WO2022131829A1 - High-temperature operation type lithium secondary battery and manufacturing method therefor - Google Patents

High-temperature operation type lithium secondary battery and manufacturing method therefor Download PDF

Info

Publication number
WO2022131829A1
WO2022131829A1 PCT/KR2021/019223 KR2021019223W WO2022131829A1 WO 2022131829 A1 WO2022131829 A1 WO 2022131829A1 KR 2021019223 W KR2021019223 W KR 2021019223W WO 2022131829 A1 WO2022131829 A1 WO 2022131829A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lithium salt
solid electrolyte
solid powder
secondary battery
Prior art date
Application number
PCT/KR2021/019223
Other languages
French (fr)
Korean (ko)
Inventor
남상철
문지웅
송정훈
이동제
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Publication of WO2022131829A1 publication Critical patent/WO2022131829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/1535Lids or covers characterised by their shape adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • IoT sensor-based fire detection devices have appeared, and these devices are mainly located in remote locations.
  • these devices require a power source, such as a cell or solar cell, to operate.
  • solar cells have a disadvantage in that the power supply is irregular depending on indoor and outdoor climates.
  • batteries there is a battery issue such as self-discharge when exposed to an external environment for a long period of time.
  • the battery used in such a device does not constitute a battery when a fire does not occur, thereby increasing the storage period of the battery, and it is necessary to provide a function of applying power to the device only when a fire occurs. That is, there is a need to develop a smart battery that recognizes the elevated temperature due to the occurrence of a fire and operates when a predetermined temperature is reached.
  • batteries operating at high temperatures include Na-based batteries using beta-alumina Na ion conductors such as Na-S and Na-NiCl 2 as a separator, and thermal batteries using FeS 2 as a positive electrode and Li-Al alloy as a negative electrode. battery).
  • the Na-S battery has a structure that is discharged immediately at high temperature, it operates at a high temperature of about 350° C., and above all, there is a risk of explosion during a short circuit due to a defect in the ceramic solid electrolyte. Since the battery operates by melting a solid electrolyte composed of LiF-LiCl-LiBr, MgO, etc. at a high temperature of about 500° C. or higher, the thermal battery has a disadvantage in that the response speed is too slow to be used in a fire detection device. There is a Na-NiCl 2 battery in a way that can lower the operating temperature of the battery. This battery operates at about 200° C. and has the advantage of a fast response speed, but since the initial state is a discharged state, it is necessary to use the battery in the initial stage. The downside is that you have to recharge.
  • An object of the present invention is to provide a smart battery with a fast fire response speed by lowering the operating temperature of the battery while implementing the performance of the existing high-temperature operation type battery.
  • An object of the present invention is to provide a battery capable of using battery power and supplying power at a specific temperature or higher without a separate temperature sensor.
  • a lithium secondary battery according to an embodiment of the present invention provides a lithium secondary battery with a fast response speed while implementing the performance of a conventional high-temperature battery.
  • An object of the lithium secondary battery according to an embodiment of the present invention is to provide a lithium secondary battery that can be used at a specific temperature or higher without separate measurement because the battery itself acts as a thermometer.
  • a lithium secondary battery includes a positive electrode; a first lithium salt solid powder layer positioned on the positive electrode; a solid electrolyte layer positioned on the first lithium salt solid powder layer; a second lithium salt solid powder layer positioned on the solid electrolyte layer; and an anode positioned on the second lithium salt solid powder layer, wherein the first lithium salt solid powder layer and the second lithium salt solid powder layer include lithium salt solid powder melted at 80° C. or higher.
  • the solid electrolyte layer includes lithium aluminum titanium phosphate (LATP) represented by formula (1) or lithium lanthanum zirconium oxide (LLZO) represented by formula (2).
  • LATP lithium aluminum titanium phosphate
  • LLZO lithium lanthanum zirconium oxide
  • Li x La y Zr z M w O 12 (5 ⁇ x ⁇ 9, 2 ⁇ y ⁇ 4, 1 ⁇ z ⁇ 3, 0 ⁇ w ⁇ 1)
  • M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
  • a positive electrode including at least one member from the group consisting of FeS 2 , MnO 2 , Mo 3 O 8 , CF x , and V 6 O 13 is positioned on one surface of the positive electrode current collector.
  • the positive electrode current collector is at least one selected from the group consisting of an Al metal plate, a Ni metal plate, and a stainless metal plate.
  • a negative electrode including at least one of Li, Li-Al, Li-In, and Li-Ag is positioned on one surface of the negative electrode current collector.
  • the negative electrode current collector is at least one selected from the group consisting of a Cu metal plate, a Ni metal plate, and a stainless metal plate.
  • the lithium secondary battery further includes a positive electrode cap and a negative electrode cap, and a positive electrode, a first lithium salt solid powder layer, a solid electrolyte layer, a second lithium salt solid powder layer and a negative electrode are mounted inside the positive electrode cap and the negative electrode cap, An insulating sealing part is further included between the positive electrode cap and the negative electrode cap.
  • the insulating sealing part includes at least one selected from the group consisting of Polypropylene (PP), Silicon, Viton, Polytetrafluoroethylene (PTFE), Perfluoroalkoxy alkanes (PFA), and Fluorocarbon.
  • PP Polypropylene
  • Silicon Silicon
  • Viton Polytetrafluoroethylene
  • PFA Perfluoroalkoxy alkanes
  • Fluorocarbon Fluorocarbon
  • the thickness of the solid electrolyte layer satisfies Equation 1 below.
  • the total amount of the first lithium salt solid powder layer and the second lithium salt solid powder layer per 100 ⁇ m of the solid electrolyte layer thickness is 0.01 to 0.1 g.
  • a method of manufacturing a lithium secondary battery includes the steps of preparing a positive electrode; preparing a solid electrolyte; preparing a cathode; preparing a lithium salt solid powder; And a positive electrode, a lithium salt solid powder, a solid electrolyte, a lithium salt solid powder, and the step of assembling by laminating in the order of the negative electrode; includes, wherein the lithium salt solid powder includes a lithium salt solid powder melted at 80 °C or more.
  • the solid electrolyte includes lithium aluminum titanium phosphate (LATP) represented by Formula 1 or lithium lanthanum zirconium oxide (LLZO) represented by Formula 2.
  • LATP lithium aluminum titanium phosphate
  • LLZO lithium lanthanum zirconium oxide
  • Li x La y Zr z M w O 12 (5 ⁇ x ⁇ 9, 2 ⁇ y ⁇ 4, 1 ⁇ z ⁇ 3, 0 ⁇ w ⁇ 1)
  • M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
  • the solid electrolyte In the step of preparing the solid electrolyte; in, the solid electrolyte is to be provided in a layer that satisfies the thickness of Equation 1 below.
  • the total amount of the lithium salt solid powder is 0.01 g to 0.1 g per 100 ⁇ m thickness of the solid electrolyte.
  • FIG. 1 is a schematic diagram showing the internal structure of a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a structure of a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the operation of a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a graph showing a voltage and discharge capacity measurement graph of a battery according to an embodiment of the present invention.
  • FIG. 5 is a graph illustrating a voltage and discharge capacity measurement graph of a battery according to an embodiment of the present invention.
  • FIG. 6 is a graph illustrating a voltage and discharge capacity measurement graph of a battery according to a comparative example of the present invention.
  • first, second and third etc. are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are used only to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
  • % means weight %, and 1 ppm is 0.0001 weight %.
  • FIG. 1 shows a schematic diagram of the internal structure of a lithium secondary battery 10 according to an embodiment of the present invention.
  • a lithium secondary battery 10 includes a positive electrode 110 ; a first lithium salt solid powder layer 120 positioned on the positive electrode; a solid electrolyte layer 130 positioned on the first lithium salt solid powder layer; a second lithium salt solid powder layer 140 positioned on the solid electrolyte layer; and an anode 150 positioned on the second lithium salt solid powder layer.
  • the first lithium salt solid powder layer 120 and the second lithium salt solid powder layer 140 include lithium salt solid powder melted at 80° C. or higher. Specifically, the melting point of the lithium salt solid powder may be 100 °C and 500 °C or less.
  • the lithium secondary battery of the present invention uses a lithium salt that exists in a solid state at room temperature, so that lithium ions required to drive the battery do not move at room temperature and melt at a high temperature of 80 ° C. By allowing lithium ions to move, it is possible to provide a high-temperature operation type lithium secondary battery that can be selectively operated according to temperature.
  • lithium(fluorosulfonyl)(trifluoromethylsulfonyl)amide may be included.
  • Li[fTfN] is a solid lithium salt having a melting point of 100°C.
  • the total amount of the first lithium salt solid powder layer 120 and the second lithium salt solid powder layer 140 per 100 ⁇ m of the solid electrolyte layer thickness may be 0.01 g to 0.1 g. Specifically, the thickness of the solid electrolyte layer may be 0.04 g to 0.06 g per 100 ⁇ m. That is, when the thickness of the solid electrolyte layer is 400 ⁇ m (0.4 mm), the total amount of the first lithium salt solid powder layer and the second lithium salt solid powder layer may be 0.16 g to 0.24 g.
  • the amount of the lithium salt solid powder layer is too small, the amount of molten lithium salt in the environment in which the battery must be operated is insufficient to sufficiently wet the solid electrolyte layer, so that the discharge capacity is greatly reduced, making it difficult to achieve the object of the present invention.
  • the amount of the lithium salt solid powder layer is too large, partial dissolution is not made even at a high temperature, so there may be a problem in that the response speed is not sufficiently fast because lithium ion movement is hindered.
  • the first lithium salt solid powder layer and the second lithium salt solid powder layer may include the same lithium salt solid powder.
  • the first lithium salt solid powder layer and the second lithium salt solid powder layer may be included in the lithium secondary battery by the same mass, respectively.
  • the solid electrolyte layer 130 may include lithium aluminum titanium phosphate (LATP) represented by formula (1) or lithium lanthanum zirconium oxide (LLZO) represented by formula (2). That is, since the solid electrolyte layer of the present invention is not a conventional polymer solid electrolyte separator, there is no problem of resistance to lithium ion movement due to melting at high temperature and clogging pores, thereby enabling the secondary battery to operate at high temperature.
  • LATP lithium aluminum titanium phosphate
  • LLZO lithium lanthanum zirconium oxide
  • Li x La y Zr z M w O 12 (5 ⁇ x ⁇ 9, 2 ⁇ y ⁇ 4, 1 ⁇ z ⁇ 3, 0 ⁇ w ⁇ 1)
  • M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
  • the thickness of the solid electrolyte layer 130 satisfies Equation 1 below.
  • the thickness of the positive electrode part 112 is the thickness of the positive electrode 110 excluding the positive current collector 111
  • the thickness of the negative electrode part 152 is the thickness of the negative electrode 150 minus the negative current collector 151 .
  • the positive electrode 110 is a positive electrode current collector 111 on one surface of FeS 2 , MnO 2 , Mo 3 O 8 , CF x , and V 6 O 13
  • the positive electrode current collector 111 may be at least one selected from the group consisting of an Al metal plate, a Ni metal plate, and a stainless metal plate.
  • the negative electrode part 152 including at least one of Li, Li-Al, Li-In, and Li-Ag is positioned on one surface of the negative electrode current collector 151 .
  • the negative electrode current collector 151 includes a Cu metal plate, a Ni metal plate, and a stainless metal plate.
  • the lithium secondary battery further includes a positive electrode cap 200 and a negative electrode cap 300, and a positive electrode ( 110), the first lithium salt solid powder layer 120, the solid electrolyte layer 130, the second lithium salt solid powder layer 140 and the negative electrode 150 are mounted, and an insulating seal is provided between the positive electrode cap and the negative electrode cap.
  • a portion 400 is further included.
  • the insulating sealing part 400 includes at least one selected from the group consisting of Polypropylene (PP), Silicon, Viton, Polytetrafluoroethylene (PTFE), Perfluoroalkoxy alkanes (PFA), and Fluorocarbon.
  • PP Polypropylene
  • Silicon Silicon
  • Viton Polytetrafluoroethylene
  • PFA Perfluoroalkoxy alkanes
  • Fluorocarbon Fluorocarbon
  • the insulating sealing part 400 may include a glass-to-metal sealing in order to ensure long-term preservation.
  • Stainless steel eg, SUS304, SUS310
  • nickel may be used as a material of the positive electrode cap 200 and the negative electrode cap 300 .
  • FIG. 3 is a schematic diagram showing the operation of a lithium secondary battery according to an embodiment of the present invention, at room temperature and at a relatively low temperature, between the positive electrode 110 / negative electrode 150 and the solid electrolyte 130, first and second lithium salts
  • first and second lithium salt powders located between the positive electrode 110 / negative electrode 150 and the solid electrolyte 130 are melted to melt the positive electrode 110 / negative electrode 150. It exists in a liquid state between the solid electrolyte 130 and the lithium ions therefrom, so that the battery can operate by moving through the solid electrolyte 130 . Since only lithium salt is used alone, as a single ion conductor, there is an advantage that good battery characteristics can be expressed because only lithium ions move without causing side reactions with positive/negative electrodes.
