WO2022135111A1 - 近眼显示设备 - Google Patents

近眼显示设备 Download PDF

Info

Publication number
WO2022135111A1
WO2022135111A1 PCT/CN2021/135216 CN2021135216W WO2022135111A1 WO 2022135111 A1 WO2022135111 A1 WO 2022135111A1 CN 2021135216 W CN2021135216 W CN 2021135216W WO 2022135111 A1 WO2022135111 A1 WO 2022135111A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
display device
eye display
concave mirror
bracket
Prior art date
Application number
PCT/CN2021/135216
Other languages
English (en)
French (fr)
Inventor
杜佳玮
李泓
王一琪
袁文涛
郑伟
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2022135111A1 publication Critical patent/WO2022135111A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to the field of AR technology, and in particular to a near-eye display device for projecting light emitted by an image source into human eyes.
  • AR Augmented Reality
  • the existing Augmented Reality (“AR”) technology is a technology that uses a projection system to generate virtual images and superposition of real-world information to increase users' perception of the real world.
  • the world fits and interacts with the real world.
  • AR technology can be widely used in military, medical, construction, education, engineering, film and television, entertainment and many other fields.
  • Augmented reality is the integration of virtual information and the real world. Augmented reality technology represented by augmented reality glasses is currently emerging in various industries, especially in the security and industrial fields. Augmented reality technology reflects unparalleled advantages and greatly improves information interaction. Way.
  • the more mature augmented reality technologies are mainly divided into prism scheme, birdbath scheme, free-form surface scheme, off-axis holographic lens scheme and waveguide (Lightguide) scheme.
  • Applications in Reality Glasses The holographic lens scheme uses the unique optical characteristics of the holographic sheet, which has the advantages of large field of view (FOV) and small volume, but is limited by the relatively small eye movement range, and the holographic waveguide scheme has the advantages of color uniformity (no rainbow effect) and realization of Monolithic full-color waveguides have advantages, but are currently limited in mass production and large fields of view.
  • Waveguides are currently the best solution for augmented reality glasses.
  • the waveguide scheme is further divided into geometric waveguide scheme, relief grating waveguide scheme and volume holographic waveguide scheme.
  • the geometric waveguide scheme generally includes a sawtooth structure waveguide and a polarizing film array mirror waveguide (abbreviated as polarized array waveguide).
  • polarized array waveguide uses the partially transmissive and partially reflective film mirror of the array to achieve the purpose of displaying virtual information.
  • the polarized arrayed waveguide scheme has the advantages of lightness, thinness, large eye movement range and uniform color.
  • the relief grating waveguide scheme can be mass-produced by the nanoimprinting process. It has the advantages of a large field of view and a large eye movement range, but it also brings challenges of field uniformity and color uniformity. At the same time, the related micro-nano processing The craftsmanship is also a huge challenge.
  • Known augmented reality display devices can move the huge optical machines around the eyes to the side, such as on the side and forehead, without blocking the line of sight, through a transmission medium such as optical waveguide lenses, and then bring the light to the Come in front of the eyes.
  • Another big advantage is that it can increase the range of the orbit (after wearing glasses, how much the eye moves around the center point of the system in the range of x and y to still be able to see the image clearly), so increase the orbit of the eye.
  • the range makes it easier to adapt to all groups of people when making products.
  • the light emitted by the object passes through the pupil of the human eye and is imaged on the retina through the refraction system of the human eye. Since the focal length of the human eye is only about 20mm, the diffraction pattern on the retina looks like a Fraunhofer aperture.
  • the pupil is basically a round hole, and its diameter is adjusted by the iris in the range of 2mm to 8mm. Under normal light conditions, the pupil diameter is about 3mm.
  • the most sensitive green light wavelength of the human eye is 550nm, and the minimum resolution angle of the human eye is 550nm. is 1'.
  • the field of view of the optomechanical is 40°.
  • the lens of the optical instrument is taken as the vertex, and the angle formed by the two edges of the maximum range where the object image of the object to be measured can pass through the lens is called Field of View (FOV).
  • FOV Field of View
  • the size of the field of view determines the field of view of the optical instrument. The larger the field of view, the larger the field of view and the smaller the optical magnification. In layman's terms, if the target object exceeds this angle, it will not be included in the lens.
  • Augmented reality technology is a technology that calculates the position and angle of camera images in real time and adds corresponding images, videos, and 3D models. The goal of this technology is to put the virtual world on the screen and interact with the real world. This technique was proposed in 1990. Augmented reality technology is a new technology that "seamlessly" integrates real world information and virtual world information. Taste, touch, etc.), through computer and other science and technology, simulate and then superimpose, apply virtual information to the real world, and be perceived by human senses, so as to achieve a sensory experience beyond reality. The real environment and virtual objects are superimposed on the same screen or space in real time.
  • the existing augmented reality optical module generally includes a transflective lens and a third lens group, wherein the transflective lens on the side close to the human eye generally forms an angle of 45° with the optical axis of the light emitted by the module.
  • the transflective lens on the side close to the human eye generally forms an angle of 45° with the optical axis of the light emitted by the module.
  • ambient light incident below the transflective lens will also irradiate the transflective lens, and then enter the human eye for imaging after being reflected, causing interference and degrading user experience.
  • the augmented reality device is a type of wearable device, and its volume and weight directly affect the user's wearing experience. If the volume is too large, the aesthetics and ease of storage of the product will be greatly reduced. If the weight is too large, the user will be increased. wear burden.
  • BB augmented reality technology
  • the projector projects image light, which is reflected by the half mirror to a concave mirror. It is reflected back and then projected by the semi-transparent mirror and then enters the human eye.
  • This technology is favored by many manufacturers due to its simple optical design and few components.
  • this technology of projecting a projected image to the eyes through a geometric optical path inevitably results in the device being too bulky and heavy, which affects the user's wearing experience.
  • the present application aims to provide a near-eye display device for improving the parallelism of two projectors on the near-eye display device.
  • a near-eye display device for projecting light emitted by an image source into a human eye, comprising: two first concave mirrors, each first concave mirror having a first opening communicating with each other, a second concave mirror Two openings and a third opening, the planes located at the first opening, the second opening and the third opening together with the outer surface of the first concave mirror define a hollow closed space, the first concave mirror There are mounting parts extending to both sides at the intersection of the second opening and the third opening; two second lenses are respectively fixed to the two first concave mirrors and cover the first opening; two blocking a light plate, respectively fixed on the two first concave mirrors and covering the second opening; a bracket, fixed on the two first concave mirrors and covering the third opening; two light projectors, respectively fixed on on the stand.
  • the mounting portion of the first concave mirror has an adjacent first surface and a second surface, and the first surface extends toward the second opening for fixedly connecting the light blocking plate; the second surface The face extends toward the third opening for fixedly connecting the bracket.
