WO2022134730A1 - 蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法 - Google Patents
蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法 Download PDFInfo
- Publication number
- WO2022134730A1 WO2022134730A1 PCT/CN2021/122297 CN2021122297W WO2022134730A1 WO 2022134730 A1 WO2022134730 A1 WO 2022134730A1 CN 2021122297 W CN2021122297 W CN 2021122297W WO 2022134730 A1 WO2022134730 A1 WO 2022134730A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- pressure
- steam generator
- steam
- valve
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 72
- 230000001105 regulatory effect Effects 0.000 claims description 57
- 230000001276 controlling effect Effects 0.000 claims description 29
- 230000003750 conditioning effect Effects 0.000 claims description 12
- 230000001052 transient effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 3
- 238000009966 trimming Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
- F22B35/102—Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating with fixed point of final state of complete evaporation, e.g. in a steam-water separator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Definitions
- the invention relates to the technical field of nuclear power, in particular to a steam generator system, a steam generator pressure control system and a control method thereof.
- the once-through steam generator is a key equipment in the design of the reactor, which provides enough feed water for the steam generator to export the heat in the primary circuit coolant, so that it can generate saturated steam for the secondary circuit power plant.
- the pressure of the steam generator is controlled near the design value through the once-through steam generator pressure automatic control system, so as to ensure the normal and stable operation of the reactor.
- the pressure deviation and the steam-water flow deviation are usually used to control the outlet pressure of the once-through steam generator, without taking into account the mismatch between the rapid response characteristics of the once-through steam generator and the response lag of the reactor core.
- control system has high requirements on the executive mechanism and the valve has a large range of action, which is not conducive to the stability of the system.
- the technical problem to be solved by the present invention is to provide an improved steam generator system, a steam generator pressure control system and a control method thereof in view of the above defects, which can meet the requirements of the outlet pressure control of the once-through steam generator and ensure the direct-flow steam generator.
- the generator operates normally and stably.
- the technical solution adopted by the present invention to solve the technical problem is to provide a once-through steam generator pressure control system, including a once-through steam generator, a steam turbine and a water supply regulating valve group; the system further includes
- a pressure deviation control channel for measuring the outlet pressure value of the once-through steam generator
- a first control module for comparing the outlet pressure value with a target pressure setting value and selectively outputting a pressure deviation signal
- a steam-water flow deviation control channel used for measuring the outlet flow value of the once-through steam generator and the inlet flow value of the feed water regulating valve group;
- a second control module calculating the difference between the outlet flow value and the inlet flow value, superimposing the difference and the pressure deviation signal, and outputting a fine-tuning control signal
- a third control module configured to compare the intake steam pressure value with a switching threshold, and selectively output high and low load signals
- the water supply regulating valve group includes a first valve and a second valve, the first valve is selectively opened or closed according to the high and low load signals, and the second valve is selectively opened or closed according to the high and low load signals .
- the high and low load signals include coarse adjustment opening degree data
- the first valve further sets the first valve opening degree according to the coarse adjustment opening degree data.
- the second valve further sets a second valve opening according to the fine-tuning opening data in the fine-tuning control signal.
- the system further includes a pressure control device including the first control module, the second control module and the third control module.
- the steam-water flow deviation control channel includes a first steam-water flow deviation control channel and a second steam-water flow deviation control channel
- the first steam-water flow deviation control channel is used to measure the outlet of the once-through steam generator Flow value
- the second steam-water flow deviation control channel is used to measure the inlet flow value of the water supply control valve group
- the first steam-water flow deviation control channel includes a second pressure transmitter, a second analog quantity conditioning distribution card and the second analog input board.
- the pressure deviation control channel includes a first pressure transmitter, a first analog quantity conditioning distribution card and a first analog quantity input board card.
- the load demand control channel includes a third pressure transmitter, a third analog quantity conditioning distribution card and a third analog quantity input board card.
- a method for controlling the pressure of a once-through steam generator is also provided. The following steps are performed by the above-mentioned pressure control system for the once-through steam generator:
- the high and low load signals further include coarse adjustment opening degree data
- the method further includes the step of: the first valve further sets the first valve opening degree according to the coarse adjustment opening degree data.
- the method further includes the step of: the second valve further sets a second valve opening degree according to the fine adjustment opening degree data in the fine adjustment control signal.
- a steam generator pressure control system comprising:
- a first control module which is used for measuring the outlet pressure value of the steam generator, and comparing the outlet pressure value with a preset target pressure value to obtain a pressure deviation value
- the second control module is used to measure the outlet flow value of the steam generator and the inlet flow value of the feedwater regulating valve group, and calculate the flow between the outlet flow value and the inlet flow value difference value, and then superimpose the flow difference value and the pressure deviation value to obtain the first opening value of the first valve for controlling the water supply regulating valve group;
- a third control module is used to measure the inlet steam pressure value of the steam turbine, and compare the inlet steam pressure value with a preset reference threshold value to obtain the control of the feedwater regulating valve group The second opening value of the second valve.
- the second opening value of the second valve includes second opening data
- the first valve further sets the first valve opening according to the second opening data
- the first opening value of the first valve includes first opening data
- the second valve further sets a second valve opening according to the first opening data
- the first control module includes a first control channel and a first control module, the first control channel is used to measure the outlet pressure value of the steam generator, and the first control module is used to control the outlet The pressure value is compared with the preset target pressure value to obtain the pressure deviation value.
- the second control module includes a second control channel and a second control module
- the second control channel is used to measure the outlet flow value of the steam generator and the inlet flow value of the feedwater regulating valve group
- the first The second control module is used to calculate the flow difference between the outlet flow value and the inlet flow value, and then superimpose the flow difference and the pressure deviation value.
- the second control channel includes a first deviation control channel and a second deviation control channel
- the first deviation control channel is used for measuring the outlet flow value of the steam generator
- the second deviation control channel is used for measuring the outlet flow value of the steam generator. It is used to measure the inlet flow value of the water supply regulating valve group.
- the third control module includes a third control channel and a third control module, the third control channel is used for measuring the inlet steam pressure value of the steam turbine, and the third control module is used for the The intake steam pressure value is compared with a preset reference threshold value to obtain a second opening degree value of the second valve for controlling the feedwater regulating valve group.
- a steam generator pressure control method comprising:
- the step S1 includes:
- the step S2 includes:
- the step S21 includes:
- the step S3 includes:
- a nuclear power plant steam generator system including a steam generator, a steam turbine, a feedwater regulating valve group and the aforementioned steam generator pressure control system.
- the beneficial effects of implementing the present invention are: in the steam generator system, the steam generator pressure control system and the control method thereof of the present invention, the steam generator pressure control system is controlled by the first control module, the second control module and the third control module.
- the module controls the opening and closing of the water supply control valve group, and the three control modules distinguish the needs of coarse adjustment and fine adjustment, so as to control the opening and closing of the first valve and the second valve respectively, which can meet the needs of coarse adjustment and fine adjustment at the same time.
- the steam generator system, the steam generator pressure control system and the control method thereof of the present invention enable the once-through steam generator to satisfy the fine adjustment of the pressure in the transient process of small disturbances, and at the same time, when the large transient changes occur, Fast and stable adjustment to the target state.
- the outlet pressure of the once-through steam generator can be quickly and accurately controlled, taking into account the mismatch between the rapid response characteristics of the once-through steam generator and the response lag of the reactor core, so as to realize the coordination of the primary and secondary circuits of the reactor.
