WO2022135248A1 - 显示面板和显示设备 - Google Patents

显示面板和显示设备 Download PDF

Info

Publication number
WO2022135248A1
WO2022135248A1 PCT/CN2021/138617 CN2021138617W WO2022135248A1 WO 2022135248 A1 WO2022135248 A1 WO 2022135248A1 CN 2021138617 W CN2021138617 W CN 2021138617W WO 2022135248 A1 WO2022135248 A1 WO 2022135248A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing
unit
light
units
emitting
Prior art date
Application number
PCT/CN2021/138617
Other languages
English (en)
French (fr)
Inventor
周华昭
胡浩
张祖强
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022135248A1 publication Critical patent/WO2022135248A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques

Definitions

  • the present application belongs to the technical field of display panels, and in particular relates to a display panel and a display device.
  • stereoscopic (3D) display generally adopts polarized 3D display, and the display screen is divided into multiple lines parallel to each other. Realize the stereoscopic display effect.
  • This stereoscopic display method is only applicable to liquid crystal display panels of standard RGB arrangement, and is not applicable to liquid crystal display panels of other arrangements.
  • the present application aims to provide a display panel and a display device, which can realize the effect of stereoscopic display on display panels arranged in various ways.
  • an embodiment of the present application provides a display panel, including:
  • a display layer which is provided with a plurality of light-emitting units
  • the polarizing layer is arranged on one side of the display layer, the polarizing layer is provided with a plurality of polarizing units, and the number of the polarizing units is the same as the number of the light-emitting units;
  • each polarizing unit covers one light emitting unit.
  • an embodiment of the present application provides a display device, including the display panel as proposed in the first aspect.
  • the display layer may be a liquid crystal display panel with any pixel arrangement.
  • the pixels on the display layer are divided into a plurality of light-emitting units, which are arranged on one side of the display layer.
  • the polarizing units corresponding to each light-emitting unit are divided one by one, and in the direction perpendicular to the display layer, the light-emitting area of each light-emitting unit is covered by a polarizing unit.
  • the adjacent polarizing units can polarize the light emitted by the light-emitting units covered by the adjacent polarizing units respectively according to different polarizing modes, thereby distinguishing the left-eye image and the right-eye image, thereby realizing a stereoscopic display effect.
  • the display layer is divided into a plurality of light-emitting regions according to the distribution characteristics of the pixel points on the display layer, wherein the plurality of light-emitting regions are arranged and distributed on the display layer, and each polarizing unit on the polarizing layer is set to correspond to one
  • the light-emitting areas correspond to each other, so no matter what kind of pixel arrangement is on the display layer, such as standard RGB arrangement of liquid crystal display panels (Liquid Crystal Display, LCD), or diamond arrangement of active matrix organic light-emitting diodes (Active-matrix organic light-emitting diodes (Active-matrix organic light-emitting diodes).
  • Diode, AMOLED) display panels, or miniaturized light-emitting diode display panels (micro-LED display) arranged in RGB delta, etc., can realize stereoscopic display, thus realizing stereoscopic display on display panels of various arrangements. Effect.
  • FIG. 1 shows a schematic structural diagram of a display panel according to an embodiment of the present application
  • FIG. 2 shows one of the schematic structural diagrams of the polarizing layer according to an embodiment of the present application
  • FIG. 3 shows the second schematic diagram of the structure of the polarizing layer according to the embodiment of the present application
  • FIG. 4 shows one of the schematic structural diagrams of the display layer according to an embodiment of the present application
  • FIG. 5 shows the second schematic structural diagram of a display layer according to an embodiment of the present application
  • FIG. 6 shows a structural block diagram of a display device according to an embodiment of the present application.
  • FIG. 7 shows a structural block diagram of a glasses device according to an embodiment of the present application.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 shows a schematic structural diagram of a display panel 100 according to an embodiment of the present application.
  • the display panel 100 includes:
  • the display layer 102, the display layer 102 is provided with a plurality of light-emitting units 1022;
  • the polarizing layer 104 is arranged on one side of the display layer 102, and the polarizing layer 104 is provided with a plurality of polarizing units 1042, and the number of the polarizing units 1042 is the same as that of the light-emitting units 1022;
  • each polarizing unit 1042 covers one light emitting unit 1022 .
  • the display layer 102 may be a liquid crystal display panel 100 with any pixel arrangement.
  • the pixels on the display layer 102 are divided into a plurality of light-emitting units 1022, which are arranged in the On the polarizing layer 104 on one side of the display layer 102, the polarizing units 1042 corresponding to each light-emitting unit 1022 are divided one-to-one, and in the direction perpendicular to the display layer 102, the light-emitting area of each light-emitting unit is A polarizing unit 1042 is covered.
  • the adjacent polarizing units 1042 can polarize the light emitted by the light-emitting units 1022 covered by the adjacent polarizing units 1042 respectively according to different polarizing modes, so as to distinguish the left-eye image and the right-eye image, thereby realizing a stereoscopic display effect.
  • the display layer 102 is divided into a plurality of light-emitting regions according to the distribution characteristics of the pixel points on the display layer 102 , wherein the plurality of light-emitting regions are arranged and distributed on the display layer 102 , and each polarization on the polarizing layer 104 is set.
  • Each unit 1042 corresponds to a light-emitting area, so no matter what pixel arrangement is on the display layer 102, such as a standard RGB arrangement of liquid crystal display panel, or diamond arrangement of active matrix organic light emitting diode display panel 100, or RGB delta
  • the arrayed miniaturized light emitting diode display panels 100 and the like can all realize stereoscopic display, thereby realizing the effect of realizing stereoscopic display on the display panels 100 in various arrangements.
  • the polarizing units 1042 are distributed in an array, the polarizing unit 1042 includes a first polarizing unit and a second polarizing unit, and in the arrangement direction of the polarizing units 1042, the first polarizing unit and the second polarizing unit alternate distributed.
  • the polarization units 1042 are distributed in an array, that is, distributed according to a certain rule, and the distribution mode of the polarization units 1042 is the same as that of the light emitting units 1022 .
  • the polarization unit 1042 includes a first polarization unit and a second polarization unit, wherein the polarization mode of the first polarization unit is different from that of the second polarization unit. Therefore, the light-emitting unit 1022 covered by the first polarization unit, Able to emit light and form a "left eye image".
  • the light emitting unit 1022 covered by the second polarizing unit can emit light and form a "right eye image", so the image displayed by the display panel 100 can present a "stereoscopic" effect when viewed in a specific way.
  • the first polarizing units and the second polarizing units are alternately distributed, that is to say, the polarizing units 1042 adjacent to the first polarizing unit are all second polarizing units, and the polarizing units 1042 adjacent to the first polarizing unit are all second polarizing units,
  • the adjacent polarizing units 1042 are all first polarizing units, that is to say, the first polarizing units and the second polarizing units are alternately arranged.
  • the polarizing unit 1042 is a rectangular polarizing unit 1042
  • the number of second polarizing units adjacent to the current first polarizing unit is 4, which are the two second polarizing units adjacent to the long side and the broad side respectively. 2 adjacent.
  • the polarizing unit 1042 is a hexagonal array unit
  • the number of second polarizing units adjacent to the current first polarizing unit is 6, and each side of the hexagonal first polarizing unit is connected to one second polarizing unit. adjacent.
