WO2022134912A1 - 一种适用于3d生物打印机上料的搅拌机构 - Google Patents

一种适用于3d生物打印机上料的搅拌机构 Download PDF

Info

Publication number
WO2022134912A1
WO2022134912A1 PCT/CN2021/129929 CN2021129929W WO2022134912A1 WO 2022134912 A1 WO2022134912 A1 WO 2022134912A1 CN 2021129929 W CN2021129929 W CN 2021129929W WO 2022134912 A1 WO2022134912 A1 WO 2022134912A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrel
feeding
bioprinting
cooling water
stirring mechanism
Prior art date
Application number
PCT/CN2021/129929
Other languages
English (en)
French (fr)
Inventor
马志勇
Original Assignee
湖州艾先特电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011556542.9A external-priority patent/CN112497423A/zh
Priority claimed from CN202023166785.XU external-priority patent/CN214323676U/zh
Application filed by 湖州艾先特电子科技有限公司 filed Critical 湖州艾先特电子科技有限公司
Publication of WO2022134912A1 publication Critical patent/WO2022134912A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment

Definitions

  • the invention relates to the technical field of 3D bioprinting, in particular to a stirring mechanism suitable for feeding a 3D bioprinter.
  • 3D bioprinters mainly use biocompatible materials and cells for 3D printing.
  • the materials are mainly biomedical polymer materials, inorganic materials, hydrogel materials or living cells.
  • hydrogel is a kind of high water content.
  • the three-dimensional network of hydrophilic or amphiphilic polymers has good biocompatibility and mechanical properties similar to human soft tissues, so it is widely used in the controlled release of tissue engineering materials and drugs.
  • bioprinting materials are often made of powder of ceramic materials added to the hydrogel, so that the hydrogel can be formed after flowing out of the nozzle, and has certain mechanical structural properties.
  • the density of ceramic particles is large, and it often begins to precipitate after a period of time. , The temperature of the nozzle is high, and the powder will be scorched when it contacts the nozzle, which will block the nozzle and cannot flow out smoothly.
  • Chinese patent CN207545265U published on 2018-06-29 discloses a multi-nozzle 3D bioprinting system, including a body, a feeding mechanism, a Z-axis moving mechanism installed on the body, and an X-axis moving mechanism installed on the Z-axis moving mechanism , the printing mechanism installed on the X-axis moving mechanism, the Y-axis moving mechanism installed on the platform of the body;
  • the printing mechanism includes a printing stepper motor, a reducer connected to the print stepper motor, and a turntable connected to the reducer , a plurality of nozzles installed on the turntable;
  • the feeding mechanism is connected with the nozzles through the feeding throat, the Y-axis moving mechanism is provided with a printing tray, and the nozzles are located above the printing tray.
  • the invention can realize a 3D bioprinting system, and each nozzle is independent of each other, and belongs to the technical field of 3D bioprinting.
  • the printing system can achieve multi-component and multi-material co-printing through multiple nozzles, but there is a lack of a stirring device at the nozzles. After a period of use, the bioprinting material will precipitate and block the nozzles, resulting in failure to flow out smoothly.
  • the purpose of the present invention is to provide a stirring mechanism suitable for feeding a 3D bioprinter in view of the above-mentioned deficiencies of the prior art, which can agitate the feeding device when the 3D bioprinter is loaded, so as to prevent the bioprinting material from precipitation and clogging. sprinkler.
  • the present invention proposes a stirring mechanism suitable for feeding a 3D bioprinter, including a barrel for loading bioprinting materials, a power device arranged on the top of the barrel and used to push the bioprinting material in the barrel to move, The bottom of the barrel, the nozzle for spraying the bioprinting material delivered by the power device into the 3D bioprinter, and the stirring device for stirring the bioprinting material deposited at the bottom of the barrel.
  • the power plant includes an air compressor unit and an air storage tank for providing a high-pressure air source.
  • the stirring device is an air jet head disposed on the inner wall of the bottom of the barrel.
  • it also includes a high-pressure air source cover for sealing the connection between the power device and the barrel.
  • it also includes a temperature sensor provided at the spray head.
  • the temperature sensor is a patch sensor attached to the nozzle.
  • it also includes an inductor arranged on the barrel.
  • the inductor is a chip inductor evenly wrapped on the surface of the barrel.
  • it also includes a cooling water pipe that is wound around the barrel and is used to cool the bioprinting material in the barrel by water cooling.
  • the cooling water inlet is provided at the top of the barrel, and the cooling water outlet is connected to one end of the cooling water pipe and used to discharge the water in the cooling water pipe.
  • thermal insulation barrel wrapped around the barrel, and a thermal insulation barrel cover that seals the thermal insulation barrel, the thermal insulation barrel and the barrel are filled with thermal insulation material, and the thermal insulation barrel cover is provided with The groove of the high pressure air source cover is matched.
  • a stirring mechanism suitable for feeding a 3D bioprinter of the present invention has the following gain effects:
  • the barrel of the stirring mechanism is loaded with bioprinting material, and the bioprinting material in the barrel is pushed from top to bottom by the power device located at the top of the barrel, and finally the bioprinting material is passed through the nozzle located at the bottom of the barrel. It is sprayed into the 3D bioprinter to realize the feeding of the 3D bioprinter. During the feeding process, because the bioprinting material contains ceramics with high particle density, the bioprinting material can be kept flowing out of the nozzle and then formed.
  • ceramics will settle at the bottom of the barrel, blocking the nozzle, so that the bioprinting material in the barrel cannot flow out smoothly, so there is a stirring device at the bottom of the barrel to stir the bioprinting material in the barrel, Mix the ceramic particles with other bioprinting materials evenly to prevent them from precipitation, thereby blocking the nozzle, so that the bioprinting material in the barrel can flow out of the nozzle smoothly;
  • the power plant of the stirring mechanism includes an air compressor unit and an air storage tank that provide a high-pressure air source.
  • the air compressor unit enters a high-pressure air source into the barrel, and the strong air pressure generated by the high-pressure air source pushes the bioprinting material in the barrel to move to the nozzle, and finally flows out from the nozzle.
  • the power is because the bioprinting material for 3D bioprinting is loaded in the barrel, so the bioprinting material cannot be contaminated by other substances, nor can it be mixed with other substances, and the transmission medium of pneumatic transmission is air, not It will pollute the bioprinting material, and the gas after use can be discharged directly without polluting the surrounding environment.
  • the reason for using a high-pressure air source is that when the 3D bioprinter is printing, the supply of printing materials cannot be interrupted. Once interrupted, the printing will fail. Therefore, the nozzle must be able to continuously feed the 3D bioprinter, and the high-pressure air source can Generate larger air pressure to provide stronger power for the barrel, so that the bioprinting material of the barrel flows out of the nozzle continuously;
  • the stirring device of this stirring mechanism is an air jet head arranged on the inner wall of the bottom of the barrel.
  • the stirring device is an air jet head connected to the pipeline connected in series with the air compressor unit and located on the inner wall of the bottom of the barrel. Stir. Because the larger particles in the bioprinting material will be precipitated at the bottom of the barrel, the stirring device can only have a better stirring effect if it is set at the bottom of the barrel, but the nozzle for feeding the 3D bioprinter is set at the bottom of the barrel. , the power device pushes the bioprinting material in the barrel from top to bottom.