  • the lithium secondary battery according to the embodiment of the present invention is a passive battery different from the existing active battery in which lithium salt is included in the solid electrolyte.
  • a method of mixing lithium salt in an oxide-based solid electrolyte includes powdering a solid electrolyte and mixing a polymer binder with a lithium salt, or mixing a lithium salt with a liquid electrolyte and solid electrolyte powder to form a sheet. In both methods, lithium salt is mixed in the solid electrolyte.
  • Such a battery is an active type battery that can be operated at room temperature, and is different from the passive battery intended in the present invention.
  • the battery of one embodiment of the present invention is a passive type battery that completely separates the lithium salt from the solid electrolyte, and the lithium salt present in the powder state at room temperature exists between the solid electrolyte and the positive electrode and the negative electrode, so that the battery operates at room temperature It is a reserve battery type that does not do this. In order for the battery to operate, the temperature at which the lithium salt is melted must be reached, but the lithium salt can be melted and serve as an electrolyte.
  • a method of manufacturing a lithium secondary battery includes the steps of preparing a positive electrode; preparing a solid electrolyte; preparing a cathode; preparing a lithium salt solid powder; and stacking and assembling the positive electrode, the lithium salt solid powder, the solid electrolyte, the lithium salt solid powder, and the negative electrode in order.
  • the lithium salt solid powder includes a lithium salt solid powder that is melted at 80° C. or higher, and a detailed description of the type thereof is the same as described above.
  • the total amount of the first and second lithium salt solid powder is 0.01 per 100 ⁇ m of the solid electrolyte thickness g to 0.1 g.
  • the thickness of the solid electrolyte layer may be 0.04 g to 0.06 g per 100 ⁇ m.
  • the first lithium salt solid powder forms the first lithium salt solid powder layer 120
  • the second lithium salt solid powder forms the second lithium salt solid powder layer 140 .
  • the first lithium salt solid powder and the second lithium salt solid powder may have the same type of lithium salt powder used, and may each be the same amount.
  • the solid electrolyte includes lithium aluminum titanium phosphate (LATP) represented by Formula 1 or lithium lanthanum zirconium oxide (LLZO) represented by Formula 2.
  • LATP lithium aluminum titanium phosphate
  • LLZO lithium lanthanum zirconium oxide
  • the solid electrolyte may be in a plate shape forming one layer.
  • Li x La y Zr z M w O 12 (5 ⁇ x ⁇ 9, 2 ⁇ y ⁇ 4, 1 ⁇ z ⁇ 3, 0 ⁇ w ⁇ 1)
  • M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
  • the solid electrolyte is lithium aluminum titanium phosphate (LATP), preparing a solid electrolyte; Li 2 CO 3 , Al 2 O 3 , TiO 2 , and (NH 4 ) 2 H 2 PO 4 Weighing; milling and drying; sintering at 800° C. to 1000° C. for 3 hours to 6 hours; grinding; pressing step; and sintering the molded body at 1000° C. to 1400° C. for 4 to 6 hours.
  • the lithium aluminum titanium phosphate (LATP) obtained is in the form of pellets.
  • the method may further include processing the obtained pellet-type lithium aluminum titanium phosphate (LATP) to form a plate shape. Lithium aluminum titanium phosphate (LATP) formed into the plate shape may be used as a solid electrolyte.
  • the solid electrolyte is lithium lanthanum zirconium oxide (LLZO), preparing a solid electrolyte; Li 2 CO 3 , La 2 O 3 , ZrO 2 , and Ta 2 O 5 Weighing; milling and drying; sintering at 800° C. to 1000° C. for 3 hours to 6 hours; grinding; pressing step; It may include; sintering the molded body at 1000° C. to 1400° C. for 4 hours to 6 hours.
  • the obtained lithium lanthanum zirconium oxide (LLZO) is in the form of pellets.
  • the method may further include processing the obtained pellet-type lithium lanthanum zirconium oxide (LLZO) to form a plate shape.
  • the plate-shaped lithium lanthanum zirconium oxide (LLZO) may be used as a solid electrolyte.
  • Li 2 CO 3 and La 2 O 3 may be dried to remove all moisture adsorbed on the surface.
  • the solid electrolyte molded into a plate shape may satisfy the thickness of Equation 1 below.
  • the thickness of the positive electrode part 112 is the thickness of the positive electrode 110 excluding the positive current collector 111
  • the thickness of the negative electrode part 152 is the thickness of the negative electrode 150 minus the negative current collector 151 .
  • La 2 O 3 was dried at 900° C. for 24 hours to remove all of the adsorbed moisture, and Li 2 CO 3 was also dried at 200° C. for 6 hours to remove the moisture adsorbed on the surface.
  • the dried mixture was calcined at 900° C. for 5 hours in a sintering furnace, and the temperature increase rate was 2° C./min.
  • the calcined mixture was pulverized by performing a ball-milling process for 12 hours. After drying, a pressure of 2 ton/cm 2 was applied in a molding mold to press-molded into pellets, and then sintered at 1,250°C. At this time, the temperature increase rate was the same as above at 2°C/min.
  • the composition of the LLZO prepared in this way was Li 7 La 3 Zr 1.65 Ta 0.35 O 12 .
  • the sintered pellets were polished on the side and cross-section to finally prepare a solid electrolyte with a diameter of 18 mm and a thickness of 0.4 mm (400 ⁇ m).
  • Li 2 CO 3 , Al 2 O 3 , TiO 2 , (NH 4 ) 2 H 2 PO 4 Weighed according to the composition ratio, the ball mill was performed for 4 hours, and then dried at about 200° C. for 30 minutes.
  • the powder was charged into a metal mold, and a pressure of about 70 MPa was applied to press-molded pellets with a diameter of 20 mm and a thickness of 3 mm.
  • the obtained pellets were sintered at a temperature of about 1,100° C. for 5 hours to finally prepare LATP solid electrolyte pellets having a composition of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ).
  • the sintered pellets were polished on the side and cross-section to finally prepare a solid electrolyte with a diameter of 18 mm and a thickness of 0.4 mm (400 ⁇ m).
  • Example 1 Manufacturing of high-temperature operation type secondary battery using LLZO solid electrolyte
  • the high-temperature operation type battery consists of a positive electrode, a solid electrolyte, and a negative electrode, and solid lithium salt powder is present between the solid electrolyte, the positive electrode, and the negative electrode, respectively, as shown in FIG. 2 .
  • manganese dioxide (Tosoh EMD battery grade) powder is uniformly mixed with carbon black conductive material and PVDF (polyvinylidene fluoride) binder in a ratio of 80:15:5 using NMP (N-Methyl-2-pyrrolidone) solvent. After preparing the slurry, it was uniformly applied to a 15 ⁇ m thick aluminum foil positive electrode current collector using a doctor blade. After that, it was dried in an oven at about 120° C. for 4 hours, and the thickness of the anode part, which is the coating part, was about 60 ⁇ m, and was rolled and calendared. The coating thickness of the final anode, that is, the anode thickness was about 40 ⁇ m, and punched with a diameter of 18 mm.
  • NMP N-Methyl-2-pyrrolidone
  • the negative electrode was used by attaching a 180 ⁇ m thick metallic lithium (Honjo metal) negative electrode to the 0.7 mm thick SUS disk negative electrode current collector.
  • the solid electrolyte separator As the solid electrolyte separator, the LLZO solid electrolyte separator prepared in Experimental Example 1 was used.
  • lithium (fluorosulfonyl)(trifluoromethylsulfonyl)amide (Li[fTfN]) (melting point 100 °C, TCI Chemical) powder was weighed 0.2 g, and 0.1 g each was inserted between the LLZO separator and the anode and cathode sections.
  • the battery cap used a coin 2032 cell commonly used in lithium batteries, and a PTFE material was used for the sealing part.
  • a coin cell was prepared in the same manner as in Example 1, except that LATP prepared in Experimental Example 2 was used as the solid electrolyte.
  • a coin cell was manufactured in the same manner as in Example 1, except that an existing polypropylene separator (PP) was used instead of a solid electrolyte separator.
  • PP polypropylene separator
  • Example 1 After the battery prepared in Example 1 was mounted in an oven at about 120° C., the voltage and discharge capacity of the battery were measured using a potentio/galvanostat while applying a constant current, and the results are shown in FIG. 4 and Table 1.
  • Table 1 below records battery voltage and discharge capacity data according to changes in applied current of the secondary battery of Example 1.
  • Table 1 shows the results of numerically quantifying the battery voltage and discharge capacity for each applied current measured in FIG. 4 in more detail.
  • the battery voltage was 3.57 V
  • the battery voltage did not decrease much to 3.14 V.
  • the battery voltage indicates 2.58V, confirming that the battery is operating normally.
  • the discharge capacity was 0.54 mAh at a battery voltage of 2.58 V, and if more time elapses, the battery capacity may continue to increase, and power is supplied from the battery until all the power required of the load connected to the battery is exhausted. It was confirmed that it appeared continuously.
  • Example 2 After the battery prepared in Example 2 was mounted in an oven at about 120° C., the voltage and discharge capacity of the battery were measured using a potentio/galvanostat while applying a constant current, and the results are shown in FIG. 5 and Table 2.
  • Table 2 below records battery voltage and discharge capacity data according to changes in applied current of the secondary battery of Example 2.
  • Table 2 shows the results of digitizing the battery voltage and discharge capacity for each applied current measured in FIG. 5 in more detail.
  • the applied current was 0.2 mA
  • the battery voltage was 3.6 V
  • the applied current was increased to 1.5 mA.
  • the battery voltage did not decrease much to 3.01V
  • the applied current was greatly increased to 2.5mA
  • the battery voltage was 2.58V, confirming that the battery was operating normally. It increased linearly according to the flow rate and showed a discharge capacity of 0.52 mAh at an applied current of 2.5 V.
  • This is a result similar to that of Example 1, and it can be seen that it is determined by the anode part regardless of the type of the solid electrolyte separator. It was confirmed that the capacity of the battery can be expressed until all the power required of the load connected to the battery is exhausted.
  • Comparative Example 1 is a battery prepared using a conventional polymer PP separator.
  • 6 is a graph showing the results of operating the battery of Comparative Example 1 at 120°C. When a constant current of 0.2 mA was applied, it was confirmed that the voltage was significantly reduced to 3.28 V, unlike in Examples 1 and 2 .
  • the applied frequency band was 0.2 MHz to 0.1 Hz, and it was confirmed that the two semicircles and the diffusion region were clearly separated.
  • Negative electrode current collector 152 Negative electrode unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a high-temperature operation type lithium secondary battery comprising: a cathode; a first lithium salt solid powder layer located on the cathode; a solid electrolyte layer located on the first lithium salt solid powder layer; a second lithium salt solid powder layer located on the solid electrolyte layer; and an anode located on the second lithium salt solid powder layer, wherein the first lithium salt solid powder layer and the second lithium salt solid powder layer include lithium salt solid powder melting at 80℃ or more.

Description

고온 동작형 리튬 이차 전지 및 이의 제조방법 High-temperature operation type lithium secondary battery and manufacturing method thereof
최근 IoT 센서 기반 화재 감지 디바이스들이 등장하고 있고, 이러한 디바이스는 주로 원격지에 위치하고 있다. 그러나 이러한 디바이스는 작동되지 위하여는 전지나 태양전지와 같은 전원 소스가 필요하다. 그러나 태양 전지는 실내와 외부 기후에 따라 전원 공급량이 불규칙한 단점이 있다. 전지의 경우에는 외부 환경에 장기간 노출되는 경우 자가 방전 되는 등의 배터리 이슈가 있다. Recently, IoT sensor-based fire detection devices have appeared, and these devices are mainly located in remote locations. However, these devices require a power source, such as a cell or solar cell, to operate. However, solar cells have a disadvantage in that the power supply is irregular depending on indoor and outdoor climates. In the case of batteries, there is a battery issue such as self-discharge when exposed to an external environment for a long period of time.
이에, 이러한 디바이스에 사용되는 배터리는 화재가 발생하지 않는 경우에는 전지를 구성하지 않아 전지의 보존 기간을 증가시키고, 화재가 발생할 경우에만 디바이스에 전원을 인가하는 기능을 부여할 필요가 있다. 즉, 화재 발생으로 인한 상승된 온도를 인지하여 일정 온도에 도달하면 동작하는 스마트 전지에 대한 개발 필요성이 있다.Accordingly, the battery used in such a device does not constitute a battery when a fire does not occur, thereby increasing the storage period of the battery, and it is necessary to provide a function of applying power to the device only when a fire occurs. That is, there is a need to develop a smart battery that recognizes the elevated temperature due to the occurrence of a fire and operates when a predetermined temperature is reached.
기존에 고온에서 동작하는 배터리로는 Na-S, Na-NiCl2 등과 같은 베타 알루미나 Na 이온 전도체를 분리막으로 사용하는 Na계 전지와 FeS2를 양극, Li-Al 합금을 음극으로 사용하는 열전지(Thermal Battery)가 있다. Conventionally, batteries operating at high temperatures include Na-based batteries using beta-alumina Na ion conductors such as Na-S and Na-NiCl 2 as a separator, and thermal batteries using FeS 2 as a positive electrode and Li-Al alloy as a negative electrode. battery).
