WO2022137401A1 - 荷電粒子ビーム装置 - Google Patents

荷電粒子ビーム装置 Download PDF

Info

Publication number
WO2022137401A1
WO2022137401A1 PCT/JP2020/048255 JP2020048255W WO2022137401A1 WO 2022137401 A1 WO2022137401 A1 WO 2022137401A1 JP 2020048255 W JP2020048255 W JP 2020048255W WO 2022137401 A1 WO2022137401 A1 WO 2022137401A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sample piece
charged particle
particle beam
image
Prior art date
Application number
PCT/JP2020/048255
Other languages
English (en)
French (fr)
Inventor
由花 伊井
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2022570862A priority Critical patent/JPWO2022137401A1/ja
Priority to PCT/JP2020/048255 priority patent/WO2022137401A1/ja
Priority to US18/267,502 priority patent/US20240055220A1/en
Publication of WO2022137401A1 publication Critical patent/WO2022137401A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/31Electron-beam or ion-beam tubes for localised treatment of objects for cutting or drilling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/208Elements or methods for movement independent of sample stage for influencing or moving or contacting or transferring the sample or parts thereof, e.g. prober needles or transfer needles in FIB/SEM systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Definitions

  • the present invention relates to a charged particle beam device having a sample extraction function.
  • Focused ion beam (FIB) method which is one of the processing methods using a charged particle beam device, is fine processing using the sputtering phenomenon of target constituent atoms by irradiating a sample with a focused ion beam. It is a law.
  • a FIB-SEM composite device that combines a FIB device and a scanning electron microscope (SEM) has been commercialized.
  • SEM scanning electron microscope
  • FIB-SEM composite devices in the semiconductor field include, for example, structural observation in device development and defect analysis, dimensional measurement, and investigation / confirmation of product reproducibility and reliability.
  • processing and observation at a plurality of locations in the semiconductor wafer or semiconductor device are indispensable, the device is required to shorten the working time, save labor and reduce skills.
  • Patent Document 1 discloses a technique for extracting a target portion in a sample with fully automatic or equivalent performance and fixing it to a sample piece holder for processing.
  • a process of accurately recognizing a target location, processing and extracting the sample to an appropriate size, and then fixing the sample in a desired position is performed.
  • Patent Document 2 the detection of contact / separation between the sample piece and the needle for extracting the sample piece, and the contact / separation between the extracted sample piece and the sample piece holder to which the sample piece is attached is executed by measuring the electrical continuity. Disclosed is a technique for advancing the extraction operation of a sample piece by controlling the process according to the processing time when continuity cannot be obtained.
  • sample pieces have been automatically extracted using SIM (Scanning Ion Microscope) images, SEM images, their absorption current images, various image processing techniques, and the like.
  • SIM Surface Ion Microscope
  • SEM Surface Electrometic Electrode
  • the target sample is a semiconductor wafer or a semiconductor device
  • the accuracy and stability of automatic extraction of the sample piece depend on the structure of the sample as the device structure becomes finer and more diversified. There is.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a charged particle beam device capable of performing automatic extraction of a sample piece accurately and stably.
  • the charged particle beam device automatically extracts a sample piece from a sample.
  • the charged particle beam device includes a sample stage on which a sample is placed and moved, a charged particle beam irradiation optical system for irradiating a charged particle beam, and a sample piece moving means for holding and transporting a sample piece extracted from the sample. It is equipped with a holder fixing base for holding the sample piece holder to which the sample piece is transferred, and a computer.
  • the computer is obtained by irradiating the reference image obtained by irradiating the sample with the charged particle beam in advance and irradiating the sample to be extracted with the sample piece with the charged particle beam. Select the matching area for image matching with the comparison image.
  • the needle is brought closer to the sample piece by performing the following processing as the first step for extracting the sample piece.
  • An absorption current image obtained by irradiating the needle with a charged particle beam before automatic extraction of the sample and a reference image previously created from a secondary electron image obtained by irradiating the sample piece with the charged particle beam.
  • the position coordinates of the needle tip and the position coordinates of the part of the sample piece to be removed where the needle tip is brought close to are determined by image recognition, and the needle tip is brought close to the determined position coordinates.
  • the contrast value, brightness value, scan speed, image size, etc. can be set in advance from the reference image of the sample piece to be acquired.
  • a recognition failure occurs such as "a position that is not the needle approaching position is recognized as the needle approaching position"
  • the sample or sample piece (there is a risk of contacting not only the sample piece but also the sample) and the needle.
  • the sample, sample piece, or needle will be damaged or deformed due to contact with the sample. Damage or deformation of a sample or sample piece is a major problem in handling valuable samples. If the needle is damaged or deformed, it is necessary to replace the needle. In either case, not only the performance is greatly reduced, but also the original purpose of automatic extraction of the sample piece cannot be realized.
  • a sample piece automatic extraction sequence is performed by detecting a learned repetitive pattern region in an image using artificial intelligence (AI: Artificial Intelligence) and masking the detected repetitive pattern region. Is made to be able to be executed accurately and stably.
  • AI Artificial Intelligence
  • FIG. 1 is a configuration diagram showing an example of an automatic sample piece preparation device including the charged particle beam device according to the first embodiment of the present invention.
  • the automatic sample piece preparation device 10 includes a charged particle beam device 10a and the like.
  • the charged particle beam device 10a includes a sample chamber 11 capable of maintaining the inside in a vacuum state, a stage 12 capable of fixing the sample S and the sample piece holder P inside the sample chamber 11, a stage drive mechanism 13 for driving the stage 12, and the like. I have.
  • the charged particle beam device 10a includes a focused ion beam irradiation optical system 14 that irradiates an irradiation target within a predetermined irradiation region (scanning range) inside the sample chamber 11 with a FIB.
  • the charged particle beam device 10a includes an electron beam irradiation optical system 15 that irradiates an electron beam (EB) on an irradiation target in a predetermined irradiation region inside the sample chamber 11.
  • the charged particle beam device 10a includes a detector 16 that detects secondary charged particles (secondary electrons, secondary ions) R generated from an irradiation target by irradiation with a focused ion beam or an electron beam.
  • the charged particle beam device 10a includes a gas supply unit 17 that supplies gas G to the surface of the irradiation target.
  • the gas supply unit 17 is composed of a nozzle 17a or the like having an outer diameter of about 200 ⁇ m.
  • the charged particle beam device 10a takes out (extracts) a minute sample piece Q from the sample S fixed to the stage 12, holds the taken out sample piece Q, and moves the needle 18 to the sample piece holder P. It is provided with a needle driving mechanism 19 for driving the sample piece Q to convey the sample piece Q.
  • the needle 18 and the needle driving mechanism 19 may be collectively referred to as a sample piece transfer means.
  • the charged particle beam device 10a includes a display device 20 for displaying image data and the like based on the secondary charged particles R detected by the detector 16, a computer 21, and an input device 22.
  • the irradiation targets of the focused ion beam irradiation optical system 14 and the electron beam irradiation optical system 15 include the sample S fixed to the stage 12, the sample piece Q, and the needle 18 and the sample piece holder P existing in the irradiation region. include.
  • the charged particle beam device 10a irradiates the surface of the irradiation target with a focused ion beam while scanning the imaged portion, various processing by sputtering (for example, excavation and trimming processing, etc.), and a deposition film. Formation etc. can be performed.
  • the charged particle beam device 10a can execute a process of forming a sample piece Q (for example, a thin piece sample, a needle-shaped sample, etc.) for transmission observation by a transmission electron microscope or an analysis sample piece using an electron beam from the sample S. ..
  • the charged particle beam device 10a can perform processing to make the sample piece Q transferred to the sample piece holder P into a thin film having a desired thickness (for example, 5 to 100 nm) suitable for transmission observation by a transmission electron microscope. Is.
  • the charged particle beam device 10a can observe the surface of the irradiation target by irradiating the surface of the irradiation target such as the sample piece Q and the needle 18 while scanning the focused ion beam or the electron beam.
  • the sample chamber 11 is configured so that the inside can be exhausted to a desired vacuum state by an exhaust device (not shown) and the desired vacuum state can be maintained.
  • the stage 12 holds the sample S.
  • the stage 12 includes a holder fixing base 12a for holding the sample piece holder P.
  • the holder fixing base 12a may have a configuration in which a plurality of sample piece holders P can be mounted.
  • FIG. 3 is a plan view of the sample piece holder.
  • FIG. 4 is a side view of the sample piece holder.
  • the sample piece holder P includes a substantially semicircular plate-shaped base portion 32 having a notch portion 31, and a sample table 33 fixed to the notch portion 31.
  • the base 32 is formed of, for example, a metal having a circular plate shape having a diameter of 3 mm and a thickness of 50 ⁇ m.
  • the sample table 33 is formed from, for example, a silicon wafer by a semiconductor manufacturing process, and is attached to the notch 31 with a conductive adhesive.
  • the sample table 33 has a comb-teeth shape, and is a plurality of pieces (for example, 5, 10, 15, 20, etc.) that are spaced apart from each other and project, and a columnar portion (hereinafter, also referred to as a pillar) to which the sample piece Q is transferred. ) 34 is provided.
  • each columnar portion 34 By making the width of each columnar portion 34 different, the extraction location of the sample piece Q on the sample S and the image of the sample piece Q and the columnar portion 34 transferred to each columnar portion 34 are associated with each other to further correspond. By storing it in the computer 21 in association with the sample piece holder P, even when a plurality of sample pieces Q are produced from one sample S, each sample piece Q can be recognized without mistake. Subsequent analysis by a transmission electron microscope or the like can be performed without fail in associating the corresponding sample piece Q with the extracted portion on the sample S.
  • Each columnar portion 34 is formed, for example, with a tip portion having a thickness of 10 ⁇ m or less and 5 ⁇ m or less, and holds a sample piece Q attached to the tip portion.
  • the base portion 32 is not limited to a circular plate shape having a diameter of 3 mm and a thickness of 50 ⁇ m as described above, and may be a rectangular plate shape having a length of 5 mm, a height of 2 mm, a thickness of 50 ⁇ m, or the like. good.
  • the shape of the base 32 is a shape that can be mounted on the stage 12 to be introduced into the subsequent transmission electron microscope, and a shape such that all the sample pieces Q mounted on the sample table 33 are located within the movable range of the stage 12. It should be.
  • the stage drive mechanism 13 is housed inside the sample chamber 11 in a state of being connected to the stage 12, and displaces the stage 12 with respect to a predetermined axis according to a control signal output from the computer 21.
  • the stage drive mechanism 13 includes a moving mechanism 13a that moves the stage 12 in parallel along at least the X-axis and the Y-axis that are parallel to the horizontal plane and orthogonal to each other and the Z-axis in the vertical direction that is orthogonal to the X-axis and the Y-axis.
  • the stage drive mechanism 13 includes a tilt mechanism 13b that tilts the stage 12 around the X-axis or the Y-axis, and a rotation mechanism 13c that rotates the stage 12 around the Z-axis.
  • the beam emitting portion (not shown) is placed inside the sample chamber 11 at a position above the stage 12 in the vertical direction in the irradiation region, and the optical axis is oriented in the vertical direction. It is fixed to the sample chamber 11 in parallel with the sample chamber 11.
  • the focused ion beam irradiation optical system 14 directs the focused ion beam from above to below in the vertical direction to the irradiation target such as the sample S fixed to the stage 12, the sample piece Q, and the needle 18 existing in the irradiation region. Irradiation is possible.
  • the focused ion beam irradiation optical system 14 includes an ion source 14a for generating ions and an ion optical system 14b for focusing and deflecting ions drawn from the ion source 14a.
  • the ion source 14a and the ion optical system 14b are controlled according to a control signal output from the computer 21, and the irradiation position and irradiation conditions of the focused ion beam are controlled by the computer 21.
  • the ion source 14a is, for example, a liquid metal ion source using liquid gallium or the like, a plasma type ion source, a gas electric field ionization type ion source, or the like.
  • the ion optical system 14b includes, for example, a first electrostatic lens such as a condenser lens, an electrostatic deflector, a second electrostatic lens such as an objective lens, and the like.
  • the beam emitting portion (not shown) is inclined inside the sample chamber 11 by a predetermined angle (for example, 60 °) with respect to the vertical direction of the stage 12 in the irradiation region. It is fixed to the sample chamber 11 with the optical axis parallel to the tilting direction. As a result, it is possible to irradiate the irradiation target such as the sample S fixed to the stage 12, the sample piece Q, and the needle 18 existing in the irradiation region from the upper side to the lower side in the inclination direction with the electron beam.
  • a predetermined angle for example, 60 °
  • the electron beam irradiation optical system 15 includes an electron source 15a for generating electrons and an electron optical system 15b for focusing and deflecting electrons emitted from the electron source 15a.
  • the electron source 15a and the electron optical system 15b are controlled according to a control signal output from the computer 21, and the irradiation position and irradiation conditions of the electron beam are controlled by the computer 21.
  • the electro-optical system 15b includes, for example, an electromagnetic lens, a deflector, and the like.
  • the arrangement of the electron beam irradiation optical system 15 and the focused ion beam irradiation optical system 14 was exchanged, and the electron beam irradiation optical system 15 was tilted in the vertical direction and the focused ion beam irradiation optical system 14 was tilted by a predetermined angle with respect to the vertical direction. It may be arranged in the inclined direction. Further, both the electron beam irradiation optical system 15 and the focused ion beam irradiation optical system 14 do not have to be arranged in the vertical direction.
  • the detector 16 has an intensity of secondary charged particles (secondary electrons and secondary ions) R emitted from the irradiation target when the irradiation target such as the sample S and the needle 18 is irradiated with the focused ion beam or the electron beam. (That is, the amount of the secondary charged particles) is detected, and the information of the detected amount of the secondary charged particles R is output.
  • the detector 16 is arranged inside the sample chamber 11 at a position where the amount of the secondary charged particles R can be detected, for example, a position diagonally above the irradiation target such as the sample S in the irradiation region, and the sample chamber 11 It is fixed to.
  • the gas supply unit 17 is fixed to the sample chamber 11.
  • the gas supply unit 17 has a gas injection unit (also referred to as a nozzle) inside the sample chamber 11 and is arranged so as to face the stage 12.
  • the gas supply unit 17 uses an etching gas for selectively promoting the etching of the sample S by the focused ion beam according to the material of the sample S, and a deposit of metal or an insulator on the surface of the sample S.
  • a deposition gas or the like for forming a position film can be supplied to the sample S.
  • etching is performed by supplying an etching gas such as xenon difluoride for the silicon (Si) -based sample S and water vapor (H 2 O) for the organic-based sample S to the sample S together with irradiation of the focused ion beam.
  • an etching gas such as xenon difluoride for the silicon (Si) -based sample S and water vapor (H 2 O) for the organic-based sample S
  • a deposition gas containing platinum, carbon, tungsten, or the like to the sample S together with irradiation with a focused ion beam
  • a solid component decomposed from the deposition gas is applied to the surface of the sample S. It can be deposited.
  • the deposition gas examples include a carbon-containing gas such as phenanthrene and naphthalene, a platinum-containing gas such as trimethyl / ethylcyclopentadienyl / platinum, and a tungsten-containing gas such as tungsten hexacarbonyl. ..
  • etching or deposition can also be performed by irradiating an electron beam.
  • the needle drive mechanism 19 is housed inside the sample chamber 11 with the needle 18 connected, and drives the needle 18 in response to a control signal output from the computer 21.
  • the needle drive mechanism 19 is provided integrally with the stage 12, for example, when the stage 12 is rotated about the tilt axis (that is, the X axis or the Y axis) by the tilt mechanism 13b, the needle drive mechanism 19 moves integrally with the stage 12.
  • the needle drive mechanism 19 has a movement mechanism that moves the needle 18 in parallel along each axis of the three-dimensional coordinate axis (not shown) and a rotation mechanism that rotates the needle 18 around the central axis of the needle 18 (not shown). And have. It should be noted that this three-dimensional coordinate axis is independent of the orthogonal three-axis coordinate system of the sample stage, and is an orthogonal three-axis coordinate system having a two-dimensional coordinate axis parallel to the surface of the stage 12, and the surface of the stage 12 is in an inclined state. When in a rotating state, this coordinate system tilts and rotates.
  • the computer 21 is arranged outside the sample chamber 11 and is connected to the display device 20 and an input device 22 such as a mouse and a keyboard that outputs a signal corresponding to the input operation of the operator.
  • the computer 21 integrally controls the operation of the charged particle beam device 10a by a signal output from the input device 22 or a signal generated by a preset automatic operation control process.
  • the computer 21 converts the detected amount of the secondary charged particles R detected by the detector 16 into a brightness signal associated with the irradiation position while scanning the irradiation position of the charged particle beam, and detects the secondary charged particles R.
  • Image data showing the shape of the irradiation target is generated by the two-dimensional position distribution of the amount.
  • the computer 21 detects the absorption current flowing through the needle 18 while scanning the irradiation position of the charged particle beam, and thereby obtains the shape of the needle 18 by the two-dimensional position distribution (absorption current image) of the absorption current. Generates the indicated absorption current image data.
  • the computer 21 causes the display device 20 to display a screen for executing operations such as enlargement, reduction, movement, and rotation of each image data together with each generated image data.
  • the computer 21 causes the display device 20 to display a screen for making various settings such as mode selection and machining settings in automatic sequence control.
  • the sample piece automatic extraction sequence is an operation of automatically moving the sample piece Q formed by processing the sample S by a charged particle beam (focused ion beam) to the sample piece holder P.
  • the sample piece automatic extraction sequence includes an initial setting step, a sample piece pick-up step, a sample piece mounting step, and a needle trimming step.
  • the initial setting process and the sample piece pick-up process will be mainly described. ⁇ Initial setting process>
  • FIG. 2 is a flow chart mainly showing an example of an initial setting process in a flowchart showing the operation of the charged particle beam device according to the first embodiment of the present invention.
  • the initial setting step includes steps S010 to S150.
  • the computer 21 selects a mode such as the presence / absence of an attitude control mode described later, observation conditions for template matching, and processing conditions (machining position, dimensions) according to the input of the operator. , Number, etc.) (step S010).
  • a mode such as the presence / absence of an attitude control mode described later, observation conditions for template matching, and processing conditions (machining position, dimensions) according to the input of the operator. , Number, etc.) (step S010).
  • FIG. 5 is a flow chart showing an example of a method of registering a sample piece reference image and setting an image matching region (S011a to S011f).
  • the sample S is processed by the charged particle beam device 10a (step S011a).
  • FIG. 6 is a plan view showing a sample piece Q formed on the sample S of the automatic sample piece preparation apparatus according to the first embodiment of the present invention.
  • Reference numeral F in FIG. 6 indicates a processing frame by the focused ion beam, that is, a scanning range of the focused ion beam.
  • the inside (white portion) of the scanning range F is a processing region H excavated by sputtering by focused ion beam irradiation.
  • the shaded area is a region not sputtered by focused ion beam irradiation, that is, a region not excavated.
  • the reference numeral Ref in FIG. 6 is a reference mark (reference point) indicating a position where the sample piece Q is formed.
  • the reference mark Ref has a shape in which, for example, a deposition film (for example, a square having a side of 10 ⁇ m), which will be described later, is provided with fine holes having a diameter of, for example, 1 ⁇ m by a focused ion beam.
  • the reference mark Ref can be recognized with good contrast in an image using a focused ion beam or an electron beam.
  • a deposition film is used to recognize the approximate position of the sample piece Q, and fine holes are used to perform precise alignment.
  • the reference mark Ref is not limited to the above-mentioned shape. It is also possible to use a processing mark processed into an arbitrary shape on the surface of the sample by the operator or a singular point originally possessed by the sample or the sample piece holder as the reference mark Ref.
  • the sample piece Q is sputter-processed so that the peripheral portions on the side portion side and the bottom portion side are scraped off and removed, leaving the support portion Qa connected to the sample S, and the support portion Qa is used. It is cantilevered and supported by sample S (FIG. 6).
  • the dimensions of the sample piece Q in the longitudinal direction are, for example, about 10 ⁇ m, 15 ⁇ m, and 20 ⁇ m, and the width (thickness) of the sample piece Q is, for example, about 500 nm, 1 ⁇ m, 2 ⁇ m, and 3 ⁇ m.
  • the sample piece Q is a minute sample piece.
  • step S011b the sample piece reference image is registered.