  • the light blocking plate extends outward with an extension portion, and the light blocking plate is mounted on the mounting portion of the first concave lens through the extending portion.
  • a plurality of protrusions extend outward from the sidewall of the second lens, the second lens is mounted on the first opening of the first concave mirror through the plurality of protrusions, and the second lens A plurality of notches are provided at positions where the lens is installed with the plurality of projections.
  • the near-eye display device further includes an adhesive, and the bracket is connected with the mounting portion of the concave mirror through the adhesive.
  • the mounting portion has a through hole for accommodating the adhesive to fix the bracket.
  • the through hole is an inverted tapered through hole or the through hole is a T-shaped through hole, the diameter of the through hole on the side close to the bracket is larger than that on the side away from the bracket, or the mounting portion is close to the bracket
  • One side has a groove, and the adhesive is arranged in the groove.
  • the bracket has a light-passing hole, and light emitted from the projector is incident on the concave mirror through the light-passing hole.
  • the first concave mirror comprises a concave mirror.
  • the second lens includes a half mirror.
  • two light projectors installed on a bracket are used to project image light rays that are incident on the surfaces of the two second lenses, respectively, and are reflected to the two first concave mirrors, and then pass through the first concave mirrors toward the two first concave mirrors.
  • the human eye reflects it back and enters the human eye through the second lens.
  • the virtual image light projected by the light projector enters the human eye through the optical system composed of the second lens and the first concave mirror, and the external ambient light can also enter the human eye through the first concave mirror and the second lens, and the virtual information Superimposed on the real environment to form a virtual reality display.
  • the virtual images projected to the binoculars need to be consistent, and the parallelism of the lines entering the binoculars must be ensured, that is, the parallelism of the light projected by the projector + half mirror + concave mirror is the same.
  • FIG. 1 shows a schematic diagram of a near-eye display device according to the prior art.
  • FIG. 2 shows a schematic structural diagram of a near-eye display device according to an exemplary embodiment of the present application.
  • FIG. 3 shows a schematic structural diagram of a light blocking plate of a near-eye display device according to an exemplary embodiment of the present application.
  • FIG. 4 shows a schematic structural diagram of a mounting portion of a near-eye display device according to an exemplary embodiment of the present application.
  • FIG. 5 illustrates a schematic cross-sectional view of a mounting hole of a mounting portion of a near-eye display device according to an exemplary embodiment of the present application.
  • FIG. 6 shows a schematic diagram of a connection relationship between a bracket and a mounting portion of a near-eye display device according to an exemplary embodiment of the present application.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this application will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar parts, and thus their repeated descriptions will be omitted.
  • FIG. 1 shows a schematic diagram of a near-eye display device according to the prior art.
  • a near-eye display device includes a projector 40, a half mirror 20, a concave mirror, a projector 40, and the projector 40 projects image light incident on the surface of the half mirror 20, It is reflected to the concave mirror 30 , is reflected back toward the human eye 10 through the concave mirror 30 , and enters the left eye and the right eye of the human through the half mirror 20 .
  • the virtual image light projected by the projector 40 enters the human eye 10 through the optical system composed of the half mirror 20 and the concave mirror 30 , and the external ambient light can also enter through the concave mirror and the half mirror 20 .
  • the virtual information is superimposed on the real environment to form a virtual reality display.
  • the semi-transparent mirror 20 is placed at an angle of ⁇ to the vertical direction, and the optical projector 40 is placed parallel to the vertical direction, that is, the optical axis of the optical projector 40 is parallel to the vertical direction.
  • the concave mirror 30 is in the horizontal direction of the line of sight of the human eye 10 , so that the central light rays can enter the human eye 10 horizontally.
  • the angle ⁇ between the half mirror 20 and the vertical direction is set to be less than 45°, so that the size of the near-eye display device in the horizontal direction is reduced, and the near-eye display device can be brought closer to the human eye 10 as a whole. It is more stable when it is worn on the ears and bridge of the nose.
  • the projector 40 has an included angle ⁇ with the vertical direction, and is inclined toward the object.
  • a near-eye display device according to an embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • FIG. 2 shows a schematic structural diagram of a near-eye display device according to an exemplary embodiment of the present application.
  • the present disclosure discloses a near-eye display device for superimposing light emitted by an image source and ambient light to form an augmented reality image, comprising: two first concave mirrors, each of which is a second concave mirror.
  • a concave mirror has a first opening, a second opening and a third opening that communicate with each other, the planes located at the first opening, the second opening and the third opening together with the outer surface of the first concave mirror define a hollow closed space, the first The concave mirror is located at the intersection of the second opening and the third opening and extends to two sides with mounting portions 302 .
  • the two second lenses are respectively fixed to the two first concave mirrors and cover the first opening.
  • the two light blocking plates 50 are respectively fixed to the two first concave mirrors and cover the second opening.
  • the bracket 60 is fixed to the two first concave mirrors and covers the third opening.
  • the two projectors 40 are respectively fixed on the bracket 60 .
  • the first concave mirror includes a first opening, a second opening and a third opening
  • the projector 40 is installed at the third opening
  • the second lens is arranged at the first opening
  • a light blocking plate is arranged at the second opening 50 , for preventing external stray light from being reflected by the concave mirror 30 and entering the human eye 10 .
  • the third opening has an included angle with the horizontal direction, that is to say, the height of the second lens is smaller than the height of the top of the first concave mirror, so that the second lens can be closer to the human eye 10, so that the near-eye display device can be closer to the human eye 10.
  • the surface of the first concave mirror is any one of a spherical surface, an aspherical surface or a free-form surface, and the first concave mirror may be a concave reflecting mirror 30 .
  • the second lens includes a half mirror 20 .
  • the light projector 40 is arranged horizontally to emit light in a horizontal direction.
  • the light projector 40 includes a reflector 401 , and the light of the projected image is incident on the second lens in a vertical direction through the reflector.
  • FIG. 3 shows a schematic structural diagram of a light blocking plate of a near-eye display device according to an exemplary embodiment of the present application.
  • FIG. 4 shows a schematic structural diagram of a mounting portion of a near-eye display device according to an exemplary embodiment of the present application.
  • 5 illustrates a schematic cross-sectional view of a mounting hole of a mounting portion of a near-eye display device according to an exemplary embodiment of the present application.
  • FIG. 6 shows a schematic diagram of a connection relationship between a bracket and a mounting portion of a near-eye display device according to an exemplary embodiment of the present application.
  • the mounting portion 302 has a first surface and a second surface, wherein the first surface extends toward the second opening of the concave mirror 30 , and the second surface faces the opening of the concave mirror 30 .
  • the third opening direction extends.
  • first surface is parallel to the plane where the second opening of the concave mirror 30 is located
  • second surface is parallel to the plane where the third opening of the concave mirror 30 is located
  • first surface may be lower than the second opening
  • second surface may be lower than the third opening.