- the control, the control system response and the actuator action are more reasonable, which is beneficial to the stable operation of the reactor system.
- FIG. 1 is a schematic diagram of the principle of a once-through steam generator pressure control system in some embodiments of the present invention
- FIG. 2 is a schematic diagram of the principle of the steam-water flow deviation control channel in some embodiments of the present invention.
- Fig. 3 is the principle schematic diagram of the pressure control device in Fig. 1;
- FIG. 4 is a schematic diagram of the principle of a water supply regulating valve group in some embodiments of the present invention.
- FIG. 5 is a schematic flowchart of a method for controlling the pressure of a once-through steam generator in some embodiments of the present invention
- FIG. 6 is a schematic diagram of the principle of a nuclear power plant steam generator system in other embodiments of the present invention.
- Fig. 7 is the principle schematic diagram of the steam generator pressure control system in Fig. 6;
- Fig. 8 is the principle schematic diagram of the first control module in Fig. 7;
- Fig. 9 is the principle schematic diagram of the second control module in Fig. 7;
- Fig. 10 is the principle schematic diagram of the third control module in Fig. 7;
- FIG. 11 is a schematic flowchart of a method for controlling pressure of a steam generator in other embodiments of the present invention.
- FIG. 1 shows a once-through steam generator pressure control system in some embodiments of the present invention, which is used to control the once-through steam generator 10, which can satisfy the fine adjustment of pressure in the transient process of small disturbance, and can also be When there is a large transient change, it is quickly and stably adjusted to the target state.
- the once-through steam generator pressure control system in the embodiment of the present invention includes a once-through steam generator 10, a steam turbine 20, a water supply control valve group 50, a pressure deviation control channel 31, and a steam-water flow deviation control channel 32.
- the load demand control channel 33 and the pressure control device 40 is used to control the once-through steam generator 10, which can satisfy the fine adjustment of pressure in the transient process of small disturbance, and can also be When there is a large transient change, it is quickly and stably adjusted to the target state.
- the once-through steam generator pressure control system in the embodiment of the present invention includes a once-through steam generator 10, a steam turbine 20, a water supply control valve group 50, a pressure deviation control
- the pressure deviation control channel 31, the steam-water flow deviation control channel 32 and the load demand control channel 33 measure the outlet pressure value, outlet flow value, inlet flow value and inlet steam pressure value respectively.
- the pressure control device 40 is based on the outlet pressure value, outlet flow value, The inlet flow value and the inlet steam pressure value are calculated, and the coarse adjustment state and the fine adjustment state are distinguished, and the fine adjustment control signal and the high and low load signal are output to control the opening and closing of the water supply regulating valve group 50.
- the pressure deviation control channel 31 is used to measure the outlet pressure value of the once-through steam generator 10 .
- the inlet of the pressure deviation control channel 31 is connected to the outlet of the once-through steam generator 10 , and the outlet of the pressure deviation control channel 31 is connected to the pressure control device 40 .
- the pressure deviation control channel 31 may include a first pressure transmitter, a first analog conditioning distribution card, and a first analog input board. It can be understood that the pressure measurement, analog quantity conditioning and input methods of the pressure deviation control channel 31 may also be in other forms, which are not specifically limited here, as long as the relevant functions can be realized.
- the steam-water flow deviation control channel 32 is used to measure the outlet flow value of the once-through steam generator 10 and the inlet flow value of the feed water regulating valve group 50 .
- the steam-water flow deviation control channel 32 includes a first steam-water flow deviation control channel 321 and a second steam-water flow deviation control channel 322 , and the first steam-water flow deviation control channel 321 is used to measure the once-through steam generator 10
- the second steam-water flow deviation control channel 322 is used to measure the inlet flow value of the feed water regulating valve group 50 .
- the first steam-water flow deviation control channel 321 may include a second pressure transmitter, a second analog conditioning distribution card, and a second analog input board. It can be understood that the pressure measurement, analog conditioning and input methods of the steam-water flow deviation control channel 32 can also be in other forms, which are not specifically limited here, as long as the relevant functions can be realized.
- the load demand control channel 33 is used to measure the inlet steam pressure value of the steam turbine 20 .
- the inlet of the load demand control passage 33 is connected to the inlet of the steam turbine 20
- the outlet of the load demand control passage 33 is connected to the pressure control device 40 .
- the load demand control channel 33 may include a third pressure transmitter, a third analog conditioning distribution card, and a third analog input board. It can be understood that the pressure measurement, analog conditioning and input methods of the load demand control channel 33 may also be in other forms, which are not specifically limited here, as long as the relevant functions can be realized.
- the pressure control device 40 includes a first control module 41 , a second control module 42 and a third control module 43 . It can be understood that the first control module 41 , the second control module 42 and the third control module 43 can be implemented in software, circuit boards, etc., which are not limited here, as long as the relevant functions can be implemented.
- the first control module 41 is used for comparing the outlet pressure value with a target pressure setting value and selectively outputting a pressure deviation signal.
- the target pressure setting value here can be set according to specific requirements, and there is no specific limitation here, as long as the relevant functions can be realized.
- the second control module 42 calculates the difference between the outlet flow value and the inlet flow value, superimposes the difference value and the pressure deviation signal, and outputs a fine-tuning control signal.
- the trim control signal includes trim opening data.
- the third control module 43 is used for comparing the intake steam pressure value with a switching threshold value, and selectively outputting high and low load signals.
- the high and low load signals include coarse opening data.
- the feedwater regulating valve group 50 includes a first valve 51 and a second valve 52.
- the first valve 51 is selectively opened or closed according to the high and low load signals
- the second valve 52 is selectively opened or closed according to the high and low load signals.
- the first valve 51 also sets the first valve opening degree according to the coarse adjustment opening degree data.
- the second valve 52 also sets the second valve opening according to the trim opening data in the trim control signal.
- FIG. 6 shows a steam generator system of a nuclear power plant in other embodiments of the present invention, including a steam generator 10 , a steam turbine 20 , a feedwater regulating valve group 50 and a steam generator pressure control system 100 .
- the water supply regulating valve group 50 includes a first valve 51 and a second valve 52
- the steam generator pressure control system 100 includes a first control module 61 , a second control module 62 and The third control module 63
- the first control module 61 is used to obtain the pressure deviation value
- the second control module 62 is used to obtain the first opening value of the first valve 51 for controlling the water supply regulating valve group 50
- the module 63 is used to obtain the second opening value of the second valve 52 for controlling the water supply regulating valve group 50 .
- the steam generator pressure control system 100 controls the opening and closing of the water supply regulating valve group 50 through the first control module 61, the second control module 62 and the third control module 63, thereby controlling the steam generator 10 to meet the requirements of Fine adjustment of pressure during disturbance transient, and fast and stable adjustment to the target state when large transient changes occur.
- the steam generator 10 may be a once-through steam generator, or may be other types of steam generators commonly used in the field of nuclear power, which are not specifically limited here, as long as the relevant functions can be achieved.
- the steam turbine 20 may be the same as the foregoing embodiments, or may be other types of steam turbines 20 commonly used in the field of nuclear power, which are not specifically limited here, as long as the relevant functions can be realized.
- the water supply regulating valve group 50 includes a first valve 51 and a second valve 52, the first valve 51 is selectively opened or closed according to the first opening value, and the second valve 52 is selectively opened or closed according to the second valve 52.
- the opening value is selectively turned on or off.
