WO2022135236A1 - 一种调控终端温度的方法、装置、终端和存储介质 - Google Patents

一种调控终端温度的方法、装置、终端和存储介质 Download PDF

Info

Publication number
WO2022135236A1
WO2022135236A1 PCT/CN2021/138379 CN2021138379W WO2022135236A1 WO 2022135236 A1 WO2022135236 A1 WO 2022135236A1 CN 2021138379 W CN2021138379 W CN 2021138379W WO 2022135236 A1 WO2022135236 A1 WO 2022135236A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
interval
terminal
cqi
maximum
Prior art date
Application number
PCT/CN2021/138379
Other languages
English (en)
French (fr)
Inventor
欧东明
黄鹤
林世杰
Original Assignee
深圳市万普拉斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市万普拉斯科技有限公司 filed Critical 深圳市万普拉斯科技有限公司
Publication of WO2022135236A1 publication Critical patent/WO2022135236A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application relates to the technical field of terminal equipment, and in particular, to a method, an apparatus, a terminal and a storage medium for regulating the temperature of a terminal.
  • thermal mitigation is used in software processing.
  • Thermal mitigation is usually to set several thresholds first, and when the temperature reaches a certain threshold, remove the part.
  • SCG Downlink Secondary Cell Group
  • Embodiments of the present application provide a method, device, terminal, and storage medium for regulating the temperature of a terminal.
  • an embodiment of the present application provides a method for regulating the temperature of a terminal.
  • the method includes: acquiring a temperature change curve of a terminal, where the temperature change curve includes at least two adjacent temperature ranges; detecting the temperature of the terminal Real-time temperature value; according to the temperature change curve, determine the temperature interval in which the real-time temperature value is located; obtain the maximum value of Channel Quality Indication (CQI) and Rank Indicator (RI) corresponding to the temperature interval maximum value; limit the maximum CQI value reported by the terminal to the maximum CQI value, and limit the maximum RI value reported by the terminal to the maximum RI value to obtain the current CQI value and the current RI value;
  • the current CQI value and the current RI value are sent to the base station, so that the base station provides the downlink data throughput of the terminal according to the current CQI value and the current RI value.
  • the temperature interval includes a first interval and a second interval
  • the acquiring the maximum CQI value and the maximum value of RI corresponding to the temperature interval includes: when the real-time temperature value is located in the first interval In the case of , obtain the maximum value of CQI and the maximum value of RI corresponding to the first interval; when the real-time temperature value rises from being located in the first interval to being located in the second interval, obtain the first interval The maximum value of CQI and the maximum value of RI corresponding to the two intervals.
  • the sending the current CQI value and the current RI value to the base station, so that the base station provides the downlink data throughput of the terminal according to the current CQI value and the current RI value includes: When the real-time temperature value is located in the first interval, sending the first CQI value and the first RI value to the base station, so that the base station can restrict the terminal according to the first CQI value and the first RI value the first downlink data throughput; the first CQI value is obtained by limiting the maximum CQI value reported by the terminal to the maximum CQI value corresponding to the first interval, and the first RI value The maximum RI value is limited to be obtained at the maximum RI value corresponding to the first interval; when the real-time temperature value rises from being located in the first interval to being located in the second interval, the second CQI value and the second The RI value is sent to the base station, so that the base station provides the second downlink data throughput of the terminal according to the second CQI value and the second
  • the temperature interval further includes a third interval, and the maximum temperature value of the third interval is smaller than the minimum temperature value of the first interval; the acquiring the maximum CQI value and the RI corresponding to the temperature interval The maximum value, including: when the real-time temperature value drops from being located in the first interval to being located in the third interval, acquiring the maximum CQI value and the maximum value of RI corresponding to the third interval;
  • the sending the current CQI value and the current RI value to the base station, so that the base station provides the downlink data throughput of the terminal according to the current CQI value and the current RI value includes: sending the third CQI value and the first Three RI values are sent to the base station, so that the base station provides the third downlink data throughput of the terminal according to the third CQI value and the third RI value; the third CQI value is the maximum CQI reported by the terminal The value is limited to be obtained by the maximum CQI value corresponding to the third interval, and the third RI value is obtained by limiting the maximum RI value reported by the terminal to the maximum value of RI corresponding to the third interval.
  • the second downlink data throughput is smaller than the first downlink data throughput, and the third downlink data throughput is greater than the first downlink data throughput.
  • a buffer zone is set between every two adjacent temperature intervals, the buffer zone between the first interval and the second interval is a first buffer zone, and the first interval is connected to all the temperature intervals.
  • the buffer area between the third intervals is the second buffer area; the method further includes: when the real-time temperature value rises from being located in the first interval to being located in the second interval, then in the second interval the first buffer zone to keep the first CQI value and the first RI value; when the real-time temperature value drops from being in the first interval to being in the third interval, then in the second The buffer keeps the first CQI value and the first RI value.
  • the method further includes: if the real-time temperature value is maintained in the first interval, sending the first CQI value and the first RI value to the base station for the base station to use according to the The first CQI value and the first RI value maintain the first downlink data throughput of the terminal.
  • an embodiment of the present application further provides a device for regulating the temperature of a terminal, the device includes: a curve acquisition module configured to acquire a temperature change curve of the terminal, where the temperature change curve at least includes two adjacent temperatures a detection module, configured to detect the real-time temperature value of the terminal; a determination module, configured to determine the temperature range in which the real-time temperature value is located according to the temperature change curve; a CQI and RI acquisition module, configured to acquire the The maximum value of CQI and the maximum value of RI corresponding to the temperature interval; the CQI and RI limit module is configured to limit the maximum value of CQI reported by the terminal to the maximum value of CQI, and limit the maximum value of RI reported by the terminal to the maximum value of CQI reported by the terminal.
  • the maximum value of RI is obtained, and the current CQI value and the current RI value are obtained; the reporting module is configured to send the current CQI value and the current RI value to the base station, so that the base station can provide the current CQI value and the current RI value according to the current CQI value and the current RI value. the downlink data throughput of the terminal.
  • an embodiment of the present application further provides a chip, including: a processor configured to call and run a computer program from a memory, so that a device installed with the chip executes the above method.
  • an embodiment of the present application further provides a terminal, the terminal includes: at least one processor, and a memory, where the memory is communicatively connected to the at least one processor, and the memory stores data that can be used by the at least one processor. Instructions executed by at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the above-described method.
  • embodiments of the present application further provide a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by the terminal, causes the The terminal executes the method as described above.
  • the embodiments of the present application further provide a computer program product
  • the computer program product includes a computer program stored on a non-volatile computer-readable storage medium
  • the computer program includes program instructions, when the When the program instructions are executed by the terminal, the terminal is caused to execute the above-mentioned method.
  • the temperature change curve of the terminal is divided into at least two temperature intervals, the real-time temperature value of the terminal is detected, and the temperature interval in which the real-time temperature value is located is determined.
  • the terminal after determining the temperature interval in which the real-time temperature value is located, obtain the maximum CQI value and the maximum value of RI corresponding to the temperature interval, limit the maximum CQI value reported by the terminal to the maximum CQI value, and report the terminal
  • the maximum RI value is limited to the maximum RI value, and the current CQI value and the current RI value are obtained; the current CQI value and the current RI value are sent to the base station for the base station to obtain the current CQI value and the current RI value according to the current CQI value and the current RI value.
  • Provide the downlink data throughput of the terminal thereby realizing the thermal mitigation effect. Since there are multiple temperature intervals, and different temperature intervals correspond to different CQI maximum values and RI maximum values, the terminal can report different CQI values in different temperature intervals. value and RI value to achieve a fast and smooth drop/rise effect.
  • Fig. 1 is a terminal application environment diagram in an embodiment of the present application
  • Fig. 2 is the power consumption and overall temperature change diagram of each hardware of the terminal Sub-6 at different downlink speeds in the embodiment of the present application;
  • FIG. 3 is a diagram of power consumption and overall temperature change of each hardware of a terminal millimeter wave (mmWave) at different downlink speeds in an embodiment of the present application;
  • Fig. 4 is the graph of terminal downlink speed and temperature rise in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an embodiment of a terminal of the present application.
  • FIG. 6 is a schematic flowchart of an embodiment of the method for regulating and controlling terminal temperature of the present application
  • FIG. 7 is a schematic diagram of a temperature change curve of an embodiment of the method for regulating and controlling terminal temperature of the present application.
  • FIG. 8 is a schematic structural diagram of an embodiment of an apparatus for regulating and controlling terminal temperature of the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of an apparatus for regulating and controlling terminal temperature of the present application.
  • FIG. 1 is a diagram of an application environment of a terminal according to an embodiment of the present application, and the application environment includes a user equipment (User Equipment, UE) 100 and a base station 200 .
  • a radio resource control (Radio Resource Control, RRC) connection may be established between the base station 200 and the UE 100, so as to be used in an evolved packet system such as the 4th generation mobile communication technology (4G). (Evolved Packet System, EPS) to establish a connection.
  • 4G 4th generation mobile communication technology
  • EPS evolved Packet System
  • the base station 200 may be an evolved base station (eNB).
  • eNB evolved base station
  • the base station 200 may also be other types of base stations, such as a gNB in a 5G network. Not limited.