Na-S 전지는 고온에서 바로 방전되는 구조로 되어 있으나, 약 350℃의 높은 온도에서 동작하고, 무엇보다도 세라믹 고체 전해질의 결함으로 인한 단락시 폭발의 위험이 있다. 열전지는 약 500℃ 이상의 고온에서 LiF-LiCl-LiBr, MgO 등으로 구성된 고체 전해질을 용융시켜 전지가 동작되므로, 이를 화재 감지 디바이스에 사용하기에는 응답속도가 너무 느린 단점이 있다. 전지의 동작 온도를 낮출 수 있는 방식으로 Na-NiCl2 전지가 있는데, 이 전지는 약 200℃에서 동작하여 응답속도가 빠른 장점은 있으나, 초기 상태가 방전된 상태이므로 전지를 사용하기 위하여는 초기에 충전해야 하는 단점이 있다. Although the Na-S battery has a structure that is discharged immediately at high temperature, it operates at a high temperature of about 350° C., and above all, there is a risk of explosion during a short circuit due to a defect in the ceramic solid electrolyte. Since the battery operates by melting a solid electrolyte composed of LiF-LiCl-LiBr, MgO, etc. at a high temperature of about 500° C. or higher, the thermal battery has a disadvantage in that the response speed is too slow to be used in a fire detection device. There is a Na-NiCl 2 battery in a way that can lower the operating temperature of the battery. This battery operates at about 200° C. and has the advantage of a fast response speed, but since the initial state is a discharged state, it is necessary to use the battery in the initial stage. The downside is that you have to recharge.
이외에 유리 앰플(Ampule)을 사용하여 별도 용기에 액체 전해질을 보관하고, 필요시에 앰플을 깨뜨려 전지가 구동하게 하는 비축 전지(reserve battery)도 있다. 그러나 이는 유리 앰플에 물리적인 힘을 별도로 가해야 하는바, 활용성이 낮다.In addition, there is a reserve battery in which a liquid electrolyte is stored in a separate container using a glass ampule, and the ampoule is broken to drive the battery when necessary. However, since it is necessary to separately apply physical force to the glass ampoule, its utility is low.
이에, 화재 감지 디바이스에 사용하기에 적절한 응답속도를 가지면서 활용성이 높은 고온 동작형 이차 전지 개발이 필요한 실정이다.Accordingly, there is a need to develop a high-temperature operation type secondary battery having high utility while having a response speed suitable for use in a fire detection device.
본 발명은 기존 고온 동작형 전지의 성능을 구현하면서, 전지의 동작 온도를 낮추어 화재 발생 응답 속도가 빠른 스마트 전지를 제공하고자 한다.An object of the present invention is to provide a smart battery with a fast fire response speed by lowering the operating temperature of the battery while implementing the performance of the existing high-temperature operation type battery.
본 발명은 별도의 온도 측정 센서 없이도 특정 온도 이상에서 전지 전원 사용 및 전원 공급이 가능한 전지를 제공하고자 한다.An object of the present invention is to provide a battery capable of using battery power and supplying power at a specific temperature or higher without a separate temperature sensor.
본 발명의 일 구현예에 따른 리튬 이차 전지는 기존 고온 전지의 성능을 구현하면서도, 응답속도가 빠른 리튬 이차 전지를 제공하고자 한다. A lithium secondary battery according to an embodiment of the present invention provides a lithium secondary battery with a fast response speed while implementing the performance of a conventional high-temperature battery.
본 발명의 일 구현예에 따른 리튬 이차 전지는 전지 자체가 온도계 역할을 하여 별도의 측정 없이 특정 온도 이상에서 사용 가능한 리튬 이차 전지를 제공하고자 한다. An object of the lithium secondary battery according to an embodiment of the present invention is to provide a lithium secondary battery that can be used at a specific temperature or higher without separate measurement because the battery itself acts as a thermometer.
본 발명 일 구현예에 따른 리튬 이차 전지는 양극; 상기 양극 상에 위치하는 제1 리튬염 고체 분말층; 상기 제1 리튬염 고체 분말층 상에 위치하는 고체전해질 층; 상기 고체전해질 층 상에 위치하는 제2 리튬염 고체 분말층; 및 상기 제2 리튬염 고체 분말층 상에 위치하는 음극;을 포함하고, 상기 제1 리튬염 고체 분말층 및 제2 리튬염 고체 분말층은 80℃ 이상에서 용융되는 리튬염 고체 분말을 포함한다.A lithium secondary battery according to an embodiment of the present invention includes a positive electrode; a first lithium salt solid powder layer positioned on the positive electrode; a solid electrolyte layer positioned on the first lithium salt solid powder layer; a second lithium salt solid powder layer positioned on the solid electrolyte layer; and an anode positioned on the second lithium salt solid powder layer, wherein the first lithium salt solid powder layer and the second lithium salt solid powder layer include lithium salt solid powder melted at 80° C. or higher.
상기 실온에서 80℃ 이상에서 용융되는 리튬염 고체 분말은, Lithium(fluorosulfonyl)(trifluoromethylsulfonyl)amide, Lithium Bis(fluorosulfonyl)imide, LithiumBis(trifluoromethanesulfonyl)imide, Lithium(fluorosulfonyl)(pentafluoroethanesulfonyl)imide, Li(CF3SO2)(C2F-SO2)N, LiPF6, LiAsF6, LiBF4, LiBF6, LiClO4, LiAlCl4, 및 LiSbF6로 이루어진 군 중에서 선택된 1종 이상을 포함한다.Lithium salt solid powder melted at 80 ° C or higher at room temperature, Lithium (fluorosulfonyl) (trifluoromethylsulfonyl) amide, Lithium Bis (fluorosulfonyl) imide, LithiumBis (trifluoromethanesulfonyl) imide, Lithium (fluorosulfonyl) (pentafluoroethanesulfonyl) imide, Li (CF 3 SO 2 )(C 2 F—SO 2 )N, LiPF 6 , LiAsF 6 , LiBF 4 , LiBF 6 , LiClO 4 , LiAlCl 4 , and LiSbF 6 at least one selected from the group consisting of.
상기 고체전해질 층은 화학식 1로 표시되는 리튬 알루미늄 티타늄 인산염(LATP) 또는 화학식 2로 표시되는 리튬 란타늄 지르코늄 산화물(LLZO)을 포함한다.The solid electrolyte layer includes lithium aluminum titanium phosphate (LATP) represented by formula (1) or lithium lanthanum zirconium oxide (LLZO) represented by formula (2).
[화학식 1][Formula 1]
Li1+xAlxTi2-x(PO4)3 (0<x<2)Li 1+x Al x Ti 2-x (PO 4 ) 3 (0<x<2)
[화학식 2][Formula 2]
LixLayZrzMwO12(5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)Li x La y Zr z M w O 12 (5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)
상기 화학식 2에서, M은 Al, Nb, Ta, B, Y 및 Ga 중에서 선택된 1종 이상이다.In Formula 2, M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
상기 양극은 양극 집전체 일 면에 FeS2, MnO2, Mo3O8, CFx,및 V6O13 로 이루어진 군 중에서 1종 이상을 포함하는 양극부가 위치하는 것이다.In the positive electrode, a positive electrode including at least one member from the group consisting of FeS 2 , MnO 2 , Mo 3 O 8 , CF x , and V 6 O 13 is positioned on one surface of the positive electrode current collector.
상기 양극 집전체는 Al 금속판, Ni 금속판, 및 스테인리스 금속판으로 이루어진 군 중에서 선택된 1종 이상이다.The positive electrode current collector is at least one selected from the group consisting of an Al metal plate, a Ni metal plate, and a stainless metal plate.
상기 음극은 음극 집전체 일 면에 Li, Li-Al, Li-In, 및 Li-Ag로 이루어진 군 중에서 1종 이상을 포함하는 음극부가 위치하는 것이다.In the negative electrode, a negative electrode including at least one of Li, Li-Al, Li-In, and Li-Ag is positioned on one surface of the negative electrode current collector.
상기 음극 집전체는 Cu 금속판, Ni 금속판 및 스테인리스 금속판을 포함하는 군 중에서 선택된 1종 이상이다. The negative electrode current collector is at least one selected from the group consisting of a Cu metal plate, a Ni metal plate, and a stainless metal plate.
상기 리튬 이차전지는 양극캡 및 음극캡을 더 포함하고, 양극캡 및 음극캡 내부에 양극, 제1 리튬염 고체 분말층, 고체전해질 층, 제2 리튬염 고체 분말층 및 음극이 장착되어 있고, 양극캡과 음극캡 사이에 절연 실링부를 더 포함한다.The lithium secondary battery further includes a positive electrode cap and a negative electrode cap, and a positive electrode, a first lithium salt solid powder layer, a solid electrolyte layer, a second lithium salt solid powder layer and a negative electrode are mounted inside the positive electrode cap and the negative electrode cap, An insulating sealing part is further included between the positive electrode cap and the negative electrode cap.
상기 절연 실링부는 Polypropylene(PP), Silicon, Viton, Polytetrafluoroethylene (PTFE), Perfluoroalkoxy alkanes (PFA), 및 Fluorocarbon으로 이루어진 군 중에서 선택된 1종 이상을 포함한다.The insulating sealing part includes at least one selected from the group consisting of Polypropylene (PP), Silicon, Viton, Polytetrafluoroethylene (PTFE), Perfluoroalkoxy alkanes (PFA), and Fluorocarbon.
상기 고체전해질 층의 두께는 다음의 식 1을 만족한다.The thickness of the solid electrolyte layer satisfies Equation 1 below.
[식 1][Equation 1]
(고체전해질 층 두께(㎛)) / (양극부 두께(㎛) + 음극부 두께(㎛)) ≥ 0.5(solid electrolyte layer thickness (μm)) / (anode section thickness (μm) + cathode section thickness (μm)) ≥ 0.5
상기 고체전해질 층 두께 100㎛ 당 제1 리튬염 고체 분말층 및 제2 리튬염 고체 분말층의 합량은 0.01 내지 0.1g이다.The total amount of the first lithium salt solid powder layer and the second lithium salt solid powder layer per 100 μm of the solid electrolyte layer thickness is 0.01 to 0.1 g.
본 발명 일 구현예에 따른 리튬 이차 전지의 제조방법은 양극을 준비하는 단계; 고체전해질을 준비하는 단계; 음극을 준비하는 단계; 리튬염 고체 분말을 준비하는 단계; 및 양극, 리튬염 고체 분말, 고체전해질, 리튬염 고체 분말, 및 음극 순으로 적층하여 조립하는 단계;를 포함하고, 상기 리튬염 고체 분말은 80℃ 이상에서 용융되는 리튬염 고체 분말을 포함한다.A method of manufacturing a lithium secondary battery according to an embodiment of the present invention includes the steps of preparing a positive electrode; preparing a solid electrolyte; preparing a cathode; preparing a lithium salt solid powder; And a positive electrode, a lithium salt solid powder, a solid electrolyte, a lithium salt solid powder, and the step of assembling by laminating in the order of the negative electrode; includes, wherein the lithium salt solid powder includes a lithium salt solid powder melted at 80 ℃ or more.
상기 고체전해질을 준비하는 단계;에서 상기 고체전해질은 화학식 1로 표시되는 리튬 알루미늄 티타늄 인산염(LATP) 또는 화학식 2로 표시되는 리튬 란타늄 지르코늄 산화물(LLZO)을 포함한다.In the step of preparing the solid electrolyte, the solid electrolyte includes lithium aluminum titanium phosphate (LATP) represented by Formula 1 or lithium lanthanum zirconium oxide (LLZO) represented by Formula 2.
[화학식 1][Formula 1]
Li1+xAlxTi2-x(PO4)3 (0<x<2)Li 1+x Al x Ti 2-x (PO 4 ) 3 (0<x<2)
[화학식 2][Formula 2]
LixLayZrzMwO12(5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)Li x La y Zr z M w O 12 (5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)
상기 화학식 2에서, M은 Al, Nb, Ta, B, Y 및 Ga 중에서 선택된 1종 이상이다.In Formula 2, M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
상기 고체전해질을 준비하는 단계;에서, 고체전해질은 하기 식 1의 두께를 만족하는 층상으로 구비되는 것이다. In the step of preparing the solid electrolyte; in, the solid electrolyte is to be provided in a layer that satisfies the thickness of Equation 1 below.
[식 1][Equation 1]
(고체전해질 층 두께(㎛)) / (양극부 두께(㎛) + 음극부 두께(㎛)) ≥ 0.5(solid electrolyte layer thickness (μm)) / (anode section thickness (μm) + cathode section thickness (μm)) ≥ 0.5
상기 양극, 리튬염 고체 분말, 고체전해질, 리튬염 고체 분말, 및 음극 순으로 적층하여 조립하는 단계;에서, 리튬염 고체 분말 총량은 고체전해질 두께 100㎛ 당 0.01g 내지 0.1g으로 포함된다. In the step of stacking and assembling the positive electrode, the lithium salt solid powder, the solid electrolyte, the lithium salt solid powder, and the negative electrode in order, the total amount of the lithium salt solid powder is 0.01 g to 0.1 g per 100 μm thickness of the solid electrolyte.
