1000 according to the embodiment, the first load heat medium cooling refrigerant circulation circuit 601 and the first load heat medium heating refrigerant circulation. The circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling / heating simultaneous refrigerant circulation circuit 604 can be formed. In the first load heat medium cooling refrigerant circulation circuit 601, the opening degree of the first expansion valve 3a becomes maximum, and the opening degree of the second expansion valve 3b reduces the pressure of the refrigerant passing through the second expansion valve 3b. A predetermined opening degree is reached, and the two-way valve 15 is controlled so as to block the flow path. In the first load heat medium heating refrigerant circulation circuit 602, the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the opening degree of the second expansion valve 3b is set to a predetermined opening degree. The opening degree is maximized, and the two-way valve 15 is controlled to block the flow path. In the second load heat medium heating refrigerant circulation circuit 603, the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the opening degree of the second expansion valve 3b is increased. The opening degree is minimized and the two-way valve 15 is controlled to open the flow path. In the cooling / heating simultaneous refrigerant circulation circuit 604, the opening degree of the first expansion valve 3a is minimized, and the opening degree of the second expansion valve 3b is a predetermined opening degree at which the refrigerant passing through the second expansion valve 3b is depressurized. , And the two-way valve 15 is controlled to open the flow path.
 実施の形態の第一の変形例に係る冷凍サイクル装置1001のように第三の膨張弁3cの代わりに二方弁15が設けられても、実施の形態に係る冷凍サイクル装置1000と同様に第一の負荷熱媒体冷却冷媒循環回路601と第一の負荷熱媒体加熱冷媒循環回路602と第二の負荷熱媒体加熱冷媒循環回路603と冷却加熱同時冷媒循環回路604とを形成することができ、同様の効果を奏する。 Even if the two-way valve 15 is provided instead of the third expansion valve 3c as in the refrigerating cycle apparatus 1001 according to the first modification of the embodiment, the refrigerating cycle apparatus 1000 according to the embodiment is the same as the refrigerating cycle apparatus 1000. One load heat medium cooling refrigerant circulation circuit 601, a first load heat medium heating refrigerant circulation circuit 602, a second load heat medium heating refrigerant circulation circuit 603, and a cooling / heating simultaneous refrigerant circulation circuit 604 can be formed. It has the same effect.
 また、第一の膨張弁3aの代わりに二方弁15が設けられた場合もしくは第二の膨張弁3bの代わりに二方弁15が設けられた場合でも、実施の形態に係る冷凍サイクル装置1000と同様に第一の負荷熱媒体冷却冷媒循環回路601と第一の負荷熱媒体加熱冷媒循環回路602と第二の負荷熱媒体加熱冷媒循環回路603と冷却加熱同時冷媒循環回路604とを形成することができ、同様の効果を奏する。 Further, even when the two-way valve 15 is provided in place of the first expansion valve 3a or the two-way valve 15 is provided in place of the second expansion valve 3b, the refrigeration cycle apparatus 1000 according to the embodiment is provided. Similarly, the first load heat medium cooling refrigerant circulation circuit 601, the first load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling / heating simultaneous refrigerant circulation circuit 604 are formed. It can have the same effect.
 つまり、実施の形態の第一の変形例に係る冷凍サイクル装置1001のように、付加的構成として、流路切替装置は、二つの四方弁(四方弁4a、4b)と二つの膨張弁(膨張弁3a、3b、3cのうちのいずれか二つ)と二方弁15とを備え、流路切替装置によって第一の負荷熱媒体加熱冷媒循環回路602が形成される場合において、冷媒は圧縮機1の吐出口、第一の利用側熱交換器21、二つの膨張弁の少なくともいずれか一つ、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、二方弁15または二つの膨張弁のいずれか一つは圧縮機1の吐出口と第二の利用側熱交換器31との間の流路を閉塞し、第二の利用側熱交換器31は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通し、流路切替装置によって第二の負荷熱媒体加熱冷媒循環回路603が形成される場合において冷媒は圧縮機1の吐出口、第二の利用側熱交換器31、二つの膨張弁の少なくともいずれか一つ、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、二方弁15または二つの膨張弁のいずれか一つは圧縮機1の吐出口と第一の利用側熱交換器21との間の流路を閉塞し、第一の利用側熱交換器21は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通し、流路切替装置によって冷却加熱同時冷媒循環回路604が形成される場合において冷媒は圧縮機1の吐出口、第二の利用側熱交換器31、二つの膨張弁の少なくともいずれか一つ、第一の利用側熱交換器21、圧縮機1の吸入口の順に循環し、二方弁または二つの膨張弁のいずれか一つは圧縮機1の吐出口と熱源側熱交換器2との間の流路を閉塞し、熱源側熱交換器2は第一の利用側熱交換器21と圧縮機1の吸入口との間の流路と連通し、前記流路切替装置によって第一の負荷熱媒体冷却冷媒循環回路601が形成される場合において冷媒は圧縮機1の吐出口、熱源側熱交換器2、二つの膨張弁の少なくともいずれか一つ、第一の利用側熱交換器21、圧縮機1の吸入口の順に循環し、二方弁15または二つの膨張弁のいずれか一つは圧縮機1の吐出口と第二の利用側熱交換器31との間の流路を閉塞し、第二の利用側熱交換器31は第一の利用側熱交換器21と圧縮機1の吸入口との間の流路と連通する構成を有する場合でも以下の効果を奏する。つまり、当該付加的な構成を有することによって、第一の負荷熱媒体冷却冷媒循環回路601、第一の負荷熱媒体加熱冷媒循環回路602、第二の負荷熱媒体加熱冷媒循環回路603および冷却加熱同時冷媒循環回路604を形成した際に、各々の冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる構成を得ることができる効果を奏する。 That is, as an additional configuration, as in the refrigeration cycle device 1001 according to the first modification of the embodiment, the flow path switching device includes two four-way valves (four- way valves 4a and 4b) and two expansion valves (expansion). When a first load heat medium heating refrigerant circulation circuit 602 is formed by a flow path switching device including valves 3a, 3b, 3c) and a two-way valve 15, the refrigerant is a compressor. 1 discharge port, 1st utilization side heat exchanger 21, at least one of two expansion valves, heat source side heat exchanger 2, suction port of compressor 1 circulate in this order, and two- way valve 15 or 2 One of the two expansion valves blocks the flow path between the discharge port of the compressor 1 and the second utilization side heat exchanger 31, and the second utilization side heat exchanger 31 is a heat source side heat exchanger. When a second load heat medium heating refrigerant circulation circuit 603 is formed by a flow path switching device that communicates with the flow path between 2 and the suction port of the compressor 1, the refrigerant is the discharge port of the compressor 1, the first. (2) Heat exchanger 31 on the user side, at least one of the two expansion valves, heat exchanger 2 on the heat source side, and the suction port of the compressor 1 circulate in this order, and either the two-way valve 15 or the two expansion valves. One is to block the flow path between the discharge port of the compressor 1 and the first utilization side heat exchanger 21, and the first utilization side heat exchanger 21 is the heat source side heat exchanger 2 and the compressor 1. When a cooling / heating simultaneous refrigerant circulation circuit 604 is formed by a flow path switching device that communicates with the flow path between the suction port, the refrigerant is the discharge port of the compressor 1, the second heat exchanger 31, 2 on the user side. At least one of the two expansion valves, the first heat exchanger 21 on the user side, and the suction port of the compressor 1 circulate in this order, and one of the two-way valve or the two expansion valves discharges from the compressor 1. The flow path between the outlet and the heat source side heat exchanger 2 is blocked, and the heat source side heat exchanger 2 communicates with the flow path between the first utilization side heat exchanger 21 and the suction port of the compressor 1. When the first load heat medium cooling refrigerant circulation circuit 601 is formed by the flow path switching device, the refrigerant is at least one of the discharge port of the compressor 1, the heat source side heat exchanger 2, and the two expansion valves. , The first utilization side heat exchanger 21 and the suction port of the compressor 1 circulate in this order, and one of the two-way valve 15 or the two expansion valves is the discharge port of the compressor 1 and the second utilization side heat. The flow path between the exchanger 31 is blocked, and the second utilization side heat exchanger 31 communicates with the flow path between the first utilization side heat exchanger 21 and the suction port of the compressor 1. Even if it has, it has the following effects. That is, by having the additional configuration, the first load heat medium cooling refrigerant circulation circuit 601, the first load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and cooling heating are provided. When the simultaneous refrigerant circulation circuit 604 is formed, the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit, and the refrigerant shortage can be suppressed. It produces the effects that can be obtained.