  • the computer 21 takes an image of the sample from an arbitrary direction using the charged particle beam device 10a with respect to the sample S that has been processed as shown in FIG. 6 (hereinafter, also referred to as peripheral processing), and the photographed image. Is registered as a sample piece reference image.
  • FIG. 7 is a diagram showing an example of a sample processing mark shape and a sample piece shape recognized from a reference image in the charged particle beam device according to the first embodiment of the present invention.
  • the computer 21 recognizes the processing mark shape F and the sample piece shape Fa of the peripheral processing performed in advance around the sample piece Q automatically or based on the information input from the input device 22. Then, the computer 21 sets the region recognizing the machined mark shape F and the sample piece shape Fa as the matching region (FIG. 7). Alternatively, the computer 21 may set the matching area based on the information of an arbitrary position, size, and number input from the input device 22. If the matching area based on the information of an arbitrary position, size, and number is not specified, the computer 21 may set the entire area of the reference image as the matching area.
  • the computer 21 When the computer 21 recognizes the processing mark shape F of the peripheral processing performed in advance around the sample piece Q, the computer 21 performs a masking process of masking the image of the region outside the frame line of the processing mark shape F shown in FIG. It is selected whether to perform a storage process for storing the area outside the frame line of the machined mark shape F (step S011d).
  • the computer 21 stores and sets the selected process.
  • the process selected and set here may be temporarily stored in the internal memory inside the computer 21, or may be stored, for example, in a storage device outside the computer 21.
  • FIG. 8 is a diagram showing an example of an image in which a region outside the frame line of the machined mark shape is masked in the charged particle beam device according to the first embodiment of the present invention.
  • the computer 21 masks the outer region of the machined mark shape F with respect to the reference image, for example, as shown in FIG.
  • step S011d the computer 21 executes a process of storing the area outside the frame line of the machined mark shape F (step S011f).
  • the computer 21 After registering the sample piece reference image and setting the image matching area (step S011), the computer 21 creates a template for the columnar portion 34 (steps S035 to S038).
  • the computer 21 first performs a position registration process of the sample piece holder P installed on the holder fixing base 12a of the stage 12 by the operator (step S035).
  • the computer 21 creates a template for the columnar portion 34 at the beginning of the sampling process.
  • the computer 21 creates a template for each columnar portion 34.
  • the computer 21 acquires the stage coordinates of each columnar portion 34 and creates a template, and stores the stage coordinate acquisition and the template as a set in association with each other.
  • the computer 21 uses the stage coordinate acquisition and the template of the columnar portion 34 when determining the shape of the columnar portion 34 by template matching (superimposition of the template and the image) performed later.
  • the computer 21 stores, for example, the image itself, edge information extracted from the image, and the like in advance as a template for the columnar portion 34 used for template matching. In a later process, the computer 21 can recognize the exact position of the columnar portion 34 by performing template matching after moving the stage 12 and determining the shape of the columnar portion 34 based on the template matching score. It is desirable to use the same observation conditions such as contrast and magnification as for template creation as the observation conditions for template matching because accurate template matching can be performed.
  • the computer 21 performs the position registration process of the sample piece holder P prior to the movement of the sample piece Q, which will be described later, to confirm in advance that the sample table 33 having an appropriate shape actually exists. Can be done.
  • the computer 21 moves the stage 12 by the stage drive mechanism 13 and aligns the irradiation area with the position where the sample table 33 is attached in the sample piece holder P.
  • the computer 21 creates in advance from the design shape (CAD information) of the sample table 33 from each image data generated by irradiation of a charged particle beam (focused ion beam and electron beam) as a fine adjustment operation.
  • the positions of the plurality of columnar portions 34 constituting the sample table 33 are extracted using the template.
  • the computer 21 registers (stores) the position coordinates and the image of each of the extracted columnar portions 34 as the attachment position of the sample piece Q (step S036).
  • each columnar portion 34 is compared with the prepared columnar portion design drawing, CAD diagram, or the image of the standard product of the columnar portion 34, and each columnar portion 34 is deformed, chipped, or missing. Check for the presence of such things, and if it is defective, remember that it is a defective product along with the coordinate position of the columnar part and the image.
  • step S037 it is determined whether or not there is a columnar portion 34 to be registered in the sample piece holder P currently being executed in the registration process (step S037).
  • this determination result is "NO" that is, when the remaining number m of the columnar portion 34 to be registered is 1 or more, the process is returned to step S036 described above, and step S036 until the remaining number m of the columnar portion 34 is exhausted. And S037 are repeated.
  • the determination result is "YES" that is, if the remaining number m of the columnar portion 34 to be registered is zero, the process proceeds to step S038.
  • the computer 21 When a plurality of sample piece holders P are installed on the holder fixing base 12a, the computer 21 displays the position coordinates of each sample piece holder P and the image data of the corresponding sample piece holder P together with the code number for each sample piece holder P. Record. Further, the computer 21 stores (registers) the code number and the image data corresponding to the position coordinates of each columnar portion 34 of each sample piece holder P. The computer 21 may sequentially perform this position registration process for the number of sample pieces Q for which automatic sample sampling is to be performed.
  • the computer 21 determines whether or not there is a sample piece holder P to be registered (step S038).
  • this determination result is "NO" that is, when the remaining number n of the sample piece holder P to be registered is 1 or more, the process is returned to the above-mentioned step S035 until the remaining number n of the sample piece holder P is exhausted. Steps S035 to S038 are repeated.
  • the determination result is "YES" that is, if the remaining number n of the sample piece holder P to be registered is zero, the process proceeds to step S039.
  • step S035 and S036 if the sample piece holder P itself or the columnar portion 34 is deformed or damaged and the sample piece Q is not in a state where it can be attached, the above Along with the position coordinates, image data, and code number, it is also registered as "unusable” (notation indicating that the sample piece Q cannot be attached). As a result, the computer 21 skips the "unusable" sample piece holder P or columnar portion 34 when the sample piece Q described later is transferred, and uses the next normal sample piece holder P or columnar portion 34. It can be moved within the observation field.
  • the computer 21 recognizes the reference mark Ref formed in advance on the sample S by using the image data of the charged particle beam.
  • the computer 21 recognizes the position of the sample piece Q from the relative positional relationship between the known reference mark Ref and the sample piece Q by using the recognized reference mark Ref, and puts the position of the sample piece Q into the observation field of view. Move to the stage (step S039).
  • the computer 21 drives the stage 12 by the stage drive mechanism 13, and corresponds to the posture control mode so that the posture of the sample piece Q becomes a predetermined posture (for example, a posture suitable for taking out by the needle 18).
  • the stage 12 is rotated about the Z axis by an angle (step S040).
  • the computer 21 starts automatic processing of the sample.
  • the computer 21 controls each component of the charged particle beam device 10a to process the sample S, for example, to prepare the sample piece shown in FIG.
  • the computer 21 acquires, for example, an image of the sample S in which the sample piece Q is produced as a comparative image under the same conditions as the reference image shown in FIG. 7 (step S041).
  • the computer 21 recognizes the reference mark Ref using the image data of the charged particle beam, the relative positional relationship between the known reference mark Ref and the sample piece Q, and various image matching using the reference image and the comparative image. (Image matching) is performed (steps S043 and S044 described later).
  • step S042 the setting information of the process selected when the machining mark shape F of the peripheral machining performed in advance around the sample piece Q is recognized is confirmed.
  • This setting information is set in step S011d described above.
  • the computer 21 reads, for example, setting information regarding the processing selected when the processing mark shape F of the peripheral processing performed in advance around the sample piece Q is recognized from the internal memory or the external storage device, and confirms the setting information. I do.
  • step S043 is executed.
  • step S043 first, the comparative image acquired in step S041 is masked in the same area as the reference image. Then, the computer 21 performs image matching on the region where the masking is not performed for the reference image and the comparative image. Taking FIG. 8 as an example, image matching is performed on the area inside the machined mark shape F that is not painted in black.
  • step S043 image matching is performed with respect to the matching area based on the matching area set in step S011c.
  • step S044 is executed.
  • FIG. 9 is a conceptual diagram of image matching when it is selected to store the area outside the frame line of the processing mark shape.
  • the computer 21 uses a reference image and a comparative image for the region set in step S011c (here, for example, the region outside the frame line of the machined mark shape F). Perform matching.
  • FIG. 10 is a conceptual diagram illustrating image matching in the case of storing a designated area.
  • the computer 21 refers to the region Sa between the processing mark shape F surrounded by the thick black solid line shown in FIG. 10A and the outer periphery of the reference image also shown by the thick black solid line.
  • Image matching is performed between the image and the comparative image shown in FIG. 10 (b). That is, also in step S044, image matching is performed with respect to the matching region (here, the region outside the frame line of the machined mark shape F) based on the matching region set in step S011c.
  • FIG. 13 is a diagram illustrating another example of the image matching method.
  • the computer 21 masks or stores the image of the area inside the frame line of the specified masking area MAS. Select.
  • the computer 21 masks the masking region MAS in the reference image and the comparative image in step S043 (FIG. 13B), and performs image matching with respect to the masking region MAS.
  • the computer 21 performs the designated area (in this case, as shown in FIG. 9) in step S044.
  • the area inside the frame line of the sample piece shape Fa) is stored, and image matching of the reference image and the comparative image is performed.
  • the computer 21 recognizes the position of the sample piece Q by image matching according to step S043 or S044, and aligns the sample piece Q (step S050).
  • the computer 21 moves the needle (sample piece moving means) 18 to the initial setting position by the needle driving mechanism 19.
  • the needle drive mechanism 19 and the needle 18 may be combined as a sample piece moving means.
  • the initial setting position is, for example, a predetermined position in a preset visual field region, and is a predetermined position around the sample piece Q for which the alignment has been completed in the visual field region.
  • the computer 21 approaches the nozzle 17a at the tip of the gas supply unit 17 to a predetermined position around the sample piece Q, for example, lowers it from the standby position vertically above the stage 12 (for example). Step S060).
  • the computer 21 moves the needle 18, the reference mark Ref formed on the sample S at the time of performing the automatic processing for forming the sample piece Q is used, and the computer 21 uses the reference mark Ref formed on the sample S to form a three-dimensional positional relationship between the needle 18 and the sample piece Q. Can be grasped with high accuracy and can be moved properly.
  • the computer 21 performs the following processing as a processing for bringing the needle 18 into contact with the sample piece Q.
  • the computer 21 switches to the absorption current image mode and recognizes the position of the needle 18 (step S070).
  • the computer 21 detects the absorption current flowing into the needle 18 by irradiating the needle 18 while scanning the charged particle beam, and generates absorption current image data by the charged particle beam irradiated from a plurality of different directions.
  • the absorbed current image has the advantage that only the needle 18 can be reliably recognized without misidentifying the needle 18 and the background.
  • the computer 21 acquires absorption current image data of the XY plane (plane perpendicular to the optical axis of the focused ion beam) by irradiating the focused ion beam, and XYZ plane (plane perpendicular to the optical axis of the electron beam) by irradiating the electron beam. ) Absorption current image data is acquired.
  • the computer 21 can detect the tip position of the needle 18 in the three-dimensional space by using each absorption current image data acquired from two different directions.
  • step S075 the shape of the needle 18 is determined. If it is determined that the needle 18 has a predetermined normal shape (OK), the process proceeds to the next step S080.
  • step S075 if it is determined that the tip shape of the needle 18 is not in a state where the sample piece Q can be attached due to deformation or breakage (NG), a display such as "needle defect" is displayed and the device is operated. A warning is notified to the person (step S079), and the process proceeds to the subsequent step S150.
  • the operation of automatic sample sampling is terminated without executing all the steps after step S080. That is, if the shape of the needle tip is defective, no further work can be performed, and the operator replaces the needle.
  • the determination of the needle shape in step S075 is determined as a defective product if, for example, the needle tip position deviates from a predetermined position by 100 ⁇ m or more in an observation field of view of 200 ⁇ m on each side.
  • the computer 21 drives the stage 12 by the stage drive mechanism 13 using the detected tip position of the needle 18, and sets the tip position of the needle 18 to the center position (field center) of the preset visual field region. It may be set.
  • FIG. 11 is a diagram showing a template of the tip of the needle obtained by the focused ion beam.
  • FIG. 12 is a diagram showing a template of the tip of the needle obtained by the electron beam.
  • the orientations of the needles 18 are different in FIGS. 11 and 12, due to the positional relationship between the focused ion beam irradiation optical system 14, the electron beam irradiation optical system 15, and the detector 16, and the orientation of the image to be displayed by secondary electrons. This is due to the difference, because the same needle 18 is viewed from different observation directions.
  • the computer 21 drives the stage 12 by the stage drive mechanism 13 and irradiates the needle 18 while scanning the charged particle beam (focused ion beam and electron beam) with the sample piece Q retracted out of the field of view. do.
  • the computer 21 acquires each image data showing the position distribution of the secondary charged particles (secondary electrons or secondary ions) R emitted from the needle 18 by the irradiation of the charged particle beam in a plurality of different planes.
  • the computer 21 acquires image data of the XY plane by irradiating the focused ion beam, and acquires image data of the XYZ plane (plane perpendicular to the optical axis of the electron beam) by irradiating the electron beam.
  • the computer 21 acquires the image data obtained by the focused ion beam and the electron beam and stores them as a template (reference image data).
  • the computer 21 uses the image data actually acquired immediately before moving the needle 18 by the rough adjustment and the fine adjustment described later as the reference image data, the pattern has high accuracy regardless of the difference in the shape of each needle 18. Matching can be done. Further, since the computer 21 retracts the stage 12 and acquires each image data without a complicated structure in the background, the template (reference image) that can clearly grasp the shape of the needle 18 excluding the influence of the background. Data) can be obtained.
  • the computer 21 uses image acquisition conditions such as suitable magnification, luminance, and contrast stored in advance in order to increase the recognition accuracy of the object. Further, the computer 21 may use the absorption current image data as a reference image instead of using the image data obtained by the secondary charged particles R as a reference image. In this case, the computer 21 may acquire each absorption current image data for two different planes without driving the stage 12 to retract the sample piece Q from the visual field region.
  • step S080 When the process of step S080 is completed, the initial setting process is completed and the process of the sample piece pick-up process is executed. ⁇ Sample piece pick-up process>
  • the sample piece pick-up process will be described.
  • the process of picking up the sample piece Q from the sample S is performed in the automatic sample piece preparation operation by the charged particle beam device 10a.
  • the pickup in the present embodiment means that the sample piece Q is separated and extracted from the sample S by processing with a focused ion beam or by a needle.
  • FIG. 14 is a flow chart showing an example of the sample piece pick-up process according to the first embodiment of the present invention. As shown in FIG. 14, the sample piece pick-up step includes steps S090 to S140.
  • step S090 the rough adjustment movement of the needle 18 is executed.
  • the computer 21 outputs a control signal to the needle drive mechanism 19 and moves the needle 18 toward the sample piece Q. Further, the computer 21 recognizes the reference mark Ref (FIG. 6) from each image data obtained by the focused ion beam and the electron beam with respect to the sample S.
  • the computer 21 sets the movement target position AP (FIG. 6) of the needle 18 by using the recognized reference mark Ref and each image data by the focused ion beam and the electron beam.
  • the movement target position AP is a predetermined position on or near the sample piece Q required for processing to connect the needle 18 and the sample piece Q with the deposition film.
  • the moving target position AP may be, for example, a position within the sample piece Q or a position slightly distant from the edge of the sample piece Q.
  • the moving target position AP is a position based on a predetermined positional relationship with respect to the processing frame F at the time of forming the sample piece Q.
  • the computer 21 stores information on the relative positional relationship between the processing frame F and the reference mark Ref when the sample piece Q is formed on the sample S by irradiation with the focused ion beam.
  • Various information such as information on the relative positional relationship between the processing frame F and the reference mark Ref and setting information may be stored in the ROM in the computer 21 or stored in a storage device different from the computer 21. May be done.
  • the computer 21 uses the recognized reference mark Ref and the reference mark Ref and the movement target position AP, or if necessary, information on the relative positional relationship between the processing frame F and the reference mark Ref, and the needle 18 is used.
  • the tip is moved toward the movement target position AP in the three-dimensional space.
  • the computer 21 may be moved in the X direction and the Y direction, and then in the Z direction, for example.
  • FIG. 15 is a diagram showing the vicinity of the tip of the needle in the image obtained by the focused ion beam of the charged particle beam device according to the first embodiment of the present invention.
  • FIG. 16 is a diagram showing the vicinity of the tip of the needle in the image obtained by the electron beam of the charged particle beam device according to the first embodiment of the present invention. 15 and 16 show how the needle 18 moves. The reason why the orientation of the needle 18 is different between FIGS. 15 and 16 is as described with reference to FIGS. 11 and 12.
  • FIG. 16 superimposes image data near the tip of the needle 18 before and after the movement in the same field of view in order to show the movement state of the needle 18. It is displayed as. Therefore, the needles 18a and 18b are the same needle 18.
  • step S100 the fine adjustment movement of the needle 18 is executed.
  • the computer 21 repeatedly executes pattern matching using reference image data to grasp the position of the tip of the needle 18, outputs a control signal to the needle drive mechanism 19, and moves the needle 18.
  • the computer 21 irradiates the needle 18 with a charged particle beam (each of a focused ion beam and an electron beam), and repeatedly acquires each image data by the charged particle beam.
  • the computer 21 acquires the tip position of the needle 18 by performing pattern matching using the reference image data with respect to the acquired image data.
  • the computer 21 moves the needle 18 in the three-dimensional space according to the acquired tip position and movement target position AP of the needle 18.
  • FIG. 17 is a diagram showing the tip of a needle and a sample piece in the image data obtained by the focused ion beam of the charged particle beam device according to the first embodiment of the present invention.
  • FIG. 18 is a diagram showing a tip of a needle and a sample piece in image data obtained by an electron beam of the charged particle beam device according to the first embodiment of the present invention. 17 and 18 show a state when the needle 18 is stopped.
  • the focused ion beam and the electron beam have different observation directions and different observation magnifications, but the observation target and the needle 18 are the same. be.
  • step S110 the computer 21 moves the needle 18 in a state where the charged particle beam is irradiated to the irradiation region including the movement target position AP.
  • the computer 21 determines that the absorbed current flowing through the needle 18 exceeds a predetermined current, or when the computer 21 determines that the coordinates of the tip of the needle have reached the predetermined moving target position AP, the needle driven mechanism 19 determines that the needle has reached a predetermined moving target position AP.
  • the drive of 18 is stopped.
  • the computer 21 arranges the tip position of the needle 18 at the movement target position AP.
  • FIG. 19 is a diagram showing a processing frame including a connection processing position of a needle and a sample piece in image data obtained by a focused ion beam of the charged particle beam device according to the first embodiment of the present invention.
  • FIG. 19 shows how the needle 18 is connected to the sample piece Q, and shows the deposition film forming region DM2 (FIG. 20 described later) including the connection processing position between the needle 18 and the sample piece Q.
  • the computer 21 uses the reference mark Ref of the sample S to specify a preset connection processing position.
  • the computer 21 sets the connection processing position to a position separated from the sample piece Q by a predetermined interval.
  • the computer 21 sets the upper limit of the predetermined interval to, for example, 1 ⁇ m, and preferably sets the predetermined interval to 100 nm or more and 200 nm or less.
