WO2022134484A1 - 风力发电机的参数辨识方法以及参数辨识装置 - Google Patents

风力发电机的参数辨识方法以及参数辨识装置 Download PDF

Info

Publication number
WO2022134484A1
WO2022134484A1 PCT/CN2021/098802 CN2021098802W WO2022134484A1 WO 2022134484 A1 WO2022134484 A1 WO 2022134484A1 CN 2021098802 W CN2021098802 W CN 2021098802W WO 2022134484 A1 WO2022134484 A1 WO 2022134484A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
voltage
phase
axis
parameter identification
Prior art date
Application number
PCT/CN2021/098802
Other languages
English (en)
French (fr)
Inventor
王金鹏
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to US18/259,350 priority Critical patent/US12132424B2/en
Priority to EP21908492.8A priority patent/EP4266571A4/en
Priority to AU2021408621A priority patent/AU2021408621A1/en
Publication of WO2022134484A1 publication Critical patent/WO2022134484A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/009Circuit arrangements for detecting rotor position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/70Adjusting of angle of incidence or attack of rotating blades
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to the technical field of wind power generation, and more particularly, to a parameter identification method and a parameter identification device of a wind turbine.
  • vector control is generally used for wind turbines in the wind power generation industry.
  • Vector control can realize decoupling control of field weakening and torque, and has the characteristics of fast control response, high precision and excellent control performance.
  • the control performance of the vector control is highly dependent on the accuracy of the wind turbine parameters, the inaccuracy of the wind turbine parameters will affect the control performance of the unit.
  • the parameters are written into the control system to realize the control function.
  • the present disclosure provides a parameter identification method and a parameter identification device for a wind turbine from the perspective of manually configuring parameters of a wind turbine, so as to solve at least the technical problems mentioned in the background art.
  • a method for parameter identification of a wind turbine includes: controlling the generator to start and stop at no-load by adjusting the blade angle; During the period from the generator no-load start-up operation to the shutdown period, the operation data of the generator is acquired; the parameters of the generator are determined based on the acquired operation data of the generator.
  • a parameter identification device for a wind turbine, wherein the parameter identification device includes: a start-stop control unit configured to control the generator air-conditioning by adjusting the blade angle
  • the parameter acquisition unit is configured to acquire the operation data of the generator during the start-up operation of the generator no-load to the shutdown period; the parameter determination unit is configured to be based on the acquired data of the generator.
  • the operating data determines the parameters of the generator.
  • a computer-readable storage medium storing a computer program, wherein, when the computer program is executed by a processor, the parameters of the wind turbine described in the present disclosure are implemented identification method.
  • an electronic device comprising: at least one processor; at least one memory storing computer-executable instructions, wherein the computer-executable instructions are stored by the at least one When one processor runs, the at least one processor is caused to execute the method for parameter identification of a wind turbine according to the present disclosure.
  • the generator can be controlled to start, run and stop at no-load by adjusting the pitch of the blades.
  • the generator-side circuit breaker can be manually enabled to control the closing when the fan stops.
  • the mode can realize the measurement of the rotor angle, pole pairs and flux linkage of the generator, and the manual enable and control closing mode of the circuit breaker can also ensure the safety of the staff.
  • the modulation mode can be manually enabled by setting the IGBT on the rectifier side of the converter when the fan is stopped, and a modulation signal (for example, a DC voltage or a high-frequency pulse voltage signal) for excitation can be output to the generator to achieve power generation.
  • the scheme can realize the identification of generator parameters by the control system, save the manual configuration of generator parameters in the control system, and reduce labor costs; control software versions are greatly reduced, reducing software maintenance costs; avoid generator parameter configuration errors.
  • the technical solution of the present disclosure is mainly realized by optimizing software control, which avoids the increase of cost and improves the applicability of the solution.
  • FIG. 1 is a flowchart illustrating a parameter identification method of a wind turbine according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a block diagram illustrating a parameter identification apparatus of a wind turbine according to an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic diagram illustrating an application example of the parameter identification method of the wind turbine according to the exemplary embodiment of the present disclosure
  • FIG. 4 is a schematic diagram illustrating a manually controlled closing mode of a wind turbine circuit breaker according to an exemplary embodiment of the present disclosure
  • FIG. 5 is a schematic diagram illustrating a manual enabling mode of a rectifier-side IGBT of a wind turbine according to an exemplary embodiment of the present disclosure.
  • a scheme for parameter identification of wind turbines can be designed to realize automatic identification of wind turbine parameters, thereby replacing the existing manual configuration of wind turbines.
  • the scheme of generator parameters can improve the reliability of unit operation and the efficiency of software maintenance.
  • FIG. 1 is a flowchart illustrating a parameter identification method of a wind turbine according to an exemplary embodiment of the present disclosure.
  • the parameter identification method of the wind turbine includes steps S110 to S130.
  • step S110 by adjusting the blade angle, the generator is controlled to start running and stop at no-load.
  • the corresponding pitch device can be controlled by automatic control software to control the rotation of the blades of the wind turbine.
  • the "no-load” means that the voltage output terminal of the wind turbine is not connected to the load, that is, the output power is zero.
  • step S120 the operation data of the generator is acquired during the period from the generator no-load start-up operation to the shutdown period.
  • the operation data of the generator includes, but is not limited to, the generator terminal voltage, the generator terminal current, and the generator rotational speed.
  • the operation data of the generator can be obtained in the following ways. For example, the generator terminal voltage and generator current of the generator are collected in real time according to a preset sampling period, and the generator speed measured synchronously by the generator main control system is received.
  • the generator terminal voltage may be a three-phase voltage: a-phase voltage U a , b-phase voltage U b , and c-phase voltage U c , and the generator output voltage is collected in real time according to a preset sampling period, that is, according to the preset sampling period. Set the sampling period to collect the three-camera terminal voltage output by the generator in real time.
  • machine terminal current can be the current output by the generator in response to the input excitation after the IGBT on the rectifier side of the converter sends a high-frequency pulse voltage signal or a DC voltage to the generator after the wind turbine stops.
  • the “preset sampling period” here may be microseconds, and the specific time may be adjusted according to requirements, which is not specifically limited in the present disclosure.
  • the above-mentioned "generator speed measured synchronously by the generator main control system” can be realized by any available means.
  • a magnet is fixed on the rotating part of the generator, and a Hall switch is set on the outer edge of the circumference of the magnet's motion track.
  • the Hall switch When the generator rotates, the Hall switch periodically induces the magnetic field lines, generates a pulse voltage, and counts the pulses within a certain period of time. , the generator speed can be converted.
  • the above parameter identification method before the generator is started at no-load, further includes: closing the circuit breaker between the rectifier side of the converter and the generator to turn on the generator and the converter.
  • the machine-side circuit breaker 1 and the machine-side circuit breaker 2 are respectively disposed between the generator and the corresponding rectifier side of the converter.
  • the function of setting the circuit breaker closed mode may include providing safety guarantees for the staff. Specifically, when the wind turbine is shut down, when the staff is ready to perform parameter identification of the wind turbine, by closing the circuit breaker, it can be clear that the circuit breaker is closed.
  • the rectifier side of the converter is connected to the generator to power on, so as to avoid the dangerous situation of electric shock.
  • the "circuit breaker manual closing mode" shown in Figure 4 may refer to a manual control enable, for example, a worker can manually trigger the switch of the control device for controlling the closing or opening of the circuit breaker, and the control device itself can pass on it.
  • the running automatic control software realizes the closing operation of the circuit breaker.
  • the manual control here also includes manual closing, so that the unit can close the generator side circuit breaker when the unit is stopped.
  • step S130 parameters of the generator are determined based on the acquired operation data of the generator.
  • the parameters of the generator in the present disclosure may include, but are not limited to, the generator rotor position angle, the number of pole pairs, the flux linkage parameter, the stator resistance and the inductance parameter.
  • the generator rotor position angle can be determined in the following manner.
  • the real-time rotor position angle ⁇ when the generator is running and the rotor position angle ⁇ when the generator is stopped can be determined according to the generator terminal voltage of the generator collected in real time.
  • the three-camera terminal voltage output by the generator is converted into the ⁇ -axis voltage and the ⁇ -axis voltage of the generator in the two-phase stationary coordinate system. Then, according to the determined ⁇ -axis voltage and ⁇ -axis voltage, the real-time rotor position angle ⁇ operation when the generator is running , and the rotor position angle ⁇ shutdown when the generator is stopped are calculated.
  • the a-phase voltage U a , the b-phase voltage U b and the c-phase voltage U c can be converted into the ⁇ -axis voltage U ⁇ and the ⁇ -axis voltage U ⁇ by means of Clark transformation, or, also Other available means may be used, which this disclosure is not limited to.
  • the number of pole pairs and flux linkages of the generator can be determined in a number of ways.
  • the generator can be determined based on the peak voltage of any phase of the three-phase terminal voltages of the generator collected in any sampling period, the generator speed , and the real-time rotor position angle ⁇ .
  • the rotational speed of the generator can be regarded as a fixed value within a certain period of time, so the pole pair number P n and the flux linkage can be calculated with reference to formulas (2) to (4).
  • f is the frequency of the generator
  • P n is the number of pole pairs of the generator
  • n is the rotational speed of the generator.
  • U k_peak is the peak voltage of the k-phase in the three-camera terminal voltage
  • k can be any one of the a-phase, b-phase, and c-phase. Taking the peak voltage of phase a in the three-phase terminal voltage of the generator as an example, the calculation is performed.
  • the frequency of the generator during no-load operation is determined;
  • the frequency of the generator and the rotational speed of the generator determine the number of pole pairs P n of the generator; the flux linkage of the generator is determined based on the above peak voltage and frequency
  • the real-time rotor angle ⁇ operation corresponding to any sampling period and the previous sampling period adjacent to the any sampling period can be determined, and the difference d ⁇ between the two can be calculated. Then, the angular change amount d ⁇ /dt of the difference d ⁇ per unit time in the sampling period is calculated to obtain the generator electrical angular velocity we e .
  • the pole pair number P n of the generator is obtained (ie ).
  • the flux linkage ⁇ f is obtained based on the ratio of the generator peak voltage U peak to the generator electrical angular velocity we .
  • the real-time rotor angle ⁇ operation corresponding to any sampling period and the previous sampling period adjacent to the any sampling period can be determined, and the difference d ⁇ between the two can be calculated. Then, calculate the angular variation d ⁇ /dt of the difference d ⁇ per unit time in the sampling period, and multiply the calculated angular variation by the generator rotational speed n to obtain the generator mechanical angular velocity ⁇ .
  • the pole pair number Pn of the generator is obtained (ie ).
  • the flux linkage ⁇ f is obtained.
  • stator resistance of the generator can be determined in the following manner.
  • the switch tube on the rectifying side of the converter can be controlled to work in a preset working mode, so that the rectifying side of the converter can continuously output DC voltage to the generator. Then, after the current in the circuit formed by the rectifier side of the converter and the generator is stabilized, the three-phase terminal voltage and the three-phase stator current output by the generator can be collected. Finally, the stator resistance of the generator is determined based on the collected three-phase terminal voltage and three-phase stator current.
  • the above preset working mode is that the upper tube of any phase switch tube on the rectifier side of the converter is turned on, and the lower tube of the other two-phase switch tubes is turned on.
  • the rectifier side of the converter can support the manual enable control mode.
  • the staff can trigger the switch of the control device used to control the output signal mode of the rectifier side of the converter, and the control device can be preset by setting the switch.
  • the automatic control software controls the on and off of the corresponding switch tube, so that the rectifier side of the converter continues to output DC voltage to the generator.
  • the manual enable here can also be used directly without triggering the software, so that the unit can manually control the IGBT to work according to the set modulation wave when the unit stops.
  • the step of determining the stator resistance of the generator based on the three-phase terminal voltage and the three-phase stator current output by the generator may include: first, determining the target phase voltage of the three-phase terminal voltage corresponding to the switch tube that is turned on by the upper tube. ; Then, determine the target phase current of the three-phase stator current corresponding to the switch tube that is turned on by the upper tube; again, determine the line voltage between the target phase voltage and its phase sequence adjacent phase voltage; finally, based on the above line voltage The stator resistance of the generator is obtained with the target phase current.
  • the preset working mode may include any one of the following three working modes A to C. Specifically, in mode A, the upper tubes of the a-phase switch tubes on the rectifier side of the converter are turned on, and the lower tubes of the b-phase and c-phase switch tubes are turned on; in mode B, the upper tubes of the b-phase switch tubes on the rectifier side of the converter are turned on. In mode C, the upper tubes of the c-phase switch tubes on the rectifier side of the converter are turned on, and the lower tubes of the a-phase and b-phase switch tubes are turned on.
  • the step of determining the stator resistance R s of the generator based on the generator output voltage and the generator stator current may include: according to the a-phase voltage U a and the b-phase voltage output by the generator U b determines the line voltage U ab , and multiplies the ratio of the line voltage U ab to the a-phase current ia by a predetermined coefficient to obtain the stator resistance R s of the generator.
  • the step of determining the stator resistance R s of the generator based on the generator output voltage and the generator stator current may include: according to the b-phase voltage U b and the c-phase voltage U output by the generator c Determine the line voltage U bc , multiply the ratio of the line voltage U bc to the b -phase current ib by a predetermined coefficient to obtain the stator resistance R s of the generator.
  • the step of determining the stator resistance R s of the generator based on the generator output voltage and the generator stator current may include: according to the c-phase voltage U c and the a-phase voltage U output by the generator a Determine the line voltage U ca , multiply the ratio of the line voltage U ca to the c -phase current ic by a predetermined coefficient to obtain the stator resistance R s of the generator.
  • inductance parameter of the generator can be determined in the following two ways.
  • the switch tube on the rectifier side of the converter can be controlled to output a high-frequency pulse voltage signal to the generator winding. Then, collect the three-phase terminal voltage and three-phase stator current output by the generator based on the high-frequency pulse voltage signal excitation. Next, determine the d-axis voltage U d , the q-axis voltage U q , and the d-axis current i of the generator within the target sampling period based on the three-phase terminal voltage, the three-phase stator current, and the rotor position angle ⁇ when the generator is stopped . d and q axis current i q . Finally , the d - axis inductance L d and q-axis inductance L q .
  • the rectifier side of the converter can support the manual enable mode.
  • the staff can trigger the switch of the control device for controlling the output signal mode of the rectifier side of the converter, and the control device can be pre-
  • the set automatic control software controls the on and off of the corresponding switch tube, so that the switch tube on the rectifier side of the converter outputs a high-frequency pulse voltage signal.
  • the collected three-camera terminal voltages include a-phase voltage U a , b-phase voltage U b and c-phase voltage U c .
  • the three-phase stator current includes a-phase current ia, b -phase current ib and c -phase current ic.
  • the steps of d and q-axis current i q ′′ may include: first, using Clark transformation to convert the a-phase voltage U a , b-phase voltage U b and c-phase voltage U c into ⁇ -axis voltages U a and ⁇ in the stationary coordinate system
  • the shaft voltage U ⁇ is then converted to the d - axis voltage U d and the q-axis voltage U q in the rotating coordinate system based on the rotor position angle ⁇ shutdown using Park transformation.
  • the d -axis current id and q-axis voltage i q in the rotating coordinate system can be obtained through the above Clark transformation and Park transformation successively.
  • T s is the target sampling period
  • the corresponding sampling calculation time interval between the d-axis currents id_n and id_n- involved in the formula is the target sampling period T s
  • the corresponding sampling calculation time interval between 1 is also the target sampling period T s .
  • the switch tube on the rectifier side of the converter is controlled to output a high-frequency pulse voltage signal to the generator winding. Then, collect the three-phase terminal voltage and three-phase stator current output by the generator based on the high-frequency pulse voltage signal excitation. Next , determine the average value of the d-axis voltage, the average value of the q-axis voltage, the average value of the q-axis voltage, and the Average value of shaft current, average value of q-axis current.
  • the d-axis inductance and the q-axis inductance of the generator are determined.
  • the difference between the second method of determining the "inductance parameter of the generator” and the first method is that the calculation involves, for example, "d-axis voltage, d-axis current, q-axis voltage, q-axis current”. ” and other parameters are replaced with the average value corresponding to multiple target sampling periods, and then perform the relevant calculation to obtain the average value of the inductance parameters of the generator.
  • kT s represents k target sampling periods
  • kT s are the average values of generator inductance parameters in k target sampling periods, respectively, are the average values of generator d-axis voltage and q-axis voltage in k sampling periods, respectively, are the d-axis current average value of the first k target sampling periods and the d-axis current average value of the next k target sampling periods, respectively, are the average value of the q-axis current of the first k target sampling periods and the average value of the q-axis current of the next k target sampling periods, respectively.
  • the key parameters of the wind turbine including rotor angle, pole pair number, flux linkage, stator resistance and inductance, can be effectively identified by using the wind turbine parameter identification method including steps S110 to S130 of the present disclosure.
  • these parameters can be solidified into the controller to control the wind turbine.
  • step S301 it is determined whether the wind generator is in a shutdown state; if it is in a shutdown state, step S302 is performed, otherwise, no operation is performed.
  • the machine-side circuit breaker may be manually closed, where "manually" may refer to manual enable. For example, a worker may manually trigger the switch of the control device used to control the closing or opening of the circuit breaker, and the control device itself may pass The automatic control software running on it realizes the closing operation of the circuit breaker.
  • the machine-side circuit breaker refers to a circuit breaker disposed between the wind generator and the rectifier side of the converter.
  • step S303 the blades of the wind generator can be controlled to rotate in pitch, so that the wind generator can realize the processes of starting, running and stopping.
  • step S304 during the pitch process of step S303, the rotor angle, the number of pole pairs, and the flux linkage of the wind turbine are calculated based on formulas (1) to (4) described above in the present disclosure.
  • step S305 the generator side modulation is manually enabled, that is, according to the situation, the corresponding switch tubes are controlled to be turned on and off to realize IGBT control, so that the rectifier side of the converter continuously outputs the DC voltage to the generator;
  • the switch tube on the rectifier side outputs a high-frequency pulse voltage signal.
  • step S306 the IGBT is controlled to output the DC voltage to the wind turbine.
  • step S307 after the current in the circuit formed by the rectifier side of the converter and the generator is stabilized, the three-phase terminal voltage and three-phase stator current output by the wind turbine in response to the excitation of the DC voltage are collected, and then according to the three-phase The terminal voltage and the three-phase stator current are used to calculate the stator resistance of the generator.
  • step S308 the IGBT is controlled to output a high-frequency pulse voltage signal to the wind turbine winding.
  • step S309 after the current in the circuit formed by the rectifier side of the converter and the generator is stabilized, the three-phase terminal voltage and three-phase stator current output by the generator based on the excitation of the high-frequency pulse voltage signal are collected, and then according to the three-phase The terminal voltage, the three-phase stator current and the rotor angle calculated in the above step S304 are used to calculate the inductance of the generator.
  • step S310 the generator parameters calculated in the preceding steps are solidified into the controller, so as to be used to control the wind generator.
  • the generator can be controlled to start, run and stop at no-load by adjusting the pitch of the blades.
  • the generator-side circuit breaker can be manually enabled to control the closing when the fan stops.
  • the mode can realize the measurement of the rotor angle, pole pairs and flux linkage of the generator, and the manual enable and control closing mode of the circuit breaker can also ensure the safety of the staff.
  • the modulation mode can be manually enabled by setting the IGBT on the rectifier side of the converter when the fan is stopped, and a modulation signal (for example, a DC voltage or a high-frequency pulse voltage signal) for excitation can be output to the generator to achieve power generation.
  • the scheme can realize the identification of generator parameters by the control system, save the manual configuration of generator parameters in the control system, and reduce labor costs; control software versions are greatly reduced, reducing software maintenance costs.
  • the risk of control performance degradation or control system instability caused by incorrect configuration of generator parameters can also be avoided.
  • the technical solution of the present disclosure is mainly realized by optimizing software control, without adding any hardware device, avoiding cost increase, and improving the applicability of the solution.
  • FIG. 2 is a block diagram illustrating a parameter identification apparatus of a wind turbine according to an exemplary embodiment of the present disclosure. Because the parameter identification method shown in FIG. 1 is used when the parameter identification device is used to identify the parameters of the wind turbine, the specific implementation of the parameter identification device can refer to the implementation of the parameter identification method, and the repetition is not repeated. Repeat.
  • the parameter identification device 200 of the wind turbine includes a start-stop control unit 210 , a parameter acquisition unit 220 and a parameter determination unit 230 , and each unit is communicatively coupled.
  • the start-stop control unit 210 can control the generator to start and stop at no-load by adjusting the angle of the blades; the parameter acquisition unit 220 can obtain the operation data of the generator during the start-up operation of the generator at no-load to the stop; the parameter determination unit 230 can The parameters of the generator are determined based on the acquired operating data of the generator.
  • the operation data of the generator may include the generator terminal voltage, the generator terminal current and the generator rotational speed.
  • the parameter identification device 200 further includes a circuit breaker control unit 240, which can close the circuit breaker between the rectifier side of the converter and the generator to turn on the generator and the converter before the generator starts at no-load.
  • a circuit breaker control unit 240 which can close the circuit breaker between the rectifier side of the converter and the generator to turn on the generator and the converter before the generator starts at no-load.
  • the parameter acquisition unit 220 may, in response to receiving the enabling command, control the converter to collect the generator terminal voltage and generator current in real time according to a preset sampling period, and receive the generator speed synchronously measured by the generator main control system.
  • the parameter determination unit 230 can determine the real-time rotor position angle ⁇ when the generator is running and the rotor position angle ⁇ when the generator is stopped according to the generator terminal voltage collected in real time.
  • the parameter determination unit 230 may determine the ⁇ -axis voltage and the ⁇ -axis voltage at the generator terminal in the two-phase static coordinate system based on the three-camera terminal voltage output by the generator, and according to the determined ⁇ -axis voltage and ⁇ -axis voltage , calculate the real-time rotor position angle ⁇ when the generator is running , and the rotor position angle ⁇ when the generator is stopped .
  • the parameter determination unit 230 may calculate the arc tangent of the ratio of the ⁇ -axis voltage to the ⁇ -axis voltage in each sampling period in real time in response to the ⁇ -axis voltage being a non-zero value during the generator no-load start-up operation to the shutdown period. value, the real- time rotor position angle ⁇ is obtained; in response to the ⁇ -axis voltage being zero in the sampling period, the arc tangent of the ratio of the ⁇ -axis voltage to the ⁇ -axis voltage in the previous sampling period is taken as the generator shutdown The rotor position angle ⁇ stops .
  • the parameter determination unit 230 may operate based on the peak voltage of any phase among the three-phase terminal voltages of the generator collected in any sampling period, the generator speed, and the real-time rotor position angle ⁇ , and determine the pole pair of the generator. number and flux linkage.
  • the parameter determination unit 230 may determine the frequency of the generator during no-load operation based on the change of the real-time rotor position angle ⁇ in unit time, and determine the pole pair of the generator based on the frequency of the generator and the rotational speed of the generator. number to determine the flux linkage of the generator based on peak voltage and frequency.
  • the parameter acquisition unit 220 can control the switch tube on the rectifying side of the converter to work in a preset working mode, so that the converter rectifies The side continuously outputs DC voltage to the generator.
  • the three-phase terminal voltage and three-phase stator current output by the generator are collected.
  • the stator resistance of the generator is determined based on the three-phase terminal voltage and the three-phase stator current.
  • the above preset working mode is a mode in which the upper tube of any phase switch tube on the rectifier side of the converter is turned on, and the lower tube of the other two-phase switch tubes is turned on.
  • the parameter determination unit 230 can determine the target phase voltage of the three-phase terminal voltage corresponding to the switch tube that is turned on by the upper tube, and determine the target phase current of the three-phase stator current that corresponds to the switch tube that is turned on by the upper tube, The line voltage between the target phase voltage and its phase sequence adjacent phase voltage is determined, and the stator resistance of the generator is obtained based on the line voltage and the target phase current.
  • the parameter acquisition unit 220 can control the switching tube on the rectifier side of the converter to output a high-frequency pulse voltage signal to the generator winding, and collect the generator based on the above-mentioned high-frequency pulse voltage.
  • Signal excitation output three-phase terminal voltage and three-phase stator current.
  • the parameter determination unit 230 may determine the d-axis voltage, q-axis voltage, d-axis current, q-axis of the generator within the target sampling period based on the three-phase terminal voltage, the three-phase stator current, and the rotor position angle ⁇ when the generator is stopped .
  • the d-axis inductance and the q-axis inductance of the generator are determined based on the d-axis voltage, q-axis voltage, d-axis current, q-axis current, and preset sampling period of the generator within the target sampling period.
  • the parameter acquisition unit 220 can control the switch tube on the rectifier side of the converter to output a high-frequency pulse voltage signal to the generator winding, and collect the generator based on the high frequency pulse voltage signal.
  • the three-phase terminal voltage and three-phase stator current are stimulated and output by the frequency pulse voltage signal.
  • the parameter determination unit 230 may determine the average value of the d-axis voltage and the average value of the q-axis voltage of the generator within the k target sampling periods based on the three-phase terminal voltage, the three-phase stator current, and the rotor angle ⁇ when the generator is stopped .
  • the average value of d-axis current, the average value of q-axis current, based on the average value of d-axis voltage, the average value of q-axis voltage, the average value of d-axis current, the average value of q-axis current, and the duration of k sampling periods determine the d-axis inductance and q-axis inductance of the generator.
  • each unit/module in the parameter identification apparatus of the wind turbine may be implemented as hardware components and/or software components.
  • Those skilled in the art may implement each unit/module using, for example, a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC) according to the defined processing performed by each unit/module.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • a computer-readable storage medium storing a computer program, wherein, when the computer program is executed by a processor, the parameter identification method described in the present disclosure is implemented.
  • control methods according to the exemplary embodiments of the present disclosure may be written as computer programs, code segments, instructions, or any combination thereof, and recorded, stored or fixed in one or more non-transitory computer-readable storages media or on one or more non-transitory computer-readable storage media.
  • the computer-readable storage medium is any data storage device that can store data read by a computer system. Examples of computer-readable storage media include read-only memory, random-access memory, optical disks, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission over the Internet via wired or wireless transmission paths).
  • an electronic device wherein the electronic device includes: at least one processor; at least one memory storing computer-executable instructions, wherein the computer-executable instructions are When executed by the at least one processor, the at least one processor is caused to perform the parameter identification method described in the present disclosure.
  • the electronic device may broadly be a tablet computer, a smart phone, a smart watch, or any other electronic device with necessary computing and/or processing capabilities.
  • the electronic device may include a processor, memory, network interface, communication interface, etc. connected through a system bus.
  • the processor of the electronic device may be used to provide the necessary computing, processing and/or control capabilities.
  • the memory of the electronic device may include non-volatile storage media and internal memory.
  • An operating system, a computer program, etc. may be stored in or on the non-volatile storage medium.
  • the internal memory may provide an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the network interface and communication interface of the electronic device can be used to connect and communicate with external devices through the network.
  • the generator can be controlled to start, run and stop at no-load by adjusting the pitch of the blades.
  • the generator-side circuit breaker can be manually enabled to control the closing when the fan stops. It can measure the rotor angle, number of pole pairs and flux linkage of the generator, and the mode of manually enabling the circuit breaker to control the closing can also ensure the safety of the staff; after the generator stops, the fan can be set by setting the fan.
  • the modulation mode is manually enabled, and the modulated signal (for example, DC voltage or high-frequency pulse voltage signal) for excitation is output to the generator, so as to realize the stator resistance, Measurement of inductance parameters.
  • the scheme can realize the identification of generator parameters by the control system, save the manual configuration of generator parameters in the control system, and reduce labor costs; control software versions are greatly reduced, reducing software maintenance costs; avoid generator parameter configuration errors.
  • the technical solution of the present disclosure is mainly realized by optimizing software control, without adding any hardware device, avoiding cost increase, and improving the applicability of the solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

公开了一种风力发电机的参数辨识方法以及参数辨识装置,其中,参数辨识方法包括:通过调整桨叶角度,控制发电机空载启动运行和停机;在发电机空载启动运行至停机期间,获取发电机的运行数据;基于获取的发电机的运行数据确定发电机的参数。

Description

风力发电机的参数辨识方法以及参数辨识装置 技术领域
本公开涉及风力发电技术领域,更具体地讲,涉及风力发电机的参数辨识方法以及参数辨识装置。
背景技术
目前,在风力发电行业普遍对风力发电机采用矢量控制,矢量控制可实现弱磁与转矩的解耦控制,具有控制响应快、精度高及控制性能优越的特点。但是,由于矢量控制的控制性能对风力发电机参数准确度依赖性大,风力发电机参数不准确将影响机组控制性能,因此目前主要根据风力发电机参数表,通过人工配置的方式,将发电机参数写入到控制系统当中,实现控制功能。
但是,如上所述的人工配置风力发电机参数的方式,存在影响风力发电机的控制性能、维护效率、乃至机组的运行安全的不利因素。
发明内容
本公开从解决采用人工进行风力发电机参数配置的角度,提供了一种风力发电机的参数辨识方法以及参数辨识装置,以至少解决背景技术中提到的技术问题。
根据本公开示例性实施例的一个方面,提供一种风力发电机的参数辨识方法,其中,所述参数辨识方法包括:通过调整桨叶角度,控制发电机空载启动运行和停机;在所述发电机空载启动运行至停机期间,获取所述发电机的运行数据;基于获取的所述发电机的运行数据确定所述发电机的参数。
根据本公开示例性实施例的另一个方面,提供一种风力发电机的参数辨识装置,其中,所述参数辨识装置包括:启停控制单元,被配置为通过调整桨叶角度,控制发电机空载启动运行和停机;参数获取单元,被配置为在所 述发电机空载启动运行至停机期间,获取所述发电机的运行数据;参数确定单元,被配置为基于获取的所述发电机的运行数据确定所述发电机的参数。
根据本公开示例性实施例的又一个方面,提供一种存储有计算机程序的计算机可读存储介质,其中,当所述计算机程序被处理器执行时,实现本公开所述的风力发电机的参数辨识方法。
根据本公开示例性实施例的又一个方面,提供一种电子设备,其中,包括:至少一个处理器;至少一个存储计算机可执行指令的存储器,其中,所述计算机可执行指令在被所述至少一个处理器运行时,促使所述至少一个处理器执行本公开所述的风力发电机的参数辨识方法。
综上,利用本公开提供的技术方案,通过调整桨叶变桨,控制发电机空载启动运行和停机,在此过程中,可通过设置风机停机时发电机侧断路器手动使能控制合闸的模式,可实现对发电机的转子角度、极对数以及磁链的测量,并且断路器手动使能控制合闸的模式还可保证工作人员的安全。在发电机停机以后,可通过设置风机停机时变流器整流侧IGBT手动使能调制模式,对发电机输出用于激励的调制信号(例如,直流电压或者高频脉冲电压信号),以实现发电机停机时对发电机的定子电阻、电感参数的测量。方案整体上可以实现控制系统对发电机参数的识别,省去控制系统中人工配置发电机参数的环节,减少人力成本;控制软件版本大幅减少,减少软件维护成本;避免发电机参数配置错误带来的控制性能下降或控制系统失稳的风险。此外,本公开的技术方案,主要通过优化软件控制来实现,避免了成本的提高,提高了方案的可适用性。
将在接下来的描述中部分阐述本公开总体构思另外的方面和/或优点,还有一部分通过描述将是清楚的,或者可以经过本公开总体构思的实施而得知。
附图说明
通过结合附图,从实施例的下面描述中,本公开这些和/或其它方面及优点将会变得清楚。
图1是示出根据本公开的示例性实施例的风力发电机的参数辨识方法的流程图;
图2是示出根据本公开的示例性实施例的风力发电机的参数辨识装置的框图;
图3是示出根据本公开的示例性实施例的风力发电机的参数辨识方法的一个应用示例的示意图;
图4是示出根据本公开的示例性实施例的风力发电机断路器手动控制合闸模式示意图;
图5是示出根据本公开的示例性实施例的风力发电机整流侧IGBT手动使能模式示意图。
具体实施方式
下面将详细描述本公开的各个方面的特征和示例性实施例,为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本公开进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本公开,而不是限定本公开。对于本领域技术人员来说,本公开可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本公开的示例来提供对本公开更好的理解。
现有的采用根据发电机参数表,通过人工配置将发电机参数写入到控制系统中实现控制的方式,往往会因操作人员的误操作或受其它因素的影响,从而存在一定的概率导致风力发电机参数配置错误,而风力发电机参数配置错误会较大程度影响控制性能,甚至严重时影响机组运行安全。另外,当风电场的风力发电机型号以及数量增多时,采用人工配置风力发电机参数的方式,还会使软件配置表版本大幅增多,严重影响软件维护效率。
基于上述原因,可从解决采用人工进行风力发电机参数配置的角度,设计一种适用于风力发电机的参数辨识的方案,实现风力发电机参数的自动辨识,从而替代现有的采用人工配置风力发电机参数的方案,从而提升机组运 行可靠性和软件维护效率。
图1是示出根据本公开的示例性实施例的风力发电机的参数辨识方法的流程图。参照图1,所述风力发电机的参数辨识方法包括步骤S110至步骤S130。
在步骤S110中,通过调整桨叶角度,控制发电机空载启动运行和停机。
这里,“通过调整桨叶角度”可通过以下方式实现。例如,可通过自动控制软件控制相应的变桨装置,以控制风力发电机组的桨叶转动。所述“空载”是指风力发电机电压输出端不连接负载,即向外输出功率为零。
可以理解,在桨叶从静止状态开始变桨转动时,桨叶角度开始变化,风力发电机空载启动运行,在桨叶从转动状态逐渐变为静止状态时,风力发电机从空载运行状态逐步切换至停机状态。
在步骤S120中,在发电机空载启动运行至停机期间,获取所述发电机的运行数据。这里,发电机的运行数据包括但不限于发电机的机端电压、机端电流和发电机转速。
可以理解,可以通过以下方式获取发电机的运行数据。例如,按照预设采样周期实时采集所述发电机的机端电压、机端电流,以及接收由发电机主控系统同步测量的发电机转速。
在一个实施例中,发电机的机端电压可以为三相电压:a相电压U a、b相电压U b和c相电压U c,按照预设采样周期实时采集发电机输出电压即按照预设采样周期实时采集发电机输出的三相机端电压。
上述的“机端电流”可以为在风力发电机停机后,由变流器整流侧IGBT向发电机发送高频脉冲电压信号或者直流电压后,发电机响应于输入激励后而输出的电流。
这里的“预设采样周期”可以为微秒,具体地时间可根据需求调整,本公开对此不做具体限定。
上述的“发电机主控系统同步测量的发电机转速”可通过任何可用的方式实现。例如,即在发电机转动部分固定一块磁铁,在磁铁运动轨迹的圆周 外缘设置一个霍尔开关,发电机转动时霍尔开关周期性感应磁力线,产生脉冲电压,在一定时间内对脉冲进行计数,就可以换算出发电机转速。
在一个可选的实施例中,在发电机空载启动之前,上述参数辨识方法还包括:闭合变流器整流侧与发电机之间的断路器,以导通发电机与变流器。
参照图4,机侧断路器1和机侧断路器2分别设置在发电机与对应的变流器整流侧之间。可以理解,设置断路器闭合的模式的作用可包括给工作人员提供安全保障,具体地,在风机停机情况下,工作人员准备对风力发电机进行参数辨识时,通过闭合所述断路器,可明确变流器整流侧与发电机导通上电,从而可避免发生触电的危险情况的发生。
图4中示出的“断路器手动合闸模式”可指手动控制使能,例如工作人员可手动触发用于控制断路器合闸或断开的控制装置的开关,控制装置自身可通过其上运行的自动控制软件实现对断路器的合闸操作。此处的手动控制也包括手动合闸,使得机组在停机时可以吸合发电机侧断路器。
在步骤S130中,基于获取的发电机的运行数据确定发电机的参数。
首先需要说明的是,本公开中发电机的参数可包括但不限于发电机转子位置角度、极对数参数、磁链参数、定子电阻以及电感参数。
可以理解,可通过以下方式确定发电机转子位置角度。
例如,可根据实时采集的发电机的机端电压,确定发电机运行时的实时转子位置角度θ 运行以及发电机停机时的转子位置角度θ 停机
具体地,作为示例,首先,将发电机输出的三相机端电压转化成两相静止坐标系下发电机的α轴电压和β轴电压。然后,根据确定的α轴电压和β轴电压,计算发电机运行时的实时转子位置角度θ 运行,以及发电机停机时的转子位置角度θ 停机
这里,作为一个可选的实施例,可借助Clark变换,将a相电压U a、b相电压U b和c相电压U c转换为α轴电压U α和β轴电压U β,或者,也可以借助其它可用方式,本公开对此不做限定。
关于计算发电机转子位置角度,可参照公式(1)实现方式。
Figure PCTCN2021098802-appb-000001
具体地,参照式(1),根据确定的α轴电压U α和β轴电压U β,计算发电机运行时的实时转子位置角度θ 运行,以及发电机停机时的转子位置角度θ 停机的步骤包括:在发电机空载启动运行至停机期间,响应于α轴电压为非零值,实时计算每个采样周期内α轴电压和β轴电压之比的反正切值,得到实时转子位置角度θ 运行;响应于α轴电压在所述采样周期内为零值,以上一采样周期的α轴电压和β轴电压之比的反正切值作为所述发电机停机时的转子位置角度θ 停机。这里,“响应于α轴电压在所述采样周期内为零值”,可指在连续多个采样周期内α轴电压均为零值,则可确认发电机停机。
又例如,还可以通过设置特定的测量装置,直接测量风力发电机的转子位置。
可以理解,可通过多种方式确定发电机的极对数以及磁链。
例如,作为一种可选的实施例,可基于任一采样周期采集的发电机的三相机端电压中任一相的峰值电压、发电机转速以及实时转子位置角度θ 运行,确定所述发电机的极对数P n以及磁链
Figure PCTCN2021098802-appb-000002
根据情况,对于上述确定发电机的极对数P n以及磁链
Figure PCTCN2021098802-appb-000003
的实施例,可通过以下方式具体执行:
例如,由于风力发电机的风机叶轮惯性很大,在一定时间内,发电机的转速可以认为是固定值,故可以参照公式(2)~(4)计算极对数P n以及磁链
Figure PCTCN2021098802-appb-000004
Figure PCTCN2021098802-appb-000005
Figure PCTCN2021098802-appb-000006
Figure PCTCN2021098802-appb-000007
其中,f为发电机频率,P n为发电机极对数,n为发电机转速。U k_peak为 三相机端电压中k相的峰值电压,k可为a相、b相、c相中的任一相。以选取发电机的三相机端电压中a相的峰值电压为例执行计算,具体地,基于实时转子位置角度θ 运行在单位时间内的变化,确定发电机在空载运行期间的频率;基于发电机的频率与发电机转速确定发电机的极对数P n;基于上述峰值电压与频率确定发电机的磁链
Figure PCTCN2021098802-appb-000008
又例如,首先,可以确定任一采样周期以及与该任一采样周期相邻的前一采样周期各自对应的实时转子角度θ 运行,计算前后二者的差值dθ。然后,计算差值dθ在采样周期内单位时间的角度变化量dθ/dt,得到发电机电角速度w e。接下来,基于发电机电角速度w e与发电机转速n的比值得到所述发电机的极对数P n(即
Figure PCTCN2021098802-appb-000009
)。最后,基于发电机的峰值电压U peak与发电机电角速度w e的比值,得到磁链ψ f
再例如,首先,可以确定任一采样周期以及与该任一采样周期相邻的前一采样周期各自对应的实时转子角度θ 运行,计算前后二者的差值dθ。然后,计算所述差值dθ在采样周期内单位时间的角度变化量dθ/dt,并将计算的角度变化量乘以发电机转速n,得到发电机机械角速度Ω。接下来,基于发电机机械角速度Ω与发电机转速n,得到发电机的极对数Pn(即
Figure PCTCN2021098802-appb-000010
)。最后,基于发电机的峰值电压U peak与发电机机械角速度Ω的比值同发电机转速n的乘积,得到所述磁链ψ f
可以理解,可通过以下方式确定发电机的定子电阻。
例如,在通过调整桨叶角度控制所述发电机停机后,首先,可以控制变流器整流侧的开关管工作在预设工作模式,以使变流器整流侧持续对发电机输出直流电压。然后,可在变流器整流侧与发电机构成的电路中的电流稳定后,采集发电机输出的三相机端电压和三相定子电流。最后,基于采集的三相机端电压、三相定子电流确定发电机的定子电阻。上述的预设工作模式为变流器整流侧的任一相开关管的上管导通,其他两相开关管的下管导通。
参照图5,变流器整流侧可支持手动使能控制模式,例如,工作人员可 通过触发用于控制变流器整流侧输出信号模式的控制装置的开关,该控制装置即可通过预先设定的自动控制软件,控制相应开关管导通与断开,从而使得变流器整流侧持续对发电机输出直流电压。此处的手动使能也可以不触发软件,而直接使用手动使能,使得机组在停机时可以手动控制IGBT根据设定的调制波进行工作。
进一步地,基于发电机输出的三相机端电压、三相定子电流确定发电机的定子电阻的步骤可包括:首先,确定三相机端电压中与上管导通的开关管对应相的目标相电压;然后,确定三相定子电流中与上管导通的开关管对应相的目标相电流;再次,确定目标相电压与其相位顺序相邻的相电压之间的线电压;最后,基于上述线电压与目标相电流得到发电机的定子电阻。
这里,对应上述“三相机端电压、三相定子电流”之间的组合关系,所述预设工作模式可包括以下A~C三种工作模式中的任意一种模式。具体地,模式A、变流器整流侧的a相开关管的上管导通,b相和c相开关管的下管导通;模式B、变流器整流侧的b相开关管的上管导通,a相和c相开关管的下管导通;模式C、变流器整流侧的c相开关管的上管导通,a相和b相开关管的下管导通。
具体地,对应模式A,参照公式(5),基于发电机输出电压、发电机定子电流确定发电机的定子电阻R s的步骤可包括:根据发电机输出的a相电压U a以及b相电压U b确定线电压U ab,将线电压U ab与a相电流i a的比值乘以预定系数,得到发电机的定子电阻R s
Figure PCTCN2021098802-appb-000011
对应模式B,参照公式(6),基于所述发电机输出电压、发电机定子电流确定发电机的定子电阻R s的步骤可包括:根据发电机输出的b相电压U b以及c相电压U c确定线电压U bc,将线电压U bc与b相电流i b的比值乘以预定系数,得到发电机的定子电阻R s
Figure PCTCN2021098802-appb-000012
对应模式C,参照公式(7),基于所述发电机输出电压、发电机定子电流确定发电机的定子电阻R s的步骤可包括:根据发电机输出的c相电压U c以及a相电压U a确定线电压U ca,将线电压U ca与c相电流i c的比值乘以预定系数,得到发电机的定子电阻R s
Figure PCTCN2021098802-appb-000013
可以理解,可通过以下两种方式确定所述“发电机的电感参数”。
例如,对于第一种方式,首先,可在通过调整桨叶角度控制发电机停机后,控制变流器整流侧的开关管输出高频脉冲电压信号至发电机绕组。然后,采集发电机基于上述高频脉冲电压信号激励输出的三相机端电压和三相定子电流。接下来,基于三相机端电压、三相定子电流和发电机停机时的转子位置角度θ 停机,确定发电机在目标采样周期内的d轴电压U d、q轴电压U q、d轴电流i d、q轴电流i q。最后,基于发电机在目标采样周期内的d轴电压U d、q轴电压U q、d轴电流i d、q轴电流i q以及预设采样周期,确定发电机的d轴电感L d以及q轴电感L q
这里,参照图5,变流器的整流侧可支持手动使能模式,例如,工作人员可通过触发用于控制变流器整流侧输出信号模式的控制装置的开关,该控制装置即可通过预先设定的自动控制软件,控制相应开关管导通与断开,从而使得变流器整流侧的开关管输出高频脉冲电压信号。
采集的三相机端电压包括a相电压U a、b相电压U b和c相电压U c。三相定子电流包括a相电流i a、b相电流i b和c相电流i c
上述的“基于三相机端电压、三相定子电流和发电机停机时的转子位置角度θ 停机,确定发电机在目标采样周期内的d轴电压U d、q轴电压U q、d轴电流i d、q轴电流i q”的步骤可包括:首先,利用Clark变换将a相电压U a、b相电压U b和c相电压U c转换为静止坐标系下的α轴电压U a和β轴电压U β,然后,利用Park变换,基于转子位置角度θ 停机,将α轴电压U α和β轴电压U β转换为旋转坐标系下的d轴电压U d和q轴电压U q。对于a相电流i a、b相电流i b 和c相电流i c,也类似地,可先后经过上述Clark变换、Park变换得到旋转坐标系下的d轴电流i d和q轴电压i q
由于高频脉冲信号作用时间较短,定子绕组电流较小,故定子电阻上的压降忽略不计,同时由于发电机停机,转速为零。基于此上述“确定发电机的d轴电感L d以及q轴电感L q”可参照以下公式执行:
Figure PCTCN2021098802-appb-000014
Figure PCTCN2021098802-appb-000015
其中,T s为所述目标采样周期,公式中涉及的d轴电流i d_n和i d_n-之间对应的采样计算时间间隔为所述目标采样周期T s、q轴电流i q_n和i q_n-1之间对应的采样计算时间间隔也为所述目标采样周期T s
又例如,对于第二种方式,首先,可在通过调整桨叶角度控制发电机停机后,控制变流器整流侧的开关管输出高频脉冲电压信号至发电机绕组。然后,采集发电机基于上述高频脉冲电压信号激励输出的三相机端电压和三相定子电流。接下来,基于三相机端电压、三相定子电流和发电机停机时的转子角度θ 停机,确定发电机在k个目标采样周期内的d轴电压的平均值、q轴电压的平均值、d轴电流的平均值、q轴电流的平均值。最后,基于d轴电压的平均值、q轴电压的平均值、d轴电流的平均值、q轴电流的平均值以及k个采样周期的时长,确定发电机的d轴电感及q轴电感。
这里需要说明的是,上述确定“发电机的电感参数”的第二种方式与第一种方式的区别在于:将计算涉及的例如“d轴电压、d轴电流、q轴电压、q轴电流”等参数替换为对应多个目标采样周期的平均值,再执行相关计算,得到发电机的电感参数的平均值。
具体地,可参照以下公式:
Figure PCTCN2021098802-appb-000016
Figure PCTCN2021098802-appb-000017
其中,kT s表示k个目标采样周期,
Figure PCTCN2021098802-appb-000018
分别为k个目标采样周期内的发电机电感参数平均值,
Figure PCTCN2021098802-appb-000019
分别为k个采样周期内的发电机d轴电压、q轴电压平均值,
Figure PCTCN2021098802-appb-000020
分别为前k个目标采样周期的d轴电流平均值和后k个目标采样周期d轴电流平均值,
Figure PCTCN2021098802-appb-000021
分别为前k个目标采样周期的q轴电流平均值和后k个目标采样周期q轴电流平均值。
如上所述,利用本公开上述的包括步骤S110~S130的风力发电机的参数辨识方法,可以有效识别出风力发电机的关键参数,包括转子角度、极对数、磁链、定子电阻以及电感。可选择地,这些参数可以固化到控制器内,从而实现对风力发电机的控制。
下面参照图3的应用示例,对本公开的风力发电机的参数辨识方法进行描述。
参照图3,在步骤S301中,判断风力发电机是否处于停机状态;如果是停机状态,执行步骤S302,否则,不作任何操作。
在步骤S302中,可以手动闭合机侧断路器,这里“手动”可指手动使能,例如工作人员可手动触发用于控制断路器合闸或断开的控制装置的开关,控制装置自身可通过其上运行的自动控制软件实现对断路器的合闸操作。参照图4,这里机侧断路器是指设置在风力发电机与变流器整流侧之间的断路器。
在步骤S303中,可以控制风力发电机的桨叶变桨转动,使得风力发电机实现启动、运行以及停机的过程。
在步骤S304中,在上述步骤S303执行变桨过程中,基于本公开前文描述的公式(1)~(4),计算风力发电机的转子角度、极对数以及磁链。
在步骤S305中,手动使能机侧调制,即根据情况,控制相应开关管导通 与断开,以实现IGBT控制,使得变流器整流侧持续对发电机输出直流电压;或者,使得变流器整流侧的开关管输出高频脉冲电压信号。
在步骤S306中,控制IGBT输出直流电压至风力发电机。
在步骤S307中,在变流器整流侧与发电机构成的电路中的电流稳定后,采集风力发电机响应于直流电压的激励而输出的三相机端电压和三相定子电流,然后根据三相机端电压和三相定子电流计算发电机的定子电阻。
在步骤S308中,控制IGBT输出高频脉冲电压信号至风力发电机绕组。
在步骤S309中,在变流器整流侧与发电机构成的电路中的电流稳定后,采集发电机基于上述高频脉冲电压信号激励输出的三相机端电压和三相定子电流,然后根据三相机端电压、三相定子电流以及上述步骤S304计算得到的转子角度,计算发电机的电感。
在步骤S310中,将前述步骤计算出的发电机参数固化到控制器,以用于执行对风力发电机的控制。
综上,利用本公开提供的技术方案,通过调整桨叶变桨,控制发电机空载启动运行和停机,在此过程中,可通过设置风机停机时发电机侧断路器手动使能控制合闸的模式,可实现对发电机的转子角度、极对数以及磁链的测量,并且断路器手动使能控制合闸的模式还可保证工作人员的安全。在发电机停机以后,可通过设置风机停机时变流器整流侧IGBT手动使能调制模式,对发电机输出用于激励的调制信号(例如,直流电压或者高频脉冲电压信号),以实现发电机停机时对发电机的定子电阻、电感参数的测量。方案整体上可以实现控制系统对发电机参数的识别,省去控制系统中人工配置发电机参数的环节,减少人力成本;控制软件版本大幅减少,减少软件维护成本。并且,还可以避免发电机参数配置错误带来的控制性能下降或控制系统失稳的风险。此外,本公开的技术方案,主要通过优化软件控制来实现,不增加任何硬件设备,避免了成本的提高,提高了方案的可适用性。
图2是示出根据本公开的示例性实施例的风力发电机的参数辨识装置的 框图。由于利用该参数辨识装置识别风力发电机的参数时,采用的是图1所示的参数辨识方法,因此,该参数辨识装置的具体实施方式可以参照参数辨识方法的实施,重复之处,不再赘述。
参照图2,风力发电机的参数辨识装置200包括启停控制单元210、参数获取单元220以及参数确定单元230,并且各单元之间可通信地耦合。
启停控制单元210可通过调整桨叶角度,控制发电机空载启动运行和停机;参数获取单元220可在发电机空载启动运行至停机期间,获取发电机的运行数据;参数确定单元230可基于获取的发电机的运行数据确定发电机的参数。其中,发电机的运行数据可包括发电机的机端电压、机端电流和发电机转速。
可选择地,参数辨识装置200还包括断路器控制单元240,可在发电机空载启动之前,闭合变流器整流侧与发电机之间的断路器,以导通发电机与变流器。
参数获取单元220可响应于接收到使能指令,控制变流器按照预设采样周期实时采集发电机的机端电压、机端电流,以及接收由发电机主控系统同步测量的发电机转速。
参数确定单元230可根据实时采集的发电机的机端电压,确定发电机运行时的实时转子位置角度θ 运行以及发电机停机时的转子位置角度θ 停机
具体地,参数确定单元230可基于所述发电机输出的三相机端电压,确定在两相静止坐标系下发电机机端的α轴电压和β轴电压,根据确定的α轴电压和β轴电压,计算发电机运行时的实时转子位置角度θ 运行,以及发电机停机时的转子位置角度θ 停机
进一步地,参数确定单元230可在发电机空载启动运行至停机期间,响应于α轴电压为非零值,实时计算每个采样周期内所述α轴电压和β轴电压之比的反正切值,得到实时转子位置角度θ 运行;响应于α轴电压在所述采样周期内为零值,以上一采样周期的α轴电压和β轴电压之比的反正切值作为 所述发电机停机时的转子位置角度θ 停机
可选择地,参数确定单元230可基于任一采样周期采集的发电机的三相机端电压中任一相的峰值电压、发电机转速以及实时转子位置角度θ 运行,确定所述发电机的极对数以及磁链。
进一步地,参数确定单元230可基于所述实时转子位置角度θ 运行在单位时间内的变化,确定发电机在空载运行期间的频率,基于发电机的频率与发电机转速确定发电机的极对数,基于峰值电压与频率确定发电机的磁链。
可选择地,在启停控制单元210通过调整桨叶角度控制发电机停机后,参数获取单元220可控制所述变流器整流侧的开关管工作在预设工作模式,以使变流器整流侧持续对发电机输出直流电压。在变流器整流侧与发电机构成的电路中的电流稳定后,采集发电机输出的三相机端电压和三相定子电流。基于三相机端电压、三相定子电流确定发电机的定子电阻。
具体地,上述预设工作模式为变流器整流侧的任一相开关管的上管导通,其他两相开关管的下管导通的模式。
进一步地,参数确定单元230可以确定三相机端电压中与上管导通的开关管对应相的目标相电压,确定三相定子电流中与上管导通的开关管对应相的目标相电流,确定目标相电压与其相位顺序相邻的相电压之间的线电压,基于线电压与目标相电流得到发电机的定子电阻。
可选择地,在通过调整桨叶角度控制发电机停机后,参数获取单元220可控制变流器整流侧的开关管输出高频脉冲电压信号至发电机绕组,采集发电机基于上述高频脉冲电压信号激励输出的三相机端电压和三相定子电流。参数确定单元230可基于三相机端电压、三相定子电流和发电机停机时的转子位置角度θ 停机,确定发电机在目标采样周期内的d轴电压、q轴电压、d轴电流、q轴电流,基于发电机在目标采样周期内的d轴电压、q轴电压、d轴电流、q轴电流以及预设采样周期,确定发电机的d轴电感以及q轴电感。
可选择地,在通过调整桨叶角度控制所述发电机停机后,参数获取单元 220可控制变流器整流侧的开关管输出高频脉冲电压信号至发电机绕组,采集发电机基于所述高频脉冲电压信号激励输出的三相机端电压和三相定子电流。参数确定单元230可基于三相机端电压、三相定子电流和发电机停机时的转子角度θ 停机,确定发电机在k个目标采样周期内的d轴电压的平均值、q轴电压的平均值、d轴电流的平均值、q轴电流的平均值,基于d轴电压的平均值、q轴电压的平均值、d轴电流的平均值、q轴电流的平均值以及k个采样周期的时长,确定发电机的d轴电感及q轴电感。
应该理解,根据本公开的示例性实施例的风力发电机的参数辨识装置中的各个单元/模块可被实现为硬件组件和/或软件组件。本领域技术人员根据限定的各个单元/模块所执行的处理,可以例如使用现场可编程门阵列(FPGA)或专用集成电路(ASIC)来实现各个单元/模块。
根据本公开示例性实施例的再一个方面,提供一种存储有计算机程序的计算机可读存储介质,其中,当所述计算机程序被处理器执行时,实现本公开所述的参数辨识方法。
具体地,根据本公开的示例性实施例的控制方法可被编写为计算机程序、代码段、指令或它们的任何组合,并被记录、存储或固定在一个或多个非暂时性计算机可读存储介质中或一个或多个非暂时性计算机可读存储介质上。所述计算机可读存储介质是可存储由计算机系统读出的数据的任意数据存储装置。计算机可读存储介质的示例包括:只读存储器、随机存取存储器、只读光盘、磁带、软盘、光数据存储装置和载波(诸如经有线或无线传输路径通过互联网的数据传输)。
根据本公开示例性实施例的又一个方面,提供一种电子设备,其中,所述电子设备包括:至少一个处理器;至少一个存储计算机可执行指令的存储器,其中,所述计算机可执行指令在被所述至少一个处理器运行时,促使所述至少一个处理器执行本公开所述的参数辨识方法。
具体地,所述电子设备可以广义地为平板电脑、智能手机、智能手表, 或任何其他具有必要的计算和/或处理能力的电子设备。在一个实施例中,该电子设备可包括通过系统总线连接的处理器、存储器、网络接口、通信接口等。该电子设备的处理器可用于提供必要的计算、处理和/或控制能力。该电子设备的存储器可包括非易失性存储介质和内存储器。该非易失性存储介质中或上可存储有操作系统、计算机程序等。该内存储器可为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的网络接口和通信接口可用于与外部的设备通过网络连接和通信。
综上,利用本公开提供的技术方案,通过调整桨叶变桨,控制发电机空载启动运行和停机,在此过程中,可通过设置风机停机时发电机侧断路器手动使能控制合闸的模式,可实现对发电机的转子角度、极对数以及磁链的测量,并且断路器手动使能控制合闸的模式还可保证工作人员的安全;在发电机停机以后,可通过设置风机停机时变流器整流侧IGBT手动使能调制模式,对发电机输出用于激励的调制信号(例如,直流电压或者高频脉冲电压信号),以实现发电机停机时对发电机的定子电阻、电感参数的测量。方案整体上可以实现控制系统对发电机参数的识别,省去控制系统中人工配置发电机参数的环节,减少人力成本;控制软件版本大幅减少,减少软件维护成本;避免发电机参数配置错误带来的控制性能下降或控制系统失稳的风险。此外,本公开的技术方案,主要通过优化软件控制来实现,不增加任何硬件设备,避免了成本的提高,提高了方案的可适用性。
虽然已表示和描述了本公开的一些示例性实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本公开的原理和精神的情况下,可以对这些实施方式进行修改。

Claims (15)

  1. 一种风力发电机的参数辨识方法,其中,所述参数辨识方法包括:
    通过调整桨叶角度,控制发电机空载启动运行和停机;
    在所述发电机空载启动运行至停机期间,获取所述发电机的运行数据;
    基于获取的所述发电机的运行数据确定所述发电机的参数。
  2. 根据权利要求1所述的参数辨识方法,其中,所述发电机的运行数据包括:所述发电机的机端电压、机端电流和转速。
  3. 根据权利要求1所述的参数辨识方法,其中,在所述发电机空载启动之前,所述参数辨识方法还包括:闭合变流器整流侧与所述发电机之间的断路器,以导通所述发电机与所述变流器。
  4. 根据权利要求2所述的参数辨识方法,其中,基于获取的所述发电机的运行数据确定所述发电机的参数的步骤包括:
    根据实时采集的所述发电机的机端电压,确定所述发电机运行时的实时转子位置角度θ 运行以及所述发电机停机时的转子位置角度θ 停机
  5. 根据权利要求4所述的参数辨识方法,其中,根据实时采集的所述发电机的机端电压,确定所述发电机运行时的实时转子位置角度θ 运行以及所述发电机停机时的转子位置角度θ 停机的步骤包括:
    基于所述发电机输出的三相机端电压,确定在两相静止坐标系下所述发电机机端的α轴电压和β轴电压;
    根据确定的α轴电压和β轴电压,计算所述发电机运行时的实时转子位置角度θ 运行,以及所述发电机停机时的转子位置角度θ 停机
  6. 根据权利要求5所述的参数辨识方法,其中,根据确定的α轴电压和β轴电压,计算所述发电机运行时的实时转子位置角度θ 运行,以及所述发电机停机时的转子位置角度θ 停机的步骤包括:
    在所述发电机空载启动运行至停机期间,响应于α轴电压为非零值,实 时计算每个采样周期内所述α轴电压和β轴电压之比的反正切值,得到实时转子位置角度θ 运行
    响应于α轴电压在所述采样周期内为零值,以上一采样周期的α轴电压和β轴电压之比的反正切值作为所述发电机停机时的转子位置角度θ 停机
  7. 根据权利要求5所述的参数辨识方法,其中,基于获取的所述发电机的运行数据确定所述发电机的参数的步骤还包括:
    基于任一采样周期采集的所述发电机的三相机端电压中任一相的峰值电压、所述发电机的转速以及实时转子位置角度θ 运行,确定所述发电机的极对数以及磁链。
  8. 根据权利要求7所述的参数辨识方法,其中,基于任一采样周期的所述发电机输出的三相机端电压中任一相的峰值电压、所述发电机的转速以及实时转子位置角度θ 运行,确定所述发电机的极对数以及磁链的步骤包括:
    基于所述实时转子位置角度θ 运行在单位时间内的变化,确定所述发电机在空载运行期间的频率;
    基于所述发电机的频率与所述发电机的转速确定所述发电机的极对数;
    基于所述峰值电压与所述频率确定所述发电机的磁链。
  9. 根据权利要求3所述的参数辨识方法,其中,通过调整桨叶角度控制所述发电机停机后,所述参数辨识方法还包括:
    控制所述变流器整流侧的开关管工作在预设工作模式,以使所述变流器整流侧持续对所述发电机输出直流电压;
    在所述变流器整流侧与所述发电机构成的电路中的电流稳定后,采集所述发电机输出的三相机端电压和三相定子电流;
    基于所述三相机端电压和所述三相定子电流确定所述发电机的定子电阻。
  10. 根据权利要求9所述的参数辨识方法,其中,所述预设工作模式为所述变流器整流侧的任一相开关管的上管导通,其他两相开关管的下管导通;
    基于所述三相机端电压和所述三相定子电流确定所述发电机的定子电阻 的步骤包括:
    确定所述三相机端电压中与上管导通的开关管对应相的目标相电压;
    确定所述三相定子电流中与上管导通的开关管对应相的目标相电流;
    确定所述目标相电压与其相位顺序相邻的相电压之间的线电压;
    基于所述线电压与所述目标相电流得到所述发电机的定子电阻。
  11. 根据权利要求4所述的参数辨识方法,其中,通过调整桨叶角度控制所述发电机停机后,所述参数辨识方法还包括:
    控制所述变流器整流侧的开关管输出高频脉冲电压信号至所述发电机绕组;
    采集所述发电机基于所述高频脉冲电压信号激励输出的三相机端电压和三相定子电流;
    基于所述三相机端电压、所述三相定子电流和所述发电机停机时的转子位置角度θ 停机,确定所述发电机在目标采样周期内的d轴电压、q轴电压、d轴电流、q轴电流;
    基于所述发电机在目标采样周期内的d轴电压、q轴电压、d轴电流、q轴电流以及预设采样周期,确定所述发电机的d轴电感以及q轴电感。
  12. 根据权利要求4所述的参数辨识方法,其中,通过调整桨叶角度控制所述发电机停机后,所述参数辨识方法还包括:
    控制所述变流器整流侧的开关管输出高频脉冲电压信号至所述发电机绕组;
    采集所述发电机基于所述高频脉冲电压信号激励输出的三相机端电压和三相定子电流;
    基于所述三相机端电压、所述三相定子电流和所述发电机停机时的转子角度θ 停机,确定所述发电机在k个目标采样周期内的d轴电压的平均值、q轴电压的平均值、d轴电流的平均值、q轴电流的平均值;
    基于所述d轴电压的平均值、所述q轴电压的平均值、所述d轴电流的 平均值、所述q轴电流的平均值以及k个采样周期的时长,确定所述发电机的d轴电感及q轴电感。
  13. 一种风力发电机的参数辨识装置,其中,所述参数辨识装置包括:
    启停控制单元,被配置为:通过调整桨叶角度,控制发电机空载启动运行和停机;
    参数获取单元,被配置为:在所述发电机空载启动运行至停机期间,获取所述发电机的运行数据;
    参数确定单元,被配置为:基于获取的所述发电机的运行数据确定所述发电机的参数。
  14. 一种存储有计算机程序的计算机可读存储介质,其中,当所述计算机程序被处理器执行时,实现如权利要求1至12中任一项所述的风力发电机的参数辨识方法。
  15. 一种电子设备,其中,包括:
    至少一个处理器;
    至少一个存储计算机可执行指令的存储器,
    其中,所述计算机可执行指令在被所述至少一个处理器运行时,促使所述至少一个处理器执行如权利要求1至12中的任一权利要求所述的风力发电机的参数辨识方法。
PCT/CN2021/098802 2020-12-25 2021-06-08 风力发电机的参数辨识方法以及参数辨识装置 WO2022134484A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/259,350 US12132424B2 (en) 2020-12-25 2021-06-08 Parameter identification method and apparatus for wind turbine generator
EP21908492.8A EP4266571A4 (en) 2020-12-25 2021-06-08 PARAMETER IDENTIFICATION METHOD AND PARAMETER IDENTIFICATION DEVICE FOR A WIND TURBINE
AU2021408621A AU2021408621A1 (en) 2020-12-25 2021-06-08 Parameter identification method and parameter identification device for wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011558569.1 2020-12-25
CN202011558569.1A CN114696701A (zh) 2020-12-25 2020-12-25 风力发电机的参数辨识方法以及参数辨识装置

Publications (1)

Publication Number Publication Date
WO2022134484A1 true WO2022134484A1 (zh) 2022-06-30

Family

ID=82130191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098802 WO2022134484A1 (zh) 2020-12-25 2021-06-08 风力发电机的参数辨识方法以及参数辨识装置

Country Status (4)

Country Link
EP (1) EP4266571A4 (zh)
CN (1) CN114696701A (zh)
AU (1) AU2021408621A1 (zh)
WO (1) WO2022134484A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621291B2 (en) * 2001-08-15 2003-09-16 Eaton Corporation Device and method for estimating the resistance of a stator winding for an AC induction motor
CN101576057A (zh) * 2008-12-18 2009-11-11 上海电气液压气动有限公司 风力发电设备的安全制动系统
US20110109279A1 (en) * 2009-06-19 2011-05-12 Vestas Wind Systems A/S Method for determining a rotor position of an electrical generator in a wind turbine
CN103944480A (zh) * 2014-04-21 2014-07-23 许继电气股份有限公司 一种永磁电机转子磁链辨识方法
CN107592049A (zh) * 2017-09-08 2018-01-16 北京无线电测量研究所 一种永磁同步电机极对数检测方法及系统
CN108155843A (zh) * 2017-12-28 2018-06-12 武汉合康动力技术有限公司 永磁同步电机初始磁极位置和交直轴电感的辨识方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8704393B2 (en) * 2012-08-09 2014-04-22 General Electric Company System and method for controlling speed and torque of a wind turbine during post-rated wind speed conditions
CN103913636B (zh) * 2013-01-06 2016-08-24 珠海格力电器股份有限公司 获取电机电阻参数的方法、装置及系统
CN103457523A (zh) * 2013-08-31 2013-12-18 西北工业大学 一种无刷直流电机的参数辨识方法
CN103825521B (zh) * 2014-02-25 2016-08-31 河海大学 一种双馈风电机组中驱动系统及发电机参数的辨识方法
CN104967386B (zh) * 2015-06-23 2017-08-25 常熟开关制造有限公司(原常熟开关厂) 永磁同步电机参数辨识方法、装置及控制系统
EP3125418B8 (en) * 2015-07-27 2019-06-12 Siemens Gamesa Renewable Energy A/S A method to detect or monitor the demagnetization of a magnet
CN108183648B (zh) * 2018-01-24 2020-04-24 武汉理工大学 一种基于逆变器非线性补偿的永磁同步电机参数辨识方法
CN109861286B (zh) * 2019-03-01 2020-11-06 明阳智慧能源集团股份公司 一种海上风力发电机组黑启动过程控制方法
CN110071667B (zh) * 2019-05-10 2020-09-25 福建省宏闽电力工程监理有限公司 一种双馈风力发电机参数辨识方法
CN110739894B (zh) * 2019-10-25 2021-05-25 哈尔滨工业大学 用于永磁同步电机参数的辨识方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621291B2 (en) * 2001-08-15 2003-09-16 Eaton Corporation Device and method for estimating the resistance of a stator winding for an AC induction motor
CN101576057A (zh) * 2008-12-18 2009-11-11 上海电气液压气动有限公司 风力发电设备的安全制动系统
US20110109279A1 (en) * 2009-06-19 2011-05-12 Vestas Wind Systems A/S Method for determining a rotor position of an electrical generator in a wind turbine
CN103944480A (zh) * 2014-04-21 2014-07-23 许继电气股份有限公司 一种永磁电机转子磁链辨识方法
CN107592049A (zh) * 2017-09-08 2018-01-16 北京无线电测量研究所 一种永磁同步电机极对数检测方法及系统
CN108155843A (zh) * 2017-12-28 2018-06-12 武汉合康动力技术有限公司 永磁同步电机初始磁极位置和交直轴电感的辨识方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266571A4 *

Also Published As

Publication number Publication date
EP4266571A4 (en) 2024-06-26
AU2021408621A9 (en) 2024-07-25
CN114696701A (zh) 2022-07-01
US20240056008A1 (en) 2024-02-15
AU2021408621A1 (en) 2023-08-03
EP4266571A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
CN102594250B (zh) 无位置传感器内置式永磁同步电机最大转矩电流比矢量控制系统的控制方法
US9525377B2 (en) System and method of rotor time constant online identification in an AC induction machine
CN109617486B (zh) 一种永磁同步电机自动标定方法
JP3672876B2 (ja) ベクトル制御インバータ装置及び回転駆動装置
WO2022242708A1 (zh) 电机启动方法及可读存储介质
CN108809199B (zh) 变频器追踪电机转速的方法、装置及变频器
CN109379016A (zh) 基于无位置传感器矢量控制永磁同步电机恒力矩控制方法
CN104518713A (zh) 一种无位置传感器的无刷双馈电动机调速控制方法
CN105186956A (zh) 一种无传感器永磁同步电机启动控制方法以及对应的系统
CN105262403A (zh) 一种旋转电机直接启动控制方法
CN112394312A (zh) 三相电机驱动系统电流传感器故障诊断方法
WO2022134484A1 (zh) 风力发电机的参数辨识方法以及参数辨识装置
WO2024183238A1 (zh) 永磁同步电机输出电压自适应的转子预定位控制方法
CN108075707A (zh) 基于V/f控制模式下的异步电机再启动方法及系统
CN108223292A (zh) 风力发电机组及其盘车系统、盘车控制方法与装置
CN112886885B (zh) 风力发电机组的永磁同步发电机控制方法、装置和系统
EP4318934A1 (en) Parameter identification method and parameter identification device for wind turbine
US12132424B2 (en) Parameter identification method and apparatus for wind turbine generator
CN109546909A (zh) 一种交流永磁同步电机转速追踪启动方法
CN109327174A (zh) 永磁同步电机旋转变压器零位自动识别方法
CN111030543B (zh) 直流变频空调压缩机的零速闭环启动方法
CN113098339B (zh) 无编码永磁同步电机的带速启动方法、存储介质及电子设备
CN115333429B (zh) 无刷双馈电机转子初始角度检测方法、装置及启动方法
CN117767835B (zh) 无感电机启动控制方法、装置、系统及存储介质
CN110932311B (zh) 一种静止同步发电机一次调节器控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18259350

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021908492

Country of ref document: EP

Effective date: 20230717

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021408621

Country of ref document: AU

Date of ref document: 20210608

Kind code of ref document: A