WO2022137162A1 - Microfluidic device with input actuator system - Google Patents
Microfluidic device with input actuator system Download PDFInfo
- Publication number
- WO2022137162A1 WO2022137162A1 PCT/IB2021/062186 IB2021062186W WO2022137162A1 WO 2022137162 A1 WO2022137162 A1 WO 2022137162A1 IB 2021062186 W IB2021062186 W IB 2021062186W WO 2022137162 A1 WO2022137162 A1 WO 2022137162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- storage material
- microfluidic device
- actuator
- membrane
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 121
- 239000011232 storage material Substances 0.000 claims abstract description 61
- 239000012528 membrane Substances 0.000 claims abstract description 39
- 239000007788 liquid Substances 0.000 claims description 39
- 238000005868 electrolysis reaction Methods 0.000 claims description 15
- 229920000742 Cotton Polymers 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 3
- 239000011147 inorganic material Substances 0.000 claims description 3
- 239000011368 organic material Substances 0.000 claims description 3
- 239000004753 textile Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002699 waste material Substances 0.000 description 2
- 206010018910 Haemolysis Diseases 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003891 environmental analysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004186 food analysis Methods 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/06—Pumps having fluid drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
- B01L2300/042—Caps; Plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0681—Filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/046—Chemical or electrochemical formation of bubbles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0481—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
Definitions
- the present invention relates to a microfluidic device that has at least one fluid inlet, at least one fluid outlet, at least one fluid channel running between the at least one fluid inlet and the at least one fluid outlet, and a microactuator that has a membrane that is connected to electrodes by a membrane located in the microactuator electrically connected actuator liquid is stretchable directly or indirectly.
- Miniaturized systems for the analysis of fluids preferably liquids, which are generally referred to as "laboratory on a chip” or “lab-on-a-chip", are known from the prior art. Areas of application of such systems include, for example, human diagnostics, veterinary diagnostics and environmental and food analysis.
- the systems have, for example, a cartridge that can contain liquids and in which these liquids can be transported.
- Such systems often also have a sensor area that is responsible for the actual analysis.
- micro-actuator uses hydrogel, which absorbs an actuator liquid, such as water, and is contacted with electrodes, which can trigger electrolysis in the actuator liquid.
- the oxygen and hydrogen bubbles that form during the electrolysis lead to gas pressure, which acts on a membrane of the microactuator can be closed.
- the actuator components necessary for the implementation of the actuator principle are thereby can be integrated in the smallest of spaces, which makes it possible, for example, to form a microfluidic device having actuator and sensor components in the size of an EC card.
- Another analysis unit described in publication DE 10 2013 219 502 A1 has a cover element with a pressure channel which is closed in a pressureless state by a film provided on the underside of the cover element.
- a liquid channel for a fluid is formed between the film and a base element of the analysis unit.
- An insulating layer in the form of a thin paraffin layer can be provided between the foil and the cover element, which, after deflection of the foil, melts and covers the foil, which is intended to reduce the vapor permeability of the foil.
- a microfluidic device is known from publication DE 10 2015 101 106 A1, which has an actuator which can pump a liquid located in a reservoir from the reservoir into a channel via a flexible membrane.
- An absorber material is provided in a region of the channel remote from the akor and the membrane, which absorber material can absorb the liquid, as a result of which certain channel regions can be emptied in a targeted manner.
- the publication EP 2 041 573 B1 contains a microfluidic card which has a collection reservoir for waste liquid connected to a channel.
- a collection reservoir for waste liquid connected to a channel.
- an absorber pad that swells as it absorbs liquid.
- a flexible membrane separates a waste liquid channel, in which the absorber pad and the liquid are located, from an air channel. When the membrane bulges in the direction of the air duct due to the swelling of the absorber pad, air is pushed out of the air duct through a liquid-impermeable air outlet.
- a microfluidic device that has at least one fluid inlet, at least one fluid outlet, at least one fluid channel running between the at least one fluid inlet and the at least one fluid outlet, and a microactuator, which has a membrane that is connected by a membrane located in the microactuator and with
- the actuator liquid electrically connected to the electrodes can be stretched directly or indirectly, with the at least one fluid inlet opening into at least one reservoir formed in the microfluidic device, in which at least one fluid-absorbing and compressible storage material is located, which is in contact with the membrane of the microactuator, the membrane on the storage material located in the reservoir is adjacent.
- a fluid is first introduced into the microfluidic device according to the invention via the at least one fluid inlet.
- the fluid can, for example, be a liquid to be analyzed with regard to its ingredients or other properties.
- the term “fluid” includes all media that are fluid at room temperature and 1 bar ambient pressure, except for gases or gas mixtures or vapors.
- the term "fluid” includes water, liquid alcohols, urine, blood, aqueous solutions and suspensions, solutions containing alcoholic solvents, gels, and oils further flowing media, which, for example, can be of natural origin, such as blood or petroleum, but can also be produced synthetically.
- the fluid first reaches the at least one reservoir, in which the at least one fluid-absorbing and compressible storage material is located, via at least one fluid channel of the microfluidic device or directly from the fluid inlet.
- the fluid is at least partially absorbed by this storage material, including any particulate components contained in the fluid.
- the storage material preferably fills the reservoir in such a way that no fluid can flow via the reservoir into a fluid channel of the microfluidic device adjoining the reservoir in the direction of the fluid outlet without first having flowed through the storage material.
- the reservoir is preferably rectangular in cross-section, but may have a domed bottom or other shape.
- the storage material is in contact with the membrane of the micro-actuator, i. H. in direct contact.
- the membrane forms a floor and/or a ceiling and/or a side wall of the reservoir.
- the membrane is a flexible membrane.
- the storage material is a fluid absorbent material that is preferably at least 30% by volume compressible.
- the microactuator used in the microfluidic device according to the invention has an actuator liquid that is preferably received in an actuator liquid reservoir of the microactuator and electrodes that are electrically connected to the actuator liquid.
- the actuator liquid is thus located on a first side of the membrane, and the storage material directly adjoining the membrane is located on a second side of the membrane.
- the fluid-absorbing and compressible storage material is therefore located on the opposite side of the membrane to the micro-actuator.
- the storage material is thus directly above the actuator.
- the position of the membrane that can be directly influenced by the actuator liquid therefore has a direct and immediate effect on the storage material and thus on the amount of fluid that can be accommodated in the storage material.
- the micro-actuator can be controlled by the electrodes.
- the micro-actuator can be designed as an electrolysis actuator.
- the micro-actuator functioning as an electrolysis actuator can contain hydrogel, which absorbs the actuator liquid, such as water, and is in contact with electrodes, by means of which electrolysis can be triggered in the actuator liquid.
- the actuator liquid does not necessarily have to be stored in a hydrogel, but can be thickened, for example.
- the oxygen and hydrogen bubbles that form during the electrolysis of the actuator liquid lead to gas pressure, which acts on the membrane of the microactuator.
- the membrane arches and presses against the storage material located in the reservoir and adjoining the membrane. Due to the bulging of the membrane, the fluid is at least partially pushed out or pressed out of the storage material and can then flow in the direction of the fluid outlet.
- the storage material thus offers the possibility of temporarily storing the fluid.
- the storage material When the fluid is at least partially pressed out of the storage material by means of the microactuator, particulate components from the fluid originally introduced into the microfluidic device are retained by the storage material.
- the storage material therefore acts as a filter material that at least partially filters the particulate components out of the fluid.
- the fluid flowing further in the direction of the fluid outlet is thus at least partially filtered.
