WO2022136355A1 - Système de planification d'une trajectoire optimisée d'un véhicule maritime - Google Patents

Système de planification d'une trajectoire optimisée d'un véhicule maritime Download PDF

Info

Publication number
WO2022136355A1
WO2022136355A1 PCT/EP2021/086959 EP2021086959W WO2022136355A1 WO 2022136355 A1 WO2022136355 A1 WO 2022136355A1 EP 2021086959 W EP2021086959 W EP 2021086959W WO 2022136355 A1 WO2022136355 A1 WO 2022136355A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
space
model
trajectory
planning
Prior art date
Application number
PCT/EP2021/086959
Other languages
English (en)
Inventor
Estelle CHAUVEAU
Maxime DEBERT
Andrew LAMMAS
Karl SAMMUT
Original Assignee
Naval Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval Group filed Critical Naval Group
Priority to EP21843941.2A priority Critical patent/EP4268212A1/fr
Publication of WO2022136355A1 publication Critical patent/WO2022136355A1/fr

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems

Definitions

  • the present invention relates to a system for planning an optimized trajectory of a maritime vehicle in a continuous space.
  • the maritime vehicle can for example be a surface vessel or even a submarine.
  • Its environment then consists, for example, of a set of nearby mobiles.
  • a mobile is characterized by an estimated position with a known uncertainty as well as a known random behavioral model.
  • cost corresponds to a measurement associated with the trajectory followed by the vehicle between the starting point and the finishing point (which can be for example a distance, fuel consumption , risk of collision, etc.).
  • the object of the invention is therefore to propose such a solution in this specific field.
  • the subject of the invention is a system for planning an optimized trajectory of a maritime vehicle in a continuous space, characterized in that it comprises: - Means for discretizing the continuous space in which the trajectory of the vehicle must be planned, associated with a model of the vehicle and with a model of the or each mobile obstacle in this space;
  • - continuous space is a space in four dimensions, three for space and one for time, by creating a Cartesian grid of dimension 4;
  • the vehicle model represents the dynamics of the evolution of the vehicle in position, orientation and speed
  • the mobile obstacle model is characterized by its estimated state at the time of the planning launch and by a stochastic evolution model known to it;
  • Figure 1 illustrates a vehicle model
  • FIG. 2 figure 2 illustrates the probability of presence of an obstacle estimated using a Monte-Carlo method
  • FIG. 3 illustrates a block diagram of a planning system according to the invention.
  • a method is then proposed that can be used in an operational context thanks to various improvements such as: the fact that the proposed method is independent of the law of probability followed by the obstacles; the physical constraints of manoeuvrability, inertia, etc. different systems, are taken into account; the use of original methods of discretization in the form of a graph, making the overall system both flexible and efficient and allowing in particular consider several threats and plan for a substantial time horizon.
  • the system according to the invention therefore uses a discretization system common to: a model of the maritime vehicle; a model of moving obstacles, and a trajectory planning method based on these elements.
  • the discretization system consists in discretizing the continuous space in which the trajectory must be planned.
  • This continuous space is then a four-dimensional space, three for space and one for time, creating a Cartesian grid of dimension 4.
  • This discretization system constitutes, in other words, the form of storing information from sensors in a memory of the maritime vehicle for its use by a computer, for example on board it.
  • the model of the maritime vehicle consists in representing the dynamics of the evolution of the vehicle for which the method makes it possible to plan the trajectory.
  • This model is for example illustrated in FIG.
  • the state of the vehicle is then characterized at all times by its position, its orientation and its speed.
  • the position can be reduced to a finite set of possible values by restricting itself to the center of the spatial elements of the discretization system.
  • the on-board computer only has to read the data in the table in order to optimize the calculation time.
  • a mobile obstacle is characterized by its state estimated at the time of the launch of the planning and by a stochastic evolution model considered as known. Its state is characterized by its position and speed.
  • This state is estimated using data from sensors on board the vehicle.
  • the stochastic process it can be approximated by a discrete model representing the probability of presence of the mobile on a point of the common discretization system at each instant t.
  • This probability can be estimated using a method such as, for example, the Monte-Carlo method illustrated in Figure 2.
  • the cost corresponds to a measurement associated with the trajectory followed between the starting point and the finishing point and concerns, for example, a distance, fuel consumption, risk of collision, etc.
  • the functional to be minimized is approximated by the discrete sum of the costs between each arc.
  • the calculated optimal trajectory is then one of the trajectories for which the functional is minimal.
  • the corresponding determination module is then integrated into an on-board computer for example, making it possible to provide the best trajectory according to the established discretization.
  • This trajectory can then be a decision-making aid for people in charge of driving the vehicle, by then delivering information to an operator to help drive this vehicle, or even by directly delivering control information for at least one driving member of the vehicle.
  • FIG. 3 Such a system is schematically illustrated in Figure 3, where we recognize a common discretization system designated by the general reference 1, associated with a model of the vehicle designated by general reference 2 and a model of the obstacle(s) designated by general reference 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

