WO2022131768A1 - Organic light-emitting compound and organic electroluminescence element using same - Google Patents

Organic light-emitting compound and organic electroluminescence element using same Download PDF

Info

Publication number
WO2022131768A1
WO2022131768A1 PCT/KR2021/019005 KR2021019005W WO2022131768A1 WO 2022131768 A1 WO2022131768 A1 WO 2022131768A1 KR 2021019005 W KR2021019005 W KR 2021019005W WO 2022131768 A1 WO2022131768 A1 WO 2022131768A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
synthesis
substituted
unsubstituted
formula
Prior art date
Application number
PCT/KR2021/019005
Other languages
French (fr)
Korean (ko)
Inventor
김충한
신환규
Original Assignee
솔루스첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔루스첨단소재 주식회사 filed Critical 솔루스첨단소재 주식회사
Publication of WO2022131768A1 publication Critical patent/WO2022131768A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants

Definitions

  • the present invention relates to a novel organic light emitting compound and an organic electroluminescent device using the same, and more particularly, to a compound having excellent electron transport ability and an organic compound having improved characteristics such as luminous efficiency, driving voltage, and lifespan by including the compound in one or more organic material layers. It relates to an electroluminescent device.
  • An organic electroluminescent display device is different from a liquid crystal display device, and by recombination of holes and electrons injected from the first and second electrodes in the light emitting layer, the light emitting material containing the organic compound is emitted in the light emitting layer to realize display. It is a so-called self-emission type display device.
  • organic electroluminescent devices In the application of organic electroluminescent devices to display devices, low driving voltage, high luminous efficiency and long lifespan of the organic electroluminescent devices are required, and the development of materials for organic electroluminescent devices that can stably implement these is continuously required. have.
  • TTA triplet-triplet annihilation
  • An object of the present invention is to provide an excellent novel organic compound that can apply a novel organic compound to an organic electroluminescent device, and improves high efficiency and long life characteristics by using the novel organic compound in an organic layer of an organic electroluminescent device.
  • Another object of the present invention is to provide an organic electroluminescent device including a thermally activated delayed fluorescence emitting material and a thermally activated delayed fluorescence emitting material including the novel organic compound.
  • the present invention provides a compound represented by the following formula (1).
  • Ar 1 To Ar 4 are the same as or different from each other, and each independently a C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, Heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 to C 30 aryl group, heteroaryl group having 2 to 30 nuclear atoms, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group , C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 6 ⁇ C 60 Aryl phosphine group , C 6 ⁇ C 60 Mono or diarylphosphinyl group and C 6 ⁇ C 60 Selected from the group consisting of an arylamine group,
  • the Ar 1 To Ar 4 Alkyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkylsilyl group, arylsilyl group, alkyl boron group, aryl boron group, aryl phosphine group , mono or diarylphosphinyl group and arylamine group are each independently a C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group , A heterocycloalkyl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyloxy group, C 6 to C 60 Arylox Period, C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 Aryls
  • X is hydrogen, deuterium, halogen, cyano group, nitro group, hydroxyl group, CF 3 group, B(OR 5 ) 2 group, Si(R 5 ) 3 group, C 1 ⁇ C 40 alkyl group, C 2 ⁇ C 40 alkenyl group, C 2 ⁇ C 40 alkynyl group, C 3 ⁇ C 40 cycloalkyl group, heterocycloalkyl group having 3 to 40 nuclear atoms, C 5 ⁇ C 40 aryl group, 2 to 30 nuclear atoms Heteroaryl group, C 1 ⁇ C 40 Alkyloxy group, C 15 ⁇ C 40 Aryloxy group, C 15 ⁇ C 40 Heteroaryloxy group, C 3 ⁇ C 40 Alkylsilyl group, C 6 ⁇ C 60 of Arylsilyl group, C 1 ⁇ C 40 Alkyl boron group, C 6 ⁇ C 60 Aryl boron group, C 1 ⁇ C 10 Alkanesulfide group, C 6 ⁇ C 60
  • R 5 is hydrogen, deuterium, halogen, cyano group, nitro group, substituted or unsubstituted C 1 ⁇ C 30 alkyl group, substituted or unsubstituted C 2 ⁇ C 30 alkenyl group, substituted or unsubstituted C 2 ⁇ C 30 alkynyl group, substituted or unsubstituted C 3 ⁇ C 40 cycloalkyl group, substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 ⁇ C 30 substituted or unsubstituted aryl group , a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
  • the present invention is an organic electroluminescent device comprising (i) an anode, (ii) a cathode, and (iii) one or more organic material layers interposed between the anode and the cathode, wherein at least one of the one or more organic material layers is the first It provides an organic electroluminescent device comprising the compound represented by the formula (1) of claim 1.
  • the organic material layer may include one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, a hole transport auxiliary layer, an electron transport layer, an electron transport auxiliary layer, and a light emitting layer.
  • the light emitting layer may emit delayed fluorescence.
  • the emission layer may be a delayed fluorescence emission layer including a host and a dopant, and the dopant may include the compound represented by Formula 1 of claim 1 .
  • the light emitting layer may be a thermally activated delayed fluorescent light emitting layer that emits blue light.
  • substituted or unsubstituted means a deuterium atom, a halogen atom, a cyano group, a nitro group, an amine group, a silyl group, a boron group, a phosphine oxide group, a phosphine sulfide group, an alkyl group, an alkenyl group, an aryl group, and It may mean unsubstituted or substituted with one or more substituents selected from the group consisting of heterocyclic groups.
  • each of the exemplified substituents may be substituted or unsubstituted, but is not limited thereto.
  • the biphenyl group may mean an aryl group or a phenyl group.
  • halogen atom in the present invention may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, but is not limited thereto.
  • the alkyl group may be linear, branched or cyclic.
  • Carbon number of an alkyl group is 1 or more and 50 or less, 1 or more and 30 or less, 1 or more and 20 or less, 1 or more and 10 or less, or 1 or more and 6 or less.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, i-butyl group, 2-ethylbutyl group, 3, 3-dimethylbutyl group , n-pentyl group, i-pentyl group, neopentyl group, t-pentyl group, cyclopentyl group, 1-methylpentyl group, 3-methylpentyl group, 2-ethylpentyl group, 4-methyl-2-pentyl group , n-hexyl group, 1-methylhexyl group, 2-ethylhexyl group, 2-butylhexyl group, cyclohexyl group, 4-methylcyclohexyl group, 4-t-butylcyclohexyl group, n-heptyl group, 1 -Methyl
  • the aryl group means any functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group.
  • the number of ring carbon atoms of the aryl group may be 6 or more and 30 or less, 6 or more and 20 or less, or 6 or more and 15 or less.
  • aryl group examples include a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a phenanthryl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a quinkphenyl group, a sexyphenyl group, a triphenylenyl group, a pyrenyl group, a benzofluoranthenyl group , may be a chrysenyl group, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure, but is not limited thereto.
  • the fluorenyl group when substituted, it may have the following structure, but is not limited thereto.
  • the heteroaryl group may be a heteroaryl group including at least one of O, N, P, Si, and S as a heterogeneous element.
  • the number of ring carbon atoms in the heteroaryl group is 2 or more and 30 or less, or 2 or more and 20 or less.
  • the heteroaryl group may be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the polycyclic heteroaryl group may have, for example, a bicyclic or tricyclic structure.
  • heteroaryl group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, a triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phenoxazyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group , isoquinoline group, indole group, carbazole group, N-arylcarbazole group, N-heteroarylcarbazole group,
  • the number of carbon atoms in the amine group is not particularly limited, but may be 1 or more and 30 or less.
  • the amine group may include an alkyl amine group and an aryl amine group. Examples of the amine group include, but are not limited to, a methylamine group, a dimethylamine group, a phenylamine group, a naphthylamine group, a 9-methyl-anthracenylamine group, and a triphenylamine group.
  • the organic compound of the present invention can be used as a material for an organic material layer of an organic electroluminescent device because it improves high efficiency and long life characteristics.
  • an organic electroluminescent device having excellent light emitting performance, driving voltage, efficiency and lifespan characteristics can be manufactured, and furthermore, a full color display panel with improved performance and lifespan can be manufactured.
  • FIG. 1 is a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
  • the organic compound of the present invention is a compound in which N-B-N is condensed to an aromatic ring to form a parent nucleus, and various substituents are bonded to the parent nucleus, and is represented by Formula 1 above.
  • a portion of the ring structure formed by N-B-N is an electron donor, and a portion bonded to nitrogen and/or a portion of the electron donor serves as an electron acceptor.
  • the organic compound includes an electron acceptor bonded to nitrogen of the electron donor site, thereby localizing the electron density in the molecule, and the absolute value ( ⁇ Est) of the difference between the singlet energy level (S1) and the triplet energy level (T1) is small.
  • the rate constant of reverse intersystem crossing (RISC) in which the triplet energy level (T1) is converted to the singlet energy level (S1) increases, thereby contributing to the long lifespan of the organic electroluminescent device.
  • the organic compound of the present invention when applied to the organic material layer of the organic electroluminescent device, the light emitting characteristics of the organic electroluminescent device are improved, and at the same time, the hole injection/transport ability and electron injection/transport ability are improved, so that the driving voltage is low and the lifespan is reduced. It is possible to provide an organic electroluminescent device.
  • the organic compound of the present invention may be applied to an organic material layer of an organic electroluminescent device, and the compound represented by Formula 1 may be a delayed fluorescence emitting material.
  • the organic compound may be a thermally activated delayed fluorescence material.
  • the organic compound of the present invention has a small difference between the singlet energy level (S1) and the triplet energy level (T1), so that it can be used as a thermally activated delayed fluorescent light emitting material.
  • the organic compound may be a thermally activated delayed fluorescent material emitting blue light, green light or red light. More preferably, the compound represented by Formula 1 may be used as a blue light emitting material emitting thermally activated delayed fluorescence, but is not limited thereto.
  • the compound represented by Chemical Formula 1 of the present invention may be embodied in the group consisting of compounds represented by the following Chemical Formulas 2 to 8.
  • Ar 1 to Ar 4 are as defined in Formula 1 above.
  • Ar 1 to Ar 2 are the same as or different from each other, and it is preferable that each independently be represented by any one of Formulas A-1 to A-5.
  • the dotted line means the part where the condensation takes place
  • Z 1 are the same as or different from each other, each independently C or N,
  • R 1 To R 2 are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, nitro group, substituted or unsubstituted C 1 ⁇ C 30 alkyl group, substituted or unsubstituted C 2 ⁇ C 30 alkenyl group, substituted or unsubstituted C 2 ⁇ C 30 alkynyl group, substituted or unsubstituted C 3 ⁇ C 40 cycloalkyl group, substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 ⁇ C 30 A substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
  • Ar 3 to Ar 4 are the same as or different from each other, and it is preferable that each independently be represented by any one of Formulas B-1 to B-3.
  • Z 2 are the same as or different from each other, each independently C or N,
  • R 3 To R 4 are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, nitro group, substituted or unsubstituted C 1 ⁇ C 30 alkyl group, substituted or unsubstituted C 2 ⁇ C 30 alkenyl group, substituted or unsubstituted C 2 ⁇ C 30 alkynyl group, substituted or unsubstituted C 3 ⁇ C 40 cycloalkyl group, substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 ⁇ C 30 A substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
  • R 1 to R 4 when Z 1 to Z 2 of Ar 1 to Ar 4 are all C, at least one of R 1 to R 4 is substituted or unsubstituted having 2 to 30 nuclear atoms It is preferred that the compound is a heteroaryl group.
  • the compound represented by Formula 1 of the present invention may be further specified as a compound represented by any one selected from the group consisting of the compounds exemplified below.
  • the compound represented by Formula 1 of the present invention is not limited by those exemplified below.
  • the present invention provides an organic electroluminescent device comprising the compound represented by Formula 1 above.
  • the organic compound of the present invention can be used in an organic electroluminescent device to improve the efficiency and lifespan of the organic electroluminescent device.
  • the organic compound of the present invention can be used in the light emitting layer (EML) of the organic electroluminescent device to improve the luminous efficiency and lifespan of the organic electroluminescent device.
  • EML light emitting layer
  • the organic electroluminescent device may include a first electrode EL1 , a hole transport region HTR, an emission layer EML, an electron transport region ETR, and a second electrode EL2 that are sequentially stacked.
  • the first electrode EL1 and the second electrode EL2 may face each other, and a plurality of organic layers may be disposed between the first electrode EL1 and the second electrode EL2 .
  • the plurality of organic layers may include a hole transport region HTR, an emission layer EML, and an electron transport region ETR.
  • the organic electroluminescent device may include the compound represented by Formula 1 in the light emitting layer (EML).
  • the first electrode EL1 has conductivity.
  • the first electrode EL1 may be formed of a metal alloy or a conductive compound.
  • the first electrode EL1 may be an anode.
  • the first electrode EL1 may be a transmissive electrode, a transflective electrode, or a reflective electrode.
  • the first electrode EL1 is preferably a transparent metal oxide, such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc (ITZO). oxide) and the like.
  • the first electrode EL1 When the first electrode EL1 is a transflective electrode or a reflective electrode, the first electrode EL1 may include Ag, Mg, Cu, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti, or a compound or mixture thereof (eg, a mixture of Ag and Mg).
  • a plurality of transparent conductive layers including a reflective or semi-transmissive layer formed of the above-described material and a transparent conductive layer formed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), etc. It may have a layer structure.
  • the first electrode EL1 may include a plurality of layers of ITO/Ag/ITO.
  • the hole transport region HTR is provided on the first electrode EL1 .
  • the hole transport region HTR may include at least one of a hole injection layer (HIL), a hole transport layer (HTL), a hole buffer layer, and an electron blocking layer (EBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the hole transport region HTR may include a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
  • the hole transport region HTR may have a single-layer structure of the hole injection layer HIL or the hole transport layer HTL, or may have a single-layer structure including a hole injection material and a hole transport material.
  • the hole transport region HTR has a single layer structure made of a plurality of different materials, or a hole injection layer HIL/hole transport layer HTL, which are sequentially stacked from the first electrode EL1 , hole injection layer (HIL) / hole transport layer (HTL) / hole buffer layer, hole injection layer (HIL) / hole buffer layer, hole transport layer (HTL) / hole buffer layer, or hole injection layer (HIL) / hole transport layer (HTL) / electron blocking layer (EBL), but is not limited thereto.