- the risk of blockages in the fluid channels leading to the fluid outlet is therefore reduced, even if they have very small diameters.
- the storage material preferably has at least one sponge, at least one textile, cotton wool, cellulose, porous inorganic material, porous organic material and/or at least one gel. These materials are distinguished by the fact that they have capillaries and/or pores and/or material gaps in which liquid can be absorbed, can be simply pressed together in order to release the liquid again, and also have a structure that contains particulates in the fluid retains components.
- the storage material has areas with different and/or gradually changing absorptivity and/or filter effect.
- FIGS. 2a to 2d schematically show a detail of an embodiment of the microfluidic device according to the invention with an input stage filter in different method stages in a sectional side view
- FIGS. 3a to 3d schematically show a detail of an embodiment of the microfluidic device according to the invention with pump volume definition in different method stages in a sectional side view
- FIGS. 4a to 4d schematically show a detail of a further embodiment of the microfluidic device according to the invention with pump volume definition in different method stages in a sectional side view.
- FIGS. 1 to 4 schematically show different embodiments of the microfluidic device 1, 1' according to the invention. All embodiments have in common that in a fluid conveying direction A at or near a fluid inlet 2 of the respective microfluidic device 1, 1′ there is a reservoir 4 fluidly connected to the fluid inlet 2 with a microactuator 10 connected thereto. Included at least one fluid-absorbing and compressible storage material 5, 5' is located in the reservoir 4 in each case.
- the storage material 5, 5' is at least one sponge, but in other embodiments of the invention it can also be at least one textile, cotton wool, cellulose, porous inorganic material, porous organic material and/or at least one gel.
- the respective microactuator 10 has a flexible membrane 9 that borders on the reservoir 4 and thus on the storage material 5, 5' located in the reservoir 4.
- the flexible membrane 9 thus simultaneously forms a cover membrane of the microactuator 10 and a cover membrane of the reservoir 4.
- the micro-actuator 10 has an actuator liquid 11 .
- the actuator liquid 11 is held by a hydrogel 6 in each case.
- the micro-actuator 10 has electrodes 7 , 8 which are electrically connected to the actuator liquid 11 . Electrical connecting lines, which are not shown in the illustrations, run outwards from the electrodes 7, 8.
- the respective microfluidic device 1 , T has at least one fluid channel 3 which is in fluid connection with the reservoir 4 .
- the at least one fluid channel 3 leads directly or indirectly to a fluid outlet 12 of the microfluidic device 1, T.
- a fluid introduced into the microfluidic device 1, T via the fluid inlet 2 flows along the fluid conveying direction A first through the reservoir 4 and only then in the direction of the fluid outlet 12, whereby on its way to the fluid outlet 12 it flows through the at least one fluid channel 3 and optionally at least a micropump and/or at least one analysis unit can pass.
- the reservoir 4 and the storage material 5, 5′ together with the microactuator 10 in each of the embodiments shown form an input actuator system for the respective microfluidic device 1, T and, as can be seen in the figures, can fulfill different functions.
- the input actuator system serves primarily as an input filter.
- FIG. 1a shows the microfluidic device 1 without introduced fluid.
- a homogeneous storage material 5, preferably a sponge, is introduced into the reservoir 4.
- a fluid 20 enters the reservoir 4 via the fluid inlet 2 and is at least partially sucked up there by the storage material 5 .
- the fluid 20 is pipetted into the fluid inlet 2 .
- the fluid 20 contains particulate components 21.
- the particulate components 21 remain in the storage material 5 .
- the fluid 20 is filtered.
- FIG. 2a shows the microfluidic device 1′ without introduced fluid.
- two different storage materials namely a first storage material 5 and a second storage material 5', are introduced into the reservoir 4 of the microfluidic device 1'.
- the first storage material 5 has larger pores than the second storage material 5'.
- the absorbency and/or the filterability of the storage material 5 can change gradually within the reservoir 4 in the fluid conveying direction A.
- a fluid 20 enters the reservoir 4 via the fluid inlet 2 and is first sucked up there by the first storage material 5 .
- the fluid 20 contains particulate components 21.
- the fluid 20 is then sucked up by the second storage material 5', which is arranged after the first storage material 5 in the fluid conveying direction A. Due to the smaller pores of the second storage material 5', the particulate components 21 or a large part of them remain in the first storage material 5.
- the particulate components 21 remain in the first storage material 5 .
- the fluid 20 is filtered.
- the input actuator primarily serves as a temporary fluid store and for defining the pump volume.
- FIG. 3a shows the microfluidic device 1 without introduced fluid.
- a fluid 20 enters the reservoir 4 via the fluid inlet 2 and is at least partially sucked up there by the storage material 5 .
- the input actuator system is used, similar to that in FIGS. 3a to 3d, to define the pump volume and to distribute the fluid.
- FIG. 4a shows the microfluidic device 1′′ without introduced fluid.
- a fluid 20 enters the reservoir 4 via the fluid inlet 2 and a fluid channel 3' and is at least partially sucked up there by the storage material 5.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Micromachines (AREA)
- Reciprocating Pumps (AREA)
Abstract
Description
Mikrofluidikvorrichtung mit Eingangsaktorik Microfluidic device with input actuators
Die vorliegende Erfindung betrifft eine Mikrofluidikvorrichtung, die wenigstens einen Fluideingang, wenigstens einen Fluidausgang, wenigstens einen zwischen dem wenigstens einen Fluideingang und dem wenigstens eine Fluidausgang verlaufenden Fluidkanal und einen Mikroaktor aufweist, der eine Membran aufweist, die durch eine in dem Mikroaktor befindliche und mit Elektroden elektrisch verbundene Aktorflüssigkeit unmittelbar oder mittelbar dehnbar ist. The present invention relates to a microfluidic device that has at least one fluid inlet, at least one fluid outlet, at least one fluid channel running between the at least one fluid inlet and the at least one fluid outlet, and a microactuator that has a membrane that is connected to electrodes by a membrane located in the microactuator electrically connected actuator liquid is stretchable directly or indirectly.
Aus dem Stand der Technik sind miniaturisierte Systeme zur Analyse von Fluiden, vorzugsweise Flüssigkeiten, die im Allgemeinen als "Labor auf einem Chip" oder "Lab-on-a- Chip" bezeichnet werden, bekannt. Anwendungsgebiete solcher Systeme umfassen beispielsweise die Humandiagnostik, die Veterinärdiagnostik sowie die Umwelt- und Lebensmittelanalytik. Die Systeme weisen beispielsweise eine Kartusche auf, die Flüssigkeiten enthalten kann und in der diese Flüssigkeiten befördert werden können. Oft weisen solche Systeme auch einen Sensorbereich auf, der für die eigentliche Analytik zuständig ist. Miniaturized systems for the analysis of fluids, preferably liquids, which are generally referred to as "laboratory on a chip" or "lab-on-a-chip", are known from the prior art. Areas of application of such systems include, for example, human diagnostics, veterinary diagnostics and environmental and food analysis. The systems have, for example, a cartridge that can contain liquids and in which these liquids can be transported. Such systems often also have a sensor area that is responsible for the actual analysis.
Für die Analyse einer Probe ist es häufig erforderlich, Flüssigkeiten definiert zu transportieren. Dies kann sowohl über eine externe Aktorik, die zum Beispiel pneumatisch, mechanisch oder über externe Pumpen arbeitet, als auch über eine Aktorik, die Bestandteil der Kartusche ist, erfolgen. For the analysis of a sample, it is often necessary to transport liquids in a defined manner. This can be done both via an external actuator that works, for example, pneumatically, mechanically or via external pumps, as well as via an actuator that is part of the cartridge.