본 발명 일 구현예에 따르면 전지 동작 온도를 낮추어 응답속도가 빠른 스마트 리튬 이차 전지를 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide a smart lithium secondary battery with a fast response speed by lowering the battery operating temperature.
본 발명 일 구현예에 따르면 빠른 응답 속도로 화재 발생기를 작동시키는 이차 전지를 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide a secondary battery that operates a fire generator with a fast response speed.
도 1은 본 발명 일 구현예에 따른 리튬 이차 전지 내부 구조 모식도를 도시한 것이다.1 is a schematic diagram showing the internal structure of a lithium secondary battery according to an embodiment of the present invention.
도 2는 본 발명 일 구현예에 따른 리튬 이차 전지 구조 모식도를 도시한 것이다.2 is a schematic diagram illustrating a structure of a lithium secondary battery according to an embodiment of the present invention.
도 3은 본 발명 일 구현예에 따른 리튬 이차 전지 작동 모식도를 도시한 것이다.3 is a schematic diagram showing the operation of a lithium secondary battery according to an embodiment of the present invention.
도 4는 본 발명 일 실시예에 따른 전지의 전압과 방전용량 측정 그래프를 도시한 것이다.4 is a graph showing a voltage and discharge capacity measurement graph of a battery according to an embodiment of the present invention.
도 5는 본 발명 일 실시예에 따른 전지의 전압과 방전용량 측정 그래프를 도시한 것이다.5 is a graph illustrating a voltage and discharge capacity measurement graph of a battery according to an embodiment of the present invention.
도 6는 본 발명 일 비교예에 따른 전지의 전압과 방전용량 측정 그래프를 도시한 것이다.6 is a graph illustrating a voltage and discharge capacity measurement graph of a battery according to a comparative example of the present invention.
도 7은 본 발명 실시예와 비교예의 임피던스 측정 그래프를 도시한 것이다.7 is a graph showing the impedance measurement of Examples and Comparative Examples of the present invention.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.The terms first, second and third etc. are used to describe, but are not limited to, various parts, components, regions, layers and/or sections. These terms are used only to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is for the purpose of referring to specific embodiments only, and is not intended to limit the present invention. As used herein, the singular forms also include the plural forms unless the phrases clearly indicate the opposite. The meaning of "comprising," as used herein, specifies a particular characteristic, region, integer, step, operation, element and/or component, and includes the presence or absence of another characteristic, region, integer, step, operation, element and/or component. It does not exclude additions.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.When a part is referred to as being “on” or “on” another part, it may be directly on or on the other part, or the other part may be involved in between. In contrast, when a part is referred to as being "directly above" another part, the other part is not interposed therebetween.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.In addition, unless otherwise specified, % means weight %, and 1 ppm is 0.0001 weight %.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Although not defined otherwise, all terms including technical terms and scientific terms used herein have the same meaning as those commonly understood by those of ordinary skill in the art to which the present invention belongs. Commonly used terms defined in the dictionary are additionally interpreted as having a meaning consistent with the related technical literature and the presently disclosed content, and unless defined, are not interpreted in an ideal or very formal meaning.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily implement them. However, the present invention may be embodied in several different forms and is not limited to the embodiments described herein.
이하, 본 발명 도면에 따라 구체적으로 살펴본다.Hereinafter, it will be described in detail according to the drawings of the present invention.
도 1은 본 발명 일 구현예에 따른 리튬 이차 전지(10) 내부 구조 모식도를 도시한 것이다. 1 shows a schematic diagram of the internal structure of a lithium secondary battery 10 according to an embodiment of the present invention.
도 1에 따르면 본 발명 일 구현예에 따른 리튬 이차 전지(10)는 양극(110); 상기 양극 상에 위치하는 제1 리튬염 고체 분말층(120); 상기 제1 리튬염 고체 분말층 상에 위치하는 고체전해질 층(130); 상기 고체전해질 층 상에 위치하는 제2 리튬염 고체 분말층(140); 및 상기 제2 리튬염 고체 분말층 상에 위치하는 음극(150);을 포함한다.According to FIG. 1 , a lithium secondary battery 10 according to an embodiment of the present invention includes a positive electrode 110 ; a first lithium salt solid powder layer 120 positioned on the positive electrode; a solid electrolyte layer 130 positioned on the first lithium salt solid powder layer; a second lithium salt solid powder layer 140 positioned on the solid electrolyte layer; and an anode 150 positioned on the second lithium salt solid powder layer.
상기 제1 리튬염 고체 분말층(120) 및 제2 리튬염 고체 분말층(140)은 80℃ 이상에서 용융되는 리튬염 고체 분말을 포함한다. 구체적으로 리튬염 고체 분말의 융점이 100℃ 및 500℃ 이하일 수 있다. The first lithium salt solid powder layer 120 and the second lithium salt solid powder layer 140 include lithium salt solid powder melted at 80° C. or higher. Specifically, the melting point of the lithium salt solid powder may be 100 ℃ and 500 ℃ or less.
본 발명의 리튬 이차전지는 상온에서 고체상태로 존재하는 리튬염을 사용함으로써, 실온에서는 전지가 구동하는데 필요한 리튬이온이 이동하지 않고 80℃ 이상의 고온에서 융해되어 액체로 상 변화 함으로써, 고체전해질을 통해 리튬 이온 이동이 가능하도록 하여, 온도에 따라 선택적으로 작동할 수 있는 고온 동작형 리튬 이차전지를 제공할 수 있다.The lithium secondary battery of the present invention uses a lithium salt that exists in a solid state at room temperature, so that lithium ions required to drive the battery do not move at room temperature and melt at a high temperature of 80 ° C. By allowing lithium ions to move, it is possible to provide a high-temperature operation type lithium secondary battery that can be selectively operated according to temperature.
80℃ 이상에서 용융되는 리튬염 고체 분말은 Lithium(fluorosulfonyl)(trifluoromethylsulfonyl)amide, Lithium Bis(fluorosulfonyl)imide, LithiumBis(trifluoromethanesulfonyl)imide, Lithium(fluorosulfonyl)(pentafluoroethanesulfonyl)imide, Li(CF3SO2)(C2F-SO2)N, LiPF6, LiAsF6, LiBF4, LiBF6, LiClO4, LiAlCl4, 및 LiSbF6로 이루어진 군 중에서 선택된 1종 이상을 포함할 수 있다. 바람직하게는 Lithium(fluorosulfonyl)(trifluoromethylsulfonyl)amide (Li[fTfN])을 포함할 수 있다. Li[fTfN]는 융점이 100℃인 고체상의 리튬염이다.Lithium salt solid powder melting above 80℃ is Lithium(fluorosulfonyl)(trifluoromethylsulfonyl)amide, Lithium Bis(fluorosulfonyl)imide, LithiumBis(trifluoromethanesulfonyl)imide, Lithium(fluorosulfonyl)(pentafluoroethanesulfonyl)imide, Li(CF 3 SO 2 )( C 2 F—SO 2 )N, LiPF 6 , LiAsF 6 , LiBF 4 , LiBF 6 , LiClO 4 , LiAlCl 4 , and LiSbF 6 may include at least one selected from the group consisting of. Preferably, lithium(fluorosulfonyl)(trifluoromethylsulfonyl)amide (Li[fTfN]) may be included. Li[fTfN] is a solid lithium salt having a melting point of 100°C.
상기 고체전해질 층 두께 100㎛ 당 제1 리튬염 고체 분말층(120) 및 제2 리튬염 고체 분말층(140)의 합량은 0.01g 내지 0.1g일 수 있다. 구체적으로 고체전해질 층 두께 100㎛ 당 0.04g 내지 0.06g일 수 있다. 즉, 고체전해질 층 두께가 400㎛ (0.4mm)이면, 제1 리튬염 고체 분말층 및 제2 리튬염 고체 분말층의 합량은 0.16g 내지 0.24g일 수 있다. 리튬염 고체 분말층의 양이 너무 적은 경우에는, 전지를 작동시켜야하는 환경에서 용융된 리튬염 양이 부족하여 고체전해질층을 충분히 적시지 못해 방전용량이 크게 감소하여 본 발명의 목적을 달성하기 곤란한 문제가 있고, 리튬염 고체 분말층의 양이 너무 많은 경우에는, 고온에서도 부분적으로 용해가 이루어지지 않아 리튬 이온 이동을 방해하여 응답속도가 충분히 빨라지지 않는 문제가 있을 수 있다.The total amount of the first lithium salt solid powder layer 120 and the second lithium salt solid powder layer 140 per 100 μm of the solid electrolyte layer thickness may be 0.01 g to 0.1 g. Specifically, the thickness of the solid electrolyte layer may be 0.04 g to 0.06 g per 100 μm. That is, when the thickness of the solid electrolyte layer is 400 μm (0.4 mm), the total amount of the first lithium salt solid powder layer and the second lithium salt solid powder layer may be 0.16 g to 0.24 g. If the amount of the lithium salt solid powder layer is too small, the amount of molten lithium salt in the environment in which the battery must be operated is insufficient to sufficiently wet the solid electrolyte layer, so that the discharge capacity is greatly reduced, making it difficult to achieve the object of the present invention. There is a problem, and when the amount of the lithium salt solid powder layer is too large, partial dissolution is not made even at a high temperature, so there may be a problem in that the response speed is not sufficiently fast because lithium ion movement is hindered.
상기 제1 리튬염 고체 분말층과 제2 리튬염 고체 분말층은 동일한 리튬염 고체 분말을 포함할 수 있다. 또한, 제1 리튬염 고체 분말층과 제2 리튬염 고체 분말층은 각각 동일한 질량으로 리튬 이차 전지에 포함될 수 있다.The first lithium salt solid powder layer and the second lithium salt solid powder layer may include the same lithium salt solid powder. In addition, the first lithium salt solid powder layer and the second lithium salt solid powder layer may be included in the lithium secondary battery by the same mass, respectively.
상기 고체전해질 층(130)은 화학식 1로 표시되는 리튬 알루미늄 티타늄 인산염(LATP) 또는 화학식 2로 표시되는 리튬 란타늄 지르코늄 산화물(LLZO)을 포함할 수 있다. 즉, 본 발명의 고체전해질 층은 기존에 사용되던 고분자 고체전해질 분리막이 아닌바, 고온에서 녹아 기공이 막혀 리튬 이온 이동에 저항이 생기는 문제가 없어, 이차전지가 고온에서 작동할 수 있도록 한다.The solid electrolyte layer 130 may include lithium aluminum titanium phosphate (LATP) represented by formula (1) or lithium lanthanum zirconium oxide (LLZO) represented by formula (2). That is, since the solid electrolyte layer of the present invention is not a conventional polymer solid electrolyte separator, there is no problem of resistance to lithium ion movement due to melting at high temperature and clogging pores, thereby enabling the secondary battery to operate at high temperature.
[화학식 1][Formula 1]
Li1+xAlxTi2-x(PO4)3 (0<x<2)Li 1+x Al x Ti 2-x (PO 4 ) 3 (0<x<2)
[화학식 2][Formula 2]
LixLayZrzMwO12(5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)Li x La y Zr z M w O 12 (5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)
화학식 2에서, M은 Al, Nb, Ta, B, Y 및 Ga 중에서 선택된 1종 이상이다.In Formula 2, M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
상기 고체전해질 층(130)의 두께는 다음의 식 1을 만족한다. The thickness of the solid electrolyte layer 130 satisfies Equation 1 below.
[식 1] [Equation 1]
(고체전해질 층 두께(㎛)) / (양극부 두께(㎛) + 음극부 두께(㎛)) ≥ 0.5(solid electrolyte layer thickness (μm)) / (anode section thickness (μm) + cathode section thickness (μm)) ≥ 0.5
상기 식 1에서 양극부(112) 두께는 양극(110)에서 양극 집전체(111)를 제외한 두께이고, 음극부(152) 두께는 음극(150)에서 음극 집전체(151)를 뺀 두께이다.In Equation 1, the thickness of the positive electrode part 112 is the thickness of the positive electrode 110 excluding the positive current collector 111 , and the thickness of the negative electrode part 152 is the thickness of the negative electrode 150 minus the negative current collector 151 .
상기 양극(110)은 양극 집전체(111) 일 면에 FeS2, MnO2, Mo3O8, CFx,및 V6O13 로 이루어진 군 중에서 1종 이상을 포함하는 양극부(112)가 위치하는 것이다. 구체적으로 양극부(112)는 도전재, 바인더 및 FeS2, MnO2, Mo3O8, CFx,및 V6O13 로 이루어진 군 중에서 1종 이상을 포함한다.The positive electrode 110 is a positive electrode current collector 111 on one surface of FeS 2 , MnO 2 , Mo 3 O 8 , CF x , and V 6 O 13 The positive electrode part 112 including at least one of the group consisting of it will be located Specifically, the anode part 112 includes at least one of a conductive material, a binder, and FeS 2 , MnO 2 , Mo 3 O 8 , CF x , and V 6 O 13 .