  • the UE 100 communicates with the base station 200, such as uplink communication or downlink communication, if the data throughput rate is relatively fast, the problem of terminal heating may be caused.
  • the software processing adopts the thermal mitigation (Thermal Mitigation) method.
  • the higher the downlink data speed the higher the heat.
  • the higher the operation speed of the Baseband Processor baseband chip/data machine chip
  • the higher the speed of the operation the larger the amount of operation, the more power will be consumed, and therefore, the higher the heat will be generated.
  • Sub-6GHz refers to electromagnetic waves with frequencies lower than 6GHz
  • mmWave millimeter wave
  • the overall temperature changes. From the power distribution information provided by the chip manufacturer, we can know that the module that mainly consumes power (produces heat) is the Baseband Processor (BP) (or called the Modem) Central Processing Unit (Central Processing Unit). , CPU), modem chip), and this is because of the power consumption (heat generated) generated by processing downlink data operations, the higher the downlink speed of the Modem CPU, the higher the heat generated. Therefore, it is considered to divide the temperature change curve into multiple temperature intervals, and restrict the reporting of CQI/RI to quickly adjust the downlink speed, thereby achieving the purpose of thermal mitigation.
  • BP Baseband Processor
  • Modem Central Processing Unit
  • FIG. 4 is a graph of the terminal downlink speed and temperature rise in the embodiment of the application, the X axis represents time, and the Y axis represents temperature. It can be seen that in the same In the communication system, taking 5G as an example, if the UE can quickly fine-tune the speed of downlink data, it can reduce the temperature before the temperature reaches the need to interrupt the SCG, and make the change of downlink data throughput relatively smooth.
  • FIG. 5 schematically shows the hardware structure of the terminal.
  • the terminal 100 includes a memory 11 and a processor 12 , and the processor 12 is connected to the memory 11 .
  • the structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or less components than the one shown in the figure, or combine some components, or split some components, or different component layout.
  • the memory 11 may include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal, and the like.
  • the memory 11 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the memory 11 may optionally include memory located remotely from the processor 12, and these remote memories may be connected to the terminal via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the processor 12 is the control center of the terminal, uses various interfaces and lines to connect various parts of the entire terminal, and executes by running or executing the software programs and/or modules stored in the memory 11, and calling the data stored in the memory 11.
  • Various functions of the terminal and processing data so as to monitor the terminal as a whole, for example, to implement the method for regulating the temperature of the terminal described in any embodiment of the present application.
  • the number of processors 12 may be one or more, and one processor 12 is taken as an example in FIG. 5 .
  • the processor 12 and the memory 11 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 5 .
  • the processor 12 may include a CPU, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a controller, a Field-Programmable Gate Array (FPGA) device, etc. .
  • the processor 12 may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors combined with a DSP core, or any other such configuration.
  • the method for regulating the temperature of a terminal may be executed by the terminal 100 . Specifically, in some of the embodiments, the method may be executed by the processor 12 .
  • FIG. 6 is a schematic flowchart of a method for regulating terminal temperature provided by an embodiment of the present application. As shown in FIG. 6 , the method includes:
  • the downlink speed of the terminal will cause the temperature of the terminal to change.
  • the temperature change of the terminal can be preliminarily calculated to obtain the temperature change curve of the terminal, which can include a temperature rise curve and a temperature drop curve.
  • the temperature rise curve or the temperature drop curve is divided into 4 temperature intervals, They are respectively T1 interval, T2 interval, T3 interval and T4 interval.
  • this embodiment is not limited to 4 temperature intervals, and may be more or less temperature intervals, but at least 2 temperature intervals.
  • the temperature value of the terminal is monitored in real time, that is, the real-time temperature value of the terminal is detected, and the temperature range in which the real-time temperature value is located is determined according to the temperature change curve.
  • a temperature sensor may be set inside the terminal, the real-time temperature value of the terminal may be monitored in real time through the internal temperature sensor, and the temperature sensor may send the real-time temperature value to the controller of the terminal.
  • the terminal stores a temperature change curve, and by obtaining the real-time temperature value collected by the temperature sensor and comparing the temperature change curve, it is determined that the current real-time temperature value is in a specific temperature range of the temperature change curve.
  • the real-time temperature value is not less than the minimum temperature value of the first interval, and is not greater than the maximum temperature value of the first interval, it is determined that the real-time temperature value is located in the first interval; when the real-time temperature value is not less than the minimum temperature value of the second interval
  • the temperature value is not greater than the maximum temperature value of the second interval
  • it is determined that the real-time temperature value is located in the second interval. For example, it is determined that the real-time temperature value is located in the first interval T1, or in the second interval T2, and so on.
  • the CQI is used to reflect the channel quality of the Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • 0 to 15 are used to represent the channel quality of the PDSCH, 0 represents the worst channel quality, and 15 represents the best channel quality.
  • RI used to indicate the number of valid data layers of the PDSCH, and used to notify the eNB of the number of code words (Code Word, CW) that the UE can currently support.
  • CW code words
  • RI 1, 1CW; RI>1, 2CW.
  • the temperature interval includes the first interval T1 interval and the second interval T2.
  • obtaining the maximum value of CQI and the maximum value of RI corresponding to the temperature interval may include: if the real-time temperature value is located in the In the first interval, the maximum value of CQI and the maximum value of RI corresponding to the first interval are obtained.
  • the maximum CQI value reported by the terminal is limited to the maximum CQI value corresponding to the first interval T1 ( max_cqi_t1), and the maximum RI value reported by the terminal is limited to the maximum RI value (max_ri_t1) of the rank indication corresponding to the first interval.
  • the maximum CQI value and the maximum RI value corresponding to the first interval are obtained; the first CQI value and the first RI value are sent to the base station, so that the base station provides the first downlink data throughput of the terminal according to the first CQI value and the first RI value; the first CQI value is limited to the maximum CQI value reported by the terminal at The maximum value of CQI corresponding to the first interval is obtained, and the first RI value is obtained by limiting the maximum RI value reported by the terminal to the maximum value of RI corresponding to the first interval.
  • the reported current CQI value and current RI value When the reported current CQI value and current RI value are larger, it indicates that the base station can provide the terminal with a faster downlink speed (the speed value is larger). On the contrary, if the reported current CQI value or current RI value is smaller, it indicates that the base station The slower the downlink speed that can be provided to the terminal (the lower the speed value).
  • the first CQI value and the first RI value are sent to the base station for the base station to use the first CQI value and the first RI value maintain the first downlink data throughput of the terminal.
  • the downlink data throughput (data throughput) is mainly determined according to the modulation order (Modulation Order) and the multiple input and multiple output layer (MIMO Layer).
  • the network side will determine the downlink modulation and coding strategy (modulation and code scheme, MCS) and MIMO Layer according to the CQI and RI values fed back by the terminal in the channel status information (Channel Status Information, CSI) information, feedback
  • MCS modulation and code scheme
  • CSI Channel Status Information
  • the feedback CQI value or RI value is smaller, the downlink speed that can be provided to the terminal is relatively small.
  • the network side can smoothly adjust the downlink data throughput of the terminal, so that the terminal can achieve a cooling effect.
  • the real-time temperature value when the real-time temperature value is located in the first interval T1, after the base station adjusts the downlink data throughput of the terminal according to the first CQI value and the first RI value, if the real-time temperature value continues to rise, it means that it is necessary to continue Adjustment.
  • the maximum value of CQI and the maximum value of RI corresponding to the second interval are acquired.
  • the maximum CQI value reported by the terminal is limited to the maximum CQI value (max_cqi_t2) corresponding to the second interval
  • the maximum RI value reported by the terminal is limited to the maximum RI value (max_ri_t2) in the second interval.
  • the second CQI value and the second RI value are sent to the base station, so that the base station provides the second downlink data throughput of the terminal according to the second CQI value and the second RI value, wherein the first The second CQI value is obtained by limiting the maximum CQI value reported by the terminal to the maximum CQI value corresponding to the second interval, and the second RI value is limited to the maximum RI value reported by the terminal being limited to the maximum CQI value corresponding to the second interval. RI maximum value is obtained.
  • the first interval may correspond to the T1 interval
  • the second interval may correspond to the T2 interval.
  • the throughput of the second downlink data sent by the base station to the terminal is smaller than the throughput of the first downlink data amount, so that the terminal can effectively cool down.
  • the temperature change curve may also include a temperature drop curve, and similarly, the temperature drop curve may also include at least two adjacent temperature intervals, for example, the real-time temperature value decreases from the first interval to the third In the interval, when the real-time temperature value drops, the base station needs to relax the downlink data throughput, thereby effectively increasing the downlink rate.
  • the temperature interval further includes a third interval, and the maximum temperature value of the third interval is smaller than the minimum temperature value of the first interval; the acquiring the maximum CQI value corresponding to the temperature interval and the maximum value of RI, including: when the real-time temperature value falls from being located in the first interval to being located in the third interval, acquiring the maximum value of CQI and the maximum value of RI corresponding to the third interval;
  • the sending the current CQI value and the current RI value to the base station, so that the base station provides the downlink data throughput of the terminal according to the current CQI value and the current RI value includes: sending the third CQI value and the first Three RI values are sent to the base station, so that the base station provides the third downlink data throughput of the terminal according to the third CQI value and the third RI value; the third CQI value is the maximum CQI reported by the terminal The value is limited to be obtained by the maximum CQI value corresponding to the third interval, and the third RI value is obtained by limiting the maximum RI value reported by the terminal to the maximum value of RI corresponding to the third interval.