  • the light blocking plate 50 has an outwardly extending portion 501 at a position corresponding to the mounting portion 302 , and is connected to the first surface of the mounting portion 302 of the concave mirror 30 through the extending portion.
  • glue is provided between the extension portion of the light shield 50 and the mounting portion 302 of the concave mirror 30 to connect the two, and by arranging the extension portion and the mounting portion 302 , the glue is prevented from flowing to the concave mirror 30 .
  • the third opening of the concave mirror 30 is used for installing the projector 40 .
  • the bracket 60 of the projector 40 can be installed in the third opening of the concave mirror 30 , and two concave mirrors 30 can also be provided with a bracket 60 , and the bracket 60 can be installed in the third opening of the concave mirror 30 . , and then install the projector 40 on the above-mentioned bracket 60.
  • the bracket 60 can be provided with a light-passing hole for the projection light to be projected onto the second lens through the light-passing hole, and the remaining area of the bracket 60 except the light-passing hole is all It can be used to install the projector 40, which enhances the bonding strength between the projector 40 and the bracket 60, while the concave mirror 30 and the bracket 60 are bonded through the outwardly extending mounting parts 302, and are The outer extension may facilitate the connection of the bracket 60 to the mounting portion 302 .
  • the mounting portion 302 is arranged to extend outward parallel to the length direction of the bracket, so that the bracket and the concave mirror can be installed on the side, which avoids the increase of the thickness of the near-eye display device in the direction of human eye sight, and helps the near-eye display device. Miniaturization of display devices.
  • bracket 60 is convenient to assemble between the bracket 60 and the concave mirror 30 after the bracket 60 and the projector 40 are assembled. Since the projector 40 + half mirror 20 + concave emitting mirror is a complex optical system, the tolerance of any one component or the assembly error between components will lead to optical disadvantages, so the bracket 60 and the two The bonding position between the second lenses is set on the outwardly extending mounting portion 302, which is beneficial to disassemble the concave mirror 30 and the concave mirror 30 by disassembling the glue 70 at the extending portion when the test of the near-eye display device fails after the assembly is completed.
  • the bracket 60 is to separate the concave mirror 30 from the projector 40, and is installed after recalibration or readjustment.
  • the first concave mirror, the second lens, the light blocking plate 50 , the bracket 60 and the projector 40 are bonded and fixed by adhesive.
  • the glue used can be selected to be decomposable by heating, and its decomposition temperature is greater than 100 °C, and further, the decomposition temperature can be selected to be greater than 120 °C to improve the stability of the equipment when working at high temperatures.
  • two kinds of glues can be provided, one kind of glue that can be decomposed by heating is applied to the mounting portion 302 of the concave mirror 30 for assembling the concave mirror 30 and the bracket 60 (including the projector 40 ), and the assembly is to be completed.
  • the mounting portion 302 has a mounting hole 303 , and the mounting hole 303 is a through hole for fixing the bracket 60 .
  • the through holes on the mounting portion 302 are inverted conical through holes, T-shaped through holes or grooves, and the grooves are provided on the mounting portion 302 on the side that contacts the bracket 60 .
  • Glue can be provided at the installation hole 303 for bonding the concave mirror 30 and the bracket 60, so that the glue is accommodated in the installation hole 303, which is more beautiful and does not affect other components.
  • the mounting hole 303 can have a small to large conical shape from the outer end face to the bracket 60, or it can have a step on the contact surface with the bracket 60, which can be similar to a T shape to increase the contact area of the glue and thus increase the adhesion. connection strength. In this way, the concave mirror 30 and the bracket 60 can be attached together first, and then glue is poured from the outer end surface of the mounting hole 303 to bond the bracket 60 and the concave mirror 30 .
  • the installation method of the groove is selected, a groove is provided on the side of the mounting portion 302 facing the bracket 60, glue is placed in the groove, and then the concave mirror 30 is directly attached to the In addition, in this way, the glue is hidden inside the groove, there will be no overflowing wind direction, and it is more beautiful.
  • the bracket 60 can be directly attached to the concave mirror 30 by means of grooves or through holes, avoiding the need for the concave mirror 30 and the bracket 60 . assembly error between.
  • the sidewall of the half mirror 20 has a plurality of protrusions 201
  • the first concave mirror has a plurality of notches 301 matched with the plurality of protrusions 201 .
  • the bump 201 is installed on the notch 301 of the concave mirror 30 , and glue is arranged at the notch 301 of the first opening of the concave mirror 30 .
  • the size of the notch 301 can be larger than the size of the bump 201 of the half mirror 20 , so that the glue can be arranged on the sidewall of the bump 201 , and the bump 201 directly bears against the notch 301 of the concave mirror 30 , the assembly precision between the half mirror 20 and the concave mirror 30 is improved.
  • the near-eye display device of the present application is a binocular near-eye display device. It must be ensured that the virtual images projected by both eyes are completely consistent, and the lines of the eyes must be parallel, that is, the left and right systems (projector 40+ transflective mirror 20+ concave reflection) The light rays projected by the mirror 30) must be parallel.
  • the projector 40 includes a display chip and a projection lens.
  • the display chip and the projection lens are first assembled on the bracket 60 , then the concave mirror 30 is assembled on the bracket 60 , and then the left and right systems are assembled together to form a pair of
  • the near-eye display device it is difficult to hold the single-purpose near-eye display device in this way, and it is difficult to directly adjust the light parallelism and interpupillary distance of the two systems.
  • the present application proposes a new method for assembling a binocular near-eye display device.
  • Two sets of half mirrors 20 , concave mirrors 30 , projection lenses, display chips, and at least one bracket 60 are provided to constitute the components of the binocular display system.
  • two reflective prisms are also provided for reflecting the light from the projection lens to the half mirror 20.
  • the display chip and the projection lens can be placed horizontally to reduce the height of the near-eye display device. .
  • the half mirror 20 is attached to the first opening of the concave mirror 30, the first concave mirror 30 is attached to the bracket 60, and then the other concave mirror 30 is attached to In the bracket 60, it is necessary to ensure that the two concave mirrors 30 have a substantially parallel attitude, so as to ensure that the central rays of the two display systems entering the human eye 10 are parallel, and the lens and the reflection prism of the projector 40 are attached to the bracket 60, and then The display chip is attached to the light incident side of the lens of the projector 40 to form a monocular display system, and another projector 40 is assembled with the bracket 60 to form a binocular near-eye display system.
  • the alignment method can be selected by laser projection and measurement, that is, project parallel laser beams on the two concave mirrors 30 respectively, and the laser The beam is reflected on the half mirror 20 to the concave mirror 30, and then reflected toward the human eye 10.
  • the parallelism of the two concave mirrors 30 assembled on the bracket 60 can be judged by measuring the parallelism of the two outgoing rays. It is also possible to install two concave mirrors 30 on the bracket 60 and place them in a translation mechanism, and still project a laser on one of the concave mirrors 30, and then obtain a laser point at the receiving end to translate the bracket 60.