상기 양극 집전체(111)는 Al 금속판, Ni 금속판, 및 스테인리스 금속판으로 이루어진 군 중에서 선택된 1종 이상일 수 있다.The positive electrode current collector 111 may be at least one selected from the group consisting of an Al metal plate, a Ni metal plate, and a stainless metal plate.
상기 음극(150)은 음극 집전체(151) 일면에 Li, Li-Al, Li-In, 및 Li-Ag로 이루어진 군 중에서 1종 이상을 포함하는 음극부(152)가 위치하는 것이다. In the negative electrode 150 , the negative electrode part 152 including at least one of Li, Li-Al, Li-In, and Li-Ag is positioned on one surface of the negative electrode current collector 151 .
상기 음극 집전체(151)는 Cu 금속판, Ni 금속판 및 스테인리스 금속판을 포함한다.The negative electrode current collector 151 includes a Cu metal plate, a Ni metal plate, and a stainless metal plate.
도 2는 본 발명 일 구현예에 따른 리튬 이차전지 구조 모식도로서, 도 2에 따르면 리튬 이차전지는 양극캡(200) 및 음극캡(300)을 더 포함하고, 양극캡 및 음극캡 내부에 양극(110), 제1 리튬염 고체 분말층(120), 고체전해질 층(130), 제2 리튬염 고체 분말층(140) 및 음극(150)가 장착되어 있고, 양극캡과 음극캡 사이에 절연 실링부(400)를 더 포함한다.2 is a structural schematic diagram of a lithium secondary battery according to an embodiment of the present invention. According to FIG. 2, the lithium secondary battery further includes a positive electrode cap 200 and a negative electrode cap 300, and a positive electrode ( 110), the first lithium salt solid powder layer 120, the solid electrolyte layer 130, the second lithium salt solid powder layer 140 and the negative electrode 150 are mounted, and an insulating seal is provided between the positive electrode cap and the negative electrode cap. A portion 400 is further included.
상기 절연 실링부(400)는 Polypropylene(PP), Silicon, Viton, Polytetrafluoroethylene (PTFE), Perfluoroalkoxy alkanes (PFA), 및 Fluorocarbon으로 이루어진 군 중에서 선택된 1종 이상을 포함한다. 또는 장기 보존성을 확보하기 위하여 상기 절연 실링부(400)는 유리 대 금속 밀봉을 포함할 수 있다.The insulating sealing part 400 includes at least one selected from the group consisting of Polypropylene (PP), Silicon, Viton, Polytetrafluoroethylene (PTFE), Perfluoroalkoxy alkanes (PFA), and Fluorocarbon. Alternatively, the insulating sealing part 400 may include a glass-to-metal sealing in order to ensure long-term preservation.
상기 양극캡(200) 및 음극캡(300)의 재질로는 스테인리스 (예컨대, SUS304, SUS310) 또는 니켈을 사용할 수 있다.Stainless steel (eg, SUS304, SUS310) or nickel may be used as a material of the positive electrode cap 200 and the negative electrode cap 300 .
도 3은 본 발명 일 구현예에 따른 리튬 이차 전지 작동 모식도를 도시한 것으로서, 상온 및 비교적 낮은 온도에서는 양극(110)/음극(150)과 고체전해질(130) 사이에 제1 및 제2 리튬염이 고체 분말층으로 위치함에 반해, 고온 환경하에서는 양극(110)/음극(150)과 고체전해질(130) 사이에 위치한 제1 및 제2 리튬염 분말이 용융하여 양극(110)/음극(150)과 고체전해질(130) 사이에 액체상태로 존재하고 되고, 이로부터 리튬이온이 고체전해질(130)을 통해 이동함으로써 전지가 작동할 수 있다. 리튬염만 단독으로 사용하는바, single ion conductor로서 양/음극과의 부반응을 발생시키지 않고, 리튬 이온만 이동하므로 양호한 전지특성을 발현할 수 있는 장점이 있다.3 is a schematic diagram showing the operation of a lithium secondary battery according to an embodiment of the present invention, at room temperature and at a relatively low temperature, between the positive electrode 110 / negative electrode 150 and the solid electrolyte 130, first and second lithium salts In contrast to being positioned as this solid powder layer, in a high-temperature environment, the first and second lithium salt powders located between the positive electrode 110 / negative electrode 150 and the solid electrolyte 130 are melted to melt the positive electrode 110 / negative electrode 150. It exists in a liquid state between the solid electrolyte 130 and the lithium ions therefrom, so that the battery can operate by moving through the solid electrolyte 130 . Since only lithium salt is used alone, as a single ion conductor, there is an advantage that good battery characteristics can be expressed because only lithium ions move without causing side reactions with positive/negative electrodes.
즉, 본 발명 일 구현예에 따른 리튬 이차 전지는 고체 전해질 내에 리튬염이 포함되어 있는 기존 능동형(Active) 전지와 다른 수동형(Passive) 전지이다. 산화물계 고체 전해질 내에 리튬염을 혼합하는 방법은 고체전해질을 분말화 하여, 고분자 바인더와 리튬염을 혼합하거나, 리튬염과 액체전해질과 고체전해질 분말을 혼합하여 sheet형태로 제조하는 방법이 있다. 두 방법 모두 고체 전해질 내부에 리튬염이 혼합되어 있는 형태이다. 이러한 전지는 상온에서 전지가 동작될 수 있는 능동형(Active) 형태의 전지로서, 본 발명에서 목적하는 수동형 전지와는 상이하다.That is, the lithium secondary battery according to the embodiment of the present invention is a passive battery different from the existing active battery in which lithium salt is included in the solid electrolyte. A method of mixing lithium salt in an oxide-based solid electrolyte includes powdering a solid electrolyte and mixing a polymer binder with a lithium salt, or mixing a lithium salt with a liquid electrolyte and solid electrolyte powder to form a sheet. In both methods, lithium salt is mixed in the solid electrolyte. Such a battery is an active type battery that can be operated at room temperature, and is different from the passive battery intended in the present invention.
본 발명 일 구현예의 전지는 리튬염을 고체전해질과 완전 분리시켜 놓는 수동형(passive)형태의 전지로서 상온에서 분말상태로 존재하는 리튬염이 고체전해질과 양극, 음극 사이에 존재하여 상온에서는 전지가 작동하지 않는 비축전지(reserve)타입이다. 전지가 작동하기 위하여는 리튬염이 용융되는 온도에 도달해야지만 리튬염이 용융되어 전해질로서의 역할을 수행할 수 있다.The battery of one embodiment of the present invention is a passive type battery that completely separates the lithium salt from the solid electrolyte, and the lithium salt present in the powder state at room temperature exists between the solid electrolyte and the positive electrode and the negative electrode, so that the battery operates at room temperature It is a reserve battery type that does not do this. In order for the battery to operate, the temperature at which the lithium salt is melted must be reached, but the lithium salt can be melted and serve as an electrolyte.
본 발명 일 구현예에 따른 리튬 이차 전지의 제조방법은 양극을 준비하는 단계; 고체전해질을 준비하는 단계; 음극을 준비하는 단계; 리튬염 고체 분말을 준비하는 단계; 및 양극, 리튬염 고체 분말, 고체전해질, 리튬염 고체 분말, 및 음극 순으로 적층하여 조립하는 단계;를 포함한다.A method of manufacturing a lithium secondary battery according to an embodiment of the present invention includes the steps of preparing a positive electrode; preparing a solid electrolyte; preparing a cathode; preparing a lithium salt solid powder; and stacking and assembling the positive electrode, the lithium salt solid powder, the solid electrolyte, the lithium salt solid powder, and the negative electrode in order.
상기 리튬염 고체 분말은 80℃ 이상에서 용융되는 리튬염 고체 분말을 포함하고, 이의 종류에 대한 구체적인 설명은 상기 상술한 바와 같다. The lithium salt solid powder includes a lithium salt solid powder that is melted at 80° C. or higher, and a detailed description of the type thereof is the same as described above.
상기 양극, 제1 리튬염 고체 분말, 고체전해질, 제2 리튬염 고체 분말, 및 음극 순으로 적층하여 조립하는 단계;에서, 제1 및 제2 리튬염 고체 분말 총량은 고체전해질 두께 100㎛ 당 0.01g 내지 0.1g으로 포함된다. 구체적으로 고체전해질 층 두께 100㎛ 당 0.04g 내지 0.06g일 수 있다.In the step of assembling the positive electrode, the first lithium salt solid powder, the solid electrolyte, the second lithium salt solid powder, and the negative electrode in the order of stacking and assembling; in, the total amount of the first and second lithium salt solid powder is 0.01 per 100 μm of the solid electrolyte thickness g to 0.1 g. Specifically, the thickness of the solid electrolyte layer may be 0.04 g to 0.06 g per 100 μm.
상기 조립하는 단계에서 제1 리튬염 고체 분말은 제1 리튬염 고체 분말층 (120)을 형성하고, 제2 리튬염 고체 분말은 제2 리튬염 고체 분말층(140)을 형성한다. 제1 리튬염 고체 분말 및 제2 리튬염 고체 분말은 사용하는 리튬염 분말 종류가 동일할 수 있고, 각각 동일한 양일 수 있다. In the assembling step, the first lithium salt solid powder forms the first lithium salt solid powder layer 120 , and the second lithium salt solid powder forms the second lithium salt solid powder layer 140 . The first lithium salt solid powder and the second lithium salt solid powder may have the same type of lithium salt powder used, and may each be the same amount.
상기 고체전해질을 준비하는 단계;에서 상기 고체전해질은 화학식 1로 표시되는 리튬 알루미늄 티타늄 인산염(LATP) 또는 화학식 2로 표시되는 리튬 란타늄 지르코늄 산화물(LLZO)을 포함한다. 상기 고체전해질을 준비하는 단계;에서 고체전해질은 하나의 층을 이루는 판상일 수 있다.In the step of preparing the solid electrolyte, the solid electrolyte includes lithium aluminum titanium phosphate (LATP) represented by Formula 1 or lithium lanthanum zirconium oxide (LLZO) represented by Formula 2. In the step of preparing the solid electrolyte, the solid electrolyte may be in a plate shape forming one layer.
[화학식 1][Formula 1]
Li1+xAlxTi2-x(PO4)3 (0<x<2)Li 1+x Al x Ti 2-x (PO 4 ) 3 (0<x<2)
[화학식 2][Formula 2]
LixLayZrzMwO12(5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)Li x La y Zr z M w O 12 (5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)
화학식 2에서, M은 Al, Nb, Ta, B, Y 및 Ga 중에서 선택된 1종 이상이다.In Formula 2, M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
상기 고체전해질이 리튬 알루미늄 티타늄 인산염(LATP)인 경우, 고체전해질을 준비하는 단계;는 Li2CO3, Al2O3, TiO2, 및 (NH4)2H2PO4를 칭량하는 단계; 밀링 및 건조시키는 단계; 800℃ 내지 1000℃에서 3 시간 내지 6시간 소결시키는 단계; 분쇄시키는 단계; 가압성형 단계; 및 1000℃ 내지 1400℃에서 4시간 내지 6시간 성형체를 소결시키는 단계;를 포함할 수 있다. 수득되는 리튬 알루미늄 티타늄 인산염(LATP)은 펠렛 형태이다. 상기 수득되는 펠렛형의 리튬 알루미늄 티타늄 인산염(LATP)을 가공하여 판 형상으로 성형하는 단계를 더 포함할 수 있다. 상기 판상으로 성형된 리튬 알루미늄 티타늄 인산염(LATP)을 고체전해질로 사용할 수 있다. When the solid electrolyte is lithium aluminum titanium phosphate (LATP), preparing a solid electrolyte; Li 2 CO 3 , Al 2 O 3 , TiO 2 , and (NH 4 ) 2 H 2 PO 4 Weighing; milling and drying; sintering at 800° C. to 1000° C. for 3 hours to 6 hours; grinding; pressing step; and sintering the molded body at 1000° C. to 1400° C. for 4 to 6 hours. The lithium aluminum titanium phosphate (LATP) obtained is in the form of pellets. The method may further include processing the obtained pellet-type lithium aluminum titanium phosphate (LATP) to form a plate shape. Lithium aluminum titanium phosphate (LATP) formed into the plate shape may be used as a solid electrolyte.