  • the stirring device is also located at the bottom of the barrel, the stirring device will push the bioprinting material from bottom to top, so as to prevent the bioprinting material from flowing out of the nozzle. Therefore, the stirring device is arranged on the side wall of the barrel near the bottom to generate a lateral force on the bioprinting material in the barrel, which will not hinder the flow of the bioprinting material from the nozzle, and can play a better stirring effect. . Setting the stirring device as a pneumatic stirring air source is also because the transmission medium of the pneumatic transmission is air, which will not pollute the bioprinting material;
  • the stirring mechanism also includes a temperature sensor arranged at the nozzle.
  • Bioprinting materials are mainly biomedical polymer materials, inorganic materials, hydrogel materials or living cells, in which hydrogel is a three-dimensional network of hydrophilic or amphiphilic polymers with high water content and good biological phase. It is widely used in the controllable release of tissue engineering materials and drugs.
  • the printing state of the hydrogel material should be in the gel state, because it is very sensitive to temperature. If the temperature is too low, the hydrogel will solidify, which will block the nozzle; if the temperature is too high, the hydrogel will A large amount of water is dissolved and cannot be printed. Therefore, it is necessary to monitor and feedback the temperature of the bioprinting material in the barrel to prevent the temperature of the bioprinting material from being too high or too low, which will affect its use. Temperature monitoring and feedback for bioprinting materials;
  • the temperature sensor of this stirring mechanism is a patch sensor attached to the nozzle.
  • the reason why the chip temperature sensor is used is that the chip temperature sensor is mainly used to measure the temperature of the surface of the object, and the sensor is attached to the surface of the object through screws or other fixing methods to achieve an ideal temperature measurement effect.
  • the patch-type temperature sensor has a large contact area and close contact with the measured object, so it has obvious advantages in some surface temperature measurement. In this application, the temperature sensor is used for the surface temperature measurement of the nozzle, so the patch is used type temperature sensor is most suitable;
  • the stirring mechanism also includes an inductor arranged on the barrel.
  • the hydrogel in the bioprinting material will solidify when the temperature is too low, blocking the nozzle, causing the bioprinting material to not flow out normally. Therefore, an inductance is provided on the barrel, and the inductance generates eddy current on the barrel to heat the barrel. Prevent bioprinting material from getting too low. Since there is a temperature sensor at the nozzle, when the temperature sensor detects that the temperature of the bioprinting material in the barrel is too low, it will feed back the temperature to the computer temperature control unit, and the computer temperature control unit transmits an electrical signal to the inductance, so that the inductance generates eddy current pairs.
  • the bioprinting material in the barrel is heated to keep the temperature of the bioprinting material within an appropriate range, and at this time, the computer temperature control unit stops transmitting electrical signals to the inductor, so that the inductor stops heating the bioprinting material;
  • the inductance of this stirring mechanism is a patch inductance evenly wrapped on the surface of the barrel. Because the function of the inductance is to heat the bioprinting material in the barrel to prevent its temperature from being too low and solidifying, but the inductance cannot directly heat the bioprinting material, but heats the barrel, and then the barrel transfers the temperature to the In bioprinting materials, if the inductance is only set on a piece of the surface of the barrel, the temperature on the barrel will be uneven, and the temperature transferred to the bioprinting material will also be uneven. SMD inductor, so that the temperature of the inductive heating can be uniformly transferred to the bioprinting material;
  • the stirring mechanism also includes a cooling water pipe that is wound around the barrel and is used to cool the bioprinting material in the barrel by water cooling. It is located at the bottom of the barrel and is connected to one end of the cooling water pipe.
  • a cooling water pipe is wrapped around the barrel, and the water is supplied to the cooling water pipe through a water pump, and then the water is discharged from the cooling water outlet.
  • the computer temperature control unit turns on the switch of the water pump, and the water pump starts to supply water to the cooling water pipe through the cooling water outlet , Since the cooling water pipe is wrapped around the barrel, when the water flows through the cooling water pipe and is discharged from the cooling water outlet, it will take away a part of the temperature of the bioprinting material in the barrel, thereby cooling it down.
  • the computer temperature control unit turns off the switch of the water pump, and the water pump no longer supplies water.
  • the cooling water inlet is located at the bottom of the barrel and the cooling water outlet is located at the top of the barrel, because the cooling water will flow through the cooling water pipe from bottom to top, that is, it will pass through the surface of the barrel from bottom to top, while the barrel is in use.
  • the bioprinting material is fed through the barrel from top to bottom, so that the cooling water can cool the bioprinting material to the greatest extent.
  • FIG. 1 is a front cross-sectional view of a stirring mechanism suitable for feeding a 3D bioprinter according to an embodiment of the present invention
  • FIG. 2 is a right sectional view of a stirring mechanism suitable for feeding a 3D bioprinter according to an embodiment of the present invention.
  • a stirring mechanism suitable for feeding a 3D bioprinter includes a cartridge 6 for loading bioprinting materials, which is arranged on the top of the cartridge 6 and is used to push the cartridge
  • the power device 1 for the movement of the bioprinting material in 6 is located at the bottom of the barrel 6 and is used to spray the bioprinting material delivered by the power device 1 to the 3D bioprinter.
  • the cartridge 6 is loaded with bioprinting material, and the bioprinting material in the cartridge 6 is pushed from top to bottom by the power device 1 located at the top of the cartridge 6, and finally the bioprinting material is printed by the nozzle 10 located at the bottom of the cartridge 6.
  • the material is sprayed into the 3D bioprinter, so as to realize the feeding of the 3D bioprinter.
  • the bioprinting material contains ceramics with high particle density, so that the bioprinting material can keep flowing out of the nozzle 10.
  • the ceramics will settle at the bottom of the barrel 6, blocking the nozzle 10, so that the bioprinting material in the barrel 6 cannot flow out smoothly.
  • the bioprinting material in the barrel 6 is stirred to make the ceramic particles and other bioprinting materials evenly mixed to prevent them from settling, thereby blocking the nozzle 10 , so that the bioprinting material in the barrel 6 can flow out of the nozzle 10 smoothly.
  • the power plant 1 includes an air compressor unit and an air storage tank for providing a high-pressure air source.
  • the air compressor unit enters the high-pressure air source into the barrel 6, and the strong air pressure generated by the high-pressure air source pushes the bioprinting material in the barrel 6 to move to the nozzle 10, and finally flows out from the nozzle 10.
  • the reason why the pneumatic transmission is adopted The way to provide power to the cartridge 6 is because the cartridge 6 is loaded with bioprinting materials for 3D bioprinting, so the bioprinting materials cannot be polluted by other substances, nor can they be mixed with other substances.
  • the transmission medium of pneumatic transmission is air, which will not pollute the bioprinting material, and the gas after use can be directly discharged without polluting the surrounding environment.
  • the reason for using a high-pressure air source is that when the 3D bioprinter is printing, the supply of printing materials cannot be interrupted. Once interrupted, the printing will fail. Therefore, the nozzle 10 must be able to continuously feed the 3D bioprinter, and the high-pressure air source A larger air pressure can be generated to provide stronger power for the cartridge 6 , so that the bioprinting material in the cartridge 6 flows out of the nozzle 10 continuously.