  • the hole transport region may be formed by various methods such as a vacuum deposition method, a spin coating method, a casting method, a Langmuir-Blodgett (LB) method, an inkjet printing method, a laser printing method, and a laser induced thermal imaging (LITI) method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a Langmuir-Blodgett (LB) method, an inkjet printing method, a laser printing method, and a laser induced thermal imaging (LITI) method.
  • LB Langmuir-Blodgett
  • LITI laser induced thermal imaging
  • the hole injection layer (HIL) of the organic electroluminescent device may include a known hole injection material.
  • the hole injection layer (HIL) is triphenylamine-containing polyetherketone (TPAPEK), 4-isopropyl-4'-methyldiphenyliodoniumtetrakis(pentafluorophenyl)borate (PPBI), N, N Phthalocyanine compounds, such as '-diphenyl-N, N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-phenyl-4, 4'-diamine (DNTPD), copper phthalocyanine, 4, 4 ',4''-tris(3-methylphenyl phenylamino)triphenylamine (m-MTDATA), N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB), N ,N'-bis(1-naph
  • the hole transport layer (HTL) of the organic electroluminescent device may include a known hole transport material.
  • the hole transport layer (HTL) is 1,1-bis[(di-4-trilamino)phenyl]cyclohexane (TAPC), N-phenylcarbazole (N-Phenylcarbazole), polyvinyl carbazole (Polyvinyl carbazole) carbazole derivatives such as N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine (TPD), 4,4', 4''-tris(N-carbazolyl)triphenylamine (TCTA) N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB) and N,N'-bis( 1-naphthyl)-N,N'-diphenyl-4,4'-di
  • the hole transport region HTR may further include an electron blocking layer EBL, and the electron blocking layer EBL may be disposed between the hole transport layer HTL and the emission layer EML.
  • the electron blocking layer EBL serves to prevent electron injection from the electron transport region ETR to the hole transport region HTR.
  • the electron blocking layer (EBL) may include a general material known in the art to which the present invention pertains.
  • the electron blocking layer (EBL) is, for example, a carbazole-based derivative such as N-phenylcarbazole or polyvinylcarbazole, a fluorine-based derivative, or TPD (N,N'-bis(3-methylphenyl)-N).
  • Triphenylamine derivatives such as ,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(Ncarbazolyl)triphenylamine), NPD(N, N'-di(naphthalene-l-yl)-N,N'-diplienyl-benzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis(4-methylphenyl)benzenamine]), HMTPD(4, 4'-Bis[N,N'-(3-tolyl)amino]-3,3'-dimethylbiphenyl) and mCP
  • the electron blocking layer (EBL) is an organic compound of the present invention may include
  • the hole transport region HTR may have a thickness of about 100 ⁇ to about 10000 ⁇ . Preferably, it may be from about 100 Angstroms to about 5000 Angstroms.
  • the thickness of the hole injection layer (HIL) may be about 30 ⁇ to about 1000 ⁇
  • the thickness of the hole transport layer (HTL) may be about 30 ⁇ to about 1000 ⁇
  • the thickness of the electron blocking layer (EBL) may be about 10 ⁇ to about 1000 ⁇ .
  • the hole transport region HTR may further include a charge generating material to improve conductivity.
  • the charge generating material may be uniformly or non-uniformly dispersed in the hole transport region HTR.
  • the charge generating material may be a p-dopant.
  • the p-dopant may be any one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto.
  • non-limiting examples of the p-dopant include quinone derivatives such as TCNQ (Tetracyanoquinodimethane) and F4-TCNQ (2,3,5,6-tetrafluoro-tetracyanoquinodimethane), and metal oxides such as tungsten oxide and molybdenum oxide. may be mentioned, but is not limited thereto.
  • quinone derivatives such as TCNQ (Tetracyanoquinodimethane) and F4-TCNQ (2,3,5,6-tetrafluoro-tetracyanoquinodimethane)
  • metal oxides such as tungsten oxide and molybdenum oxide.
  • the hole transport region may further include any one or more of a hole buffer layer and an electron blocking layer (EBL) in addition to the hole injection layer (HIL) and the hole transport layer (HTL).
  • the hole buffer layer may increase light emission efficiency by compensating for a resonance distance according to a wavelength of light emitted from the emission layer EML.
  • a material included in the hole buffer layer a material capable of being included in the hole transport region (HTR) may be used.
  • the emission layer EML is provided on the hole transport region HTR.
  • the thickness of the emission layer EML may be greater than or equal to about 100 ⁇ and less than or equal to 600 ⁇ .
  • the emission layer EML may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
  • the emission layer EML may emit one of red light, green light, blue light, white light, yellow light, and cyan light.
  • the emission layer EML may include a fluorescent light emitting material or a phosphorescent light emitting material.
  • the emission layer EML may be a fluorescent emission layer. Some of the light emitted from the emission layer EML may be due to thermally activated delayed fluorescence (TADF).
  • the light emitting layer (EML) may include a light emitting component that emits thermally activated delayed fluorescence, and more preferably, the light emitting layer (EML) may be a light emitting layer that emits thermally activated delayed fluorescence that emits green light or red light.
  • the emission layer EML may include a host and a dopant, the host may be a host for delayed fluorescence emission, and the dopant may be a dopant for delayed fluorescence emission.
  • the organic compound of the present invention may be included as a dopant material of the emission layer (EML).
  • the organic compound of the present invention may be one used as a TADF dopant.
  • the emission layer EML may include a known host material.
  • the light emitting layer (EML) is a host material, Alq3 (tris (8-hydroxyquinolino) aluminum), CBP (4,4'-bis (N-carbazolyl) -1,1'-biphenyl), PVK (poly (n) -vinylcabazole), ADN(9,10-di(naphthalene-2-yl)anthracene), TCTA(4,4',4''-Tris(carbazol-9-yl)-triphenylamine), TPBi(1,3, 5-tris(N-phenylbenzimidazole-2-yl)benzene), TBADN(3-tert-butyl-9,10-di(naphth-2-yl)anthracene), DSA(distyrylarylene), CDBP(4,4'- bis(9-carbazolyl)-2,2'-dimethyl-biphenyl
  • the emission layer EML may further include a known dopant material.
  • the emission layer (EML) is a dopant, and a styryl derivative (eg, 1,4-bis[2-(3-Nethylcarbazoryl)vinyl]benzene(BCzVB), 4-(di-p-tolylamino)-4 '-[(di-p-tolylamino)styryl]stilbene(DPAVB), N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl) vinyl)phenyl)phenylbenzenamine (NBDAVBi), perylene and its derivatives (eg 2, 5, 8, 11-Tetra-t-butylperylene (TBP)) and pyrene and its derivatives (eg 1, 1 2,5,8,11-Tetra-tbutylperylene (TBP)) such as -dipyrene,
  • the electron transport region ETR is provided on the emission layer EML.
  • the electron transport region ETR may include at least one of an electron blocking layer, an electron transport layer ETL, and an electron injection layer EIL, but is not limited thereto.
  • the electron transport region ETR may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
  • the electron transport region ETR may have a single layer structure of the electron injection layer EIL or the electron transport layer ETL, or may have a single layer structure including an electron injection material and an electron transport material.
  • the electron transport region ETR has a single layer structure made of a plurality of different materials, or an electron transport layer ETL/electron injection layer EIL and hole blocking layer sequentially stacked from the first electrode EL1 . It may have a layer/electron transport layer (ETL)/electron injection layer (EIL) structure, but is not limited thereto.
  • the thickness of the electron transport region ETR may be about 100 ⁇ to about 1500 ⁇ .
  • the electron transport region is formed by various methods such as vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB), inkjet printing, laser printing, and laser induced thermal imaging (LITI).
  • LB Langmuir-Blodgett
  • LITI laser induced thermal imaging
  • the electron transport region ETR includes Alq3 (Tris(8-hydroxyquinolinato)aluminum), 1,3,5-tri[(3-pyridyl)- phen-3-yl]benzene, 2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine, 2-(4-(N-phenylbenzoimidazolyl) -1-ylphenyl)-9,10-dinaphthylanthracene, TPBi(1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene), BCP(2,9-Dimethyl-4 ,7-diphenyl-1,10-phenanthroline), Bphen(4,7-Diphenyl-1,10-phenanthroline), TAZ(3-(4-Biphenylyl)-4-phenyl-5-
  • the thickness of the electron transport layers ETL may be about 100 ⁇ to about 1000 ⁇ .
  • the thickness of the electron transport layers (ETL) may be about 150 ⁇ to about 500 ⁇ .
  • the electron transport region ETR includes the electron injection layer EIL
  • the electron transport region ETR includes a lanthanide metal such as LiF, lithium quinolate (LiQ), Li O, BaO, NaCl, CsF, Yb, or A metal halide such as RbCl, RbI, or KI may be used, but is not limited thereto.
  • a lanthanide metal such as LiF, lithium quinolate (LiQ), Li O, BaO, NaCl, CsF, Yb, or A metal halide such as RbCl, RbI, or KI may be used, but is not limited thereto.
  • the electron injection layer EIL may also be made of a material in which an electron transport material and an insulating organo metal salt are mixed.
  • the organometallic salt may be a material having an energy band gap of about 4 eV or more.
  • the organometallic salt may include metal acetate, metal benzoate, metal acetoacetate, metal acetylacetonate or metal stearate.
  • the electron injection layers EIL may have a thickness of about 1 ⁇ to about 100 ⁇ .
  • the thickness of the electron injection layers EIL may be about 3 ⁇ to about 90 ⁇ .
  • the electron transport region ETR may include a hole blocking layer, which includes 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and 4,7-diphenyl- (Bphen). 1,10-phenanthroline), but is not limited thereto.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • Bphen 4,7-diphenyl-
  • the second electrode EL2 is provided on the electron transport region ETR.
  • the second electrode EL2 has conductivity.
  • the second electrode EL2 may be formed of a metal alloy or a conductive compound.
  • the second electrode EL2 may be a cathode.
  • the second electrode EL2 may be a transmissive electrode, a transflective electrode, or a reflective electrode.
  • the second electrode EL2 DL is a transmissive electrode
  • the second electrode EL2 is preferably a transparent metal oxide, preferably indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc (ITZO). oxide) and the like.
  • the second electrode EL2 When the second electrode EL2 is a transflective electrode or a reflective electrode, the second electrode EL2 may include Ag, Mg, Cu, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti, or a compound or mixture thereof (eg, a mixture of Ag and Mg).
  • a plurality of transparent conductive layers including a reflective or semi-transmissive layer formed of the above-described material and a transparent conductive layer formed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), etc. It may have a layer structure.
  • the second electrode EL2 may be connected to the auxiliary electrode. When the second electrode EL2 is connected to the auxiliary electrode, the resistance of the second electrode EL2 may be reduced.
  • the organic electroluminescent device As a voltage is applied to each of the first electrode EL1 and the second electrode EL2 , holes injected from the first electrode EL1 pass through the hole transport region HTR Electrons moved to the emission layer EML and injected from the second electrode EL2 move to the emission layer EML through the electron transport region ETR. Electrons and holes recombine in the emission layer EML to generate excitons, and the excitons fall from the excited state to the ground state and emit light.
  • the organic electroluminescent device is a top emission type
  • the first electrode EL1 may be a reflective electrode
  • the second electrode EL2 may be a transmissive electrode or a transflective electrode.
  • the organic EL device 10 When the organic EL device 10 is a bottom emission type, the first electrode EL1 may be a transmissive electrode or a transflective electrode, and the second electrode EL2 may be a reflective electrode.
  • the organic electroluminescent device may exhibit improved luminous efficiency and lifetime characteristics by using the organic compound of the present invention as a light emitting layer material.
  • 26 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-phenylnaphthalen-2-amine and diphenylamine were used as reactants;
  • 21 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-phenylnaphthalen-1-amine and N-phenylnaphthalen-2-amine were used;
  • 29 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-2-yl)amine and N-(naphthalen-2-yl)naphthalen-1-amine were used as reactants;
  • 31 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-2-yl)amine and bis(4-(tert-butyl)phenyl)amine were used;
  • 35 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that N-(4-(tert-butyl)phenyl)naphthalen-1-amine was used;
  • 29 g of the target compound was obtained by performing the same procedure as in [Preparation Example 3] except that N-(naphthalen-2-yl)naphthalen-1-amine and bis(4-(tert-butyl)phenyl)amine were used. got;
  • N-(4-(tert-butyl)phenyl)naphthalen-1-amine and N-(4-(tert-butyl)phenyl)naphthalen-2-amine are the same as in [Preparation Example 3] except that The procedure was carried out to obtain 28 g of the desired compound;
  • N-phenylphenanthren-9-amine and bis(4-(tert-butyl)phenyl)amine were used, and the same procedure as in [Preparation Example 3] was followed to obtain 32 g of the target compound;
  • 29 g of the desired compound was obtained in the same manner as in [Preparation Example 1] except that N-(4-(tert-butyl)phenyl)phenanthren-9-amine was used;
  • 29 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that di(isoquinolin-6-yl)amine was used;
  • di(isoquinolin-6-yl)amine and diphenylamine were used, and the same procedure as in [Preparation Example 3] was performed to obtain 17 g of the desired compound;
  • di(isoquinolin-6-yl)amine and di(quinolin-5-yl)amine were used, and the same procedure as in [Preparation Example 3] was performed to obtain 15 g of the desired compound;
  • 31 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that 4-bromo-3,5-difluoro-3'-(trifluoromethyl)-1,1'-biphenyl was used;
  • 16 g of the target compound was obtained by performing the same procedure as in [Preparation Example 56] except that (4-bromo-3,5-difluorophenyl)trimethylsilane was used;
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing with distilled water, it is ultrasonically cleaned with a solvent such as isopropyl alcohol, acetone, ethanol, etc., dried, transferred to a UV OZONE cleaner (Power sonic 405, Hwashin Tech), and then the substrate is cleaned using UV for 5 minutes and vacuum evaporator The substrate was transferred to
  • a hole injection layer was formed with a thickness of 80 nm DS-205 (Doosan Corporation) on the prepared ITO transparent electrode, and a-NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl -(1,1'-biphenyl)-4.4'-diamine) was vacuum deposited to a thickness of 30 nm to form a hole transport layer.
  • DS-205 Doosan Corporation
  • the compounds prepared in Synthesis Examples 1 to 97 as a green dopant material and DS-H522 and DS-TD-002 as green light-emitting host materials were applied as common hosts to form a light-emitting layer with a thickness of 30 nm.
  • An electron transport layer was formed on the light emitting layer by using an electron transport material, TPBi(2,2',2"-(Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) to a thickness of 30 nm. Then, LiF was applied to a thickness of 1 nm.