  • the adjacent polarizing units 1042 By making the adjacent polarizing units 1042 to be polarizing units 1042 with different polarization modes, the left-eye influence and the right-eye influence are separated, and the left-eye influence and the right-eye influence are evenly distributed, which can improve the display effect of the stereoscopic display.
  • both the first polarizing unit and the second polarizing unit are phase retardation polarizing units 1042 ; the first polarizing unit is a ⁇ /2 phase retardation polarizing unit 1042 , where ⁇ is the light emitted by the light-emitting unit 1022 wavelength; the second polarizing unit is a zero-phase retardation polarizing unit 1042.
  • the first polarization unit and the second polarization unit are set as the phase retardation polarization unit 1042 .
  • the first polarizing unit may be set as the ⁇ /2 phase retardation polarizing unit 1042
  • the second polarizing unit may be set as the zero-phase retardation polarizing unit 1042 .
  • the light-emitting unit 1022 covered by the first polarizing unit corresponds to the left-eye image
  • the light-emitting unit 1022 covered by the second polarizing unit corresponds to the right-eye image
  • the display panel 100 is arranged perpendicular to the horizontal plane, that is, the thickness direction of the display panel 100 is the same as the horizontal
  • the horizontal linearly polarized light image can be generated by the first polarizing unit
  • the vertical linearly polarized light can be generated by the second polarizing unit. Therefore, the left-eye image and the right-eye image are polarized in different directions due to different phase retardation units. , that is, the polarized light in different directions is formed, so that when the observer watches the image through corresponding means, the left eye and the right eye respectively intelligently observe the polarized light in a specific direction, and finally realize the stereoscopic display effect.
  • FIG. 2 shows one of the schematic structural diagrams of the polarizing layer 104 according to an embodiment of the present application.
  • the first polarizing unit and the second polarizing unit are both linear polarizing units 1042
  • the polarization direction of the first polarization unit is the first direction; the polarization direction of the second polarization unit is the second direction, and the first direction is perpendicular to the second direction.
  • the first polarizing unit and the second polarizing unit are set as the linear polarizing unit 1042 .
  • the polarization direction of the first polarization unit is set as the first direction
  • the polarization direction of the second polarization unit is set as the second direction.
  • the light-emitting unit 1022 covered by the first polarizing unit corresponds to the left-eye image
  • the light-emitting unit 1022 covered by the second polarizing unit corresponds to the right-eye image
  • the display panel 100 is arranged perpendicular to the horizontal plane, that is, the thickness direction of the display panel 100 is the same as the horizontal direction is parallel.
  • the light of the left-eye image is polarized in the first direction by the first polarization unit, and it is assumed that the first direction here is the horizontal direction.
  • the light of the right-eye image is polarized to the second direction by the second polarizing unit, where the second direction corresponds to the vertical direction, so the left-eye image and the right-eye image form polarized light in different directions, which makes the observer
  • the left eye and the right eye intelligently observe light polarized in a specific direction, respectively, and finally achieve a stereoscopic display effect.
  • FIG. 3 shows the second schematic diagram of the structure of the polarizing layer 104 according to an embodiment of the present application.
  • the first polarizing unit and the second polarizing unit are both circular polarizing units 1042 ;
  • the polarization direction of the first polarization unit is clockwise rotation polarization;
  • the polarization direction of the second polarization unit is counterclockwise rotation polarization.
  • the first polarizing unit and the second polarizing unit are set as the circular polarizing unit 1042 .
  • the polarization direction of the first polarization unit is set to rotate the polarization clockwise
  • the polarization direction of the second polarization unit is set to rotate the polarization counterclockwise.
  • the light-emitting unit 1022 covered by the first polarizing unit corresponds to the left-eye image
  • the light-emitting unit 1022 covered by the second polarizing unit corresponds to the right-eye image
  • the display panel 100 is arranged perpendicular to the horizontal plane, that is, the thickness direction of the display panel 100 is the same as the horizontal direction is parallel.
  • the light of the left-eye image is polarized clockwise by the first polarizing unit, that is, right-handed polarization
  • the light of the right-eye image is polarized counterclockwise by the second polarizing unit, that is, left-handed polarization, so the left-eye image and the right-eye image are formed.
  • the polarized light in different directions makes the left eye and the right eye intelligently observe the polarized light in a specific direction when the observer views the image through corresponding means, and finally realizes the stereoscopic display effect.
  • the area of the polarizing layer 104 is larger than that of the display layer 102 , and the polarizing layer 104 covers the entire light-emitting area of the display layer 102 .
  • the area of the polarizing layer 104 is larger than that of the display layer 102 .
  • the liquid crystal panel needs to be cut into a desired shape, such as a rectangle.
  • a desired shape such as a rectangle.
  • the edge portion of the shape for a panel with a non-standard RGB arrangement, since its pixel arrangement is not "tidy" arrangement, there may be incomplete light-emitting units 1022 in the cut edge and corner portions. The pixels in these incomplete light-emitting units 1022 will also emit light.
  • the area of the polarizing layer 104 is set to be larger than the area of the display layer 102, and the polarizing layer 104 covers the entire light-emitting area of the display layer 102, which can ensure the edge,
  • the incomplete light-emitting units 1022 or pixels at the corners can also be polarized according to the same rule, so that the display effect of the stereoscopic display can be improved.
  • the display layer 102 is provided with a plurality of sub-pixels, and the types and numbers of sub-pixels in each light-emitting unit 1022 are the same; and the arrangement of the polarizing units 1042 and the arrangement of the light-emitting units 1022 same.
  • the display layer 102 is provided with a plurality of sub-pixels, wherein each sub-pixel can emit light of one color.
  • the type and number of sub-pixels in each light-emitting unit 1022 are the same. Therefore, through the same driving method, it can be ensured that when each light-emitting unit 1022 emits light of the same color, the color and brightness of the light finally emitted are basically the same , so as to ensure the stereoscopic display effect and avoid the occurrence of color cast or uneven brightness.
  • each polarizing unit 1042 will automatically One light-emitting unit 1022 is aligned, so as to ensure that each light-emitting unit 1022 is covered by the corresponding polarizing unit 1042, thereby improving the stereoscopic display effect.
  • R (Red, red) pixels, G (Green, green) pixels, and B (Blue, blue) pixels are distributed and disposed thereon.
  • One R pixel, one G pixel, and one B pixel can be formed as one light-emitting unit 1022, and the light-emitting unit 1022 can emit light of different colors by adjusting the brightness of the R pixel, G pixel, and B pixel.
  • each light-emitting unit 1022 is a "pixel point", and the combination of a plurality of pixel points finally constitutes a display screen.
  • each pixel is covered by a polarization unit 1042, so the adjacent two pixels correspond to the pixels of the left-eye picture and the right-eye picture respectively, so that the distribution of the left-eye picture and the right-eye picture is more uniform, effectively Improved stereoscopic display effect.
  • FIG. 4 shows one of the schematic structural diagrams of the display layer 102 according to the embodiment of the present application
  • FIG. 5 shows the second schematic structural diagram of the display layer 102 according to the embodiment of the present application, such as
  • the light-emitting unit 1022 is a rectangular light-emitting unit 1022