  • the stirring device 8 is an air jet head disposed on the inner wall of the bottom of the barrel 6 .
  • the stirring device 8 is an air jet head that is connected to the pipeline connected in series with the air compressor unit and is located on the inner wall of the bottom of the barrel 6.
  • the high-pressure air source provided by the air compressor unit is transmitted to the barrel 6 through the jet head.
  • the bioprinting material at the bottom is stirred. Because the larger particles in the bioprinting material will be deposited at the bottom of the barrel 6, the stirring device 8 can only have a better stirring effect if it is arranged at the bottom of the barrel 6, but it is set for the nozzle 10 of the 3D bioprinter.
  • the power device 1 pushes the bioprinting material in the barrel 6 from top to bottom.
  • the stirring device 8 will push the bioprinting material from bottom to top. Therefore, the stirring device 8 is arranged on the inner wall of the barrel 6 near the bottom to generate a lateral force on the bioprinting material in the barrel 6 and will not hinder the bioprinting.
  • the material flows out from the spray head 10 and can play a better stirring effect.
  • the stirring device 8 is set to be pneumatically stirred because the transmission medium of the pneumatic transmission is air, which will not pollute the bioprinting material.
  • a high-pressure air source cover 3 for sealing the connection between the power device 1 and the material cylinder 6 is also included. Because the barrel 6 is powered by pneumatic transmission, and pneumatic transmission requires better sealing than other transmission methods, once air leaks, even if a high-pressure air source is used, the power supply will be insufficient. In this application, the high-pressure gas source inlet pipeline and the barrel 6 are connected through the high-pressure gas source cover 3, so as to avoid the direct connection between the high-pressure gas source pipeline and the barrel 6, and at the same time with good sealing performance, it is ensured that the barrel 6 has Larger opening, so that the power is better transmitted to the barrel 6.
  • the temperature sensor 9 provided at the spray head 10 is also included.
  • Bioprinting materials are mainly biomedical polymer materials, inorganic materials, hydrogel materials or living cells, in which hydrogel is a three-dimensional network of hydrophilic or amphiphilic polymers with high water content and good biological phase. It is widely used in the controllable release of tissue engineering materials and drugs.
  • 3D bioprinting the printing state of the hydrogel material should be in the gel state, because it is very sensitive to temperature. If the temperature is too low, the hydrogel will solidify, which will block the nozzle 10; if the temperature is too high, the hydrogel will freeze. The glue dissolves a lot of water and cannot be printed.
  • the temperature sensor 9 is a chip sensor attached to the nozzle 10 .
  • the reason why the chip temperature sensor is used is that the chip temperature sensor is mainly used to measure the temperature of the surface of the object, and the sensor is attached to the surface of the object through screws or other fixing methods to achieve an ideal temperature measurement effect.
  • the chip temperature sensor has a large contact area and close contact with the object to be measured, so it has obvious advantages in some surface temperature measurement.
  • the temperature sensor 9 is used for the surface temperature measurement of the nozzle 10. Therefore, using SMD temperature sensors are the most suitable.
  • an inductor 7 disposed on the barrel 6 is also included.
  • the hydrogel in the bioprinting material will solidify when the temperature is too low, which will block the nozzle 10 and cause the bioprinting material to not flow out normally. Therefore, an inductor 7 is provided on the barrel 6, and an eddy current pair is generated on the barrel 6 through the inductor 7. The cartridge 6 is heated to prevent the bioprinting material from being too low.
  • the temperature sensor 9 Since the temperature sensor 9 is provided at the nozzle 10, when the temperature sensor 9 detects that the temperature of the bioprinting material in the barrel 6 is too low, the temperature is fed back to the computer temperature control unit, and the computer temperature control unit transmits an electrical signal to the inductor 7, The inductance 7 generates eddy current to heat the bioprinting material in the barrel 6, so that the temperature of the bioprinting material is kept within a suitable range, at this time, the computer temperature control unit stops transmitting electrical signals to the inductance 7, so that the inductance 7 stops The bioprinting material is heated.
  • the inductor 7 is a chip inductor evenly wrapped on the surface of the barrel 6 . Because the function of the inductor 7 is to heat the bioprinting material in the cartridge 6 to prevent its temperature from being too low and solidifying, but the inductor 7 cannot directly heat the bioprinting material, but heats the cartridge 6 and then feeds the bioprinting material.
  • the barrel 6 transmits the temperature to the bioprinting material. If the inductor 7 is only set on a piece of the surface of the barrel 6, the temperature on the barrel 6 will be uneven, and the temperature transferred to the bioprinting material will also be uneven. 7 is set as a patch inductor that is evenly wrapped on the surface of the barrel 6, so that the temperature heated by the inductor 7 can be uniformly transmitted to the bioprinting material.
  • it also includes a cooling water pipe 5 that is wound around the barrel 6 and is used to cool the bioprinting material in the barrel 6 by means of water cooling.
  • the cooling water pipe 5 is wrapped around the barrel 6, and the water is supplied to the cooling water pipe 5 through the water pump, and then the water is discharged from the cooling water pipe 5.
  • the cooling water outlet 13 is discharged, and the bioprinting material in the cartridge 6 is cooled by means of water cooling.
  • the temperature sensor 9 located at the nozzle 10 detects that the temperature of the bioprinting material in the cartridge 6 is too high, the temperature is fed back to the computer temperature control unit, and the computer temperature control unit turns on the switch of the water pump, and the water pump starts to flow through the cooling water outlet 13 to The cooling water pipe 5 supplies water.
  • the cooling water pipe 5 Since the cooling water pipe 5 is wrapped around the barrel 6, when the water flows through the cooling water pipe 5 and is discharged from the cooling water outlet 13, it will take away a part of the temperature of the bioprinting material in the barrel 6, thereby To cool it down, when the temperature drops to an appropriate range, the computer temperature control unit turns off the switch of the water pump, and the water pump will no longer supply water.
  • the reason why the cooling water inlet 12 is located at the bottom of the barrel 6 and the cooling water outlet 13 is located at the top of the barrel 6 is that the cooling water will flow through the cooling water pipe 5 from bottom to top, that is, it will pass through the surface of the barrel 6 from bottom to top. , and when the cartridge 6 is in use, the bioprinting material is fed through the cartridge 6 from top to bottom, so that the cooling water can cool the bioprinting material to the greatest extent.
  • the thermal insulation barrel 4 and the material barrel 6 are filled with a thermal insulation material 11, and the thermal insulation barrel cover 2 There is a groove matching with the high-pressure gas source cover 3 . Since the hydrogel in the bioprinting material is very sensitive to temperature, it will be unusable if the temperature is too high or too low. Therefore, it is necessary to keep the bioprinting material in the cartridge 6 within a suitable range. By wrapping the hydrogel in the cartridge 6 The surrounding thermal insulation barrels 4 and the thermal insulation material 11 are filled between the thermal insulation barrel 4 and the barrel 6 to isolate the heat exchange between the barrel 6 and the outside, and prevent the influence of the external temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明涉及公开了一种适用于3D生物打印机上料的搅拌机构。涉及3D生物打印技术领域。本申请具体包括用以装载生物打印材料的料筒,设于料筒顶部、用以推动料筒中的生物打印材料运动的动力装置,设于料筒底部、用以将所述动力装置输送过来的生物打印材料喷射到3D生物打印机中的喷头,以及用以对沉淀在料筒底部的生物打印材料进行搅拌的搅拌装置。本发明通过设在料筒顶部的动力装置,推动料筒中的生物打印材料,从设在料筒底部的喷头喷射到3D生物打印机中,实现3D生物打印机的上料,在进行上料的过程中,由料筒底部的搅拌装置,对生物打印材料进行搅拌,防止其沉淀,从而使料筒中的生物打印材料能够顺利的从喷头中流出。