  • a device was manufactured by forming an electron injection layer with a cathode and forming 200 nm of Al as a cathode.
  • a red organic EL device was manufactured according to the following procedure.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1500 ⁇ was washed with distilled water ultrasonically. After washing with distilled water, it is ultrasonically cleaned with a solvent such as isopropyl alcohol, acetone, ethanol, etc., dried and transferred to a UV OZONE cleaner (Power sonic 405, Hwashin Tech). The substrate was transferred to
  • a hole injection layer was formed with a thickness of 80 nm DS-205 (Doosan Corporation) on the prepared ITO transparent electrode, and a-NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl -(1,1'-biphenyl)-4.4'-diamine) was vacuum deposited to a thickness of 30 nm to form a hole transport layer.
  • DS-205 Doosan Corporation
  • the compounds prepared in Synthesis Examples 1 to 97 as a red dopant material and DS-H522 and DS-TD-018 as a red light-emitting host material were applied as a common host to form a light-emitting layer with a thickness of 30 nm.
  • an electron transporting material TPBi(2,2',2"-(Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)
  • TPBi(2,2',2"-(Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) was applied to a thickness of 30 nm to form an electron transport layer.
  • LiF was applied to a thickness of 1 nm.
  • a device was fabricated by forming an electron injection layer with a cathode and forming 200 nm of Al as a cathode.
  • An organic electroluminescent device was fabricated in the same manner as in the device fabrication example except for using DCM2, DCJTB, and DCDDC, which are representative of red light emitting materials, and the evaluation results of the fabricated device are shown in Table 2.
  • organic layer 31 hole transport layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to a novel compound with an excellent light-emitting capacity, and an organic electroluminescence element comprising same, wherein the compound according to the present invention, when used in an organic material layer material of an organic electroluminescence element, preferably as a phosphorescence host in a light-emitting layer, may improve light-emitting capacity, driving voltage, efficiency, and lifetime characteristics thereof.

Description

유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자 Organic light emitting compound and organic electroluminescent device using same
본 발명은 신규한 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자에 관한 것으로, 보다 상세하게는 전자수송 능력이 우수한 화합물 및 이를 하나 이상의 유기물층에 포함함으로써 발광효율, 구동 전압, 수명 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.The present invention relates to a novel organic light emitting compound and an organic electroluminescent device using the same, and more particularly, to a compound having excellent electron transport ability and an organic compound having improved characteristics such as luminous efficiency, driving voltage, and lifespan by including the compound in one or more organic material layers. It relates to an electroluminescent device.
최근, 영상 표시 장치로서, 유기 전계 발광 표시 장치(Organic Electroluminescence Display)의 개발이 왕성하게 이루어져 왔다. 유기 전계 발광 표시 장치는 액정 표시 장치 등과는 다르고, 제1 전극 및 제2 전극으로부터 주입된 정공 및 전자를 발광층에 있어서 재결합시킴으로써, 발광층에 있어서 유기 화합물을 포함하는 발광 재료를 발광시켜서 표시를 실현하는 소위 자발광형의 표시 장치이다.Recently, as an image display device, an organic electroluminescence display has been actively developed. An organic electroluminescent display device is different from a liquid crystal display device, and by recombination of holes and electrons injected from the first and second electrodes in the light emitting layer, the light emitting material containing the organic compound is emitted in the light emitting layer to realize display. It is a so-called self-emission type display device.
유기 전계 발광 소자를 표시 장치에 응용함에 있어서는, 유기 전계 발광 소자의 저 구동 전압화, 고 발광 효율화 및 장수명화가 요구되고 있으며, 이를 안정적으로 구현할 수 있는 유기 전계 발광 소자용 재료 개발이 지속적으로 요구되고 있다.In the application of organic electroluminescent devices to display devices, low driving voltage, high luminous efficiency and long lifespan of the organic electroluminescent devices are required, and the development of materials for organic electroluminescent devices that can stably implement these is continuously required. have.
특히, 최근에는 고효율 유기 전계 발광 소자를 구현하기 위해 삼중항 상태의 에너지를 이용하는 인광 발광이나, 삼중항 여기자의 충돌에 의해 일중항 여기자가 생성되는 현상(Triplet-triplet annihilation, TTA)를 이용한 지연 형광 발광에 대한 기술이 개발되고 있으며, 지연 형광 현상을 이용한 열 활성 지연 형광(Thermally Activated Delayed Fluorescence, TADF) 재료에 대한 개발이 진행되고 있다.In particular, in recent years, in order to realize a high-efficiency organic electroluminescent device, phosphorescence emission using triplet state energy or delayed fluorescence using triplet-triplet annihilation (TTA) in which singlet excitons are generated by collision of triplet excitons The technology for light emission is being developed, and the development of a thermally activated delayed fluorescence (TADF) material using delayed fluorescence is in progress.
본 발명은 신규 유기 화합물을 유기 전계 발광 소자에 적용할 수 있으며, 상기 신규 유기 화합물을 유기 전계 발광소자의 유기층에 사용하여 고효율 및 장수명 특성을 향상시키는 우수한 신규 유기 화합물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an excellent novel organic compound that can apply a novel organic compound to an organic electroluminescent device, and improves high efficiency and long life characteristics by using the novel organic compound in an organic layer of an organic electroluminescent device.
또한, 본 발명은 상기 신규 유기 화합물을 포함하는 열활성 지연 형광 발광 재료 및 열활성 지연 형광 발광 재료를 포함하는 유기 전계 발광 소자를 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide an organic electroluminescent device including a thermally activated delayed fluorescence emitting material and a thermally activated delayed fluorescence emitting material including the novel organic compound.
상기 목적을 달성하기 위하여 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.In order to achieve the above object, the present invention provides a compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2021019005-appb-img-000001
Figure PCTKR2021019005-appb-img-000001
상기 화학식 1에서,In Formula 1,
Ar1 내지 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되고,Ar 1 To Ar 4 Are the same as or different from each other, and each independently a C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group, Heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 to C 30 aryl group, heteroaryl group having 2 to 30 nuclear atoms, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group , C 3 ~ C 40 Alkylsilyl group, C 6 ~ C 60 Arylsilyl group, C 1 ~ C 40 Alkyl boron group, C 6 ~ C 60 Aryl boron group, C 6 ~ C 60 Aryl phosphine group , C 6 ~ C 60 Mono or diarylphosphinyl group and C 6 ~ C 60 Selected from the group consisting of an arylamine group,
상기 Ar1 내지 Ar4의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 모노 또는 디아릴포스피닐기 및 아릴아민기는 각각 독립적으로, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환될 경우 이들은 서로 동일하거나 상이할 수 있으며,The Ar 1 To Ar 4 Alkyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkylsilyl group, arylsilyl group, alkyl boron group, aryl boron group, aryl phosphine group , mono or diarylphosphinyl group and arylamine group are each independently a C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group , A heterocycloalkyl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyloxy group, C 6 to C 60 Arylox Period, C 3 ~ C 40 Alkylsilyl group, C 6 ~ C 60 Arylsilyl group, C 1 ~ C 40 Alkyl boron group, C 6 ~ C 60 Aryl boron group, C 6 ~ C 60 Arylphos Pin group, C 6 ~ C 60 Mono or diarylphosphinyl group and C 6 ~ C 60 When substituted with one or more substituents selected from the group consisting of an arylamine group or unsubstituted, and substituted with a plurality of substituents, they are the same as each other or may be different,
X는 수소, 중수소, 할로겐, 시아노기, 니트로기, 히드록실기, CF3기, B(OR5)2기, Si(R5)3 기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C5~C40의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기, C1~C40의 알킬옥시기, C15~C40의 아릴옥시기, C15~C40의 헤테로아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C10의 알칸설파이드기,C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기, C3~C10의 알칸 에테르기, C3~C10의 알콕시기, C3~C10의 티오알콕시기, C3~C10의 실릴기, C3~C10의 케토기, C3~C10의 알콕시카르보닐기, C3~C10의 아릴옥시 카르보닐기, C3~C10의 시아노기, C3~C10의 카르바모일기, C3~C10의 할로포르밀기, C3~C10의 포르밀기, C3~C10의 이소시아네이트기, C3~C10의 티오시아네이트기 및 C3~C10의 이소티오시아네이트기로 이루어진 군에서 선택되며,X is hydrogen, deuterium, halogen, cyano group, nitro group, hydroxyl group, CF 3 group, B(OR 5 ) 2 group, Si(R 5 ) 3 group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group, heterocycloalkyl group having 3 to 40 nuclear atoms, C 5 ~ C 40 aryl group, 2 to 30 nuclear atoms Heteroaryl group, C 1 ~ C 40 Alkyloxy group, C 15 ~ C 40 Aryloxy group, C 15 ~ C 40 Heteroaryloxy group, C 3 ~ C 40 Alkylsilyl group, C 6 ~ C 60 of Arylsilyl group, C 1 ~ C 40 Alkyl boron group, C 6 ~ C 60 Aryl boron group, C 1 ~ C 10 Alkanesulfide group, C 6 ~ C 60 Aryl phosphine group, C 6 ~ C 60 of mono or diarylphosphinyl group and C 6 ~ C 60 arylamine group, C 3 ~ C 10 alkane ether group, C 3 ~ C 10 alkoxy group, C 3 ~ C 10 thioalkoxy group, C 3 ~ C 10 silyl group, C 3 ~ C 10 keto group, C 3 ~ C 10 alkoxycarbonyl group, C 3 ~ C 10 aryloxy carbonyl group, C 3 ~ C 10 cyano group, C 3 ~ C 10 Carbamoyl group, C 3 ~ C 10 Haloformyl group, C 3 ~ C 10 Formyl group, C 3 ~ C 10 Isocyanate group, C 3 ~ C 10 Thiocyanate group and C 3 ~ C 10 Iso It is selected from the group consisting of thiocyanate groups,
상기 R5는 수소, 중수소, 할로겐, 시아노기, 니트로기, 치환 또는 비치환된 C1~C30의 알킬기, 치환 또는 비치환된 C2~C30의 알케닐기, 치환 또는 비치환된 C2~C30의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 치환 또는 비치환된 헤테로시클로알킬기, C6~C30의 치환 또는 비치환된 아릴기, 핵원자수 2 내지 30개의 치환 또는 비치환된 헤테로아릴기이다.Wherein R 5 is hydrogen, deuterium, halogen, cyano group, nitro group, substituted or unsubstituted C 1 ~ C 30 alkyl group, substituted or unsubstituted C 2 ~ C 30 alkenyl group, substituted or unsubstituted C 2 ~ C 30 alkynyl group, substituted or unsubstituted C 3 ~ C 40 cycloalkyl group, substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 ~ C 30 substituted or unsubstituted aryl group , a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
또한, 본 발명은 (i) 양극, (ii) 음극, 및 (iii) 상기 양극과 음극 사이에 개재된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중에서 적어도 하나는 제1항의 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전계 발광 소자를 제공한다.In addition, the present invention is an organic electroluminescent device comprising (i) an anode, (ii) a cathode, and (iii) one or more organic material layers interposed between the anode and the cathode, wherein at least one of the one or more organic material layers is the first It provides an organic electroluminescent device comprising the compound represented by the formula (1) of claim 1.
상기 유기물층은 정공 주입층, 정공 수송층, 정공 수송 보조층, 전자 수송층, 전자 수송 보조층 및 발광층으로 이루어진 군에서 선택되는 하나 이상의 층을 포함할 수 있다.The organic material layer may include one or more layers selected from the group consisting of a hole injection layer, a hole transport layer, a hole transport auxiliary layer, an electron transport layer, an electron transport auxiliary layer, and a light emitting layer.
상기 발광층은 지연 형광을 방출하는 것일 수 있다.The light emitting layer may emit delayed fluorescence.
상기 발광층은 호스트 및 도펀트를 포함하는 지연 형광 발광층이고, 상기 도펀트는 제1항의 화학식 1로 표시되는 화합물을 포함할 수 있다.The emission layer may be a delayed fluorescence emission layer including a host and a dopant, and the dopant may include the compound represented by Formula 1 of claim 1 .
상기 발광층은 청색광을 방출하는 열활성 지연 형광 발광층인 것일 수 있다.The light emitting layer may be a thermally activated delayed fluorescent light emitting layer that emits blue light.
본 발명에서 "치환 또는 비치환된"은 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아민기, 실릴기, 붕소기, 포스핀 옥사이드기, 포스핀 설파이드기, 알킬기, 알케닐기, 아릴기 및 헤테로 고리기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 것을 의미할 수 있다. 또한, 상기 예시된 치환기 각각은 치환 또는 비치환된 것일 수 있으나, 이에 한정되지는 않는다. 바람직하게, 바이페닐기는 아릴기 또는 페닐기를 의미할 수 있다.In the present invention, "substituted or unsubstituted" means a deuterium atom, a halogen atom, a cyano group, a nitro group, an amine group, a silyl group, a boron group, a phosphine oxide group, a phosphine sulfide group, an alkyl group, an alkenyl group, an aryl group, and It may mean unsubstituted or substituted with one or more substituents selected from the group consisting of heterocyclic groups. In addition, each of the exemplified substituents may be substituted or unsubstituted, but is not limited thereto. Preferably, the biphenyl group may mean an aryl group or a phenyl group.
본 발명에서 할로겐 원자의 예로는 불소 원자, 염소 원자, 브롬 원자 또는 요오드 원자일 수 있으나, 이에 한정되지는 않는다.Examples of the halogen atom in the present invention may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, but is not limited thereto.