Ein Beispiel für eine solche, in eine flüssigkeitsführende Mikrostruktur integrierte Aktorik ist in der Druckschrift EP 1 844 936 A1 beschrieben. Der beschriebene Mikroaktor nutzt Hydrogel, das eine Aktorflüssigkeit, wie Wasser, absorbiert und mit Elektroden kontaktiert ist, durch die in der Aktorflüssigkeit eine Elektrolyse ausgelöst werden kann. Die sich bei der Elektrolyse bildenden Sauerstoff- und Wasserstoff bl äsen führen zu einem Gasdruck, welcher auf eine Membran des Mikroaktors wirkt, durch deren Auswölben wiederum ein Fluid in einem an der anderen Seite der Membran verlaufenden Kanal oder Reservoir der Mikrostruktur verdrängt werden oder der Kanal verschlossen werden kann. Die für die Umsetzung des Aktorprinzips notwendigen Aktorkomponenten sind dadurch auf kleinstem Raum integrierbar, was es beispielsweise ermöglicht, eine Aktor- und Sensorkomponenten aufweisende Mikrofluidikvorrichtung in EC-Kartengröße auszubilden. An example of such an actuator integrated in a liquid-carrying microstructure is described in publication EP 1 844 936 A1. The micro-actuator described uses hydrogel, which absorbs an actuator liquid, such as water, and is contacted with electrodes, which can trigger electrolysis in the actuator liquid. The oxygen and hydrogen bubbles that form during the electrolysis lead to gas pressure, which acts on a membrane of the microactuator can be closed. The actuator components necessary for the implementation of the actuator principle are thereby can be integrated in the smallest of spaces, which makes it possible, for example, to form a microfluidic device having actuator and sensor components in the size of an EC card.
Eine andere, in der Druckschrift DE 10 2013 219 502 A1 beschriebenen Analyseeinheit weist ein Deckelelement mit einem Druckkanal auf, der in einem drucklosen Zustand durch eine auf einer Unterseite des Deckelelementes vorgesehene Folie verschlossen ist. Zwischen der Folie und einem Bodenelement der Analyseeinheit ist ein Flüssigkeitskanal für ein Fluid ausgebildet. Bei Anlegen eines Drucks an den Druckkanal wölbt sich die Folie unter dem Druckkanal nach unten, wodurch das Fluid in dem Flüssigkeitskanal verschoben wird. Zwischen der Folie und dem Deckelelement kann eine Isolierschicht in Form einer dünnen Paraffinschicht vorgesehen sein, die nach Auslenkung der Folie schmilzt und die Folie überschichtet, wodurch die Dampfdurchlässigkeit der Folie verringert werden soll. Another analysis unit described in publication DE 10 2013 219 502 A1 has a cover element with a pressure channel which is closed in a pressureless state by a film provided on the underside of the cover element. A liquid channel for a fluid is formed between the film and a base element of the analysis unit. When pressure is applied to the pressure channel, the foil under the pressure channel bulges downwards, as a result of which the fluid in the liquid channel is displaced. An insulating layer in the form of a thin paraffin layer can be provided between the foil and the cover element, which, after deflection of the foil, melts and covers the foil, which is intended to reduce the vapor permeability of the foil.
Aus der Druckschrift DE 10 2015 101 106 A1 ist eine Mikrofluidikvorrichtung bekannt, die einen Aktor aufweist, der über eine flexible Membran eine in einem Reservoir befindliche Flüssigkeit aus dem Reservoir in einen Kanal pumpen kann. In einem von dem Akor und der Membran entfernten Bereich des Kanals ist ein Absorbermaterial vorgesehen, das die Flüssigkeit aufsaugen kann, wodurch gezielt bestimmte Kanalbereiche entleert werden können. A microfluidic device is known from publication DE 10 2015 101 106 A1, which has an actuator which can pump a liquid located in a reservoir from the reservoir into a channel via a flexible membrane. An absorber material is provided in a region of the channel remote from the akor and the membrane, which absorber material can absorb the liquid, as a result of which certain channel regions can be emptied in a targeted manner.
Die Druckschrift EP 2 041 573 B1 beinhaltet eine Mikrofluidikkarte, die ein mit einem Kanal verbundenes Auffangreservoir für Abfallflüssigkeit besitzt. In dem Auffangreservoir befindet sich ein Absorberpad, das anschwillt, wenn es Flüssigkeit absorbiert. Eine flexible Membran separiert einen Abfallflüssigkeitskanal, in dem sich das Aborberpad und die Flüssigkeit befinden, von einem Luftkanal. Wenn sich die Membran aufgrund des Anschwellens des Absorberpads in Richtung des Luftkanals wölbt, wird Luft aus dem Luftkanal durch einen flüssigkeitsundurchlässigen Luftausgang nach außen gedrückt. The publication EP 2 041 573 B1 contains a microfluidic card which has a collection reservoir for waste liquid connected to a channel. In the collection reservoir is an absorber pad that swells as it absorbs liquid. A flexible membrane separates a waste liquid channel, in which the absorber pad and the liquid are located, from an air channel. When the membrane bulges in the direction of the air duct due to the swelling of the absorber pad, air is pushed out of the air duct through a liquid-impermeable air outlet.
Soll ein Fluid, wie beispielsweise Blut, das partikuläre Bestandteile enthält, analysiert werden, waren bisher die zur Fluidleitung genutzten Fluidkanäle mit einem solch großen Querschnitt zu konzipieren, dass Kanalverstopfungen durch die partikulären Bestandteile vermieden werden. Das System und die Totvolumina werden dadurch größer. Sollen die partikulären Bestandteile des Fluids, beispielsweise zur Vermeidung einer Verstopfung von Fluidkanälen, zuvor abgetrennt werden, kommen häufig Filtermembranen zum Einsatz. Diese weisen jedoch den Nachteil auf, dass sie selbst sehr schnell verstopfen bzw. sich auf diesen eine weitestgehend nicht mehr für die restliche Flüssigkeit durchdringbare Schicht der partikulären Bestandteile bildet. Im Fall von Blut ist dann oft ein noch höherer Druck erforderlich, um weitere, nicht partikelhaltige Flüssigkeit durch die Filtermembran zu fördern, was wiederum zu einer Hämolyse führen kann, die letztlich das Messergebnis verfälschen kann. If a fluid, such as blood, which contains particulate components, is to be analyzed, the fluid channels used for conducting the fluid previously had to be designed with such a large cross section that channel blockages by the particulate components were avoided. This increases the size of the system and dead volumes. If the particulate components of the fluid are to be separated beforehand, for example to avoid clogging of fluid channels, filter membranes are often used. However, these have the disadvantage that they themselves become clogged very quickly or a layer of particulate components forms on them that is largely impenetrable for the remaining liquid. In the case of blood, an even higher pressure is then often required in order to convey further liquid that does not contain particles through the filter membrane, which in turn can lead to haemolysis, which can ultimately falsify the measurement result.
Außerdem ist es bei manchen Anwendungen erforderlich, das zu analysierende Fluid zwar in das System einzubringen, aber nicht sofort darin zur Analyse weiterzuleiten, was mit den vorhandenen Systemen nicht definiert möglich ist. In addition, in some applications it is necessary to introduce the fluid to be analyzed into the system, but not immediately forward it for analysis, which is not possible with the existing systems in a defined manner.