  • the maximum value of CQI (max-cqi value) and the maximum value of RI (max-ri) are adjusted, so that the base station can improve the temperature of the terminal.
  • Downlink data throughput when the real-time temperature value of the terminal drops to a certain temperature range, in the same way, the maximum value of CQI (max-cqi value) and the maximum value of RI (max-ri) are adjusted, so that the base station can improve the temperature of the terminal.
  • the third downlink data throughput delivered by the base station to the terminal is greater than the first downlink data throughput, thereby effectively increasing the downlink rate.
  • the first interval falls to be located in the third interval, the first interval may correspond to the T1 interval, and the third interval may correspond to the T2 interval.
  • a buffer zone is set between every two adjacent temperature intervals, the buffer zone between the first interval and the second interval is a first buffer zone, and the first buffer zone is the first buffer zone.
  • the buffer zone between the interval and the third interval is the second buffer zone; the method further includes: when the real-time temperature value rises from being located in the first interval to being located in the second interval, then In the first buffer zone, the first CQI value and the first RI value are maintained; when the real-time temperature value drops from being in the first interval to being in the third interval, then in the The second buffer holds the first CQI value and the first RI value.
  • a buffer zone (refer to the gap (Gap) in the figure) is set between every two adjacent temperature intervals.
  • the buffer zone between the first interval and the second interval is the first buffer zone (for example, the gap between the temperature interval T1 and the temperature interval T2 in the temperature rise curve).
  • the buffer zone between the third intervals is the second buffer zone (for example, the gap between the temperature interval T1 and the temperature interval T2 in the cooling curve).
  • the first CQI value and the first RI value are maintained in the first buffer zone, that is, keep rising
  • the first CQI value and first RI value reported by the terminal will be adjusted to the maximum CQI value corresponding to the second interval only when the real-time temperature value is in the second interval. and the maximum value of RI, so as to avoid a sudden reduction in the rate of downlink data, and prevent rapid changes in downlink data throughput caused by setting the max-cqi value and the ri value back and forth in a short time.
  • the first CQI value and the first RI value are maintained in the second buffer zone, That is, the first CQI value and the first RI value before the drop are maintained.
  • the first CQI value and the first RI value reported by the terminal are respectively adjusted to the maximum CQI value corresponding to the third interval. value and the maximum value of RI, so as to avoid a sudden increase in the rate of downlink data, and prevent rapid changes in downlink data throughput caused by setting the max-cqi value and the ri value back and forth in a short time.
  • setting the buffer can avoid the ping-pong effect of the downlink speed jumping back and forth, and avoid the temperature rising soon after cooling down.
  • the embodiment of the present application is not limited to setting a buffer to prevent the ping-pong effect of the downlink speed from bouncing back and forth, and other methods are also possible. To a certain extent, it prevents the ping-pong effect of the downlink speed jumping back and forth, but after setting the buffer, the adjustment is made smoother.
  • the temperature change curve of the terminal is divided into at least two temperature ranges, the real-time temperature value of the terminal is detected, and the temperature range in which the real-time temperature value is located is determined, and the temperature range in which the real-time temperature value is located is determined after determining the real-time temperature value.
  • the maximum CQI value reported by the terminal is limited to the maximum CQI value
  • the maximum RI value reported by the terminal is limited to the maximum CQI value reported by the terminal.
  • the maximum value of RI is obtained, the current CQI value and the current RI value are obtained, and then the current CQI value and the current RI value are reported to the base station, so that the base station can provide the terminal's information according to the current CQI value and the current RI value.
  • Downlink data throughput for thermal mitigation Since there are multiple temperature ranges and different CQI maximum values and RI maximum values corresponding to different temperature ranges, the terminal can report different CQI values and RI values in different temperature ranges to achieve fast and smooth cooling/heating effects.
  • an embodiment of the present application further provides a device for regulating terminal temperature, which can be applied to a terminal, such as the terminal 100 shown in FIG. 5
  • the device 800 for regulating terminal temperature includes: a curve acquisition module 801 , configured to acquire a temperature change curve of the terminal, where the temperature change curve includes at least two adjacent temperature intervals;
  • a detection module 802 configured to detect the real-time temperature value of the terminal
  • a determination module 803, configured to determine the temperature interval in which the real-time temperature value is located according to the temperature change curve
  • the CQI and RI limiting module 805 is configured to limit the maximum CQI value reported by the terminal to the maximum CQI value, and limit the maximum RI value reported by the terminal to the maximum RI value to obtain the current CQI value and the current CQI value. RI value;
  • the reporting module 806 is configured to send the current CQI value and the current RI value to the base station, so that the base station provides the downlink data throughput of the terminal according to the current CQI value and the current RI value.
  • the temperature change curve of the terminal is divided into at least two temperature intervals, the real-time temperature value of the terminal is detected, and the temperature interval in which the real-time temperature value is located is determined. After obtaining the maximum CQI value and the maximum RI value corresponding to the temperature interval, the maximum CQI value reported by the terminal is limited to the maximum CQI value, and the maximum RI value reported by the terminal is limited to the maximum CQI value reported by the terminal.
  • the maximum value of the RI is obtained, and the current CQI value and the current RI value are obtained; the current CQI value and the current RI value are reported to the base station, so that the base station can provide the downlink data of the terminal according to the current CQI value and the current RI value. throughput to achieve thermal mitigation. Since there are multiple temperature ranges and different CQI maximum values and RI maximum values corresponding to different temperature ranges, the terminal can report different CQI values and RI values in different temperature ranges to achieve fast and smooth cooling/heating effects.
  • the temperature interval includes a first interval and a second interval
  • the CQI and RI acquiring module 804 is configured to: in the case that the real-time temperature value is located in the first interval, acquire the The maximum value of CQI and the maximum value of RI corresponding to the first interval; when the real-time temperature value rises from being located in the first interval to being located in the second interval, obtain the maximum value of CQI corresponding to the second interval and RI max.
  • the reporting module 806 is configured to: when the real-time temperature value is located in the first interval, send the first CQI value and the first RI value to the base station, so that the base station can send the first CQI value and the first RI value to the base station according to the The first CQI value and the first RI value provide the first downlink data throughput of the terminal; the first CQI value is limited to the maximum CQI value reported by the terminal to the maximum CQI value corresponding to the first interval Obtained, the first RI value is obtained by limiting the maximum RI value reported by the terminal to the maximum RI value corresponding to the first interval; when the real-time temperature value rises from being located in the first interval to being located in the first interval In the case of two intervals, the second CQI value and the second RI value are sent to the base station, so that the base station can provide the second downlink data throughput of the terminal according to the second CQI value and the second RI value; The second CQI value is obtained by
  • the temperature interval further includes a third interval, and the maximum temperature value of the third interval is smaller than the minimum temperature value of the first interval;
  • the CQI and RI acquisition module 804 is configured to: When the real-time temperature value falls from being located in the first interval to being located in the third interval, obtain the maximum CQI value and the maximum value of RI corresponding to the third interval;
  • the reporting module 806 is configured to send the third CQI value and the third RI value to the base station, so that the base station can provide the third downlink data throughput of the terminal according to the third CQI value and the third RI value ;
  • the third CQI value is obtained by limiting the maximum CQI value reported by the terminal to the maximum CQI value corresponding to the third interval, and the third RI value is limited to the maximum RI value reported by the terminal in the third interval.
  • the maximum value of RI corresponding to the three intervals is obtained.
  • the second downlink data throughput is smaller than the first downlink data throughput, and the third downlink data throughput is greater than the first downlink data throughput.
  • a buffer zone is set between every two adjacent temperature intervals, the buffer zone between the first interval and the second interval is a first buffer zone, and the first interval is connected to all the temperature intervals.
  • the buffer area between the third intervals is the second buffer area; please refer to FIG. 9 , the device 800 for regulating and controlling the terminal temperature further includes: a maintaining module 807, configured to be located in the first interval when the real-time temperature value is In the case of rising to the second interval d, the first CQI value and the first RI value are maintained in the first buffer zone; when the real-time temperature value falls from the first interval to In the case of being located in the third interval, the first CQI value and the first RI value are kept in the second buffer.
  • the apparatus 800 for regulating and controlling the terminal temperature further includes: a maintaining module 808 configured to: when the real-time temperature value is maintained in the first interval, the first A CQI value and a first RI value are sent to the base station for the base station to maintain the first downlink data throughput of the terminal according to the first CQI value and the first RI value.
  • Embodiments of the present application also provide a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, FIG. 4
  • One of the processors 12 in the above-mentioned one or more processors can execute the method for regulating the terminal temperature in any of the above-mentioned method embodiments, for example, to perform the above-described method steps 101 to 106 in FIG. 5 ; Functions of modules 801-806 in 8 or modules 801-808 in Figure 9.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and certainly can also be implemented by hardware.
  • Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium, and the program is During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种调控终端温度的方法、装置、终端和存储介质,所述方法包括:获取终端的温度变化曲线,所述温度变化曲线至少包括两个相邻的温度区间;检测所述终端的实时温度值;根据所述温度变化曲线,确定所述实时温度值所在的温度区间;获取所述温度区间对应的信道质量指示(CQI)最大值和秩指示(RI)最大值;将所述终端上报的最大CQI值限制在所述CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值,得到当前CQI值和当前RI值;将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量。从而实现基站平滑调整对终端的下行数据吞吐量,达到降温效果。