- the first valve 51 also sets the first valve opening degree according to the second opening degree data in the second opening degree value.
- the second valve 52 also sets the second valve opening degree according to the first opening degree data in the first opening degree value.
- the first opening value of the first valve 51 includes first opening data, and the second valve 52 also sets the second valve opening according to the first opening data.
- the steam generator pressure control system 100 includes a first control module 61 , a second control module 62 and a third control module 63 .
- the first control module 61 is used to obtain the pressure deviation value
- the second control module 62 is used to obtain the first opening value of the first valve 51 for controlling the water supply regulating valve group 50
- the third control module 63 is used to The second opening value of the second valve 52 for controlling the water supply regulating valve group 50 is obtained.
- the first control module 61 is used to measure the outlet pressure value of the steam generator 10, and compare the outlet pressure value with a preset target pressure value to obtain a pressure deviation value.
- the first control module 61 includes a first control channel 31 and a first control module 41.
- the first control channel 31 is used to measure the outlet pressure value of the steam generator 10, and the first control module 41 is used to measure the outlet pressure value. Compared with the preset target pressure value, the pressure deviation value is obtained.
- the second control module 62 is used to measure the outlet flow value of the steam generator 10 and the inlet flow value of the feed water regulating valve group 50, and calculate the outlet flow value and the inlet flow rate. The flow difference value of the value is obtained, and then the flow difference value and the pressure deviation value are superimposed to obtain the first opening value of the first valve 51 for controlling the water supply regulating valve group 50 .
- the first opening value of the first valve 51 includes first opening data
- the second valve 52 also sets the second valve opening according to the first opening data.
- the second control module 62 includes a second control channel 32 and a second control module 42.
- the second control channel 32 is used to measure the outlet flow value of the steam generator 10 and the inlet flow value of the feedwater regulating valve group 50.
- the second control module 42 is used to calculate the flow difference between the outlet flow value and the inlet flow value, and then superimpose the flow difference value and the pressure deviation value.
- the second control channel 32 includes a first deviation control channel 321 and a second deviation control channel 322 , the first deviation control channel 321 is used to measure the outlet flow value of the steam generator 10 , and the second deviation control channel 322 It is used to measure the inlet flow value of the feedwater regulating valve group 50 .
- the third control module 63 is used to measure the inlet steam pressure value of the steam turbine 20 and compare the inlet steam pressure value with a preset reference threshold value to obtain the control feed water adjustment
- the second opening value of the second valve 52 of the valve group 50 Preferably, the second opening value of the second valve 52 includes second opening data, and the first valve 51 also sets the first valve opening according to the second opening data.
- the third control module 63 includes a third control channel 33 and a third control module 43, the third control channel 33 is used to measure the inlet steam pressure value of the steam turbine 20, and the third control module 43 is used to measure the inlet steam pressure value Compared with a preset reference threshold value, the second opening value of the second valve 52 for controlling the water supply regulating valve group 50 is obtained.
- the method for controlling the pressure of the once-through steam generator includes the following steps S1-S3.