  • the polarizing unit 1042 is a rectangular polarizing unit 1042; or
  • the light-emitting unit 1022 is a hexagonal light-emitting unit 1022
  • the polarizing unit 1042 is a hexagonal polarizing unit 1042 .
  • the specific shape of the light emitting unit 1022 is set according to the pixel arrangement of the display layer 102 , and the specific shape of the polarizing unit 1042 matches the shape of the light emitting unit 1022 .
  • the pixel arrangement of the display layer 102 in FIG. 4 is “diamond arrangement”.
  • the light-emitting unit 1022 is rectangular in shape, with two blue pixels and two red pixels respectively. The pixels are diagonal and define a rectangular area, and the green pixels are located within the rectangular area.
  • the pixel arrangement of the display layer 102 in FIG. 5 is an RGB delta arrangement.
  • the shape of the light-emitting unit 1022 is a hexagon, and the six fixed points of the hexagon are three red dots.
  • the sub-pixels include red pixels, blue pixels, and green pixels, and each light-emitting unit 1022 includes a red pixel area, a blue pixel area, and a green pixel area:
  • the red pixel area includes at least a partial area of a red pixel
  • the blue pixel area includes at least a partial area of a blue pixel
  • the green pixel area includes at least a partial area of a green pixel.
  • the sub-pixels include red pixels, blue pixels and green pixels, and the red pixels can emit red light, or the backlight of the display layer 102 can form red light after passing through the red pixels.
  • the blue pixels can emit blue light, or the backlight of the display layer 102 can pass through the blue pixels to form blue light; the green pixels can emit filtered light, or the backlight of the display layer 102 can pass through the green pixels to form green light.
  • the sub-pixels may also include white pixels, which emit white light, or allow the backlight to pass directly, thereby increasing the maximum display brightness of the display layer 102 .
  • each light-emitting unit 1022 has the same type of light-emitting sub-pixels, for example, each light-emitting unit 1022 includes red pixels, green pixels and blue pixels. In the light-emitting unit 1022, the number of pixels of each color is also the same. As shown in FIG. 4 , in the display layer 102 shown in FIG. 4 , each rectangular light-emitting unit 1022 includes two quarter blue pixels, two quarter red pixels, and a complete Green pixels.
  • each red pixel is divided into three parts, and each hexagonal light-emitting unit 1022 includes three different red pixels from three different red pixels. part.
  • Each blue pixel is also divided into 3 parts, and each hexagonal light-emitting unit 1022 includes 3 different parts from 3 different blue pixels. Meanwhile, each hexagonal light-emitting unit 1022 also includes a complete green pixel.
  • FIG. 6 shows a structural block diagram of a display device according to an embodiment of the present application.
  • the display device 600 includes: the display panel 100 provided in any of the foregoing embodiments.
  • the display device includes the display panel 100 provided in any of the above embodiments, the display panel 100 includes a display layer and a polarizing layer, and the display layer can be a liquid crystal display panel with any pixel arrangement.
  • the liquid crystal arrangement method divides the pixels on the display layer into a plurality of light-emitting units, and on the polarizing layer arranged on one side of the display layer, divides the polarizing units corresponding to each light-emitting unit one-to-one, and emits light in the light-emitting unit. In the direction, the light-emitting area of each light-emitting unit is covered by a polarizing unit.
  • the adjacent polarizing units can respectively polarize the light emitted by the light emitting units covered by them according to different polarization modes, so as to distinguish the left-eye image and the right-eye image.
  • the polarized lenses are matched with the display panel. After the observer wears polarized glasses with polarized lenses, the left eye can only see the image of the left eye, and the right eye can only see the image of the right eye, so as to achieve a stereoscopic display effect.
  • the display layer is divided into a plurality of light-emitting regions according to the distribution characteristics of the pixel points on the display layer, wherein the plurality of light-emitting regions are arranged and distributed on the display layer, and each polarizing unit on the polarizing layer is set to correspond to one
  • the light-emitting areas correspond to each other, so no matter what pixel arrangement is on the display layer, such as a standard RGB-arranged liquid crystal display panel, a diamond-arranged active-matrix organic light-emitting diode display panel, or a RGB delta-arranged miniaturized light-emitting diode display Panels, etc., can realize stereoscopic display, thereby realizing the effect of realizing stereoscopic display on display panels with different arrangements.
  • FIG. 7 shows a structural block diagram of a glasses device according to an embodiment of the present application.
  • the glasses device 700 includes: a polarized lens 702 , which is the same as any of the above embodiments.
  • the display panel 100 provided in the example matches.
  • the polarizing lens 702 includes a first polarizing lens and a second polarizing lens;
  • the display panel includes a polarizing layer, and the polarizing layer includes a first polarizing unit and a second polarizing unit; wherein, the polarization direction of the first polarizing lens is the same as that of the first polarizing lens.
  • the polarization direction of the first polarization unit is the same, and the polarization direction of the second polarization sheet is the same as the polarization direction of the second polarization unit.
  • the polarizing unit includes a first polarizing unit and a second polarizing unit, and correspondingly, the polarizing lens also includes a first polarizing lens and a second polarizing lens.
  • the first polarizing lens is matched with the first polarizing unit
  • the second polarizing lens is matched with the second polarizing unit.
  • the polarization direction of the first polarizing lens is the same as that of the first polarizing unit.
  • the first polarizing lens is a left-eye lens
  • the light-emitting unit covered by the first polarizing unit displays a left-eye image.
  • the first polarizing unit is a ⁇ /2 phase retardation polarizing unit
  • the phase retardation of the first polarizing lens is also ⁇ /2.
  • the polarization direction of the first polarizing unit is the first direction
  • the polarization direction of the first polarizing lens is also the first direction.
  • the polarization direction of the first polarizing unit is clockwise rotation polarization
  • the polarization direction of the first polarizing lens is also clockwise rotation polarization.
  • the phase retardation of the second polarizing lens is also ⁇ /2. If the polarization direction of the second polarizing unit is the second direction, the polarization direction of the second polarizing sheet is also the second direction. If the polarization direction of the second polarizing unit is clockwise rotation polarization, the polarization direction of the second polarizing lens is also clockwise rotation polarization.
  • the left-eye lens only allows the light of the left-eye image to pass through, ie the left-eye lens "filters out” the light of the right-eye image.
  • the right-eye lens only allows light from the right-eye image to pass through, ie the right-eye lens "filters out” the light from the left-eye image. So the observer can see the "stereo" effect in the image on the display surface.
  • the display layer is divided into a plurality of light-emitting regions according to the distribution characteristics of the pixel points on the display layer, wherein the plurality of light-emitting regions are arranged and distributed on the display layer, and each polarizing unit on the polarizing layer is set to correspond to one
  • the light-emitting areas correspond to each other, so no matter what pixel arrangement is on the display layer, such as a standard RGB-arranged liquid crystal display panel, a diamond-arranged active-matrix organic light-emitting diode display panel, or a RGB delta-arranged miniaturized light-emitting diode display Panels, etc., can realize stereoscopic display, so as to realize the effect of stereoscopic display on display panels with different arrangements, and by making the adjacent polarizing units to be polarizing units with different polarizing methods, the effect of the left eye is realized. It is separated from the influence of the right eye, and at the same time, the influence of the left eye and the influence of the right eye are evenly