Description

一种调控终端温度的方法、装置、终端和存储介质
相关申请的交叉引用
本申请基于申请号为202011519160.9、申请日为2020年12月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及终端设备技术领域,特别涉及一种调控终端温度的方法、装置、终端和存储介质。
背景技术
目前,对于终端发热的问题,在软件处理上,会采用热缓解(Thermal Mitigation)的方式,热缓解通常是先设定几个门限值,当温度达到一定的门限值后,移除部分下行辅小区组(Secondary Cell Group,SCG),最后把整个网路连线移除,实现快速降温。
然而,采用上述方式,会造成数据吞吐量(data throughput)快速降低,会造成资料传输上的不稳定,且使用者在应用上感受不佳。因为无法在区间做下行微调数据吞吐量的动作,所以,当温度达到门限值时,移除SCG也来不及降温,最后为了降温只能中断整个5G非独立组网(Non-Standalone,NSA)或者4G长期演进(Long Term Evolution,LTE)网路的连线,会造成有一段时间没有数据网路可用。
发明内容
本申请实施例提供一种调控终端温度的方法、装置、终端和存储介质。
第一方面,本申请实施例提供了一种调控终端温度的方法,所述方法包括:获取终端的温度变化曲线,所述温度变化曲线至少包括两个相邻的温度区间;检测所述终端的实时温度值;根据所述温度变化曲线,确定所述实时温度值所在的温度区间;获取所述温度区间对应的信道质量指示(Channel Quality Indication,CQI)最大值和秩指示(Rank Indicator,RI)最大值;将所述终端上报的最大CQI值限制在所述CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值,得到当前CQI值和当前RI值;将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量。
在一些实施例中,所述温度区间包括第一区间和第二区间,所述获取所述温度区间对应的CQI最大值和RI最大值,包括:在所述实时温度值位于所述第一区间的情况下,获取所述第一区间对应的CQI最大值和RI最大值;在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,则获取所述第二区间对应的CQI最大值和RI最大值。
在一些实施例中,所述将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量,包括:在所述实时温度值位于所述第一区间的情况下,将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值限制所述终端的第一下行数据吞吐量;所述第一CQI值为所述终端上报的最大CQI值限制在所述第一区间对应的CQI最大值获得,所述第一RI值为所述终端上报的最大RI值限制在所述第一区间对应的RI最大值获得;在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,将第二CQI值和第二RI值发送至基站,以供所述基站根据所述第二CQI值和第二RI值提供所述终端的第二下行数据吞吐量;所述第二CQI值为所述终端上报的最大CQI值限制在所述第二区间对应的CQI最大值获 得,所述第二RI值为所述终端上报的最大RI值限制在所述第二区间对应的RI最大值获得。
在一些实施例中,所述温度区间还包括第三区间,所述第三区间的最大温度值小于所述第一区间的最小温度值;所述获取所述温度区间对应的CQI最大值和RI最大值,包括:在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则获取所述第三区间对应CQI最大值和RI最大值;
所述将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量,包括:将第三CQI值和第三RI值发送至基站,以供所述基站根据所述第三CQI值和第三RI值提供所述终端的第三下行数据吞吐量;所述第三CQI值为所述终端上报的最大CQI值限制在所述第三区间对应的CQI最大值获得,所述第三RI值为所述终端上报的最大RI值限制在所述第三区间对应的RI最大值获得。
在一些实施例中,所述第二下行数据吞吐量小于所述第一下行数据吞吐量,所述第三下行数据吞吐量大于所述第一下行数据吞吐量。
在一些实施例中,每两个相邻的所述温度区间之间设有缓冲区,所述第一区间和第二区间之间的缓冲区为第一缓冲区,所述第一区间与所述第三区间之间的缓冲区为第二缓冲区;所述方法还包括:在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况看下,则在所述第一缓冲区,保持所述第一CQI值和第一RI值;在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则在所述第二缓冲区,保持所述第一CQI值和第一RI值。
在一些实施例中,在所述将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值限制所述终端的第一下行数据吞吐量之后,所述方法还包括:在所述实时温度值维持在所述第一区间的情 况下,则将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值维持所述终端的第一下行数据吞吐量。
第二方面,本申请实施例还提供了一种调控终端温度的装置,所述装置包括:曲线获取模块,配置为获取终端的温度变化曲线,所述温度变化曲线至少包括两个相邻的温度区间;检测模块,配置为检测所述终端的实时温度值;确定模块,配置为根据所述温度变化曲线,确定所述实时温度值所在的温度区间;CQI和RI获取模块,配置为获取所述温度区间对应的CQI最大值和RI最大值;CQI和RI限制模块,配置为将所述终端上报的最大CQI值限制在所述CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值,得到当前CQI值和当前RI值;上报模块,配置为将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量。
第三方面,本申请实施例还提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上所述的方法。
第四方面,本申请实施例还提供了一种终端,所述终端包括:至少一个处理器,以及存储器,所述存储器与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的方法。
第五方面,本申请实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被终端执行时,使所述终端执行如上所述的方法。
第六方面,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被终端执行时,使所述终端执 行上述的方法。
本申请实施例的调控终端温度的方法、装置、终端和存储介质,将终端的温度变化曲线划分为至少两个温度区间,且检测终端的实时温度值,并且,确定实时温度值所在的温度区间,在确定实时温度值所在的温度区间后,获取所述温度区间对应的CQI最大值和RI最大值,将所述终端上报的最大CQI值限制在所述CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值,得到当前CQI值和当前RI值;将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量,从而实现热缓和效果,由于有多个温度区间,且不同温度区间对应的不同的CQI最大值RI最大值,从而使得终端在不同的温度区间上报不同的CQI值和RI值,达到快速且平滑降/升温效果。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例中的终端应用环境图;
图2是本申请实施例中终端Sub-6在不同下行速度各硬件的功率消耗及总体温度变化图;
图3是本申请实施例中终端毫米波(mmWave)在不同下行速度各硬件的功率消耗及总体温度变化图;
图4是本申请实施例中终端下行速度及温升的曲线图;
图5是本申请终端的一个实施例的结构示意图;
图6是本申请调控终端温度的方法的一个实施例的流程示意图;
图7是本申请调控终端温度的方法的一个实施例的温度变化曲线示意图;
图8是本申请调控终端温度的装置的一个实施例的结构示意图;
图9是本申请调控终端温度的装置的一个实施例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,图1是本申请实施例的终端的应用环境图,应用环境包括用户设备(User Equipment,UE)100和基站200。示例性的,基站200与UE 100之间例如可以通过建立无线资源控制(Radio Resource Control,RRC)连接,以在例如第四代移动通信技术(the 4th generation mobile communication technology,4G)的演进分组系统(Evolved Packet System,EPS)中建立连接。示例性的,在4G网络中,基站200可以是演进型基站(eNB),当然,在其他网络中,基站200也可以是其他类型的基站,例如5G网络中的gNB,本实施例中对此不做限定。UE100在与基站200通信时,如上行通信或下行通信,若数据吞吐量的速度较快,会引起终端发热的问题。
针对终端发热的问题,软件处理采用热缓解(Thermal Mitigation)的方式,越高的下行资料速度会造成越高的热量。因为越高的下行资料速度,会需要越高的Baseband Processor(基频芯片/数据机芯片)的运算速度,然后才能来得及处理快速下载的资料,而Baseband Processor(基频芯片/数据机芯片)的运算速度越高,运算量就越大,会消耗的功率就越多,因此,产生了更高的热量。