 図9は実施の形態の第二の変形例に係る冷凍サイクル装置の冷媒回路図である。実施の形態の第二の変形例に係る冷凍サイクル装置1002は実施の形態の冷凍サイクル装置1000と比較して、第二の四方弁4bを有しておらず、第一の熱源機冷媒配管111と第十の熱源機冷媒配管120とが連通し、第一の熱源機冷媒配管111と第十の熱源機冷媒配管120とが連通する点が異なる。なお、実施の形態の第二の変形例に係る冷凍サイクル装置1002の冷媒回路は上述の異なる点を除いて実施の形態の冷凍サイクル装置1000の冷媒回路と同様であるため、同様の部分は説明を省略する。 FIG. 9 is a refrigerant circuit diagram of the refrigeration cycle device according to the second modification of the embodiment. The refrigerating cycle apparatus 1002 according to the second modification of the embodiment does not have the second four-way valve 4b as compared with the refrigerating cycle apparatus 1000 of the embodiment, and the first heat source machine refrigerant pipe 111 And the tenth heat source machine refrigerant pipe 120 communicate with each other, and the first heat source machine refrigerant pipe 111 and the tenth heat source machine refrigerant pipe 120 communicate with each other. Since the refrigerant circuit of the refrigerating cycle device 1002 according to the second modification of the embodiment is the same as the refrigerant circuit of the refrigerating cycle device 1000 of the embodiment except for the above-mentioned differences, the same part will be described. Is omitted.
 実施の形態の第二の変形例に係る冷凍サイクル装置1002は、第一の負荷熱媒体冷却冷媒循環回路601を形成することはできないが、実施の形態に係る冷凍サイクル装置1000と同様に第一の負荷熱媒体加熱冷媒循環回路602と第二の負荷熱媒体加熱冷媒循環回路603と冷却加熱同時冷媒循環回路604とを形成することができる。このため、実施の形態の冷凍サイクル装置1000と同様に、実施の形態の第二の変形例に係る冷凍サイクル装置1002は第一の負荷熱媒体加熱冷媒循環回路602、第二の負荷熱媒体加熱冷媒循環回路603および冷却加熱同時冷媒循環回路604を形成した際に、各々の冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる効果を奏する。 The refrigerating cycle apparatus 1002 according to the second modification of the embodiment cannot form the first load heat medium cooling refrigerant circulation circuit 601 but is the same as the refrigerating cycle apparatus 1000 according to the embodiment. The load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling / heating simultaneous refrigerant circulation circuit 604 can be formed. Therefore, similarly to the refrigerating cycle device 1000 of the embodiment, the refrigerating cycle device 1002 according to the second modification of the embodiment has the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating. When the refrigerant circulation circuit 603 and the cooling / heating simultaneous refrigerant circulation circuit 604 are formed, the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit to reduce the refrigerant shortage. It has an effect that can be suppressed.
 また、実施の形態の第一の変形例に係る冷凍サイクル装置1001と同様に、実施の形態の第二の変形例に係る冷凍サイクル装置1002でも、第一の膨張弁3a、第二の膨張弁3b、第三の膨張弁3cのいずれか一つを二方弁15に代えても第一の負荷熱媒体加熱冷媒循環回路602と第二の負荷熱媒体加熱冷媒循環回路603と冷却加熱同時冷媒循環回路604とを形成することができる。 Further, similarly to the refrigeration cycle device 1001 according to the first modification of the embodiment, the refrigeration cycle device 1002 according to the second modification of the embodiment also has the first expansion valve 3a and the second expansion valve. Even if any one of 3b and the third expansion valve 3c is replaced with the two-way valve 15, the first load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling and heating simultaneous refrigerant A circulation circuit 604 can be formed.
 つまり、実施の形態の第二の変形例に係る冷凍サイクル装置1002のように、付加的構成として、流路切替装置は、四方弁4aと二つの膨張弁と二方弁とを備え、流路切替装置によって第一の負荷熱媒体加熱冷媒循環回路602が形成される場合において、冷媒は圧縮機1の吐出口、第一の利用側熱交換器21、二つの膨張弁の少なくともいずれか一つ、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、二方弁15または二つの膨張弁のいずれか一つは圧縮機1の吐出口と第二の利用側熱交換器31との間の流路を閉塞し、第二の利用側熱交換器31は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通し、流路切替装置によって第二の負荷熱媒体加熱冷媒循環回路603が形成される場合において冷媒は圧縮機1の吐出口、第二の利用側熱交換器31、二つの膨張弁の少なくともいずれか一つ、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、二方弁15または二つの膨張弁のいずれか一つは圧縮機1の吐出口と第一の利用側熱交換器21との間の流路を閉塞し、第一の利用側熱交換器21は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通し、流路切替装置によって冷却加熱同時冷媒循環回路604が形成される場合において冷媒は圧縮機1の吐出口、第二の利用側熱交換器31、二つの膨張弁の少なくともいずれか一つ、第一の利用側熱交換器21、圧縮機1の吸入口の順に循環し、二方弁または二つの膨張弁のいずれか一つは圧縮機1の吐出口と熱源側熱交換器2との間の流路を閉塞し、熱源側熱交換器2は第一の利用側熱交換器21と圧縮機1の吸入口との間の流路と連通する構成を有する場合でも以下の効果を奏する。つまり、当該付加的な構成を有することによって、第一の負荷熱媒体加熱冷媒循環回路602、第二の負荷熱媒体加熱冷媒循環回路603および冷却加熱同時冷媒循環回路604を形成した際に、各々の冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる構成を得ることができる効果を奏する。 That is, as an additional configuration, the flow path switching device includes a four-way valve 4a, two expansion valves, and a two-way valve, as in the refrigeration cycle device 1002 according to the second modification of the embodiment. When the first load heat medium heating refrigerant circulation circuit 602 is formed by the switching device, the refrigerant is at least one of the discharge port of the compressor 1, the first heat exchanger 21 on the user side, and two expansion valves. , The heat source side heat exchanger 2 and the suction port of the compressor 1 circulate in this order, and one of the two-way valve 15 or the two expansion valves is the discharge port of the compressor 1 and the second utilization side heat exchanger 31. The second utilization side heat exchanger 31 communicates with the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1 by blocking the flow path between the two, and is seconded by the flow path switching device. When the load heat medium heating refrigerant circulation circuit 603 is formed, the refrigerant is the discharge port of the compressor 1, the second utilization side heat exchanger 31, at least one of the two expansion valves, and the heat source side heat exchanger. 2. Circulating in the order of the suction port of the compressor 1, one of the two-way valve 15 or the two expansion valves is a flow path between the discharge port of the compressor 1 and the first heat exchanger 21 on the utilization side. The first utilization side heat exchanger 21 communicates with the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1, and the cooling and heating simultaneous refrigerant circulation circuit 604 is provided by the flow path switching device. When formed, the refrigerant is the discharge port of the compressor 1, the second heat exchanger 31 on the user side, at least one of the two expansion valves, the heat exchanger 21 on the first user side, and the suction of the compressor 1. Circulating in the order of the ports, either one of the two-way valve or the two expansion valves blocks the flow path between the discharge port of the compressor 1 and the heat source side heat exchanger 2, and the heat source side heat exchanger 2 blocks the flow path. The following effects are obtained even when the heat exchanger 21 on the first user side and the suction port of the compressor 1 are configured to communicate with each other. That is, by having the additional configuration, when the first load heat medium heating refrigerant circulation circuit 602, the second load heat medium heating refrigerant circulation circuit 603, and the cooling / heating simultaneous refrigerant circulation circuit 604 are formed, respectively. The refrigerant accumulated in the heat exchanger, which is not included in the refrigerant circulation circuit of the above, merges with the refrigerant circulating in the refrigerant circulation circuit, and has an effect of obtaining a configuration capable of suppressing a refrigerant shortage.