Es ist daher die Aufgabe der vorliegenden Erfindung, eine Mikrofluidikvorrichtung zur Verfügung zu stellen, die weitgehend unabhängig von dem durchzuleitenden Fluid sehr klein gestaltet werden kann. It is therefore the object of the present invention to provide a microfluidic device which can be designed to be very small, largely independently of the fluid to be conducted through.
Die Aufgabe wird durch eine Mikrofluidikvorrichtung gelöst, die wenigstens einen Fluideingang, wenigstens einen Fluidausgang, wenigstens einen zwischen dem wenigstens einen Fluideingang und dem wenigstens eine Fluidausgang verlaufenden Fluidkanal und einen Mikroaktor aufweist, der eine Membran aufweist, die durch eine in dem Mikroaktor befindliche und mit Elektroden elektrisch verbundene Aktorflüssigkeit unmittelbar oder mittelbar dehnbar ist, wobei der wenigstens eine Fluideingang in wenigstens ein in der Mikrofluidikvorrichtung ausgebildetes Reservoir mündet, in dem sich wenigstens ein fluidaufsaugendes und komprimierbares Speichermaterial befindet, das mit der Membran des Mikroaktors in Kontakt steht, wobei die Membran an das in dem Reservoir befindliche Speichermaterial angrenzt. The object is achieved by a microfluidic device that has at least one fluid inlet, at least one fluid outlet, at least one fluid channel running between the at least one fluid inlet and the at least one fluid outlet, and a microactuator, which has a membrane that is connected by a membrane located in the microactuator and with The actuator liquid electrically connected to the electrodes can be stretched directly or indirectly, with the at least one fluid inlet opening into at least one reservoir formed in the microfluidic device, in which at least one fluid-absorbing and compressible storage material is located, which is in contact with the membrane of the microactuator, the membrane on the storage material located in the reservoir is adjacent.
In die erfindungsgemäße Mikrofluidikvorrichtung wird zunächst über den wenigstens einen Fluideingang ein Fluid gegeben. Das Fluid kann beispielsweise eine hinsichtlich ihrer Inhaltsstoffe oder sonstiger Eigenschaften zu analysierende Flüssigkeit sein. Dabei fallen erfindungsgemäß unter den Begriff „Fluid“ alle bei Raumtemperatur und 1 bar Umgebungsdruck fluiden Medien, außer Gase oder Gasgemische oder Dämpfe. So sind zum Beispiel von dem Begriff „Fluid“ Wasser, flüssige Alkohole, Urin, Blut, wässrige Lösungen und Suspensionen, Lösungen mit alkoholischem Lösungsmittel, Gele, Öle und weitere fließende Medien, die wie Blut oder Erdöl beispielsweise natürlichen Ursprungs sein können, aber auch synthetisch hergestellt sein können, umfasst. A fluid is first introduced into the microfluidic device according to the invention via the at least one fluid inlet. The fluid can, for example, be a liquid to be analyzed with regard to its ingredients or other properties. According to the invention, the term “fluid” includes all media that are fluid at room temperature and 1 bar ambient pressure, except for gases or gas mixtures or vapors. For example, the term "fluid" includes water, liquid alcohols, urine, blood, aqueous solutions and suspensions, solutions containing alcoholic solvents, gels, and oils further flowing media, which, for example, can be of natural origin, such as blood or petroleum, but can also be produced synthetically.
Das Fluid gelangt zunächst über wenigstens einen Fluidkanal der Mikrofluidikvorrichtung oder direkt vom Fluideingang in das wenigstens eine Reservoir, in dem sich das wenigstens eine fluidaufsaugende und komprimierbare Speichermaterial befindet. Das Fluid wird von diesem Speichermaterial, einschließlich eventueller, in dem Fluid enthaltener partikulärer Bestandteile, zumindest teilweise aufgesaugt. The fluid first reaches the at least one reservoir, in which the at least one fluid-absorbing and compressible storage material is located, via at least one fluid channel of the microfluidic device or directly from the fluid inlet. The fluid is at least partially absorbed by this storage material, including any particulate components contained in the fluid.
Vorzugsweise füllt das Speichermaterial das Reservoir derart aus, dass kein Fluid über das Reservoir in einen sich in Richtung des Fluidausgangs an das Reservoir anschließenden Fluidkanal der Mikrofluidikvorrichtung fließen kann, ohne vorher durch das Speichermaterial geflossen zu sein. The storage material preferably fills the reservoir in such a way that no fluid can flow via the reservoir into a fluid channel of the microfluidic device adjoining the reservoir in the direction of the fluid outlet without first having flowed through the storage material.
Das Reservoir hat vorzugsweise einen rechteckigen Querschnitt, kann jedoch auch einen gewölbten Boden oder eine andere Form besitzen. The reservoir is preferably rectangular in cross-section, but may have a domed bottom or other shape.
Das Speichermaterial steht mit der Membran des Mikroaktors in Kontakt, d. h. in direktem Kontakt. Beispielsweise bildet die Membran einen Boden und/oder eine Decke und/oder eine Seitenwand des Reservoirs aus. The storage material is in contact with the membrane of the micro-actuator, i. H. in direct contact. For example, the membrane forms a floor and/or a ceiling and/or a side wall of the reservoir.
Die Membran ist eine flexible Membran. Das Speichermaterial ist ein fluidaufsaugendes Material, das vorzugsweise zu mindestens 30 Vol.% komprimierbar ist. The membrane is a flexible membrane. The storage material is a fluid absorbent material that is preferably at least 30% by volume compressible.
Der in der erfindungsgemäßen Mikrofluidikvorrichtung genutzte Mikroaktor weist eine vorzugsweise in einem Aktorflüssigkeitsreservoir des Mikroaktors aufgenommene Aktorflüssigkeit und Elektroden auf, die mit der Aktorflüssigkeit elektrisch verbunden sind. Auf einer ersten Seite der Membran befindet sich somit die Aktorflüssigkeit, und auf einer zweiten Seite der Membran befindet sich das direkt an die Membran angrenzende Speichermaterial. Das fluidaufsaugende und komprimierbare Speichermaterial befindet sich demnach auf der dem Mikroaktor gegenüberliegenden Seite der Membran. Das Speichermaterial liegt damit direkt über dem Aktor. Die durch die Aktorflüssigkeit direkt beeinflussbare Lage der Membran wirkt sich also direkt und unmittelbar auf das Speichermaterial und damit auf die Menge an Fluid, die in dem Speichermaterial jeweils aufgenommen werden kann, aus. Der Mikroaktor ist durch die Elektroden steuerbar. Der Mikroaktor kann wie der in der Druckschrift EP 1 844 936 A1 beschriebene Mikroaktor als Elektrolyseaktor ausgebildet sein. Dabei kann der als Elektrolyseaktor fungierende Mikroaktor Hydrogel beinhalten, das die Aktorflüssigkeit, wie Wasser, absorbiert und mit Elektroden kontaktiert ist, durch die in der Aktorflüssigkeit eine Elektrolyse ausgelöst werden kann. Die Aktorflüssigkeit muss jedoch nicht unbedingt in einem Hydrogel gespeichert sein, sondern kann beispielsweise angedickt sein. The microactuator used in the microfluidic device according to the invention has an actuator liquid that is preferably received in an actuator liquid reservoir of the microactuator and electrodes that are electrically connected to the actuator liquid. The actuator liquid is thus located on a first side of the membrane, and the storage material directly adjoining the membrane is located on a second side of the membrane. The fluid-absorbing and compressible storage material is therefore located on the opposite side of the membrane to the micro-actuator. The storage material is thus directly above the actuator. The position of the membrane that can be directly influenced by the actuator liquid therefore has a direct and immediate effect on the storage material and thus on the amount of fluid that can be accommodated in the storage material. The micro-actuator can be controlled by the electrodes. Like the micro-actuator described in publication EP 1 844 936 A1, the micro-actuator can be designed as an electrolysis actuator. The micro-actuator functioning as an electrolysis actuator can contain hydrogel, which absorbs the actuator liquid, such as water, and is in contact with electrodes, by means of which electrolysis can be triggered in the actuator liquid. However, the actuator liquid does not necessarily have to be stored in a hydrogel, but can be thickened, for example.