参考图2和图3中分别为Sub-6GHz(Sub-6GHz是指频率低于6GHz 的电磁波)及毫米波(mmWave)两种频谱在不同下行(DL)速度下,各硬件模块的功率消耗及总体温度变化,从芯片商提供的功率分布信息可以了解到,主要消耗功率(产生热量)的模块为基带处理器(Baseband Processor,BP)(或称为调制解调器(modem)中央处理器(Central Processing Unit,CPU)、数据机芯片),而此就是因为处理下行资料运算所产生的功率消耗(产生的热量),Modem CPU的下行速度越高,产生的热量越高。因此,考虑将温度变化曲线划分为多个温度区间,限制CQI/RI上报来快速调变下行速度,进而达到热和缓目的。
以温度变化曲线中的温度上升曲线为例,如图4所示,图4为本申请实施例中终端下行速度及温升的曲线图,X轴表示时间,Y轴表示温度,可知在相同的通讯系统下,以5G为例,若UE可以快速微调下行数据的速度,则可以在温度到达需要中断SCG前,就把温度降低,且让下行数据吞吐量(data throughput)的变化较为平缓。
图5示意性的示出了终端的硬件结构,如图5所示,终端100包括存储器11和处理器12,处理器12连接存储器11。本领域技术人员可以理解,图5所示的结构并不构成对终端的限定,终端可以包括比图示更多或者更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。
其中,存储器11作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。存储器11可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器11可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器11可选包括相对于处理器12远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实 例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
处理器12是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器11内的软件程序和/或模块,以及调用存储在存储器11内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控,例如实现本申请任一实施例所述的调控终端温度的方法。
其中,处理器12可以为一个或多个,图5中以一个处理器12为例。处理器12和存储器11可以通过总线或者其他方式连接,图5中以通过总线连接为例。处理器12可包括CPU、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、控制器、现场可编程门阵列(Field-Programmable Gate Array,FPGA)设备等。处理器12还可以被实现为计算设备的组合,例如,DSP与微处理器的组合、多个微处理器、结合DSP核心的一个或多个微处理器、或者任何其它此类配置。
本申请实施例提供的调控终端温度的方法,所述方法可以由终端100执行,具体的,在其中一些实施例中,所述方法可由处理器12执行。
图6为本申请实施例提供的调控终端温度的方法的流程示意图,如图6所示,所述方法包括:
101:获取终端的温度变化曲线,所述温度变化曲线至少包括两个相邻的温度区间。
通常,终端的下行速度会引起终端的温度变化。包括CPU温度等硬件模块温度。示例性的,可以初步统计终端的温度变化,得到终端的温度变化曲线,可以包括温升曲线和温降曲线,如图7所示,将温升曲线或温降曲线划分为4个温度区间,分别为T1区间、T2区间、T3区间和T4区间,当然,本实施例中不局限于4个温度区间,可以是更多或更少的温度区间, 但是至少是2个温度区间。
102:检测所述终端的实时温度值。
103:根据所述温度变化曲线,确定所述实时温度值所在的温度区间。
本实施例中,实时监测终端的温度值,即检测所述终端的实时温度值,且根据所述温度变化曲线,确定所述实时温度值所在的温度区间。
示例性的,本实施例可以在终端内部设置温度传感器,通过内部温度传感器实时监测终端的实时温度值,且温度传感器可以将实时温度值发送至终端的控制器。
并且,终端存储有温度变化曲线,通过获得温度传感器采集的实时温度值,对比温度变化曲线,从而确定当前的实时温度值处于温度变化曲线的具体温度区间。示例性的,在实时温度值不小于第一区间的最小温度值,且不大于第一区间的最大温度值时,确定实时温度值位于第一区间;在实时温度值不小于第二区间的最小温度值,且不大于第二区间的最大温度值时,确定实时温度值位于第二区间。比如,确定实时温度值位于第一区间T1,或者位于第二区间T2等等。
104:获取所述温度区间对应的CQI最大值和RI最大值。
CQI用于反映物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的信道质量。示例性的,CQI中,用0~15来表示PDSCH的信道质量,0表示信道质量最差,15表示信道质量最好。
RI,用来指示PDSCH的有效的数据层数,用于通知eNB,UE现在可以支持的码字(Code Word,CW)数。示例性的,RI=1,1CW;RI>1,2CW。
例如,温度区间包括第一区间T1区间和第二区间T2,以温升曲线为例,获取所述温度区间对应的CQI最大值和RI最大值,可以包括:若所述实时温度值位于所述第一区间,获取所述第一区间对应的CQI最大值和RI最大值。
105:将所述终端上报的最大CQI值限制在所述CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值,得到当前CQI值和当前RI值。
在其中一些实施例中,参照图7所示,若所述实时温度值位于所述第一区间(如T1区间),将终端上报的最大CQI值限制在第一区间T1对应的CQI最大值(max_cqi_t1),且将终端上报的最大RI值限制在第一区间对应的秩指示RI最大值(max_ri_t1)。
106:将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量。
在其中一些实施例中,在所述实时温度值位于所述第一区间的情况下,获取所述第一区间对应的CQI最大值和RI最大值;将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值提供所述终端的第一下行数据吞吐量;所述第一CQI值为所述终端上报的最大CQI值限制在所述第一区间对应的CQI最大值获得,所述第一RI值为所述终端上报的最大RI值限制在所述第一区间对应的RI最大值获得。
当上报的当前CQI值和当前RI值越大,则表示基站可以提供给终端的下行速度越快(速度值越大),相反,若上报的当前CQI值或当前RI值越小,则表示基站可以提供给终端的下行速度越慢(速度值越小)。
在其中一些实施例中,在所述实时温度值维持在所述第一区间的情况下,则将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值维持所述终端的第一下行数据吞吐量。
需要说明的是,根据UE无线接入能力的规定,下行数据吞吐量(data throughput)主要是依据调制阶数(Modulation Order)及多入多出层(MIMO Layer)决定。
并且,根据目前的规定,网络侧会依据终端在信道状态信息(Channel  Status Information,CSI)信息反馈的CQI及RI值来决定下行的调制编码策略(modulation and code scheme,MCS)及MIMO Layer,反馈的CQI值或RI值越大,表示基站可以提供给终端的下行速度越快,相反的,若是反馈的CQI值或RI值越小,则可以提供给终端的下行速度相对较小。
因此,基于根据终端上报的当前CQI值和当前RI值,来决定下行MCS及MIMO Layer这个前提,实现网络侧对终端的下行数据吞吐量的平滑调整,从而使得终端达到降温效果。
在其中一些实施例中,在针对实时温度值位于第一区间T1时,基站根据第一CQI值和第一RI值进行终端的下行数据吞吐量调整后,若实时温度值持续上升,说明需要继续调整。
可选地,在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,则获取所述第二区间对应的CQI最大值和RI最大值。并且,将所述终端上报的最大CQI值限制在所述第二区间对应的CQI最大值(max_cqi_t2),且将所述终端上报的最大RI值限制在所述第二区间RI最大值(max_ri_t2),得到第二CQI值和第二RI值。
最后,将第二CQI值和第二RI值发送至基站,以供所述基站根据所述第二CQI值和第二RI值提供所述终端的第二下行数据吞吐量,其中,所述第二CQI值为所述终端上报的最大CQI值限制在所述第二区间对应的CQI最大值获得,所述第二RI值为所述终端上报的最大RI值限制在所述第二区间对应的RI最大值获得。
如图7中温升曲线所示,第一区间可以对应T1区间,第二区间可以对应T2区间。
由于实时温度值位于第一区间时的温度会明显小于位于第二区间的温度,因此,为了降低热量,基站下发至终端的所述第二下行数据吞吐量小于所述第一下行数据吞吐量,从而使得终端能够有效降温。
在其中一些实施例中,温度变化曲线还可以包括温降曲线,同样的,温降曲线也可以包括至少两个相邻的温度区间,比如,实时温度值由位于第一区间下降至位于第三区间,当实时温度值下降时,需要基站放宽下行数据吞吐量,从而有效提高下行速率。