Ce système de planification d'une trajectoire optimisée d'un véhicule maritime dans un espace continu, est caractérisé en ce qu'il comporte : - des moyens (1) de discrétisation de l'espace continu dans lequel la trajectoire du véhicule doit être planifiée, associés à un modèle du véhicule (2) et à un modèle du ou de chaque obstacle mobile (3) dans cet espace; - des moyens (4) de calcul de la fonction de coûts pour chaque transition possible entre deux dates consécutives de la composante temporelle de cet espace; et - des moyens (5, 6) d'établissement de la trajectoire optimale comme étant celle pour laquelle la fonction coût est minimisée.

Description

DESCRIPTION
TITRE : SYSTEME DE PLANIFICATION D’UNE TRAJECTOIRE OPTIMISEE D’UN VEHICULE MARITIME
La présente invention concerne un système de planification d’une trajectoire optimisée d’un véhicule maritime dans un espace continu.
Le véhicule maritime peut par exemple être un bâtiment de surface ou encore un sous-marin.
Il s’agit ainsi de planifier une trajectoire d’un point de départ jusqu’à une zone de destination pour un véhicule maritime, à partir de la connaissance de l’état de son environnement.
Son environnement consiste alors par exemple en un ensemble de mobiles à proximité.
Un mobile est caractérisé par une position estimée avec une incertitude connue ainsi qu’un modèle comportemental aléatoire connu.
En fait ceci se fait en utilisant la notion de « coût » qui correspond à une mesure associée à la trajectoire suivie par le véhicule entre le point de départ et le point d’arrivée (qui peut être par exemple une distance, une consommation de carburant, un risque de collision etc....).
Lorsque l’on discrétise le problème, ceci fournit un outil de calcul approximatif de cette mesure, l’objectif étant d’optimiser cette dernière (minimisation de la distance, de la consommation, du risque etc.).
Des études sur ce type de systèmes ont déjà été réalisées dans des domaines tels que le domaine routier ou encore le domaine aérien.
On pourra par exemple se reporter aux documents FR 3 084 630, EP 2 463 844, EP 2 287 633 et US 2017/0132942.
Dans ces documents on propose alors une trajectoire optimale en garantissant l’évitement d’obstacles mobiles tout en minimisant un coût le long de cette trajectoire.
Cependant rien n’a encore été proposé dans le domaine maritime.
Le but de l’invention est donc de proposer une telle solution dans ce domaine spécifique.
A cet effet l’invention a pour objet un système de planification d’une trajectoire optimisée d’un véhicule maritime dans un espace continu, caractérisé en ce qu’il comporte : - des moyens de discrétisation de l’espace continu dans lequel la trajectoire du véhicule doit être planifiée, associés à un modèle du véhicule et à un modèle du ou de chaque obstacle mobile dans cet espace ;
- des moyens de calcul de la fonction de coûts pour chaque transition possible entre deux dates consécutives de la composante temporelle de cet espace ; et
- des moyens d’établissement de la trajectoire optimale comme étant celle pour laquelle la fonction coût est minimisée.
Suivant d’autres caractéristiques du système selon l’invention, prises seules ou en combinaison :
- l’espace continu est un espace en quatre dimensions, trois pour l’espace et une pour le temps, en créant une grille cartésienne de dimension 4 ;
- le modèle du véhicule représente la dynamique de l’évolution du véhicule en position, orientation et vitesse ;
- le modèle d’obstacle mobile est caractérisé par son état estimé à l’instant du lancement de la planification et d’un modèle d’évolution stochastique connu de celui- ci ;
- il est embarqué à bord du véhicule ;
- il est adapté pour délivrer à un opérateur, des informations d’aide à la conduite du véhicule ;
- il est adapté pour délivrer des informations de commande d’au moins un organe de conduite du véhicule.
L’invention sera mieux comprise à l’aide de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins annexés, sur lesquels :
[Fig. 1] la figure 1 illustre un modèle de véhicule ;
[Fig. 2] la figure 2 illustre la probabilité de présence d’un obstacle estimée à l’aide d’une méthode de Monte-Carlo ; et
[Fig. 3] la figure 3 illustre un schéma synoptique d’un système de planification selon l’invention.
Il est proposé par la suite une méthode utilisable dans un contexte opérationnel grâce à différentes améliorations telles que : le fait que la méthode proposée est indépendante de la loi de probabilité suivie par les obstacles ; les contraintes physiques de manœuvrabilité, inertie etc. des différents systèmes, sont prises en compte ; l’utilisation de méthodes originales de discrétisation sous forme de graphe, rendant le système global à la fois flexible et efficace et permettant notamment de considérer plusieurs menaces et de planifier à un horizon temporel conséquent.
Le système selon l’invention fait donc appel à un système de discrétisation commun à : un modèle du véhicule maritime ; un modèle des obstacles mobiles, et une méthode de planification de la trajectoire basée sur ces éléments.