 図10は実施の形態の第三の変形例に係る冷凍サイクル装置の冷媒回路図である。実施の形態の第三の変形例に係る冷凍サイクル装置1003は実施の形態の冷凍サイクル装置1000と比較して、第二の四方弁4bを有しておらず、第一の熱源機冷媒配管111と第十の熱源機冷媒配管120とが連通し、第一の熱源機冷媒配管111と第十の熱源機冷媒配管120とが連通する点と、第二の膨張弁3bの代わりに二方弁16を備える点と、第三の膨張弁3cの代わりに二方弁17を備える点が異なる。なお、実施の形態の第三の変形例に係る冷凍サイクル装置1003の冷媒回路は上述の異なる点を除いて実施の形態の冷凍サイクル装置1000の冷媒回路と同様であるため、同様の部分は説明を省略する。また、二方弁16、17は実施の形態の第一の変形例で説明した二方弁15と同様であるため、説明を省略する。 FIG. 10 is a refrigerant circuit diagram of the refrigeration cycle device according to the third modification of the embodiment. The refrigerating cycle apparatus 1003 according to the third modification of the embodiment does not have the second four-way valve 4b as compared with the refrigerating cycle apparatus 1000 of the embodiment, and the first heat source machine refrigerant pipe 111 And the tenth heat source machine refrigerant pipe 120 communicate with each other, the first heat source machine refrigerant pipe 111 and the tenth heat source machine refrigerant pipe 120 communicate with each other, and a two-way valve instead of the second expansion valve 3b. The difference is that 16 is provided and a two-way valve 17 is provided instead of the third expansion valve 3c. Since the refrigerant circuit of the refrigerating cycle device 1003 according to the third modification of the embodiment is the same as the refrigerant circuit of the refrigerating cycle device 1000 of the embodiment except for the above-mentioned differences, the same part will be described. Is omitted. Further, since the two- way valves 16 and 17 are the same as the two-way valves 15 described in the first modification of the embodiment, the description thereof will be omitted.
 実施の形態の第三の変形例に係る冷凍サイクル装置1003は、第一の負荷熱媒体冷却冷媒循環回路601および冷却加熱同時冷媒循環回路604を形成することはできないが、実施の形態に係る冷凍サイクル装置1000と同様に第一の負荷熱媒体加熱冷媒循環回路602と第二の負荷熱媒体加熱冷媒循環回路603を形成することができる。第一の負荷熱媒体加熱冷媒循環回路602では、第一の膨張弁3aの開度が第一の膨張弁3aを通過した冷媒が減圧する所定の開度になり、二方弁16が流路を開放し、二方弁17が流路を閉塞するように制御される。第二の負荷熱媒体加熱冷媒循環回路603では、二方弁16が流路を閉塞し、二方弁17が流路を開放するように制御される。このため、実施の形態の冷凍サイクル装置1000と同様に、実施の形態の第三の変形例に係る冷凍サイクル装置1003は第一の負荷熱媒体加熱冷媒循環回路602および第二の負荷熱媒体加熱冷媒循環回路603を形成した際に、各々の冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる効果を奏する。 The refrigerating cycle apparatus 1003 according to the third modification of the embodiment cannot form the first load heat medium cooling refrigerant circulation circuit 601 and the cooling / heating simultaneous refrigerant circulation circuit 604, but the refrigerating according to the embodiment. Similar to the cycle device 1000, the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating refrigerant circulation circuit 603 can be formed. In the first load heat medium heating refrigerant circulation circuit 602, the opening degree of the first expansion valve 3a becomes a predetermined opening degree at which the refrigerant passing through the first expansion valve 3a is depressurized, and the two-way valve 16 is a flow path. Is opened, and the two-way valve 17 is controlled to block the flow path. In the second load heat medium heating refrigerant circulation circuit 603, the two-way valve 16 is controlled to block the flow path, and the two-way valve 17 is controlled to open the flow path. Therefore, similarly to the refrigerating cycle device 1000 of the embodiment, the refrigerating cycle device 1003 according to the third modification of the embodiment has the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating. When the refrigerant circulation circuit 603 is formed, the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit, and has an effect of suppressing the refrigerant shortage. ..
 つまり、実施の形態の第三の変形例に係る冷凍サイクル装置1003のように、付加的構成として、冷媒を減圧する膨張弁3aを備え、流路切替装置は、四方弁4aと二つの二方弁16、17とを備え、流路切替装置によって第一の負荷熱媒体加熱冷媒循環回路602が形成される場合において、冷媒は圧縮機1の吐出口、第一の利用側熱交換器21、膨張弁3a、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、二方弁17は圧縮機1の吐出口と第二の利用側熱交換器31との間の流路を閉塞し、第二の利用側熱交換器31は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通し、流路切替装置によって第二の負荷熱媒体加熱冷媒循環回路603が形成される場合において冷媒は圧縮機1の吐出口、第二の利用側熱交換器31、膨張弁3a、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、二方弁16は圧縮機1の吐出口と第一の利用側熱交換器21との間の流路を閉塞し、第一の利用側熱交換器21は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通する構成を有する場合でも以下の効果を奏する。つまり、当該付加的な構成を有することによって、第一の負荷熱媒体加熱冷媒循環回路602および第二の負荷熱媒体加熱冷媒循環回路603を形成した際に、各々の冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる構成を得ることができる効果を奏する。 That is, as in the refrigeration cycle device 1003 according to the third modification of the embodiment, as an additional configuration, an expansion valve 3a for reducing the pressure of the refrigerant is provided, and the flow path switching device is a four-way valve 4a and two two-way. When the first load heat medium heating refrigerant circulation circuit 602 is formed by the flow path switching device including valves 16 and 17, the refrigerant is the discharge port of the compressor 1, the first utilization side heat exchanger 21, and the like. The expansion valve 3a, the heat source side heat exchanger 2, and the suction port of the compressor 1 circulate in this order, and the two-way valve 17 passes through the flow path between the discharge port of the compressor 1 and the second utilization side heat exchanger 31. Closed, the second utilization side heat exchanger 31 communicates with the flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1, and the second load heat medium heating refrigerant circulation is performed by the flow path switching device. When the circuit 603 is formed, the refrigerant circulates in the order of the discharge port of the compressor 1, the second heat exchanger 31 on the user side, the expansion valve 3a, the heat exchanger 2 on the heat source side, and the suction port of the compressor 1. The square valve 16 closes the flow path between the discharge port of the compressor 1 and the first utilization side heat exchanger 21, and the first utilization side heat exchanger 21 is the heat source side heat exchanger 2 and the compressor 1. Even if it has a structure that communicates with the flow path between the suction port and the suction port, the following effects are obtained. That is, by having the additional configuration, when the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating refrigerant circulation circuit 603 are formed, they are not included in the respective refrigerant circulation circuits. The refrigerant accumulated in the heat exchanger merges with the refrigerant circulating in the refrigerant circulation circuit, which has the effect of obtaining a configuration capable of suppressing a refrigerant shortage.
 図11は実施の形態の第四の変形例に係る冷凍サイクル装置の冷媒回路図である。実施の形態の第四の変形例に係る冷凍サイクル装置1003は実施の形態の冷凍サイクル装置1000と比較して、第二の四方弁4bを有しておらず、第一の熱源機冷媒配管111と第十の熱源機冷媒配管120とが連通し、第一の熱源機冷媒配管111と第十の熱源機冷媒配管120とが連通する点と、第一の膨張弁3aを備えない点が異なる。なお、実施の形態の第四の変形例に係る冷凍サイクル装置1004の冷媒回路は上述の異なる点を除いて実施の形態の冷凍サイクル装置1000の冷媒回路と同様であるため、同様の部分は説明を省略する。 FIG. 11 is a refrigerant circuit diagram of the refrigeration cycle device according to the fourth modification of the embodiment. The refrigerating cycle apparatus 1003 according to the fourth modification of the embodiment does not have the second four-way valve 4b as compared with the refrigerating cycle apparatus 1000 of the embodiment, and the first heat source machine refrigerant pipe 111 And the tenth heat source machine refrigerant pipe 120 communicate with each other, and the first heat source machine refrigerant pipe 111 and the tenth heat source machine refrigerant pipe 120 communicate with each other, and the first expansion valve 3a is not provided. .. Since the refrigerant circuit of the refrigerating cycle device 1004 according to the fourth modification of the embodiment is the same as the refrigerant circuit of the refrigerating cycle device 1000 of the embodiment except for the above-mentioned differences, the same part will be described. Is omitted.