在一些可选实施例中,所述温度区间还包括第三区间,所述第三区间的最大温度值小于所述第一区间的最小温度值;所述获取所述温度区间对应的CQI最大值和RI最大值,包括:在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则获取所述第三区间对应的CQI最大值和RI最大值;
所述将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量,包括:将第三CQI值和第三RI值发送至基站,以供所述基站根据所述第三CQI值和第三RI值提供所述终端的第三下行数据吞吐量;所述第三CQI值为所述终端上报的最大CQI值限制在所述第三区间对应的CQI最大值获得,所述第三RI值为所述终端上报的最大RI值限制在所述第三区间对应的RI最大值获得。
示例性的,当终端的实时温度值下降到某个温度区间时,以同样的方式,调整CQI最大值(max-cqi值)及RI最大值(max-ri)值,从而使得基站提高终端的下行数据吞吐量。
可以理解的是,由于实时温度值下降,因此,基站下发至终端的所述第三下行数据吞吐量大于所述第一下行数据吞吐量,从而有效提高下行速率。
如图7所示,在温降曲线中,第一区间下降至位于所述第三区间中,第一区间可以对应T1区间,第三区间可以对应T2区间。
在其中一些可选实施方式中,每两个相邻的所述温度区间之间设有缓冲区,所述第一区间和第二区间之间的缓冲区为第一缓冲区,所述第一区 间与所述第三区间之间的缓冲区为第二缓冲区;所述方法还包括:在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,则在所述第一缓冲区,保持所述第一CQI值和第一RI值;在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则在所述第二缓冲区,保持所述第一CQI值和第一RI值。
如图7所示,不管是温度变化曲线的温升曲线还是温降曲线,每相邻两个温度区间之间都会设有一个缓冲区(参照图中的间隔(Gap)),例如,在温升曲线,第一区间和第二区间之间的缓冲区为第一缓冲区(例如升温曲线中的温度区间T1和温度区间T2之间的Gap),在温降曲线,第一区间与所述第三区间之间的缓冲区为第二缓冲区(例如降温曲线中的温度区间T1和温度区间T2之间的Gap)。
在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,则在所述第一缓冲区,保持所述第一CQI值和第一RI值,即保持上升前的第一CQI值和第一RI值一段时间,当实时温度值位于第二区间时,才会将终端上报的第一CQI值和第一RI值分别调整至第二区间对应的CQI最大值和RI最大值,从而避免下行数据时突然减少速率,防止短时间内来回设定max-cqi值及ri值造成下行数据吞吐量(data throughput)快速变化。
对应地,在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则在所述第二缓冲区,保持所述第一CQI值和第一RI值,即保持下降前的第一CQI值和第一RI值,当实时温度值位于第三区间时,才会将终端上报的第一CQI值和第一RI值分别调整至第三区间对应的CQI最大值和RI最大值,从而避免下行数据时突然增加速率,防止短时间内来回设定max-cqi值及ri值造成下行数据吞吐量(data throughput)快速变化。
因此,设置缓冲区,可以避免下行速度来回跳动的乒乓效应,避免降温不久又马上升温。
可以理解的是,本申请实施例不局限于设置缓冲区以防止下行速度来回跳动的乒乓效应,也可以是其他方式,当然,即使没有缓冲区,由于设置多个温度区间,也同样可以在一定程度上防止下行速度来回跳动的乒乓效应,只是设置了缓冲区以后,使得调整更加平滑。
本申请实施例的调控终端温度的方法,将终端的温度变化曲线划分为至少两个温度区间,且检测终端的实时温度值,并且,确定实时温度值所在的温度区间,在确定实时温度值所在的温度区间后,获取所述温度区间对应的CQI最大值和RI最大值,将所述终端上报的最大CQI值限制在所述CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值,得到当前CQI值和当前RI值,然后,将所述当前CQI值和当前RI值上报至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量,从而实现热缓和效果。由于有多个温度区间,且不同温度区间对应的不同的CQI最大值和RI最大值,从而使得终端在不同的温度区间上报不同的CQI值和RI值,达到快速且平滑降温/升温效果。
相应的,如图8所示,本申请实施例还提供了一种调控终端温度的装置,可以应用于终端,例如图5所示的终端100,调控终端温度的装置800包括:曲线获取模块801,配置为获取终端的温度变化曲线,所述温度变化曲线至少包括两个相邻的温度区间;
检测模块802,配置为检测所述终端的实时温度值;
确定模块803,配置为根据所述温度变化曲线,确定所述实时温度值所在的温度区间;
CQI和RI获取模块804,配置为获取所述温度区间对应的CQI最大值和RI最大值;
CQI和RI限制模块805,配置为将所述终端上报的最大CQI值限制在所述CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值, 得到当前CQI值和当前RI值;
上报模块806,配置为将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量。
本申请实施例的调控终端温度的装置,将终端的温度变化曲线划分为至少两个温度区间,且检测终端的实时温度值,并且,确定实时温度值所在的温度区间,在确定实时温度值所在的温度区间后,获取所述温度区间对应的CQI最大值和RI最大值,将所述终端上报的最大CQI值限制在所述CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值,得到当前CQI值和当前RI值;将所述当前CQI值和当前RI值上报至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量,从而实现热缓和效果。由于有多个温度区间,且不同温度区间对应的不同的CQI最大值和RI最大值,从而使得终端在不同的温度区间上报不同的CQI值和RI值,达到快速且平滑降温/升温效果。
在一些实施例中,所述温度区间包括第一区间和第二区间,所述CQI和RI获取模块804,配置为:在所述实时温度值位于所述第一区间的情况下,获取所述第一区间对应的CQI最大值和RI最大值;在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,则获取所述第二区间对应的CQI最大值和RI最大值。
在一些实施例中,上报模块806,配置为:在所述实时温度值位于所述第一区间的情况下,将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值提供所述终端的第一下行数据吞吐量;所述第一CQI值为所述终端上报的最大CQI值限制在所述第一区间对应的CQI最大值获得,所述第一RI值为所述终端上报的最大RI值限制在所述第一区间对应的RI最大值获得;在所述实时温度值由位于所述第一区间上 升至位于所述第二区间的情况下,将第二CQI值和第二RI值发送至基站,以供所述基站根据所述第二CQI值和第二RI值提供所述终端的第二下行数据吞吐量;所述第二CQI值为所述终端上报的最大CQI值限制在所述第二区间对应的CQI最大值获得,所述第二RI值为所述终端上报的最大RI值限制在所述第二区间对应的RI最大值获得。
在一些实施例中,所述温度区间还包括第三区间,所述第三区间的最大温度值小于所述第一区间的最小温度值;所述CQI和RI获取模块804,配置为:在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则获取所述第三区间对应的CQI最大值和RI最大值;
所述上报模块806,配置为将第三CQI值和第三RI值发送至基站,以供所述基站根据所述第三CQI值和第三RI值提供所述终端的第三下行数据吞吐量;所述第三CQI值为所述终端上报的最大CQI值限制在所述第三区间对应的CQI最大值获得,所述第三RI值为所述终端上报的最大RI值限制在所述第三区间对应的RI最大值获得。
在一些实施例中,所述第二下行数据吞吐量小于所述第一下行数据吞吐量,所述第三下行数据吞吐量大于所述第一下行数据吞吐量。
在一些实施例中,每两个相邻的所述温度区间之间设有缓冲区,所述第一区间和第二区间之间的缓冲区为第一缓冲区,所述第一区间与所述第三区间之间的缓冲区为第二缓冲区;请参阅图9,所述调控终端温度的装置800还包括:保持模块807,配置为在所述实时温度值由位于所述第一区间上升至位于所述第二区间d的情况下,则在所述第一缓冲区,保持所述第一CQI值和第一RI值;在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则在所述第二缓冲区,保持所述第一CQI值和第一RI值。
在其他一些实施例中,请参阅图9,所述调控终端温度的装置800还包 括:维持模块808,配置为:在所述实时温度值维持在所述第一区间的情况下,则将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值维持所述终端的第一下行数据吞吐量。
需要说明的是,上述装置具备方法相应的功能模块和有益效果。未在装置实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图4中的一个处理器12,可使得上述一个或多个处理器可执行上述任意方法实施例中的调控终端温度的方法,例如,执行以上描述的图5中的方法步骤101至步骤106;实现图8中的模块801-806或图9中的模块801-808的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之 间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种调控终端温度的方法,所述方法包括:
    获取终端的温度变化曲线,所述温度变化曲线至少包括两个相邻的温度区间;
    检测所述终端的实时温度值;
    根据所述温度变化曲线,确定所述实时温度值所在的温度区间;
    获取所述温度区间对应的信道质量指示CQI最大值和秩指示RI最大值;
    将所述终端上报的最大CQI值限制在所述信道质量指示CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值,得到当前CQI值和当前RI值;
    将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量。
  2. 根据权利要求1所述的调控终端温度的方法,其中,所述温度区间包括第一区间和第二区间,所述获取所述温度区间对应的CQI最大值和RI最大值,包括:
    在所述实时温度值位于所述第一区间的情况下,获取所述第一区间对应的CQI最大值和RI最大值;
    在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,则获取所述第二区间对应的CQI最大值和RI最大值。
  3. 根据权利要求2所述的调控终端温度的方法,其中,所述将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量,包括:
    在所述实时温度值位于所述第一区间的情况下,将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值限制所 述终端的第一下行数据吞吐量;所述第一CQI值为所述终端上报的最大CQI值限制在所述第一区间对应的CQI最大值获得,所述第一RI值为所述终端上报的最大RI值限制在所述第一区间对应的RI最大值获得;
    在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,将第二CQI值和第二RI值发送至基站,以供所述基站根据所述第二CQI值和第二RI值提供所述终端的第二下行数据吞吐量;所述第二CQI值为所述终端上报的最大CQI值限制在所述第二区间对应的CQI最大值获得,所述第二RI值为所述终端上报的最大RI值限制在所述第二区间对应的RI最大值获得。
  4. 根据权利要求3所述的调控终端温度的方法,其中,所述温度区间还包括第三区间,所述第三区间的最大温度值小于所述第一区间的最小温度值;所述获取所述温度区间对应的CQI最大值和RI最大值,包括:
    在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则获取所述第三区间对应的CQI最大值和RI最大值;
    所述将所述当前CQI值和当前RI值发送至基站,以供所述基站根据所述当前CQI值和当前RI值提供所述终端的下行数据吞吐量,包括:
    将第三CQI值和第三RI值发送至基站,以供所述基站根据所述第三CQI值和第三RI值提供所述终端的第三下行数据吞吐量;所述第三CQI值为所述终端上报的最大CQI值限制在所述第三区间对应的CQI最大值获得,所述第三RI值为所述终端上报的最大RI值限制在所述第三区间对应的RI最大值获得。
  5. 根据权利要求4所述的调控终端温度的方法,其中,所述第二下行数据吞吐量小于所述第一下行数据吞吐量,所述第三下行数据吞吐量大于所述第一下行数据吞吐量。
  6. 根据权利要求4所述的调控终端温度的方法,其中,每两个相邻的 所述温度区间之间设有缓冲区,所述第一区间和第二区间之间的缓冲区为第一缓冲区,所述第一区间与所述第三区间之间的缓冲区为第二缓冲区;所述方法还包括:
    在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,则在所述第一缓冲区,保持所述第一CQI值和第一RI值;
    在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则在所述第二缓冲区,保持所述第一CQI值和第一RI值。
  7. 根据权利要求2所述的调控终端温度的方法,其中,在所述将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值提供所述终端的第一下行数据吞吐量之后,所述方法还包括:
    在所述实时温度值维持在所述第一区间的情况下,则将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值维持所述终端的第一下行数据吞吐量。
  8. 一种调控终端温度的装置,所述装置包括:
    曲线获取模块,配置为获取终端的温度变化曲线,所述温度变化曲线至少包括两个相邻的温度区间;
    检测模块,配置为检测所述终端的实时温度值;
    确定模块,配置为根据所述温度变化曲线,确定所述实时温度值所在的温度区间;
    CQI和RI获取模块,配置为获取所述温度区间对应的信道质量指示CQI最大值和秩指示RI最大值;
    CQI和RI限制模块,配置为将所述终端上报的最大CQI值限制在所述CQI最大值,且将所述终端上报的最大RI值限制在所述RI最大值,得到当前CQI值和当前RI值;
    上报模块,配置为将所述当前CQI值和当前RI值发送至基站,以供所 述基站根据所述当前CQI值和当前RI值限制所述终端的下行数据吞吐量。
  9. 根据权利要求8所述的调控终端温度的装置,其中,所述温度区间包括第一区间和第二区间;所述CQI和RI获取模块,配置为在所述实时温度值位于所述第一区间的情况下,获取所述第一区间对应的CQI最大值和RI最大值;在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,则获取所述第二区间对应的CQI最大值和RI最大值。
  10. 根据权利要求9所述的调控终端温度的装置,其中,所述上报模块,配置为在所述实时温度值位于所述第一区间的情况下,将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值限制所述终端的第一下行数据吞吐量;所述第一CQI值为所述终端上报的最大CQI值限制在所述第一区间对应的CQI最大值获得,所述第一RI值为所述终端上报的最大RI值限制在所述第一区间对应的RI最大值获得;在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,将第二CQI值和第二RI值发送至基站,以供所述基站根据所述第二CQI值和第二RI值提供所述终端的第二下行数据吞吐量;所述第二CQI值为所述终端上报的最大CQI值限制在所述第二区间对应的CQI最大值获得,所述第二RI值为所述终端上报的最大RI值限制在所述第二区间对应的RI最大值获得。
  11. 根据权利要求10所述的调控终端温度的装置,其中,所述温度区间还包括第三区间,所述第三区间的最大温度值小于所述第一区间的最小温度值;所述CQI和RI获取模块,配置为在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则获取所述第三区间对应的CQI最大值和RI最大值;
    所述上报模块,配置为将第三CQI值和第三RI值发送至基站,以供所述基站根据所述第三CQI值和第三RI值提供所述终端的第三下行数据吞吐 量;所述第三CQI值为所述终端上报的最大CQI值限制在所述第三区间对应的CQI最大值获得,所述第三RI值为所述终端上报的最大RI值限制在所述第三区间对应的RI最大值获得。
  12. 根据权利要求11所述的调控终端温度的装置,其中,所述第二下行数据吞吐量小于所述第一下行数据吞吐量,所述第三下行数据吞吐量大于所述第一下行数据吞吐量。
  13. 根据权利要求11所述的调控终端温度的装置,其中,每两个相邻的所述温度区间之间设有缓冲区,所述第一区间和第二区间之间的缓冲区为第一缓冲区,所述第一区间与所述第三区间之间的缓冲区为第二缓冲区;
    所述装置还包括保持模块,配置为在所述实时温度值由位于所述第一区间上升至位于所述第二区间的情况下,则在所述第一缓冲区,保持所述第一CQI值和第一RI值;在所述实时温度值由位于所述第一区间下降至位于所述第三区间的情况下,则在所述第二缓冲区,保持所述第一CQI值和第一RI值。
  14. 根据权利要求9所述的调控终端温度的装置,其中,所述装置还包括维持模块,配置为在所述实时温度值维持在所述第一区间的情况下,则将第一CQI值和第一RI值发送至基站,以供所述基站根据所述第一CQI值和第一RI值维持所述终端的第一下行数据吞吐量。
  15. 一种终端,所述终端包括:至少一个处理器,以及存储器,所述存储器与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7任一项所述的方法。
  16. 一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被终端执行时,使所述终端执行如权利要求1-7任一项所述的方法。
PCT/CN2021/138379 2020-12-21 2021-12-15 一种调控终端温度的方法、装置、终端和存储介质 WO2022135236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011519160.9A CN114650550A (zh) 2020-12-21 2020-12-21 一种调控终端温度的方法、装置、终端和存储介质
CN202011519160.9 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022135236A1 true WO2022135236A1 (zh) 2022-06-30