Ainsi, le système de discrétisation consiste à discrétiser l’espace continu dans lequel la trajectoire doit être planifiée.
Cet espace continu est alors un espace à quatre dimensions, trois pour l’espace et une pour le temps, en créant une grille cartésienne de dimension 4.
On distingue alors les éléments spatiaux pour les trois premières dimensions, des éléments temporels pour la quatrième dimension.
Dans la suite de la description, ce système de discrétisation sera la base commune aux différents modèles.
Ce système de discrétisation constitue en d’autres termes la forme de stockage de l’information issue de capteurs dans une mémoire du véhicule maritime pour son exploitation par un calculateur par exemple embarqué dans celui-ci.
Le modèle du véhicule maritime consiste à représenter la dynamique de l’évolution du véhicule pour lequel la méthode permet de planifier la trajectoire.
Ce modèle est par exemple illustré sur la figure 1 .
L’état du véhicule est alors caractérisé à chaque instant par sa position, son orientation et sa vitesse.
La position peut être ramenée à un ensemble fini de valeurs possibles en se restreignant au centre des éléments spatiaux du système de discrétisation.
L’évolution de cet état est régie par des équations différentielles connues, issues du principe fondamental de la dynamique permettant d’établir, pour un état donné et à un instant t, une composante temporelle du système de discrétisation commun, les étapes possibles à l’instant t + 1 , toujours dans le système de discrétisation commun.
Ces transitions d’un état à un autre sont pré-calculées en amont et stockées dans des mémoires sur des tables de correspondance.
Ainsi le calculateur embarqué n’a plus qu’à lire la donnée dans la table afin d’optimiser le temps de calcul.
Un obstacle mobile est quant à lui caractérisé par son état estimé à l’instant du lancement de la planification et d’un modèle d’évolution stochastique considéré comme connu. Son état est caractérisé par sa position et sa vitesse.
Cet état est estimé à l’aide des données issues des capteurs embarqués sur le véhicule.
Ainsi on parle des capteurs permettant d’établir la situation environnante et donc principalement les capteurs de type sonar, caméra, lidar, radar...
Quant au processus stochastique, il peut être approché par un modèle discret représentant la probabilité de présence du mobile sur un point du système de discrétisation commun à chaque instant t.
Cette probabilité peut être estimée à l’aide d’une méthode telle que par exemple la méthode de Monte-Carlo illustrée sur la figure 2.
A partir du modèle de véhicule maritime, du modèle d’obstacle mobile et pour chaque transition possible entre deux dates consécutives de la composante temporelle de l’espace de discrétisation, il est alors possible d’évaluer la fonction de coût entre ces deux dates.
Comme indiqué précédemment le coût correspond à une mesure associée à la trajectoire suivie entre le point de départ et le point d’arrivée et concerne par exemple une distance, une consommation de carburant, un risque de collision...
La fonctionnelle à minimiser est approchée par la somme discrète des coûts entre chaque arc.
La trajectoire optimale calculée est alors l’une des trajectoires pour laquelle la fonctionnelle est minimale.
Ainsi, il est possible d’établir la trajectoire optimale comme étant celle pour laquelle la fonction coût est minimisée.
Elle peut être identifiée puisque le nombre de transitions possibles est fini.
Elle est calculée efficacement par des algorithmes par exemple de recherche dans un graphe.
Le module de détermination correspondant est alors intégré alors dans un calculateur embarqué par exemple, permettant de fournir la meilleure trajectoire selon la discrétisation établie.
Cette trajectoire peut ensuite être une aide à la décision pour des personnes en charge de la conduite du véhicule, en délivrant alors à un opérateur des informations d’aide à la conduite de ce véhicule, ou encore en délivrant directement des informations de commande d’au moins un organe de conduite du véhicule.
Un tel système est illustré de façon schématique sur la figure 3, où l’on reconnaît un système de discrétisation commun désigné par la référence générale 1 , associé à un modèle du véhicule désigné par la référence générale 2 et à un modèle du ou des obstacles désigné par la référence générale 3.
Le calcul des coûts est alors réalisé par des moyens de calcul 4, et l’optimisation par des moyens 5, ce qui permet de délivrer la trajectoire par des moyens d’établissement 6.
De nombreuses applications d’un tel système peuvent alors être envisagées.
Ainsi par exemple on peut envisager l’aide à la décision pour la reprise de vue d’un sous-marin, si la navigation est à immersion périscopique par exemple, l’autonomie décisionnelle embarquée pour un drone, une optimisation de la discrétion acoustique par exemple d’un sous-marin dans un théâtre opérationnel multi-menaces, le calcul d’une route de réversibilité pour l’atteinte d’une cible par un sous-marin, etc.