  • the computer 21 supplies gas to the sample piece Q and the tip surface of the needle 18 by the gas supply unit 17 while irradiating the irradiation region including the processing frame R1 set at the connection processing position with the focused ion beam for a predetermined time. do.
  • the computer 21 connects the sample piece Q and the needle 18 with the deposition film DM2 (FIG. 20 described later).
  • step S120 the computer 21 does not bring the needle 18 into direct contact with the sample piece Q, arranges the needle 18 at a position slightly spaced apart, and connects the needle 18 and the sample piece Q with a deposition film. According to this method, there is an advantage that defects such as damage to the sample piece Q and the sample S due to the needle 18 coming into direct contact with the sample piece Q can be prevented.
  • the computer 21 is suitable for each approach mode (details will be described later) selected when the needle 18 is connected to the sample piece Q and later the sample piece Q connected to the needle 18 is transferred to the sample piece holder P.
  • Set the connection posture The computer 21 sets the relative connection posture between the needle 18 and the sample piece Q corresponding to each of a plurality of different approach modes described later.
  • the computer 21 may determine the connection state by the deposition film by detecting the change in the absorption current of the needle 18. When the absorption current of the needle 18 reaches a predetermined current value, the computer 21 determines that the sample piece Q and the needle 18 are connected by the deposition film, and determines that the deposition film is connected regardless of the passage of a predetermined time. The formation of the current may be stopped.
  • FIG. 20 is a diagram showing the cutting processing position of the support portion of the sample and the sample piece in the image data obtained by the focused ion beam of the charged particle beam device according to the first embodiment of the present invention.
  • FIG. 20 shows how the support portion Qa between the sample piece Q and the sample S is cut.
  • step S130 the computer 21 uses the reference mark Ref formed on the sample S to specify the preset cutting processing position T1 of the support portion Qa.
  • the computer 21 separates the sample piece Q from the sample S by irradiating the cutting processing position T1 with a focused ion beam for a predetermined time.
  • step S133 the computer 21 determines whether or not the sample piece Q is separated from the sample S by detecting the continuity between the sample S and the needle 18 (step S133).
  • step S133 the computer 21 conducts conduction between the sample S and the needle 18 after the cutting process is completed, that is, after the cutting of the support portion Qa between the sample piece Q and the sample S at the cutting process position T1 is completed.
  • NG the sample piece Q is not separated from the sample S
  • the computer 21 indicates on the display device 20 that the separation between the sample piece Q and the sample S has not been completed. Notify by a warning sound (step S136). Then, the execution of the subsequent processing is stopped, or needle cleaning is performed, and the next sampling is performed.
  • step S133 if the computer 21 does not detect the continuity between the sample S and the needle 18, it is determined that the sample piece Q is separated from the sample S (OK), and the process proceeds to step S140.
  • step S140 the computer 21 removes the needle 18 to which the sample piece Q is connected and retracts the needle 18.
  • FIG. 21 is a diagram showing a state in which a sample piece is extracted in the image data obtained by the electron beam of the charged particle beam device according to the first embodiment of the present invention.
  • FIG. 22 is a diagram showing a state in which the needle to which the sample piece is connected in the image data obtained by the electron beam of the charged particle beam device according to the first embodiment of the present invention is retracted.
  • the computer 21 raises the needle 18 vertically upward (positive direction in the Z direction) by a predetermined distance by the needle driving mechanism 19.
  • the degree (height) of raising the needle 18 differs between the removal of the needle 18 and the retracting of the needle 18. Specifically, when the needle 18 is removed, the needle 18 rises to a position where the sample piece Q connected to the needle 18 is higher in the Z direction than the sample S. On the other hand, when the needle 18 is retracted, the needle 18 to which the sample piece Q is connected rises to about step S060.
  • the computer 21 operates the needle drive mechanism 19, and the sample connected to the needle 18 and the needle 18 so that the sample piece Q taken out from the sample S is perpendicular or parallel to the end face of the columnar portion 34 on the surface of the sample S. Rotate one piece Q. At that time, the computer 21 corrects the rotation so that the sample piece Q does not deviate from the actual field of view by performing the eccentricity correction.
  • the computer 21 can secure the posture of the sample piece Q suitable for the finishing process to be executed later, and can reduce the influence of the curtain effect generated at the time of the thinning finishing process of the sample piece Q.
  • the curtain effect means that a processed fringe pattern is formed by focused ion beam irradiation from a single direction due to the difference in density in the sample, and when the completed sample piece is observed with an electron microscope, it gives an incorrect interpretation. A phenomenon that can occur.
  • FIGS. 23 to 24 are diagrams illustrating a state near the tip of the needle when the needle is not rotated.
  • 25 to 28 are views illustrating a state near the tip of the needle when the needle is rotated.
  • FIG. 23 shows the state of the needle 18 to which the sample piece Q in the image data obtained by the focused ion beam is connected in the approach mode at the rotation angle of the needle of 0 °.
  • FIG. 24 shows the state of the needle 18 to which the sample piece Q in the image data obtained by the electron beam is connected in the approach mode at the rotation angle of the needle of 0 °.
  • the computer 21 can set a posture state suitable for transferring the sample piece Q to the sample piece holder P without rotating the needle 18.
  • FIG. 25 shows a state in which the needle 18 to which the sample piece Q in the image data obtained by the focused ion beam is connected is rotated by 90 ° in the approach mode at the rotation angle of the needle 18 at 90 °.
  • FIG. 26 shows a state in which the needle 18 to which the sample piece Q in the image data obtained by the electron beam is connected is rotated by 90 ° in the approach mode at the rotation angle of the needle 18 at 90 °.
  • the computer 21 may set a posture state suitable for transferring the sample piece Q to the sample piece holder P with the needle 18 rotated by 90 °. can.
  • FIG. 27 shows a state in which the needle 18 to which the sample piece Q in the image data obtained by the focused ion beam is connected is rotated by about 90 ° in the approach mode at the rotation angle of the needle 18 at 180 °.
  • FIG. 28 shows a state in which the needle 18 to which the sample piece Q in the image data obtained by the electron beam is connected is rotated by about 90 ° in the approach mode at the rotation angle of the needle 18 of 180 °.
  • the needle rotates 90 ° and the mesh (not shown) tilts 90 °, so that the sample rotates 180 °.
  • the computer 21 sets a posture state suitable for transferring the sample piece Q to the sample piece holder P with the needle 18 rotated by about 90 °. Can be done.
  • the relative connection posture between the needle 18 and the sample piece Q is set to a connection posture suitable for each approach mode when the needle 18 is connected to the sample piece Q in the sample piece pick-up process described above.
  • the approach of the needle 18 to the sample piece Q by the rotation angles of 0 °, 90 °, and 180 ° is to move and rotate the stage 12 by the stage drive mechanism 13 to move the needle 18 to the movement target position AP from an appropriate direction. Bring them closer. At that time, the positional relationship between the needle 18 and the sample piece Q when the needle 18 reapproaches the movement target position AP can be changed by the rotation angle of the stage 12.
  • the computer 21 irradiates the sample with a charged particle beam in advance to obtain a reference image and the sample S to be extracted from the sample piece Q. Select a matching region for image matching with the comparative image obtained by irradiating the charged particle beam. According to this configuration, the needle 18 can be reliably arranged in the vicinity of the sample piece Q, so that the automatic extraction of the sample piece Q can be performed accurately and stably.
  • the computer 12 when the computer 12 recognizes the processing mark shape F of the peripheral processing performed in advance around the sample piece Q, the computer 12 displays an image of a region outside the frame line of the processing mark shape F.
  • Masking Select whether to perform masking processing or to store the area outside the frame line of the machined mark shape.
  • the computer 21 performs image matching of the reference image and the comparative image in a region other than the region outside the frame line of the machined mark shape F to which the masking process has been performed. According to this configuration, the alignment between the needle 18 and the sample piece Q can be performed more accurately, so that the automatic extraction of the sample piece Q can be performed accurately and stably.
  • the computer 21 when the computer 21 recognizes the processing mark shape F of the peripheral processing performed in advance around the sample piece Q, the computer 21 displays an image of a region outside the frame line of the processing mark shape F.
  • Masking Select whether to perform masking processing or to store the area outside the frame line of the machined mark shape. Then, when storage is selected, the computer 21 stores the image in the region outside the frame line of the stored processing mark shape F, and in the region outside the frame line of the stored processing mark shape F. Image matching of the reference image and the comparative image is performed. According to this configuration, the alignment between the needle 18 and the sample piece Q can be performed more accurately, so that the automatic extraction of the sample piece Q can be performed accurately and stably. Further, the masking process can be omitted, and the load on the computer 21 is reduced.
  • the computer 21 creates a template of the needle 18 based on an image acquired by irradiating the needle 18 before connecting with the sample piece Q with a charged particle beam. Then, the computer 21 uses the charged particle beam irradiation optical system and the charged particle beam irradiation optical system so as to irradiate the deposition film attached to the needle 18 with the charged particle beam based on the peripheral processing obtained by the template matching using the template or the sample piece shape F. Control the needle. According to this configuration, since the posture of the sample piece Q connected to the needle 18 can be recognized, the sample piece Q can be reliably conveyed to the sample piece holder P.
  • the display device 20 for displaying the peripheral processing or the sample piece shape F is provided. According to this configuration, it is possible to notify the operator of the operating state, warning, etc. of the charged particle beam device 10a.
  • the sample piece moving means includes a needle 18 or tweezers connected to the sample piece Q. According to this configuration, the configuration of the sample piece moving means can be freely changed according to the shape of the sample S and the sample piece Q, and the versatility can be improved.
  • the computer 21 identifies the position or the processed portion of the needle 18 by image matching. According to this configuration, the alignment between the needle 18 and the sample piece Q can be performed more accurately, so that the automatic extraction of the sample piece Q can be performed accurately and stably. (Embodiment 2)
  • FIG. 29 is a diagram showing a reference image according to the second embodiment of the present invention.
  • the computer 21 masks the reference image and the comparative image in the region inside the frame line of the sample piece shape Fa (FIG. 5). Step S011e).
  • the computer 21 performs image matching on the reference image and the comparative image with respect to the area other than the masked area (step S043 in FIG. 2). That is, in this modification, image matching is performed on the region outside the frame line of the sample piece shape Fa based on the matching region set in step S011c of FIG.
  • step S011d when the storage process for storing the area inside the frame line of the sample piece shape Fa is selected in step S011d, the process for storing the area inside the frame line of the sample piece shape Fa in step S011f of FIG. Is executed. Then, the computer 21 performs image matching using the reference image and the comparison image for the designated region (here, the region inside the frame line of the sample piece shape Fa) as shown in FIG. (Step S0044 in FIG. 2). ⁇ Main effects of this embodiment>
  • the computer 12 when the computer 12 recognizes the sample piece shape Fa around the sample piece Q, the computer 12 performs a masking process for masking the image of the region inside the frame line of the sample piece shape Fa, or the sample. Select whether to store the area inside the border of the one-sided shape.
  • the computer 12 performs the masking process on the reference image and the comparative image in the region inside the frame line of the sample piece shape Fa on which the masking process is performed.
  • the computer 21 when storage is selected, the computer 21 performs masking processing on the reference image and the comparative image in the region inside the frame line of the stored sample piece shape Fa. According to this configuration, the needle 18 and the sample piece Q Since the alignment between the sample piece Q and the sample piece Q can be performed more accurately, the automatic extraction of the sample piece Q can be performed accurately and stably. Further, the masking process can be omitted, and the load on the computer 21 is reduced. (Embodiment 3)
  • FIG. 30 is a conceptual diagram showing an example of image matching using a trained model.
  • the computer 21 generates a trained model MODEL in which information on a plurality of sample structures of a sample is trained as a reference image from a plurality of images.
  • the computer 21 performs image recognition using the trained model MODEL on the input comparative image.
  • the computer 21 masks the comparative image in a region that cannot be discriminated by image recognition.
  • the computer 21 performs image matching using the reference image and the masked comparative image.
  • FIG. 31 is a diagram illustrating another example of image matching using the trained model.
  • the computer 21 designates the entire area of the reference image or a plurality of regions of arbitrary positions and sizes of the reference image for the plurality of images acquired by the secondary electron images shown in FIG. 31 (a), and the designated regions are designated. Memorize and learn images as reference images.
  • the computer 21 acquires the comparative image shown in FIG. 31 (b) from the secondary electron image obtained by irradiating the sample with the charged particle beam.
  • the computer 21 compares the acquired comparative image with the stored reference image.
  • the computer 21 masks the reference image in a region where the pattern is different from that of the comparative image (FIG. 31 (c)).
  • the computer 21 performs a matching process using the masked reference image and the comparison image.
  • the computer 21 controls the needle driving mechanism 19 by using the matching result and the tip coordinates of the needle 18, and brings the needle 18 closer to the sample S.
  • FIG. 32 is a conceptual diagram illustrating another example of image matching using a trained model.
  • the computer 21 generates a trained model MODEL in which information on a plurality of sample structures of a sample is trained in advance as a reference image using a plurality of images.
  • the computer 21 uses the trained model MODEL to perform image recognition processing on the input comparative image. Then, the computer 21 performs image matching only on the region of the comparative image that can be determined by the image recognition process.
  • the image recognition process is also executed when the trained model MODEL is created.
  • the image recognition process is executed using, for example, a well-known algorithm that performs image segmentation, image detection, and the like.
  • the computer 21 extracts information on the sample structure from the image recognition result for the input image, machine-learns the composition of the sample, and generates a trained model MODEL (reference image). Further, the computer 21 also performs image recognition processing on the comparative image in the same manner as when the trained model MODEL is created. It should be noted that different algorithms may be used when the trained model MODEL is generated and when the comparative image is generated.
  • FIG. 33 is a diagram illustrating a specific example of FIG. 32.
  • the computer 21 designates a plurality of regions of the entire reference image or an arbitrary position and size of the reference image in the plurality of reference images acquired by the secondary electron image, and stores and learns the image of the designated region ().
  • the computer 21 acquires a comparative image from the secondary electron image obtained by irradiating the sample with the charged particle beam.
  • the computer 21 compares the acquired comparative image with the stored image (image in a designated area).
  • the computer 21 performs the image matching process only in the region AREA of the similar pattern in the reference image and the comparative image (FIG. 33 (FIG. 33). b)).
  • the computer 21 controls the needle driving mechanism by using the matching result and the tip coordinates of the needle to bring the needle closer to the sample.
  • the trained model may be created by the computer 21 or may be created by an external device. ⁇ Main effects of this embodiment>
  • the computer 21 generates a trained model MODEL in which information on a plurality of sample structures of a sample is trained as a reference image from a plurality of images. Then, the computer 21 performs an image recognition process on the comparative image using the trained model MODEL, and performs a masking process on the comparative image in a region that cannot be discriminated by the image recognition process. Then, the computer 21 performs image matching using the reference image and the comparative image subjected to the masking process. According to this configuration, even if the reference image and the comparative image do not completely match, the processing mark shape F and the sample piece shape Fa can be recognized by image recognition, so that the sample can be improved in versatility. It is possible to accurately and stably perform automatic extraction of the piece Q.
  • the computer 21 performs image recognition processing on the comparative image by image segmentation. According to this configuration, an algorithm for performing image segmentation is easily available, and it is easy to implement image segmentation.
  • the computer determines that the comparative image has a pattern similar to any region of the reference image in the image recognition process for the comparative image using the trained model
  • the reference image is used.
  • masking is performed on the area where the pattern is different from the comparative image.
  • the computer 21 may execute software to realize each functional block, or some functional blocks may be configured by hardware such as LSI.
  • the needle 18 has been described as an example of a sharpened needle-shaped member, but the needle 18 may have a shape such as a flat ridge with a flat tip, or like tweezers.
  • the mechanism may be provided.
  • the computer 21 files the set values such as acceleration (voltage, etc.), current value, ion beam scan range, ion beam scan speed, ion beam scan time, and dose amount of the ion beam used for peripheral processing.
  • Data can be saved in a batch by associating with the name. In addition, it is possible to process under the set conditions by recalling the saved data.
  • the matching region by setting the matching region in advance, it is possible to automatically extract the sample including the acquisition of the reference image.
  • the machining depth is calculated at the same time as recognizing the machining position, and after peripheral machining, an SEM image is acquired by FOV that is judged to be appropriate, and the same image is used as a reference image for sample template matching. do.
  • the computer 21 automatically recognizes the peripheral processing marks and the sample piece shape in the reference image, masks the images outside the frame line of the peripheral processing marks and inside the frame line of the sample piece shape, and then refers to them. Matching with the comparative image is performed using the entire area of the image.
  • a charged particle beam device that automatically extracts sample pieces from a sample.
  • a sample piece moving means for holding and transporting the sample piece extracted from the sample
  • a holder fixing base for holding the sample piece holder to which the sample piece is transferred
  • the computer With a computer Equipped with The computer generates a trained model in which information on a plurality of sample structures of the sample is trained as the reference image from a plurality of images, performs image recognition processing on the comparative image using the trained model, and performs the image recognition process. Image matching is performed only on the area of the comparative image that can be determined by the image recognition process.
  • Charged particle beam device is provided.
  • the automatic sample piece preparation device 10 is an automatic sample piece preparation device that automatically prepares a sample piece from a sample, and is at least a plurality of charged particles irradiated with a charged particle beam. It has a beam irradiation optical system (beam irradiation optical system), a sample stage on which the sample is placed and moved, and a needle connected to the sample piece separated and extracted from the sample, and conveys the sample piece.
  • the sample piece transfer means, the holder fixing base for holding the sample piece holder to which the sample piece is transferred, and the gas supply unit for supplying the gas forming the deposition film by the charged particle beam are connected to the sample piece.
  • the needle By irradiating the needle separated from the sample piece with the charged particle beam based on the image of the needle obtained earlier by the charged particle beam, the needle is substantially the same as the needle before being connected to the sample piece. It includes at least the charged particle beam irradiation optical system and a computer for controlling the sample piece transfer means so as to shape the sample into a shape.
  • the automatic sample piece preparation device 10 is an automatic sample piece preparation device that automatically prepares a sample piece from a sample, and at least irradiates a focused ion beam to irradiate the focused ion beam.
  • a sample piece that has an optical system (beam irradiation optical system), a sample stage on which the sample is placed and moved, and a needle that connects to the sample piece that is separated and extracted from the sample, and conveys the sample piece.
  • the shape is substantially the same as the needle before being connected to the sample piece. It comprises at least the focused ion beam irradiation optical system and a computer for controlling the sample piece transfer means so as to shape the sample.
  • the charged particle beam includes at least a focused ion beam and an electron beam.
  • 10 Automatic sample piece preparation device, 10a ... Charged particle beam device, 11 ... Sample chamber, 12 ... Stage (sample stage), 13 ... Stage drive mechanism, 14 ... Focused ion beam irradiation optical system (charged particle beam irradiation optical system) , 15 ... electron beam irradiation optical system (charged particle beam irradiation optical system), 16 ... detector, 17 ... gas supply unit, 18 ... needle, 19 ... needle drive mechanism, 20 ... display device, 21 ... computer, 22 ... input Device, 33 ... sample table, 34 ... columnar part, P ... sample piece holder, Q ... sample piece, R ... secondary charged particle, S ... sample.