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(100)和显示设备,其中,显示面板(100)包括:显示层(102),显示层(102)设置有多个发光单元(1022);偏振层(104),设置于显示层(102)的一侧,偏振层(104)设置有多个偏振单元(1042),偏振单元(1042)的数量与发光单元(1022)的数量相同;在垂直于显示层(102)的方向上,每个偏振单元(1042)均覆盖一个发光单元(1022)。通过显示层(102)上像素点的分布特征,将显示层(102)划分为多个发光区域,其中多个发光区域排列分布在显示层(102)上,并设置偏振层(104)上的每个偏振单元(1042)均与一个发光区域相对应。

Description

显示面板和显示设备
相关申请的交叉引用
本申请要求享有于2020年12月23日提交的中国专利申请202011538825.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于显示面板技术领域,具体涉及一种显示面板和显示设备。
背景技术
相关技术中,立体(3D)显示一般采用偏光式3D显示,将显示画面划分为相互平行的多行,在上下相邻的两行中,一行显示右眼画面,另一行显示左眼画面,从而实现立体显示效果。
而这种立体显示方法仅适用于标准RGB排列的液晶显示面板,对于其他排列方式的液晶显示面板并不适用。
因此,如何对不同排列方式的液晶显示面板上实现立体显示,是亟待解决的技术问题。
发明内容
本申请旨在提供一种显示面板和显示设备,能够实现在各种不同排列方式的显示面板上实现立体显示的效果。
第一方面,本申请实施例提出了一种显示面板,包括:
显示层,显示层设置有多个发光单元;
偏振层,设置于显示层的一侧,偏振层设置有多个偏振单元,偏振单元的数量与发光单元的数量相同;
在垂直于显示层的方向上,每个偏振单元均覆盖一个发光单元。
第二方面,本申请实施例提出一种显示设备,包括如第一方面提出的 显示面板。
在本申请实施例中,显示层可以是任意像素排列方式的液晶显示面板,根据显示层的液晶排列方式,将显示层上的像素点划分为多个发光单元,并在设置于显示层一侧的偏振层上,划分与每个发光单元一一对应的偏振单元,并在垂直于显示层的方向上,使每个放光单元的发光区域,均被一个偏振单元所覆盖。
其中,相邻的偏振单元可分别根据不同的偏振方式,对其所覆盖的发光单元发出的光线进行偏振,进而区分左眼图像和右眼图像,从而实现立体显示效果。
本申请实施例通过根据显示层上像素点的分布特征,将显示层划分为多个发光区域,其中多个发光区域排列分布在显示层上,并设置偏振层上的每个偏振单元均与一个发光区域相对应,因此无论显示层上是何种像素排列方式,如标准RGB排列的液晶显面板(Liquid Crystal Display,LCD),或钻石排列的主动矩阵有机发光二极管(Active-matrix organic light-emitting diode,AMOLED)显示面板,又或是RGB delta排列的微缩化发光二极管显示面板(micro-LED display)等,均能够实现立体显示,从而实现了在各种不同排列方式的显示面板上实现立体显示的效果。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请实施例的显示面板的结构示意图;
图2示出了根据本申请实施例的偏振层的结构示意图之一;
图3示出了根据本申请实施例的偏振层的结构示意图之二;
图4示出了根据本申请实施例的显示层的结构示意图之一;
图5示出了根据本申请实施例的显示层的结构示意图之二;
图6示出了根据本申请实施例的显示设备的结构框图;
图7示出了根据本申请实施例的眼镜设备的结构框图。
附图标记:
100显示面板,102显示层,1022发光单元,104偏振层,1042偏振单元。
具体实施方式
下面将详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申 请中的具体含义。
下面结合图1至图7描述根据本申请实施例的显示面板和显示设备。
在本申请的一些实施例中,图1示出了根据本申请实施例的显示面板100的结构示意图,具体地,显示面板100包括:
显示层102,显示层102设置有多个发光单元1022;
偏振层104,设置于显示层102的一侧,偏振层104设置有多个偏振单元1042,偏振单元1042的数量与发光单元1022的数量相同;
在垂直于显示层102的方向上,每个偏振单元1042均覆盖一个发光单元1022。
在本申请实施例中,显示层102可以是任意像素排列方式的液晶显示面板100,根据显示层102的液晶排列方式,将显示层102上的像素点划分为多个发光单元1022,并在设置于显示层102一侧的偏振层104上,划分与每个发光单元1022一一对应的偏振单元1042,并在垂直于显示层102的方向上,使每个放光单元的发光区域,均被一个偏振单元1042所覆盖。
其中,相邻的偏振单元1042可分别根据不同的偏振方式,对其所覆盖的发光单元1022发出的光线进行偏振,进而区分左眼图像和右眼图像,从而实现立体显示效果。
本申请实施例通过根据显示层102上像素点的分布特征,将显示层102划分为多个发光区域,其中多个发光区域排列分布在显示层102上,并设置偏振层104上的每个偏振单元1042均与一个发光区域相对应,因此无论显示层102上是何种像素排列方式,如标准RGB排列的液晶显面板,或钻石排列的主动矩阵有机发光二极管显示面板100,又或是RGB delta排列的微缩化发光二极管显示面板100等,均能够实现立体显示,从而实现了在各种不同排列方式的显示面板100上实现立体显示的效果。