Die sich bei der Elektrolyse der Aktorflüssigkeit bildenden Sauerstoff- und Wasserstoffblasen führen zu einem Gasdruck, welcher auf die Membran des Mikroaktors wirkt. Die Membran wölbt sich dadurch und drückt gegen das an die Membran angrenzende, in dem Reservoir befindliche Speichermaterial. Durch das Auswölben der Membran wird das Fluid zumindest teilweise aus dem Speichermaterial herausgedrückt bzw. ausgepresst und kann danach in Richtung des Fluidausgangs fließen. The oxygen and hydrogen bubbles that form during the electrolysis of the actuator liquid lead to gas pressure, which acts on the membrane of the microactuator. As a result, the membrane arches and presses against the storage material located in the reservoir and adjoining the membrane. Due to the bulging of the membrane, the fluid is at least partially pushed out or pressed out of the storage material and can then flow in the direction of the fluid outlet.
Das Speichermaterial bietet somit die Möglichkeit zur Zwischenspeicherung des Fluids. The storage material thus offers the possibility of temporarily storing the fluid.
Wenn das Fluid aus dem Speichermaterial zumindest teilweise mittels des Mikroaktors herausgedrückt wird, werden von dem Speichermaterial partikuläre Bestandteile aus dem ursprünglich in die Mikrofluidikvorrichtung gegebenen Fluid zurück gehalten. Das Speichermaterial wirkt daher als Filtermaterial, das die partikulären Bestandteile zumindest teilweise aus dem Fluid filtert. Das in Richtung des Fluidausgangs weiterfließende Fluid ist somit zumindest teilweise gefiltert. Die Gefahr von Verstopfungen in den zum Fluidausgang führenden Fluidkanälen ist daher gemindert, auch wenn diese sehr kleine Durchmesser besitzen. When the fluid is at least partially pressed out of the storage material by means of the microactuator, particulate components from the fluid originally introduced into the microfluidic device are retained by the storage material. The storage material therefore acts as a filter material that at least partially filters the particulate components out of the fluid. The fluid flowing further in the direction of the fluid outlet is thus at least partially filtered. The risk of blockages in the fluid channels leading to the fluid outlet is therefore reduced, even if they have very small diameters.
Vorzugsweise weist das Speichermaterial wenigstens einen Schwamm, wenigstens ein Textil, Watte, Zellstoff, poröses anorganisches Material, poröses organisches Material und/oder wenigstens ein Gel auf. Diese Materialien zeichnen sich dadurch aus, dass sie Kapillaren und/oder Poren und/oder Materialzwischenräume aufweisen, in welchen Flüssigkeit aufgenommen werden kann, einfach zusammengedrückt werden können, um die Flüssigkeit wieder abzugeben, und darüber hinaus eine Struktur besitzen, die im Fluid enthaltene partikuläre Bestandteile zurückhält. In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist das Speichermaterial Bereiche mit unterschiedlicher und/oder sich graduell ändernder Saugfähigkeit und/oder Filterwirkung auf. Dies ermöglicht es, partikuläre Bestandteile des Fluids beispielsweise nur in einem in Fluidförderrichtung ersten Bereich des Speichermaterials aufzunehmen und einen in Fluidförderrichtung zweiten Bereich des Speichermaterials als Sperre für eine Nichtweiterleitung der partikulären Bestandteile zu nutzen. The storage material preferably has at least one sponge, at least one textile, cotton wool, cellulose, porous inorganic material, porous organic material and/or at least one gel. These materials are distinguished by the fact that they have capillaries and/or pores and/or material gaps in which liquid can be absorbed, can be simply pressed together in order to release the liquid again, and also have a structure that contains particulates in the fluid retains components. In a preferred embodiment of the present invention, the storage material has areas with different and/or gradually changing absorptivity and/or filter effect. This makes it possible, for example, to take up particulate components of the fluid only in a first region of the storage material in the fluid conveying direction and to use a second region of the storage material in the fluid conveying direction as a barrier to preventing the particulate components from being passed on.
Bevorzugte Ausführungsformen der vorliegenden Erfindung, deren Aufbau, Funktion und Vorteile werden im Folgenden anhand von Figuren näher erläutert, wobei die Figuren 1a bis 1d schematisch einen Ausschnitt einer Ausführungsform der erfindungsgemäßen Mikrofluidikvorrichtung mit Eingangsfilter in verschiedenen Verfahrensstufen in einer geschnittenen Seitenansicht zeigen; die Figuren 2a bis 2d schematisch einen Ausschnitt einer Ausführungsform der erfindungsgemäßen Mikrofluidikvorrichtung mit Eingangsstufenfilter in verschiedenen Verfahrensstufen in einer geschnittenen Seitenansicht zeigen; die Figuren 3a bis 3d schematisch einen Ausschnitt einer Ausführungsform der erfindungsgemäßen Mikrofluidikvorrichtung mit Pumpvolumendefinition in verschiedenen Verfahrensstufen in einer geschnittenen Seitenansicht zeigen; und die Figuren 4a bis 4d schematisch einen Ausschnitt einer weiteren Ausführungsform der erfindungsgemäßen Mikrofluidikvorrichtung mit Pumpvolumendefinition in verschiedenen Verfahrensstufen in einer geschnittenen Seitenansicht zeigen. Preferred embodiments of the present invention, their structure, function and advantages are explained in more detail below with the aid of figures, with FIGS. FIGS. 2a to 2d schematically show a detail of an embodiment of the microfluidic device according to the invention with an input stage filter in different method stages in a sectional side view; FIGS. 3a to 3d schematically show a detail of an embodiment of the microfluidic device according to the invention with pump volume definition in different method stages in a sectional side view; and FIGS. 4a to 4d schematically show a detail of a further embodiment of the microfluidic device according to the invention with pump volume definition in different method stages in a sectional side view.
Die Figuren 1 bis 4 zeigen schematisch verschiedene Ausführungsformen der erfindungsgemäßen Mikrofluidikvorrichtung 1 , 1 ‘. Allen Ausführungsformen ist gemein, dass in einer Fluidförderrichtung A an oder nahe einem Fluideingang 2 der jeweiligen Mikrofluidikvorrichtung 1 , 1‘ ein in fluider Verbindung mit dem Fluideingang 2 stehendes Reservoir 4 mit einem damit in Verbindung stehenden Mikroaktor 10 vorgesehen ist. Dabei befindet sich jeweils in dem Reservoir 4 wenigstens ein fluidaufsaugendes und komprimierbares Speichermaterial 5, 5‘. FIGS. 1 to 4 schematically show different embodiments of the microfluidic device 1, 1' according to the invention. All embodiments have in common that in a fluid conveying direction A at or near a fluid inlet 2 of the respective microfluidic device 1, 1′ there is a reservoir 4 fluidly connected to the fluid inlet 2 with a microactuator 10 connected thereto. Included at least one fluid-absorbing and compressible storage material 5, 5' is located in the reservoir 4 in each case.