Abstract

荷電粒子ビーム装置は、試料を載置して移動する試料ステージと、荷電粒子ビームを照射する荷電粒子ビーム照射光学系と、試料から摘出する試料片を保持して搬送する試料片移動手段と、試料片が移設される試料片ホルダを保持するホルダ固定台と、コンピュータと、を備えている。コンピュータは、試料片移動手段を試料片に接近させる際、予め荷電粒子ビームを試料に照射して得られた参照像と、試料片の摘出対象である試料に荷電粒子ビームを照射して得られた比較像との画像マッチングを行うマッチング領域を選択する。

Description

荷電粒子ビーム装置
 本発明は、試料摘出機能を有する荷電粒子ビーム装置に関する。
 荷電粒子ビーム装置を用いた加工法の一つである集束イオンビーム(Focused Ion Beam:FIB)法は、集束させたイオンビームを試料に照射することによるターゲット構成原子のスパッタリング現象を利用した微細加工法である。近年は、FIB装置と走査電子顕微鏡(Scanning Electro Microscope:SEM)とを組み合わせたFIB-SEM複合装置が製品化されている。FIB-SEM複合装置は、イオンビームと電子線の照射軸とが同一点で交差するように設計されており、試料の移動を伴わずにFIB加工断面をSEM観察することが可能である。
 半導体分野におけるFIB-SEM複合装置の用途として、例えば、デバイス開発や不良解析における構造観察、寸法計測、製品の再現性や信頼性の調査・確認等が挙げられる。この場合、半導体ウエハや半導体デバイス内の複数個所における加工や観察が必須となるため、装置には作業時間の短縮、作業者の省力化およびスキルレス化が求められる。
 例えば特許文献1には、完全自動もしくはそれに準ずる性能で試料内の目的箇所を摘出し、加工を行うための試料片ホルダに固定する旨の技術が開示されている。試料の自動摘出には、目的箇所を正確に認識し、適切なサイズに試料を加工・摘出したのち、所望の位置に試料が固定する処理等が行われる。
 特許文献2には、試料片と試料片を摘出するニードル、摘出された試料片と試料片を取り付ける試料片ホルダとの接触/分離の検出を、電気的な導通を測定することで実行し、導通が得られない場合、加工時間でプロセスを管理することで試料片の摘出動作を進行させる旨の技術が開示されている。
特開2016-050854号公報 特開2018-116865号公報
 試料片の自動摘出に係る一連の作業は、試料および装置双方にダメージを与えることなく高精度かつ安定的に行う必要がある。これまで、SIM(Scanning Ion Microscope)像、SEM像、およびそれらの吸収電流像、各種画像処理技術等を用いて、試料片の自動摘出が行われてきた。しかしながら、対象とする試料が半導体ウエハや半導体デバイスである場合、デバイス構造の微細化や多様化に伴い、試料片の自動摘出の精度や安定性が、試料の構造に依存するケースが増加している。
 本発明は、上記を鑑みてなされたものであり、試料片の自動摘出を正確かつ安定的に実行することが可能な荷電粒子ビーム装置を提供することを目的する。
 本願において開示される発明のうち、代表的な概要は(概要=簡単に説明)、以下のとおりである。
 本開示の代表的な実施の形態による荷電粒子ビーム装置は、試料から試料片を自動的に摘出する。荷電粒子ビーム装置は、試料を載置して移動する試料ステージと、荷電粒子ビームを照射する荷電粒子ビーム照射光学系と、試料から摘出する試料片を保持して搬送する試料片移動手段と、試料片が移設される試料片ホルダを保持するホルダ固定台と、コンピュータと、を備えている。コンピュータは、試料片移動手段を試料片に接近させる際、予め荷電粒子ビームを試料に照射して得られた参照像と、試料片の摘出対象である試料に荷電粒子ビームを照射して得られた比較像との画像マッチングを行うマッチング領域を選択する。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 すなわち、本開示の代表的な実施の形態によれば、試料片の自動摘出を正確かつ安定的に実行することが可能となる。
本発明の実施の形態1に係る荷電粒子ビーム装置を備える自動試料片作製装置の一例を示す構成図である。 本発明の実施の形態1に係る荷電粒子ビーム装置の動作を示すフローチャートのうち、主に初期設定工程の一例を示すフロー図である。 試料片ホルダの平面図である。 試料片ホルダの側面図である。 参照像の登録と画像マッチング領域の設定方法の一例を示すフロー図である。 本発明の実施の形態1に係る自動試料片作製装置の試料に形成された試料片を示す平面図である。 本発明の実施の形態1に係る荷電粒子ビーム装置における、参照像から認識された試料の加工痕形状および試料片形状の一例を示す図である。 本発明の実施の形態1に係る荷電粒子ビーム装置における、加工痕形状の枠線より外側の領域がマスキングされた像の一例を示す図である。 加工痕形状の枠線の外側の領域を記憶することが選択された場合における画像マッチングの概念図である。 指定された領域を記憶する場合における画像マッチングを説明する概念図である。 集束イオンビームにより得られるニードルの先端のテンプレートを示す図である。 電子ビームにより得られるニードルの先端のテンプレートを示す図である。 画像マッチング方法の他の例を説明する図である。 本発明の実施の形態1に係る試料片ピックアップ工程の一例を示すフロー図である。 本発明の実施の形態1に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像におけるニードルの先端付近を示す図である。 本発明の実施の形態1に係る荷電粒子ビーム装置の電子ビームにより得られる画像におけるニードルの先端付近を示す図である。 本発明の実施の形態1に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像データにおけるニードルの先端および試料片を示す図である。 本発明の実施の形態1に係る荷電粒子ビーム装置の電子ビームにより得られる画像データにおけるニードルの先端および試料片を示す図である。 本発明の実施の形態1に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像データにおけるニードルおよび試料片の接続加工位置を含む加工枠を示す図である。 本発明の実施の形態1に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像データにおける試料および試料片の支持部の切断加工位置を示す図である。 本発明の実施の形態1に係る荷電粒子ビーム装置の電子ビームにより得られる画像データにおける試料片を摘出した状態を示す図である。 本発明の実施の形態1に係る荷電粒子ビーム装置の電子ビームにより得られる画像データにおける試料片が接続されたニードルを退避させた状態を示す図である。 ニードルを回転させていないときのニードルの先端付近の状態を説明する図である。 ニードルを回転させていないときのニードルの先端付近の状態を説明する図である。 ニードルを回転させたときのニードルの先端付近の状態を説明する図である。 ニードルを回転させたときのニードルの先端付近の状態を説明する図である。 ニードルを回転させたときのニードルの先端付近の状態を説明する図である。 ニードルを回転させたときのニードルの先端付近の状態を説明する図である。 本発明の実施の形態2に係る参照像を示す図である。 学習済みモデルを用いた画像マッチングの一例を示す概念図である。 学習済みモデルを用いた画像マッチングの他の例を説明する図である。 学習済みモデルを用いた画像マッチングのその他の例を説明する概念図である。 図32の具体例を説明する図である。
 [課題等について補足]
 既存の試料自動摘出では、試料片を摘出するための第1段階として、以下の処理を行うことによりニードルを試料片へ接近させる。
 試料の自動摘出を行う前に荷電粒子ビームをニードルに照射して得られた吸収電流像と、荷電粒子ビームを試料片に照射して得られた二次電子像により予め作成した各参照像と、試料片自動摘出シーケンスの実行中に荷電粒子ビームをニードルに照射して得られた吸収電流像と、荷電粒子ビームを試料片に照射して得られた二次電子像により作成した各比較像とをそれぞれ取得する。
 次に、ニードル先端の位置座標と、摘出する試料片内のニードル先端を接近させる箇所の位置座標とを画像認識により決定し、決定した位置座標へニードル先端を接近させる。その際、取得する試料片の参照像よりコントラスト値、ブライトネス値、スキャンスピード、画像サイズ等は予め設定することができる。
 しかしながら、像の一部をマスキングする機能を備えていないことから、取得した参照像および比較像の全域を使用して画像マッチングを行い、ニードルの接近位置を決定することとなる。このため、先端デバイスのような微細かつ周期的な複雑なパターンを有する試料から試料片を摘出する場合、マッチング認識不良を起こす確率が高くなることが明らかになっている。画像マッチングにおいて「認識不可」として認識不良が発生すると、試料片自動摘出シーケンスが終了し、次のシーケンスへと移行するため、試料自動摘出プロセス全体としての成功率が低下する。
 また、「ニードル接近位置ではない位置を、ニードル接近位置として認識してしまう」という認識不良を起こした場合、試料または試料片(試料片だけでなく試料にも接触する危険性がある)とニードルとが接触し、試料または試料片やニードルが破損・変形する危険性が高くなる。試料または試料片の破損・変形は、貴重な試料を取り扱う上で大きな問題である。そして、ニードルの破損・変形は、ニードルの交換作業が必要となる。いずれにおいても、パフォーマンスが大きく低下するだけでなく、本来の目的である試料片の自動摘出が実現できなくなる。
 そこで、以下の実施の形態では、試料に対し固有の繰り返し構造等を有する箇所にマスキングをかけることで、試料片自動抽出シーケンスにおけるニードルの位置合わせ精度を向上させている。また、以下の実施の形態では、人工知能(AI:Artificial Intelligence)を用いて画像内の学習済の繰り返しパターン領域を検出し、検出した繰り返しパターン領域にマスキングをかけることにより、試料片自動摘出シーケンスを正確かつ安定的に実行可能にさせている。
 以下、本開示の実施の形態を、図面を参照しつつ説明する。以下で説明する各実施の形態は、本開示を実現するための一例であり、本開示の技術範囲を限定するものではない。なお、実施例において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は、特に必要な場合を除き省略する。
 (実施の形態1)
 <荷電粒子ビーム装置の構成>
 図1は、本発明の実施の形態1に係る荷電粒子ビーム装置を備える自動試料片作製装置の一例を示す構成図である。図1に示すように、自動試料片作製装置10は、荷電粒子ビーム装置10a等を備えている。
 荷電粒子ビーム装置10aは、内部を真空状態に維持可能な試料室11、試料室11の内部において試料Sおよび試料片ホルダPを固定可能なステージ12、ステージ12を駆動するステージ駆動機構13等を備えている。
 荷電粒子ビーム装置10aは、試料室11の内部における所定の照射領域(走査範囲)内の照射対象にFIBを照射する集束イオンビーム照射光学系14を備えている。荷電粒子ビーム装置10aは、試料室11の内部における所定の照射領域内の照射対象に電子ビーム(EB)を照射する電子ビーム照射光学系15を備えている。荷電粒子ビーム装置10aは、集束イオンビームまたは電子ビームの照射によって照射対象から発生する二次荷電粒子(二次電子、二次イオン)Rを検出する検出器16を備えている。
 荷電粒子ビーム装置10aは、照射対象の表面にガスGを供給するガス供給部17を備えている。ガス供給部17は、具体的には外径200μm程度のノズル17a等で構成される。荷電粒子ビーム装置10aは、ステージ12に固定された試料Sから微小な試料片Qを取り出し(摘出し)、取り出した試料片Qを保持して試料片ホルダPに移設するニードル18と、ニードル18を駆動して試料片Qを搬送するニードル駆動機構19と、を備えている。以下では、ニードル18とニードル駆動機構19とを合わせて試料片移設手段と呼ぶ場合がある。荷電粒子ビーム装置10aは、検出器16によって検出された二次荷電粒子Rに基づく画像データなどを表示する表示装置20と、コンピュータ21と、入力デバイス22と、を備えている。
 なお、集束イオンビーム照射光学系14および電子ビーム照射光学系15の照射対象は、ステージ12に固定された試料S、試料片Q、および照射領域内に存在するニードル18や試料片ホルダP等を含む。
 荷電粒子ビーム装置10aは、照射対象の表面に集束イオンビームを走査しながら照射することによって、被照射部の画像化やスパッタリングによる各種の加工(例えば、掘削やトリミング加工等)、デポジション膜の形成等を実行可能である。荷電粒子ビーム装置10aは、試料Sから透過型電子顕微鏡による透過観察用の試料片Q(例えば、薄片試料、針状試料など)や電子ビーム利用の分析試料片を形成する加工を実行可能である。荷電粒子ビーム装置10aは、試料片ホルダPに移設された試料片Qを、透過型電子顕微鏡による透過観察に適した所望の厚さ(例えば、5~100nm等)の薄膜とする加工を実行可能である。荷電粒子ビーム装置10aは、試料片Qおよびニードル18等の照射対象の表面に、集束イオンビームまたは電子ビームを走査しながら照射することによって、照射対象の表面の観察を実行可能である。
 試料室11は、排気装置(図示は省略)により内部を所望の真空状態になるまで排気可能であるとともに、所望の真空状態を維持可能に構成されている。ステージ12は、試料Sを保持する。ステージ12は、試料片ホルダPを保持するホルダ固定台12aを備えている。ホルダ固定台12aは、複数の試料片ホルダPを搭載可能な構成でもよい。
 図3は、試料片ホルダの平面図である。図4は、試料片ホルダの側面図である。試料片ホルダPは、切欠き部31を有する略半円形板状の基部32と、切欠き部31に固定される試料台33とを備えている。基部32は、例えば金属によって直径3mmおよび厚さ50μmなどの円形板状から形成されている。試料台33は、例えばシリコンウェハから半導体製造プロセスによって形成され、導電性の接着剤によって切欠き部31に貼着されている。試料台33は櫛歯形状であり、離間配置されて突出する複数(例えば、5本、10本、15本、20本など)で、試料片Qが移設される柱状部(以下、ピラーとも言う)34を備えている。
 各柱状部34の幅を異ならせておくことにより、試料S上の試料片Qの摘出箇所と各柱状部34に移設した試料片Qと柱状部34の画像とを対応付けて、さらに対応する試料片ホルダPと対応付けてコンピュータ21に記憶させておくことにより、1個の試料Sから複数個の試料片Qを作製した場合であっても、各試料片Qを間違わずに認識でき、後続する透過電子顕微鏡等の分析を該当する試料片Qと試料S上の摘出箇所との対応付けも間違いなく行うことができる。各柱状部34は、例えば先端部の厚さが10μm以下、5μm以下などに形成され、先端部に取り付けられる試料片Qを保持する。
 なお、基部32は、上記のような直径3mmおよび厚さ50μmなどの円形板状に限定されることはなく、例えば長さ5mm、高さ2mm、厚さ50μmなどの矩形板状であってもよい。要するに、基部32の形状は、後続する透過電子顕微鏡に導入するステージ12に搭載できる形状であるとともに、試料台33に搭載した試料片Qの全てがステージ12の可動範囲内に位置するような形状であればよい。
 ステージ駆動機構13は、ステージ12に接続された状態で試料室11の内部に収容されており、コンピュータ21から出力される制御信号に応じてステージ12を所定軸に対して変位させる。ステージ駆動機構13は、少なくとも水平面に平行かつ互いに直交するX軸およびY軸と、X軸およびY軸に直交する鉛直方向のZ軸とに沿って平行にステージ12を移動させる移動機構13aを備えている。また、ステージ駆動機構13は、ステージ12をX軸またはY軸周りに傾斜させるチルト機構13bと、ステージ12をZ軸周りに回転させる回転機構13cと、を備えている。
 集束イオンビーム照射光学系14は、試料室11の内部においてビーム出射部(図示は省略)を、照射領域内のステージ12の鉛直方向上方の位置でステージ12に臨ませるとともに、光軸を鉛直方向と平行にして、試料室11に固定されている。これにより、集束イオンビーム照射光学系14は、ステージ12に固定された試料S、試料片Q、および照射領域内に存在するニードル18等の照射対象に鉛直方向上方から下方に向かい集束イオンビームを照射可能である。
 集束イオンビーム照射光学系14は、イオンを発生させるイオン源14aと、イオン源14aから引き出されたイオンを集束および偏向させるイオン光学系14bと、を備えている。イオン源14aおよびイオン光学系14bは、コンピュータ21から出力される制御信号に応じて制御され、集束イオンビームの照射位置および照射条件等がコンピュータ21により制御される。イオン源14aは、例えば、液体ガリウムなどを用いた液体金属イオン源、プラズマ型イオン源、ガス電界電離型イオン源等である。イオン光学系14bは、例えば、コンデンサレンズ等の第1静電レンズ、静電偏向器、対物レンズ等の第2静電レンズ、等を備えている。
 電子ビーム照射光学系15は、試料室11の内部においてビーム出射部(図示は省略)を、照射領域内のステージ12の鉛直方向に対して所定角度(例えば60°)傾斜した傾斜方向でステージ12に臨ませるとともに、光軸を傾斜方向と平行にして、試料室11に固定されている。これによって、ステージ12に固定された試料S、試料片Q、および照射領域内に存在するニードル18等の照射対象に傾斜方向の上方から下方に向かい電子ビームを照射可能である。
 電子ビーム照射光学系15は、電子を発生させる電子源15a、電子源15aから射出された電子を集束および偏向させる電子光学系15bを備えている。電子源15aおよび電子光学系15bは、コンピュータ21から出力される制御信号に応じて制御され、電子ビームの照射位置および照射条件等がコンピュータ21によって制御される。電子光学系15bは、例えば、電磁レンズ、偏向器等を備えている。
 なお、電子ビーム照射光学系15と集束イオンビーム照射光学系14との配置を入れ替え、電子ビーム照射光学系15を鉛直方向に、集束イオンビーム照射光学系14を鉛直方向に対して所定角度傾斜した傾斜方向に配置してもよい。また、電子ビーム照射光学系15および集束イオンビーム照射光学系14の双方が、共に鉛直方向に配置されていなくてもよい。