- the high and low load signals further include coarse adjustment opening degree data
- the method further includes the step of: the first valve 51 further sets the first valve opening degree according to the coarse adjustment opening degree data.
- the second valve 52 also sets the opening degree of the second valve according to the trimming opening degree data in the trimming control signal.
- the method for controlling the pressure of the once-through steam generator in this embodiment is the same as the pressure control system for the once-through steam generator in the previous embodiment, which will not be repeated here.
- the steam generator pressure control method further includes the following steps S1-S3:
- step S1 Measure the outlet pressure value of the steam generator 10, and compare the outlet pressure value with a preset target pressure value to obtain a pressure deviation value.
- step S1 further includes the following steps S11 and S12:
- step S2 includes:
- step S21 further includes step S211 and step S212:
- step S3 further includes step S31 and step S32:
- the present invention also provides a steam generator pressure control system 100 as shown in FIGS. 6-7 .
- the steam generator pressure control system 100 in this embodiment is the same as that in the previous embodiment, and details are not described here.
- the pressure control method and system of the once-through steam generator of the present invention enable the once-through steam generator 10 to satisfy the fine adjustment of the pressure in the transient process of small disturbances, and at the same time, it can also adjust rapidly and stably when the transient changes of a large magnitude occur. to the target state.
- the outlet pressure of the once-through steam generator 10 can be quickly and accurately controlled, taking into account the mismatch between the rapid response characteristics of the once-through steam generator 10 and the response lag of the reactor core, so as to realize the primary and secondary loops of the reactor.
- the coordinated control of the control system and the action of the actuator are more reasonable, which is conducive to the stable operation of the reactor system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Control Of Turbines (AREA)
Abstract
本发明公开了一种蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法,该蒸汽发生器压力控制系统包括第一控制模组,用于获得压力偏差值;第二控制模组,用于测量计算得出出口流量值与入口流量值的流量差值,再将流量差值和压力偏差值叠加,以获得控制给水调节阀组的第一阀门的第一开度值;第三控制模组,用于测量汽轮机的进汽压力值,并将进汽压力值与预先设定的参考阈值相比较,以获得控制给水调节阀组的第二阀门的第二开度值。本发明的蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法中,通过第一控制模组、第二控制模组和第三控制模组来控制给水调节阀组的开启关闭情况,从而控制蒸汽发生器,满足了同时满足粗调和细调的需求。
Description
本发明涉及核电技术领域,尤其涉及一种蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法。
直流式蒸汽发生器是反应堆设计中的一个关键设备,为蒸汽发生器导出一回路冷却剂中的热量提供足够的给水,使其产生饱和蒸汽供给二回路动力装置。压水堆核电厂设计中通过直流式蒸汽发生器压力自动控制系统将蒸汽发生器压力控制在设计值附近,从而保证反应堆正常稳定运行。
现有公开技术中,通常采用压力偏差和汽水流量偏差控制直流式蒸汽发生器出口压力,没有兼顾考虑直流式蒸汽发生器快速响应特性与反应堆堆芯响应滞后的不匹配。
现有技术的缺点在于,控制系统执行机构要求较高,阀门动作幅度较大,不利于系统稳定。
本发明要解决的技术问题在于,针对以上缺陷,提供一种改进的蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法,满足直流式蒸汽发生器出口压力控制的要求,保证直流式蒸汽发生器正常稳定运行。
本发明解决其技术问题所采用的技术方案是:提供一种直流式蒸汽发生器压力控制系统,包括直流式蒸汽发生器,汽轮机和给水调节阀组;所述系统还包括
压力偏差控制通道,用于测量所述直流式蒸汽发生器的出口压力值;
第一控制模块,用于比较所述出口压力值与一目标压力整定值的大小并选择性地输出压力偏差信号;
汽水流量偏差控制通道,用于测量所述直流式蒸汽发生器的出口流量值和所述给水调节阀组的入口流量值;
第二控制模块,计算所述出口流量值与所述入口流量值的差值、将所述差值和所述压力偏差信号叠加起来,并输出一微调控制信号;
负荷需求控制通道,用于测量所述汽轮机的进汽压力值;
第三控制模块,用于将所述进汽压力值与一切换阈值相比较,并选择性地输出高低负荷信号;
所述给水调节阀组包括第一阀门和第二阀门,所述第一阀门根据所述高低负荷信号选择性地开启或关闭,所述第二阀门根据所述高低负荷信号选择地地开启或关闭。
优选地,所述高低负荷信号包括粗调开度数据,所述第一阀门还根据所述粗调开度数据设置第一阀门开度。
优选地,所述第二阀门还根据所述微调控制信号中的所述微调开度数据设置第二阀门开度。
优选地,所述系统还包括压力控制装置,所述压力控制装置包括所述第一控制模块、所述第二控制模块和所述第三控制模块。
优选地,所述汽水流量偏差控制通道包括第一汽水流量偏差控制通道和第二汽水流量偏差控制通道,所述第一汽水流量偏差控制通道用于测量所述直流式蒸汽发生器的出口流量值,所述第二汽水流量偏差控制通道用于测量所述给水调节阀组的入口流量值;所述第一汽水流量偏差控制通道包括第二压力变送器、第二模拟量调理分配卡和第二模拟量输入板卡。
优选地,所述压力偏差控制通道包括第一压力变送器、第一模拟量调理分配卡和第一模拟量输入板卡。
优选地,所述负荷需求控制通道包括第三压力变送器、第三模拟量调理分配卡和第三模拟量输入板卡。
还提供一种直流式蒸汽发生器压力控制方法,通过前述的直流式蒸汽发生器压力控制系统执行如下步骤:
S1. 测量所述直流式蒸汽发生器的出口压力值,判断所述出口压力值是否大于一目标压力整定值,若是,则输出压力偏差信号;
S2. 测量所述直流式蒸汽发生器的出口流量值和所述给水调节阀组的入口流量值,计算所述出口流量值与所述入口流量值的差值、将所述差值和所述压力偏差信号叠加起来,输出一微调控制信号;
S3. 测量所述汽轮机的进汽压力值,判断所述进汽压力值是否超过切换阈值,若是,则输出高低负荷信号,并同时开启所述第一阀门和所述第二阀门;若否,则关闭所述第一阀门,且开启所述第二阀门。