 実施の形態の第四の変形例に係る冷凍サイクル装置1004は、第一の負荷熱媒体冷却冷媒循環回路601および冷却加熱同時冷媒循環回路604を形成することはできないが、実施の形態に係る冷凍サイクル装置1000と同様に第一の負荷熱媒体加熱冷媒循環回路602と第二の負荷熱媒体加熱冷媒循環回路603を形成することができる。第一の負荷熱媒体加熱冷媒循環回路602では、第二の膨張弁3bの開度が第二の膨張弁3bを通過した冷媒が減圧する所定の開度になり、第三の膨張弁3cの開度が最小になるように制御される。第二の負荷熱媒体加熱冷媒循環回路603では、第二の膨張弁3bの開度が最小になり、第三の膨張弁3cの開度が第三の膨張弁3cを通過した冷媒が減圧する所定の開度になるように制御される。このため、実施の形態の冷凍サイクル装置1000と同様に、実施の形態の第四の変形例に係る冷凍サイクル装置1004は第一の負荷熱媒体加熱冷媒循環回路602および第二の負荷熱媒体加熱冷媒循環回路603を形成した際に、各々の冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる効果を奏する。 The refrigerating cycle apparatus 1004 according to the fourth modification of the embodiment cannot form the first load heat medium cooling refrigerant circulation circuit 601 and the cooling / heating simultaneous refrigerant circulation circuit 604, but the refrigerating according to the embodiment. Similar to the cycle device 1000, the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating refrigerant circulation circuit 603 can be formed. In the first load heat medium heating refrigerant circulation circuit 602, the opening degree of the second expansion valve 3b becomes a predetermined opening degree at which the refrigerant passing through the second expansion valve 3b is depressurized, and the third expansion valve 3c has an opening degree. It is controlled so that the opening degree is minimized. In the second load heat medium heating refrigerant circulation circuit 603, the opening degree of the second expansion valve 3b is minimized, and the opening degree of the third expansion valve 3c reduces the pressure of the refrigerant passing through the third expansion valve 3c. It is controlled to have a predetermined opening. Therefore, similarly to the refrigerating cycle device 1000 of the embodiment, the refrigerating cycle device 1004 according to the fourth modification of the embodiment has the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating. When the refrigerant circulation circuit 603 is formed, the refrigerant accumulated in the heat exchanger not included in each refrigerant circulation circuit merges with the refrigerant circulating in the refrigerant circulation circuit, and has an effect of suppressing the refrigerant shortage. ..
 つまり、実施の形態の第三の変形例に係る冷凍サイクル装置1003のように、付加的構成として、流路切替装置は、四方弁4aと、第一の膨張弁(第二の膨張弁3bが該当)と、第二の膨張弁(第三の膨張弁3cが該当)とを備え、流路切替装置によって第一の負荷熱媒体加熱冷媒循環回路602が形成される場合において、冷媒は圧縮機1の吐出口、第一の利用側熱交換器21、第一膨張弁、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、第二の膨張弁は圧縮機1の吐出口と第二の利用側熱交換器31との間の流路を閉塞し、第二の利用側熱交換器31は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通し、流路切替装置によって第二の負荷熱媒体加熱冷媒循環回路603が形成される場合において冷媒は圧縮機1の吐出口、第二の利用側熱交換器31、第二の膨張弁、熱源側熱交換器2、圧縮機1の吸入口の順に循環し、第一の膨張弁は圧縮機1の吐出口と第一の利用側熱交換器21との間の流路を閉塞し、第一の利用側熱交換器21は熱源側熱交換器2と圧縮機1の吸入口との間の流路と連通する構成を有する場合でも以下の効果を奏する。つまり、当該付加的な構成を有することによって、第一の負荷熱媒体加熱冷媒循環回路602および第二の負荷熱媒体加熱冷媒循環回路603を形成した際に、各々の冷媒循環回路に含まれない熱交換器に溜まり込んだ冷媒が冷媒循環回路を循環する冷媒と合流し、冷媒不足を抑制することができる構成を得ることができる効果を奏する。 That is, as an additional configuration, as in the refrigeration cycle device 1003 according to the third modification of the embodiment, the flow path switching device includes a four-way valve 4a and a first expansion valve (second expansion valve 3b). When the first load heat medium heating refrigerant circulation circuit 602 is formed by the flow path switching device, the refrigerant is a compressor. The discharge port of No. 1, the first utilization side heat exchanger 21, the first expansion valve, the heat source side heat exchanger 2, and the suction port of the compressor 1 circulate in this order, and the second expansion valve is the discharge port of the compressor 1. The flow path between the heat exchanger 31 and the second utilization side heat exchanger 31 is blocked, and the second utilization side heat exchanger 31 is a flow path between the heat source side heat exchanger 2 and the suction port of the compressor 1. When the second load heat medium heating refrigerant circulation circuit 603 is formed by the communication and flow path switching device, the refrigerant is the discharge port of the compressor 1, the second utilization side heat exchanger 31, the second expansion valve, and the like. The heat source side heat exchanger 2 and the suction port of the compressor 1 circulate in this order, and the first expansion valve blocks the flow path between the discharge port of the compressor 1 and the first utilization side heat exchanger 21. The first utilization-side heat exchanger 21 has the following effects even when it has a configuration in which it communicates with the flow path between the heat source-side heat exchanger 2 and the suction port of the compressor 1. That is, by having the additional configuration, when the first load heat medium heating refrigerant circulation circuit 602 and the second load heat medium heating refrigerant circulation circuit 603 are formed, they are not included in the respective refrigerant circulation circuits. The refrigerant accumulated in the heat exchanger merges with the refrigerant circulating in the refrigerant circulation circuit, which has the effect of obtaining a configuration capable of suppressing a refrigerant shortage.
1 圧縮機、2 熱源側熱交換器、3 減圧装置、3a 第一の膨張弁、3b 第二の膨張弁、3c 第三の膨張弁、4 切替弁群、4a 第一の四方弁、4b 第二の四方弁、5 アキュムレータ、6 閉止装置、6a 第一のストップバルブ、6b 第二のストップバルブ、6c 第三のストップバルブ、6d 第四のストップバルブ、7 圧縮機シェル温度センサ、8 吐出温度センサ、9 吐出圧力センサ、10 熱源側熱交換器温度センサ、11 熱源熱媒体温度センサ、12 熱源側液管温度センサ、13 制御装置、13a プロセッサ、13b メモリ、13c ハードウェアインターフェース、15~17 二方弁、21 第一の利用側熱交換器、22 第一の利用側熱交換器温度センサ、23 第一の負荷熱媒体温度センサ、24 第一の利用側液管温度センサ、31 第二の利用側熱交換器、32 第二の利用側液管温度センサ、33 第二の負荷熱媒体流入側温度センサ、34 第二の負荷熱媒体流出側温度センサ、50 受信部、51 送信部、52 記憶部、53 制御部、100 熱源機、110 熱源機冷媒配管、111 第一の熱源機冷媒配管、112 第二の熱源機冷媒配管、113 第三の熱源機冷媒配管、114 第四の熱源機冷媒配管、115 第五の熱源機冷媒配管、116 第六の熱源機冷媒配管、117 第七の熱源機冷媒配管、118 第八の熱源機冷媒配管、119 第九の熱源機冷媒配管、120 第十の熱源機冷媒配管、121 第十一の熱源機冷媒配管、200 第一の利用機器、210 第一の利用側液冷媒配管、220 第一の利用側ガス冷媒配管、300 第二の利用機器、310 第二の利用側液冷媒配管、320 第二の利用側ガス冷媒配管、330 第二の負荷熱媒体流入側配管、340 第二の負荷熱媒体流出側配管、400 リモコン、501 第一の連結配管、502 第二の連結配管、503 第三の連結配管、504 第四の連結配管、600 冷媒循環回路、601 第一の負荷熱媒体冷却冷媒循環回路、602 第一の負荷熱媒体加熱冷媒循環回路、603 第二の負荷熱媒体加熱冷媒循環回路、604 冷却加熱同時冷媒循環回路、1000~1004 冷凍サイクル装置。 1 Compressor, 2 Heat source side heat exchanger, 3 Decompression device, 3a 1st expansion valve, 3b 2nd expansion valve, 3c 3rd expansion valve, 4 switching valve group, 4a 1st four-way valve, 4b first Two four-way valve, 5 accumulator, 6 closing device, 6a first stop valve, 6b second stop valve, 6c third stop valve, 6d fourth stop valve, 7 compressor shell temperature sensor, 8 discharge temperature Sensor, 9 Discharge pressure sensor, 10 Heat source side heat exchanger temperature sensor, 11 Heat source heat medium temperature sensor, 12 Heat source side liquid tube temperature sensor, 13 Control device, 13a processor, 13b memory, 13c hardware interface, 15-17 Square valve, 21 first user side heat exchanger, 22 first user side heat exchanger temperature sensor, 23 first load heat medium temperature sensor, 24 first user side liquid tube temperature sensor, 31 second User side heat exchanger, 32 Second user side liquid tube temperature sensor, 33 Second load heat medium inflow side temperature sensor, 34 Second load heat medium outflow side temperature sensor, 50 Receiver, 51 Transmitter, 52 Storage unit, 53 control unit, 100 heat source machine, 110 heat source machine refrigerant pipe, 111 first heat source machine refrigerant pipe, 112 second heat source machine refrigerant pipe, 113 third heat source machine refrigerant pipe, 114 fourth heat source machine Refrigerator pipe, 115 5th heat source machine refrigerant pipe, 116 6th heat source machine refrigerant pipe, 117 7th heat source machine refrigerant pipe, 118 8th heat source machine refrigerant pipe, 119 9th heat source machine refrigerant pipe, 120th Ten heat source machine refrigerant pipes, 121 eleventh heat source machine refrigerant pipes, 200 first use equipment, 210 first use side liquid refrigerant pipes, 220 first use side gas refrigerant pipes, 300 second use equipment , 310 second user side liquid refrigerant pipe, 320 second user side gas refrigerant pipe, 330 second load heat medium inflow side pipe 340 second load heat medium outflow side pipe, 400 remote control, 501 first Connecting pipe, 502 second connecting pipe, 503 third connecting pipe, 504 fourth connecting pipe, 600 refrigerant circulation circuit, 601 first load heat medium cooling refrigerant circulation circuit, 602 first load heat medium heating refrigerant Circulation circuit, 603 Second load heat medium heating refrigerant circulation circuit, 604 Cooling and heating simultaneous refrigerant circulation circuit, 1000-1004 Refrigeration cycle device.