Claims

6 REVENDICATIONS
1. Système de planification d’une trajectoire optimisée d’un véhicule maritime dans un espace continu, caractérisé en ce qu’il comporte :
- des moyens (1) de discrétisation de l’espace continu dans lequel la trajectoire du véhicule doit être planifiée, associés à un modèle du véhicule (2) et à un modèle du ou de chaque obstacle mobile (3) dans cet espace ;
- des moyens (4) de calcul de la fonction de coûts pour chaque transition possible entre deux dates consécutives de la composante temporelle de cet espace ; et
- des moyens (5, 6) d’établissement de la trajectoire optimale comme étant celle pour laquelle la fonction coût est minimisée.
2. Système de planification selon la revendication 1 , caractérisé en ce que l’espace continu est un espace en quatre dimensions, trois pour l’espace et une pour le temps, en créant une grille cartésienne de dimension 4.
3. Système de planification selon la revendication 1 ou 2, caractérisé en ce que le modèle du véhicule représente la dynamique de l’évolution du véhicule en position, orientation et vitesse.
4. Système de planification selon l’une quelconque des revendications précédentes, caractérisé en ce que le modèle d’obstacle mobile est caractérisé par son état estimé à l’instant du lancement de la planification et d’un modèle d’évolution stochastique connu de celui-ci.
5. Système de planification selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il est embarqué à bord du véhicule.
6. Système de planification selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il est adapté pour délivrer à un opérateur, des informations d’aide à la conduite du véhicule.
7. Système de planification selon l’une quelconque des revendications 1 à 5, caractérisé en ce qu’il est adapté pour délivrer des informations de commande d’au moins un organe de conduite du véhicule.
PCT/EP2021/086959 2020-12-22 2021-12-21 Système de planification d'une trajectoire optimisée d'un véhicule maritime WO2022136355A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21843941.2A EP4268212A1 (fr) 2020-12-22 2021-12-21 Système de planification d'une trajectoire optimisée d'un véhicule maritime

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2013912A FR3118222B1 (fr) 2020-12-22 2020-12-22 Systeme de planification d'une trajectoire optimisee d'un vehicule maritime
FRFR2013912 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022136355A1 true WO2022136355A1 (fr) 2022-06-30

Family

ID=75690345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/086959 WO2022136355A1 (fr) 2020-12-22 2021-12-21 Système de planification d'une trajectoire optimisée d'un véhicule maritime

Country Status (3)

Country Link
EP (1) EP4268212A1 (fr)
FR (1) FR3118222B1 (fr)
WO (1) WO2022136355A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287633A1 (fr) 2009-07-31 2011-02-23 Thales Radar de détection de cibles aériennes équipant un aéronef notamment pour l'évitement d'obstacles en vol
EP2463844A1 (fr) 2010-12-07 2012-06-13 Airbus Operations (Sas) Procédé et dispositif pour construire une trajectoire de vol optimale destinée à être suivie par un aéronef
US20170132942A1 (en) 2015-11-05 2017-05-11 Airbus Operations Sas Method and device for generating an optimum vertical path intended to be followed by an aircraft
US20190011921A1 (en) * 2015-09-15 2019-01-10 SZ DJI Technology Co., Ltd. Systems and methods for uav interactive instructions and control
US20190051198A1 (en) * 2018-09-28 2019-02-14 Intel Corporation Method of generating a collision free path of travel and computing system
FR3084630A1 (fr) 2018-07-31 2020-02-07 Psa Automobiles Sa Procede de planification de la trajectoire optimale d'un vehicule autonome et vehicule autonome equipe d’un calculateur embarque pour la mise en œuvre dudit procede