Das Speichermaterial 5, 5‘ ist in den gezeigten Ausführungsformen wenigstens ein Schwamm, kann jedoch in anderen Ausführungsformen der Erfindung auch wenigstens ein Textil, Watte, Zellstoff, poröses anorganisches Material, poröses organisches Material und/oder wenigstens ein Gel sein. In the embodiments shown, the storage material 5, 5' is at least one sponge, but in other embodiments of the invention it can also be at least one textile, cotton wool, cellulose, porous inorganic material, porous organic material and/or at least one gel.
Der jeweilige Mikroaktor 10 weist eine flexible Membran 9 auf, die an das Reservoir 4 und damit an das in dem Reservoir 4 befindliche Speichermaterial 5, 5‘ angrenzt. Die flexible Membran 9 bildet also gleichzeitig eine Deckmembran des Mikroaktors 10 als auch eine Deckmembran des Reservoirs 4. The respective microactuator 10 has a flexible membrane 9 that borders on the reservoir 4 and thus on the storage material 5, 5' located in the reservoir 4. The flexible membrane 9 thus simultaneously forms a cover membrane of the microactuator 10 and a cover membrane of the reservoir 4.
Ferner weist der Mikroaktor 10 eine Aktorflüssigkeit 11 auf. In den gezeigten Ausführungsbeispielen ist die Aktorflüssigkeit 11 jeweils von einem Hydrogel 6 aufgenommen. Darüber hinaus weist der Mikroaktor 10 Elektroden 7, 8 auf, die mit der Aktorflüssigkeit 11 elektrisch in Verbindung stehen. Von den Elektroden 7, 8 verlaufen elektrische Verbindungsleitungen nach außen, welche in den Darstellungen nicht gezeigt sind. Furthermore, the micro-actuator 10 has an actuator liquid 11 . In the exemplary embodiments shown, the actuator liquid 11 is held by a hydrogel 6 in each case. In addition, the micro-actuator 10 has electrodes 7 , 8 which are electrically connected to the actuator liquid 11 . Electrical connecting lines, which are not shown in the illustrations, run outwards from the electrodes 7, 8.
Wie es in den Figuren zu sehen ist, weist die jeweilige Mikrofluidikvorrichtung 1 , T wenigstens einen, in fluider Verbindung mit dem Reservoir 4 stehenden Fluidkanal 3 auf. Der wenigstens eine Fluidkanal 3 führt direkt oder indirekt zu einem Fluidausgang 12 der Mikrofluidikvorrichtung 1 , T. As can be seen in the figures, the respective microfluidic device 1 , T has at least one fluid channel 3 which is in fluid connection with the reservoir 4 . The at least one fluid channel 3 leads directly or indirectly to a fluid outlet 12 of the microfluidic device 1, T.
Ein in die Mikrofluidikvorrichtung 1 , T über den Fluideingang 2 eingegebenes Fluid fließt entlang der Fluidförderrichtung A zunächst durch das Reservoir 4 und erst danach in Richtung des Fluidausgangs 12, wobei es auf seinem Weg zum Fluidausgang 12 durch den wenigstens einen Fluidkanal 3 fließt und gegebenenfalls wenigstens eine Mikropumpe und/oder wenigstens eine Analyseeinheit passieren kann. A fluid introduced into the microfluidic device 1, T via the fluid inlet 2 flows along the fluid conveying direction A first through the reservoir 4 and only then in the direction of the fluid outlet 12, whereby on its way to the fluid outlet 12 it flows through the at least one fluid channel 3 and optionally at least a micropump and/or at least one analysis unit can pass.
Das Reservoir 4 und das Speichermaterial 5, 5‘ bilden zusammen mit dem Mikroaktor 10 in jeder der gezeigten Ausführungsformen eine Eingangsaktorik für die jeweilige Mikrofluidikvorrichtung 1 , T aus und können, wie es in den Figuren zu sehen ist, unterschiedliche Funktionen erfüllen. In der in den Figuren 1 a bis 1d gezeigten Mikrofluidikvorrichtung 1 als auch in der in den Figuren 2a bis 2d gezeigten Mikrofluidikvomchtung 1‘ dient die Eingangsaktorik jeweils vorrangig als Eingangsfilter. The reservoir 4 and the storage material 5, 5′ together with the microactuator 10 in each of the embodiments shown form an input actuator system for the respective microfluidic device 1, T and, as can be seen in the figures, can fulfill different functions. In the microfluidic device 1 shown in FIGS. 1a to 1d as well as in the microfluidic device 1′ shown in FIGS. 2a to 2d, the input actuator system serves primarily as an input filter.
Figur 1a zeigt die Mikrofluidikvorrichtung 1 ohne eingebrachtes Fluid. FIG. 1a shows the microfluidic device 1 without introduced fluid.
Bei der Mikrofluidikvorrichtung 1 ist in das Reservoir 4 ein homogenes Speichermaterial 5, vorzugsweise ein Schwamm, eingebracht. In Figur 1 b gelangt ein Fluid 20 über den Fluideingang 2 in das Reservoir 4 und wird darin zumindest teilweise von dem Speichermaterial 5 aufgesaugt. Beispielsweise wird das Fluid 20 in den Fluideingang 2 pipettiert. Das Fluid 20 enthält partikuläre Bestandteile 21. In the case of the microfluidic device 1, a homogeneous storage material 5, preferably a sponge, is introduced into the reservoir 4. In FIG. 1 b, a fluid 20 enters the reservoir 4 via the fluid inlet 2 and is at least partially sucked up there by the storage material 5 . For example, the fluid 20 is pipetted into the fluid inlet 2 . The fluid 20 contains particulate components 21.
Daraufhin wird, wie es in Figur 1c gezeigt ist, der Fluideingang 2 mit einem Deckel 13 verschlossen. Then, as shown in FIG. 1c, the fluid inlet 2 is closed with a cover 13.
Indem zwischen den Elektroden 7, 8 eine Spannung angelegt wird, wird, wie in Figur 1d gezeigt, eine Elektrolyse in der Aktorflüssigkeit 11 in Gang gesetzt. Die sich bei der Elektrolyse bildenden Sauerstoff- und Wasserstoffblasen 14 erzeugen einen Gasdruck, in Folge dessen sich die Membran 9 wölbt. Dadurch wird das darüber befindliche Speichermaterial 5 zusammengedrückt und das darin enthaltene Fluid 20 aus dem Speichermaterial 5 in den sich an das Reservoir 4 anschließenden Kanal 3 gedrückt. By applying a voltage between the electrodes 7, 8, electrolysis in the actuator liquid 11 is initiated, as shown in FIG. 1d. The oxygen and hydrogen bubbles 14 that form during the electrolysis generate a gas pressure, as a result of which the membrane 9 arches. As a result, the storage material 5 located above is compressed and the fluid 20 contained therein is pressed out of the storage material 5 into the channel 3 adjoining the reservoir 4 .
Dabei bleiben die partikulären Bestandteile 21 in dem Speichermaterial 5 hängen. Das Fluid 20 ist gefiltert. In the process, the particulate components 21 remain in the storage material 5 . The fluid 20 is filtered.