Claims (14)

  1.  冷媒を吸入口から吸入し、吸入した前記冷媒を圧縮し、圧縮した前記冷媒を吐出口から吐出する圧縮機と、
     前記冷媒と第一の熱媒体との間で熱交換を行わせる第一の熱交換器と、
     前記冷媒と第二の熱媒体との間で熱交換を行わせる第二の熱交換器と、
     前記冷媒と第三の熱媒体との間で熱交換を行わせる第三の熱交換器と、
     前記冷媒が循環する冷媒循環回路を切り替える流路切替装置と、を備え、
     前記流路切替装置は、
     前記第三の熱交換器を含み、前記第三の熱交換器が蒸発器または凝縮器として機能する冷媒循環回路である第一の冷媒循環回路と、
     前記第一の熱交換器と前記第二の熱交換器を含み、前記第一の熱交換器または前記第二の熱交換器のいずれか一つが蒸発器として機能し、前記第三の熱交換器を含まない前記冷媒循環回路である第二の冷媒循環回路と、
     を切り替え、
     前記流路切替装置によって前記第二の冷媒循環回路が形成される場合において前記第三の熱交換器は、前記第二の冷媒循環回路の蒸発器として機能する前記第一の熱交換器または前記第二の熱交換器と、前記圧縮機の前記吸入口と、の間の流路と連通する冷凍サイクル装置。
    A compressor that sucks the refrigerant from the suction port, compresses the sucked refrigerant, and discharges the compressed refrigerant from the discharge port.
    A first heat exchanger that exchanges heat between the refrigerant and the first heat medium,
    A second heat exchanger that exchanges heat between the refrigerant and the second heat medium,
    A third heat exchanger that exchanges heat between the refrigerant and the third heat medium,
    A flow path switching device for switching the refrigerant circulation circuit through which the refrigerant circulates is provided.
    The flow path switching device is
    A first refrigerant circulation circuit that includes the third heat exchanger and is a refrigerant circulation circuit in which the third heat exchanger functions as an evaporator or a condenser.
    The first heat exchanger and the second heat exchanger are included, and any one of the first heat exchanger or the second heat exchanger functions as an evaporator, and the third heat exchange. The second refrigerant circulation circuit, which is the refrigerant circulation circuit that does not include a vessel,
    To switch,
    When the second refrigerant circulation circuit is formed by the flow path switching device, the third heat exchanger is the first heat exchanger or the first heat exchanger that functions as an evaporator of the second refrigerant circulation circuit. A refrigeration cycle device communicating with a flow path between the second heat exchanger and the suction port of the compressor.
  2.  前記第一の熱媒体は熱源熱媒体であり、前記第二の熱媒体は第一の負荷熱媒体であり、前記第三の熱媒体は第二の負荷熱媒体であり、
     前記第一の熱交換器は熱源側熱交換器であり、前記第二の熱交換器は第一の利用側熱交換器であり、前記第三の熱交換器は第二の利用側熱交換器である請求項1に記載の冷凍サイクル装置。
    The first heat medium is a heat source heat medium, the second heat medium is a first load heat medium, and the third heat medium is a second load heat medium.
    The first heat exchanger is a heat source side heat exchanger, the second heat exchanger is a first user side heat exchanger, and the third heat exchanger is a second user side heat exchange. The refrigerating cycle apparatus according to claim 1, which is a vessel.
  3.  前記第一の冷媒循環回路は、前記熱源側熱交換器を含み、前記第一の利用側熱交換器を含まず、前記第二の利用側熱交換器または前記熱源側熱交換器が蒸発器として機能し、
     前記流路切替装置によって前記第一の冷媒循環回路が形成される場合において前記第一の利用側熱交換器は、前記第一の冷媒循環回路の蒸発器として機能する熱交換器と前記圧縮機の前記吸入口との間の流路と連通する請求項2に記載の冷凍サイクル装置。
    The first refrigerant circulation circuit includes the heat source side heat exchanger, does not include the first utilization side heat exchanger, and the second utilization side heat exchanger or the heat source side heat exchanger is an evaporator. Acts as
    When the first refrigerant circulation circuit is formed by the flow path switching device, the first utilization-side heat exchanger is a heat exchanger that functions as an evaporator of the first refrigerant circulation circuit and the compressor. The refrigeration cycle apparatus according to claim 2, wherein the refrigerating cycle device communicates with the flow path between the suction port and the suction port.
  4.  前記第一の冷媒循環回路は、前記第二の利用側熱交換器が凝縮器として機能し、前記熱源側熱交換器が蒸発器として機能し、前記熱源側熱交換器を通過した冷媒が前記圧縮機の前記吸入口から吸入される第二の負荷熱媒体加熱冷媒循環回路であり、
     前記第二の冷媒循環回路は、前記第一の利用側熱交換器が凝縮器として機能し、前記熱源側熱交換器が蒸発器として機能し、前記熱源側熱交換器を通過した冷媒が前記圧縮機の前記吸入口から吸入される第一の負荷熱媒体加熱冷媒循環回路である請求項3に記載の冷凍サイクル装置。
    In the first refrigerant circulation circuit, the second utilization side heat exchanger functions as a condenser, the heat source side heat exchanger functions as an evaporator, and the refrigerant that has passed through the heat source side heat exchanger is said. It is a second load heat medium heating refrigerant circulation circuit sucked from the suction port of the compressor.
    In the second refrigerant circulation circuit, the first utilization side heat exchanger functions as a condenser, the heat source side heat exchanger functions as an evaporator, and the refrigerant that has passed through the heat source side heat exchanger is said. The refrigerating cycle apparatus according to claim 3, which is a first load heat medium heating refrigerant circulation circuit sucked from the suction port of the compressor.
  5.  前記流路切替装置は、四方弁と、第一の膨張弁と、第二の膨張弁とによって構成され、
     前記流路切替装置によって前記第一の負荷熱媒体加熱冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記第一の利用側熱交換器、前記第一の膨張弁、前記熱源側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記第二の膨張弁は前記圧縮機の前記吐出口と前記第二の利用側熱交換器の間の流路を閉塞し、前記第二の利用側熱交換器は前記熱源側熱交換器と前記圧縮機の前記吸入口との間の流路と連通し、
     前記流路切替装置によって前記第二の負荷熱媒体加熱冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記第二の利用側熱交換器、前記第二の膨張弁、前記熱源側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記第一の膨張弁は前記圧縮機の前記吐出口と前記第一の利用側熱交換器の間の流路を閉塞し、前記第一の利用側熱交換器は前記熱源側熱交換器と前記圧縮機の前記吸入口との間の流路と連通する請求項4に記載の冷凍サイクル装置。
    The flow path switching device is composed of a four-way valve, a first expansion valve, and a second expansion valve.
    When the first load heat medium heating refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is the discharge port of the compressor, the first utilization side heat exchanger, and the first expansion. The valve, the heat source side heat exchanger, and the suction port of the compressor circulate in this order, and the second expansion valve is a flow path between the discharge port of the compressor and the second utilization side heat exchanger. The second utilization side heat exchanger communicates with the flow path between the heat source side heat exchanger and the suction port of the compressor.
    When the second load heat medium heating refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is the discharge port of the compressor, the second utilization side heat exchanger, and the second expansion. The valve, the heat source side heat exchanger, and the suction port of the compressor circulate in this order, and the first expansion valve is a flow path between the discharge port of the compressor and the first utilization side heat exchanger. 4. The refrigeration cycle apparatus according to claim 4, wherein the first utilization side heat exchanger communicates with a flow path between the heat source side heat exchanger and the suction port of the compressor.
  6.  前記冷媒を減圧する膨張弁を備え、
     前記流路切替装置は、四方弁と、第一の二方弁と、第二の二方弁とによって構成され、
     前記流路切替装置によって前記第一の負荷熱媒体加熱冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記第一の利用側熱交換器、前記膨張弁、前記熱源側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記第二の二方弁は前記圧縮機の前記吐出口と前記第二の利用側熱交換器の間の流路を閉塞し、前記第二の利用側熱交換器は前記熱源側熱交換器と前記圧縮機の前記吸入口との間の流路と連通し、
     前記流路切替装置によって前記第二の負荷熱媒体加熱冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記第二の利用側熱交換器、前記膨張弁、前記熱源側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記第一の二方弁は前記圧縮機の前記吐出口と前記第一の利用側熱交換器の間の流路を閉塞し、前記第一の利用側熱交換器は前記熱源側熱交換器と前記圧縮機の前記吸入口との間の流路と連通する請求項4に記載の冷凍サイクル装置。