본 발명에서 알킬기는 직쇄, 분지쇄 또는 고리형일 수 있다. 알킬기의 탄소수는 1 이상 50 이하, 1 이상 30이하, 1 이상 20 이하, 1 이상 10 이하 또는 1 이상 6 이하이다. 알킬기의 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, s-부틸기, t-부틸기, i-부틸기, 2- 에틸부틸기, 3, 3-디메틸부틸기, n-펜틸기, i-펜틸기, 네오펜틸기, t-펜틸기, 시클로펜틸기, 1-메틸펜틸기, 3-메틸펜틸기, 2-에틸펜틸기, 4-메틸-2-펜틸기, n-헥실기, 1-메틸헥실기, 2-에틸헥실기, 2-부틸헥실기, 시클로헥실기, 4-메틸시클로헥실기, 4-t-부틸시클로헥실기, n-헵틸기, 1-메틸헵틸기, 2,2-디메틸헵틸기, 2-에틸헵틸기, 2-부틸헵틸기, n-옥틸기, t-옥틸기, 2-에틸옥틸기, 2-부틸옥틸기, 2-헥실옥틸기, 3,7-디메틸옥틸기, 시클로옥틸기, n-노닐기, n-데실기, 아다만틸기, 2-에틸데실기, 2-부틸데실기, 2-헥실데실기, 2-옥틸데실기, n-운데실기, n-도데실기, 2-에틸도데실기, 2-부틸도데실기, 2-헥실도데실기, 2-옥틸도데실기, n-트리데실기, n-테트라데실기, n-펜타데실기, n-헥사데실기, 2-에틸 헥사데실기, 2-부틸헥사데실기, 2-헥실헥사데실기, 2-옥틸헥사데실기, n-헵타데실기, n-옥타데실기, n-노나데실기, n-이코실기, 2-에틸이코실기, 2-부틸이코실기, 2-헥실이코실기, 2-옥틸이코실기, n-헨이코실기, n-도코실기, n-트리코실기, n-테트라코실기, n-펜타코실기, n-헥사코실기, n-헵타코실기, n-옥타코실기, n-노나코실기, 및 n-트리아콘틸기 일 수 있으나, 이에 한정되지는 않는다.In the present invention, the alkyl group may be linear, branched or cyclic. Carbon number of an alkyl group is 1 or more and 50 or less, 1 or more and 30 or less, 1 or more and 20 or less, 1 or more and 10 or less, or 1 or more and 6 or less. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, i-butyl group, 2-ethylbutyl group, 3, 3-dimethylbutyl group , n-pentyl group, i-pentyl group, neopentyl group, t-pentyl group, cyclopentyl group, 1-methylpentyl group, 3-methylpentyl group, 2-ethylpentyl group, 4-methyl-2-pentyl group , n-hexyl group, 1-methylhexyl group, 2-ethylhexyl group, 2-butylhexyl group, cyclohexyl group, 4-methylcyclohexyl group, 4-t-butylcyclohexyl group, n-heptyl group, 1 -Methylheptyl group, 2,2-dimethylheptyl group, 2-ethylheptyl group, 2-butylheptyl group, n-octyl group, t-octyl group, 2-ethyloctyl group, 2-butyloctyl group, 2-hexyl group Siloctyl group, 3,7-dimethyloctyl group, cyclooctyl group, n-nonyl group, n-decyl group, adamantyl group, 2-ethyldecyl group, 2-butyldecyl group, 2-hexyldecyl group, 2-ox Tyldecyl group, n-undecyl group, n-dodecyl group, 2-ethyldodecyl group, 2-butyldodecyl group, 2-hexyldodecyl group, 2-octyldodecyl group, n-tridecyl group, n-tetradecyl group, n -Pentadecyl group, n-hexadecyl group, 2-ethyl hexadecyl group, 2-butylhexadecyl group, 2-hexylhexadecyl group, 2-octylhexadecyl group, n-heptadecyl group, n-octadecyl group , n-nonadecyl group, n-icosyl group, 2-ethyl icosyl group, 2-butyl icosyl group, 2-hexyl icosyl group, 2-octyl icosyl group, n-henicosyl group, n-docosyl group, n-tricho It may be a practical group, n-tetracosyl group, n-pentacosyl group, n-hexacosyl group, n-heptacosyl group, n-octacosyl group, n-nonacosyl group, and n-triacontyl group, but is limited thereto. it doesn't happen
본 발명에서 아릴기는 방향족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 아릴기의 고리 형성 탄소수는 6 이상 30 이하, 6 이상 20 이하, 또는 6 이상 15 이하일 수 있다. 아릴기의 예로는 페닐기, 나프틸기, 플루오레닐기, 안트라세닐기, 페난트릴기, 바이페닐기, 터페닐기, 쿼터페닐기, 퀸크페닐기, 섹시페닐기, 트리페닐에닐기, 피레닐기, 벤조 플루오란테닐기, 크리세닐기 일 수 있으나, 이에 한정되지는 않는다.In the present invention, the aryl group means any functional group or substituent derived from an aromatic hydrocarbon ring. The aryl group may be a monocyclic aryl group or a polycyclic aryl group. The number of ring carbon atoms of the aryl group may be 6 or more and 30 or less, 6 or more and 20 or less, or 6 or more and 15 or less. Examples of the aryl group include a phenyl group, a naphthyl group, a fluorenyl group, an anthracenyl group, a phenanthryl group, a biphenyl group, a terphenyl group, a quarterphenyl group, a quinkphenyl group, a sexyphenyl group, a triphenylenyl group, a pyrenyl group, a benzofluoranthenyl group , may be a chrysenyl group, but is not limited thereto.
본 발명에서 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 일 수 있으나, 이에 한정되지는 않는다. 바람직하게, 플루오레닐기가 치환되는 경우는 하기의 구조 일 수 있으나, 이에 한정되지는 않는다.In the present invention, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure, but is not limited thereto. Preferably, when the fluorenyl group is substituted, it may have the following structure, but is not limited thereto.
Figure PCTKR2021019005-appb-img-000002
Figure PCTKR2021019005-appb-img-000002
본 발명에서 헤테로아릴기는 이종 원소로 O, N, P, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기일 수 있다. 헤테로아릴기의 고리 형성 탄소수는 2 이상 30 이하 또는 2 이상 20 이하이다. 헤테로아릴기는 단환식 헤테로아릴기 또는 다환식 헤테로아릴기일 수 있다. 다환식 헤테로아릴기는 예를 들어, 2환 또는 3환 구조를 갖는 것일 수 있다. 헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 페녹사질기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, N-아릴카바졸기, N-헤테로아릴카바졸기, N-알킬카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오페닐기, 티에노티오펜기, 벤조퓨라닐기, 페난트롤린기, 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기, 디벤조실롤기 및 디벤조퓨라닐기 일 수 있으나, 이에 한정되지는 않는다.In the present invention, the heteroaryl group may be a heteroaryl group including at least one of O, N, P, Si, and S as a heterogeneous element. The number of ring carbon atoms in the heteroaryl group is 2 or more and 30 or less, or 2 or more and 20 or less. The heteroaryl group may be a monocyclic heteroaryl group or a polycyclic heteroaryl group. The polycyclic heteroaryl group may have, for example, a bicyclic or tricyclic structure. Examples of the heteroaryl group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, a triazole group, Acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phenoxazyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group , isoquinoline group, indole group, carbazole group, N-arylcarbazole group, N-heteroarylcarbazole group, N-alkylcarbazole group, benzooxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophenyl group, thienothiophene group, benzofuranyl group, phenanthroline group, thiazolyl group, isoxazolyl group, oxadiazolyl group, thiadiazolyl group, benzothiazolyl group, phenothiazinyl group, di It may be a benzosilol group and a dibenzofuranyl group, but is not limited thereto.
본 발명에서 아민기의 탄소수는 특별히 한정되지 않으나, 1 이상 30 이하일 수 있다. 아민기는 알킬 아민기 및 아릴 아민기를 포함할 수 있다. 아민기의 예로는 메틸아민기, 디메틸아민기, 페닐아민기, 나프틸아민기, 9-메틸-안트라세닐아민기, 트리페닐아민기 일 수 있으나, 이에 한정되지는 않는다.In the present invention, the number of carbon atoms in the amine group is not particularly limited, but may be 1 or more and 30 or less. The amine group may include an alkyl amine group and an aryl amine group. Examples of the amine group include, but are not limited to, a methylamine group, a dimethylamine group, a phenylamine group, a naphthylamine group, a 9-methyl-anthracenylamine group, and a triphenylamine group.
본 발명의 유기 화합물은 고효율 및 장수명 특성을 향상시키기 때문에 유기 전계 발광 소자의 유기물층의 재료로 사용될 수 있다. 특히, 본 발명의 유기 화합물을 발광층의 인광 호스트로 사용할 경우 발광 성능, 구동전압, 효율 및 수명 특성이 우수한 유기 전계 발광 소자를 제조할 수 있고, 나아가 성능 및 수명이 향상된 풀 칼라 디스플레이 패널도 제조할 수 있다.The organic compound of the present invention can be used as a material for an organic material layer of an organic electroluminescent device because it improves high efficiency and long life characteristics. In particular, when the organic compound of the present invention is used as a phosphorescent host of the light emitting layer, an organic electroluminescent device having excellent light emitting performance, driving voltage, efficiency and lifespan characteristics can be manufactured, and furthermore, a full color display panel with improved performance and lifespan can be manufactured. can
도 1은 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 단면도를 나타낸 것이다.1 is a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유기 전계 발광 소자의 단면도를 나타낸 것이다.2 is a cross-sectional view of an organic electroluminescent device according to an embodiment of the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
1. 유기 화합물1. Organic Compounds
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
본 발명의 유기 화합물은 N-B-N이 방향족 고리에 축합되어 모핵을 이루고, 상기 모핵에 다양한 치환체가 결합된 화합물로, 상기 화학식 1로 표시된다.The organic compound of the present invention is a compound in which N-B-N is condensed to an aromatic ring to form a parent nucleus, and various substituents are bonded to the parent nucleus, and is represented by Formula 1 above.
상기 본 발명의 유기 화합물에서 N-B-N이 이루는 고리구조인 부분은 전자 공여부(electron donor)이고, 전자 공여부의 질소에 결합된 및/또는 부분은 전자 수용부(electron acceptor)의 역할을 한다.In the organic compound of the present invention, a portion of the ring structure formed by N-B-N is an electron donor, and a portion bonded to nitrogen and/or a portion of the electron donor serves as an electron acceptor.
상기 유기 화합물은 전자 공여부의 질소에 결합된 전자 수용부를 포함함으로써, 분자 내 전자 밀도를 편재화시켜 일중항 에너지 준위(S1)와 삼중항 에너지 준위(T1) 차이의 절대값(△Est)이 작아지며, 삼중항 에너지 준위(T1)가 단일항 에너지 준위(S1)로 전환되는 역계간전이(reverse intersystem crossing, RISC)의 속도 정수가 커져 유기 전계 발광 소자의 장수명에 기여하는 효과가 있다.The organic compound includes an electron acceptor bonded to nitrogen of the electron donor site, thereby localizing the electron density in the molecule, and the absolute value (ΔEst) of the difference between the singlet energy level (S1) and the triplet energy level (T1) is small. The rate constant of reverse intersystem crossing (RISC) in which the triplet energy level (T1) is converted to the singlet energy level (S1) increases, thereby contributing to the long lifespan of the organic electroluminescent device.
따라서 본 발명의 유기 화합물을 유기 전계 발광 소자의 유기물층에 적용할 경우 유기 전계 발광 소자의 발광 특성이 개선됨과 동시에 정공 주입/수송 능력 및 전자 주입/수송 능력 등이 향상되어 구동 전압이 낮고, 장수명을 가지는 유기 전계 발광 소자를 제공할 수 있다.Therefore, when the organic compound of the present invention is applied to the organic material layer of the organic electroluminescent device, the light emitting characteristics of the organic electroluminescent device are improved, and at the same time, the hole injection/transport ability and electron injection/transport ability are improved, so that the driving voltage is low and the lifespan is reduced. It is possible to provide an organic electroluminescent device.
본 발명의 유기 화합물을 유기 전계 발광 소자의 유기물층에 적용할 수 있으며, 화학식 1로 표시되는 화합물은 지연 형광 발광 재료일 수 있다. 바람직하게, 상기 유기 화합물은 열활성 지연 형광(Thermally Activated Delayed Fluorescence) 재료일 수 있다.The organic compound of the present invention may be applied to an organic material layer of an organic electroluminescent device, and the compound represented by Formula 1 may be a delayed fluorescence emitting material. Preferably, the organic compound may be a thermally activated delayed fluorescence material.
또한, 본 발명의 유기 화합물은 일중항 에너지 준위(S1)와 삼중항 에너지 준위(T1) 차이가 작아 열활성 지연 형광 발광 재료로 사용될 수 있다. 바람직하게, 상기 유기 화합물은 청색광, 녹색광 또는 적색광을 발광하는 열활성 지연 형광 재료일 수 있다. 보다 바람직하게 화학식 1로 표시되는 화합물은 열활성 지연형광 발광하는 청색광 발광 재료로 사용될 수 있으나 이에 한정되는 것은 아니다.In addition, the organic compound of the present invention has a small difference between the singlet energy level (S1) and the triplet energy level (T1), so that it can be used as a thermally activated delayed fluorescent light emitting material. Preferably, the organic compound may be a thermally activated delayed fluorescent material emitting blue light, green light or red light. More preferably, the compound represented by Formula 1 may be used as a blue light emitting material emitting thermally activated delayed fluorescence, but is not limited thereto.
이러한 본 발명의 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 8로 표시되는 화합물로 이루어진 군으로 구체화될 수 있다.The compound represented by Chemical Formula 1 of the present invention may be embodied in the group consisting of compounds represented by the following Chemical Formulas 2 to 8.
[화학식 2][Formula 2]
Figure PCTKR2021019005-appb-img-000003
Figure PCTKR2021019005-appb-img-000003
[화학식 3][Formula 3]
Figure PCTKR2021019005-appb-img-000004
Figure PCTKR2021019005-appb-img-000004
[화학식 4] [Formula 4]
Figure PCTKR2021019005-appb-img-000005
Figure PCTKR2021019005-appb-img-000005
[화학식 5] [Formula 5]
Figure PCTKR2021019005-appb-img-000006
Figure PCTKR2021019005-appb-img-000006
[화학식 6] [Formula 6]
Figure PCTKR2021019005-appb-img-000007
Figure PCTKR2021019005-appb-img-000007
[화학식 7] [Formula 7]
Figure PCTKR2021019005-appb-img-000008
Figure PCTKR2021019005-appb-img-000008
[화학식 8] [Formula 8]
Figure PCTKR2021019005-appb-img-000009
Figure PCTKR2021019005-appb-img-000009
상기 화학식 2 내지 8에서,In Formulas 2 to 8,
Ar1 내지 Ar4은 상기 화학식1에서 정의한 바와 같다.Ar 1 to Ar 4 are as defined in Formula 1 above.
본 발명의 화학식 1로 표시되는 화합물에서, 상기 Ar1 내지 Ar2는 서로 동일하거나 상이하며, 각각 독립적으로 화학식A-1 내지 화학식 A-5 중 어느 하나로 표시되는 것임이 바람직하다.In the compound represented by Formula 1 of the present invention, Ar 1 to Ar 2 are the same as or different from each other, and it is preferable that each independently be represented by any one of Formulas A-1 to A-5.