优选地,所述高低负荷信号还包括粗调开度数据,所述方法还包括步骤:所述第一阀门还根据所述粗调开度数据设置第一阀门开度。
优选地,所述方法还包括步骤:所述第二阀门还根据所述微调控制信号中的所述微调开度数据设置第二阀门开度。
还提供一种蒸汽发生器压力控制系统,包括:
第一控制模组,所述第一控制模组用于测量蒸汽发生器的出口压力值,并将所述出口压力值与预先设定的目标压力值比较,获得压力偏差值;
第二控制模组,所述第二控制模组用于测量蒸汽发生器的出口流量值和给水调节阀组的入口流量值,并计算得出所述出口流量值与所述入口流量值的流量差值,再将所述流量差值和所述压力偏差值叠加,以获得控制所述给水调节阀组的第一阀门的第一开度值;以及,
第三控制模组,所述第三控制模组用于测量汽轮机的进汽压力值,并将所述进汽压力值与预先设定的参考阈值相比较,以获得控制所述给水调节阀组的第二阀门的第二开度值。
优选地,所述第二阀门的第二开度值包括第二开度数据,所述第一阀门还根据所述第二开度数据设置第一阀门开度。
优选地,所述第一阀门的第一开度值包括第一开度数据,所述第二阀门还根据所述第一开度数据设置第二阀门开度。
优选地,所述第一控制模组包括第一控制通道和第一控制模块,所述第一控制通道用于测量蒸汽发生器的出口压力值,所述第一控制模块用于将所述出口压力值与预先设定的目标压力值比较,获得压力偏差值。
优选地,所述第二控制模组包括第二控制通道和第二控制模块,所述第二控制通道用于测量蒸汽发生器的出口流量值和给水调节阀组的入口流量值,所述第二控制模块用于计算得出所述出口流量值与所述入口流量值的流量差值,再将所述流量差值和所述压力偏差值叠加。
优选地,所述第二控制通道包括第一偏差控制通道和第二偏差控制通道,所述第一偏差控制通道用于测量所述蒸汽发生器的出口流量值,所述第二偏差控制通道用于测量所述给水调节阀组的入口流量值。
优选地,所述第三控制模组包括第三控制通道和第三控制模块,所述第三控制通道用于测量汽轮机的所述进汽压力值,所述第三控制模块用于将所述进汽压力值与预先设定的参考阈值相比较,以获得控制所述给水调节阀组的第二阀门的第二开度值。
还提供一种蒸汽发生器压力控制方法,包括:
S1.测量蒸汽发生器的出口压力值,并将所述出口压力值与预先设定的目标压力值比较,获得压力偏差值;
S2.测量蒸汽发生器的出口流量值和给水调节阀组的入口流量值,并计算得出所述出口流量值与所述入口流量值的流量差值,再将所述流量差值和所述压力偏差值叠加,以获得控制所述给水调节阀组的第一阀门的第一开度值;以及,
S3.测量汽轮机的进汽压力值,并将所述进汽压力值与预先设定的参考阈值相比较,以获得控制所述给水调节阀组的第二阀门的第二开度值。
优选地,所述步骤S1包括:
S11.测量蒸汽发生器的出口压力值;
S12.将所述出口压力值与预先设定的目标压力值比较,获得压力偏差值。
优选地,所述步骤S2包括:
S21.测量蒸汽发生器的出口流量值和给水调节阀组的入口流量值;
S22.计算得出所述出口流量值与所述入口流量值的流量差值,再将所述流量差值和所述压力偏差值叠加。
优选地,所述步骤S21包括:
S211.测量所述蒸汽发生器的出口流量值;
S212.测量所述给水调节阀组的入口流量值。
优选地,所述步骤S3包括:
S31.测量汽轮机的所述进汽压力值;
S32.将所述进汽压力值与预先设定的参考阈值相比较,以获得控制所述给水调节阀组的第二阀门的第二开度值。
还提供一种核电站蒸汽发生器系统,包括蒸汽发生器、汽轮机、给水调节阀组以及前述的蒸汽发生器压力控制系统。
实施本发明的有益效果是:本发明的蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法中,蒸汽发生器压力控制系统通过第一控制模组、第二控制模组和第三控制模组来控制给水调节阀组的开启关闭情况,通过三个控制模组对粗调和微调的需求区分、从而分别控制第一阀门和第二阀门的开关,实现了同时满足粗调和细调的需求。
本发明的蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法使得直流式蒸汽发生器能满足在小扰动瞬态过程中压力的精细调节,同时也能在发生大幅度瞬态变化时,快速、稳定调节至目标状态。
在反应堆正常运行瞬态过程中,可以快速、准确的控制直流式蒸汽发生器出口压力,兼顾考虑直流式蒸汽发生器快速响应特性与反应堆堆芯响应滞后的不匹配,实现反应堆一二回路的协调控制,控制系统响应和执行机构动作更加合理,有利于反应堆系统的稳定运行。
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中直流式蒸汽发生器压力控制系统的原理示意图;
图2是本发明一些实施例中汽水流量偏差控制通道的原理示意图;
图3是图1中压力控制装置的原理示意图;
图4是本发明一些实施例中给水调节阀组的原理示意图;
图5是本发明一些实施例中直流式蒸汽发生器压力控制方法的流程示意图;
图6是本发明另一些实施例中核电站蒸汽发生器系统的原理示意图;
图7是图6中蒸汽发生器压力控制系统的原理示意图;
图8是图7中第一控制模组的原理示意图;
图9是图7中第二控制模组的原理示意图;
图10是图7中第三控制模组的原理示意图;
图11是本发明另一些实施例中蒸汽发生器压力控制方法的流程示意图。
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1示出了本发明一些实施例中的直流式蒸汽发生器压力控制系统,用于控制直流式蒸汽发生器10,能满足在小扰动瞬态过程中压力的精细调节,同时也能在发生大幅度瞬态变化时,快速、稳定调节至目标状态。结合图1-4所示,本发明实施例中的直流式蒸汽发生器压力控制系统包括直流式蒸汽发生器10、汽轮机20、给水调节阀组50、压力偏差控制通道31、汽水流量偏差控制通道32、负荷需求控制通道33和压力控制装置40。压力偏差控制通道31、汽水流量偏差控制通道32和负荷需求控制通道33分别测量出口压力值、出口流量值、入口流量值和进汽压力值,压力控制装置40根据出口压力值、出口流量值、入口流量值和进汽压力值进行计算并区分出粗调状态和微调状态,并输出微调控制信号和高低负荷信号,从而控制给水调节阀组50的开启关闭情况。
其中,压力偏差控制通道31用于测量直流式蒸汽发生器10的出口压力值。压力偏差控制通道31入口连接直流式蒸汽发生器10的出口,压力偏差控制通道31出口连接压力控制装置40。作为选择,在一些实施例中,压力偏差控制通道31可以包括第一压力变送器、第一模拟量调理分配卡和第一模拟量输入板卡。可以理解地,压力偏差控制通道31的压力测量、模拟量调理及输入方式还可以为其他形式,此处不做具体限制,只要可以实现相关功能即可。
结合图1、2、4所示,汽水流量偏差控制通道32用于测量直流式蒸汽发生器10的出口流量值和给水调节阀组50的入口流量值。在一些实施例中,汽水流量偏差控制通道32包括第一汽水流量偏差控制通道321和第二汽水流量偏差控制通道322,第一汽水流量偏差控制通道321用于测量直流式蒸汽发生器10的出口流量值,第二汽水流量偏差控制通道322用于测量给水调节阀组50的入口流量值。作为选择,在一些实施例中,第一汽水流量偏差控制通道321可以包括第二压力变送器、第二模拟量调理分配卡和第二模拟量输入板卡。可以理解地,汽水流量偏差控制通道32的压力测量、模拟量调理及输入方式还可以为其他形式,此处不做具体限制,只要可以实现相关功能即可。
负荷需求控制通道33用于测量汽轮机20的进汽压力值。负荷需求控制通道33入口连接汽轮机20入口,负荷需求控制通道33出口连接压力控制装置40。作为选择,在一些实施例中,负荷需求控制通道33可以包括第三压力变送器、第三模拟量调理分配卡和第三模拟量输入板卡。可以理解地,负荷需求控制通道33的压力测量、模拟量调理及输入方式还可以为其他形式,此处不做具体限制,只要可以实现相关功能即可。
结合图1-4所示,压力控制装置40包括第一控制模块41、第二控制模块42和第三控制模块43。可以理解地,第一控制模块41、第二控制模块42和第三控制模块43可以为软件方式、电路板卡等方式实现,此处不做局限限制,只要可以实现相关功能即可。
第一控制模块41用于比较出口压力值与一目标压力整定值的大小并选择性地输出压力偏差信号。可以理解地,此处的目标压力整定值可以根据具体需求来设置,此处不做具体限制,只要可以实现相关功能即可。
第二控制模块42计算出口流量值与入口流量值的差值、将差值和压力偏差信号叠加起来,并输出一微调控制信号。优选地,微调控制信号包括微调开度数据。
第三控制模块43用于将进汽压力值与一切换阈值相比较,并选择性地输出高低负荷信号。优选地,高低负荷信号包括粗调开度数据。
给水调节阀组50包括第一阀门51和第二阀门52,第一阀门51根据高低负荷信号选择性地开启或关闭,第二阀门52根据高低负荷信号选择地地开启或关闭。
在一些实施例中,第一阀门51还根据粗调开度数据设置第一阀门开度。第二阀门52还根据微调控制信号中的微调开度数据设置第二阀门开度。
图6示出了本发明另一些实施例中的核电站蒸汽发生器系统,包括蒸汽发生器10、汽轮机20、给水调节阀组50以及蒸汽发生器压力控制系统100。其中,结合图4、6、7所示,给水调节阀组50包括第一阀门51和第二阀门52,蒸汽发生器压力控制系统100包括第一控制模组61、第二控制模组62和第三控制模组63,第一控制模组61用于获得压力偏差值,第二控制模组62用于获得控制给水调节阀组50的第一阀门51的第一开度值,第三控制模组63用于获得控制给水调节阀组50的第二阀门52的第二开度值。蒸汽发生器压力控制系统100通过第一控制模组61、第二控制模组62和第三控制模组63来控制给水调节阀组50的开启关闭情况,从而控制蒸汽发生器10,满足在小扰动瞬态过程中压力的精细调节,同时也能在发生大幅度瞬态变化时,快速、稳定调节至目标状态。