Description

一种适用于3D生物打印机上料的搅拌机构 技术领域
本发明涉及3D生物打印技术领域,特别是涉及一种适用于3D生物打印机上料的搅拌机构。
背景技术
由于计算机辅助设计和制造技术的进步,因此促进了3D打印用于组织工程应用的生物相容性系统的开发和应用。然而,随着技术的发展,传统的挤出式3D打印料筒已经无法满足现有要求。现3D生物打印机主要使用生物相容性的材料和细胞来进行3D打印,材料主要是生物医用高分子材料、无机材料、水凝胶材料或活细胞,其中水凝胶是一种具有高水含量的亲水性或双亲性聚合物三维网络,具有良好的生物相容性,以及与人体软组织相似的力学性质,因此被广泛应用于组织工程材料与药物的可控释放中。
技术问题
在3D生物打印中,水凝胶材料打印成型的状态应是凝胶状态,因其对温度十分敏感,若温度过低,水凝胶凝固,则会堵塞喷头;若温度过高,水凝胶溶解出大量的水,无法打印成型。因此生物打印材料往往是在水凝胶里加入陶瓷材料的粉末,使水凝胶保持能流出喷头后成型,并拥有一定的力学结构性能,而陶瓷颗粒密度大,往往在一段时间后就开始沉淀,喷头温度较高,粉末和喷头接触便会产生焦糊,堵塞喷头,无法顺利流出。
中国专利CN207545265U、公开日2018-06-29公开了一种多喷头3D生物打印系统,包括机体,送料机构,安装在机体上的Z轴移动机构,安装在Z轴移动机构上的X轴移动机构,安装在X轴移动机构上的打印机构,安装在机体的平台上的Y轴移动机构;打印机构包括打印步进电机,与打印步进电机相接的减速器,与减速器相接的转盘,安装在转盘上的多个喷头;送料机构通过送料喉管与喷头相接,Y轴移动机构上设有打印托盘,喷头位于打印托盘的上方。该发明可实现3D生物打印系统,且各个喷头之间相互独立,属于3D生物打印的技术领域。该打印系统通过多个喷头能够实现多组分、多材料的共同打印,但是喷头处缺少搅拌装置,在使用一段时间后生物打印材料会沉淀从而堵塞喷头,导致无法顺利流出。
技术解决方案
本发明的目的在于,针对上述现有技术的不足,提供一种适用于3D生物打印机上料的搅拌机构,能够在3D生物打印机上料时对上料装置进行搅拌,防止生物打印材料沉淀,堵塞喷头。
本发明提出一种适用于3D生物打印机上料的搅拌机构,包括用以装载生物打印材料的料筒,设于料筒顶部、用以推动料筒中的生物打印材料运动的动力装置,设于料筒底部、用以将所述动力装置输送过来的生物打印材料喷射到3D生物打印机中的喷头,以及用以对沉淀在料筒底部的生物打印材料进行搅拌的搅拌装置。
进一步地,所述动力装置包括提供高压气源的空压机组和储气罐。
进一步地,所述搅拌装置为设于所述料筒底部内壁的喷气头。
进一步地,还包括用以将动力装置与料筒连接处进行封闭的高压气源盖。
进一步地,还包括设于喷头处的温度传感器。
进一步地,所述温度传感器为贴于喷头处的贴片式传感器。
进一步地,还包括设于料筒上的电感。
进一步地,所述电感为均匀包裹在料筒表面的贴片电感。
进一步地,还包括缠绕在料筒四周、用以通过水冷的方式对料筒中的生物打印材料进行降温的冷却水管,设于料筒底部、与冷却水管一端连接、用以通过水泵为冷却水管供水的冷却水入口,以及设于料筒顶部、与冷却水管一端连接、用以将冷却水管中的水排出的冷却水出口。
进一步地,还包括包裹在料筒四周的保温桶,以及对保温桶进行封闭的保温桶盖,所述保温桶与所述料筒之间填充有保温材料,所述保温桶盖上设有与高压气源盖配合的凹槽。
有益效果
本发明的一种适用于3D生物打印机上料的搅拌机构具有以下增益效果:
(1)本搅拌机构的料筒中装载有生物打印材料,通过设在料筒顶部的动力装置,从上往下推动料筒中的生物打印材料,最后通过设在料筒底部的喷头将生物打印材料喷射到3D生物打印机中,从而实现3D生物打印机的上料,在进行上料的过程中,由于生物打印材料中含有颗粒密度较大的陶瓷,用以使生物打印材料能保持流出喷头后成型,并拥有一定的力学结构性能,陶瓷会沉淀在料筒底部,堵塞喷头,导致料筒中的生物打印材料无法顺利流出,因此在料筒底部设有搅拌装置,对料筒中的生物打印材料进行搅拌,使陶瓷颗粒与其他生物打印材料混合均匀,防止其沉淀,从而堵塞喷头,使料筒中的生物打印材料能够顺利的从喷头中流出;
(2)本搅拌机构的动力装置包括提供高压气源的空压机组和储气罐。空压机组往料筒中通入高压气源,通过高压气源产生的强气压,推动料筒中的生物打印材料运动到喷头,最终从喷头中流出,之所以采用气压传动的方式为料筒提供动力,是因为料筒中装载的是用于3D生物打印的生物打印材料,因此生物打印材料是不能受到其他物质污染的,也不能掺杂其他的物质进去,而气压传动的传动介质是空气,不会对生物打印材料产生污染,并且使用过后的气体可以直接排出,也不会对周围环境产生污染。采用高压气源的原因是3D生物打印机进行打印时,打印材料的提供是不能中断的,一旦中断就会导致打印失败,因此喷头必须能够持续不断的为3D生物打印机上料,而高压气源能够产生较大的气压,为料筒提供更加强劲的动力,从而使料筒的生物打印材料源源不断的从喷头中流出;