    An expansion valve for reducing the pressure of the refrigerant is provided.
    The flow path switching device is composed of a four-way valve, a first two-way valve, and a second two-way valve.
    When the first load heat medium heating refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is the discharge port of the compressor, the first utilization side heat exchanger, the expansion valve, and the above. It circulates in the order of the heat source side heat exchanger and the suction port of the compressor, and the second two-way valve blocks the flow path between the discharge port of the compressor and the second user side heat exchanger. Then, the second utilization-side heat exchanger communicates with the flow path between the heat source-side heat exchanger and the suction port of the compressor.
    When the second load heat medium heating refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is the discharge port of the compressor, the second utilization side heat exchanger, the expansion valve, and the above. It circulates in the order of the heat source side heat exchanger and the suction port of the compressor, and the first two-way valve blocks the flow path between the discharge port of the compressor and the first user side heat exchanger. The refrigeration cycle device according to claim 4, wherein the first utilization-side heat exchanger communicates with a flow path between the heat source-side heat exchanger and the suction port of the compressor.
  7.  前記第一の冷媒循環回路は、前記第一の利用側熱交換器を含み、前記熱源側熱交換器を含まず、前記第二の利用側熱交換器または前記第一の利用側熱交換器が蒸発器として機能し、
     前記流路切替装置によって前記第一の冷媒循環回路が形成される場合において前記熱源側熱交換器は、前記第一の冷媒循環回路の蒸発器として機能する熱交換器と前記圧縮機の前記吸入口との間の流路と連通する請求項2に記載の冷凍サイクル装置。
    The first refrigerant circulation circuit includes the first utilization side heat exchanger and does not include the heat source side heat exchanger, and the second utilization side heat exchanger or the first utilization side heat exchanger. Acts as an evaporator,
    When the first refrigerant circulation circuit is formed by the flow path switching device, the heat source side heat exchanger is a heat exchanger that functions as an evaporator of the first refrigerant circulation circuit and the suction of the compressor. The refrigerating cycle apparatus according to claim 2, which communicates with a flow path between the mouth and the mouth.
  8.  前記第一の冷媒循環回路は、前記第二の利用側熱交換器が凝縮器として機能し、前記第一の利用側熱交換器が蒸発器として機能し、前記第一の利用側熱交換器を通過した冷媒が前記圧縮機の前記吸入口から吸入される冷却加熱同時冷媒循環回路であり、
     前記第二の冷媒循環回路は、前記第一の利用側熱交換器が凝縮器として機能し、前記熱源側熱交換器が蒸発器として機能し、前記熱源側熱交換器を通過した冷媒が前記圧縮機の前記吸入口から吸入される第一の負荷熱媒体加熱冷媒循環回路である請求項7に記載の冷凍サイクル装置。
    In the first refrigerant circulation circuit, the second utilization side heat exchanger functions as a condenser, the first utilization side heat exchanger functions as an evaporator, and the first utilization side heat exchanger functions. It is a cooling / heating simultaneous refrigerant circulation circuit in which the refrigerant that has passed through is sucked from the suction port of the compressor.
    In the second refrigerant circulation circuit, the first utilization side heat exchanger functions as a condenser, the heat source side heat exchanger functions as an evaporator, and the refrigerant that has passed through the heat source side heat exchanger is said. The refrigerating cycle apparatus according to claim 7, which is a first load heat medium heating refrigerant circulation circuit sucked from the suction port of the compressor.
  9.  前記流路切替装置は、四方弁と二つの膨張弁と二方弁とを備え、
     前記流路切替装置によって前記第一の負荷熱媒体加熱冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記第一の利用側熱交換器、前記二つの膨張弁の少なくともいずれか一つ、前記熱源側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記二方弁または前記二つの膨張弁のいずれか一つは前記圧縮機の吐出口と前記第二の利用側熱交換器との間の流路を閉塞し、前記第二の利用側熱交換器は前記熱源側熱交換器と前記圧縮機の前記吸入口との間の流路と連通し、
     前記流路切替装置によって前記冷却加熱同時冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記第二の利用側熱交換器、前記二つの膨張弁の少なくともいずれか一つ、前記第一の利用側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記二方弁または前記二つの膨張弁のいずれか一つは前記圧縮機の吐出口と前記熱源側熱交換器との間の流路を閉塞し、前記熱源側熱交換器は前記熱源側熱交換器と前記圧縮機の前記吸入口との間の流路と連通する請求項8に記載の冷凍サイクル装置。
    The flow path switching device includes a four-way valve, two expansion valves, and a two-way valve.
    When the first load heat medium heating refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is the discharge port of the compressor, the first utilization side heat exchanger, and the two expansion valves. At least one of the two-way valve or the two expansion valves circulates in the order of the heat source side heat exchanger and the suction port of the compressor, and any one of the two-way valve or the two expansion valves is the discharge port of the compressor and the suction port. The flow path between the second utilization side heat exchanger is blocked, and the second utilization side heat exchanger communicates with the flow path between the heat source side heat exchanger and the suction port of the compressor. death,
    When the cooling / heating simultaneous refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is at least one of the discharge port of the compressor, the second utilization side heat exchanger, and the two expansion valves. One, the first utilization side heat exchanger and the suction port of the compressor circulate in this order, and either one of the two-way valve or the two expansion valves is the discharge port of the compressor and the heat source. The eighth aspect of claim 8, wherein the flow path between the side heat exchanger is blocked and the heat source side heat exchanger communicates with the flow path between the heat source side heat exchanger and the suction port of the compressor. Refrigeration cycle equipment.
  10.  流路切替装置は、前記熱源側熱交換器が凝縮器として機能し前記第一の利用側熱交換器が蒸発器として機能し前記第一の利用側熱交換器を通過した冷媒が前記圧縮機の前記吸入口から吸入される第一の負荷熱媒体冷却冷媒循環回路と、前記第一の利用側熱交換器が凝縮器として機能し前記熱源側熱交換器が蒸発器として機能し前記熱源側熱交換器を通過した冷媒が前記圧縮機の前記吸入口から吸入される第一の負荷熱媒体加熱冷媒循環回路と、前記第二の利用側熱交換器が凝縮器として機能し前記熱源側熱交換器が蒸発器として機能し前記熱源側熱交換器を通過した冷媒が前記圧縮機の前記吸入口から吸入される第二の負荷熱媒体加熱冷媒循環回路と、前記第二の利用側熱交換器が凝縮器として機能し前記第一の利用側熱交換器が蒸発器として機能し前記第一の利用側熱交換器を通過した冷媒が前記圧縮機の前記吸入口から吸入される冷却加熱同時冷媒循環回路と、を切り替え、
     前記第一の冷媒循環回路は前記第二の負荷熱媒体加熱冷媒循環回路または冷却加熱同時冷媒循環回路であり、
     前記第二の冷媒循環回路は前記第一の負荷熱媒体冷却冷媒循環回路または前記第一の負荷熱媒体加熱冷媒循環回路である請求項2に記載の冷凍サイクル装置。
    In the flow path switching device, the heat source side heat exchanger functions as a condenser, the first utilization side heat exchanger functions as an evaporator, and the refrigerant that has passed through the first utilization side heat exchanger functions as the compressor. The first load heat medium cooling refrigerant circulation circuit sucked from the suction port and the first utilization side heat exchanger function as a condenser, and the heat source side heat exchanger functions as an evaporator and the heat source side. The first load heat medium heating refrigerant circulation circuit in which the refrigerant that has passed through the heat exchanger is sucked from the suction port of the compressor and the second utilization side heat exchanger function as a condenser to heat the heat source side. The exchanger functions as an evaporator, and the second load heat medium heating refrigerant circulation circuit in which the refrigerant that has passed through the heat source side heat exchanger is sucked from the suction port of the compressor and the second user side heat exchange. The device functions as a condenser, the first user-side heat exchanger functions as an evaporator, and the refrigerant that has passed through the first user-side heat exchanger is sucked from the suction port of the compressor at the same time as cooling and heating. Switching between the refrigerant circulation circuit and