在一些实施例中,蒸汽发生器10可以为直流式蒸汽发生器,也可以为核电领域常见的其他形式的蒸汽发生器,此处不做具体限制,只要能实现相关功能即可。汽轮机20可与前述实施例一致,也可为核电领域常见的其他形式的汽轮机20,此处不做具体限制,只要能实现相关功能即可。
结合图1、4、6所示,给水调节阀组50包括第一阀门51和第二阀门52,第一阀门51根据第一开度值选择性地开启或关闭,第二阀门52根据第二开度值选择地开启或关闭。
在一些实施例中,第一阀门51还根据第二开度值中的第二开度数据设置第一阀门开度。第二阀门52还根据第一开度值中的第一开度数据设置第二阀门开度。优选地,第一阀门51的第一开度值包括第一开度数据,第二阀门52还根据第一开度数据设置第二阀门开度。
结合图1、6、7所示,在本发明一些优选实施例中,蒸汽发生器压力控制系统100包括第一控制模组61、第二控制模组62和第三控制模组63。其中,第一控制模组61用于获得压力偏差值,第二控制模组62用于获得控制给水调节阀组50的第一阀门51的第一开度值,第三控制模组63用于获得控制给水调节阀组50的第二阀门52的第二开度值。
其中,结合图1、6-8所示,第一控制模组61用于测量蒸汽发生器10的出口压力值,并将出口压力值与预先设定的目标压力值比较,获得压力偏差值。具体地,第一控制模组61包括第一控制通道31和第一控制模块41,第一控制通道31用于测量蒸汽发生器10的出口压力值,第一控制模块41用于将出口压力值与预先设定的目标压力值比较,获得压力偏差值。
结合图1、6、7、9所示,第二控制模组62用于测量蒸汽发生器10的出口流量值和给水调节阀组50的入口流量值,并计算得出出口流量值与入口流量值的流量差值,再将流量差值和压力偏差值叠加,以获得控制给水调节阀组50的第一阀门51的第一开度值。优选地,第一阀门51的第一开度值包括第一开度数据,第二阀门52还根据第一开度数据设置第二阀门开度。
具体地,第二控制模组62包括第二控制通道32和第二控制模块42,第二控制通道32用于测量蒸汽发生器10的出口流量值和给水调节阀组50的入口流量值,第二控制模块42用于计算得出出口流量值与入口流量值的流量差值,再将流量差值和压力偏差值叠加。
在一些实施例中,第二控制通道32包括第一偏差控制通道321和第二偏差控制通道322,第一偏差控制通道321用于测量蒸汽发生器10的出口流量值,第二偏差控制通道322用于测量给水调节阀组50的入口流量值。
结合图1、6、7、10所示,第三控制模组63用于测量汽轮机20的进汽压力值,并将进汽压力值与预先设定的参考阈值相比较,以获得控制给水调节阀组50的第二阀门52的第二开度值。优选地,第二阀门52的第二开度值包括第二开度数据,第一阀门51还根据第二开度数据设置第一阀门开度。
具体地,第三控制模组63包括第三控制通道33和第三控制模块43,第三控制通道33用于测量汽轮机20的进汽压力值,第三控制模块43用于将进汽压力值与预先设定的参考阈值相比较,以获得控制给水调节阀组50的第二阀门52的第二开度值。
本实施例中核电站蒸汽发生器系统的其他部分与前述实施例中直流式蒸汽发生器压力控制系统的一致,此处不做赘述。
以下结合图1-5对本发明一些实施例中直流式蒸汽发生器压力控制方法的具体步骤进行说明。本发明实施例中,直流式蒸汽发生器压力控制方法包括如下步骤S1-S3。
S1. 测量直流式蒸汽发生器10的出口压力值,判断出口压力值是否大于一目标压力整定值,若是,则输出压力偏差信号。
S2. 测量直流式蒸汽发生器10的出口流量值和给水调节阀组50的入口流量值,计算出口流量值与入口流量值的差值、将差值和压力偏差信号叠加起来,输出一微调控制信号。
S3. 测量汽轮机20的进汽压力值,判断进汽压力值是否超过切换阈值,若是,则输出高低负荷信号,并同时开启第一阀门51和第二阀门52;若否,则关闭第一阀门51,且开启第二阀门52。
在一些实施例中,高低负荷信号还包括粗调开度数据,方法还包括步骤:第一阀门51还根据粗调开度数据设置第一阀门开度。优选地,第二阀门52还根据微调控制信号中的微调开度数据设置第二阀门开度。
本实施例中直流式蒸汽发生器压力控制方法与前述实施例直流式蒸汽发生器压力控制系统一致,此处不做赘述。
以下结合图6-11对本发明一些优选实施例中的蒸汽发生器压力控制方法的具体步骤进行说明。在本实施例中,蒸汽发生器压力控制方法还包括如下步骤S1-S3:
S1.测量蒸汽发生器10的出口压力值,并将出口压力值与预先设定的目标压力值比较,获得压力偏差值。优选地,步骤S1还包括如下步骤S11和步骤S12:
S11.测量蒸汽发生器10的出口压力值;
S12.将出口压力值与预先设定的目标压力值比较,获得压力偏差值。
S2.测量蒸汽发生器10的出口流量值和给水调节阀组50的入口流量值,并计算得出出口流量值与入口流量值的流量差值,再将流量差值和压力偏差值叠加,以获得控制给水调节阀组50的第一阀门51的第一开度值。
具体地,步骤S2包括:
S21.测量蒸汽发生器10的出口流量值和给水调节阀组50的入口流量值;
S22.计算得出出口流量值与入口流量值的流量差值,再将流量差值和压力偏差值叠加。
优选地,步骤S21还包括步骤S211和步骤S212:
S211.测量蒸汽发生器10的出口流量值;
S212.测量给水调节阀组50的入口流量值。
S3.测量汽轮机20的进汽压力值,并将进汽压力值与预先设定的参考阈值相比较,以获得控制给水调节阀组50的第二阀门52的第二开度值。
优选地,步骤S3还包括步骤S31和步骤S32:
S31.测量汽轮机20的进汽压力值;
S32.将进汽压力值与预先设定的参考阈值相比较,以获得控制给水调节阀组50的第二阀门52的第二开度值。
在另一些实施例中,本发明还提供一种如图6-7中所示出的蒸汽发生器压力控制系统100。本实施例中蒸汽发生器压力控制系统100与前述实施例中的一致,此处不做赘述。本发明的直流式蒸汽发生器压力控制方法及系统使得直流式蒸汽发生器10能满足在小扰动瞬态过程中压力的精细调节,同时也能在发生大幅度瞬态变化时,快速、稳定调节至目标状态。
在反应堆正常运行瞬态过程中,可以快速、准确的控制直流式蒸汽发生器10出口压力,兼顾考虑直流式蒸汽发生器10快速响应特性与反应堆堆芯响应滞后的不匹配,实现反应堆一二回路的协调控制,控制系统响应和执行机构动作更加合理,有利于反应堆系统的稳定运行。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干个改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (23)
- 一种直流式蒸汽发生器压力控制系统,其特征在于,包括直流式蒸汽发生器(10),汽轮机(20)和给水调节阀组(50);所述系统还包括压力偏差控制通道(31),用于测量所述直流式蒸汽发生器(10)的出口压力值;第一控制模块(41),用于比较所述出口压力值与一目标压力整定值的大小并选择性地输出压力偏差信号;汽水流量偏差控制通道(32),用于测量所述直流式蒸汽发生器(10)的出口流量值和所述给水调节阀组(50)的入口流量值;第二控制模块(42),计算所述出口流量值与所述入口流量值的差值、将所述差值和所述压力偏差信号叠加起来,并输出一微调控制信号;负荷需求控制通道(33),用于测量所述汽轮机(20)的进汽压力值;第三控制模块(43),用于将所述进汽压力值与一切换阈值相比较,并选择性地输出高低负荷信号;所述给水调节阀组(50)包括第一阀门(51)和第二阀门(52),所述第一阀门(51)根据所述高低负荷信号选择性地开启或关闭,所述第二阀门(52)根据所述高低负荷信号选择性地开启或关闭。
- 根据权利要求1所述的直流式蒸汽发生器压力控制系统,其特征在于,所述高低负荷信号包括粗调开度数据,所述第一阀门(51)还根据所述粗调开度数据设置第一阀门开度。
- 根据权利要求1所述的直流式蒸汽发生器压力控制系统,其特征在于,所述微调控制信号包括微调开度数据,所述第二阀门(52)还根据所述微调控制信号中的所述微调开度数据设置第二阀门开度。
- 根据权利要求1所述的直流式蒸汽发生器压力控制系统,其特征在于,所述系统还包括压力控制装置(40),所述压力控制装置(40)包括所述第一控制模块(41)、所述第二控制模块(42)和所述第三控制模块(43)。
- 根据权利要求1所述的直流式蒸汽发生器压力控制系统,其特征在于,所述汽水流量偏差控制通道(32)包括第一汽水流量偏差控制通道(321)和第二汽水流量偏差控制通道(322),所述第一汽水流量偏差控制通道(321)用于测量所述直流式蒸汽发生器(10)的出口流量值,所述第二汽水流量偏差控制通道(322)用于测量所述给水调节阀组(50)的入口流量值;所述第一汽水流量偏差控制通道(321)包括第二压力变送器、第二模拟量调理分配卡和第二模拟量输入板卡。
- 根据权利要求1-5任一项所述的直流式蒸汽发生器压力控制系统,其特征在于,所述压力偏差控制通道(31)包括第一压力变送器、第一模拟量调理分配卡和第一模拟量输入板卡。
- 根据权利要求1-5任一项所述的直流式蒸汽发生器压力控制系统,其特征在于,所述负荷需求控制通道(33)包括第三压力变送器、第三模拟量调理分配卡和第三模拟量输入板卡。