 検出器16は、試料Sおよびニードル18等の照射対象に集束イオンビームや電子ビームが照射されたときに、照射対象から放射される二次荷電粒子(二次電子および二次イオン)Rの強度(つまり、二次荷電粒子の量)を検出し、二次荷電粒子Rの検出量の情報を出力する。検出器16は、試料室11の内部において二次荷電粒子Rの量を検出可能な位置、例えば照射領域内の試料S等の照射対象に対して斜め上方の位置等に配置され、試料室11に固定されている。
 ガス供給部17は、試料室11に固定されている。ガス供給部17は、試料室11の内部においてガス噴射部(ノズルとも言う)を有し、ステージ12に臨ませて配置されている。ガス供給部17は、集束イオンビームによる試料Sのエッチングを、試料Sの材質に応じて選択的に促進するためのエッチング用ガスと、試料Sの表面に金属または絶縁体などの堆積物によるデポジション膜を形成するためのデポジション用ガス等を試料Sに供給可能である。
 例えば、シリコン(Si)系の試料Sに対するフッ化キセノン、有機系の試料Sに対する水蒸気(HO)、等のエッチング用ガスを、集束イオンビームの照射と共に試料Sに供給することによって、エッチングを選択的に促進させる。また、例えば、プラチナ、カーボン、またはタングステン等を含有したデポジション用ガスを、集束イオンビームの照射と共に試料Sに供給することによって、デポジション用ガスから分解された固体成分を試料Sの表面に堆積(デポジション)させることができる。デポジション用ガスの具体例として、例えば、フェナントレンやナフタレン等のカーボンを含むガス、トリメチル・エチルシクロペンタジエニル・プラチナ等のプラチナを含むガス、タングステンヘキサカルボニル等のタングステンを含むガス等が挙げられる。なお、供給ガスの種類によっては、電子ビームを照射することでも、エッチングやデポジションを行なうことができる。
 ニードル駆動機構19は、ニードル18が接続された状態で、試料室11の内部に収容され、コンピュータ21から出力される制御信号に応じてニードル18を駆動させる。ニードル駆動機構19は、ステージ12と一体に設けられており、例えばステージ12がチルト機構13bによってチルト軸(つまり、X軸またはY軸)周りに回転すると、ステージ12と一体に移動する。
 ニードル駆動機構19は、3次元座標軸の各軸に沿って平行にニードル18を移動させる移動機構(図示は省略)と、ニードル18の中心軸周りにニードル18を回転させる回転機構(図示は省略)と、を備えている。なお、この3次元座標軸は、試料ステージの直交3軸座標系とは独立しており、ステージ12の表面に平行な2次元座標軸とする直交3軸座標系で、ステージ12の表面が傾斜状態、回転状態にある場合、この座標系は傾斜し、回転する。
 コンピュータ21は、試料室11の外部に配置され、表示装置20と、操作者の入力操作に応じた信号を出力するマウスおよびキーボードなどの入力デバイス22と接続されている。コンピュータ21は、入力デバイス22から出力される信号または予め設定された自動運転制御処理によって生成される信号等により、荷電粒子ビーム装置10aの動作を統合的に制御する。
 コンピュータ21は、荷電粒子ビームの照射位置を走査しながら検出器16によって検出される二次荷電粒子Rの検出量を、照射位置に対応付けた輝度信号に変換し、二次荷電粒子Rの検出量の2次元位置分布によって照射対象の形状を示す画像データを生成する。吸収電流画像モードでは、コンピュータ21は、荷電粒子ビームの照射位置を走査しながらニードル18に流れる吸収電流を検出することによって、吸収電流の2次元位置分布(吸収電流画像)によってニードル18の形状を示す吸収電流画像データを生成する。
 コンピュータ21は、生成した各画像データとともに、各画像データの拡大、縮小、移動、および回転等の操作を実行するための画面を、表示装置20に表示させる。コンピュータ21は、自動的なシーケンス制御におけるモード選択および加工設定等の各種の設定を行なうための画面を、表示装置20に表示させる。
 次に、コンピュータ21が実行する試料片自動摘出シーケンスについて記述する。試料片自動摘出シーケンスとは、荷電粒子ビーム(集束イオンビーム)による試料Sの加工によって形成された試料片Qを自動的に試料片ホルダPに移動させる動作である。試料片自動摘出シーケンスは、初期設定工程、試料片ピックアップ工程、試料片マウント工程、ニードルトリミング工程を含む。なお、本実施の形態では、主に初期設定工程および試料片ピックアップ工程について説明する。
 <初期設定工程>
 図2は、本発明の実施の形態1に係る荷電粒子ビーム装置の動作を示すフローチャートのうち、主に初期設定工程の一例を示すフロー図である。図2に示すように、初期設定工程は、ステップS010~ステップS150を含む。
 まず、コンピュータ21は、試料片自動摘出シーケンスの開始時に、操作者の入力に応じて、後述する姿勢制御モードの有無等のモード選択、テンプレートマッチング用の観察条件、および加工条件(加工位置、寸法、個数等)の設定等を行う(ステップS010)。
 <<試料片参照像の登録および画像マッチング領域の設定>>
 次に、コンピュータ21は、試料片参照像の登録および画像マッチング領域の設定を行う。ここでは、主にステップS011における設定方法について詳しく説明する。図5は、試料片参照像の登録および画像マッチング領域の設定方法の一例を示すフロー図である(S011a~S011f)。
 まず、参照像のマッチング領域を設定するため、荷電粒子ビーム装置10aによる試料Sの加工が行われる(ステップS011a)。
 図6は、本発明の実施の形態1に係る自動試料片作製装置の試料Sに形成された試料片Qを示す平面図である。図6の符号Fは、集束イオンビームによる加工枠、すなわち、集束イオンビームの走査範囲を示している。図6では、走査範囲Fの内側(白色部)が、集束イオンビーム照射によってスパッタ加工されて掘削された加工領域Hとなっている。一方、図6において、斜線部は、集束イオンビーム照射によるスパッタ加工されなかった領域、すなわち掘削されなかった領域となっている。
 図6の符号Refは、原則的に試料片Qを形成する位置を示すレファレンスマーク(基準点)である。レファレンスマークRefは、例えば、後述するデポジション膜(例えば、一辺10μmの正方形)に、集束イオンビームにより例えば直径1μmの微細穴が設けられた形状となっている。レファレンスマークRefは、集束イオンビームや電子ビームによる画像では、コントラスト良く認識することができる。例えば、試料片Qの概略の位置を認識するためにはデポジション膜が利用され、精密な位置合わせを行うためには微細穴が利用される。
また、レファレンスマークRefは上記の形状に限定されるものではない。操作者が試料表面上において任意の形状に加工した加工痕や、試料または試料片ホルダが元来有する特異点をレファレンスマークRefとして使用することも可能である。
 試料Sにおいて、試料片Qは、試料Sに接続される支持部Qaを残して側部側および底部側の周辺部が削り込まれて除去されるようにスパッタ加工されており、支持部Qaにより試料Sに片持ち支持されている(図6)。試料片Qの長手方向の寸法は、例えば、10μm、15μm、20μm程度で、試料片Qの幅(厚み)は、例えば、500nm、1μm、2μm、3μm程度である。このように、試料片Qは、微小な試料片である。
 ステップS011bでは、試料片参照像の登録が行われる。コンピュータ21は、例えば図6に示すような加工(以下、周辺加工とも称する)を施した試料Sに対し、荷電粒子ビーム装置10aを用いて任意の方向から試料の画像を撮影し、撮影した画像を試料片参照像として登録する。
 次に、コンピュータ21は、マッチング領域を設定する(ステップS011c)。図7は、本発明の実施の形態1に係る荷電粒子ビーム装置における、参照像から認識された試料の加工痕形状および試料片形状の一例を示す図である。
 コンピュータ21は、試料片Qの周辺に予め実施された周辺加工の加工痕形状Fおよび試料片形状Faを自動または入力デバイス22から入力された情報に基づき認識する。そして、コンピュータ21は、加工痕形状Fおよび試料片形状Faを認識した領域をマッチング領域に設定する(図7)。あるいは、コンピュータ21は、入力デバイス22から入力された任意の位置・大きさ・数の情報に基づき、マッチング領域を設定してもよい。なお、任意の位置・大きさ・数の情報に基づくマッチング領域が指定されていない場合、コンピュータ21は、参照像の全領域をマッチング領域に設定してもよい。
 コンピュータ21は、試料片Qの周辺に予め実施された周辺加工の加工痕形状Fを認識した場合、図7に示す加工痕形状Fの枠線より外側の領域の画像をマスキングするマスキング処理を行うか、加工痕形状Fの枠線の外側の領域を記憶する記憶処理を行うかを選択する(ステップS011d)。コンピュータ21は、選択した処理を記憶し設定する。なお、ここで選択、設定された処理は、コンピュータ21内の内部メモリに一時的に保存されてもよいし、例えばコンピュータ21外部の記憶装置に保存されてもよい。
 ステップS011dにおいて、マスキング処理が選択された場合、参照像に対するマスキング処理が行われる(ステップS011e)。図8は、本発明の実施の形態1に係る荷電粒子ビーム装置における、加工痕形状の枠線より外側の領域がマスキングされた像の一例を示す図である。マスキング処理が選択された場合、コンピュータ21は、例えば図8に示すように参照像に対し、加工痕形状Fの外側の領域のマスキングを行う。
 一方、ステップS011dにおいて、記憶処理が選択された場合、コンピュータ21は、加工痕形状Fの枠線の外側の領域を記憶する処理を実行する(ステップS011f)。
 ここで、図2の説明に戻る。試料片参照像の登録および画像マッチング領域の設定(ステップS011)が終わると、コンピュータ21は、柱状部34のテンプレートを作成する(ステップS035~S038)。柱状部34のテンプレート作成において、コンピュータ21は、まず、操作者によってステージ12のホルダ固定台12aに設置される試料片ホルダPの位置登録処理を行なう(ステップS035)。コンピュータ21は、サンプリングプロセスの最初に柱状部34のテンプレートを作成する。ステップS035において、コンピュータ21は、柱状部34毎にテンプレートを作成する。
 コンピュータ21は、各柱状部34のステージ座標取得とテンプレート作成を行い、ステージ座標取得とテンプレートとを関連付けてセットで記憶する。コンピュータ21は、ステージ座標取得と柱状部34のテンプレートとを、後に行うテンプレートマッチング(テンプレートと画像の重ね合わせ)で柱状部34の形状を判定する際に用いる。
 コンピュータ21は、テンプレートマッチングに用いる柱状部34のテンプレートとして、例えば、画像そのもの、画像から抽出したエッジ情報などを予め記憶する。コンピュータ21は、後のプロセスで、ステージ12の移動後にテンプレートマッチングを行い、テンプレートマッチングのスコアによって柱状部34の形状を判定することにより、柱状部34の正確な位置を認識することができる。なお、テンプレートマッチング用の観察条件として、テンプレート作成用と同じコントラスト、倍率などの観察条件を用いると、正確なテンプレートマッチングを実施することができるので望ましい。
 コンピュータ21は、試料片ホルダPの位置登録処理を、後述する試料片Qの移動に先立って行なっておくことによって、実際に適正な形状の試料台33が存在することを予め確認しておくことができる。
 この位置登録処理において、先ず、コンピュータ21は、粗調整の動作として、ステージ駆動機構13によってステージ12を移動し、試料片ホルダPにおいて試料台33が取り付けられた位置に照射領域を位置合わせする。次に、コンピュータ21は、微調整の動作として、荷電粒子ビーム(集束イオンビームおよび電子ビームの各々)の照射により生成する各画像データから、事前に試料台33の設計形状(CAD情報)から作成したテンプレートを用いて試料台33を構成する複数の柱状部34の位置を抽出する。そして、コンピュータ21は、抽出した各柱状部34の位置座標と画像を、試料片Qの取り付け位置として登録処理(記憶)する(ステップS036)。この時、各柱状部34の画像について、予め準備しておいた柱状部の設計図、CAD図、または柱状部34の標準品の画像と比較して、各柱状部34の変形や欠け、欠落等の有無を確認し、もし、不良であればその柱状部の座標位置と画像と共に不良品であることも記憶する。
 次に、現在登録処理の実行中の試料片ホルダPに登録すべき柱状部34が無いか否かを判定する(ステップS037)。この判定結果が「NO」の場合、つまり登録すべき柱状部34の残数mが1以上の場合には、処理を上述したステップS036に戻し、柱状部34の残数mが無くなるまでステップS036とS037を繰り返す。一方、この判定結果が「YES」の場合、つまり登録すべき柱状部34の残数mがゼロの場合には、処理をステップS038に進める。
 ホルダ固定台12aに複数個の試料片ホルダPが設置されている場合、コンピュータ21は、各試料片ホルダPの位置座標、該当試料片ホルダPの画像データを各試料片ホルダPに対するコード番号と共に記録する。さらに、コンピュータ21は、各試料片ホルダPの各柱状部34の位置座標と対応するコード番号と画像データを記憶(登録処理)する。コンピュータ21は、この位置登録処理を、自動試料サンプリングを実施する試料片Qの数の分だけ、順次、実施してもよい。
 そして、コンピュータ21は、登録すべき試料片ホルダPが無いか否かを判定する(ステップS038)。この判定結果が「NO」の場合、つまり登録すべき試料片ホルダPの残数nが1以上の場合には、処理を上述したステップS035に戻し、試料片ホルダPの残数nが無くなるまでステップS035~S038を繰り返す。一方、この判定結果が「YES」の場合、つまり登録すべき試料片ホルダPの残数nがゼロの場合には、処理をステップS039に進める。
 これにより、1個の試料Sから数10個の試料片Qを自動作製する場合、ホルダ固定台12aに複数の試料片ホルダPが位置登録され、そのそれぞれの柱状部34の位置が画像登録されているため、数10個の試料片Qを取り付けるべき特定の試料片ホルダPと、さらに、特定の柱状部34を即座に荷電粒子ビームの視野内に呼び出すことができる。
 なお、この位置登録処理(ステップS035、S036)において、万一、試料片ホルダP自体、もしくは、柱状部34が変形や破損していて、試料片Qが取り付けられる状態に無い場合は、上記の位置座標、画像データ、コード番号と共に、対応させて『使用不可』(試料片Qが取り付けられないことを示す表記)などとも登録しておく。これによって、コンピュータ21は、後述する試料片Qの移設の際に、『使用不可』の試料片ホルダP、もしくは柱状部34はスキップされ、次の正常な試料片ホルダP、もしくは柱状部34を観察視野内に移動させることができる。
 次に、コンピュータ21は、荷電粒子ビームの画像データを用いて、予め試料Sに形成されたレファレンスマークRefを認識する。コンピュータ21は、認識したレファレンスマークRefを用いて、既知であるレファレンスマークRefと試料片Qとの相対位置関係から試料片Qの位置を認識して、試料片Qの位置を観察視野に入るようにステージ移動する(ステップS039)。
 次に、コンピュータ21は、ステージ駆動機構13によってステージ12を駆動し、試料片Qの姿勢が所定姿勢(例えば、ニードル18による取出しに適した姿勢など)になるように、姿勢制御モードに対応した角度分だけステージ12をZ軸周りに回転させる(ステップS040)。
 次に、コンピュータ21は、試料の自動加工を開始する。コンピュータ21は、荷電粒子ビーム装置10aの各構成要素を制御して試料Sを加工し、例えば図6に示す試料片を作製する。そして、コンピュータ21は、例えば図7に示す参照像と同様の条件により、試料片Qが作製された試料Sの画像を比較像として取得する(ステップS041)。
 次に、コンピュータ21は、荷電粒子ビームの画像データを用いてレファレンスマークRefを認識し、既知のレファレンスマークRefと試料片Qとの相対位置関係、および参照像と比較像を用いた各種画像マッチング(画像マッチング)を行う(後述のステップS043、S044)
 ステップS043、S044の前に、ステップS042では、試料片Qの周辺に予め実施された周辺加工の加工痕形状Fを認識した場合に選択される処理の設定情報の確認が行われる。この設定情報は、前述のステップS011dで設定されたものである。コンピュータ21は、例えば内部メモリや外部の記憶装置から、試料片Qの周辺に予め実施された周辺加工の加工痕形状Fを認識した場合に選択される処理に関する設定情報を読み出し、設定情報の確認を行う。
 設定情報が、試料片Qの周辺に予め実施された周辺加工の加工痕形状Fを認識した場合にマスキング処理を行うことを規定している場合、ステップS043の処理が実行される。
 ステップS043では、まず、ステップS041において取得した比較像に対し、参照像と同じ領域にマスキング処理が行われる。そして、コンピュータ21は、参照像および比較像について、マスキングを行っていない領域に対し画像マッチングを行う。図8を例にすると、加工痕形状Fの内側の黒塗りされていない領域に対し画像マッチングが行われる。
 すなわち、ステップS043では、ステップS011cで設定されたマッチング領域に基づき、マッチング領域に対する画像マッチングが行われる。
 一方、設定情報が、試料片Qの周辺に予め実施された周辺加工の加工痕形状Fを認識した場合に記憶処理を行うことを規定している場合、ステップS044の処理が実行される。
 図9は、加工痕形状の枠線の外側の領域を記憶することが選択された場合における画像マッチングの概念図である。ステップS044では、コンピュータ21は、図9に示すように、ステップS011cで設定された領域(ここでは、例えば加工痕形状Fの枠線の外側の領域)について、参照像および比較像を用いた画像マッチングを行う。
 ここで、指定された領域を記憶する場合における画像マッチングの例を説明する。図10は、指定された領域を記憶する場合における画像マッチングを説明する概念図である。コンピュータ21は、図10(a)に示された、太い黒実線で囲まれた加工痕形状Fと、同様に太い黒実線で示した参照像の外周との間の領域Saに対して、参照像と図10(b)に示す比較像との画像マッチングを行う。すなわち、ステップS044においても、ステップS011cで設定されたマッチング領域に基づき、マッチング領域(ここでは、加工痕形状Fの枠線より外側の領域)に対し画像マッチングが行われる。