    The first refrigerant circulation circuit is the second load heat medium heating refrigerant circulation circuit or the cooling / heating simultaneous refrigerant circulation circuit.
    The refrigerating cycle apparatus according to claim 2, wherein the second refrigerant circulation circuit is the first load heat medium cooling refrigerant circulation circuit or the first load heat medium heating refrigerant circulation circuit.
  11.  前記流路切替装置は、二つの四方弁と二つの膨張弁と二方弁とを備え、
     前記流路切替装置によって前記第一の負荷熱媒体加熱冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記第一の利用側熱交換器、前記二つの膨張弁の少なくともいずれか一つ、前記熱源側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記二方弁または前記二つの膨張弁のいずれか一つは前記圧縮機の吐出口と前記第二の利用側熱交換器との間の流路を閉塞し、前記第二の利用側熱交換器は前記熱源側熱交換器と前記圧縮機の前記吸入口との間の流路と連通し、
     前記流路切替装置によって前記第二の負荷熱媒体加熱冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記第二の利用側熱交換器、前記二つの膨張弁の少なくともいずれか一つ、前記熱源側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記二方弁または前記二つの膨張弁のいずれか一つは前記圧縮機の吐出口と前記第一の利用側熱交換器との間の流路を閉塞し、前記第一の利用側熱交換器は前記熱源側熱交換器と前記圧縮機の前記吸入口との間の流路と連通し、
     前記流路切替装置によって前記第一の負荷熱媒体冷却冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記熱源側熱交換器、前記二つの膨張弁の少なくともいずれか一つ、前記第一の利用側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記二方弁または前記二つの膨張弁のいずれか一つは前記圧縮機の吐出口と前記第二の利用側熱交換器との間の流路を閉塞し、前記第二の利用側熱交換器は前記第一の利用側熱交換器と前記圧縮機の前記吸入口との間の流路と連通し、
     前記流路切替装置によって前記冷却加熱同時冷媒循環回路が形成される場合において、前記冷媒は前記圧縮機の前記吐出口、前記第二の利用側熱交換器、前記二つの膨張弁の少なくともいずれか一つ、前記第一の利用側熱交換器、前記圧縮機の前記吸入口の順に循環し、前記二方弁または前記二つの膨張弁のいずれか一つは前記圧縮機の吐出口と前記熱源側熱交換器との間の流路を閉塞し、前記熱源側熱交換器は前記第一の利用側熱交換器と前記圧縮機の前記吸入口との間の流路と連通する
    請求項10に記載の冷凍サイクル装置。
    The flow path switching device includes two four-way valves, two expansion valves, and a two-way valve.
    When the first load heat medium heating refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is the discharge port of the compressor, the first utilization side heat exchanger, and the two expansion valves. At least one of the two-way valve or the two expansion valves circulates in the order of the heat source side heat exchanger and the suction port of the compressor, and any one of the two-way valve or the two expansion valves is the discharge port of the compressor and the suction port. The flow path between the second utilization side heat exchanger is blocked, and the second utilization side heat exchanger communicates with the flow path between the heat source side heat exchanger and the suction port of the compressor. death,
    When the second load heat medium heating refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is the discharge port of the compressor, the second utilization side heat exchanger, and the two expansion valves. At least one of the two-way valve or the two expansion valves circulates in the order of the heat source side heat exchanger and the suction port of the compressor, and any one of the two-way valve or the two expansion valves is the discharge port of the compressor and the suction port. The flow path between the first utilization side heat exchanger is blocked, and the first utilization side heat exchanger communicates with the flow path between the heat source side heat exchanger and the suction port of the compressor. death,
    When the first load heat medium cooling refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is at least one of the discharge port of the compressor, the heat source side heat exchanger, and the two expansion valves. One, the first utilization side heat exchanger, and the suction port of the compressor circulate in this order, and either one of the two-way valve or the two expansion valves is the discharge port of the compressor and the said. The flow path between the second utilization side heat exchanger is blocked, and the second utilization side heat exchanger is a flow between the first utilization side heat exchanger and the suction port of the compressor. Communicate with the road,
    When the cooling / heating simultaneous refrigerant circulation circuit is formed by the flow path switching device, the refrigerant is at least one of the discharge port of the compressor, the second utilization side heat exchanger, and the two expansion valves. One, the first utilization side heat exchanger and the suction port of the compressor circulate in this order, and either one of the two-way valve or the two expansion valves is the discharge port of the compressor and the heat source. 10. Claim 10 that blocks the flow path between the side heat exchanger and the heat source side heat exchanger communicates with the flow path between the first utilization side heat exchanger and the suction port of the compressor. The refrigeration cycle device described in.
  12.  前記第一の熱媒体は第一の負荷熱媒体であり、前記第二の熱媒体は第二の負荷熱媒体であり、前記第三の熱媒体は熱源熱媒体であり、
     前記第一の熱交換器は第一の利用側熱交換器であり、前記第二の熱交換器は第二の利用側熱交換器であり、前記第三の熱交換器は熱源側交換器である請求項1に記載の冷凍サイクル装置。
    The first heat medium is a first load heat medium, the second heat medium is a second load heat medium, and the third heat medium is a heat source heat medium.
    The first heat exchanger is a first user-side heat exchanger, the second heat exchanger is a second user-side heat exchanger, and the third heat exchanger is a heat source-side exchanger. The refrigeration cycle apparatus according to claim 1.
  13.  前記第一の熱媒体は熱源熱媒体であり、前記第二の熱媒体は第二の負荷熱媒体であり、前記第三の熱媒体は第一の負荷熱媒体であり、
     前記第一の熱交換器は熱源側熱交換器であり、前記第二の熱交換器は第二の利用側熱交換器であり、前記第三の熱交換器は第一の利用側熱交換器である請求項1に記載の冷凍サイクル装置。
    The first heat medium is a heat source heat medium, the second heat medium is a second load heat medium, and the third heat medium is a first load heat medium.
    The first heat exchanger is a heat source side heat exchanger, the second heat exchanger is a second utilization side heat exchanger, and the third heat exchanger is a first utilization side heat exchange. The refrigerating cycle apparatus according to claim 1, which is a vessel.
  14.  前記熱源熱媒体は室外空間の空気であり、
     前記第一の負荷熱媒体は室内空間の空気であり、
     前記第二の負荷熱媒体は水である請求項2から13のいずれか一項に記載の冷凍サイクル装置。
    The heat source heat medium is air in the outdoor space.
    The first load heat medium is the air in the indoor space.
    The refrigeration cycle apparatus according to any one of claims 2 to 13, wherein the second load heat medium is water.
PCT/JP2020/048765 2020-12-25 2020-12-25 Refrigeration cycle device WO2022137510A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022570952A JP7471460B2 (en) 2020-12-25 2020-12-25 Refrigeration Cycle Equipment
DE112020007879.5T DE112020007879T5 (en) 2020-12-25 2020-12-25 Refrigeration cycle device
PCT/JP2020/048765 WO2022137510A1 (en) 2020-12-25 2020-12-25 Refrigeration cycle device
GB2306768.9A GB2615469A (en) 2020-12-25 2020-12-25 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048765 WO2022137510A1 (en) 2020-12-25 2020-12-25 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022137510A1 true WO2022137510A1 (en) 2022-06-30