  • the position of the laser spot reflected by the second concave mirror 30 coincides with the position of the laser spot reflected by the first concave mirror 30, at this time
  • the two concave mirrors 30 can be considered to be approximately parallel.
  • the two concave reflectors 30 first need a certain degree of parallelism to ensure that the optical centers of the binocular centers are parallel. Only by adjusting the projection The assembled posture of the optomechanical 40 on the bracket 60 cannot make the binocular central rays completely parallel, because the concave mirror 30 is a centered optical device. Therefore, the concave mirror 30 is adjustable when assembled on the bracket 60 .
  • the mounting portion 302 extending outward is provided.
  • the mounting portion 302 can also be used as a holding portion for the concave reflector 30. Because the concave reflector 30 itself has an arc-shaped reflecting surface, it is difficult to Even if the side wall of the concave mirror 30 is held by a suction device with a flexible suction nozzle, the side wall itself is an arc surface, resulting in a large deviation of the angle of each suction, which is very difficult for assembly.
  • the present application can adjust and install the concave reflector 30 by holding the mounting portion 302 of the concave reflector 30 .
  • the mounting portion 302 in the concave reflector 30 may be integrally formed with the concave reflector 30 , or may be of a separate type, preferably an integrated structure, which is beneficial to improve the installation accuracy of the concave reflector 30 .
  • the transflective film of the transflective mirror 20 may have a light splitting ratio of 50/50.
  • the transflective film can also design the transflective ratio of the transflective film according to the actual needs, so as to realize the adjustment of the brightness ratio between the virtual image and the ambient light.
  • the inverse ratio is 60/40, so that more ambient light is transmitted; when the image brightness of the projector 40 is required to be relatively high, the transflective ratio of the transflective film can be set to 40/60, which can be implemented according to actual needs. Designed to suit different application scenarios.
  • the semi-transparent and semi-reflective film can also be designed to reflect completely, which can be used as a virtual reality optical module at this time.
  • the light emitted by the light projector 40 is superimposed with the ambient light to form an augmented reality image
  • the light projector 40 includes a display screen and a lens group
  • the display screen may be a liquid crystal display screen, an organic light-emitting display screen, etc., for providing For the image, the light-emitting surface of the display screen faces the lens group, and the lens group can be used to amplify the image output by the display screen.
  • the lens group includes at least one lens.
  • the lens group includes a convex lens.
  • the lens group may include one lens or a combination of multiple lenses, so as to meet the requirements of image clarity.
  • the embodiments of the present application describe the specific lens of the projector 40 .
  • the structure of the group is not limited.