- 一种直流式蒸汽发生器压力控制方法,其特征在于,通过权利要求1-7任一项所述的直流式蒸汽发生器压力控制系统执行如下步骤:S1. 测量所述直流式蒸汽发生器(10)的出口压力值,判断所述出口压力值是否大于一目标压力整定值,若是,则输出压力偏差信号;S2. 测量所述直流式蒸汽发生器(10)的出口流量值和所述给水调节阀组(50)的入口流量值,计算所述出口流量值与所述入口流量值的差值、将所述差值和所述压力偏差信号叠加起来,输出一微调控制信号;S3. 测量所述汽轮机(20)的进汽压力值,判断所述进汽压力值是否超过切换阈值,若是,则输出高低负荷信号,并同时开启所述第一阀门(51)和所述第二阀门(52);若否,则关闭所述第一阀门(51),且开启所述第二阀门(52)。
- 根据权利要求8所述的直流式蒸汽发生器压力控制方法,其特征在于,所述高低负荷信号还包括粗调开度数据,所述方法还包括步骤:所述第一阀门(51)还根据所述粗调开度数据设置第一阀门开度。
- 根据权利要求8所述的直流式蒸汽发生器压力控制方法,其特征在于,所述微调控制信号包括微调开度数据,所述方法还包括步骤:所述第二阀门(52)还根据所述微调控制信号中的所述微调开度数据设置第二阀门开度。
- 一种蒸汽发生器压力控制系统,其特征在于,包括:第一控制模组(61),所述第一控制模组(61)用于测量蒸汽发生器(10)的出口压力值,并将所述出口压力值与预先设定的目标压力值比较,获得压力偏差值;第二控制模组(62),所述第二控制模组(62)用于测量蒸汽发生器(10)的出口流量值和给水调节阀组(50)的入口流量值,并计算得出所述出口流量值与所述入口流量值的流量差值,再将所述流量差值和所述压力偏差值叠加,以获得控制所述给水调节阀组(50)的第一阀门(51)的第一开度值;以及,第三控制模组(63),所述第三控制模组(63)用于测量汽轮机(20)的进汽压力值,并将所述进汽压力值与预先设定的参考阈值相比较,以获得控制所述给水调节阀组(50)的第二阀门(52)的第二开度值。
- 根据权利要求11所述的蒸汽发生器压力控制系统,其特征在于,所述第二阀门(52)的第二开度值包括第二开度数据,所述第一阀门(51)还根据所述第二开度数据设置第一阀门开度。
- 根据权利要求11所述的蒸汽发生器压力控制系统,其特征在于,所述第一阀门(51)的第一开度值包括第一开度数据,所述第二阀门(52)还根据所述第一开度数据设置第二阀门开度。
- 根据权利要求11-13任一项所述的蒸汽发生器压力控制系统,其特征在于,所述第一控制模组(61)包括第一控制通道(31)和第一控制模块(41),所述第一控制通道(31)用于测量蒸汽发生器(10)的出口压力值,所述第一控制模块(41)用于将所述出口压力值与预先设定的目标压力值比较,获得压力偏差值。
- 根据权利要求11-13任一项所述的蒸汽发生器压力控制系统,其特征在于,所述第二控制模组(62)包括第二控制通道(32)和第二控制模块(42),所述第二控制通道(32)用于测量蒸汽发生器(10)的出口流量值和给水调节阀组(50)的入口流量值,所述第二控制模块(42)用于计算得出所述出口流量值与所述入口流量值的流量差值,再将所述流量差值和所述压力偏差值叠加。
- 根据权利要求15所述的蒸汽发生器压力控制系统,其特征在于,所述第二控制通道(32)包括第一偏差控制通道(321)和第二偏差控制通道(322),所述第一偏差控制通道(321)用于测量所述蒸汽发生器(10)的出口流量值,所述第二偏差控制通道(322)用于测量所述给水调节阀组(50)的入口流量值。
- 根据权利要求11-13任一项所述的蒸汽发生器压力控制系统,其特征在于,所述第三控制模组(63)包括第三控制通道(33)和第三控制模块(43),所述第三控制通道(33)用于测量汽轮机(20)的所述进汽压力值,所述第三控制模块(43)用于将所述进汽压力值与预先设定的参考阈值相比较,以获得控制所述给水调节阀组(50)的第二阀门(52)的第二开度值。
- 一种蒸汽发生器压力控制方法,其特征在于,包括:S1.测量蒸汽发生器(10)的出口压力值,并将所述出口压力值与预先设定的目标压力值比较,获得压力偏差值;S2.测量蒸汽发生器(10)的出口流量值和给水调节阀组(50)的入口流量值,并计算得出所述出口流量值与所述入口流量值的流量差值,再将所述流量差值和所述压力偏差值叠加,以获得控制所述给水调节阀组(50)的第一阀门(51)的第一开度值;以及,S3.测量汽轮机(20)的进汽压力值,并将所述进汽压力值与预先设定的参考阈值相比较,以获得控制所述给水调节阀组(50)的第二阀门(52)的第二开度值。
- 根据权利要求18所述的蒸汽发生器压力控制方法,其特征在于,所述步骤S1包括:S11.测量蒸汽发生器(10)的出口压力值;S12.将所述出口压力值与预先设定的目标压力值比较,获得压力偏差值。
- 根据权利要求18所述的蒸汽发生器压力控制方法,其特征在于,所述步骤S2包括:S21.测量蒸汽发生器(10)的出口流量值和给水调节阀组(50)的入口流量值;S22.计算得出所述出口流量值与所述入口流量值的流量差值,再将所述流量差值和所述压力偏差值叠加。
- 根据权利要求18所述的蒸汽发生器压力控制方法,其特征在于,所述步骤S21包括:S211.测量所述蒸汽发生器(10)的出口流量值;S212.测量所述给水调节阀组(50)的入口流量值。
- 根据权利要求18所述的蒸汽发生器压力控制方法,其特征在于,所述步骤S3包括:S31.测量汽轮机(20)的所述进汽压力值;S32.将所述进汽压力值与预先设定的参考阈值相比较,以获得控制所述给水调节阀组(50)的第二阀门(52)的第二开度值。
- 一种核电站蒸汽发生器系统,其特征在于,包括蒸汽发生器(10)、汽轮机(20)、给水调节阀组(50)以及权利要求书11-17任一项所述的蒸汽发生器压力控制系统(100)。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21908731.9A EP4257878A4 (en) | 2020-12-25 | 2021-09-30 | STEAM GENERATOR SYSTEM, STEAM GENERATOR PRESSURE CONTROL SYSTEM AND CONTROL METHODS THEREFOR |
JP2023538761A JP7556153B2 (ja) | 2020-12-25 | 2021-09-30 | 蒸気発生器システム、蒸気発生器の圧力制御システム及びその制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011573183.8 | 2020-12-25 | ||
CN202011573183.8A CN112682770B (zh) | 2020-12-25 | 2020-12-25 | 直流式蒸汽发生器压力控制方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022134730A1 true WO2022134730A1 (zh) | 2022-06-30 |
Family
ID=75452056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/122297 WO2022134730A1 (zh) | 2020-12-25 | 2021-09-30 | 蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4257878A4 (zh) |
JP (1) | JP7556153B2 (zh) |
CN (1) | CN112682770B (zh) |
WO (1) | WO2022134730A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115387863A (zh) * | 2022-08-26 | 2022-11-25 | 西安热工研究院有限公司 | 基于多工况自动无扰切换的best小汽轮机进汽调门控制系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112682770B (zh) * | 2020-12-25 | 2022-12-27 | 中广核研究院有限公司 | 直流式蒸汽发生器压力控制方法及系统 |
CN114251645B (zh) * | 2021-11-15 | 2023-12-26 | 中广核研究院有限公司 | 蒸汽发生器水位控制系统及控制方法 |
CN114321722B (zh) * | 2021-12-31 | 2024-02-20 | 浙江中控技术股份有限公司 | 蒸汽管网的压力平衡方法、装置、存储介质以及处理器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4275447A (en) * | 1978-05-25 | 1981-06-23 | Framatome | Method of regulation of the water level in boilers or steam generators |
US4912732A (en) * | 1988-04-14 | 1990-03-27 | Combustion Engineering, Inc. | Automatic steam generator control at low power |
JPH10253007A (ja) * | 1997-03-13 | 1998-09-25 | Mitsubishi Heavy Ind Ltd | 熱交換器形蒸気発生器の給水流量制御装置 |
CN1257174A (zh) * | 1998-12-14 | 2000-06-21 | Abb燃烧工程核力公司 | 用于增压水反应器蒸汽发生器的全范围给水控制系统 |