Figur 2a zeigt die Mikrofluidikvorrichtung 1‘ ohne eingebrachtes Fluid. Im Unterschied zu der Mikrofluidikvorrichtung 1 sind in dem Reservoir 4 der Mikrofluidikvorrichtung 1‘ zwei unterschiedliche Speichermaterialien, nämlich ein erstes Speichermaterial 5 und ein zweites Speichermaterial 5‘, eingebracht. Das erste Speichermaterial 5 weist größere Poren als das zweite Speichermaterial 5‘ auf. In anderen, nicht gezeigten Ausführungsformen der vorliegenden Erfindung kann sich die Saugfähigkeit und/oder die Filterfähigkeit des Speichermaterials 5 graduell innerhalb des Reservoirs 4 in der Fluidförderrichtung A ändern. In Figur 2b gelangt ein Fluid 20 über den Fluideingang 2 in das Reservoir 4 und wird darin zunächst von dem ersten Speichermaterial 5 aufgesaugt. Das Fluid 20 enthält partikuläre Bestandteile 21. Das Fluid 20 wird danach von dem in der Fluidförderrichtung A nach dem ersten Speichermaterial 5 angeordneten zweiten Speichermaterial 5‘ aufgesaugt. Durch die kleineren Poren des zweiten Speichermaterials 5‘ verbleiben die partikulären Bestandteile 21 bzw. ein Großteil davon in dem ersten Speichermaterial 5. FIG. 2a shows the microfluidic device 1′ without introduced fluid. In contrast to the microfluidic device 1, two different storage materials, namely a first storage material 5 and a second storage material 5', are introduced into the reservoir 4 of the microfluidic device 1'. The first storage material 5 has larger pores than the second storage material 5'. In other specific embodiments of the present invention that are not shown, the absorbency and/or the filterability of the storage material 5 can change gradually within the reservoir 4 in the fluid conveying direction A. In FIG. 2b, a fluid 20 enters the reservoir 4 via the fluid inlet 2 and is first sucked up there by the first storage material 5 . The fluid 20 contains particulate components 21. The fluid 20 is then sucked up by the second storage material 5', which is arranged after the first storage material 5 in the fluid conveying direction A. Due to the smaller pores of the second storage material 5', the particulate components 21 or a large part of them remain in the first storage material 5.
Daraufhin wird, wie es in Figur 2c gezeigt ist, der Fluideingang 2 mit einem Deckel 13 verschlossen. Then, as shown in FIG. 2c, the fluid inlet 2 is closed with a cover 13.
Indem zwischen den Elektroden 7, 8 eine Spannung angelegt wird, wird, wie in Figur 2d zu sehen, eine Elektrolyse in der Aktorflüssigkeit 11 in Gang gesetzt. Die sich bei der Elektrolyse bildenden Sauerstoff- und Wasserstoffblasen 14 erzeugen einen Gasdruck, in Folge dessen sich die Membran 9 wölbt. Dadurch wird die darüber befindliche Speichermaterialien 5, 5‘ zusammengedrückt und das darin enthaltene Fluid 20 aus den Speichermaterialien 5, 5‘ in den sich an das Reservoir 4 anschließenden Kanal 3 gedrückt. By applying a voltage between the electrodes 7, 8, electrolysis in the actuator liquid 11 is started, as can be seen in FIG. 2d. The oxygen and hydrogen bubbles 14 that form during the electrolysis generate a gas pressure, as a result of which the membrane 9 arches. As a result, the storage materials 5, 5' located above are pressed together and the fluid 20 contained therein is pressed out of the storage materials 5, 5' into the channel 3 adjoining the reservoir 4.
Dabei bleiben die partikulären Bestandteile 21 in dem ersten Speichermaterial 5 hängen. Das Fluid 20 ist gefiltert. The particulate components 21 remain in the first storage material 5 . The fluid 20 is filtered.
In der in den Figuren 3a bis 3d gezeigten Mikrofluidikvorrichtung 1 dient die Eingangs- aktorik vorrangig als temporärer Fluidspeicher sowie zur Pumpvolumendefinition. In the microfluidic device 1 shown in FIGS. 3a to 3d, the input actuator primarily serves as a temporary fluid store and for defining the pump volume.
Figur 3a zeigt die Mikrofluidikvorrichtung 1 ohne eingebrachtes Fluid. FIG. 3a shows the microfluidic device 1 without introduced fluid.
In Figur 3b gelangt ein Fluid 20 über den Fluideingang 2 in das Reservoir 4 und wird darin zumindest teilweise von dem Speichermaterial 5 aufgesaugt. In FIG. 3b, a fluid 20 enters the reservoir 4 via the fluid inlet 2 and is at least partially sucked up there by the storage material 5 .
Daraufhin wird, wie es in Figur 3c gezeigt ist, der Fluideingang 2 mit einem Deckel 13 verschlossen. Then, as shown in FIG. 3c, the fluid inlet 2 is closed with a cover 13.
Indem zwischen den Elektroden 7, 8 eine Spannung angelegt wird, wird, wie in Figur 3d gezeigt, eine Elektrolyse in der Aktorflüssigkeit 11 in Gang gesetzt. Die sich bei der Elektrolyse bildenden Sauerstoff- und Wasserstoffblasen 14 erzeugen einen Gasdruck, in Folge dessen sich die Membran 9 wölbt. Dadurch wird das darüber befindliche Speichermaterial 5 zusammengedrückt und das darin enthaltene Fluid 20 aus dem Speichermaterial 5 in den sich an das Reservoir 4 anschließenden Kanal 3 gedrückt. Da nicht mehr von dem Fluid 20 in den Kanal 3 gepumpt werden kann, als vorher durch das Speichermaterial 5 aufgenommen wurde, kann durch das Speichermaterial 5 ein definiertes Volumen des Fluids 20 eingestellt werden, welches in den Kanal 3 gepumpt werden soll. Insofern weniger von dem Fluid 20 in das Reservoir 4 gelangt, als das darin enthaltene Speichermaterial 5 aufnehmen kann, wird entsprechend weniger von dem Fluid 20 in den Kanal 3 weitergeleitet. Das Speichermaterial 5 bestimmt also das maximal weiterleitbare Fluidvolumen. By applying a voltage between the electrodes 7, 8, electrolysis in the actuator liquid 11 is initiated, as shown in FIG. 3d. The oxygen and hydrogen bubbles 14 that form during the electrolysis generate a gas pressure as a result of which the membrane 9 bulges. As a result, the storage material 5 located above is compressed and the fluid 20 contained therein is pressed out of the storage material 5 into the channel 3 adjoining the reservoir 4 . Since no more fluid 20 can be pumped into channel 3 than was previously taken up by storage material 5 , storage material 5 can set a defined volume of fluid 20 that is to be pumped into channel 3 . Insofar as less of the fluid 20 reaches the reservoir 4 than the storage material 5 contained therein can absorb, correspondingly less of the fluid 20 is passed on into the channel 3 . The storage material 5 therefore determines the maximum volume of fluid that can be passed on.
In der in den Figuren 4a bis 4d gezeigten Mikrofluidikvorrichtung 1“ dient die Eingangs- aktorik, ähnlich wie in den Figuren 3a bis 3d, zur Pumpvolumendefinition und zur Fluidverteilung. In the microfluidic device 1″ shown in FIGS. 4a to 4d, the input actuator system is used, similar to that in FIGS. 3a to 3d, to define the pump volume and to distribute the fluid.
Figur 4a zeigt die Mikrofluidikvorrichtung 1“ ohne eingebrachtes Fluid. FIG. 4a shows the microfluidic device 1″ without introduced fluid.