상기 고체전해질이 리튬 란타늄 지르코늄 산화물(LLZO)인 경우, 고체전해질을 준비하는 단계;는 Li2CO3, La2O3, ZrO2, 및 Ta2O5를 칭량하는 단계; 밀링 및 건조시키는 단계; 800℃ 내지 1000℃에서 3 시간 내지 6시간 소결시키는 단계; 분쇄시키는 단계; 가압성형 단계; 1000℃ 내지 1400℃에서 4시간 내지 6시간 성형체를 소결시키는 단계;를 포함할 수 있다. 수득되는 리튬 란타늄 지르코늄 산화물(LLZO)은 펠렛 형태이다. 상기 수득되는 펠렛형의 리튬 란타늄 지르코늄 산화물(LLZO)을 가공하여 판 형상으로 성형하는 단계를 더 포함할 수 있다. 상기 판상으로 성형된 리튬 란타늄 지르코늄 산화물(LLZO)을 고체전해질로 사용할 수 있다.When the solid electrolyte is lithium lanthanum zirconium oxide (LLZO), preparing a solid electrolyte; Li 2 CO 3 , La 2 O 3 , ZrO 2 , and Ta 2 O 5 Weighing; milling and drying; sintering at 800° C. to 1000° C. for 3 hours to 6 hours; grinding; pressing step; It may include; sintering the molded body at 1000° C. to 1400° C. for 4 hours to 6 hours. The obtained lithium lanthanum zirconium oxide (LLZO) is in the form of pellets. The method may further include processing the obtained pellet-type lithium lanthanum zirconium oxide (LLZO) to form a plate shape. The plate-shaped lithium lanthanum zirconium oxide (LLZO) may be used as a solid electrolyte.
상기 리튬 란타늄 지르코늄 산화물(LLZO) 고체전해질을 준비하는 단계에서, Li2CO3 및 La2O3는 건조시켜 표면에 흡착된 수분을 모두 제거하여 사용할 수 있다. In the step of preparing the lithium lanthanum zirconium oxide (LLZO) solid electrolyte, Li 2 CO 3 and La 2 O 3 may be dried to remove all moisture adsorbed on the surface.
상기 고체전해질을 준비하는 단계;에서, 판 형상으로 성형된 고체전해질은 하기 식 1의 두께를 만족할 수 있다.In the step of preparing the solid electrolyte, the solid electrolyte molded into a plate shape may satisfy the thickness of Equation 1 below.
[식 1][Equation 1]
(고체전해질 층 두께(㎛)) / (양극부 두께(㎛) + 음극부 두께(㎛)) ≥ 0.5(solid electrolyte layer thickness (μm)) / (anode section thickness (μm) + cathode section thickness (μm)) ≥ 0.5
상기 식 1에서 양극부(112) 두께는 양극(110)에서 양극 집전체(111)를 제외한 두께이고, 음극부(152) 두께는 음극(150)에서 음극 집전체(151)를 뺀 두께이다.In Equation 1, the thickness of the positive electrode part 112 is the thickness of the positive electrode 110 excluding the positive current collector 111 , and the thickness of the negative electrode part 152 is the thickness of the negative electrode 150 minus the negative current collector 151 .
이하 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily implement them. However, the present invention may be embodied in various different forms, and is not limited to the embodiments described herein.
실험예 - LLZO 고체전해질 제조Experimental Example - Preparation of LLZO solid electrolyte
Li2CO3(Kojundo, 99.99%), La2O3(Kanto,99.99%), ZrO2(Kanto, 99%), Ta2O5(Aldrich, 99%), (Ta=0.35mol)에 맞도록 칭량하여 분말을 준비하였다. Li 2 CO 3 (Kojundo, 99.99%), La 2 O 3 (Kanto, 99.99%), ZrO 2 (Kanto, 99%), Ta 2 O 5 (Aldrich, 99%), (Ta=0.35 mol) The powder was prepared by weighing.
상기 분말은 혼합하기에 앞서 La2O3를 900℃에서 24시간 건조하여 흡착된 수분을 모두 제거하였으며, Li2CO3역시 200℃에서 6시간 건조하여 표면에 흡착된 수분을 제거하였다. Before mixing the powder, La 2 O 3 was dried at 900° C. for 24 hours to remove all of the adsorbed moisture, and Li 2 CO 3 was also dried at 200° C. for 6 hours to remove the moisture adsorbed on the surface.
열처리된 La2O3, Li2CO3와 ZrO2, Ta2O5를 혼합하고, Zirconia 볼 3mm + 5mm을 1:1로 혼합된 볼이 장입된 Nalgen bottle에 장입한 후 혼합분말과 무수 IPA를 첨가하여 볼밀을 24시간 수행하였다. 상기 밀링된 원료 혼합물은 건조로에서 4시간 건조시켰다.Heat-treated La 2 O 3 , Li 2 CO 3 , ZrO 2 , Ta 2 O 5 are mixed, and Zirconia balls 3mm + 5mm are charged into the Nalgen bottle with 1:1 mixed balls, and then mixed powder and anhydrous IPA was added and the ball mill was performed for 24 hours. The milled raw material mixture was dried in a drying furnace for 4 hours.
건조된 혼합물은 소결로에서 900℃ 5시간 소성하였으며, 이때 승온 속도는 2℃/min로 하였다. The dried mixture was calcined at 900° C. for 5 hours in a sintering furnace, and the temperature increase rate was 2° C./min.
소성된 혼합물을 ball-milling공정을 12시간 수행하여 분쇄하였으며, 건조 후에 성형 몰드에서 2ton/cm2의 압력을 인가하여 펠렛으로 가압 성형한 후 1,250℃에서 소결하였다. 이 때 승온 속도는 상기와 동일한 2℃/min로 하였다. The calcined mixture was pulverized by performing a ball-milling process for 12 hours. After drying, a pressure of 2 ton/cm 2 was applied in a molding mold to press-molded into pellets, and then sintered at 1,250°C. At this time, the temperature increase rate was the same as above at 2°C/min.
이렇게 해서 제조된 LLZO의 조성은 Li7La3Zr1.65Ta0.35O12 였다. 소결된 펠렛은 측면과 단면을 polishing하여 최종적으로 직경 18 mm, 두께 0.4 mm(400㎛)의 고체전해질을 제조하였다. The composition of the LLZO prepared in this way was Li 7 La 3 Zr 1.65 Ta 0.35 O 12 . The sintered pellets were polished on the side and cross-section to finally prepare a solid electrolyte with a diameter of 18 mm and a thickness of 0.4 mm (400 μm).
실험예 - LATP 고체전해질 제조Experimental Example - LATP Solid Electrolyte Preparation
Li2CO3, Al2O3, TiO2, (NH4)2H2PO4를 조성비에 맞게 칭량하고, 볼 밀을 4시간 수행 후, 약 200 ℃에서 30분 건조시켰다. Li 2 CO 3 , Al 2 O 3 , TiO 2 , (NH 4 ) 2 H 2 PO 4 Weighed according to the composition ratio, the ball mill was performed for 4 hours, and then dried at about 200° C. for 30 minutes.
이 후 900℃에서 4시간 소결 시킨후 다시 분쇄시킨 후, 금속 몰드에 분말을 장입 후 약 70MPa의 압력을 인가하여 직경 20mm, 두께 3mm의 펠렛으로 가압 성형하였다. After sintering at 900° C. for 4 hours, and then pulverizing again, the powder was charged into a metal mold, and a pressure of about 70 MPa was applied to press-molded pellets with a diameter of 20 mm and a thickness of 3 mm.
수득된 펠렛은 약 1,100℃ 의 온도에서 5시간 소결하여, 최종적으로 Li1.3Al0.3Ti1.7(PO4) 조성의 LATP 고체전해질 펠렛을 제조하였다. 소결된 펠렛은 측면과 단면을 polishing하여 최종적으로 직경 18mm, 두께 0.4mm(400㎛)의 고체전해질을 제조하였다.The obtained pellets were sintered at a temperature of about 1,100° C. for 5 hours to finally prepare LATP solid electrolyte pellets having a composition of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ). The sintered pellets were polished on the side and cross-section to finally prepare a solid electrolyte with a diameter of 18 mm and a thickness of 0.4 mm (400 μm).
실시예 1 - LLZO 고체전해질을 사용한 고온 동작형 이차전지 제조Example 1 - Manufacturing of high-temperature operation type secondary battery using LLZO solid electrolyte
고온 동작형 전지구성은 양극, 고체전해질, 음극으로 구성되어 있으며, 도 2와 같이 고체전해질과 양극, 음극 사이 각각에 고체 리튬염 분말이 존재하게 하였다.The high-temperature operation type battery consists of a positive electrode, a solid electrolyte, and a negative electrode, and solid lithium salt powder is present between the solid electrolyte, the positive electrode, and the negative electrode, respectively, as shown in FIG. 2 .
양극은 이산화망간(Tosoh EMD battery grade) 분말을 카본 블랙 도전재와 PVDF(polyvinylidene fluoride) 바인더를 각각 80:15:5의 비율로 NMP(N-Methyl-2-pyrrolidone) 용매를 사용하여 균일하게 혼합하여 슬러리를 제조한 후, 15㎛두께의 알루미늄 포일 양극 집전체에 Doctor blade를 이용하여 균일하게 도포하였다. 이 후 약 120℃의 오븐에서 4시간 건조하였으며, 이때 코팅부인 양극부의 두께는 약 60㎛였으며, 압연하여 calendaring하였다. 최종 양극의 코팅 두께 즉, 양극 두께는 약 40㎛였으며, 직경 18mm로 펀칭하였다. For the positive electrode, manganese dioxide (Tosoh EMD battery grade) powder is uniformly mixed with carbon black conductive material and PVDF (polyvinylidene fluoride) binder in a ratio of 80:15:5 using NMP (N-Methyl-2-pyrrolidone) solvent. After preparing the slurry, it was uniformly applied to a 15 μm thick aluminum foil positive electrode current collector using a doctor blade. After that, it was dried in an oven at about 120° C. for 4 hours, and the thickness of the anode part, which is the coating part, was about 60 μm, and was rolled and calendared. The coating thickness of the final anode, that is, the anode thickness was about 40 μm, and punched with a diameter of 18 mm.
이때 음극은 180㎛ 두께의 금속 리튬(Honjo metal) 음극부를 0.7mm두께의 SUS 디스크 음극 집전체에 붙여 사용하였다. At this time, the negative electrode was used by attaching a 180 μm thick metallic lithium (Honjo metal) negative electrode to the 0.7 mm thick SUS disk negative electrode current collector.
고체전해질 분리막은 실험예 1에서 제조한 LLZO 고체전해질 분리막을 사용하였다.As the solid electrolyte separator, the LLZO solid electrolyte separator prepared in Experimental Example 1 was used.
고체 리튬염 분말로는 lithium (fluorosulfonyl)(trifluoromethylsulfonyl)amide (Li[fTfN]) (융점 100 ℃, TCI Chemical) 분말을 0.2g 칭량하여 LLZO 분리막과 양극부, 음극부사이에 각 0.1g씩 삽입하였다. As a solid lithium salt powder, lithium (fluorosulfonyl)(trifluoromethylsulfonyl)amide (Li[fTfN]) (melting point 100 ℃, TCI Chemical) powder was weighed 0.2 g, and 0.1 g each was inserted between the LLZO separator and the anode and cathode sections.
전지 캡은 리튬전지에서 일반적으로 사용하는 코인2032 셀을 형태를 사용하였으며, 실링부는 PTFE소재를 사용하였다.The battery cap used a coin 2032 cell commonly used in lithium batteries, and a PTFE material was used for the sealing part.
실시예 2 - LATP 고체전해질을 사용한 고온 동작형 이차전지 제조Example 2 - Preparation of high-temperature operation type secondary battery using LATP solid electrolyte
고체전해질로서 실험예 2에서 제조한 LATP를 사용하는 것 이외에는 실시예 1 과 동일한 방법으로 코인셀로 제조하였다.A coin cell was prepared in the same manner as in Example 1, except that LATP prepared in Experimental Example 2 was used as the solid electrolyte.
비교예 1 - PP 고분자 고체전해질 분리막을 사용한 고온 동작형 이차전지 제조Comparative Example 1 - Manufacture of high-temperature operation type secondary battery using PP polymer solid electrolyte separator
비교예로서 기존 Polypropylene 분리막(PP)을 고체전해질 분리막 대신 사용한 것을 제외하고는 실시예 1 과 동일한 방법으로 코인셀로 제조하였다. As a comparative example, a coin cell was manufactured in the same manner as in Example 1, except that an existing polypropylene separator (PP) was used instead of a solid electrolyte separator.
비교평가 comparative evaluation
(1) 실시예 1 (1) Example 1
실시예 1에서 제조된 전지를 약 120℃ 오븐에 장착한 후, potentio/galvanostat을 이용하여, 정전류를 인가하면서 전지의 전압과 방전용량을 측정하였고 도 4 및 표 1에 그 결과를 나타내었다.After the battery prepared in Example 1 was mounted in an oven at about 120° C., the voltage and discharge capacity of the battery were measured using a potentio/galvanostat while applying a constant current, and the results are shown in FIG. 4 and Table 1.
도 4의 그래프로부터 알 수 있듯이, LLZO고체전해질 분리막을 사용한 실시예 1의 경우 120℃에서 전지가 작동함을 확인하였다. 전류를 인가하기 전에 약 3.7V의 개회로 전압(OCV)이 측정되었으며, 전류를 인가함에 따라 전지의 전압이 서서히 감소함으로서 방전이 정상적으로 이루어 짐을 확인하였다.As can be seen from the graph of Figure 4, in the case of Example 1 using the LLZO solid electrolyte separator, it was confirmed that the battery operated at 120 ℃. Before applying the current, an open circuit voltage (OCV) of about 3.7V was measured, and as the current was applied, the voltage of the battery gradually decreased, confirming that the discharge was normally performed.