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287633A1 (fr) 2009-07-31 2011-02-23 Thales Radar de détection de cibles aériennes équipant un aéronef notamment pour l'évitement d'obstacles en vol
EP2463844A1 (fr) 2010-12-07 2012-06-13 Airbus Operations (Sas) Procédé et dispositif pour construire une trajectoire de vol optimale destinée à être suivie par un aéronef
US20190011921A1 (en) * 2015-09-15 2019-01-10 SZ DJI Technology Co., Ltd. Systems and methods for uav interactive instructions and control
US20170132942A1 (en) 2015-11-05 2017-05-11 Airbus Operations Sas Method and device for generating an optimum vertical path intended to be followed by an aircraft
FR3084630A1 (fr) 2018-07-31 2020-02-07 Psa Automobiles Sa Procede de planification de la trajectoire optimale d'un vehicule autonome et vehicule autonome equipe d’un calculateur embarque pour la mise en œuvre dudit procede
US20190051198A1 (en) * 2018-09-28 2019-02-14 Intel Corporation Method of generating a collision free path of travel and computing system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AGRAWAL PRANAY ET AL: "COLREGS-compliant target following for an Unmanned Surface Vehicle in dynamic environments", 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), IEEE, 28 September 2015 (2015-09-28), pages 1065 - 1070, XP032831723, DOI: 10.1109/IROS.2015.7353502 *
JOHANSEN TOR ARNE ET AL: "Ship Collision Avoidance and COLREGS Compliance Using Simulation-Based Control Behavior Selection With Predictive Hazard Assessment", IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE, PISCATAWAY, NJ, USA, vol. 17, no. 12, 1 December 2016 (2016-12-01) - 1 December 2016 (2016-12-01), pages 3407 - 3422, XP011635234, ISSN: 1524-9050, [retrieved on 20161123], DOI: 10.1109/TITS.2016.2551780 *

Also Published As

Publication number Publication date
FR3118222A1 (fr) 2022-06-24
FR3118222B1 (fr) 2023-05-05
EP4268212A1 (fr) 2023-11-01

Similar Documents

Publication Publication Date Title
US11126187B2 (en) Systems and methods for controlling the operation of a vehicle
EP3385930B1 (fr) Procédé et dispositif de génération d'informations véhiculaires de prévision utilisées pour un déplacement sur un réseau routier
US10202112B2 (en) Systems and methods for preemptively modifying vehicle parameters according to predicted accelerations when merging
US11851081B2 (en) Predictability-based autonomous vehicle trajectory assessments
US10078335B2 (en) Ray tracing for hidden obstacle detection
US10466361B2 (en) Systems and methods for multi-sensor fusion using permutation matrix track association
US11125567B2 (en) Methods and systems for mapping and localization for a vehicle
US10040453B2 (en) Systems and methods for preemptively modifying vehicle parameters according to predicted accelerations upon a travel lane clearing
US11055540B2 (en) Method for determining anchor boxes for training neural network object detection models for autonomous driving
JPWO2018235159A1 (ja) 経路予測装置および経路予測方法
US9981660B2 (en) Operation of a vehicle by classifying a preceding vehicle lane
US20200073382A1 (en) Autonomous Vehicle Operational Management With Visual Saliency Perception Control
EP3438881A1 (fr) Détermination de positions de véhicules
KR102210140B1 (ko) 센서 데이터로부터 생성된 물체를 평활화하기 위한 맵 정보의 이용
CN108340915A (zh) 车辆控制装置
WO2014090697A1 (fr) Procede de pilotage d'un ensemble de robots et ensemble de robots
US11634133B1 (en) Adaptive automatic preventative braking (APB) distance
WO2022065021A1 (fr) Dispositif de conduite automatique
JP2020106904A (ja) 車載処理装置
WO2022136355A1 (fr) Système de planification d'une trajectoire optimisée d'un véhicule maritime
US11873011B2 (en) Labeling lane segments for behavior prediction for agents in an environment
US10732636B2 (en) Automated driving system and method for road vehicles
FR3064073A1 (fr) Procede et dispositif de determination d'une position
US11299137B2 (en) Lateral control for vehicle wireless charging guidance
FR3103305A1 (fr) Procédé et dispositif de prédiction d’au moins une caractéristique dynamique d’un véhicule en un point d’un segment routier.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021843941

Country of ref document: EP

Effective date: 20230724