在本申请的一些实施例中,偏振单元1042呈阵列式分布,偏振单元1042包括第一偏振单元和第二偏振单元,在偏振单元1042的排列方向上,第一偏振单元和第二偏振单元交替分布。
在本申请实施例中,偏振单元1042呈阵列式分布,即按照一定的规律分布,且偏振单元1042的分布方式,与发光单元1022的分布方式相同。 具体地,偏振单元1042包括第一偏振单元和第二偏振单元,其中,第一偏振单元的偏振方式,与第二偏振单元的偏振方式不同,因此,被第一偏振单元覆盖的发光单元1022,能够发光并构成“左眼图像”。被第二偏振单元覆盖的发光单元1022,能够发光并构成“右眼图像”,因此该显示面板100所显示的图像,在被特定的方式观看时,能够呈现出“立体”效果。
其中,在偏振单元1042的排列方向上,第一偏振单元和第二偏振单元交替分布,也就是说,与第一偏振单元相邻的偏振单元1042均为第二偏振单元,与第二偏振单元相邻的偏振单元1042均为第一偏振单元,也就是说第一偏振单元和第二偏振单元交错设置。这里的相邻,根据偏振单元1042的形状,指的是具有公共边的两个偏振单元1042。
举例来说,假设偏振单元1042为矩形偏振单元1042,则与当前第一偏振单元相邻的第二偏振单元的数量为4个,分别为长边相邻的2个第二偏振单元和宽边相邻的2个。如果偏振单元1042为六边形变阵单元,则与当前第一偏振单元相邻的第二偏振单元的数量为6个,六边形的第一偏振单元的每条边均与一个第二偏振单元相邻。
通过使相邻的偏振单元1042为不同偏振方式的偏振单元1042,实现了将左眼影响和右眼影响相分离,同时使左眼影响和右眼影响均匀分布,能够提高立体显示的显示效果。
在本申请的一些实施例中,第一偏振单元和第二偏振单元均为相位延迟偏振单元1042;第一偏振单元为λ/2相位延迟偏振单元1042,其中λ为发光单元1022所发出的光的波长;第二偏振单元为零相位延迟偏振单元1042。
在本申请实施例中,第一偏振单元和第二偏振单元设置为相位延迟偏振单元1042。具体地,第一偏振单元可以设置为λ/2相位延迟偏振单元1042,第二偏振单元可以设置为零相位延迟偏振单元1042。
举例来说,假设第一偏振单元覆盖的发光单元1022对应左眼图像,第二偏振单元覆盖的发光单元1022对应右眼图像,显示面板100垂直于水平面设置,即显示面板100的厚度方向与水平方向平行,此时通过第一偏振单元能够产生水平线性偏振光影像,通过第二偏振单元能够产生垂直线性 偏振光影响,因此左眼影像和右眼影像因通过不同相位延迟单元形成不同方向的偏振,即形成不同方向的偏极化的光,使得观察者通过对应的手段观看图像时,左眼和右眼分别智能观察到特定方向偏极化的光,最终实现了立体显示效果。
在本申请的一些实施例中,图2示出了根据本申请实施例的偏振层104的结构示意图之一,如图2所示,第一偏振单元和第二偏振单元均为线性偏振单元1042;第一偏振单元的偏振方向为第一方向;第二偏振单元的偏振方向为第二方向,第一方向垂直于第二方向。
在本申请实施例中,第一偏振单元和第二偏振单元设置为线性偏振单元1042。具体地,第一偏振单元的偏振方向设置为第一方向,第二偏振单元的偏振方向设置为第二方向。
举例来说,假设第一偏振单元覆盖的发光单元1022对应左眼图像,第二偏振单元覆盖的发光单元1022对应右眼图像,显示面板100垂直于水平面设置,即显示面板100的厚度方向与水平方向平行。
此时通过第一偏振单元将左眼图像的光向第一方向偏极化,假设此处第一方向为水平方向。通过第二偏振单元将右眼图像的光向第二方向偏极化,此处第二方向对应为垂直方向,因此左眼影像和右眼影像形成不同方向的偏极化的光,使得观察者通过对应的手段观看图像时,左眼和右眼分别智能观察到特定方向偏极化的光,最终实现了立体显示效果。
在本申请的一些实施例中,图3示出了根据本申请实施例的偏振层104的结构示意图之二,如图3所示,第一偏振单元和第二偏振单元均为圆偏振单元1042;第一偏振单元的偏振方向为顺时针旋转偏振;第二偏振单元的偏振方向为逆时针旋转偏振。
在本申请实施例中,第一偏振单元和第二偏振单元设置为圆偏振单元1042。具体地,第一偏振单元的偏振方向设置为顺时针旋转偏振,第二偏振单元的偏振方向设置为逆时针旋转偏振。
举例来说,假设第一偏振单元覆盖的发光单元1022对应左眼图像,第二偏振单元覆盖的发光单元1022对应右眼图像,显示面板100垂直于水平面设置,即显示面板100的厚度方向与水平方向平行。
此时通过第一偏振单元将左眼图像的光顺时针偏振,即右旋偏振,通过第二偏振单元将右眼图像的光逆时针偏振,即左旋偏振,因此左眼影像和右眼影像形成不同方向的偏极化的光,使得观察者通过对应的手段观看图像时,左眼和右眼分别智能观察到特定方向偏极化的光,最终实现了立体显示效果。
在本申请的一些实施例中,偏振层104的面积大于显示层102的面积,且偏振层104覆盖显示层102的全部发光区域。
在本申请实施例中,偏振层104的面积大于显示层102的面积,具体地,由于一般的液晶显示面板100,需要通过切割的方式将液晶面板加工成所需要的形状,如矩形。而在形状的边缘部分,对于非标准RGB排列的面板,由于其像素排列非“整齐”排列,因此切割的边缘和角落部分可能存在非完整的发光单元1022。而这些非完整的发光单元1022,其中的像素也会发光,因此将偏振层104的面积设置为大于显示层102的面积,并使偏振层104覆盖显示层102的全部发光面积,能够保证边缘、角落处的非完整发光单元1022或像素也能按照相同的规则被偏振,从而能够提高立体显示的显示效果。