하기 표 1은 실시예 1 이차전지의 인가 전류 변화에 따른 전지전압 및 방전용량 데이터를 기록한 것이다. Table 1 below records battery voltage and discharge capacity data according to changes in applied current of the secondary battery of Example 1.
인가전류 (mA)Applied current (mA) 전지전압 (V)Battery voltage (V) 방전용량 (mAh)Discharge capacity (mAh)
0.20.2 3.523.52 0.0020.002
0.60.6 3.423.42 0.0160.016
0.80.8 3.283.28 0.0450.045
1.21.2 3.143.14 0.0850.085
1.51.5 2.972.97 0.200.20
22 2.822.82 0.290.29
2.52.5 2.582.58 0.540.54
표 1은 도 4에서 측정된 인가 전류별 전지전압과 방전용량을 보다 상세하게 수치화 시킨 결과이다. 인가전류를 0.2mA로 한 경우, 전지전압이 3.57V가 나타난 반면, 인가전류를 1.2mA로 증가시킬 경우 전지전압은 3.14V로 많이 감소하지 않았으며, 인가전류를 2.5mA까지 크게 증가시켜도 전지전압은 2.58V를 나타내어 전지가 정상적으로 작동하고 있음을 확인하였다. 이 때, 방전용량은 전지전압 2.58V에서 0.54mAh를 나타냈으며, 시간이 더 경과할 경우에 전지용량은 계속 증가할 수 있으며, 전지에 연결된 부하의 소요전력이 모두 소진될 때까지 전지로부터 전원이 지속적으로 나타나고 있음을 확인하였다. Table 1 shows the results of numerically quantifying the battery voltage and discharge capacity for each applied current measured in FIG. 4 in more detail. When the applied current was 0.2 mA, the battery voltage was 3.57 V, whereas when the applied current was increased to 1.2 mA, the battery voltage did not decrease much to 3.14 V. Even when the applied current was greatly increased to 2.5 mA, the battery voltage indicates 2.58V, confirming that the battery is operating normally. At this time, the discharge capacity was 0.54 mAh at a battery voltage of 2.58 V, and if more time elapses, the battery capacity may continue to increase, and power is supplied from the battery until all the power required of the load connected to the battery is exhausted. It was confirmed that it appeared continuously.
(2) 실시예 2(2) Example 2
실시예 2에서 제조된 전지를 약 120℃ 오븐에 장착한 후, potentio/galvanostat을 이용하여, 정전류를 인가하면서 전지의 전압과 방전용량을 측정하였고 도 5 및 표 2에 그 결과를 나타내었다.After the battery prepared in Example 2 was mounted in an oven at about 120° C., the voltage and discharge capacity of the battery were measured using a potentio/galvanostat while applying a constant current, and the results are shown in FIG. 5 and Table 2.
도 5의 그래프로부터 알 수 있듯이, LATP 고체전해질 분리막을 사용한 실시예 2의 경우 120℃에서 전지가 작동함을 확인하였다. 전류를 인가하기 전에 실시예 1과 동일하게 약 3.7V의 개회로 전압(OCV)이 측정되었으며, 전류를 인가함에 따라 전지의 전압이 서서히 감소함으로써 방전이 정상적으로 이루어 짐을 확인하였다. As can be seen from the graph of FIG. 5 , it was confirmed that the battery operated at 120° C. in the case of Example 2 using the LATP solid electrolyte separator. Before applying the current, an open circuit voltage (OCV) of about 3.7V was measured in the same manner as in Example 1, and as the current was applied, the voltage of the battery gradually decreased, thereby confirming that the discharge was normally performed.
하기 표 2은 실시예 2 이차전지의 인가 전류 변화에 따른 전지전압 및 방전용량 데이터를 기록한 것이다. Table 2 below records battery voltage and discharge capacity data according to changes in applied current of the secondary battery of Example 2.
인가전류 (mA)Applied current (mA) 전지전압 (V)Battery voltage (V) 방전용량 (mAh)Discharge capacity (mAh)
0.20.2 3.63.6 0.0010.001
0.40.4 3.523.52 0.0020.002
1One 3.223.22 0.0490.049
1.51.5 3.013.01 0.160.16
22 2.82.8 0.290.29
2.52.5 2.582.58 0.520.52
표 2는 도 5에서 측정된 인가 전류별 전지전압과 방전용량을 보다 상세하게 수치화 시킨 결과이다.인가전류를 0.2mA로 한 경우, 전지전압이 3.6V가 나타난 반면, 인가전류를 1.5mA로 증가시킬 경우 전지전압은 3.01V로 많이 감소하지 않았으며, 인가전류를 2.5mA까지 크게 증가시켜도 전지전압은 2.58V로 전지가 정상적으로 작동하고 있음을 확인하였다.전지의 방전용량도 동작시간 및 인가전류에 따라 직선적으로 증가하였으며, 인가전류 2.5V에서 0.52mAh의 방전용량을 나타내었다. 이는 실시예 1과 유사한 결과로서, 고체전해질 분리막의 종류에 관계없이 양극부에 의해 결정됨을 알 수 있었다. 전지의 용량은 전지에 연결된 부하의 소요전력이 모두 소진될 때까지 발현될 수 있음을 확인하였다.Table 2 shows the results of digitizing the battery voltage and discharge capacity for each applied current measured in FIG. 5 in more detail. When the applied current was 0.2 mA, the battery voltage was 3.6 V, while the applied current was increased to 1.5 mA. In this case, the battery voltage did not decrease much to 3.01V, and even when the applied current was greatly increased to 2.5mA, the battery voltage was 2.58V, confirming that the battery was operating normally. It increased linearly according to the flow rate and showed a discharge capacity of 0.52 mAh at an applied current of 2.5 V. This is a result similar to that of Example 1, and it can be seen that it is determined by the anode part regardless of the type of the solid electrolyte separator. It was confirmed that the capacity of the battery can be expressed until all the power required of the load connected to the battery is exhausted.
(3) 비교예 1(3) Comparative Example 1
비교예 1은 기존에 사용되던 고분자 PP 분리막을 사용하여 제조한 전지이다. 도 6은 비교예 1의 전지를 120℃에서 작동한 결과 그래프이다. 0.2mA의 정전류를 인가한 경우, 실시예 1,2와는 다르게 3.28V로 전압이 크게 감소하는 것을 확인하였다.Comparative Example 1 is a battery prepared using a conventional polymer PP separator. 6 is a graph showing the results of operating the battery of Comparative Example 1 at 120°C. When a constant current of 0.2 mA was applied, it was confirmed that the voltage was significantly reduced to 3.28 V, unlike in Examples 1 and 2 .
인가 전류량을 증가시키지 않고 그대로 지속적으로 인가한 경우에, 방전용량이 0.1mAh로 낮은 용량임에도 전압이 2.73V로 급격히 강하하는 것을 확인할 수 있었다. 이는 고체전해질 분리막을 사용한 실시예 1 및 2와 비교하여 크게 감소된 성능이었다. 이는 고분자 소재로 이루어진 PP분리막이 고온에서 melt down되면서 분리막의 기공이 막혀 저항이 크게 증가하기 때문이다. When the applied current was continuously applied without increasing the amount of applied current, it was confirmed that the voltage rapidly dropped to 2.73V even though the discharge capacity was as low as 0.1mAh. This was a greatly reduced performance compared to Examples 1 and 2 using the solid electrolyte separation membrane. This is because the PP membrane made of a polymer material melts down at a high temperature, clogs the pores of the membrane, and the resistance increases significantly.
(4) 실시예 1, 2와 비교예 1 전지의 임피던스 측정 결과(4) Impedance measurement results of the batteries of Examples 1 and 2 and Comparative Example 1
도 7은 비교예 1, 실시예 1,2의 전지가 약 2.5V까지 방전한 경우 120℃에서의 AC임피던스를 측정한 결과이다. 7 is a result of measuring AC impedance at 120° C. when the batteries of Comparative Examples 1 and 1 and 2 were discharged to about 2.5V.
인가된 주파수 영역대는 0.2MHz~0.1Hz이며, 2개의 반원과 확산영역이 명확하게 분리되어 나타남을 확인할 수 있었다.The applied frequency band was 0.2 MHz to 0.1 Hz, and it was confirmed that the two semicircles and the diffusion region were clearly separated.
실시예 1, 2는 2개의 테스트 결과 임피던스 형태와 저항값이 거의 유사하게 나타남을 확인하였다. 2개의 반원 중 고주파영역에서의 반원은 계면저항이며, 저 주파수 영역에서의 반원은 전하이동저항(Charge transfer resistance)인데, 이 2개의 저항을 모두 합산한 전체저항을 비교할 때, 비교예 1은 800 ohm을 나타낸 반면, 실시예 1,2는 100~110 ohm을 나타내었다. In Examples 1 and 2, it was confirmed that the impedance shape and the resistance value were almost similar as a result of the two tests. Among the two semicircles, the semicircle in the high frequency region is the interface resistance, and the semicircle in the low frequency region is the charge transfer resistance. ohm, whereas Examples 1 and 2 exhibited 100 to 110 ohm.
즉, 비교예 1 대비 1/8 수준으로 실시예 1 및 2가 저항측면에서도 매우 유리함을 확인하였다.That is, it was confirmed that Examples 1 and 2 were very advantageous in terms of resistance at 1/8 level compared to Comparative Example 1.
본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the embodiments, but can be manufactured in various different forms, and those of ordinary skill in the art to which the present invention pertains can use other specific forms without changing the technical spirit or essential features of the present invention. It will be appreciated that this may be practiced. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
[부호의 설명][Explanation of code]
10 리튬 이차전지 110 양극 10 Lithium secondary battery 110 Positive electrode
111 양극 집전체 112 양극부111 positive electrode current collector 112 positive electrode part
120 제1 리튬염 고체 분말층 130 고체전해질층120 first lithium salt solid powder layer 130 solid electrolyte layer
140 제2 리튬염 고체 분말층 150 음극140 Second lithium salt solid powder layer 150 Anode
151 음극 집전체 152 음극부151 Negative electrode current collector 152 Negative electrode unit
200 양극캡 300 음극캡200 Anode cap 300 Cathode cap
400 절연 실링부400 insulating seal

Claims (15)

  1. 양극;anode;
    상기 양극 상에 위치하는 제1 리튬염 고체 분말층;a first lithium salt solid powder layer positioned on the positive electrode;
    상기 제1 리튬염 고체 분말층 상에 위치하는 고체전해질 층;a solid electrolyte layer positioned on the first lithium salt solid powder layer;
    상기 고체전해질 층 상에 위치하는 제2 리튬염 고체 분말층; 및a second lithium salt solid powder layer positioned on the solid electrolyte layer; and
    상기 제2 리튬염 고체 분말층 상에 위치하는 음극;을 포함하고,Including; a negative electrode positioned on the second lithium salt solid powder layer;
    상기 제1 리튬염 고체 분말층 및 제2 리튬염 고체 분말층은 80℃ 이상에서 용융되는 리튬염 고체 분말을 포함하는, 리튬 이차 전지.The first lithium salt solid powder layer and the second lithium salt solid powder layer include a lithium salt solid powder melted at 80° C. or higher, a lithium secondary battery.
  2. 제1항에 있어서,According to claim 1,
    상기 실온에서 80℃ 이상에서 용융되는 리튬염 고체 분말은,The lithium salt solid powder melted at 80° C. or higher at room temperature,
    Lithium(fluorosulfonyl)(trifluoromethylsulfonyl)amide, Lithium Bis(fluorosulfonyl)imide, LithiumBis(trifluoromethanesulfonyl)imide, Lithium(fluorosulfonyl)(pentafluoroethanesulfonyl)imide, Li(CF3SO2)(C2F-SO2)N, LiPF6, LiAsF6, LiBF4, LiBF6, LiClO4, LiAlCl4, 및 LiSbF6로 이루어진 군 중에서 선택된 1종 이상을 포함하는, 리튬 이차전지.Lithium(fluorosulfonyl)(trifluoromethylsulfonyl)amide, Lithium Bis(fluorosulfonyl)imide, LithiumBis(trifluoromethanesulfonyl)imide, Lithium(fluorosulfonyl)(pentafluoroethanesulfonyl)imide, Li(CF 3 SO 2 )(C 2 F-SO 2 )N, LiPF 6 , LiAsF 6 , LiBF 4 , LiBF 6 , LiClO 4 , LiAlCl 4 , and LiSbF 6 Containing at least one selected from the group consisting of, a lithium secondary battery.