In Figur 4b gelangt ein Fluid 20 über den Fluideingang 2 und einen Fluidkanal 3‘ in das Reservoir 4 und wird darin zumindest teilweise von dem Speichermaterial 5 aufgesaugt. In FIG. 4b, a fluid 20 enters the reservoir 4 via the fluid inlet 2 and a fluid channel 3' and is at least partially sucked up there by the storage material 5.
Daraufhin wird, wie es in Figur 4c gezeigt ist, der Fluideingang 2 mit einem Deckel 13 verschlossen. Then, as shown in FIG. 4c, the fluid inlet 2 is closed with a cover 13.
Indem zwischen den Elektroden 7, 8 eine Spannung angelegt wird, wird, wie in Figur 4d gezeigt, eine Elektrolyse in der Aktorflüssigkeit 11 in Gang gesetzt. Die sich bei der Elektrolyse bildenden Sauerstoff- und Wasserstoffblasen 14 erzeugen einen Gasdruck, in Folge dessen sich die Membran 9 wölbt. Dadurch wird das darüber befindliche Speichermaterial 5 zusammengedrückt und das darin enthaltene Fluid 20 aus dem Speichermaterial 5 teilweise zurück in den sich in der Fluidförderrichtung A vor dem Reservoir 4 befindenden Fluidkanal 3‘ als auch teilweise in den sich an das Reservoir 4 in der Fluidförderrichtung A anschließenden Kanal 3 gedrückt. Somit wird nur ein Teil des Fluids 20 für eine Weiterleitung in der Mikrofluidikvorrichtung 1“ freigegeben. Entsprechend ist das in den Fluidkanal 3 einbringbare Fluidvolumen über die Eingangsaktorik gut definierbar. By applying a voltage between the electrodes 7, 8, electrolysis in the actuator liquid 11 is initiated, as shown in FIG. 4d. The oxygen and hydrogen bubbles 14 that form during the electrolysis generate a gas pressure, as a result of which the membrane 9 arches. As a result, the storage material 5 located above is compressed and the fluid 20 contained therein from the storage material 5 is partially back into the fluid channel 3' located in front of the reservoir 4 in the fluid conveying direction A and also partially into the fluid channel 3' that adjoins the reservoir 4 in the fluid conveying direction A Channel 3 pressed. Thus, only part of the fluid 20 is released for further transport in the microfluidic device 1″. Correspondingly, the fluid volume that can be introduced into the fluid channel 3 can be well defined via the input actuator system.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020134915.7A DE102020134915B4 (en) | 2020-12-23 | 2020-12-23 | microfluidic device with input actuators |
DE102020134915.7 | 2020-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022137162A1 true WO2022137162A1 (en) | 2022-06-30 |
Family
ID=79287797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2021/062186 WO2022137162A1 (en) | 2020-12-23 | 2021-12-22 | Microfluidic device with input actuator system |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102020134915B4 (en) |
WO (1) | WO2022137162A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1844936A1 (en) | 2006-04-13 | 2007-10-17 | Technische Universität Chemnitz | Microactor, method for displacing a fluid and method for manufacturing a microactor |
DE102013219502A1 (en) | 2013-09-27 | 2015-04-02 | Robert Bosch Gmbh | Analysis unit for carrying out a polymerase chain reaction, method for operating such an analysis unit and method for producing such an analysis unit |
EP3029363A1 (en) * | 2014-12-05 | 2016-06-08 | BiFlow Systems GmbH | Fluidic device and method for operating the same |
DE102015101106A1 (en) | 2015-01-27 | 2016-07-28 | Biflow Systems Gmbh | Microfluidic device and method for influencing the flow of a fluid in a microfluidic device |
EP2041573B1 (en) | 2006-06-23 | 2019-09-04 | PerkinElmer Health Sciences, Inc. | Methods and devices for microfluidic point-of-care immunoassays |
-
2020
- 2020-12-23 DE DE102020134915.7A patent/DE102020134915B4/en active Active
-
2021
- 2021-12-22 WO PCT/IB2021/062186 patent/WO2022137162A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1844936A1 (en) | 2006-04-13 | 2007-10-17 | Technische Universität Chemnitz | Microactor, method for displacing a fluid and method for manufacturing a microactor |
EP2041573B1 (en) | 2006-06-23 | 2019-09-04 | PerkinElmer Health Sciences, Inc. | Methods and devices for microfluidic point-of-care immunoassays |
DE102013219502A1 (en) | 2013-09-27 | 2015-04-02 | Robert Bosch Gmbh | Analysis unit for carrying out a polymerase chain reaction, method for operating such an analysis unit and method for producing such an analysis unit |
EP3029363A1 (en) * | 2014-12-05 | 2016-06-08 | BiFlow Systems GmbH | Fluidic device and method for operating the same |
DE102015101106A1 (en) | 2015-01-27 | 2016-07-28 | Biflow Systems Gmbh | Microfluidic device and method for influencing the flow of a fluid in a microfluidic device |
Also Published As
Publication number | Publication date |
---|---|
DE102020134915B4 (en) | 2025-02-13 |
DE102020134915A1 (en) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69529278T2 (en) | FILTRATION DEVICE FOR REMOVING LEUKOCYTES | |
DE69718011T2 (en) | FILTER CONTAINING DEVICES FOR FILTERING FLUID SAMPLE | |
EP2398589B1 (en) | Flow cell with integrated fluid reservoir | |
DE69411568T2 (en) | SELF-BLEEDING FILTER DEVICE | |
EP1880765B1 (en) | Microfluidic system | |
EP2322277B1 (en) | Microfluid chip | |
EP3810747B1 (en) | Modular processing system and method for the modular construction of a processing system | |
EP2688672A2 (en) | Device and method for filtering blood | |
DE102015101106B4 (en) | Microfluidic device and method for influencing the flow of a liquid in a microfluidic device | |
DE3604612C2 (en) | Separator for body fluids of humans or animals | |
EP1315553A1 (en) | Device and method for separating undissolved constituents out of biological fluids | |
EP2406495B1 (en) | Pump having a filter arrangement | |
DE2842118A1 (en) | METHOD AND DEVICE FOR BLOOD DIALYSIS IN AN ARTIFICIAL KIDNEY | |
DE3020449A1 (en) | FILTER DEVICE FOR AN INTRAVENOES INFUSION SYSTEM | |
EP1161995A2 (en) | Method and apparatus for absorbing a medium into a capillary device | |
DE102020134915B4 (en) | microfluidic device with input actuators | |
WO2022037912A1 (en) | Microfluidic device | |
EP2754495A2 (en) | Microfluidic channel system with bubble capture device and method for the removal of gas bubbles | |
EP4019935B1 (en) | Integrity test for a double filter capsule | |
DE102009045403A1 (en) | Device for phase separation | |
DE10340012A1 (en) | Device for gas or liquid separation from microfluidic flow systems | |
DE2141570A1 (en) | Gas extraction - from fluid for analysis, through a membrane forming part of flow channel | |
DE102004054496B4 (en) | Drainage chamber for body fluids, especially liquor, comprises a spring- loaded closing element pre-tensioned in the direction of a closed position in which it closes an inlet connector and a ventilation connector | |
EP2598242B1 (en) | Apparatus for separating components of a sample liquid | |
DE102016123658A1 (en) | Filtration device and method for enrichment of targets and the subsequent release of biogenic agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21840147 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21840147 Country of ref document: EP Kind code of ref document: A1 |