(3)本搅拌机构的搅拌装置为设于料筒底部内壁的喷气头。搅拌装置是与空压机组串联出的管路连通、设于料筒底部内壁的喷气头,空压机组提供的高压气源通过喷气头传输到料筒中,对料筒底部的生物打印材料进行搅拌。因为生物打印材料中较大的颗粒都是会在料筒底部沉淀,因此搅拌装置只有设置在料筒底部才会有更好的搅拌效果,但是为3D生物打印机上料的喷头设置在料筒底部,动力装置从上至下推动料筒中生物打印材料运动,如果将搅拌装置也设在料筒底部,那么搅拌装置就会从下往上推动生物打印材料运动,从而对生物打印材料从喷头中流出产生阻力,因此将搅拌装置设置在料筒靠近底部的侧壁上,对料筒中生物打印材料产生横向的作用力,不会阻碍生物打印材料从喷头中流出,且能够起到较好的搅拌作用。将搅拌装置设置成气动搅拌气源,也是因为气压传动的传动介质是空气,不会对生物打印材料产生污染;
(4)本搅拌机构还包括设于喷头处的温度传感器。生物打印材料主要是生物医用高分子材料、无机材料、水凝胶材料或活细胞,其中水凝胶是一种具有高水含量的亲水性或双亲性聚合物三维网络,具有良好的生物相容性,以及与人体软组织相似的力学性质,因此被广泛应用于组织工程材料与药物的可控释放中。在3D生物打印中,水凝胶材料打印成型的状态应是凝胶状态,因其对温度十分敏感,若温度过低,水凝胶凝固,则会堵塞喷头;若温度过高,水凝胶溶解出大量的水,无法打印成型。因此需要对料筒中的生物打印材料进行温度监控和反馈,防止生物打印材料温度过高或者过低,影响其使用,在本申请中,在喷头处设置有温度传感器,对将要从喷头中流出的生物打印材料进行温度监控和反馈;
(5)本搅拌机构的温度传感器为贴于喷头处的贴片式传感器。之所以采用贴片式温度传感器是因为贴片式温度传感器主要用于测量物体表面的温度,通过螺钉或其它固定方式将传感器贴在物体表面,实现较理想的测温效果。贴片式温度传感器和被测物体接触面积大、接触紧密,所以在一些表面温度测量方面具有比较明显的优势,而在本申请中,温度传感器就是用在喷头的表面温度测量,因此采用贴片式温度传感器最为合适;
(6)本搅拌机构的还包括设于料筒上的电感。生物打印材料中的水凝胶在温度过低时会凝固,堵塞喷头,造成生物打印材料无法正常流出,因此在料筒上设有电感,通过电感在料筒上产生涡流对料筒进行加热,防止生物打印材料过低。由于在喷头处设有温度传感器,当温度传感器检测到料筒里的生物打印材料温度过低时,将温度反馈到计算机温控单元,计算机温控单元向电感传递电信号,使电感产生涡流对料筒中的生物打印材料进行加热,使生物打印材料的温度保持在合适的范围内,此时计算机温控单元则停止向电感传递电信号,从而使电感停止对生物打印材料进行加热;
(7)本搅拌机构的电感为均匀包裹在料筒表面的贴片电感。因为电感的作用是对料筒中的生物打印材料进行加热,防止其温度过低而凝固,但是电感无法直接对生物打印材料进行加热,而是通过对料筒加热,再由料筒将温度传递到生物打印材料中,如果电感只是设置在料筒表面的一块,那么料筒上的温度会不均匀,传递到生物打印材料的温度也会不均匀,因此将电感设为均匀包裹在料筒表面的贴片电感,使电感加热的温度能够均匀传递到生物打印材料中;
(8)本搅拌机构的还包括缠绕在料筒四周、用以通过水冷的方式对料筒中的生物打印材料进行降温的冷却水管,设于料筒底部、与冷却水管一端连接、用以通过水泵为冷却水管供水的冷却水入口,以及设于料筒顶部、与冷却水管一端连接、用以将冷却水管中的水排出的冷却水出口。生物打印材料中的水凝胶在温度过高时,会溶解出大量的水,导致打印无法成型,因此在料筒四周缠绕着冷却水管,通过水泵为冷却水管供水,再将水从冷却水出口排出,利用水冷的方式为料筒中的生物打印材料降温。当设在喷头处的温度传感器检测到料筒里的生物打印材料温度过高时,将温度反馈到计算机温控单元,计算机温控单元打开水泵开关,水泵开始通过冷却水出口向冷却水管中供水,由于冷却水管缠绕在料筒四周,当水从冷却水管中流过,从冷却水出口中排出,就会带走一部分料筒中生物打印材料的温度,从而对其降温,当温度降到合适范围内,计算机温控单元关闭水泵开关,水泵则不再进行供水。之所以将冷却水入口设在料筒底部,将将冷却水出口设在料筒顶部,因为这样冷却水会从下至上流过冷却水管,即从下至上经过料筒表面,而料筒在使用时,生物打印材料是从上之下进过料筒,这样冷却水能够最大程度的对生物打印材料进行降温。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本发明的实施例,并且与描述一起用于解释本发明的原理。在这些附图中,类似的附图标记用于表示类似的要素。
图1为本发明实施例的一种适用于3D生物打印机上料的搅拌机构的正剖视图;
图2为本发明实施例的一种适用于3D生物打印机上料的搅拌机构的右剖视图。
图中:1、动力装置;2、保温桶盖;3、高压气源盖;4、保温桶;5、冷却水管;6、料筒;7、电感;8、搅拌装置;9、温度传感器;10、喷头;11、保温材料;12、冷却水入口;13、冷却水出口。