  3. 제1항에 있어서,According to claim 1,
    상기 고체전해질 층은 화학식 1로 표시되는 리튬 알루미늄 티타늄 인산염(LATP) 또는 화학식 2로 표시되는 리튬 란타늄 지르코늄 산화물(LLZO)을 포함하는, 리튬 이차 전지.The solid electrolyte layer comprises lithium aluminum titanium phosphate (LATP) represented by Formula 1 or lithium lanthanum zirconium oxide (LLZO) represented by Formula 2, a lithium secondary battery.
    [화학식 1][Formula 1]
    Li1+xAlxTi2-x(PO4)3 (0<x<2)Li 1+x Al x Ti 2-x (PO 4 ) 3 (0<x<2)
    [화학식 2][Formula 2]
    LixLayZrzMwO12(5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)Li x La y Zr z M w O 12 (5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)
    상기 화학식 2에서, M은 Al, Nb, Ta, B, Y 및 Ga 중에서 선택된 1종 이상이다.In Formula 2, M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
  4. 제1항에 있어서,According to claim 1,
    상기 양극은 양극 집전체 일 면에 FeS2, MnO2, Mo3O8, CFx,및 V6O13 로 이루어진 군 중에서 1종 이상을 포함하는 양극부가 위치하는 것인, 리튬 이차 전지.The positive electrode is a positive electrode current collector FeS 2 , MnO 2 , Mo 3 O 8 , CF x , and a positive electrode comprising at least one member of the group consisting of V 6 O 13 is positioned on one surface of the positive electrode current collector, the lithium secondary battery.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 양극 집전체는 Al 금속판, Ni 금속판, 및 스테인리스 금속판으로 이루어진 군 중에서 선택된 1종 이상인, 리튬 이차 전지.The positive electrode current collector is at least one selected from the group consisting of an Al metal plate, a Ni metal plate, and a stainless metal plate, a lithium secondary battery.
  6. 제1항에 있어서,According to claim 1,
    상기 음극은 음극 집전체 일 면에 Li, Li-Al, Li-In, 및 Li-Ag로 이루어진 군 중에서 1종 이상을 포함하는 음극부가 위치하는 것인, 리튬 이차 전지.The negative electrode is a lithium secondary battery in which the negative electrode portion comprising at least one of Li, Li-Al, Li-In, and Li-Ag is positioned on one surface of the negative electrode current collector.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 음극 집전체는 Cu 금속판, Ni 금속판 및 스테인리스 금속판을 포함하는 군 중에서 선택된 1종 이상인, 리튬 이차 전지.The negative current collector is at least one selected from the group consisting of a Cu metal plate, a Ni metal plate, and a stainless metal plate, a lithium secondary battery.
  8. 제1항에 있어서, The method of claim 1,
    상기 리튬 이차전지는 양극캡 및 음극캡을 더 포함하고, The lithium secondary battery further includes a positive electrode cap and a negative electrode cap,
    상기 양극캡 및 음극캡 내부에 양극, 제1 리튬염 고체 분말층, 고체전해질 층, 제2 리튬염 고체 분말층 및 음극이 장착되어 있고,A positive electrode, a first lithium salt solid powder layer, a solid electrolyte layer, a second lithium salt solid powder layer, and a negative electrode are mounted inside the positive electrode cap and the negative electrode cap,
    상기 양극캡과 음극캡 사이에 절연 실링부를 더 포함하는, 리튬 이차전지. A lithium secondary battery further comprising an insulating sealing part between the positive electrode cap and the negative electrode cap.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 절연 실링부는 Polypropylene(PP), Silicon, Viton, Polytetrafluoroethylene (PTFE), Perfluoroalkoxy alkanes (PFA), 및 Fluorocarbon으로 이루어진 군 중에서 선택된 1종 이상을 포함하는, 리튬 이차전지.The insulating sealing part comprises at least one selected from the group consisting of Polypropylene (PP), Silicon, Viton, Polytetrafluoroethylene (PTFE), Perfluoroalkoxy alkanes (PFA), and Fluorocarbon, a lithium secondary battery.
  10. 제1항에 있어서,According to claim 1,
    상기 고체전해질 층의 두께는 다음의 식 1을 만족하는, 리튬 이차전지.The thickness of the solid electrolyte layer satisfies Equation 1 below, a lithium secondary battery.
    [식 1][Equation 1]
    (고체전해질 층 두께(㎛)) / (양극부 두께(㎛) + 음극부 두께(㎛)) ≥ 0.5(solid electrolyte layer thickness (μm)) / (anode section thickness (μm) + cathode section thickness (μm)) ≥ 0.5
  11. 제1항에 있어서,According to claim 1,
    상기 고체전해질 층 두께 100㎛ 당 제1 리튬염 고체 분말층 및 제2 리튬염 고체 분말층의 합량은 0.01 내지 0.1g인, 리튬 이차전지.The total amount of the first lithium salt solid powder layer and the second lithium salt solid powder layer per 100 μm of the solid electrolyte layer thickness is 0.01 to 0.1 g, a lithium secondary battery.
  12. 양극을 준비하는 단계;preparing an anode;
    고체전해질을 준비하는 단계; preparing a solid electrolyte;
    음극을 준비하는 단계;preparing a cathode;
    리튬염 고체 분말을 준비하는 단계; 및preparing a lithium salt solid powder; and
    양극, 리튬염 고체 분말, 고체전해질, 리튬염 고체 분말, 및 음극 순으로 적층하여 조립하는 단계;를 포함하고,A positive electrode, a lithium salt solid powder, a solid electrolyte, a lithium salt solid powder, and the step of assembling by stacking in the order of the negative electrode;
    상기 리튬염 고체 분말은 80℃ 이상에서 용융되는 리튬염 고체 분말을 포함하는, 리튬 이차 전지의 제조방법.The lithium salt solid powder is a lithium secondary battery manufacturing method comprising a lithium salt solid powder melted at 80 ℃ or more.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 고체전해질을 준비하는 단계;에서In the step of preparing the solid electrolyte;
    상기 고체전해질은 화학식 1로 표시되는 리튬 알루미늄 티타늄 인산염(LATP) 또는 화학식 2로 표시되는 리튬 란타늄 지르코늄 산화물(LLZO)을 포함하는, 리튬 이차 전지의 제조방법.The solid electrolyte comprises lithium aluminum titanium phosphate (LATP) represented by Formula 1 or lithium lanthanum zirconium oxide (LLZO) represented by Formula 2, a method of manufacturing a lithium secondary battery.
    [화학식 1][Formula 1]
    Li1+xAlxTi2-x(PO4)3 (0<x<2)Li 1+x Al x Ti 2-x (PO 4 ) 3 (0<x<2)
    [화학식 2][Formula 2]
    LixLayZrzMwO12(5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)Li x La y Zr z M w O 12 (5≤x≤9, 2≤y≤4, 1≤z≤3, 0≤w≤1)
    화학식 2에서, M은 Al, Nb, Ta, B, Y 및 Ga 중에서 선택된 1종 이상이다.In Formula 2, M is at least one selected from Al, Nb, Ta, B, Y, and Ga.
  14. 제12항에 있어서,13. The method of claim 12,
    상기 고체전해질을 준비하는 단계;에서In the step of preparing the solid electrolyte;
    고체전해질은 하기 식 1의 두께를 만족하는 층상으로 구비되는 것인, 리튬 이차전지의 제조방법. The method for manufacturing a lithium secondary battery, wherein the solid electrolyte is provided in a layer that satisfies the thickness of the following formula (1).
    [식 1][Equation 1]
    (고체전해질 층 두께(㎛)) / (양극부 두께(㎛) + 음극부 두께(㎛)) ≥ 0.5(solid electrolyte layer thickness (μm)) / (anode section thickness (μm) + cathode section thickness (μm)) ≥ 0.5
  15. 제12항에 있어서,13. The method of claim 12,
    상기 양극, 리튬염 고체 분말, 고체전해질, 리튬염 고체 분말, 및 음극 순으로 적층하여 조립하는 단계;에서,The positive electrode, the lithium salt solid powder, the solid electrolyte, the lithium salt solid powder, and the step of assembling by laminating in the order of the negative electrode;
    리튬염 고체 분말 총량은 고체전해질 두께 100㎛ 당 0.01g 내지 0.1g으로 포함되는, 리튬 이차전지의 제조방법.The total amount of the lithium salt solid powder is 0.01g to 0.1g per 100㎛ thickness of the solid electrolyte, the method of manufacturing a lithium secondary battery.
PCT/KR2021/019223 2020-12-18 2021-12-16 High-temperature operation type lithium secondary battery and manufacturing method therefor WO2022131829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200178314A KR102530026B1 (en) 2020-12-18 2020-12-18 High-temperature operaion type lithium secondary battery and manufacturing method thereof
KR10-2020-0178314 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022131829A1 true WO2022131829A1 (en) 2022-06-23

Family

ID=82059454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019223 WO2022131829A1 (en) 2020-12-18 2021-12-16 High-temperature operation type lithium secondary battery and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102530026B1 (en)
WO (1) WO2022131829A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102583909B1 (en) * 2023-03-24 2023-10-05 국방과학연구소 Electrolyte for thermal battery, thermal battery including the same and manufacturing method for thermal battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114374A (en) * 2010-11-26 2012-06-14 Taiyo Yuden Co Ltd Electrochemical device
JP2013109938A (en) * 2011-11-21 2013-06-06 Sumitomo Electric Ind Ltd Method for manufacturing molten salt battery
KR101803240B1 (en) * 2017-06-28 2017-11-29 국방과학연구소 Molten lithium sulfur cell and manufacturing method thereof with solid electrolyte
KR20200041165A (en) * 2018-10-11 2020-04-21 주식회사 엘지화학 A solid electrolyte membrane and an all solid type battery comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050153B1 (en) 2013-09-25 2018-11-14 Field Upgrading USA, Inc. Intermediate temperature sodium-metal halide battery
KR102143173B1 (en) 2019-12-05 2020-08-10 국방과학연구소 Composite solid electrolyte without self-discharge, battery unit cell having the same, and Method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114374A (en) * 2010-11-26 2012-06-14 Taiyo Yuden Co Ltd Electrochemical device
JP2013109938A (en) * 2011-11-21 2013-06-06 Sumitomo Electric Ind Ltd Method for manufacturing molten salt battery
KR101803240B1 (en) * 2017-06-28 2017-11-29 국방과학연구소 Molten lithium sulfur cell and manufacturing method thereof with solid electrolyte
KR20200041165A (en) * 2018-10-11 2020-04-21 주식회사 엘지화학 A solid electrolyte membrane and an all solid type battery comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG-BO HAN; SI-SI ZHOU; DAI-JUN ZHANG; SHAO-WEI FENG; LI-FEI LI; KAI LIU; WEN-FANG FENG; JIN NIE; HONG LI; XUE-JIE HUANG; MICHEL : "Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 196, no. 7, 10 December 2010 (2010-12-10), AMSTERDAM, NL, pages 3623 - 3632, XP028129764, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2010.12.040 *

Also Published As

Publication number Publication date
KR20220087867A (en) 2022-06-27
KR102530026B1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2015080450A1 (en) Secondary battery comprising solid electrolyte layer
WO2015030402A1 (en) Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same
WO2019107878A1 (en) Solid electrolyte, preparation method therefor, and solid-state battery comprising same
WO2015065102A1 (en) Lithium secondary battery
WO2017213462A1 (en) Positive electrode active material for sodium secondary battery, and method for preparing same
WO2018093059A1 (en) High ion conductive solid electrolyte for all-solid state battery and method for preparing same
WO2016072649A1 (en) Conductive material manufacturing method, conductive material manufactured therefrom, and lithium secondary battery including same
WO2021221388A1 (en) Negative electrode for lithium secondary battery having current collector oxidized therein, and method for manufacturing same
WO2019112323A1 (en) Slurry composition for coating secondary battery separator and secondary battery separator using same
WO2022131829A1 (en) High-temperature operation type lithium secondary battery and manufacturing method therefor
WO2019059647A2 (en) Positive electrode material for lithium secondary battery, method for manufacturing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2020149668A1 (en) Secondary battery charging method that shortens charging time
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2019031766A2 (en) Method for forming lithium metal and inorganic material composite thin film and method for pre-lithiation of negative electrode for lithium secondary battery by using same
WO2021049881A1 (en) Cathode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2022055308A1 (en) Negative electrode material, and negative electrode and secondary battery comprising same
WO2022060138A1 (en) Negative electrode and secondary battery comprising same
WO2023132709A1 (en) Solid-state secondary battery cathode and solid-state secondary battery comprising same
WO2022225380A1 (en) Secondary battery manufacturing method
WO2017116081A1 (en) Method for preparing positive electrode active material and positive electrode active material prepared thereby
WO2024101797A1 (en) All solid-state metal battery
WO2023038371A1 (en) Sulfide-based solid electrolyte, preparation method thereof, and all-solid-state battery prepared therefrom
WO2023158095A1 (en) Porous composite ceramic separator, electrochemical device comprising the same, and method of preparing the porous composite ceramic separator
WO2024090706A1 (en) All-solid-state battery
WO2023075275A1 (en) Lithium secondary battery having ignition suppression structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21907133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21907133

Country of ref document: EP

Kind code of ref document: A1