 画像マッチングは、別の方法でも実行可能である。図13は、画像マッチング方法の他の例を説明する図である。コンピュータ21は、任意の位置・大きさ・数の記憶またはマスキング領域MASを指定した場合(図13(a))、指定したマスキング領域MASの枠線より内側の領域の画像をマスキングするか記憶するかを選択する。
 マスキング処理を選択した場合、コンピュータ21は、ステップS043において、参照像および比較像におけるマスキング領域MASにマスキングを行い(図13(b))、マスキング領域MASに対する画像マッチングを行う。
 一方、指定したマスキング領域MASの枠線より外側の領域の画像を記憶する記憶処理を選択した場合、コンピュータ21は、ステップS044において、例えば図9に示すように、指定した領域について(この場合、試料片形状Faの枠線より内側の領域)記憶し、参照像および比較像の画像マッチングを行う。
 次に、コンピュータ21は、ステップS043またはS044による画像マッチングにより試料片Qの位置を認識し、試料片Qの位置合わせを行なう(ステップS050)。
 次に、コンピュータ21は、ニードル駆動機構19によってニードル(試料片移動手段)18を初期設定位置に移動させる。なお、ニードル駆動機構19とニードル18とを合わせて試料片移動手段としてもよい。初期設定位置は、例えば、予め設定されている視野領域内の所定位置などであって、視野領域内で位置合わせが完了した試料片Qの周辺の所定位置などである。コンピュータ21は、ニードル18を初期設定位置に移動させた後に、ガス供給部17先端のノズル17aを試料片Qの周辺の所定位置に接近、例えばステージ12の鉛直方向上方の待機位置から下降させる(ステップS060)。
 コンピュータ21は、ニードル18を移動させる際に、試料片Qを形成する自動加工の実行時に試料Sに形成されたレファレンスマークRefを用いて、ニードル18と試料片Qとの3次元的な位置関係が精度良く把握することができ、適正に移動させることができる。
 次に、コンピュータ21は、ニードル18を試料片Qに接触させる処理として、以下の処理を行なう。まず、コンピュータ21は、吸収電流画像モードに切り替え、ニードル18の位置を認識する(ステップS070)。コンピュータ21は、荷電粒子ビームを走査しながらニードル18に照射することによりニードル18に流れ込む吸収電流を検出し、複数の異なる方向から照射した荷電粒子ビームによる吸収電流画像データを生成する。
 吸収電流画像には、ニードル18と背景を誤認することが無く、確実にニードル18のみを認識できるというメリットがある。コンピュータ21は、集束イオンビームの照射によってXY平面(集束イオンビームの光軸に垂直な平面)の吸収電流画像データを取得し、電子ビームの照射によってXYZ平面(電子ビームの光軸に垂直な平面)の吸収電流画像データを取得する。コンピュータ21は、2つの異なる方向から取得した各吸収電流画像データを用いて3次元空間でのニードル18の先端位置が検出できる。
 ここで、ニードル18の形状が判定される(ステップS075)。ニードル18が予め定めた正常な形状であると判定されれば(OK)、次のステップS080に進む。
 一方、ステップS075において、ニードル18の先端形状が変形や破損等により、試料片Qを取り付けられる状態に無いと判定されれば(NG)、「ニードル不良」等の表示が行われ、装置の操作者に警告が報知される(ステップS079)、後のステップS150に進む。ステップS080以降の全ステップを実行せず、自動試料サンプリングの動作を終了させる。すなわち、ニードル先端形状が不良の場合、これ以上の作業が実行できず、作業者によるニードル交換が行われる。
 ここで、ステップS075におけるニードル形状の判断は、例えば、1辺200μmの観察視野で、ニードル先端位置が所定の位置から100μm以上ずれている場合は不良品と判断される。
 なお、コンピュータ21は、検出したニードル18の先端位置を用いて、ステージ駆動機構13によってステージ12を駆動して、ニードル18の先端位置を予め設定されている視野領域の中心位置(視野中心)に設定してもよい。
 次に、コンピュータ21は、検出したニードル18の先端位置を用いて、ニードル18の先端形状に対するテンプレートマッチング用のテンプレートとしてレファレンス画像データを取得する(ステップS080)。図11は、集束イオンビームにより得られるニードルの先端のテンプレートを示す図である。図12は、電子ビームにより得られるニードルの先端のテンプレートを示す図である。ここで、図11および図12においてニードル18の向きが異なるのは、集束イオンビーム照射光学系14と電子ビーム照射光学系15と検出器16の位置関係と、二次電子による画像の表示向きの違いによるもので、同一のニードル18を、異なる観察方向から見ているためである。
 コンピュータ21は、ステージ駆動機構13によってステージ12を駆動し、試料片Qを視野領域外に退避させた状態で、荷電粒子ビーム(集束イオンビームおよび電子ビームの各々)をニードル18に走査しながら照射する。コンピュータ21は、荷電粒子ビームの照射によってニードル18から放出される二次荷電粒子(二次電子または二次イオン)Rの複数の異なる平面内での位置分布を示す各画像データを取得する。コンピュータ21は、集束イオンビームの照射によってXY平面の画像データを取得し、電子ビームの照射によってXYZ平面(電子ビームの光軸に垂直な平面)の画像データを取得する。コンピュータ21は、集束イオンビームおよび電子ビームによる画像データを取得し、テンプレート(レファレンス画像データ)として記憶する。
 コンピュータ21は、後述する粗調整および微調整によりニードル18を移動させる直前に実際に取得する画像データをレファレンス画像データとするので、個々のニードル18の形状の相違によらずに、精度の高いパターンマッチングを行うことができる。さらに、コンピュータ21は、ステージ12を退避させ、背景に複雑な構造物が無い状態で各画像データを取得するので、バックグラウンドの影響を排除したニードル18の形状が明確に把握できるテンプレート(レファレンス画像データ)を取得することができる。
 なお、コンピュータ21は、各画像データを取得する際に、対象物の認識精度を増大させるために予め記憶した好適な倍率、輝度、コントラスト等の画像取得条件を用いる。また、コンピュータ21は、二次荷電粒子Rによる画像データをレファレンス画像とする代わりに、吸収電流画像データをレファレンス画像としてもよい。この場合、コンピュータ21は、ステージ12を駆動して試料片Qを視野領域から退避させることなしに、2つの異なる平面に対して各吸収電流画像データを取得してもよい。
 ステップS080の処理が終了すると、初期設定工程が終了し、試料片ピックアップ工程の処理が実行される。
 <試料片ピックアップ工程>
 次に、試料片ピックアップ工程について説明する。試料片ピックアップ工程では、荷電粒子ビーム装置10aによる自動試料片作製動作のうち、試料Sから試料片Qをピックアップする処理が行われる。なお、本実施の形態におけるピックアップとは、集束イオンビームによる加工やニードルにより、試料片Qを試料Sから分離、摘出することをいう。
 図14は、本発明の実施の形態1に係る試料片ピックアップ工程の一例を示すフロー図である。図14に示すように、試料片ピックアップ工程は、ステップS090~S140を含む。
 まず、ステップS090では、ニードル18の粗調整移動が実行される。コンピュータ21は、ニードル駆動機構19へ制御信号を出力し、ニードル18を試料片Qへ向けて移動させる。また、コンピュータ21は、試料Sに対する集束イオンビームおよび電子ビームによる各画像データから、レファレンスマークRef(図6)を認識する。コンピュータ21は、認識したレファレンスマークRef、および集束イオンビームおよび電子ビームによる各画像データを用いて、ニードル18の移動目標位置AP(図6)を設定する。この移動目標位置APは、ニードル18と試料片Qとをデポジション膜によって接続する加工を行うために必要とされる試料片Q上、またはその近傍の所定位置である。具体的には、移動目標位置APは、例えば、試料片Q内の位置でもよいし、試料片Qのエッジからわずかに離れた位置でもよい。このように、移動目標位置APは、試料片Qの形成時における加工枠Fに対する所定の位置関係に基づいた位置となっている。
 コンピュータ21は、集束イオンビームの照射により試料Sに試料片Qを形成する際の加工枠FとレファレンスマークRefとの相対的な位置関係の情報を記憶している。なお、加工枠FとレファレンスマークRefとの相対的な位置関係の情報や設定情報等の各種情報は、コンピュータ21内のROMに記憶されてもよいし、コンピュータ21とは別の記憶装置に記憶されてもよい。
 コンピュータ21は、認識したレファレンスマークRefを用いて、レファレンスマークRefおよび移動目標位置AP、あるいは必要に応じて加工枠FとレファレンスマークRefとの相対的な位置関係の情報を用いて、ニードル18の先端を移動目標位置APに向かい3次元空間内で移動させる。ニードル18を3次元的に移動させる際、コンピュータ21は、例えば、X方向およびY方向に移動させた後、Z方向に移動させるようにしてもよい。
 図15は、本発明の実施の形態1に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像におけるニードルの先端付近を示す図である。図16は、本発明の実施の形態1に係る荷電粒子ビーム装置の電子ビームにより得られる画像におけるニードルの先端付近を示す図である。図15および図16には、ニードル18の移動の様子が示されている。なお、図15と図16との間でニードル18の向きが異なる理由は、図11および図12について説明した通りである。
 また、図16には2本のニードル18a、18bが示されているが、図16は、ニードル18の移動状況を示すために、同じ視野における移動前後のニードル18の先端付近の画像データを重ねて表示したものである。したがって、ニードル18a、18bは同一のニードル18である。
 次に、ステップS100では、ニードル18の微調整移動が実行される。コンピュータ21は、レファレンス画像データを用いたパターンマッチングを繰り返し実行してニードル18の先端位置を把握しながら、ニードル駆動機構19へ制御信号を出力し、ニードル18を移動させる。
 コンピュータ21は、ニードル18に荷電粒子ビーム(集束イオンビームおよび電子ビームの各々)を照射し、荷電粒子ビームによる各画像データを繰り返し取得する。コンピュータ21は、取得した画像データに対して、レファレンス画像データを用いたパターンマッチングを行なうことにより、ニードル18の先端位置を取得する。コンピュータ21は、取得したニードル18の先端位置および移動目標位置APに応じてニードル18を3次元空間内で移動させる。
 次に、コンピュータ21は、ニードル18の移動を停止させる処理を行う(ステップS110)。図17は、本発明の実施の形態1に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像データにおけるニードルの先端および試料片を示す図である。図18は、本発明の実施の形態1に係る荷電粒子ビーム装置の電子ビームにより得られる画像データにおけるニードルの先端および試料片を示す図である。図17および図18は、ニードル18を停止させるときの様子を示している。なお、図17および図18は、図11および図12と同様、集束イオンビームと電子ビームで観察方向が異なることに加え、観察倍率が異なっているが、観察対象とニードル18は同一のものである。
 ステップS110において、コンピュータ21は、移動目標位置APを含む照射領域に荷電粒子ビームを照射した状態でニードル18を移動させる。コンピュータ21は、ニードル18に流れる吸収電流が所定電流を超えたと判断した場合、あるいは、ニードルの先端座標がコンピュータ21により所定の移動目的位置APに到達したと判断した場合、ニードル駆動機構19によるニードル18の駆動を停止させる。これにより、コンピュータ21は、ニードル18の先端位置を、移動目標位置APに配置する。
 次に、コンピュータ21は、ニードル18を試料片Qに接続する処理を行なう(ステップS120)。図19は、本発明の実施の形態1に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像データにおけるニードルおよび試料片の接続加工位置を含む加工枠を示す図である。図19は、ニードル18を試料片Qに接続する様子を示しており、ニードル18と試料片Qとの接続加工位置を含むデポジション膜形成領域DM2(後述の図20)を示している。
 ステップS120において、コンピュータ21は、試料SのレファレンスマークRefを用いて、予め設定されている接続加工位置を指定する。コンピュータ21は、接続加工位置を、試料片Qから所定間隔だけ離れた位置とする。コンピュータ21は、この所定間隔の上限を例えば1μmとし、好ましくは、所定間隔を100nm以上かつ200nm以下とする。コンピュータ21は、所定時間に亘って、接続加工位置に設定した加工枠R1を含む照射領域に集束イオンビームを照射しつつ、試料片Qおよびニードル18の先端表面にガス供給部17によってガスを供給する。これにより、コンピュータ21は、試料片Qとニードル18とをデポジション膜DM2(後述の図20)により接続する。
 ステップS120では、コンピュータ21は、ニードル18を試料片Qに直接接触させず、僅かに間隔を開けた位置に配置し、デポジション膜によりニードル18と試料片Qとを接続する。この方法によれば、ニードル18が試料片Qへの直接接触することによる試料片Qや試料Sの損傷等の不具合を防止できるという利点がある。
 コンピュータ21は、ニードル18を試料片Qに接続する際には、後にニードル18に接続された試料片Qを試料片ホルダPに移設するときに選択される各アプローチモード(詳しくは後述)に適した接続姿勢を設定する。コンピュータ21は、後述する複数の異なるアプローチモードの各々に対応して、ニードル18と試料片Qとの相対的な接続姿勢を設定する。
 なお、コンピュータ21は、ニードル18の吸収電流の変化を検出することにより、デポジション膜による接続状態を判定してもよい。コンピュータ21は、ニードル18の吸収電流が予め定めた電流値に達したとき、試料片Qとニードル18とがデポジション膜により接続されたと判定し、所定時間の経過有無にかかわらず、デポジション膜の形成を停止してもよい。
 次に、コンピュータ21は、試料片Qと試料Sとの間の支持部Qaを切断する処理を行う(ステップS130)。図20は、本発明の実施の形態1に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像データにおける試料および試料片の支持部の切断加工位置を示す図である。図20は、試料片Qと試料Sとの間の支持部Qaを切断する様子を示している。
 ステップS130において、コンピュータ21は、試料Sに形成されているレファレンスマークRefを用いて、予め設定されている支持部Qaの切断加工位置T1を指定する。コンピュータ21は、所定時間に亘って、切断加工位置T1に集束イオンビームを照射することにより、試料片Qを試料Sから分離する。
 次に、コンピュータ21は、試料Sとニードル18との導通を検知することによって、試料片Qが試料Sから切り離されたか否かを判定する(ステップS133)。ステップS133において、コンピュータ21は、切断加工の終了後、すなわち切断加工位置T1での試料片Qと試料Sとの間の支持部Qaの切断が完了した後に、試料Sとニードル18との導通を検知した場合、試料片Qが試料Sから切り離されていない(NG)と判定する。コンピュータ21は、試料片Qが試料Sから切り離されていない(NG)と判定した場合には、この試料片Qと試料Sとの分離が完了していないことを、表示装置20への表示または警告音により報知する(ステップS136)。そして、これ以降の処理の実行を停止する、またはニードルクリーニングを行い、次のサンプリングを実施する。
 一方、ステップS133において、コンピュータ21は、試料Sとニードル18との導通を検知しない場合には、試料片Qが試料Sから切り離された(OK)と判定し、ステップS140に移行する。
 ステップS140では、コンピュータ21は、試料片Qが接続されたニードル18の摘出およびニードル18の退避の処理を行う。図21は、本発明の実施の形態1に係る荷電粒子ビーム装置の電子ビームにより得られる画像データにおける試料片を摘出した状態を示す図である。図22は、本発明の実施の形態1に係る荷電粒子ビーム装置の電子ビームにより得られる画像データにおける試料片が接続されたニードルを退避させた状態を示す図である。
 コンピュータ21は、ニードル駆動機構19によってニードル18を所定距離だけ鉛直方向上方(Z方向の正方向)に上昇させる。ニードル18の摘出とニードル18の退避とでは、ニードル18を上昇させる程度(高さ)が異なる。具体的には、ニードル18の摘出時、ニードル18は、ニードル18に接続された試料片Qが試料SよりもZ方向において高い位置まで上昇する。一方、ニードル18の退避時、ニードル18は、試料片Qが接続されたニードル18が、ステップS060程度まで上昇する。
 <その他の構成>
 これまでは、ニードル18の軸回転を用いない基本的な手順を説明したが、ニードル18は、ニードル駆動機構19により軸回転することができる。そこで、以下では、ニードル18の軸回転を利用したニードル18の駆動方法を説明する。
 コンピュータ21は、ニードル駆動機構19を動作させ、試料Sから取り出した試料片Qが試料Sの表面が柱状部34の端面に対し垂直または平行になるよう、ニードル18およびニードル18と接続された試料片Qを回転させる。その際、コンピュータ21は、偏心補正を行なうことにより、試料片Qが実視野から外れないように回転を補正する。
 これにより、コンピュータ21は、例えば、後に実行する仕上げ加工に適した試料片Qの姿勢を確保するとともに、試料片Qの薄片化仕上げ加工時に生じるカーテン効果の影響などを低減することができる。カーテン効果とは、試料内の密度差などにより単一方向からの集束イオンビーム照射によって加工縞模様が形成されて、完成後の試料片を電子顕微鏡で観察した場合、誤った解釈を与えてしまうこともあり得る現象をいう。