  • Both the concave mirror 30 and the second lens are transflective lenses, for example, they may be transflective lenses with a split ratio of 50/50. Since the concave mirror 30 and the second lens have a semi-transparent and semi-reflex effect on visible light, when the external ambient light is incident on the concave mirror 30, part of the light will be transmitted to the second lens, and part of the light will be transmitted to the human eye 10 after being transmitted again. Augmented reality images can be observed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本申请提供一种近眼显示设备,用于使图像源发出的光线与环境光叠加形成增强现实图像,包括:两个第一凹面镜,每个第一凹面镜具有彼此联通的第一开口、第二开口和第三开口,位于所述第一开口、所述第二开口和所述第三开口的平面与所述第一凹面镜的外表面一起限定一中空封闭空间,所述第一凹面镜位于所述第二开口与所述第三开口交接处向两侧延伸具有安装部;两个第二透镜,分别固定于所述两个第一凹面镜并覆盖所述第一开口;两个挡光板,分别固定于所述两个第一凹面镜并覆盖所述第二开口;支架,固定于所述两个第一凹面镜并覆盖所述第三开口;两个投影光机,分别固定于支架上。本申请的技术方案用于提高近眼显示设备上的两个投影光机的平行度。

Description

近眼显示设备 技术领域
本申请涉及AR技术领域,具体涉及一种用于使图像源发出的光线投射进入人眼的近眼显示设备。
背景技术
现有的增强现实(Augmented Reality,“AR”)技术是一种利用投影系统产生虚拟图像以及真实世界的信息叠加来增加用户对现实世界感知的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。AR技术可广泛应用到军事、医疗、建筑、教育、工程、影视、娱乐等诸多领域。
增强现实是将虚拟信息与现实世界相互融合,以增强现实眼镜为代表的增强现实技术目前在各个行业开始兴起,尤其在安防和工业领域,增强现实技术体现了无与伦比的优势,大大改进了信息交互方式。
目前比较成熟的增强现实技术主要分为棱镜方案、birdbath方案、自由曲面方案、离轴全息透镜方案和波导(Lightguide)方案,前三种方案体积较大,限制了其在智能穿戴方面,即增强现实眼镜方面的应用。全息透镜方案使用全息片独一无二的光学特性,具有大视场角(FOV)和小体积的优势,但是受限于眼动范围比较小,且全息波导方案在色彩均匀性(无彩虹效应)和实现单片全彩波导上均有优势,但是目前在大规模量产和大视场上受到了限制。
波导是目前最佳的增强现实眼镜方案。波导方案又分为几何波导方案、浮雕光栅波导方案和体全息波导方案。几何波导方案中一般包括锯齿结构波导和偏振薄膜阵列反射镜波导(简称偏振阵列波导)。其中主流的偏振阵列波导是使用阵列的部分透射部分反射薄膜镜来达到虚拟信息的显示的目的,偏振阵列波导方案具有轻薄、眼动范围大且色彩均匀的优 势。浮雕光栅波导方案可以用纳米压印工艺进行大批量生产,它具有大视场和大眼动范围的优势,但是也会带来视场均匀性和色彩均匀性的挑战,同时相关的微纳加工工艺也是巨大的挑战。
已知的增强现实显示设备,实现了把眼睛周围很庞大的光机搬到旁边去,比如在侧面、额头处,可以不挡住视线,通过光波导镜片这样一个传输的媒介,再把光带到眼睛前面来。
另外一个比较大的优点就是,可以增大动眼眶(戴上眼镜之后,眼睛在系统中心点周围移动多大的x和y的范围仍然能够清晰地看到图像)的范围,所以增大动眼眶的范围,使得在做产品时更加容易适应所有的人群。
当然也有一些不足,比如光学效率相对较低,对于衍射波导来说会有一些色散导致的彩虹现象以及色彩不均匀,出现明暗交替的光线。通常若要使光机的中心视场与人眼中心视场重合,光机需与光波导镜片垂直耦入,这种方式使得结构设计的自由度较低。
具体地,物体发出的光线通过人眼的瞳孔,经人眼的折射系统成像于视网膜上。由于人眼的焦距只有20mm左右,故视网膜上的像是夫琅禾费圆孔衍射图样。瞳孔基本上是圆孔,其直径由虹膜在2mm~8mm范围内调节,在正常的光亮度条件下,瞳孔直径大约为3mm,人眼最敏感的绿光波长为550nm,人眼的最小分辨角为1′。
具体地,光机的视场角为40°,在光学仪器中,以光学仪器的镜头为顶点,以被测目标的物像可通过镜头的最大范围的两条边缘构成的夹角,称为视场角(FOV)。视场角的大小决定了光学仪器的视野范围,视场角越大,视野就越大,光学倍率就越小。通俗地说,目标物体超过这个角就不会被收在镜头里。
增强现实技术是一种实时地计算摄影机影像的位置及角度并加上相应图像、视频、3D模型的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。这种技术1990年提出。增强现实技术,它是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,是把原本 在现实世界的一定时间空间范围内很难体验到的实体信息(视觉信息,声音,味道,触觉等),通过电脑等科学技术,模拟仿真后再叠加,将虚拟的信息应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。真实的环境和虚拟的物体实时地叠加到了同一个画面或空间同时存在。
现有的增强现实光学模组,一般包括半透半反透镜和一个第三透镜组,其中靠近人眼一侧的半透半反透镜一般与模组出射光的光轴呈45°夹角,在应用时,由于该半透半反透镜倾斜设置,其下方入射的环境光线也会照射到该半透半反透镜,被反射后进入人眼成像,产生干扰,导致用户体验下降。
增强现实的设备是可穿戴设备的一种,其体积、重量都直接影响着用户的穿戴体验,体积过大,对产品的美观程度和便于收纳程度都大打折扣,重量过大,则加重了用户的穿戴负担。
一种名为BB(birdbath)的增强现实的技术,包含投影光机、半透半反镜,凹面反射镜,投影光机投影出图像光线,经半透半反镜反射到凹面镜,凹面镜反射回再经半透半反镜投射后进入人眼。这种技术由于光学设计简单、部件少,受到广大厂商青睐,但这种通过几何光路将投影图像投射到眼睛的技术难免是的设备体积过大,重量也越大,影响用户的穿戴体验。
发明内容
本申请旨在提供一种近眼显示设备,用于提高近眼显示设备上的两个投影光机的平行度。
根据本申请的一方面,提出一种近眼显示设备,用于图像源发出的光线投射进入人眼,包括:两个第一凹面镜,每个第一凹面镜具有彼此联通的第一开口、第二开口和第三开口,位于所述第一开口、所述第二开口和所述第三开口的平面与所述第一凹面镜的外表面一起限定一中空封闭空间,所述第一凹面镜位于所述第二开口与所述第三开口交接 处向两侧延伸具有安装部;两个第二透镜,分别固定于所述两个第一凹面镜并覆盖所述第一开口;两个挡光板,分别固定于所述两个第一凹面镜并覆盖所述第二开口;支架,固定于所述两个第一凹面镜并覆盖所述第三开口;两个投影光机,分别固定于支架上。
根据一些实施例,所述第一凹面镜的安装部具有相邻的第一面和第二面,所述第一面朝向第二开口延伸,用于固定连接所述挡光板;所述第二面朝向第三开口延伸,用于固定连接所述支架。
根据一些实施例,挡光板向外延伸有延伸部,所述挡光板通过所述延伸部安装于所述第一凹面透镜的安装部。
根据一些实施例,第二透镜的侧壁向外延伸有多个凸块,所述第二透镜通过所述多个凸块安装于所述第一凹面镜的第一开口,且所述第二透镜安装所述多个凸块的位置处具有多个缺口。
根据一些实施例,近眼显示设备还包括粘接剂,所述支架通过所述粘接剂与所述凹面镜的安装部连接。
根据一些实施例,所述安装部具有通孔,用于容置所述粘接剂固定所述支架。
根据一些实施例,所述通孔为倒锥形通孔或所述通孔为T型通孔,所述通孔的靠近支架一侧孔径大于远离支架一侧的孔径或所述安装部靠近支架一侧具有凹槽,所述粘接剂设置于所述凹槽。
根据一些实施例,所述支架具有通光孔,所述投影光机出射光线通过所述通光孔入射到所述凹面镜。