[화학식 A-1][Formula A-1]
Figure PCTKR2021019005-appb-img-000010
Figure PCTKR2021019005-appb-img-000010
[화학식 A-2][Formula A-2]
Figure PCTKR2021019005-appb-img-000011
Figure PCTKR2021019005-appb-img-000011
[화학식 A-3][Formula A-3]
Figure PCTKR2021019005-appb-img-000012
Figure PCTKR2021019005-appb-img-000012
[화학식 A-4][Formula A-4]
Figure PCTKR2021019005-appb-img-000013
Figure PCTKR2021019005-appb-img-000013
[화학식 A-5][Formula A-5]
Figure PCTKR2021019005-appb-img-000014
Figure PCTKR2021019005-appb-img-000014
상기 화학식 A-1 내지 화학식 A-5에서,In Formulas A-1 to A-5,
점선은 축합이 이루어지는 부분을 의미하며,The dotted line means the part where the condensation takes place,
Z1은 서로 동일하거나 상이하며, 각각 독립적으로, C 또는 N이고,Z 1 are the same as or different from each other, each independently C or N,
R1 내지 R2는 서로 동일하거나 상이하며, 각각 독립적으로, 수소, 중수소, 할로겐, 시아노기, 니트로기, 치환 또는 비치환된 C1~C30의 알킬기, 치환 또는 비치환된 C2~C30의 알케닐기, 치환 또는 비치환된 C2~C30의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 치환 또는 비치환된 헤테로시클로알킬기, C6~C30의 치환 또는 비치환된 아릴기, 핵원자수 2 내지 30개의 치환 또는 비치환된 헤테로아릴기이다.R 1 To R 2 Are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, nitro group, substituted or unsubstituted C 1 ~ C 30 alkyl group, substituted or unsubstituted C 2 ~ C 30 alkenyl group, substituted or unsubstituted C 2 ~ C 30 alkynyl group, substituted or unsubstituted C 3 ~ C 40 cycloalkyl group, substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 ~ C 30 A substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
본 발명의 화학식 1로 표시되는 화합물에서, 상기 Ar3 내지 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 화학식B-1 내지 화학식 B-3 중 어느 하나로 표시되는 것임이 바람직하다.In the compound represented by Formula 1 of the present invention, Ar 3 to Ar 4 are the same as or different from each other, and it is preferable that each independently be represented by any one of Formulas B-1 to B-3.
[화학식 B-1][Formula B-1]
Figure PCTKR2021019005-appb-img-000015
Figure PCTKR2021019005-appb-img-000015
[화학식 B-2][Formula B-2]
Figure PCTKR2021019005-appb-img-000016
Figure PCTKR2021019005-appb-img-000016
[화학식 B-3][Formula B-3]
Figure PCTKR2021019005-appb-img-000017
Figure PCTKR2021019005-appb-img-000017
상기 화학식 B-1 내지 화학식 B-3에서,In Formulas B-1 to B-3,
*는 결합이 이루어지는 부분이고,* is the part where the bond is made,
Z2는 서로 동일하거나 상이하며, 각각 독립적으로, C 또는 N이고,Z 2 are the same as or different from each other, each independently C or N,
R3 내지 R4는 서로 동일하거나 상이하며, 각각 독립적으로, 수소, 중수소, 할로겐, 시아노기, 니트로기, 치환 또는 비치환된 C1~C30의 알킬기, 치환 또는 비치환된 C2~C30의 알케닐기, 치환 또는 비치환된 C2~C30의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 치환 또는 비치환된 헤테로시클로알킬기, C6~C30의 치환 또는 비치환된 아릴기, 핵원자수 2 내지 30개의 치환 또는 비치환된 헤테로아릴기이다.R 3 To R 4 Are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, nitro group, substituted or unsubstituted C 1 ~ C 30 alkyl group, substituted or unsubstituted C 2 ~ C 30 alkenyl group, substituted or unsubstituted C 2 ~ C 30 alkynyl group, substituted or unsubstituted C 3 ~ C 40 cycloalkyl group, substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 ~ C 30 A substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
본 발명의 화학식 1로 표시되는 화합물에서, 상기 Ar1 내지 Ar4의 Z1 내지 Z2가 모두 C인 경우, R1 내지 R4 중 적어도 하나는 핵원자수 2 내지 30개의 치환 또는 비치환된 헤테로아릴기인 화합물임이 바람직하다.In the compound represented by Formula 1 of the present invention, when Z 1 to Z 2 of Ar 1 to Ar 4 are all C, at least one of R 1 to R 4 is substituted or unsubstituted having 2 to 30 nuclear atoms It is preferred that the compound is a heteroaryl group.
이러한 본 발명의 화학식 1로 표시되는 화합물의 구체적인 예로는 하기 예시된 화합물로 이루어진 군에서 선택되는 어느 하나로 표시되는 화합물로 보다 구체화될 수 있다. 그러나 본 발명의 화학식 1로 표시되는 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.Specific examples of the compound represented by Formula 1 of the present invention may be further specified as a compound represented by any one selected from the group consisting of the compounds exemplified below. However, the compound represented by Formula 1 of the present invention is not limited by those exemplified below.
[규칙 제91조에 의한 정정 20.01.2022] 
Figure WO-DOC-FIGURE-85
[Correction by Rule 91 20.01.2022]
Figure WO-DOC-FIGURE-85
[규칙 제91조에 의한 정정 20.01.2022] 
Figure WO-DOC-FIGURE-86
[Correction by Rule 91 20.01.2022]
Figure WO-DOC-FIGURE-86
[규칙 제91조에 의한 정정 20.01.2022] 
Figure WO-DOC-FIGURE-87
[Correction by Rule 91 20.01.2022]
Figure WO-DOC-FIGURE-87
[규칙 제91조에 의한 정정 20.01.2022] 
Figure WO-DOC-FIGURE-88
[Correction by Rule 91 20.01.2022]
Figure WO-DOC-FIGURE-88
2. 유기 전계 발광 소자2. Organic electroluminescent device
본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.The present invention provides an organic electroluminescent device comprising the compound represented by Formula 1 above.
본 발명의 유기 화합물은 유기 전계 발광 소자에 사용되어 유기 전계 발광 소자의 효율 및 수명을 개선시킬 수 있다. 구체적으로, 상기 본 발명의 유기 화합물은 유기 전계 발광 소자의 발광층(EML)에 사용되어 유기 전계 발광 소자의 발광 효율 및 수명을 개선시킬 수 있다.The organic compound of the present invention can be used in an organic electroluminescent device to improve the efficiency and lifespan of the organic electroluminescent device. Specifically, the organic compound of the present invention can be used in the light emitting layer (EML) of the organic electroluminescent device to improve the luminous efficiency and lifespan of the organic electroluminescent device.
상기 유기 전계 발광 소자는 순차적으로 적층된 제1 전극(EL1), 정공 수송 영역(HTR), 발광층(EML), 전자 수송 영역(ETR) 및 제2 전극(EL2)을 포함할 수 있다. 제1 전극(EL1)과 제2 전극(EL2)은 서로 마주하고 배치되며, 제1 전극(EL1)과 제2 전극(EL2) 사이에는 복수의 유기층들이 배치될 수 있다. 복수의 유기층들은 정공 수송 영역(HTR), 발광층(EML), 및 전자 수송 영역(ETR)을 포함할 수 있다. 바람직하게, 유기 전계 발광 소자는 발광층(EML)에 상기 화학식 1로 표시되는 화합물을 포함할 수 있다The organic electroluminescent device may include a first electrode EL1 , a hole transport region HTR, an emission layer EML, an electron transport region ETR, and a second electrode EL2 that are sequentially stacked. The first electrode EL1 and the second electrode EL2 may face each other, and a plurality of organic layers may be disposed between the first electrode EL1 and the second electrode EL2 . The plurality of organic layers may include a hole transport region HTR, an emission layer EML, and an electron transport region ETR. Preferably, the organic electroluminescent device may include the compound represented by Formula 1 in the light emitting layer (EML).
또한, 유기 전계 발광 소자에서 상기 제1 전극(EL1)은 도전성을 갖는다. 제1 전극(EL1)은 금속 합금 또는 도전성 화합물로 형성될 수 있다. 제1 전극(EL1)은 애노드(anode)일 수 있다.In addition, in the organic electroluminescent device, the first electrode EL1 has conductivity. The first electrode EL1 may be formed of a metal alloy or a conductive compound. The first electrode EL1 may be an anode.
상기 제1 전극(EL1)은 투과형 전극, 반투과형 전극 또는 반사형 전극일 수 있다. 제1 전극(EL1)이 투과형 전극인 경우, 제1 전극(EL1)은 투명 금속 산화물 바람직하게, ITO(indium tin oxide), IZO(indium zinc oxide),ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 이루어질 수 있다. 제1 전극(EL1)이 반투과형 전극 또는 반사형 전극인 경우, 제1 전극(EL1)은 Ag, Mg, Cu, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti 또는 이들의 화합물이나 혼합물(예를 들어, Ag와 Mg의 혼합물)을 포함할 수 있다. 또는 상기 예시된 물질로 형성된 반사막이나 반투과막 및 ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 형성된 투명 도전막을 포함하는 복수의 층 구조일 수 있다. 바람직하게, 제1 전극(EL1)은 ITO/Ag/ITO의 복수의 층을 포함하는 것일 수 있다.The first electrode EL1 may be a transmissive electrode, a transflective electrode, or a reflective electrode. When the first electrode EL1 is a transmissive electrode, the first electrode EL1 is preferably a transparent metal oxide, such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc (ITZO). oxide) and the like. When the first electrode EL1 is a transflective electrode or a reflective electrode, the first electrode EL1 may include Ag, Mg, Cu, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti, or a compound or mixture thereof (eg, a mixture of Ag and Mg). Alternatively, a plurality of transparent conductive layers including a reflective or semi-transmissive layer formed of the above-described material and a transparent conductive layer formed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), etc. It may have a layer structure. Preferably, the first electrode EL1 may include a plurality of layers of ITO/Ag/ITO.
상기 유기 전계 발광 소자에서 정공 수송 영역(HTR)은 제1 전극(EL1) 상에 제공된다. 정공 수송 영역(HTR)은 정공 주입층(HIL), 정공 수송층(HTL), 정공 버퍼층 및 전자 저지층(EBL) 중 어느 하나 이상을 포함할 수 있다. 정공 수송 영역(HTR)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 포함할 수 있다.In the organic electroluminescent device, the hole transport region HTR is provided on the first electrode EL1 . The hole transport region HTR may include at least one of a hole injection layer (HIL), a hole transport layer (HTL), a hole buffer layer, and an electron blocking layer (EBL). The hole transport region HTR may include a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
상기 정공 수송 영역(HTR)은 정공 주입층(HIL) 또는 정공 수송층(HTL)의 단일층의 구조를 가질 수도 있고, 정공 주입 물질과 정공 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 정공 수송 영역(HTR)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 제1 전극(EL1)으로부터 차례로 적층된 정공주입층(HIL)/정공 수송층(HTL), 정공 주입층(HIL)/정공 수송층(HTL)/정공 버퍼층, 정공 주입층(HIL)/정공 버퍼층, 정공 수송층(HTL)/정공 버퍼층, 또는 정공 주입층(HIL)/정공 수송층(HTL)/전자 저지층(EBL)의 구조를 가질 수 있으나, 이에 한정되는 것은 아니다.The hole transport region HTR may have a single-layer structure of the hole injection layer HIL or the hole transport layer HTL, or may have a single-layer structure including a hole injection material and a hole transport material. In addition, the hole transport region HTR has a single layer structure made of a plurality of different materials, or a hole injection layer HIL/hole transport layer HTL, which are sequentially stacked from the first electrode EL1 , hole injection layer (HIL) / hole transport layer (HTL) / hole buffer layer, hole injection layer (HIL) / hole buffer layer, hole transport layer (HTL) / hole buffer layer, or hole injection layer (HIL) / hole transport layer (HTL) / electron blocking layer (EBL), but is not limited thereto.
상기 정공 수송 영역(HTR)은, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등과 같은 다양한 방법을 이용하여 형성될 수 있다.The hole transport region (HTR) may be formed by various methods such as a vacuum deposition method, a spin coating method, a casting method, a Langmuir-Blodgett (LB) method, an inkjet printing method, a laser printing method, and a laser induced thermal imaging (LITI) method. can be formed using
한편, 상기 유기 전계 발광 소자의 정공 주입층(HIL)은 공지의 정공 주입 재료를 포함할 수 있다. 바람직하게, 정공 주입층(HIL)은 트리페닐아민 함유 폴리에테르케톤(TPAPEK), 4-이소프로필-4'-메틸디페닐요오드늄테트라키스(펜타플루오로페닐)붕산염(PPBI), N, N'-디페닐-N, N'-비스-[4-(페닐-m-톨릴-아미노)-페닐]-페닐-4, 4'-디아민(DNTPD), 구리 프탈로시아닌 등의 프탈로시아닌 화합물, 4, 4', 4''-트리스(3-메틸 페닐 페닐아미노)트리페닐아민(m-MTDATA), N, N'-디(1-나프틸)-N,N'-디페닐벤지딘(NPB), N,N'-비스(1-나프틸)-N,N'-디페닐-4,4'-디아민(α-NPD), 4,4',4''-트리스{N,N 디페닐 아미노} 트리페닐아민(TDATA), 4,4',4''-트리스(N,N-2-나프틸 페닐아미노)트리페닐아민(2-TNATA), 폴리아닐린/도데실 벤젠 설폰산(PANI/DBSA), 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌설포네이트)(PEDOT/PSS), 폴리아닐린/캄퍼설폰산(PANI/CSA), 폴리아닐린/폴리(4-스티렌설포네이트)(PANI/PSS) 및 HAT-CN(dipyrazino[2,3-f: 2',3'-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile) 중 어느 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.Meanwhile, the hole injection layer (HIL) of the organic electroluminescent device may include a known hole injection material. Preferably, the hole injection layer (HIL) is triphenylamine-containing polyetherketone (TPAPEK), 4-isopropyl-4'-methyldiphenyliodoniumtetrakis(pentafluorophenyl)borate (PPBI), N, N Phthalocyanine compounds, such as '-diphenyl-N, N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-phenyl-4, 4'-diamine (DNTPD), copper phthalocyanine, 4, 4 ',4''-tris(3-methylphenyl phenylamino)triphenylamine (m-MTDATA), N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB), N ,N'-bis(1-naphthyl)-N,N'-diphenyl-4,4'-diamine (α-NPD), 4,4',4''-tris{N,N diphenyl amino} Triphenylamine (TDATA), 4,4',4''-tris(N,N-2-naphthylphenylamino)triphenylamine (2-TNATA), polyaniline/dodecylbenzene sulfonic acid (PANI/DBSA) , poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (PANI/CSA), polyaniline/poly(4-styrenesulfonate) (PANI) /PSS) and HAT-CN (dipyrazino[2,3-f: 2',3'-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile) It is not limited.