本发明的实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1至图2,本发明实施例的一种适用于3D生物打印机上料的搅拌机构,包括用以装载生物打印材料的料筒6,设于料筒6顶部、用以推动料筒6中的生物打印材料运动的动力装置1,设于料筒6底部、用以将动力装置1输送过来的生物打印材料喷射到3D生物打印机中的喷头10,以及用以对沉淀在料筒6底部的生物打印材料进行搅拌的搅拌装置8。料筒6中装载有生物打印材料,通过设在料筒6顶部的动力装置1,从上往下推动料筒6中的生物打印材料,最后通过设在料筒6底部的喷头10将生物打印材料喷射到3D生物打印机中,从而实现3D生物打印机的上料,在进行上料的过程中,由于生物打印材料中含有颗粒密度较大的陶瓷,用以使生物打印材料能保持流出喷头10后成型,并拥有一定的力学结构性能,陶瓷会沉淀在料筒6底部,堵塞喷头10,导致料筒6中的生物打印材料无法顺利流出,因此在料筒6底部设有搅拌装置8,对料筒6中的生物打印材料进行搅拌,使陶瓷颗粒与其他生物打印材料混合均匀,防止其沉淀,从而堵塞喷头10,使料筒6中的生物打印材料能够顺利的从喷头10中流出。
在本实施例中,动力装置1包括提供高压气源的空压机组和储气罐。空压机组往料筒6中通入高压气源,通过高压气源产生的强气压,推动料筒6中的生物打印材料运动到喷头10,最终从喷头10中流出,之所以采用气压传动的方式为料筒6提供动力,是因为料筒6中装载的是用于3D生物打印的生物打印材料,因此生物打印材料是不能受到其他物质污染的,也不能掺杂其他的物质进去,而气压传动的传动介质是空气,不会对生物打印材料产生污染,并且使用过后的气体可以直接排出,也不会对周围环境产生污染。采用高压气源的原因是3D生物打印机进行打印时,打印材料的提供是不能中断的,一旦中断就会导致打印失败,因此喷头10必须能够持续不断的为3D生物打印机上料,而高压气源能够产生较大的气压,为料筒6提供更加强劲的动力,从而使料筒6的生物打印材料源源不断的从喷头10中流出。
本实施例中,搅拌装置8为设于料筒6底部内壁的喷气头。搅拌装置8是与空压机组串联出的管路连通、设于料筒6底部内壁的喷气头,空压机组提供的高压气源通过喷气头传输到料筒6中,对料筒6底部的生物打印材料进行搅拌。因为生物打印材料中较大的颗粒都是会在料筒6底部沉淀,因此搅拌装置8只有设置在料筒6底部才会有更好的搅拌效果,但是为3D生物打印机上料的喷头10设置在料筒6底部,动力装置1从上至下推动料筒6中生物打印材料运动,如果将搅拌装置8也设在料筒6底部,那么搅拌装置8就会从下往上推动生物打印材料运动,从而对生物打印材料从喷头10中流出产生阻力,因此将搅拌装置8设置在料筒6靠近底部的内壁上,对料筒6中生物打印材料产生横向的作用力,不会阻碍生物打印材料从喷头10中流出,且能够起到较好的搅拌作用。将搅拌装置8设置成气动搅拌,也是因为气压传动的传动介质是空气,不会对生物打印材料产生污染。
本实施例中,还包括用以将动力装置1与料筒6连接处进行封闭的高压气源盖3。因为料筒6是通过气压传动的方式提供动力,而气压传动相比于其他传动方式需要更好的密封性,一旦漏气,即使是采用高压气源,也会出现动力供应不足的情况,在本申请中,通过高压气源盖3将高压气源入口管路与料筒6连接起来,避免高压气源管路与料筒6直接连通,具备较好密封性的同时,保证料筒6有较大的开口,从而使动力更好的传递到料筒6中。
本实施例中,还包括设于喷头10处的温度传感器9。生物打印材料主要是生物医用高分子材料、无机材料、水凝胶材料或活细胞,其中水凝胶是一种具有高水含量的亲水性或双亲性聚合物三维网络,具有良好的生物相容性,以及与人体软组织相似的力学性质,因此被广泛应用于组织工程材料与药物的可控释放中。在3D生物打印中,水凝胶材料打印成型的状态应是凝胶状态,因其对温度十分敏感,若温度过低,水凝胶凝固,则会堵塞喷头10;若温度过高,水凝胶溶解出大量的水,无法打印成型。因此需要对料筒6中的生物打印材料进行温度监控和反馈,防止生物打印材料温度过高或者过低,影响其使用,在本申请中,在喷头10处设置有温度传感器9,对将要从喷头10中流出的生物打印材料进行温度监控和反馈。
温度传感器9为贴于喷头10处的贴片式传感器。之所以采用贴片式温度传感器是因为贴片式温度传感器主要用于测量物体表面的温度,通过螺钉或其它固定方式将传感器贴在物体表面,实现较理想的测温效果。贴片式温度传感器和被测物体接触面积大、接触紧密,所以在一些表面温度测量方面具有比较明显的优势,而在本申请中,温度传感器9就是用在喷头10的表面温度测量,因此采用贴片式温度传感器最为合适。
本实施例中,还包括设于料筒6上的电感7。生物打印材料中的水凝胶在温度过低时会凝固,堵塞喷头10,造成生物打印材料无法正常流出,因此在料筒6上设有电感7,通过电感7在料筒6上产生涡流对料筒6进行加热,防止生物打印材料过低。由于在喷头10处设有温度传感器9,当温度传感器9检测到料筒6里的生物打印材料温度过低时,将温度反馈到计算机温控单元,计算机温控单元向电感7传递电信号,使电感7产生涡流对料筒6中的生物打印材料进行加热,使生物打印材料的温度保持在合适的范围内,此时计算机温控单元则停止向电感7传递电信号,从而使电感7停止对生物打印材料进行加热。
电感7为均匀包裹在料筒6表面的贴片电感。因为电感7的作用是对料筒6中的生物打印材料进行加热,防止其温度过低而凝固,但是电感7无法直接对生物打印材料进行加热,而是通过对料筒6加热,再由料筒6将温度传递到生物打印材料中,如果电感7只是设置在料筒6表面的一块,那么料筒6上的温度会不均匀,传递到生物打印材料的温度也会不均匀,因此将电感7设为均匀包裹在料筒6表面的贴片电感,使电感7加热的温度能够均匀传递到生物打印材料中。