根据一些实施例,所述第一凹面镜包括凹面反射镜。
根据一些实施例,所述第二透镜包括半透半反镜。
基于上述的近眼显示设备,利用安装于一个支架上的两个投影光机投影出图像光线分别入射到两个第二透镜表面,被分别反射到两个第一凹面镜,经第一凹面镜朝向人眼反射回来,透过第二透镜进入人眼。投影光机投射的虚拟图像光通过第二透镜和第一凹面镜组成的光学系统进入到人眼,而外界环境光也可以透过第一凹面镜和第二透镜从而进入到人眼,虚拟信息叠加到真实环境上形成虚拟现实显示。向双目投射的虚 拟图像需一致,则保证进入双目光线的平行度,即投影光机+半透半反镜+凹面反射镜所投射光线的平行度一致。
为能更进一步了解本申请的特征及技术内容,请参阅以下有关本申请的详细说明与附图,但是此说明和附图仅用来说明本申请,而非对本申请的保护范围作任何的限制。
附图说明
下面结合附图详细说明本公开的实施方式。这里,构成本公开一部分的附图用来提供对本公开的进一步理解。本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。附图中:
图1示出根据现有的近眼显示设备的示意图。
图2示出根据本申请示例实施例的近眼显示设备的结构示意图。
图3示出根据本申请示例实施例的近眼显示设备的挡光板结构示意图。
图4示出根据本申请示例实施例的近眼显示设备的安装部结构示意图。
图5示出根据本申请示例实施例的近眼显示设备的安装部的安装孔的剖面示意图。
图6示出根据本申请示例实施例的近眼显示设备的支架与安装部连接关系示意图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有这些特定细节中的一个或更多,或者可以采用其它的方式、组元、材料、装置或等。在这些情况下,将不详细示出或描述公知结构、方法、装置、实现、材料或者操作。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
如图所示,图1示出根据现有的近眼显示设备的示意图。
参图1可见,一种近眼显示设备,包括投影光机40、半透半反镜20、凹面镜,投影光机40,投影光机40投影出图像光线入射到半透半反镜20表面,被反射到凹面反射镜30,经凹面反射镜30朝向人眼10反射回来,透过半透半反镜20分别进入人的左眼和右眼。投影光机40投射的虚拟图像光通过半透半反镜20和凹面反射镜30组成的光学系统进入到人眼10,而外界环境光也可以透过凹面镜和半透半反镜20从而进入到人眼10,虚拟信息叠加到真实环境上形成虚拟现实显示。
半透半反镜20与垂直方向呈α放置,投影光机40平行于垂直方向放置,即投影光机40的光轴平行于垂直方向。凹面反射镜30在人眼10视线的水平方向上,使得中心光线能够水平的入射人眼10。
本申请中半透半反镜20与垂直方向的夹角α被设置为小于45°, 以使得近眼显示设备在水平方向上的尺寸减小,并且近眼显示设备整体能够更靠近人眼10,有利于其穿戴在耳朵和鼻梁上时更为稳固。相应的,为保持中心光线水平的入射到人眼10,投影光机40与垂直方向具有一夹角β,并且朝向物方倾斜。
于是,本申请人认为上述发明可改善,通过合理运用科学原理进行潜心研究,终于提出一项设计合理且有效改善的发明。
下面将参照附图,对根据本申请实施例的一种近眼显示设备进行详细说明。
图2示出根据本申请示例实施例的近眼显示设备的结构示意图。
如图2所示,根据本申请示例实施例,本公开一种近眼显示设备,用于使图像源发出的光线与环境光叠加形成增强现实图像,包括:两个第一凹面镜,每个第一凹面镜具有彼此联通的第一开口、第二开口和第三开口,位于第一开口、第二开口和第三开口的平面与第一凹面镜的外表面一起限定一中空封闭空间,第一凹面镜位于第二开口与第三开口交接处向两侧延伸具有安装部302。两个第二透镜分别固定于两个第一凹面镜并覆盖第一开口。两个挡光板50分别固定于两个第一凹面镜并覆盖第二开口。支架60固定于两个第一凹面镜并覆盖第三开口。两个投影光机40,分别固定于支架60上。
根据一些实施例,第一凹面镜包括第一开口、第二开口和第三开口,投影光机40安装于第三开口处,第二透镜设置于第一开口,而第二开口设置一块挡光板50,用于防止外界杂散光通过凹面反射镜30反射进入人眼10。其中第三开口与水平方向具有一夹角,也就是说第二透镜的高度小于第一凹面镜顶端的高度,使得第二透镜能够进一步靠近人眼10,从而该近眼显示设备能更靠近人眼10。
第一凹面镜的表面为球面、非球面或自由曲面的任意一种,第一凹面镜可以选用凹面反射镜30。第二透镜包括半透半反镜20。
投影光机40采用横向发射光线的横向设置,投影光机40包括一反射镜401,投影图像光线通过反射镜在垂直方向上入射到第二透镜。通 过投影光机40横向设置,降低了近眼显示设备的整体高度,进一步使近眼显示设备小型化。
图3示出根据本申请示例实施例的近眼显示设备的挡光板结构示意图。图4示出根据本申请示例实施例的近眼显示设备的安装部结构示意图。图5示出根据本申请示例实施例的近眼显示设备的安装部的安装孔的剖面示意图。图6示出根据本申请示例实施例的近眼显示设备的支架与安装部连接关系示意图。
如图3-6所示,根据一些实施例,安装部302具有第一面与第二面,其中第一面朝向凹面反射镜30的第二开口方向延伸,第二面朝向凹面反射镜30的第三开口方向延伸。
进一步,第一面与凹面反射镜30的第二开口所在的平面平行,第二面与凹面反射镜30的第三开口所在的平面平行。
进一步,第一面可低于第二开口,第二面可低于第三开口。安装部低于开口的好处:将胶水设置在安装部时,挡光板与支架可贴附在第二开口和第三开口,提高了安装的精度,避免胶水厚度影响安装精度。
挡光板50在与安装部302对应位置处具有向外延伸部501,通过延伸部与凹面反射镜30的安装部302第一面连接。
根据一些实施例,通过设置胶水在挡光板50的延伸部与凹面反射镜30的安装部302之间来连接两者,通过设置延伸部和安装部302的方式,避免胶水流到凹面反射镜30的内部。其中,凹面反射镜30的第三开口处用于安装投影光机40。
根据一些实施例,可将投影光机40支架60安装于凹面反射镜30的第三开口,两个凹面反射镜30也可以设置一支架60,将支架60安装于凹面反射镜30的第三开口,然后将投影光机40安装于上述支架60,如此,可将支架60设置一通光孔,用于投影光线通过通光孔投射到第二透镜上,而支架60除去通光孔剩余的区域都可以用于安装投影光机40,增强了投影光机40与支架60的粘接强度,而凹面反射镜30与支架60之间则通过向外延伸的安装部302之间进行粘接,通过向外延伸部可方 便支架60与安装部302的连接。
根据一些实施例,安装部302被设置为平行于支架长度方向向外延伸,使得支架与凹面镜可以在侧边安装,避免了近眼显示设备在人眼视线方向上厚度的增加,有助于近眼显示设备的小型化。
进一步,方便在支架60与投影光机40组装完成后、支架60与凹面反射镜30之间的组装。由于投影光机40+半透半反镜20+凹面发射镜是一个复杂的光学系统,任何一个部件的公差或者部件之间的组装误差,都会导致光学上的不利,所以将支架60与两个第二透镜之间的粘接位置设置在向外延伸的安装部302,有利于当组装完成后近眼显示设备测试不良时,可通过拆解延伸部处的胶水70来拆解凹面反射镜30与支架60,即将凹面反射镜30与投影光机40分开,重新校准或者重新调整后进行安装。
根据一些实施例,第一凹面镜、第二透镜、挡光板50、支架60和投影光机40之间采用粘接剂粘接固定。采用胶水可选择为加热可分解的胶水,其分解温度大于100℃,进一步的可以选择分解温度大于120℃,以提高设备在高温工作时的稳定性。根据一些实施例,可以设置两种胶水,一种加热可分解的胶水于凹面反射镜30的安装部302,用于在凹面反射镜30和支架60(包括投影光机40)组装,待组装完成并测试其性能ok后,在原有胶接的基础上设置另一胶水粘接支架60与凹面反射镜30,第二种胶水优选粘接力较大的胶水,通过两种胶水的设置,可使得近眼显示设备若组装后性能测试无法达到要求便于拆解,另一方面,使得凹面反射镜30与支架60之间具有较大的粘接强度。