 図23~図24は、ニードルを回転させていないときのニードルの先端付近の状態を説明する図である。図25~図28は、ニードルを回転させたときのニードルの先端付近の状態を説明する図である。具体的には、図23は、ニードルの回転角度0°でのアプローチモードにおいて、集束イオンビームにより得られる画像データにおける試料片Qが接続されたニードル18の状態を示している。図24は、ニードルの回転角度0°でのアプローチモードにおいて、電子ビームにより得られる画像データにおける試料片Qが接続されたニードル18の状態を示している。
 コンピュータ21は、ニードル18の回転角度0°でのアプローチモードにおいては、ニードル18を回転させずに試料片Qを試料片ホルダPに移設するために適した姿勢状態を設定することができる。
 図25は、ニードル18の回転角度90°でのアプローチモードにおいて、集束イオンビームにより得られる画像データにおける試料片Qが接続されたニードル18を90°回転させた状態を示している。図26は、ニードル18の回転角度90°でのアプローチモードにおいて、電子ビームにより得られる画像データにおける試料片Qが接続されたニードル18を90°回転させた状態を示している。
 コンピュータ21は、ニードル18の回転角度90°でのアプローチモードにおいては、ニードル18を90°回転させた状態で試料片Qを試料片ホルダPに移設するために適した姿勢状態を設定することができる。
 図27は、ニードル18の回転角度180°でのアプローチモードにおいて、集束イオンビームにより得られる画像データにおける試料片Qが接続されたニードル18を約90°回転させた状態を示している。図28は、ニードル18の回転角度180°でのアプローチモードにおいて、電子ビームにより得られる画像データにおける試料片Qが接続されたニードル18を約90°回転させた状態を示している。なお、回転角度180°でのアプローチモードでは、ニードルが90°回転し、メッシュ(図示は省略)が90°傾斜することで、試料が180°回転する。
 コンピュータ21は、ニードル18の回転角度180°でのアプローチモードにおいては、ニードル18を約90°回転させた状態で試料片Qを試料片ホルダPに移設するために適した姿勢状態を設定することができる。
 なお、ニードル18と試料片Qとの相対的な接続姿勢は、前述した試料片ピックアップ工程においてニードル18を試料片Qに接続する際に、各アプローチモードに適した接続姿勢に設定される。
 回転角度0°、90°、180°による、ニードル18の試料片Qへのアプローチは、ステージ駆動機構13によりステージ12を移動および回転させることにより、適切な方向からニードル18を移動目標位置APに接近させる。その際、ニードル18が移動目標位置APに再接近した際のニードル18と試料片Qの位置関係はステージ12の回転角度により変化させることができる。
 <本実施の形態による主な効果>
 本実施の形態によれば、コンピュータ21は、ニードル18を試料片Qに接近させる際、予め荷電粒子ビームを試料に照射して得られた参照像と、試料片Qの摘出対象である試料Sに荷電粒子ビームを照射して得られた比較像との画像マッチングを行うマッチング領域を選択する。この構成によれば、ニードル18を確実に試料片Q付近に配置させることができるので、試料片Qの自動摘出を正確かつ安定的に実行することが可能となる。
 また、本実施の形態によれば、コンピュータ12は、試料片Qの周辺に予め実施された周辺加工の加工痕形状Fを認識した場合、加工痕形状Fの枠線より外側の領域の画像をマスキングするマスキング処理を行うか、加工痕形状の枠線の外側の領域を記憶するかを選択する。そして、コンピュータ21は、マスキング処理を選択した場合、マスキング処理を行った加工痕形状Fの枠線より外側の領域以外の領域において、参照像および比較像の画像マッチングを行う。この構成によれば、ニードル18と試料片Qとの間の位置合わせをより正確に行うことができるので、試料片Qの自動摘出を正確かつ安定的に実行することが可能となる。
 また、本実施の形態によれば、コンピュータ21は、試料片Qの周辺に予め実施された周辺加工の加工痕形状Fを認識した場合、加工痕形状Fの枠線より外側の領域の画像をマスキングするマスキング処理を行うか、加工痕形状の枠線の外側の領域を記憶するかを選択する。そして、コンピュータ21は、記憶を選択した場合、記憶した加工痕形状Fの枠線より外側の領域において、画像の記憶を行い、この記憶を行った加工痕形状Fの枠線より外側の領域において参照像および比較像の画像マッチングを行う。この構成によれば、ニードル18と試料片Qとの間の位置合わせをより正確に行うことができるので、試料片Qの自動摘出を正確かつ安定的に実行することが可能となる。また、マスキング処理を省略することができ、コンピュータ21の負荷が軽減される。
 また、本実施の形態によれば、コンピュータ21は、試料片Qと接続する前のニードル18に対する荷電粒子ビームの照射により取得した画像に基づきニードル18のテンプレートを作成する。そして、コンピュータ21は、テンプレートを用いたテンプレートマッチングによって得られる周辺加工または試料片形状Fに基づき、ニードル18に付着しているデポジション膜に荷電粒子ビームを照射するよう荷電粒子ビーム照射光学系およびニードルを制御する。この構成によれば、ニードル18と接続された試料片Qの姿勢を認識することができるので、試料片Qを確実に試料片ホルダPへ搬送することができる。
 また、本実施の形態によれば、周辺加工または試料片形状Fを表示する表示装置20を備えている。この構成によれば、荷電粒子ビーム装置10aの稼働状態や警告等を作業者へ知らせることができる。
 また、本実施の形態によれば、試料片移動手段は、試料片Qに接続するニードル18またはピンセットを備えている。この構成によれば、試料Sや試料片Qの形状等に応じて試料片移動手段の構成を自在に変更することができ、汎用性を向上させることができる。
 また、本実施の形態によれば、コンピュータ21は、画像マッチングにより、ニードル18の位置または加工箇所の特定を行う。この構成によれば、ニードル18と試料片Qとの間の位置合わせをより正確に行うことができるので、試料片Qの自動摘出を正確かつ安定的に実行することが可能となる。
 (実施の形態2)
 次に、実施の形態2について説明する。本実施の形態では、図7において、試料片Qの周辺に予め実施された試料片形状Faを認識した場合、コンピュータ21は、試料片形状Faの枠線より内側の領域の画像をマスキングするか記憶するかを選択しても構わない(図5のステップS011d)。
 図29は、本発明の実施の形態2に係る参照像を示す図である。ステップS011dにおいてマスキングを選択した場合、図29に示すように、コンピュータ21は、参照像および比較像に対し、試料片形状Faの枠線より内側の領域の画像に対しマスキングを行う(図5のステップS011e)。
 そして、コンピュータ21は、参照像および比較像について、マスキングを行った領域以外の領域に対し画像マッチングを行う(図2のステップS043)。すなわち、本変形例では、図5のステップS011cで設定されたマッチング領域に基づき、試料片形状Faの枠線より外側の領域に対し画像マッチングが行われる。
 一方、ステップS011dにおいて、試料片形状Faの枠線より内側の領域を記憶する記憶処理が選択された場合、図5のステップS011fにおいて、試料片形状Faの枠線の内側の領域を記憶する処理が実行される。そして、コンピュータ21は、コンピュータ21は、図9に示すように、指定された領域(ここでは、試料片形状Faの枠線の内側の領域)について、参照像および比較像を用いた画像マッチングを行う(図2のステップS0044)。
 <本実施の形態による主な効果>
 本実施の形態によれば、コンピュータ12は、試料片Qの周辺に試料片形状Faを認識した場合、試料片形状Faの枠線より内側の領域の画像をマスキングするマスキング処理を行うか、試料片形状の枠線の内側の領域を記憶するかを選択する。コンピュータ12は、マスキング処理を選択した場合、マスキング処理を行った試料片形状Faの枠線より内側の領域において、参照像および比較像に対するマスキング処理を行う。この構成によれば、この構成によれば、ニードル18と試料片Qとの間の位置合わせをより正確に行うことができるので、試料片Qの自動摘出を正確かつ安定的に実行することが可能となる。
 また、記憶を選択した場合、コンピュータ21は、記憶した試料片形状Faの枠線より内側の領域において、参照像および比較像に対するマスキング処理を行う、この構成によれば、ニードル18と試料片Qとの間の位置合わせをより正確に行うことができるので、試料片Qの自動摘出を正確かつ安定的に実行することが可能となる。また、マスキング処理を省略することができ、コンピュータ21の負荷が軽減される。
 (実施の形態3)
 次に、実施の形態3について説明する。本実施の形態では、学習済みモデルを用いた画像マッチングについて説明する。
 図30は、学習済みモデルを用いた画像マッチングの一例を示す概念図である。コンピュータ21は、図30に示すように、複数の画像から試料の複数の試料構造の情報を参照像として学習させた学習済みモデルMODELを生成しておく。コンピュータ21は、入力した比較像に対し学習済みモデルMODELを用いた画像認識を行う。そして、コンピュータ21は、比較像に対し、画像認識で判別できない領域にマスキングを行う。そして、コンピュータ21は、参照像とマスキングした比較像とを用いて画像マッチングを行う。
 図31は、学習済みモデルを用いた画像マッチングの他の例を説明する図である。コンピュータ21は、図31(a)に示す二次電子像により取得した複数の画像に対し、参照像の全域、もしくは参照像の任意の位置・大きさの領域を複数指定し、指定した領域の画像を参照像として記憶・学習する。
 そして、コンピュータ21は、荷電粒子ビームを試料に照射して得られた二次電子像から、図31(b)に示す比較像を取得する。コンピュータ21は、取得した比較像と記憶した参照像とを比較する。比較像に参照像のいずれかの領域と同様のパターンが存在すると判断した場合、コンピュータ21は、参照像に対し、比較像とパターンが異なる領域にマスキングを行う(図31(c))。そして、コンピュータ21は、マスキングした参照像と比較像とを用いてマッチング処理を行う。そして、コンピュータ21は、マッチング結果およびニードル18の先端座標を用いて、ニードル駆動機構19を制御し、ニードル18を試料Sへ接近させる。
 図32は、学習済みモデルを用いた画像マッチングのその他の例を説明する概念図である。コンピュータ21は、図32に示すように、複数の画像を用いて試料の複数の試料構造の情報を参照像として予め学習させた学習済みモデルMODELを生成しておく。コンピュータ21は、学習済みモデルMODELを用いて、入力した比較像に対する画像認識処理を行う。そして、コンピュータ21は、比較像のうち画像認識処理により判別できた領域に対してのみ画像マッチングを行う。
 画像認識処理は、学習済みモデルMODELの作成時にも実行される。画像認識処理には、例えば、画像セグメンテーションや画像検出等を行う周知のアルゴリズムを用いて実行される。コンピュータ21は、入力される画像に対する画像認識結果から試料構造の情報を抽出して試料の構成を機械学習し、学習済みモデルMODEL(参照像)を生成する。また、コンピュータ21は、比較像についても、学習済みモデルMODEL作成時と同様の画像認識処理を行う。なお、学習済みモデルMODELの生成時と、比較像の生成時とで、異なるアルゴリズムが用いられてもよい。
 図33は、図32の具体例を説明する図である。コンピュータ21は、二次電子像により取得した複数の参照像において、参照像の全体、もしくは参照像の任意の位置・大きさの領域を複数指定し、指定した領域の画像を記憶・学習する(図33(a))。
 そして、コンピュータ21は、荷電粒子ビームを試料に照射して得られた二次電子像から比較像を取得する。コンピュータ21は、取得した比較像と、記憶した画像(指定した領域の画像)とを比較する。比較像に記憶した画像のいずれかの領域と同様のパターンが存在すると判断した場合、コンピュータ21は、参照像および比較像において、同様のパターンの領域AREAのみで画像マッチング処理を行う(図33(b))。そして、コンピュータ21は、マッチング結果およびニードルの先端座標を用いて、ニードル駆動機構を制御して、ニードルを試料に接近させる。
 なお、学習済みモデルは、コンピュータ21で作成されてもよいし、外部装置で作成されたものでもよい。
 <本実施の形態による主な効果>
本実施の形態によれば、コンピュータ21は、複数の画像から試料の複数の試料構造の情報を参照像として学習させた学習済みモデルMODELを生成する。そして、コンピュータ21は、学習済みモデルMODELを用いた比較像に対する画像認識処理を行い、比較像に対し、画像認識処理で判別できない領域にマスキング処理を行う。そして、コンピュータ21は、参照像とマスキング処理を行った比較像とを用いて画像マッチングを行う。この構成によれば、参照像と比較像とが完全に一致していなくても、画像認識により加工痕形状Fや試料片形状Faを認識することができるので、汎用性を向上させつつ、試料片Qの自動摘出を正確かつ安定的に実行することが可能となる。
 また、本実施の形態によれば、コンピュータ21は、画像セグメンテーションにより比較像に対する画像認識処理を行う。この構成によれば、画像セグメンテーションを行うアルゴリズムを容易に入手可能であり、画像セグメンテーションの実装が容易である。
 また、本実施の形態によれば、コンピュータは学習済みモデルを用いた比較像に対する画像認識処理において、比較像に参照像のいずれかの領域と同様のパターンが存在すると判断した場合、参照像に対し、比較像とパターンが異なる領域にマスキングを行う。この構成によれば、画像認識が成功したのみで画像マッチングを行うので、試料片Qの自動摘出を正確かつ安定的に実行することが可能となる。
 前述した各実施の形態において、コンピュータ21は、ソフトウェアを実行して各機能ブロックを実現してもよいし、一部の機能ブロックがLSIなどのハードウェアで構成されてもよい。
 また、前述した各実施の形態において、ニードル18は、先鋭化された針状部材を一例として説明したが、先端が平坦な平たがね状などの形状であってもよいし、ピンセットのような機構を備えてもよい。
 また、コンピュータ21は、周辺加工に使用するイオンビームの、加速(電圧等)、電流値、イオンビームのスキャン範囲、イオンビームのスキャンスピード、イオンビームのスキャン時間、ドーズ量などの設定値をファイル名に紐づけてデータを一括保存できる。また、保存したデータを呼び出すことで設定した条件で加工することが可能である。
 前述した各実施の形態では、マッチング領域を予め設定することにより、参照像の取得も含め、自動で試料摘出を行うことができる。周辺加工に使用する加工プログラムから、加工位置を認識すると同時に加工深さを計算し、周辺加工後、適切と判断されるFOVでSEM像を取得し、同像を試料テンプレートマッチング用の参照像とする。コンピュータ21は、参照像内における周辺加工痕および試料片形状を自動で認識し、周辺加工痕の枠線より外側および試料片形状の枠線より内側の画像を、マスキングを行った上で、参照像の全領域を用いて比較像とのマッチングを行う。
 これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 以下、本発明の好ましい態様について付記する。
 (1)試料から試料片を自動的に摘出する荷電粒子ビーム装置であって、
 前記試料を載置して移動する試料ステージと、
 荷電粒子ビームを照射する荷電粒子ビーム照射光学系と、
 前記試料から摘出する前記試料片を保持して搬送する試料片移動手段と、
 前記試料片が移設される試料片ホルダを保持するホルダ固定台と、
 コンピュータと、
 を備え、
 前記コンピュータは、複数の画像から前記試料の複数の試料構造の情報を前記参照像として学習させた学習済みモデルを生成し、前記学習済みモデルを用いた前記比較像に対する画像認識処理を行い、前記比較像のうち前記画像認識処理により判別できた領域に対してのみ画像マッチングを行う、
 荷電粒子ビーム装置。
 (2)本発明の実施の形態に係る自動試料片作製装置10は、試料から試料片を自動的に作製する自動試料片作製装置であって、少なくとも、荷電粒子ビームを照射する複数の荷電粒子ビーム照射光学系(ビーム照射光学系)と、前記試料を載置して移動する試料ステージと、前記試料から分離および摘出する前記試料片に接続するニードルを有して、前記試料片を搬送する試料片移設手段と、前記試料片が移設される試料片ホルダを保持するホルダ固定台と、前記荷電粒子ビームによってデポジション膜を形成するガスを供給するガス供給部と、前記試料片に接続する前に取得した前記ニードルの前記荷電粒子ビームによる画像を基にして、前記試料片から分離した前記ニードルに前記荷電粒子ビームを照射することで、前記試料片に接続する前の前記ニードルと略同じ形状に整形するように少なくとも前記荷電粒子ビーム照射光学系と前記試料片移設手段を制御するコンピュータと、を備える。
 (3)本発明の実施の形態に係る自動試料片作製装置10は、試料から試料片を自動的に作製する自動試料片作製装置であって、少なくとも、集束イオンビームを照射する集束イオンビーム照射光学系(ビーム照射光学系)と、前記試料を載置して移動する試料ステージと、前記試料から分離および摘出する前記試料片に接続するニードルを有して、前記試料片を搬送する試料片移設手段と、前記試料片が移設される試料片ホルダを保持するホルダ固定台と、前記集束イオンビームによってデポジション膜を形成するガスを供給するガス供給部と、前記試料片に接続する前に取得した前記ニードルの前記集束イオンビームによる画像を基にして、前記試料片から分離した前記ニードルに前記集束イオンビームを照射することで、前記試料片に接続する前の前記ニードルと略同じ形状に整形するように少なくとも前記集束イオンビーム照射光学系と前記試料片移設手段を制御するコンピュータと、を備える。
 (4)前記(2)または(3)に記載の自動試料片作製装置10は、前記荷電粒子ビームは、少なくとも集束イオンビームおよび電子ビームを含む。
10…自動試料片作製装置、10a…荷電粒子ビーム装置、11…試料室、12…ステージ(試料ステージ)、13…ステージ駆動機構、14…集束イオンビーム照射光学系(荷電粒子ビーム照射光学系)、15…電子ビーム照射光学系(荷電粒子ビーム照射光学系)、16…検出器、17…ガス供給部、18…ニードル、19…ニードル駆動機構、20…表示装置、21…コンピュータ、22…入力デバイス、33…試料台、34…柱状部、P…試料片ホルダ、Q…試料片、R…二次荷電粒子、S…試料。