Family

ID=82157450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048765 WO2022137510A1 (en) 2020-12-25 2020-12-25 Refrigeration cycle device

Country Status (4)

Country Link
JP (1) JP7471460B2 (en)
DE (1) DE112020007879T5 (en)
GB (1) GB2615469A (en)
WO (1) WO2022137510A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174469A (en) * 2000-12-06 2002-06-21 Fujitsu General Ltd Multichamber air conditioner
WO2014188575A1 (en) * 2013-05-24 2014-11-27 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545375B2 (en) 2016-05-26 2019-07-17 三菱電機株式会社 Heat pump type air conditioner water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174469A (en) * 2000-12-06 2002-06-21 Fujitsu General Ltd Multichamber air conditioner
WO2014188575A1 (en) * 2013-05-24 2014-11-27 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP7471460B2 (en) 2024-04-19
JPWO2022137510A1 (en) 2022-06-30
GB202306768D0 (en) 2023-06-21
DE112020007879T5 (en) 2023-10-26
GB2615469A (en) 2023-08-09

Similar Documents

Publication Publication Date Title
JP3289366B2 (en) Refrigeration equipment
JP3894221B1 (en) Air conditioner
WO2010109617A1 (en) Air-conditioning apparatus
WO2011080802A1 (en) Heat-pump system
CN101512249B (en) Refrigeration device
WO2005019742A1 (en) Freezing apparatus
US8171747B2 (en) Refrigeration device
US20090077985A1 (en) Refrigerating Apparatus
US20060150648A1 (en) Air conditioner
WO2006003967A1 (en) Air conditioner
WO2008059737A1 (en) Air conditioning apparatus
KR20070071213A (en) Air conditioner
JP4733979B2 (en) Refrigeration equipment
JP6698862B2 (en) Air conditioner
WO2003087681A1 (en) Heat source unit of air conditioner and air conditioner
JP6576603B1 (en) Air conditioner
JPWO2020065791A1 (en) Air conditioning hot water supply device
CN114270111B (en) Heat source unit and refrigerating device
JPWO2004013550A1 (en) Refrigeration equipment
WO2022137510A1 (en) Refrigeration cycle device
US20220128275A1 (en) Refrigeration apparatus
CN109386989B (en) Two-pipe jet enthalpy-increasing outdoor unit and multi-split system
CN112747359A (en) Air conditioning system outer unit and air conditioning system
WO2019189838A1 (en) Refrigeration device
WO2015177896A1 (en) Air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570952

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202306768

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201225

WWE Wipo information: entry into national phase

Ref document number: 112020007879

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966996

Country of ref document: EP

Kind code of ref document: A1