本实施例中,还包括缠绕在料筒6四周、用以通过水冷的方式对料筒6中的生物打印材料进行降温的冷却水管5,设于料筒6底部、与冷却水管5一端连接、用以通过水泵为冷却水管5供水的冷却水入口12,以及设于料筒6顶部、与冷却水管5一端连接、用以将冷却水管5中的水排出的冷却水出口13。生物打印材料中的水凝胶在温度过高时,会溶解出大量的水,导致打印无法成型,因此在料筒6四周缠绕着冷却水管5,通过水泵为冷却水管5供水,再将水从冷却水出口13排出,利用水冷的方式为料筒6中的生物打印材料降温。当设在喷头10处的温度传感器9检测到料筒6里的生物打印材料温度过高时,将温度反馈到计算机温控单元,计算机温控单元打开水泵开关,水泵开始通过冷却水出口13向冷却水管5中供水,由于冷却水管5缠绕在料筒6四周,当水从冷却水管5中流过,从冷却水出口13中排出,就会带走一部分料筒6中生物打印材料的温度,从而对其降温,当温度降到合适范围内,计算机温控单元关闭水泵开关,水泵则不再进行供水。之所以将冷却水入口12设在料筒6底部,将将冷却水出口13设在料筒6顶部,因为这样冷却水会从下至上流过冷却水管5,即从下至上经过料筒6表面,而料筒6在使用时,生物打印材料是从上之下进过料筒6,这样冷却水能够最大程度的对生物打印材料进行降温。
本实施例中,还包括包裹在料筒6四周的保温桶4,以及对保温桶4进行封闭的保温桶盖2,保温桶4与料筒6之间填充有保温材料11,保温桶盖2上设有与高压气源盖3配合的凹槽。由于生物打印材料中的水凝胶对温度十分敏感,温度过高或者过低都会导致其无法使用,因此需要使料筒6中的生物打印材料保持在合适的范围内,通过包裹在料筒6四周的保温桶4,以及在保温桶4与料筒6之间填充保温材料11,隔绝料筒6与外界之间的热交换,防止外界温度的影响。
上面描述的内容可以单独地或者以各种方式组合起来实施,而这些变型方式都在本发明的保护范围之内。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种适用于3D生物打印机上料的搅拌机构,其特征在于:包括用以装载生物打印材料的料筒(6),设于料筒(6)顶部、用以推动料筒(6)中的生物打印材料运动的动力装置(1),设于料筒(6)底部、用以将所述动力装置(1)输送过来的生物打印材料喷射到3D生物打印机中的喷头(10),以及用以对沉淀在料筒(6)底部的生物打印材料进行搅拌的搅拌装置(8)。
  2. 如权利要求1所述的一种适用于3D生物打印机上料的搅拌机构,其特征在于:所述动力装置(1)包括提供高压气源的空压机组和储气罐。
  3. 如权利要求1所述的一种适用于3D生物打印机上料的搅拌机构,其特征在于:所述搅拌装置(8)为设于所述料筒(6)底部内壁的喷气头。
  4. 如权利要求2所述的一种适用于3D生物打印机上料的搅拌机构,其特征在于:还包括用以将动力装置(1)与料筒(6)连接处进行封闭的高压气源盖(3)。
  5. 如权利要求1所述的一种适用于3D生物打印机上料的搅拌机构,其特征在于:还包括设于喷头(10)处的温度传感器(9)。
  6. 如权利要求5所述的一种适用于3D生物打印机上料的搅拌机构,其特征在于:所述温度传感器(9)为贴于喷头(10)处的贴片式传感器。
  7. 如权利要求1所述的一种适用于3D生物打印机上料的搅拌机构,其特征在于:还包括设于料筒(6)上的电感(7)。
  8. 如权利要求7所述的一种适用于3D生物打印机上料的搅拌机构置,其特征在于:所述电感(7)为均匀包裹在料筒(6)表面的贴片电感。
  9. 如权利要求1所述的一种适用于3D生物打印机上料的搅拌机构,其特征在于:还包括缠绕在料筒(6)四周、用以通过水冷的方式对料筒(6)中的生物打印材料进行降温的冷却水管(5),设于料筒(6)底部、与冷却水管(5)一端连接、用以通过水泵为冷却水管(5)供水的冷却水入口(12),以及设于料筒(6)顶部、与冷却水管(5)一端连接、用以将冷却水管(5)中的水排出的冷却水出口(13)。
  10. 如权利要求4所述的一种适用于3D生物打印机上料的搅拌机构,其特征在于:还包括包裹在料筒(6)四周的保温桶(4),以及对保温桶(4)进行封闭的保温桶盖(2),所述保温桶(4)与所述料筒(6)之间填充有保温材料(11),所述保温桶盖(2)上设有与高压气源盖(3)配合的凹槽。
PCT/CN2021/129929 2020-12-25 2021-11-11 一种适用于3d生物打印机上料的搅拌机构 WO2022134912A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011556542.9A CN112497423A (zh) 2020-12-25 2020-12-25 一种适用于3d生物打印机上料的搅拌机构
CN202023166785.XU CN214323676U (zh) 2020-12-25 2020-12-25 一种适用于3d生物打印机上料的搅拌机构
CN202011556542.9 2020-12-25
CN202023166785.X 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022134912A1 true WO2022134912A1 (zh) 2022-06-30