Claims (12)

  1.  試料から試料片を自動的に摘出する荷電粒子ビーム装置であって、
     前記試料を載置して移動する試料ステージと、
     荷電粒子ビームを照射する荷電粒子ビーム照射光学系と、
     前記試料から摘出する前記試料片を保持して搬送する試料片移動手段と、
     前記試料片が移設される試料片ホルダを保持するホルダ固定台と、
     コンピュータと、
     を備え、
     前記コンピュータは、前記試料片移動手段を前記試料片に接近させる際、予め前記荷電粒子ビームを前記試料に照射して得られた参照像と、前記試料片の摘出対象である前記試料に前記荷電粒子ビームを照射して得られた比較像との画像マッチングを行うマッチング領域を選択する、
     荷電粒子ビーム装置。
  2.  請求項1に記載の荷電粒子ビーム装置において、
     前記コンピュータは、前記試料片の周辺に予め実施された周辺加工の加工痕形状を認識した場合、前記加工痕形状の枠線より外側の領域の画像をマスキングするマスキング処理を行うか、前記加工痕形状の枠線の外側の領域を記憶するかを選択し、前記マスキング処理を選択した場合、前記マスキング処理を行った前記加工痕形状の枠線より外側の領域において、前記参照像および前記比較像に対する前記マスキング処理を行う、
     荷電粒子ビーム装置。
  3.  請求項1に記載の荷電粒子ビーム装置において、
     前記コンピュータは、前記試料片の周辺に予め実施された周辺加工の加工痕形状を認識した場合、前記加工痕形状の枠線より外側の領域の画像をマスキングするマスキング処理を行うか、前記加工痕形状の枠線の外側の領域を記憶するかを選択し、前記記憶を選択した場合、記憶した前記加工痕形状の枠線より外側の領域において、前記参照像および前記比較像に対する前記マスキング処理を行う、
     荷電粒子ビーム装置。
  4.  請求項1に記載の荷電粒子ビーム装置において、
     前記コンピュータは、前記試料片の周辺に試料片形状を認識した場合、前記試料片形状の枠線より内側の領域の画像をマスキングするマスキング処理を行うか、前記試料片形状の枠線の内側の領域を記憶するかを選択し、前記マスキング処理を選択した場合、前記マスキング処理を行った前記試料片形状の枠線より内側の領域において、前記参照像および前記比較像に対する前記マスキング処理を行う、
     荷電粒子ビーム装置。
  5.  請求項1に記載の荷電粒子ビーム装置において、
     前記コンピュータは、前記試料片の周辺に試料片形状を認識した場合、前記試料片形状の枠線より内側の領域の画像をマスキングするマスキング処理を行うか、前記試料片形状の枠線の内側の領域を記憶するかを選択し、前記記憶を選択した場合、記憶した前記試料片形状の枠線より内側の領域において、前記参照像および前記比較像に対する前記マスキング処理を行う、
     荷電粒子ビーム装置。
  6.  試料から試料片を自動的に摘出する荷電粒子ビーム装置であって、
     前記試料を載置して移動する試料ステージと、
     荷電粒子ビームを照射する荷電粒子ビーム照射光学系と、
     前記試料から摘出する前記試料片を保持して搬送する試料片移動手段と、
     前記試料片が移設される試料片ホルダを保持するホルダ固定台と、
     コンピュータと、
     を備え、
     前記コンピュータは、複数の画像から前記試料の複数の試料構造の情報を前記参照像として学習させた学習済みモデルを生成し、前記学習済みモデルを用いた前記比較像に対する画像認識処理を行い、前記比較像に対し、前記画像認識処理で判別できない領域にマスキング処理を行い、前記参照像と前記マスキング処理が行われた前記比較像とを用いて画像マッチングを行う、
     荷電粒子ビーム装置。
  7.  請求項6に記載の荷電粒子ビーム装置において、
     前記コンピュータは、画像セグメンテーションにより前記比較像に対する前記画像認識処理を行う、
     荷電粒子ビーム装置。
  8.  試料から試料片を自動的に摘出する荷電粒子ビーム装置であって、
     前記試料を載置して移動する試料ステージと、
     荷電粒子ビームを照射する荷電粒子ビーム照射光学系と、
     前記試料から摘出する前記試料片を保持して搬送する試料片移動手段と、
     前記試料片が移設される試料片ホルダを保持するホルダ固定台と、
     コンピュータと、
     を備え、
     前記コンピュータは、複数の画像から前記試料の複数の試料構造の情報を前記参照像として学習させた学習済みモデルを生成し、前記学習済みモデルを用いた前記比較像に対する画像認識処理を行い、前記比較像に前記参照像のいずれかの領域と同様のパターンが存在すると判断した場合、前記参照像に対し、前記比較像とパターンが異なる領域にマスキングを行う、
     荷電粒子ビーム装置。
  9.  請求項1に記載の荷電粒子ビーム装置において、
     前記コンピュータは、前記試料片と接続する前の前記試料片移動手段に対する前記荷電粒子ビームの照射により取得した画像に基づき前記試料片移設手段のテンプレートを作成し、前記テンプレートを用いたテンプレートマッチングによって得られる周辺加工または前記試料片形状に基づき、前記試料片移動手段に付着しているデポジション膜に前記荷電粒子ビームを照射するよう前記荷電粒子ビーム照射光学系および前記試料片移動手段を制御する、
     荷電粒子ビーム装置。
  10.  請求項9に記載の荷電粒子ビーム装置において、
     前記周辺加工または前記試料片形状を表示する表示装置を備える、
     荷電粒子ビーム装置。
  11.  請求項1に記載の荷電粒子ビーム装置において、
     前記試料片移動手段は、前記試料片に接続するニードルまたはピンセットを備える、
     荷電粒子ビーム装置。
  12.  請求項1に記載の荷電粒子ビーム装置において、
     前記コンピュータは、前記画像マッチングにより、前記試料片移動手段の位置または加工箇所の特定を行う、
     荷電粒子ビーム装置。
PCT/JP2020/048255 2020-12-23 2020-12-23 荷電粒子ビーム装置 WO2022137401A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022570862A JPWO2022137401A1 (ja) 2020-12-23 2020-12-23
PCT/JP2020/048255 WO2022137401A1 (ja) 2020-12-23 2020-12-23 荷電粒子ビーム装置
US18/267,502 US20240055220A1 (en) 2020-12-23 2020-12-23 Charged Particle Beam Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/048255 WO2022137401A1 (ja) 2020-12-23 2020-12-23 荷電粒子ビーム装置

Publications (1)

Publication Number Publication Date
WO2022137401A1 true WO2022137401A1 (ja) 2022-06-30

Family

ID=82159258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048255 WO2022137401A1 (ja) 2020-12-23 2020-12-23 荷電粒子ビーム装置

Country Status (3)

Country Link
US (1) US20240055220A1 (ja)
JP (1) JPWO2022137401A1 (ja)
WO (1) WO2022137401A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103544A (ja) * 1996-06-14 1998-01-06 Imeeji Joho Kagaku Kenkyusho ジェスチャ認識装置
JP2012155637A (ja) * 2011-01-28 2012-08-16 Hitachi High-Technologies Corp パターンマッチング装置、及びコンピュータープログラム
JP2013242757A (ja) * 2012-05-22 2013-12-05 Sony Corp 画像処理装置及び画像処理方法、並びにコンピューター・プログラム
JP2019179700A (ja) * 2018-03-30 2019-10-17 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103544A (ja) * 1996-06-14 1998-01-06 Imeeji Joho Kagaku Kenkyusho ジェスチャ認識装置
JP2012155637A (ja) * 2011-01-28 2012-08-16 Hitachi High-Technologies Corp パターンマッチング装置、及びコンピュータープログラム
JP2013242757A (ja) * 2012-05-22 2013-12-05 Sony Corp 画像処理装置及び画像処理方法、並びにコンピューター・プログラム
JP2019179700A (ja) * 2018-03-30 2019-10-17 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置

Also Published As

Publication number Publication date
JPWO2022137401A1 (ja) 2022-06-30
US20240055220A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
JP7008355B2 (ja) 自動試料作製装置および自動試料作製方法
KR102646112B1 (ko) 하전 입자 빔 장치
TWI751225B (zh) 帶電粒子束裝置
CN108335961B (zh) 带电粒子束装置
JP7109051B2 (ja) 荷電粒子ビーム装置
JP6700897B2 (ja) 荷電粒子ビーム装置
JP6542608B2 (ja) 荷電粒子ビーム装置
CN109841534B (zh) 截面加工观察方法、带电粒子束装置
KR102358551B1 (ko) 자동 시료편 제작 장치
JP6105530B2 (ja) 自動試料片作製装置
CN105910855B (zh) 带电粒子束装置
WO2022137401A1 (ja) 荷電粒子ビーム装置
JP6885637B2 (ja) 荷電粒子ビーム装置
KR102657389B1 (ko) 하전 입자 빔 장치
JP6629502B2 (ja) 自動試料片作製装置
TW202311719A (zh) 帶電粒子束裝置
KR102489385B1 (ko) 하전 입자 빔 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570862

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18267502

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966183

Country of ref document: EP

Kind code of ref document: A1