WO2012026328A1 (ja) * | 2010-08-24 | 2012-03-01 | 三菱重工業株式会社 | 給水装置 |
CN111780089A (zh) * | 2020-07-20 | 2020-10-16 | 中国核动力研究设计院 | 一种直流蒸汽发生器给水控制方法及系统 |
CN112682770A (zh) * | 2020-12-25 | 2021-04-20 | 中广核研究院有限公司 | 直流式蒸汽发生器压力控制方法及系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2194320A1 (de) * | 2008-06-12 | 2010-06-09 | Siemens Aktiengesellschaft | Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger |
CA2799677C (en) * | 2011-12-22 | 2017-01-24 | Cenovus Fccl Ltd. | Steam generator and method for generating steam |
CN104505134A (zh) * | 2014-12-08 | 2015-04-08 | 中广核工程有限公司 | 核电站堆机协调控制方法和装置 |
CN106642067B (zh) * | 2016-12-15 | 2019-09-06 | 神华集团有限责任公司 | 锅炉液位的控制系统及其控制方法 |
CN109116722A (zh) * | 2017-06-23 | 2019-01-01 | 清华大学 | 多模块式核电站带基本负荷运行的模块间协调控制方案 |
EP3495730B1 (en) * | 2017-12-08 | 2024-01-24 | General Electric Technology GmbH | Once-through evaporator systems |
CN108443859B (zh) * | 2018-04-04 | 2020-04-28 | 山西格盟安全生产咨询有限公司 | 一种适应负荷快速波动的给水流量控制方法 |
CN110879620B (zh) * | 2019-11-19 | 2023-06-27 | 中广核工程有限公司 | 一种核电站立式蒸汽发生器液位控制方法以及系统 |
-
2020
- 2020-12-25 CN CN202011573183.8A patent/CN112682770B/zh active Active
-
2021
- 2021-09-30 EP EP21908731.9A patent/EP4257878A4/en active Pending
- 2021-09-30 WO PCT/CN2021/122297 patent/WO2022134730A1/zh active Application Filing
- 2021-09-30 JP JP2023538761A patent/JP7556153B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4275447A (en) * | 1978-05-25 | 1981-06-23 | Framatome | Method of regulation of the water level in boilers or steam generators |
US4912732A (en) * | 1988-04-14 | 1990-03-27 | Combustion Engineering, Inc. | Automatic steam generator control at low power |
JPH10253007A (ja) * | 1997-03-13 | 1998-09-25 | Mitsubishi Heavy Ind Ltd | 熱交換器形蒸気発生器の給水流量制御装置 |
CN1257174A (zh) * | 1998-12-14 | 2000-06-21 | Abb燃烧工程核力公司 | 用于增压水反应器蒸汽发生器的全范围给水控制系统 |
WO2012026328A1 (ja) * | 2010-08-24 | 2012-03-01 | 三菱重工業株式会社 | 給水装置 |
CN111780089A (zh) * | 2020-07-20 | 2020-10-16 | 中国核动力研究设计院 | 一种直流蒸汽发生器给水控制方法及系统 |
CN112682770A (zh) * | 2020-12-25 | 2021-04-20 | 中广核研究院有限公司 | 直流式蒸汽发生器压力控制方法及系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4257878A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115387863A (zh) * | 2022-08-26 | 2022-11-25 | 西安热工研究院有限公司 | 基于多工况自动无扰切换的best小汽轮机进汽调门控制系统 |
CN115387863B (zh) * | 2022-08-26 | 2024-05-07 | 西安热工研究院有限公司 | 基于多工况自动无扰切换的best小汽轮机进汽调门控制系统 |
Also Published As
Publication number | Publication date |
---|---|
JP2024500944A (ja) | 2024-01-10 |
JP7556153B2 (ja) | 2024-09-25 |
EP4257878A1 (en) | 2023-10-11 |
CN112682770B (zh) | 2022-12-27 |
CN112682770A (zh) | 2021-04-20 |
EP4257878A4 (en) | 2024-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022134730A1 (zh) | 蒸汽发生器系统、蒸汽发生器压力控制系统及其控制方法 | |
CN101436077B (zh) | 双向校正中间点温度和过热汽温的方法及其专用装置 | |
US7668623B2 (en) | Steam temperature control using integrated function block | |
CN103343961B (zh) | 锅炉汽温控制系统中减温水冲击导前汽温测点的动态补偿方法 | |
CN111780089B (zh) | 一种直流蒸汽发生器给水控制方法及系统 | |
CN111878182A (zh) | 660mw超临界机组旁路控制系统及其控制方法 | |
CN109668139B (zh) | 一种超临界火电机组机炉协调控制方法 | |
US4912732A (en) | Automatic steam generator control at low power | |
CN109506028A (zh) | 一种压力调节阀的快速随动控制算法 | |
CN110879620A (zh) | 一种核电站立式蒸汽发生器液位控制方法以及系统 | |
CN108361683B (zh) | 一种全负荷段再热气温智能控制系统 | |
CN210088824U (zh) | 一种火电机组加热器端差自适应调节装置 | |
CN113847594A (zh) | 一种亚临界火电机组主蒸汽温度自动控制系统及方法 | |
CN112097241A (zh) | 一种汽轮机fcb试验汽包水位控制前馈结构及其控制方法 | |
JPS6239919B2 (zh) | ||
Haji et al. | H∞ robust control design for a combined cycle power plant | |
JPS5923921Y2 (ja) | 被加熱流体の温度制御装置 | |
CN112148056B (zh) | 一种火电机组的功率调节方法、装置和系统 | |
JPH0318082B2 (zh) | ||
JPH086891B2 (ja) | ボイラ強制冷却制御方法 | |
CN111472852A (zh) | 一种发电机组基于中间点焓值调频逻辑优化方法 | |
JPH0843589A (ja) | 主蒸気加減弁の試験装置と試験方法 | |
PH12018000172A1 (en) | Extraction control method for steam turbine generator | |
JPH0412330Y2 (zh) | ||
CN117747146A (zh) | 核反应堆热工水力试验的蒸汽压力自动调节系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21908731 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023538761 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2021908731 Country of ref document: EP Effective date: 20230704 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |