WO2022132108A1 - Analog textile keypad system - Google Patents

Analog textile keypad system Download PDF

Info

Publication number
WO2022132108A1
WO2022132108A1 PCT/TR2021/051423 TR2021051423W WO2022132108A1 WO 2022132108 A1 WO2022132108 A1 WO 2022132108A1 TR 2021051423 W TR2021051423 W TR 2021051423W WO 2022132108 A1 WO2022132108 A1 WO 2022132108A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
weft
metal reinforced
yarns
microcontroller
Prior art date
Application number
PCT/TR2021/051423
Other languages
French (fr)
Inventor
Ahmet GUNES
Banu Hatice GURCUM
Ibrahim UNER
Original Assignee
Gebze Teknik Universitesi
Ankara Haci Bayram Veli Universitesi Bilimsel Arastirma Projeleri Birimi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebze Teknik Universitesi, Ankara Haci Bayram Veli Universitesi Bilimsel Arastirma Projeleri Birimi filed Critical Gebze Teknik Universitesi
Priority to EP21907314.5A priority Critical patent/EP4204616A1/en
Publication of WO2022132108A1 publication Critical patent/WO2022132108A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0202Constructional details or processes of manufacture of the input device
    • G06F3/0219Special purpose keyboards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0227Cooperation and interconnection of the input arrangement with other functional units of a computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • H01H13/704Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches characterised by the layers, e.g. by their material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/008Wires
    • H01H2203/0085Layered switches integrated into garment, clothes or textile

Definitions

  • the invention relates to a textile-based analog signal-based electronic keypad system.
  • the keypad which allows the relevant units to be guided by detecting the commands entered by the user, has a light, flexible structure.
  • One of the commands can be given as many as the number of buttons by touching the fabric thanks to the invention.
  • the number of pins used in the processor and the number of paths to the processor are reduced since the system gives a single input to the microcontroller.
  • Smart textiles have a structure consisting of sensors, actuators, and microprocessors placed inside the fabric.
  • Intelligent textiles generally consist of a control unit and sensors.
  • Wearable electronics which consist of smart textiles, are very comfortable to use due to the flexible, lightweight, and durable structures of textile materials.
  • the wearable motherboard, presented by Georgia Tech in 1998, is an example of the first electronic textiles.
  • the composite structure contains 5 layers in the patent document CN102478964, which is in the state of the art. In the middle of these layers is an insulating surface (30) with gaps in the matrix structure separating 2 layers that constitute the functionality of the invention. An upper (20) and a lower (40) layer of this insulating hollow surface is a functional conductive yarn treated fabric structure.
  • the conductive yarns are sewn in a U-shaped manner and positioned 90 degrees apart on these structures.
  • the two conductive yarns come into contact with each other and the resistance difference resulting from this process is detected by the processor as a result of the pressure on the keys. In other words, it is based on the difference between the resistance values.
  • the resistance of conductive yarns may show inconsistencies due to their stretching and bending behavior in this art.
  • the Chinese patent document CN105140070 which is in the state of the art, uses the doublelayer and self-linked weaving technique.
  • the connection yarn is canceled in the functional areas and an opening (hose) is formed between the two layers while the non-functional areas from the weaving structure are woven in an interconnected manner with the connection yarn.
  • the contact of the two layers with each other was prevented by placing a spongy piece in this opening.
  • Self-conducting carbon nanotube-treated yarn is used in this document.
  • the system works on piezoresistive effect. In other words, conductive yarns will create a resistance difference with the piezo effect if the button is pressed.
  • a total number of AT 4- Af pins are used in the microcontroller for a structure with I columns and rows in the patent document with the application number 2020/08884, which is in the present art.
  • the pin is not a digital I/O pin. Analog voltage is read.
  • the object of the present invention is to realize a new keypad system in which the user is enabled to move more easily thanks to the fact that the keypad of the invention is integrated into the fabric.
  • Another object of the invention is to realize a new keypad system in which the confusion in the paths of the conductive yarns in the fabric is reduced since one output from the keypad is sufficient.
  • Another object of the invention is to realize a new keypad system in which peripherals, sensors and actuators that are integrated into the dress, can receive commands or can work with wireless communication are connected to the dress thanks to the invention consisting of a three-layer fabric structure.
  • Another object of the invention is to realize a new keypad system in which a single microcontroller input is sufficient regardless of the number of keys to be used.
  • Figure 1 The subject of the invention is the schematic drawing of the electronic and textilebased building elements, layout plan and connection points on the keypad system.
  • Figure 2 It is a separate drawing of the textile-based building elements on the keypad system of the invention.
  • Figure 3 The subject of the invention is the cross-sectional image of the keypad system.
  • a resistance path (7) one end of which is connected to the resistance (5) and the other end is connected to the metal reinforced conductive yarns (2) in the upper layer or to the metal reinforced conductive yarns (2) in the lower layer,
  • a microcontroller path (8) one end of which is connected to the metal-reinforced conductive yarn (2) in the upper layer or the metal -reinforced conductive yarn (2) in the lower layer and the other end is connected to the microcontroller (4),
  • the invention relates to a matrix structured keypad formed by placing each row and column in the lowest and highest layers of the weft metal reinforced woven fabric structure overlapping only at one point, and is in a form that can perform different functions as many as the number of rows x columns thanks to the keys on it.
  • the keys must be pressed by the user in order for the invention to be active.
  • the structural elements, layout and connection points of the invention are shown in Figure 1. Accordingly, conductive weft paths are the paths formed by more than one conductive thread parallel to each other. The conductive yarns used are short-circuited when they come into contact with another conductive surface.
  • the fabric which has a conductive yarn in the weft direction, is used as a conductive yarn in the weft with a width of 10 mm and an insulating yarn with a width of 10 mm, respectively, in order to form conductive lines in the weft direction during weaving.
  • the electrical conduction is also interrupted by leaving a gap between the conductive rows thanks to the insulating yarns.
  • Conductive thread paths are the paths where more than one conductive thread parallel to each other passes through the fabric. The threads short-circuit and change the current path when the intersection point of the rows and columns is pressed, so that the voltage value seen by the microcontroller changes.
  • the layer which acts as a dielectric between the conductive layers and prevents physical contact, also ensures the contact of the conductive threads in the upper and lower layers, thanks to the spaces in between. When the application of force is stopped, it returns to its original state and opens between the layers. So there is no contact.
  • This layer should be flexible enough to allow the fabrics to touch each other.
  • the microcontroller unit where the analog signal is read can be operated with a single input and the analog signal can be read to find out which key is pressed according to the different signal levels.
  • the values of the resistors connected to the upper fabric layer may not be the same.
  • the value of the voltage to the processor varies according to the values of the resistors.
  • Interactive textiles developed within the scope of electronic textiles offer advantages in terms of providing touch control of elements associated with wireless or wired connection. Such textiles, for example, make it possible for the user to maintain device control. These applications are useful in areas that require flexibility and lightness such as clothes, bags, etc. thanks to the flexibility of textiles.

Abstract

The invention relates to a textile-based analog signal -based electronic keypad system. The user is enabled to move more easily thanks to the fact that the keypad in the system of the invention is integrated into the fabric. Moreover, the confusion in the paths of the conductive yarns in the fabric is reduced since one output from the keypad in the system is sufficient.

Description

ANALOG TEXTILE KEYPAD SYSTEM
Technical Field
The invention relates to a textile-based analog signal-based electronic keypad system. The keypad, which allows the relevant units to be guided by detecting the commands entered by the user, has a light, flexible structure. One of the commands can be given as many as the number of buttons by touching the fabric thanks to the invention. In addition, the number of pins used in the processor and the number of paths to the processor are reduced since the system gives a single input to the microcontroller.
Background
Smart textiles have a structure consisting of sensors, actuators, and microprocessors placed inside the fabric. Intelligent textiles generally consist of a control unit and sensors. Wearable electronics, which consist of smart textiles, are very comfortable to use due to the flexible, lightweight, and durable structures of textile materials. The wearable motherboard, presented by Georgia Tech in 1998, is an example of the first electronic textiles.
The development of flexible, lightweight, touch sensors that are compatible with different areas of use, one of the recent studies, requires a highly complex, expensive, and diverse process. Traditional touch sensors are generally inflexible and costly.
Various studies were carried out on textile-based keypad systems in the art.
The composite structure contains 5 layers in the patent document CN102478964, which is in the state of the art. In the middle of these layers is an insulating surface (30) with gaps in the matrix structure separating 2 layers that constitute the functionality of the invention. An upper (20) and a lower (40) layer of this insulating hollow surface is a functional conductive yarn treated fabric structure. The conductive yarns are sewn in a U-shaped manner and positioned 90 degrees apart on these structures. Here, the two conductive yarns come into contact with each other and the resistance difference resulting from this process is detected by the processor as a result of the pressure on the keys. In other words, it is based on the difference between the resistance values. The resistance of conductive yarns may show inconsistencies due to their stretching and bending behavior in this art.
The Chinese patent document CN105140070, which is in the state of the art, uses the doublelayer and self-linked weaving technique. The connection yarn is canceled in the functional areas and an opening (hose) is formed between the two layers while the non-functional areas from the weaving structure are woven in an interconnected manner with the connection yarn. The contact of the two layers with each other was prevented by placing a spongy piece in this opening. Self-conducting carbon nanotube-treated yarn is used in this document. The system works on piezoresistive effect. In other words, conductive yarns will create a resistance difference with the piezo effect if the button is pressed.
A total number of AT 4- Af pins are used in the microcontroller for a structure with I columns and rows in the patent document with the application number 2020/08884, which is in the present art. There are also 2 - M 4- 1 conductive paths along with grounding. Here, the pin is not a digital I/O pin. Analog voltage is read.
There is a need to realize a new keypad system in which it is ensured to find which key is pressed by reading the voltage value analogously, to save space by using a single pin, and to make the user move more easily when the keypad systems in the art are examined.
Objects of the Invention
The object of the present invention is to realize a new keypad system in which the user is enabled to move more easily thanks to the fact that the keypad of the invention is integrated into the fabric.
Another object of the invention is to realize a new keypad system in which the confusion in the paths of the conductive yarns in the fabric is reduced since one output from the keypad is sufficient.
Another object of the invention is to realize a new keypad system in which peripherals, sensors and actuators that are integrated into the dress, can receive commands or can work with wireless communication are connected to the dress thanks to the invention consisting of a three-layer fabric structure.
Another object of the invention is to realize a new keypad system in which a single microcontroller input is sufficient regardless of the number of keys to be used.
Detailed Description of the Invention
The electronic keypad system for achieving the objects of the present invention is shown in the accompanying figures.
These figures are as follows;
Figure 1: The subject of the invention is the schematic drawing of the electronic and textilebased building elements, layout plan and connection points on the keypad system.
Figure 2: It is a separate drawing of the textile-based building elements on the keypad system of the invention.
Figure 3: The subject of the invention is the cross-sectional image of the keypad system.
Each element in the drawings of the invention is given a number and is explained below in items.
1. Weft conductive metal reinforced woven fabric
2. Metal-reinforced weft yarns
3. Non-woven fabric structure
4. Microcontroller
5. Resistance
6. Pull up resistance I and II
7. Voltage supply The innovation subject to the invention is explained with examples that do not have any limiting effect only for a better understanding of the subject in this detailed description. The invention comprises;
- Hollow nonwoven surface fabric (3) with gaps in matrix structure thereon,
- Metal reinforced woven fabric from weft, one under and one over the hollow nonwoven fabric (1),
- Metal-containing conductive weft yarns (2) positioned so that the gaps of the hollow nonwoven fabric (3) in the matrix structure correspond to the number of rows of the gaps in the weft of the upper weft metal reinforced 1*1 woven fabric (1) and the lower weft metal reinforced 1*1 woven fabric (1),
- At least two resistances (5) to which the ends of the metal-containing yarns (2) in the upper and lower layer are individually connected,
- A resistance path (7), one end of which is connected to the resistance (5) and the other end is connected to the metal reinforced conductive yarns (2) in the upper layer or to the metal reinforced conductive yarns (2) in the lower layer,
- A microcontroller (4) to which the metal reinforced conductive yarns (2) in the upper layer and the idle ends of the metal reinforced conductive yarns (2) in the lower layer are connected, which are not connected to the resistance path,
A microcontroller path (8), one end of which is connected to the metal-reinforced conductive yarn (2) in the upper layer or the metal -reinforced conductive yarn (2) in the lower layer and the other end is connected to the microcontroller (4),
- A pull up resistance I and II (6) on the microcontroller path (8), one end of which is connected to the metal reinforced conductive yarn (2) in the lower layer and the other end is connected to the microcontroller (4),
- At least two generators (9), which are connected to the idle ends of the pull up resistance I and II (6) and provide electrical current
The invention relates to a matrix structured keypad formed by placing each row and column in the lowest and highest layers of the weft metal reinforced woven fabric structure overlapping only at one point, and is in a form that can perform different functions as many as the number of rows x columns thanks to the keys on it. The keys must be pressed by the user in order for the invention to be active. The structural elements, layout and connection points of the invention are shown in Figure 1. Accordingly, conductive weft paths are the paths formed by more than one conductive thread parallel to each other. The conductive yarns used are short-circuited when they come into contact with another conductive surface.
The fabric, which has a conductive yarn in the weft direction, is used as a conductive yarn in the weft with a width of 10 mm and an insulating yarn with a width of 10 mm, respectively, in order to form conductive lines in the weft direction during weaving. The electrical conduction is also interrupted by leaving a gap between the conductive rows thanks to the insulating yarns.
Conductive thread paths are the paths where more than one conductive thread parallel to each other passes through the fabric. The threads short-circuit and change the current path when the intersection point of the rows and columns is pressed, so that the voltage value seen by the microcontroller changes.
The layer, which acts as a dielectric between the conductive layers and prevents physical contact, also ensures the contact of the conductive threads in the upper and lower layers, thanks to the spaces in between. When the application of force is stopped, it returns to its original state and opens between the layers. So there is no contact. This layer should be flexible enough to allow the fabrics to touch each other.
The microcontroller unit where the analog signal is read can be operated with a single input and the analog signal can be read to find out which key is pressed according to the different signal levels. The values of the resistors connected to the upper fabric layer may not be the same. The value of the voltage to the processor varies according to the values of the resistors.
Which button is pressed is determined according to the analog voltage value since the output voltage varies depending on the resistance values. The values of the resistors connected to the lower fabric layer may not be the same. The output voltage will vary according to the values of these resistors. The resistance values can be changed as the size of the matrix structure changes to increase the difference between the voltage values since the output voltage will vary according to the value of all resistors. These yarns are found at different angles in the lower and upper layers. The conductive rows in the upper layer of the invention are connected to the ground and the conductive columns in the lower layer are connected to the microprocessor. The voltage of the supply (7) is applied to the conductive columns (1) in the lower layer. Figure 2 shows the textile materials used from the upper layer of the invention to the lower layer from the left to the right.
Interactive textiles developed within the scope of electronic textiles offer advantages in terms of providing touch control of elements associated with wireless or wired connection. Such textiles, for example, make it possible for the user to maintain device control. These applications are useful in areas that require flexibility and lightness such as clothes, bags, etc. thanks to the flexibility of textiles.

Claims

CLAIMS A flexible lightweight and low-cost textile-based analog signal-based electronic keypad system, comprising;
- Nonwoven surface fabric (3) with gaps in matrix structure thereon,
- Conductive metal reinforced woven fabric from weft, one under and one over the nonwoven fabric (1),
- Metal reinforced weft yarns (2) as the number of rows of the gaps in the matrix structure of the nonwoven surface fabric (3) located the weft of the conductive metal reinforced woven fabric (1) from the upper weft and positioned to coincide over the gaps,
- At least two resistances (5) to which the ends of the metal reinforced weft yarns (2) in the upper layer are individually connected and the ends of the metal reinforced weft yarns (2) in the lower layer are individually connected,
- A resistance path (7), one end of which is connected to the resistance (5) and the other end of which is connected to the metal reinforced weft conductive yarns (2) in the upper layer or to the metal reinforced weft conductive yarns (2) in the lower layer,
- A microcontroller (4) to which the metal reinforced weft yarns (2) in the upper layer and in the lower layer the idle ends of the metal reinforced weft conductive yarns (2) which are not connected to the resistance path are connected,
- A microcontroller path (8), one end of which is connected to the upper conductive yarn (2) or the lower conductive yam (2) and the other end of which is connected to the microcontroller (4),
- A pull up resistance I and II (6) located on the microcontroller path (8), one end of which is connected to the lower conductive yarn (2) and the other end of which is connected to the microcontroller (4),
- At least two generators (9), which are connected to the idle ends of the pull up resistance I and II (6) and provide electrical current.
7
PCT/TR2021/051423 2020-12-16 2021-12-16 Analog textile keypad system WO2022132108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21907314.5A EP4204616A1 (en) 2020-12-16 2021-12-16 Analog textile keypad system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR2020/20687 2020-12-16
TR2020/20687A TR202020687A2 (en) 2020-12-16 2020-12-16 ANALOG TEXTILE KEY TOOL SYSTEM

Publications (1)

Publication Number Publication Date
WO2022132108A1 true WO2022132108A1 (en) 2022-06-23

Family

ID=75576846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2021/051423 WO2022132108A1 (en) 2020-12-16 2021-12-16 Analog textile keypad system

Country Status (3)

Country Link
EP (1) EP4204616A1 (en)
TR (1) TR202020687A2 (en)
WO (1) WO2022132108A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478964A (en) * 2010-11-26 2012-05-30 郭力 Flexible fabric keyboard
CN105140070A (en) * 2015-09-16 2015-12-09 天津工业大学 Fabric keyboard switch adopting non-contact electric conduction layers
WO2017197228A2 (en) * 2016-05-13 2017-11-16 Warwick Mills, Inc. E-fabric and e-garment having intergral interconnected conductors and embedded devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478964A (en) * 2010-11-26 2012-05-30 郭力 Flexible fabric keyboard
CN105140070A (en) * 2015-09-16 2015-12-09 天津工业大学 Fabric keyboard switch adopting non-contact electric conduction layers
WO2017197228A2 (en) * 2016-05-13 2017-11-16 Warwick Mills, Inc. E-fabric and e-garment having intergral interconnected conductors and embedded devices

Also Published As

Publication number Publication date
TR202020687A2 (en) 2021-02-22
EP4204616A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
Post et al. Smart fabric, or" wearable clothing"
JP7033063B2 (en) Textile structure with capacitive grid implemented
KR101051311B1 (en) Textile Input Device
US20190017885A1 (en) Woven fabric having a plurality of woven fabric layers
KR101326796B1 (en) Textile touch sensor
US20060258247A1 (en) Pressure sensing fabric
WO2000072239A1 (en) Detector constructed from fabric
JP2020009418A (en) Position-sensing composite yarn for capacitive touch sensing
Roh Conductive yarn embroidered circuits for system on textiles
CN112304477A (en) Pressure sensor, pressure sensing system and fabric article
WO2022132108A1 (en) Analog textile keypad system
JP2012177565A (en) Tensile deformation detection fabric
US20060151308A1 (en) Proportional input interface
Terada et al. Functional fabric pattern—Examining the case of pressure detection and localization
JP6671910B2 (en) Capacitive touch sensor
KR101770141B1 (en) Electric textile
KR101789876B1 (en) Textile type hybrid controller
Shanbeh et al. Effect of weft density and percentage of stainless steel fiber content of weft yarn on electrical properties of woven fabric strain sensors
JP2007528098A (en) Touch-sensitive interface
US20180239469A1 (en) Touch-Based Human-to-Computer Textile Interface
TR202008884A2 (en) ELECTRONIC KEYPAD
WO2009053872A1 (en) Robust connections in a multi-layer woven fabric
Shaker et al. Development of 3D woven fabric based pressure switch
KR101904619B1 (en) Single layer textile type sensor and method for manufacturing thereof
KR20200077827A (en) Fiber Type Touch Pad Using Capacitance and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21907314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021907314

Country of ref document: EP

Effective date: 20230328

NENP Non-entry into the national phase

Ref country code: DE