상기 유기 전계 발광 소자의 정공 수송층(HTL)은 공지의 정공 수송 재료를 포함할 수 있다. 바람직하게, 정공 수송층(HTL)은 1,1-비스[(디-4-트릴아미노)페닐]시클로헥산(TAPC), N-페닐카르바졸(N-Phenylcarbazole), 폴리비닐카르바졸(Polyvinyl carbazole) 등의 카르바졸 유도체, N,N'-비스(3-메틸페닐)-N,N'-디페닐-[1,1-비페닐]-4,4'-디아민(TPD), 4,4',4''-트리스(N-카르바졸릴)트리페닐아민(TCTA) N,N'-디(1-나프틸)-N,N'-디페닐벤지딘(NPB) 및 N,N'-비스(1-나프틸)-N,N'-디페닐-4,4'-디아민(α-NPD) 중 어느 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다. The hole transport layer (HTL) of the organic electroluminescent device may include a known hole transport material. Preferably, the hole transport layer (HTL) is 1,1-bis[(di-4-trilamino)phenyl]cyclohexane (TAPC), N-phenylcarbazole (N-Phenylcarbazole), polyvinyl carbazole (Polyvinyl carbazole) carbazole derivatives such as N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine (TPD), 4,4', 4''-tris(N-carbazolyl)triphenylamine (TCTA) N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB) and N,N'-bis( 1-naphthyl)-N,N'-diphenyl-4,4'-diamine (α-NPD) may be included, but is not limited thereto.
한편, 정공 수송 영역(HTR)은 전자 저지층(EBL)을 더 포함하고, 전자 저지층(EBL)은 정공 수송층(HTL)과 발광층(EML) 사이에 배치될 수 있다. 전자 저지층(EBL)은 전자 수송 영역(ETR)으로부터 정공 수송 영역(HTR)으로의 전자 주입을 방지하는 역할을 한다.Meanwhile, the hole transport region HTR may further include an electron blocking layer EBL, and the electron blocking layer EBL may be disposed between the hole transport layer HTL and the emission layer EML. The electron blocking layer EBL serves to prevent electron injection from the electron transport region ETR to the hole transport region HTR.
상기 전자 저지층(EBL)은 본 발명이 속한 기술분야에 알려진 일반적인 재료를 포함할 수 있다. 전자 저지층(EBL)은 예를 들어, N-페닐카바졸, 폴리비닐카바졸 등의 카바졸계 유도체, 플루오렌(fluorine)계 유도체, TPD(N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(Ncarbazolyl)triphenylamine) 등과 같은 트리페닐아민계 유도체, NPD(N,N'-di(naphthalene-l-yl)-N,N'-diplienyl-benzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis(4-methylphenyl)benzenamine]), HMTPD(4,4'-Bis[N,N'-(3-tolyl)amino]-3,3'-dimethylbiphenyl) 및 mCP 중 어느 하나를 포함할 수 있다. 또한, 전자 저지층(EBL)은 본 발명의 유기 화합물을 포함할 수 있다.The electron blocking layer (EBL) may include a general material known in the art to which the present invention pertains. The electron blocking layer (EBL) is, for example, a carbazole-based derivative such as N-phenylcarbazole or polyvinylcarbazole, a fluorine-based derivative, or TPD (N,N'-bis(3-methylphenyl)-N). Triphenylamine derivatives such as ,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(Ncarbazolyl)triphenylamine), NPD(N, N'-di(naphthalene-l-yl)-N,N'-diplienyl-benzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis(4-methylphenyl)benzenamine]), HMTPD(4, 4'-Bis[N,N'-(3-tolyl)amino]-3,3'-dimethylbiphenyl) and mCP In addition, the electron blocking layer (EBL) is an organic compound of the present invention may include
상기 정공 수송 영역(HTR)의 두께는 약 100Å 내지 약 10000Å일 수 있다. 바람직하게, 약 100Å 내지 약 5000Å일 수 있다. 정공 주입층(HIL)의 두께는 약 30Å 내지 약 1000Å일 수 있고, 정공 수송층(HTL)의 두께는 약 30Å 내지 약 1000Å일 수 있으며, 전자 저지층(EBL)의 두께는 약 10Å 내지 약 1000Å일 수 있다. 정공 수송영역(HTR), 정공 주입층(HIL), 정공 수송층(HTL) 및 전자 저지층(EBL)의 두께가 상기 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 정공 수송 특성을 얻을 수 있다.The hole transport region HTR may have a thickness of about 100 Å to about 10000 Å. Preferably, it may be from about 100 Angstroms to about 5000 Angstroms. The thickness of the hole injection layer (HIL) may be about 30 Å to about 1000 Å, the thickness of the hole transport layer (HTL) may be about 30 Å to about 1000 Å, and the thickness of the electron blocking layer (EBL) may be about 10 Å to about 1000 Å. can When the thickness of the hole transport region (HTR), hole injection layer (HIL), hole transport layer (HTL), and electron blocking layer (EBL) satisfies the above ranges, satisfactory hole transport characteristics can be obtained without a substantial increase in driving voltage. have.
상기 정공 수송 영역(HTR)은 앞서 언급한 물질 외에, 도전성 향상을 위하여 전하 생성 물질을 더 포함할 수 있다. 전하 생성 물질은 정공 수송 영역(HTR) 내에 균일하게 또는 불균일하게 분산되어 있을 수 있다. 바람직하게, 전하 생성 물질은 p-도펀트(dopant)일 수 있다. p-도펀트는 퀴논(quinone) 유도체, 금속 산화물 및 시아노(cyano)기함유 화합물 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다. 바람직하게, p-도펀트의 비제한적인 예로는, TCNQ(Tetracyanoquinodimethane) 및 F4-TCNQ(2,3,5,6-tetrafluoro-tetracyanoquinodimethane) 등과 같은 퀴논 유도체, 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물 등을 들 수 있으나, 이에 한정되는 것은 아니다.In addition to the aforementioned materials, the hole transport region HTR may further include a charge generating material to improve conductivity. The charge generating material may be uniformly or non-uniformly dispersed in the hole transport region HTR. Preferably, the charge generating material may be a p-dopant. The p-dopant may be any one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto. Preferably, non-limiting examples of the p-dopant include quinone derivatives such as TCNQ (Tetracyanoquinodimethane) and F4-TCNQ (2,3,5,6-tetrafluoro-tetracyanoquinodimethane), and metal oxides such as tungsten oxide and molybdenum oxide. may be mentioned, but is not limited thereto.
상기 정공 수송 영역(HTR)은 정공 주입층(HIL) 및 정공 수송층([0064] HTL) 외에, 정공 버퍼층 및 전자 저지층(EBL) 중 어느 하나 이상을 더 포함할 수 있다. 정공 버퍼층은 발광층(EML)에서 방출되는 광의 파장에 따른 공진 거리를 보상하여 광 방출 효율을 증가시킬 수 있다. 정공 버퍼층에 포함되는 물질로는 정공 수송 영역(HTR)에 포함될 수 있는 물질을 사용할 수 있다.The hole transport region (HTR) may further include any one or more of a hole buffer layer and an electron blocking layer (EBL) in addition to the hole injection layer (HIL) and the hole transport layer (HTL). The hole buffer layer may increase light emission efficiency by compensating for a resonance distance according to a wavelength of light emitted from the emission layer EML. As a material included in the hole buffer layer, a material capable of being included in the hole transport region (HTR) may be used.
상기 유기 전계 발광 소자에서 발광층(EML)은 정공 수송 영역(HTR) 상에 제공된다. 바람직하게, 발광층(EML)의 두께는 약 100 Å 이상 600 Å이하일 수 있다. 발광층(EML)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다.In the organic electroluminescent device, the emission layer EML is provided on the hole transport region HTR. Preferably, the thickness of the emission layer EML may be greater than or equal to about 100 Å and less than or equal to 600 Å. The emission layer EML may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials.
상기 발광층(EML)은 적색광, 녹색광, 청색광, 백색광, 황색광, 시안광 중 하나를 발광하는 것일 수 있다. 발광층(EML)은 형광 발광 물질 또는 인광 발광 물질을 포함할 수 있다.The emission layer EML may emit one of red light, green light, blue light, white light, yellow light, and cyan light. The emission layer EML may include a fluorescent light emitting material or a phosphorescent light emitting material.
상기 발광층(EML)은 형광 발광층일 수 있다. 발광층(EML)에서 방출된 광 중 일부는 열활성 지연 형광 발광(Thermally Activated Delayed Fluorescence, TADF)에 의한 것일 수 있다. 바람직하게, 발광층(EML)은 열활성 지연 형광 발광하는 발광 성분을 포함하는 것일 수 있으며 보다 바람직하게, 발광층(EML)은 녹색광 또는 적색광을 방출하는 열활성 지연 형광 발광하는 발광층일 수 있다.The emission layer EML may be a fluorescent emission layer. Some of the light emitted from the emission layer EML may be due to thermally activated delayed fluorescence (TADF). Preferably, the light emitting layer (EML) may include a light emitting component that emits thermally activated delayed fluorescence, and more preferably, the light emitting layer (EML) may be a light emitting layer that emits thermally activated delayed fluorescence that emits green light or red light.
상기 발광층(EML)은 호스트 및 도펀트를 포함하며, 호스트는 지연 형광 발광용 호스트이고, 도펀트는 지연 형광 발광용 도펀트일 수 있다. 한편, 본 발명의 유기 화합물은 발광층(EML)의 도펀트 재료로 포함될 수 있다. 바람직하게, 본 발명의 유기 화합물은 TADF 도펀트로 사용되는 것일 수 있다.The emission layer EML may include a host and a dopant, the host may be a host for delayed fluorescence emission, and the dopant may be a dopant for delayed fluorescence emission. Meanwhile, the organic compound of the present invention may be included as a dopant material of the emission layer (EML). Preferably, the organic compound of the present invention may be one used as a TADF dopant.
상기 발광층(EML)은 공지의 호스트 재료를 포함할 수 있다. 바람직하게, 발광층(EML)은 호스트 재료로, Alq3(tris(8-hydroxyquinolino)aluminum), CBP(4,4'-bis(N-carbazolyl)-1,1'-biphenyl), PVK(poly(n-vinylcabazole), ADN(9,10-di(naphthalene-2-yl)anthracene), TCTA(4,4',4''-Tris(carbazol-9-yl)-triphenylamine), TPBi(1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene), TBADN(3-tert-butyl-9,10-di(naphth-2-yl)anthracene), DSA(distyrylarylene), CDBP(4,4'-bis(9-carbazolyl)-2,2'-dimethyl-biphenyl), MADN(2-Methyl-9,10-bis(naphthalen-2-yl)anthracene), DPEPO (bis[2-(diphenylphosphino)phenyl] ether oxide), CP1 (Hexaphenyl cyclotriphosphazene), UGH2 (1,4-Bis(triphenylsilyl)benzene), DPSiO3 (Hexaphenylcyclotrisiloxane), DPSiO4 (Octaphenylcyclotetrasiloxane) 및 PPF (2,8-Bis(diphenylphosphoryl)dibenzofuran) 중 어느 하나를 포함할 수 있으며, 이에 한정되는 것은 아니다. 한편, 상기 호스트 재료 이외에 공지의 지연 형광 발광 호스트 재료를 포함할 수 있다.The emission layer EML may include a known host material. Preferably, the light emitting layer (EML) is a host material, Alq3 (tris (8-hydroxyquinolino) aluminum), CBP (4,4'-bis (N-carbazolyl) -1,1'-biphenyl), PVK (poly (n) -vinylcabazole), ADN(9,10-di(naphthalene-2-yl)anthracene), TCTA(4,4',4''-Tris(carbazol-9-yl)-triphenylamine), TPBi(1,3, 5-tris(N-phenylbenzimidazole-2-yl)benzene), TBADN(3-tert-butyl-9,10-di(naphth-2-yl)anthracene), DSA(distyrylarylene), CDBP(4,4'- bis(9-carbazolyl)-2,2'-dimethyl-biphenyl), MADN(2-Methyl-9,10-bis(naphthalen-2-yl)anthracene), DPEPO (bis[2-(diphenylphosphino)phenyl] ether oxide), CP1 (Hexaphenyl cyclotriphosphazene), UGH2 (1,4-Bis(triphenylsilyl)benzene), DPSiO3 (Hexaphenylcyclotrisiloxane), DPSiO4 (Octaphenylcyclotetrasiloxane) and PPF (2,8-Bis(diphenylphosphoryl)dibenzofuran) On the other hand, in addition to the host material, a known delayed fluorescence emission host material may be included.
상기 발광층(EML)은 공지의 도펀트 재료를 더 포함할 수 있다. 바람직하게, 발광층(EML)은 도펀트로, 스티릴 유도체(예를 들어, 1, 4-bis[2-(3-Nethylcarbazoryl)vinyl]benzene(BCzVB), 4-(di-p-tolylamino)-4'-[(di-p-tolylamino)styryl]stilbene(DPAVB), N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)phenylbenzenamine(NBDAVBi), 페릴렌 및 이의 유도체(예를 들어, 2, 5, 8, 11-Tetra-t-butylperylene(TBP)) 및, 피렌 및 이의 유도체(예를 들어, 1, 1-dipyrene, 1, 4-dipyrenylbenzene, 1,4-Bis(N,N-Diphenylamino)pyrene) 등의 2,5,8,11-Tetra-tbutylperylene(TBP)) 중 어느 하나를 포함할 수 있으며, 이에 한정되는 것은 아니다.The emission layer EML may further include a known dopant material. Preferably, the emission layer (EML) is a dopant, and a styryl derivative (eg, 1,4-bis[2-(3-Nethylcarbazoryl)vinyl]benzene(BCzVB), 4-(di-p-tolylamino)-4 '-[(di-p-tolylamino)styryl]stilbene(DPAVB), N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl) vinyl)phenyl)phenylbenzenamine (NBDAVBi), perylene and its derivatives (eg 2, 5, 8, 11-Tetra-t-butylperylene (TBP)) and pyrene and its derivatives (eg 1, 1 2,5,8,11-Tetra-tbutylperylene (TBP)) such as -dipyrene, 1,4-dipyrenylbenzene, 1,4-Bis(N,N-Diphenylamino)pyrene), etc. It is not limited.