在本申请的一些实施例中,显示层102设置有多个子像素,每个发光单元1022中的子像素的种类和子像素的数量均相同;以及偏振单元1042的排列方式与发光单元1022的排列方式相同。
在本申请实施例中,显示层102设置有多个子像素,其中每个子像素均能发出一种颜色的光。每个发光单元1022中的子像素的种类,和子像素的数量均相同,因此通过相同的驱动方式,能够保证每个发光单元1022在发出相同颜色的光时,最终发出光的颜色和亮度基本相同,从而保证立体显示效果,避免出现偏色或亮度不均匀的情况。
同时,偏振单元1042的排列方式与发光单元1022的排列方式相同,因此在生产制造显示面板100时,在将偏振层104贴合在显示层102的一侧后,每个偏振单元1042会自动“对齐”一个发光单元1022,从而保证每个发光单元1022都被对应的偏振单元1042覆盖,从而提高立体显示效果。
具体举例来说,对于标准RGB排列的LCD显示面板100,其上分布设置有R(Red,红)像素、G(Green,绿)像素和B(Blue,蓝)像素。一个R像素、一个G像素和一个B像素能够形成为一个发光单元1022,该发光单元1022通过调节R像素、G像素和B像素的亮度,来实现发出不同颜色的光。
继续以标准RGB排列的LCD显示面板100为例,宏观来看,每个发光单元1022为一个“像素点”,多个像素点组合最终构成显示画面。其中,每个像素点均被一个偏振单元1042所覆盖,因此相邻的两个像素分别对应左眼画面的像素和右眼画面的像素,使得左眼画面和右眼画面分布更加均匀,有效地提高了立体显示效果。
在本申请的一些实施例中,图4示出了根据本申请实施例的显示层102的结构示意图之一,图5示出了根据本申请实施例的显示层102的结构示意图之二,如图4所示,发光单元1022为矩形发光单元1022,偏振单元1042为矩形偏振单元1042;或
如图5所示,发光单元1022为六边形发光单元1022,偏振单元1042为六边形偏振单元1042。
在本申请实施例中,发光单元1022的具体形状根据显示层102的像素排列方式进行设置,偏振单元1042的具体形状则与发光单元1022的形状相匹配。具体地,以图4为例,图4中的显示层102的像素排列方式为“钻石排列”,如图4所示,发光单元1022的形状为矩形,分别以两个蓝像素和两个红像素为对角,确定一个矩形区域,绿像素位于矩形区域内。
以图5为例,图5中的显示层102的像素排列方式为RGB delta排列,如图5所示,发光单元1022的形状为六边形,六边形的六个定点分别为3个红像素和3个蓝像素,确定为一个六边形区域,绿像素位于六边形区域内。
在本申请的一些实施例中,如图4和图5所示,子像素包括红像素、蓝像素和绿像素,每个发光单元1022中均包括红像素区域、蓝像素区域和绿像素区域:
其中,红像素区域包括一个红像素的至少部分区域;
蓝像素区域包括一个蓝像素的至少部分区域;
绿像素区域包括一个绿像素的至少部分区域。
在本申请实施例中,子像素包括红像素、蓝像素和绿像素,红像素能够发出红光,或显示层102的背光通过红像素后,形成红光。同理,蓝像素能够发出蓝光,或显示层102的背光通过蓝像素后,形成蓝光;绿像素能够发出滤光,或显示层102的背光通过绿像素后,形成绿光。
在一些实施方式中,子像素还可以包括白像素,白像素发出白光,或者使背光直接通过,从而提高显示层102的最大显示亮度。
其中,每个发光单元1022中,具有相同种类的发光子像素,如每个发光单元1022中均包括红像素、绿像素和蓝像素。发光单元1022中,每种颜色的像素的数量也相同。如图4所示,图4示出的显示层102中,每个矩形发光单元1022中,均包括两个四分之一的蓝像素,两个四分之一的红像素,和一个完整的绿像素。
如图5所示,图5示出的显示层102中,每个红像素均被分成了3个部分,每个六边形发光单元1022中,均包括来自3个不同红像素的3个不同部分。每个蓝像素也被分成了3个部分,每个六边形发光单元1022中,均包括来自3个不同蓝像素的3个不同部分。同时,每个六边形发光单元1022中,还包括一个完整的绿像素。
在本申请的一些实施例中,图6示出了根据本申请实施例的显示设备的结构框图,如图6所示,显示设备600包括:如上述任一实施例中提供的显示面板100。
在本申请实施例中,显示设备包括如上述任一实施例中提供的显示面板100,显示面板100包括显示层和偏振层,显示层可以是任意像素排列方式的液晶显示面板,根据显示层的液晶排列方式,将显示层上的像素点划分为多个发光单元,并在设置于显示层一侧的偏振层上,划分与每个发光单元一一对应的偏振单元,并在发光单元的发光方向上,使每个放光单元的发光区域,均被一个偏振单元所覆盖。
其中,相邻的偏振单元可分别根据不同的偏振方式,对其所覆盖的发光单元发出的光线进行偏振,进而区分左眼图像和右眼图像。偏振镜片与 显示面板向匹配,观察者佩戴设置有偏振镜片的偏振眼镜后,左眼仅能看到左眼图像,右眼仅能看到右眼图像,从而实现立体显示效果。
本申请实施例通过根据显示层上像素点的分布特征,将显示层划分为多个发光区域,其中多个发光区域排列分布在显示层上,并设置偏振层上的每个偏振单元均与一个发光区域相对应,因此无论显示层上是何种像素排列方式,如标准RGB排列的液晶显面板,或钻石排列的主动矩阵有机发光二极管显示面板,又或是RGB delta排列的微缩化发光二极管显示面板等,均能够实现立体显示,从而实现了在各种不同排列方式的显示面板上实现立体显示的效果。