根据一些实施例,安装部302具有一安装孔303,安装孔303为一通孔,用于固定支架60。安装部302上的通孔为倒锥形通孔、T型通孔或凹槽,凹槽设置在安装部302上,与支架60相接触的一侧。可在安装孔303处设置胶水用于粘接凹面反射镜30与支架60,使得胶水容纳于安装孔303内,较为美观,且不影响其他部件。安装孔303从外端面到支架60可以具有有小到大的锥形形状,也可以是在与支架60的接触面上具有一台阶,可以类似T型,以增大胶水的接触面积从而增加粘接强 度。这种方式中可以先将凹面反射镜30与支架60贴附在一起,然后,从安装孔303的外端面灌入胶水,从而粘接支架60与凹面反射镜30。
另一种根据一些实施例安装方式中,选择凹槽的安装方式,在安装部302的朝向支架60的一侧设置凹槽,先再凹槽内设置胶水,然后将凹面反射镜30与直接贴附,这种方式中胶水隐藏于凹槽内部,不会有溢出的风向,且较为美观。相比于直接将胶水设置在支架60与安装部302之间,通过凹槽或者通孔的方式,可以将支架60直接与凹面反射镜30贴附在一起,避免了凹面反射镜30与支架60之间的组装误差。
根据一些实施例,半透半反镜20的侧壁具有多个凸块201,第一凹面镜具有与多个凸块201配合的多个缺口301。凸块201安装于凹面反射镜30的缺口301,设置胶水于凹面反射镜30第一开口的缺口301处。
根据一些实施例,缺口301尺寸可大于半透半反镜20凸块201的尺寸,使得胶水可以设置在凸块201的侧壁,而凸块201直接承靠于凹面反射镜30的缺口301处,提高了半透半反镜20和凹面反射镜30之间的组装精度。
本申请的近眼显示设备为双目近眼显示设备,必须保证双目投射的虚拟图像完全一致,则必须保证双目光线平行,即左右系统(投影光机40+半透半反镜20+凹面反射镜30)所投射光线必须平行。投影光机40包括显示芯片与投影镜头,在一些组装方式中,先将显示芯片、投影镜头组装于支架60,然后将凹面反射镜30组装于支架60,然后将左右系统组装到一起形成一双目近眼显示设备,这种方式中单目的近眼显示设备难以夹持,直接调整两个系统的光线平行度和瞳距是比较困难的。
本申请提出了一种新的双目近眼显示设备的组装方法。提供两组半透半反镜20、凹面反射镜30、投影镜头、显示芯片,以及至少一个支架60,构成双目显示系统的元件。在一些实施例中还提供两个反射棱镜,用于将投影镜头出来的光线反射到半透半反镜20上,是的显示芯片和投影镜头可以横向放置,减小近眼显示设备高度上的尺寸。
根据一些实施例,将半透半反镜20贴附于凹面反射镜30的第一开 口处,将第一个凹面反射镜30贴附于支架60,然后将另一个凹面反射镜30贴附于支架60,此时需保证两个凹面反射镜30具有大致平行的姿态,以保障两个显示系统进入人眼10的中心光线平行,投影光机40的镜头及反射棱镜贴附于支架60,再将显示芯片贴附于投影光机40的镜头的入光侧,形成一单目显示系统,再将另一个投影光机40组装与支架60,形成双目近眼显示系统。
将第二个凹面反射镜30安装于支架60时,需要进行对准,对准方法可以选择为通过激光投射和测量的方式,即分别在两个凹面反射镜30上方投射平行的激光束,激光束在半透半反镜20反射到凹面反射镜30,然后朝向人眼10方向反射出去,测量两条出射光线的平行度即可判断两个凹面反射镜30在支架60上组装的平行度,也可将两个凹面反射镜30安装于支架60后将其置于一可平移的机构,仍在其中一个凹面反射镜30上方投射以激光,然后在接收端获得一激光点,将支架60平移一固定距离,一般是两凹面反射镜30中心的距离后,使得第二个凹面反射镜30将激光反射出的激光点位置与第一个凹面反射镜30反射的激光点的位置重合,此时两个凹面反射镜30可以认为具有大致的平行度。
当然,也可以使用其他方法来判断两个凹面发射镜之间的平行度,在组装时,两个凹面反射镜30首先需要一定的平行度才能保证双目的中心光心平行,仅通过调整投影光机40在支架60上组装的姿态无法使得双目的中心光线完全平行,因为凹面反射镜30是一个有中心的光学器件。故凹面反射镜30在支架60上组装时是可调的。在凹面反射镜30的安装部302与支架60之间设置胶水,测试并调整其中一个或者两个凹面反射镜30的位置,直到两者平行时,固化胶水;或者先调整两个凹面反射镜30的位置,确定并记录下两个凹面反射镜30的位置,移开凹面发射镜,然后设置胶水在安装部302与支架60之间,固化胶水,从而固定两个凹面发射镜的相对位置。
本申请设置向外延伸的安装部302,除了可以容纳胶水外,还可以将安装部302作为凹面反射镜30的固持部,因为凹面反射镜30本身是有一个弧形的反射面,故很难用夹爪夹持或者气缸吸附,即使通过具有 柔性吸嘴的吸附装置来固持凹面反射镜30侧壁,也会由于侧壁本身是一个弧面而导致每次吸附的角度偏差很大,对组装和对准都不利,且柔性吸嘴在固化胶水时难以保证凹面反射镜30姿态保持不变,而半透半反镜20处也无法作为吸附或者夹持的区域,以为此处作为光线出射端需要避让接收装置的光路。故本申请可以通过固持凹面反射镜30的安装部302来调整和安装凹面反射镜30。凹面反射镜30中的安装部302可以和凹面反射镜30一体成型,也可以为分体式,优选为一体式结构,有利于提高凹面反射镜30的安装精度。
根据一些实施例,半透半反镜20的半透半反膜可以具有50/50的分光比。半透半反膜还可以根据实际需求设计半透半反膜的透反比,从而实现虚拟像和环境光亮度比的调节,例如需要环境光亮度比较高时,可以设置半透半反膜的透反比为60/40,从而透过较多的环境光;需要投影光机40的像亮度比较高时,可以设置半透半反膜的透反比为40/60,在具体实施时可以根据实际需要设计,以适应不同的应用场景。进一步的,还可以设计半透半反膜全部反射,此时可以作为虚拟现实光学模组使用。
根据一些实施例,使投影光机40发出的光线与环境光叠加形成增强现实图像,投影光机40包括显示屏和透镜组,显示屏可以是液晶显示屏、有机发光显示屏等,用于提供图像,显示屏的出光面朝向透镜组,透镜组可以用于放大显示屏输出的图像,可选的,透镜组包括至少一片透镜。一些实施例中透镜组包括一片凸透镜,在其他实施例中,透镜组可以包括一个透镜或多个透镜形成的组合,以达到图像清晰度的要求,本申请实施例对具体投影光机40的透镜组的结构不作限定。
凹面反射镜30和第二透镜均为半透半反透镜,例如可以为50/50分光比的半透半反透镜。由于凹面反射镜30和第二透镜对可见光具有半透半反作用,外界环境光入射到凹面反射镜30时会部分透射入射至第二透镜,部分光线再次透射后入射至人眼10,人眼10可以观察到增强现实图像。
最后应说明的是:以上所述仅为本公开的示例实施例而已,并不用 于限制本公开,尽管参照前述实施例对本公开进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种近眼显示设备,用于使图像源发出的光线投射进入人眼,其特征在于,包括:
    两个第一凹面镜,每个第一凹面镜具有彼此联通的第一开口、第二开口和第三开口,位于所述第一开口、所述第二开口和所述第三开口的平面与所述第一凹面镜的外表面一起限定一中空封闭空间,所述第一凹面镜位于所述第二开口与所述第三开口交接处向两侧延伸具有安装部;
    两个第二透镜,分别固定于所述两个第一凹面镜并覆盖所述第一开口;
    两个挡光板,分别固定于所述两个第一凹面镜并覆盖所述第二开口;
    支架,固定于所述两个第一凹面镜并覆盖所述第三开口;
    两个投影光机,分别固定于支架上。
  2. 根据权利要求1所述的近眼显示设备,其特征在于,所述第一凹面镜的安装部具有相邻的第一面和第二面,
    所述第一面朝向第二开口延伸,用于固定连接所述挡光板;
    所述第二面朝向第三开口延伸,用于固定连接所述支架。
  3. 根据权利要求2所述的近眼显示设备,其特征在于,挡光板向外延伸有延伸部,所述挡光板通过所述延伸部安装于所述第一凹面透镜的安装部。
  4. 根据权利要求1所述的近眼显示设备,其特征在于,第二透镜的侧壁向外延伸有多个凸块,所述第二透镜通过所述多个凸块安装于所述第一凹面镜的第一开口,且所述第二透镜安装所述多个凸块的位置处具有多个缺口。
  5. 根据权利要求1所述的近眼显示设备,其特征在于,还包括粘接 剂,所述支架通过所述粘接剂与所述凹面镜的安装部连接。