또한, 상기 유기 전계 발광 소자에서 전자 수송 영역(ETR)은 발광층(EML) 상에 제공된다. 전자 수송 영역(ETR)은, 전자 저지층, 전자 수송층(ETL) 및 전자 주입층(EIL) 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.In addition, in the organic electroluminescent device, the electron transport region ETR is provided on the emission layer EML. The electron transport region ETR may include at least one of an electron blocking layer, an electron transport layer ETL, and an electron injection layer EIL, but is not limited thereto.
상기 전자 수송 영역(ETR)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. 바람직하게, 전자 수송 영역(ETR)은 전자 주입층(EIL) 또는 전자 수송층(ETL)의 단일층의 구조를 가질 수도 있고, 전자 주입 물질과 전자 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 전자 수송 영역(ETR)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 제1 전극(EL1)으로부터 차례로 적층된 전자 수송층(ETL)/전자 주입층(EIL), 정공 저지층/전자 수송층(ETL)/전자 주입층(EIL) 구조를 가질 수 있으나, 이에 한정되는 것은 아니다. 바람직하게, 전자 수송 영역(ETR)의 두께는 약 100Å 내지 약 1500Å일 수 있다.The electron transport region ETR may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multilayer structure having a plurality of layers made of a plurality of different materials. Preferably, the electron transport region ETR may have a single layer structure of the electron injection layer EIL or the electron transport layer ETL, or may have a single layer structure including an electron injection material and an electron transport material. In addition, the electron transport region ETR has a single layer structure made of a plurality of different materials, or an electron transport layer ETL/electron injection layer EIL and hole blocking layer sequentially stacked from the first electrode EL1 . It may have a layer/electron transport layer (ETL)/electron injection layer (EIL) structure, but is not limited thereto. Preferably, the thickness of the electron transport region ETR may be about 100 Å to about 1500 Å.
한편, 전자 수송 영역(ETR)은 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등과 같은 다양한 방법을 이용하여 형성될 수 있다.Meanwhile, the electron transport region (ETR) is formed by various methods such as vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB), inkjet printing, laser printing, and laser induced thermal imaging (LITI). can be formed using
상기 전자 수송 영역(ETR)이 전자 수송층(ETL)을 포함할 경우, 전자 수송 영역(ETR)은 Alq3(Tris(8-hydroxyquinolinato)aluminum), 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, 2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine, 2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10-dinaphthylanthracene, TPBi(1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene), BCP(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen(4,7-Diphenyl-1,10-phenanthroline), TAZ(3-(4-Biphenylyl)-4-phenyl-5-tertbutylphenyl-1,2,4-triazole), NTAZ(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole), tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole), BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum), Bebq2(berylliumbis(benzoquinolin-10-olate), ADN(9,10-di(naphthalene-2-yl)anthracene) 및 이들의 혼합물을 포함할 수 있으나, 이에 한정되는 것은 아니다.When the electron transport region ETR includes the electron transport layer ETL, the electron transport region ETR includes Alq3 (Tris(8-hydroxyquinolinato)aluminum), 1,3,5-tri[(3-pyridyl)- phen-3-yl]benzene, 2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine, 2-(4-(N-phenylbenzoimidazolyl) -1-ylphenyl)-9,10-dinaphthylanthracene, TPBi(1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene), BCP(2,9-Dimethyl-4 ,7-diphenyl-1,10-phenanthroline), Bphen(4,7-Diphenyl-1,10-phenanthroline), TAZ(3-(4-Biphenylyl)-4-phenyl-5-tertbutylphenyl-1,2,4 -triazole), NTAZ(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole), tBu-PBD(2-(4-Biphenylyl)-5-(4- tert-butylphenyl)-1,3,4-oxadiazole), BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum), Bebq2(berylliumbis( benzoquinolin-10-olate), ADN (9,10-di(naphthalene-2-yl)anthracene), and mixtures thereof, but is not limited thereto.
상기 전자 수송 영역(ETR)이 전자 수송층(ETL)을 포함하는 경우 전자 수송층(ETL)들의 두께는 약 100Å 내지 약 1000Å일 수 있다. 바람직하게, 상기 전자 수송층(ETL)들의 두께는 약 150Å 내지 약 500Å일 수 있다. 전자 수송층(ETL)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 전자 수송 특성을 얻을 수 있다.When the electron transport region ETR includes the electron transport layer ETL, the thickness of the electron transport layers ETL may be about 100 Å to about 1000 Å. Preferably, the thickness of the electron transport layers (ETL) may be about 150 Å to about 500 Å. When the thickness of the electron transport layers ETL satisfies the above-described range, a satisfactory electron transport characteristic may be obtained without a substantial increase in driving voltage.
상기 전자 수송 영역(ETR)이 전자 주입층(EIL)을 포함할 경우, 전자 수송 영역(ETR)은 LiF, LiQ(Lithium quinolate), Li2O, BaO, NaCl, CsF, Yb와 같은 란타넘족 금속, 또는 RbCl, RbI, KI와 같은 할로겐화금속 등이 사용될 수 있으나, 이에 한정되는 것은 아니다. When the electron transport region ETR includes the electron injection layer EIL, the electron transport region ETR includes a lanthanide metal such as LiF, lithium quinolate (LiQ), Li O, BaO, NaCl, CsF, Yb, or A metal halide such as RbCl, RbI, or KI may be used, but is not limited thereto.
상기 전자 주입층(EIL)은 또한 전자 수송 물질과 절연성의 유기 금속염(organo metal salt)이 혼합된 물질로 이루어질 수 있다. 유기 금속염은 에너지 밴드 갭(energy band gap)이 대략 4eV 이상의 물질이 될 수 있다. 바람직하게, 유기 금속염은 금속 아세테이트(metal acetate), 금속 벤조에이트(metal benzoate), 금속 아세토아세테이트(metal acetoacetate), 금속 아세틸아세토네이트(metal acetylacetonate) 또는 금속 스테아레이트(stearate)를 포함할 수 있다.The electron injection layer EIL may also be made of a material in which an electron transport material and an insulating organo metal salt are mixed. The organometallic salt may be a material having an energy band gap of about 4 eV or more. Preferably, the organometallic salt may include metal acetate, metal benzoate, metal acetoacetate, metal acetylacetonate or metal stearate.
상기 전자 수송 영역(ETR)이 전자 주입층(EIL)을 포함하는 경우 전자 주입층(EIL)들의 두께는 약 1Å 내지 약 100Å일 수 있다. 바람직하게, 전자 주입층(EIL)들의 두께는 약 3Å 내지 약 90Å일 수 있다. 전자 주입층(EIL)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다.When the electron transport region ETR includes the electron injection layer EIL, the electron injection layers EIL may have a thickness of about 1 Å to about 100 Å. Preferably, the thickness of the electron injection layers EIL may be about 3 Å to about 90 Å. When the thickness of the electron injection layers EIL satisfies the above-described range, a satisfactory electron injection characteristic may be obtained without a substantial increase in driving voltage.
상기 전자 수송 영역(ETR)은 정공 저지층을 포함할 수 있으며, 정공 저지층은 BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) 및 Bphen(4,7-diphenyl-1,10-phenanthroline) 중 어느 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.The electron transport region ETR may include a hole blocking layer, which includes 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and 4,7-diphenyl- (Bphen). 1,10-phenanthroline), but is not limited thereto.
한편, 제2 전극(EL2)은 전자 수송 영역(ETR) 상에 제공된다. 제2 전극(EL2)은 도전성을 갖는다. 제2 전극(EL2)은 금속 합금 또는 도전성 화합물로 형성될 수 있다. 제2 전극(EL2)은 캐소드(cathode)일 수 있다. 제2 전극(EL2)은 투과형 전극, 반투과형 전극 또는 반사형 전극일 수 있다. 제2 전극(EL2)DL 투과형 전극인 경우, 제2 전극(EL2)은 투명 금속 산화물 바람직하게, ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 이루어질 수 있다. 제2 전극(EL2)이 반투과형 전극 또는 반사형 전극인 경우, 제2 전극(EL2)은 Ag, Mg, Cu, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti 또는 이들의 화합물이나 혼합물(예를 들어, Ag와 Mg의 혼합물)을 포함할 수 있다. 또는 상기 예시된 물질로 형성된 반사막이나 반투과막 및 ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 형성된 투명 도전막을 포함하는 복수의 층 구조일 수 있다. 제2 전극(EL2)은 보조 전극과 연결될 수 있다. 제2 전극([0151] EL2)이 보조 전극과 연결되면, 제2 전극(EL2)의 저항을 감소시킬 수 있다.Meanwhile, the second electrode EL2 is provided on the electron transport region ETR. The second electrode EL2 has conductivity. The second electrode EL2 may be formed of a metal alloy or a conductive compound. The second electrode EL2 may be a cathode. The second electrode EL2 may be a transmissive electrode, a transflective electrode, or a reflective electrode. When the second electrode EL2 DL is a transmissive electrode, the second electrode EL2 is preferably a transparent metal oxide, preferably indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or indium tin zinc (ITZO). oxide) and the like. When the second electrode EL2 is a transflective electrode or a reflective electrode, the second electrode EL2 may include Ag, Mg, Cu, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti, or a compound or mixture thereof (eg, a mixture of Ag and Mg). Alternatively, a plurality of transparent conductive layers including a reflective or semi-transmissive layer formed of the above-described material and a transparent conductive layer formed of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium tin zinc oxide (ITZO), etc. It may have a layer structure. The second electrode EL2 may be connected to the auxiliary electrode. When the second electrode EL2 is connected to the auxiliary electrode, the resistance of the second electrode EL2 may be reduced.
상기 유기 전계 발광 소자에서, 제1 전극(EL1)과 제2 전극(EL2)에 각각 전압이 인가됨에 따라 제1 전극(EL1)으로 부터 주입된 정공(hole)은 정공 수송 영역(HTR)을 거쳐 발광층(EML)으로 이동되고, 제2 전극(EL2)으로부터 주입된 전자가 전자 수송 영역(ETR)을 거쳐 발광층(EML)으로 이동된다. 전자와 정공은 발광층(EML)에서 재결합하여 여기자(exciton)을 생성하며, 여기자가 여기 상태에서 바닥 상태로 떨어지면서 발광하게 된다. 유기 전계 발광 소자가 전면 발광형일 경우, 제1 전극(EL1)은 반사형 전극이고, 제2 전극(EL2)은 투과형 전극 또는 반투과형 전극일 수 있다. 유기 전계 발광 소자(10)가 배면 발광형일 경우, 제1 전극(EL1)은 투과형 전극 또는 반투과형 전극이고, 제2 전극(EL2)은 반사형 전극일 수 있다.In the organic electroluminescent device, as a voltage is applied to each of the first electrode EL1 and the second electrode EL2 , holes injected from the first electrode EL1 pass through the hole transport region HTR Electrons moved to the emission layer EML and injected from the second electrode EL2 move to the emission layer EML through the electron transport region ETR. Electrons and holes recombine in the emission layer EML to generate excitons, and the excitons fall from the excited state to the ground state and emit light. When the organic electroluminescent device is a top emission type, the first electrode EL1 may be a reflective electrode, and the second electrode EL2 may be a transmissive electrode or a transflective electrode. When the organic EL device 10 is a bottom emission type, the first electrode EL1 may be a transmissive electrode or a transflective electrode, and the second electrode EL2 may be a reflective electrode.
상기 유기 전계 발광 소자는 본 발명의 유기 화합물을 발광층 재료로 사용하여, 개선된 발광 효율 및 수명 특성을 나타낼 수 있다.The organic electroluminescent device may exhibit improved luminous efficiency and lifetime characteristics by using the organic compound of the present invention as a light emitting layer material.
이하, 구체적인 실시예 및 비교예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples and comparative examples. The following examples are merely illustrative to help the understanding of the present invention, and the scope of the present invention is not limited thereto.
[준비예 1][Preparation Example 1]
2-bromo-N1,N1,N3,N3-tetra(naphthalen-2-yl)benzene-1,3-diamine 합성Synthesis of 2-bromo-N1,N1,N3,N3-tetra(naphthalen-2-yl)benzene-1,3-diamine
Figure PCTKR2021019005-appb-img-000022
Figure PCTKR2021019005-appb-img-000022
질소 기류 하에서 2-bromo-1,3-difluorobenzene(40.0g, 414mmol), di(naphthalen-2-yl)amine (234.3g, 869.4mmol), Cs2CO3(364g, 1117.8gmmol)를 DMF 300ml를 넣고 155℃에서 12시간 동안 교반하였다. 반응이 완결되면, 물을 넣고 반응을 종결한 후 재결정으로 목적 화합물을 68g(85%)얻었다.Add 300ml of DMF to 2-bromo-1,3-difluorobenzene(40.0g, 414mmol), di(naphthalen-2-yl)amine (234.3g, 869.4mmol), Cs2CO3(364g, 1117.8gmmol) under a nitrogen stream and 155℃ was stirred for 12 hours. When the reaction was completed, 68 g (85%) of the target compound was obtained by recrystallization after completion of the reaction by adding water.
GC-Mass (이론치: 690.17 g/mol, 측정치: 691.67 g/mol)GC-Mass (theoretical: 690.17 g/mol, measured: 691.67 g/mol)
1H-NMR: δ 7.78~7.71 (m, 8H), 7.5~7.4 (m, 16H), 7.20(m, 2H), 7.11(s, 4H), 6.84~6.75(m, 4H)1H-NMR: δ 7.78 to 7.71 (m, 8H), 7.5 to 7.4 (m, 16H), 7.20 (m, 2H), 7.11 (s, 4H), 6.84 to 6.75 (m, 4H)
[준비예 2][Preparation Example 2]
2-bromo-N1,N3-di(naphthalen-2-yl)-N1,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-di(naphthalen-2-yl)-N1,N3-diphenylbenzene-1,3-diamine
반응물로 N-phenylnaphthalen-2-amine을 사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합물 23g을 얻었다.;23 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that N-phenylnaphthalen-2-amine was used as a reactant;
GC-Mass (이론치: 590.14 g/mol, 측정치: 591.55 g/mol) GC-Mass (theoretical: 590.14 g/mol, measured: 591.55 g/mol)
[준비예 3][Preparation Example 3]
2-bromo-N1,N1-di(naphthalen-2-yl)-N3,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-di(naphthalen-2-yl)-N3,N3-diphenylbenzene-1,3-diamine
Figure PCTKR2021019005-appb-img-000023
Figure PCTKR2021019005-appb-img-000023
a-1a-1
2-bromo-1,3-difluorobenzene(40.0g, 414mmol), di(naphthalen-2-yl)amine (122.3g, 455mmol), Cs2CO3(364g, 1117.8gmmol)를 DMF 300ml를 첨가 후 155℃에서 12시간 동안 가열 환류 하였다. 반응 종결 후 혼합액을 M.C 500 mL로 추출한 후, 증류수로 세척하였다. 얻어진 유기층을 무수 MgSO4로 건조하고, 감압증류하고 실리카겔 컬럼크로마토그래피로 정제하여 목적 화합물 155g(수율 85%)을 얻었다. 2-bromo-1,3-difluorobenzene (40.0g, 414mmol), di(naphthalen-2-yl)amine (122.3g, 455mmol), Cs2CO3 (364g, 1117.8gmmol) was added to 300ml of DMF and then at 155℃ for 12 hours while heating to reflux. After completion of the reaction, the mixture was extracted with MC 500 mL, and washed with distilled water. The obtained organic layer was dried over anhydrous MgSO 4 , distilled under reduced pressure, and purified by silica gel column chromatography to obtain 155 g (yield 85%) of the target compound.