在本申请的一些实施例中,图7示出了根据本申请实施例的眼镜设备的结构框图,如图7所示,眼镜设备700包括:偏振镜片702,偏振镜片702与如上述任一实施例中提供的显示面板100相匹配。
在本申请实施例中,偏振镜片702包括第一偏振镜片和第二偏振镜片;显示面板包括偏振层,偏振层包括第一偏振单元和第二偏振单元;其中,第一偏振镜片的偏振方向与第一偏振单元的偏振方向相同,第二偏振镜片的偏振方向与第二偏振单元的偏振方向相同。
在本申请实施例中,偏振单元包括第一偏振单元和第二偏振单元,与之相对应的,偏振镜片也包括第一偏振镜片和第二偏振镜片。其中第一偏振镜片与第一偏振单元相匹配,第二偏振镜片与第二偏振单元相匹配。
具体地,第一偏振镜片的偏振方向与第一偏振单元的偏振方向相同,举例来说,假设第一偏振镜片为左眼镜片,第一偏振单元覆盖的发光单元显示左眼图像。如果第一偏振单元为λ/2相位延迟偏振单元,则第一偏振镜片的相位延迟同为λ/2。如果第一偏振单元的偏振方向为第一方向,则第一偏振镜片的偏振方向也同为第一方向。如果第一偏振单元的偏振方向为顺时针旋转偏振,则第一偏振镜片的偏振方向也为顺时针旋转偏振。
同理的,如果第二偏振单元为λ/2相位延迟偏振单元,则第二偏振镜片的相位延迟同为λ/2。如果第二偏振单元的偏振方向为第二方向,则第二偏振镜片的偏振方向也同为第二方向。如果第二偏振单元的偏振方向为顺时针旋转偏振,则第二偏振镜片的偏振方向也为顺时针旋转偏振。
因此,左眼镜片仅允许左眼图像的光通过,即左眼镜片会“滤除”右眼图像的光。右眼镜片仅允许右眼图像的光通过,即右眼镜片会“滤除”左眼图像的光。所以观察者能够在显示面上的图像中看出“立体”效果。
本申请实施例通过根据显示层上像素点的分布特征,将显示层划分为多个发光区域,其中多个发光区域排列分布在显示层上,并设置偏振层上的每个偏振单元均与一个发光区域相对应,因此无论显示层上是何种像素排列方式,如标准RGB排列的液晶显面板,或钻石排列的主动矩阵有机发光二极管显示面板,又或是RGB delta排列的微缩化发光二极管显示面板等,均能够实现立体显示,从而实现了在各种不同排列方式的显示面板上实现立体显示的效果,且通过使相邻的偏振单元为不同偏振方式的偏振单元,实现了将左眼影响和右眼影响相分离,同时使左眼影响和右眼影响均匀分布,能够提高立体显示的显示效果。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种显示面板,包括:
    显示层,所述显示层设置有多个发光单元;
    偏振层,设置于所述显示层的一侧,所述偏振层设置有多个偏振单元,所述偏振单元的数量与所述发光单元的数量相同;
    在垂直于所述显示层的方向上,每个所述偏振单元均覆盖一个所述发光单元。
  2. 根据权利要求1所述的显示面板,其中,
    所述偏振单元呈阵列式分布,所述偏振单元包括第一偏振单元和第二偏振单元,在所述偏振单元的排列方向上,所述第一偏振单元和所述第二偏振单元交替分布。
  3. 根据权利要求2所述的显示面板,其中,
    所述第一偏振单元和所述第二偏振单元均为相位延迟偏振单元;
    所述第一偏振单元为λ/2相位延迟偏振单元,其中λ为所述发光单元所发出的光的波长;
    所述第二偏振单元为零相位延迟偏振单元。
  4. 根据权利要求2所述的显示面板,其中,
    所述第一偏振单元和所述第二偏振单元均为线性偏振单元;
    所述第一偏振单元的偏振方向为第一方向;
    所述第二偏振单元的偏振方向为第二方向,所述第一方向垂直于所述第二方向。
  5. 根据权利要求2所述的显示面板,其中,
    所述第一偏振单元和所述第二偏振单元均为圆偏振单元;
    所述第一偏振单元的偏振方向为顺时针旋转偏振;
    所述第二偏振单元的偏振方向为逆时针旋转偏振。
  6. 根据权利要求1至5中任一项所述的显示面板,其中,
    所述偏振层的面积大于所述显示层的面积,且所述偏振层覆盖所述显示层的全部发光区域。
  7. 根据权利要求1至5中任一项所述的显示面板,其中,
    所述显示层设置有多个子像素,每个所述发光单元中的所述子像素的种类和所述子像素的数量均相同;以及
    所述偏振单元的排列方式与所述发光单元的排列方式相同。
  8. 根据权利要求7所述的显示面板,其中,
    所述发光单元为矩形发光单元,所述偏振单元为矩形偏振单元;或者,
    所述发光单元为六边形发光单元,所述偏振单元为六边形偏振单元。
  9. 根据权利要求8所述的显示面板,其中,
    所述子像素包括红像素、蓝像素和绿像素,每个所述发光单元中均包括红像素区域、蓝像素区域和绿像素区域;
    所述红像素区域包括一个红像素的至少部分区域;所述蓝像素区域包括一个蓝像素的至少部分区域;所述绿像素区域包括一个绿像素的至少部分区域。
  10. 一种显示设备,包括:
    如权利要求1至9中任一项所述的显示面板。
PCT/CN2021/138617 2020-12-23 2021-12-16 显示面板和显示设备 WO2022135248A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011538825.0 2020-12-23
CN202011538825.0A CN112558320B (zh) 2020-12-23 2020-12-23 显示面板和显示设备