  6. 根据权利要求5所述的近眼显示设备,其特征在于,所述安装部具有通孔,用于容置所述粘接剂固定所述支架。
  7. 根据权利要求6所述的近眼显示设备,其特征在于,所述通孔为倒锥形通孔。
  8. 根据权利要求6所述的近眼显示设备,其特征在于,所述通孔为T型通孔,所述通孔的靠近支架一侧孔径大于远离支架一侧的孔径。
  9. 根据权利要求5所述的近眼显示设备,其特征在于,所述安装部靠近支架一侧具有凹槽,所述粘接剂设置于所述凹槽。
  10. 根据权利要求1所述的近眼显示设备,其特征在于,所述支架具有通光孔,所述投影光机出射光线通过所述通光孔入射到所述凹面镜。
  11. 根据权利要求1所述的近眼显示设备,其特征在于,所述第一凹面镜包括凹面反射镜。
  12. 根据权利要求1所述的近眼显示设备,其特征在于,所述第二透镜包括半透半反镜。
PCT/CN2021/135216 2020-12-24 2021-12-03 近眼显示设备 WO2022135111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011548246.4A CN114660808B (zh) 2020-12-24 2020-12-24 近眼显示设备
CN202011548246.4 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022135111A1 true WO2022135111A1 (zh) 2022-06-30

Family

ID=82025579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135216 WO2022135111A1 (zh) 2020-12-24 2021-12-03 近眼显示设备

Country Status (2)

Country Link
CN (1) CN114660808B (zh)
WO (1) WO2022135111A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203337981U (zh) * 2013-07-02 2013-12-11 南昌欧菲光电技术有限公司 支架结构及具有该支架结构的摄像模组
CN103901621A (zh) * 2014-03-20 2014-07-02 成都理想境界科技有限公司 一种头戴显示设备
CN205545507U (zh) * 2016-01-26 2016-08-31 深圳市智慧恒迪科技有限公司 扫描仪盒体及扫描仪
CN207133510U (zh) * 2017-07-12 2018-03-23 杨明海 一种头戴显示装置
CN207232534U (zh) * 2017-11-14 2018-04-13 陆创辉 一种虚拟现实眼镜
CN111610636A (zh) * 2019-02-26 2020-09-01 弗提图德萨沃有限公司 一种光学模组中显示器件的装调系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4167020A1 (en) * 2015-12-22 2023-04-19 e-Vision Smart Optics Inc. Dynamic focusing head mounted display
CN105824123A (zh) * 2016-05-13 2016-08-03 深圳中科呼图信息技术有限公司 一种增强现实头戴装置
CN209514212U (zh) * 2019-03-28 2019-10-18 深圳创龙智新科技有限公司 一种光学眼镜
CN111123526A (zh) * 2020-01-21 2020-05-08 浙江水晶光电科技股份有限公司 图像处理装置及近眼成像设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203337981U (zh) * 2013-07-02 2013-12-11 南昌欧菲光电技术有限公司 支架结构及具有该支架结构的摄像模组
CN103901621A (zh) * 2014-03-20 2014-07-02 成都理想境界科技有限公司 一种头戴显示设备
CN205545507U (zh) * 2016-01-26 2016-08-31 深圳市智慧恒迪科技有限公司 扫描仪盒体及扫描仪
CN207133510U (zh) * 2017-07-12 2018-03-23 杨明海 一种头戴显示装置
CN207232534U (zh) * 2017-11-14 2018-04-13 陆创辉 一种虚拟现实眼镜
CN111610636A (zh) * 2019-02-26 2020-09-01 弗提图德萨沃有限公司 一种光学模组中显示器件的装调系统及方法

Also Published As

Publication number Publication date
CN114660808B (zh) 2023-05-30
CN114660808A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
US11867906B2 (en) Wearable AR system and AR display device
TWI676047B (zh) 一種成像顯示系統
US11353705B2 (en) Glasses-type display apparatus
WO2019154430A1 (zh) 穿戴式ar系统、ar显示设备及其投射源模组
US8259239B2 (en) Polarized head-mounted projection display
US8294994B1 (en) Image waveguide having non-parallel surfaces
TW201805692A (zh) 頭戴式成像裝置
US20180172981A1 (en) Wearable display
US10539798B2 (en) Optics of wearable display devices
US6046867A (en) Compact, light-weight optical imaging system and method of making same
CN114008518A (zh) 在低双折射率基础镜片上具有全息反射镜的眼科镜片
KR20220162173A (ko) 시선 추적 촬영에서의 광학 결합기 수차 보정
CN113189772A (zh) 一种装置、全息透镜及其制作方法、近眼显示系统
WO2022135111A1 (zh) 近眼显示设备
US11776219B2 (en) Augmented reality glasses
WO2021068855A1 (zh) 一种显示设备模组及头戴式显示设备
KR100597451B1 (ko) 단판양안식 헤드마운트 디스플레이 광학시스템
KR20150056198A (ko) 곡선형 프리즘과 이를 이용한 헤드 마운트 디스플레이
CN115248500B (zh) 扩增实境眼镜
EP4414769A1 (en) Folded beam two-dimensional (2d) beam scanner
WO2021232967A1 (zh) 光学显示组件和智能穿戴设备
WO2022068662A1 (zh) 一种显示设备模组及头戴式显示设备
Rallison et al. Combat vehicle stereo HMD
CN111983805A (zh) 可穿戴显示设备的光学系统
JP2024521313A (ja) ニアアイディスプレイの剛直なフレームの双眼アライメント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909108

Country of ref document: EP

Kind code of ref document: A1