Family

ID=81991202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138379 WO2022135236A1 (zh) 2020-12-21 2021-12-15 一种调控终端温度的方法、装置、终端和存储介质

Country Status (2)

Country Link
CN (1) CN114650550A (zh)
WO (1) WO2022135236A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115866779B (zh) * 2022-11-22 2024-05-14 三维通信股份有限公司 基站下行调度的控制方法、装置、存储介质和电子装置
CN116389371B (zh) * 2023-06-07 2023-08-18 深圳维特智能科技有限公司 一种智能物联网vpn路由器过热处理方法、系统和路由器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753658A (zh) * 2008-10-31 2010-06-23 华为终端有限公司 调节终端温度的方法、温度调节装置及终端
US20100273517A1 (en) * 2008-10-24 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for component temperature control based on reduction of data rate and wtru transmit power
WO2017003266A1 (ko) * 2015-07-02 2017-01-05 엘지전자 주식회사 단말 동작 모드를 기반으로 선택적으로 동작을 수행하는 방법 및 장치
CN108206729A (zh) * 2017-12-07 2018-06-26 西安中兴新软件有限责任公司 一种调整数据传输方式的方法及装置
CN110536346A (zh) * 2019-05-16 2019-12-03 Oppo广东移动通信有限公司 一种终端的功耗控制方法、装置及存储介质
CN112042129A (zh) * 2018-05-02 2020-12-04 高通股份有限公司 指示在无线通信系统中的能量约束和热约束

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273517A1 (en) * 2008-10-24 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for component temperature control based on reduction of data rate and wtru transmit power
CN101753658A (zh) * 2008-10-31 2010-06-23 华为终端有限公司 调节终端温度的方法、温度调节装置及终端
WO2017003266A1 (ko) * 2015-07-02 2017-01-05 엘지전자 주식회사 단말 동작 모드를 기반으로 선택적으로 동작을 수행하는 방법 및 장치
CN108206729A (zh) * 2017-12-07 2018-06-26 西安中兴新软件有限责任公司 一种调整数据传输方式的方法及装置
CN112042129A (zh) * 2018-05-02 2020-12-04 高通股份有限公司 指示在无线通信系统中的能量约束和热约束
CN110536346A (zh) * 2019-05-16 2019-12-03 Oppo广东移动通信有限公司 一种终端的功耗控制方法、装置及存储介质

Also Published As

Publication number Publication date
CN114650550A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US20220109547A1 (en) User equipment and base station for managing beam failure detection
US11375457B2 (en) User equipment and a method for power control of uplink transmissions
WO2022135236A1 (zh) 一种调控终端温度的方法、装置、终端和存储介质
US11425698B2 (en) Method, device and system for performing wireless communication in wireless communication system
KR101502934B1 (ko) 참조 셀 유지 방법
EP3565325B1 (en) Method for adjusting terminal power, and terminal
US9473958B2 (en) Method, apparatus, and system for adjusting CQI feedback cycle
EP3780399B1 (en) Wireless communication method and wireless communication device
JP6202454B2 (ja) アップリンク電力制御方法及び装置
US10698459B2 (en) Electronic devices and method of controlling an electronic device
US9491744B2 (en) Terminal apparatus, base station apparatus, communication system, radio resource requesting method and integrated circuit
WO2021004529A1 (zh) 媒体接入控制控制元素的发送方法及装置、设备、介质
CN114270955B (zh) 通信方法及装置
JP2016516340A (ja) 受信機ダイバーシティの適応的使用
US20150351050A1 (en) Wireless communication apparatus and wireless communication method
JP2018533325A (ja) フィードバックの送受信方法及び装置
CN113840320A (zh) 一种用于双连接系统的通信方法及装置
JP6900520B2 (ja) 電力処理方法、装置、および記憶媒体
CN112312574A (zh) 一种通信传输的方法
KR20160095108A (ko) 전력 사용 상태 정보 전송 방법 및 장치
CN114126057A (zh) 传输方法、装置、通信设备及终端
US20150263818A1 (en) Physical downlink control channel (pdcch) inter-cell-interference coordination
CN107409422A (zh) 无线通信网络中的设备、节点和方法
US10034279B2 (en) Power control method, system, device and computer storage medium
US20220217577A1 (en) Detecting Cellular Network Bottlenecks Using Data Allocation Patterns

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21909232

Country of ref document: EP

Kind code of ref document: A1