Family

ID=82157431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129929 WO2022134912A1 (zh) 2020-12-25 2021-11-11 一种适用于3d生物打印机上料的搅拌机构

Country Status (1)

Country Link
WO (1) WO2022134912A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160136895A1 (en) * 2013-06-13 2016-05-19 Aspect Biosystems Ltd. System For Additive Manufacturing Of Three-Dimensional Structures And Method For Same
CN105854685A (zh) * 2016-06-15 2016-08-17 浙江大学 一种动态细胞打印微混合器
CN208020763U (zh) * 2018-02-08 2018-10-30 艾伯尔三氐打印技术(重庆)有限公司 骨骼3d生物材料供料系统
CN111716717A (zh) * 2020-06-30 2020-09-29 重庆纳研新材料科技有限公司 一种组分复合柔性体3d打印机头及3d打印机
CN112497423A (zh) * 2020-12-25 2021-03-16 湖州艾先特电子科技有限公司 一种适用于3d生物打印机上料的搅拌机构
CN214323676U (zh) * 2020-12-25 2021-10-01 湖州艾先特电子科技有限公司 一种适用于3d生物打印机上料的搅拌机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160136895A1 (en) * 2013-06-13 2016-05-19 Aspect Biosystems Ltd. System For Additive Manufacturing Of Three-Dimensional Structures And Method For Same
CN105854685A (zh) * 2016-06-15 2016-08-17 浙江大学 一种动态细胞打印微混合器
CN208020763U (zh) * 2018-02-08 2018-10-30 艾伯尔三氐打印技术(重庆)有限公司 骨骼3d生物材料供料系统
CN111716717A (zh) * 2020-06-30 2020-09-29 重庆纳研新材料科技有限公司 一种组分复合柔性体3d打印机头及3d打印机
CN112497423A (zh) * 2020-12-25 2021-03-16 湖州艾先特电子科技有限公司 一种适用于3d生物打印机上料的搅拌机构
CN214323676U (zh) * 2020-12-25 2021-10-01 湖州艾先特电子科技有限公司 一种适用于3d生物打印机上料的搅拌机构

Similar Documents

Publication Publication Date Title
RU2201808C2 (ru) Распылительная насадка, способ нанесения металлонаполненного, не содержащего растворитель, полимерного покрытия, устройство для его осуществления и система для нанесения на подложку покрытия
KR20170019339A (ko) 동수압적 공동화 장치를 사용하여 적층 가공하기에 적합한 재료를 제조하기 위한 시스템 및 방법
WO2022134912A1 (zh) 一种适用于3d生物打印机上料的搅拌机构
CN110171135A (zh) 一种3d打印头
CN214323676U (zh) 一种适用于3d生物打印机上料的搅拌机构
CN205736044U (zh) 光固化三维打印机
CN112497423A (zh) 一种适用于3d生物打印机上料的搅拌机构
CN108817395B (zh) 一种增材制造装置及方法
TW201200249A (en) Method and apparatus for dry-conveying material for dry gunning application
EP1506821A1 (en) Process for improved adhesive application
CN206416523U (zh) 一种3d打印机设备
JP7482880B2 (ja) 粉末スプレー3d印刷用のヘッド
CN109676925B (zh) 一种3d打印机工作时材料供给装置
CN206219649U (zh) 一种制备纳米结构陶瓷涂层的液料等离子喷涂装置
CN105312189B (zh) 吐出装置及涂布系统
Tang et al. Research Progress of 3D Printing Technology for Pharmaceutical Preparation
US11541602B2 (en) Controlling moisture content of build material in a three-dimensional (3D) printer
CN105661607A (zh) 一种远端供料的食品3d打印装置
CN205728019U (zh) 一种独立供料的食品3d打印机及其独立供料装置
TWI665079B (zh) 3d連續彩色列印機、列印連續彩色3d物件之方法以及3d列印機
TW202320909A (zh) 反應裝置、反應系統以及反應生成物製造方法
CN108817396B (zh) 一种增材制造装置及方法
CN220760935U (zh) 一种智能混料系统
EP1550501A2 (en) Method and apparatus for producing a flowable powdery material
CN211807869U (zh) 3d打印设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908912

Country of ref document: EP

Kind code of ref document: A1