Publications (1)

Publication Number Publication Date
WO2022135248A1 true WO2022135248A1 (zh) 2022-06-30

Family

ID=75032243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138617 WO2022135248A1 (zh) 2020-12-23 2021-12-16 显示面板和显示设备

Country Status (2)

Country Link
CN (1) CN112558320B (zh)
WO (1) WO2022135248A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558320B (zh) * 2020-12-23 2022-12-09 维沃移动通信有限公司 显示面板和显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116939A (zh) * 2009-12-31 2011-07-06 Tcl集团股份有限公司 一种三维显示方法、led显示装置及三维显示系统
CN103003868A (zh) * 2011-03-22 2013-03-27 索尼公司 显示设备
CN103139593A (zh) * 2011-11-21 2013-06-05 三星电子株式会社 显示装置及其驱动方法
US20140146251A1 (en) * 2012-11-27 2014-05-29 Samsung Display Co., Ltd. Three-dimensional image display device and driving method thereof
CN108627992A (zh) * 2018-05-17 2018-10-09 深圳市中科创激光技术有限公司 柔性led显示装置及3d显示系统
CN112558320A (zh) * 2020-12-23 2021-03-26 维沃移动通信有限公司 显示面板和显示设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213838A (zh) * 2010-04-06 2011-10-12 宇威光电股份有限公司 立体显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116939A (zh) * 2009-12-31 2011-07-06 Tcl集团股份有限公司 一种三维显示方法、led显示装置及三维显示系统
CN103003868A (zh) * 2011-03-22 2013-03-27 索尼公司 显示设备
CN103139593A (zh) * 2011-11-21 2013-06-05 三星电子株式会社 显示装置及其驱动方法
US20140146251A1 (en) * 2012-11-27 2014-05-29 Samsung Display Co., Ltd. Three-dimensional image display device and driving method thereof
CN108627992A (zh) * 2018-05-17 2018-10-09 深圳市中科创激光技术有限公司 柔性led显示装置及3d显示系统
CN112558320A (zh) * 2020-12-23 2021-03-26 维沃移动通信有限公司 显示面板和显示设备

Also Published As

Publication number Publication date
CN112558320B (zh) 2022-12-09
CN112558320A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US8212742B2 (en) Large size tiled display device
US20130141481A1 (en) Display panel and display device
US8587737B2 (en) Display device
WO2017092708A1 (zh) 三维显示装置及其驱动方法
US20120229457A1 (en) Display device
TW201300841A (zh) 顯示裝置
US7359013B2 (en) Display capable of selectively displaying two-dimensional and three-dimensional images
TW201437685A (zh) 裸眼式立體影像顯示裝置
WO2021184324A1 (zh) 显示装置及其显示方法
WO2017117928A1 (zh) 一种显示模组、显示装置及其驱动方法
US8743113B2 (en) Stereoscopic image display apparatus
US20210124194A1 (en) Display panel and display device
TW201341915A (zh) 可切換二維與三維顯示模式之顯示裝置
WO2014173042A1 (zh) 液晶面板和液晶显示器
KR20110103182A (ko) 입체 영상 표시 장치
JP5568409B2 (ja) 立体表示装置
US20120026586A1 (en) Display device and phase retardation film
WO2022135248A1 (zh) 显示面板和显示设备
US20140085352A1 (en) Stereoscopic display with improved vertical resolution
WO2013189054A1 (zh) 立体影像显示器的显示面板
US8421966B2 (en) Liquid crystal display comprising red, green, blue, and yellow sub-pixels having chromaticity on a CIE1931 chromaticity diagram wherein the sub-pixels have different areas
US6469756B1 (en) Compensating for aperture parallax distortion in tiled displays
US20190278119A1 (en) Display substrate, manufacturing method thereof, display panel, and display device
WO2020177524A1 (zh) 多层显示装置
US20140160378A1 (en) Display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909244

Country of ref document: EP

Kind code of ref document: A1