GC-Mass (이론치: 441.05 g/mol, 측정치: 442.33 g/mol)GC-Mass (theoretical: 441.05 g/mol, measured: 442.33 g/mol)
1H-NMR: δ 7.78~7.71 (m, 4H), 7.5~7.4 (m, 8H), 7.20(m, 1H), 7.11(s, 2H), 6.84~6.75(m, 2H)1H-NMR: δ 7.78 to 7.71 (m, 4H), 7.5 to 7.4 (m, 8H), 7.20 (m, 1H), 7.11 (s, 2H), 6.84 to 6.75 (m, 2H)
Figure PCTKR2021019005-appb-img-000024
Figure PCTKR2021019005-appb-img-000024
a-2a-2
질소 기류 하에서 2-bromo-N1,N1-di(naphthalen-2-yl)-N3,N3-diphenylbenzene-1,3-diamine (155.0g, 68mmol), Diphenylamine(11.5g, 68mmol), Cs2CO3(59g, 183.6gmmol)를 DMF 300ml를 넣고 155℃에서 12시간 동안 교반하였다. 반응이 완결되면, 물을 넣고 반응을 종결한 후 재결정으로 목적 화합물을 31g(78%)얻었다.2-bromo-N1,N1-di(naphthalen-2-yl)-N3,N3-diphenylbenzene-1,3-diamine (155.0 g, 68 mmol), Diphenylamine (11.5 g, 68 mmol), Cs2CO3 (59 g, 183.6 gmmol) into 300 ml of DMF and stirred at 155° C. for 12 hours. When the reaction was completed, 31 g (78%) of the target compound was obtained by recrystallization after completion of the reaction by adding water.
GC-Mass (이론치: 590.14 g/mol, 측정치: 591.55 g/mol)GC-Mass (theoretical: 590.14 g/mol, measured: 591.55 g/mol)
1H-NMR: δ 7.78~7.71 (m, 4H), 7.5~7.4 (m, 8H), 7.24~7.21(m, 5H), 7.21~7.10(s, 8H), 6.73(m, 2H)1H-NMR: δ 7.78 to 7.71 (m, 4H), 7.5 to 7.4 (m, 8H), 7.24 to 7.21 (m, 5H), 7.21 to 7.10 (s, 8H), 6.73 (m, 2H)
[준비예 4][Preparation Example 4]
2-bromo-N1-(naphthalen-2-yl)-N1,N3,N3-triphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1-(naphthalen-2-yl)-N1,N3,N3-triphenylbenzene-1,3-diamine
반응물로 N-phenylnaphthalen-2-amine, Diphenylamine을 사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 26g을 얻었다.;26 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-phenylnaphthalen-2-amine and diphenylamine were used as reactants;
GC-Mass (이론치: 540.12 g/mol, 측정치: 541.49 g/mol) GC-Mass (theoretical: 540.12 g/mol, measured: 541.49 g/mol)
[준비예 5][Preparation Example 5]
2-bromo-N1,N1,N3-tri(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1,N3-tri(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine
반응물로 di(naphthalen-2-yl)amine, N-phenylnaphthalen-2-amine 사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 28g을 얻었다.;28 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-2-yl)amine and N-phenylnaphthalen-2-amine were used as reactants;
GC-Mass (이론치: 640.15 g/mol, 측정치: 641.61 g/mol) GC-Mass (theoretical: 640.15 g/mol, measured: 641.61 g/mol)
[준비예 6][Preparation Example 6]
2-bromo-N1,N1,N3,N3-tetra(naphthalen-1-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1,N3,N3-tetra(naphthalen-1-yl)benzene-1,3-diamine
반응물로 di(naphthalen-1-yl)amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합물 18g을 얻었다.;18 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that di(naphthalen-1-yl)amine was used as a reactant;
GC-Mass (이론치: 690.17 g/mol, 측정치: 691.67 g/mol) GC-Mass (theoretical: 690.17 g/mol, measured: 691.67 g/mol)
[준비예 7][Preparation Example 7]
2-bromo-N1,N3-di(naphthalen-1-yl)-N1,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-di(naphthalen-1-yl)-N1,N3-diphenylbenzene-1,3-diamine
반응물로 N-phenylnaphthalen-1-amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합물 20g을 얻었다.;20 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that N-phenylnaphthalen-1-amine was used as a reactant;
GC-Mass (이론치: 590.14 g/mol, 측정치: 591.55 g/mol) GC-Mass (theoretical: 590.14 g/mol, measured: 591.55 g/mol)
[준비예 8][Preparation Example 8]
2-bromo-N1,N1-di(naphthalen-1-yl)-N3,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-di(naphthalen-1-yl)-N3,N3-diphenylbenzene-1,3-diamine
반응물로 di(naphthalen-1-yl)amine, Diphenylamine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 22g을 얻었다.;22 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-1-yl)amine and diphenylamine were used as reactants;
GC-Mass (이론치: 590.14 g/mol, 측정치: 591.55 g/mol) GC-Mass (theoretical: 590.14 g/mol, measured: 591.55 g/mol)
[준비예 9][Preparation Example 9]
2-bromo-N1-(naphthalen-1-yl)-N1,N3,N3-triphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1-(naphthalen-1-yl)-N1,N3,N3-triphenylbenzene-1,3-diamine
반응물로 N-phenylnaphthalen-1-amine, Diphenylamine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 18g을 얻었다.;18 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-phenylnaphthalen-1-amine and diphenylamine were used as reactants;
GC-Mass (이론치: 540.12 g/mol, 측정치: 541.49 g/mol) GC-Mass (theoretical: 540.12 g/mol, measured: 541.49 g/mol)
[준비예 10][Preparation example 10]
2-bromo-N1,N1,N3-tri(naphthalen-1-yl)-N3-phenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1,N3-tri(naphthalen-1-yl)-N3-phenylbenzene-1,3-diamine
반응물로 di(naphthalen-2-yl)amine, N-phenylnaphthalen-1-amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 23g을 얻었다.;23 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-2-yl)amine and N-phenylnaphthalen-1-amine were used as reactants;
GC-Mass (이론치: 640.15 g/mol, 측정치: 641.61 g/mol) GC-Mass (theoretical: 640.15 g/mol, measured: 641.61 g/mol)
[준비예 11][Preparation Example 11]
2-bromo-N1,N1,N3-tri(naphthalen-1-yl)-N3-(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1,N3-tri(naphthalen-1-yl)-N3-(naphthalen-2-yl)benzene-1,3-diamine
반응물로 N-(naphthalen-2-yl)naphthalen-1-amine, di(naphthalen-1-yl)amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 40g을 얻었다.;40 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-(naphthalen-2-yl)naphthalen-1-amine and di(naphthalen-1-yl)amine were used as reactants;
GC-Mass (이론치: 690.17 g/mol, 측정치: 691.67 g/mol) GC-Mass (theoretical: 690.17 g/mol, measured: 691.67 g/mol)
[준비예 12][Preparation Example 12]
2-bromo-N1-(naphthalen-1-yl)-N1-(naphthalen-2-yl)-N3,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1-(naphthalen-1-yl)-N1-(naphthalen-2-yl)-N3,N3-diphenylbenzene-1,3-diamine
반응물로 N-(naphthalen-2-yl)naphthalen-1-amine, Diphenylamine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 27g을 얻었다.;27 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-(naphthalen-2-yl)naphthalen-1-amine and diphenylamine were used as reactants;
GC-Mass (이론치: 590.14 g/mol, 측정치: 591.55 g/mol) GC-Mass (theoretical: 590.14 g/mol, measured: 591.55 g/mol)
[준비예 13][Preparation Example 13]
2-bromo-N1,N3-di(naphthalen-1-yl)-N1-(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-di(naphthalen-1-yl)-N1-(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine
반응물로 N-(naphthalen-2-yl)naphthalen-1-amine, N-phenylnaphthalen-1-amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 22g을 얻었다.;22 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-(naphthalen-2-yl)naphthalen-1-amine and N-phenylnaphthalen-1-amine were used as reactants;
GC-Mass (이론치: 640.15 g/mol, 측정치: 641.61 g/mol) GC-Mass (theoretical: 640.15 g/mol, measured: 641.61 g/mol)
[준비예 14][Preparation Example 14]
2-bromo-N1,N1-di(naphthalen-1-yl)-N3-(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-di(naphthalen-1-yl)-N3-(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine
반응물로 N-phenylnaphthalen-2-amine, di(naphthalen-1-yl)amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 33g을 얻었다.;33 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-phenylnaphthalen-2-amine and di(naphthalen-1-yl)amine were used as reactants;
GC-Mass (이론치: 640.15 g/mol, 측정치: 641.61 g/mol) GC-Mass (theoretical: 640.15 g/mol, measured: 641.61 g/mol)
[준비예 15][Preparation Example 15]
2-bromo-N1-(naphthalen-1-yl)-N3-(naphthalen-2-yl)-N1,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1-(naphthalen-1-yl)-N3-(naphthalen-2-yl)-N1,N3-diphenylbenzene-1,3-diamine
반응물로 N-phenylnaphthalen-2-amine, N-phenylnaphthalen-1-amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 27g을 얻었다.;27 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-phenylnaphthalen-2-amine and N-phenylnaphthalen-1-amine were used as reactants;
GC-Mass (이론치: 640.15 g/mol, 측정치: 641.61 g/mol) GC-Mass (theoretical: 640.15 g/mol, measured: 641.61 g/mol)
[준비예 16][Preparation Example 16]
2-bromo-N1,N1-di(naphthalen-1-yl)-N3,N3-di(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-di(naphthalen-1-yl)-N3,N3-di(naphthalen-2-yl)benzene-1,3-diamine
반응물로 di(naphthalen-2-yl)amine, di(naphthalen-1-yl)amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 28g을 얻었다.;28 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-2-yl)amine and di(naphthalen-1-yl)amine were used as reactants;
GC-Mass (이론치: 690.17 g/mol, 측정치: 691.67 g/mol) GC-Mass (theoretical: 690.17 g/mol, measured: 691.67 g/mol)
[준비예 17][Preparation Example 17]
2-bromo-N1-(naphthalen-1-yl)-N3,N3-di(naphthalen-2-yl)-N1-phenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1-(naphthalen-1-yl)-N3,N3-di(naphthalen-2-yl)-N1-phenylbenzene-1,3-diamine
반응물로, di(naphthalen-2-yl)amine, N-phenylnaphthalen-1-amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 27g을 얻었다.;As a reactant, 27 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-2-yl)amine and N-phenylnaphthalen-1-amine were used;
GC-Mass (이론치: 640.15 g/mol, 측정치: 641.61 g/mol) GC-Mass (theoretical: 640.15 g/mol, measured: 641.61 g/mol)
[준비예 18][Preparation Example 18]
2-bromo-N1,N1-di(naphthalen-1-yl)-N3-(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-di(naphthalen-1-yl)-N3-(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine
반응물로, di(naphthalen-1-yl)amine, N-phenylnaphthalen-2-amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 27g을 얻었다.;As a reactant, 27 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-1-yl)amine and N-phenylnaphthalen-2-amine were used;
GC-Mass (이론치: 640.15 g/mol, 측정치: 641.61 g/mol) GC-Mass (theoretical: 640.15 g/mol, measured: 641.61 g/mol)
[준비예 19][Preparation Example 19]
2-bromo-N1-(naphthalen-1-yl)-N3-(naphthalen-2-yl)-N1,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1-(naphthalen-1-yl)-N3-(naphthalen-2-yl)-N1,N3-diphenylbenzene-1,3-diamine
반응물로, N-phenylnaphthalen-1-amine, N-phenylnaphthalen-2-amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 21g을 얻었다.;As a reactant, 21 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-phenylnaphthalen-1-amine and N-phenylnaphthalen-2-amine were used;
GC-Mass (이론치: 591.14 g/mol, 측정치: 592.56 g/mol) GC-Mass (theoretical: 591.14 g/mol, measured: 592.56 g/mol)
[준비예 20][Preparation Example 20]
2-bromo-N1-(naphthalen-1-yl)-N1,N3,N3-tri(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1-(naphthalen-1-yl)-N1,N3,N3-tri(naphthalen-2-yl)benzene-1,3-diamine
반응물로, di(naphthalen-2-yl)amine, N-(naphthalen-2-yl)naphthalen-1-amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 29g을 얻었다.;29 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-2-yl)amine and N-(naphthalen-2-yl)naphthalen-1-amine were used as reactants;
GC-Mass (이론치: 690.17 g/mol, 측정치: 측정치: 691.67 g/mol) GC-Mass (Theory: 690.17 g/mol, Measured: Measured: 691.67 g/mol)
[준비예 21][Preparation Example 21]
2-bromo-N1-(naphthalen-1-yl)-N1,N3-di(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1-(naphthalen-1-yl)-N1,N3-di(naphthalen-2-yl)-N3-phenylbenzene-1,3-diamine
반응물로, N-(naphthalen-2-yl)naphthalen-1-amine, N-phenylnaphthalen-2-amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합물 27g을 얻었다.;As a reactant, 27 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-(naphthalen-2-yl)naphthalen-1-amine and N-phenylnaphthalen-2-amine were used;
GC-Mass (이론치: 640.15 g/mol, 측정치: 641.61 g/mol) GC-Mass (theoretical: 640.15 g/mol, measured: 641.61 g/mol)
[준비예 22][Preparation Example 22]
2-bromo-N1,N3-di(naphthalen-1-yl)-N1,N3-di(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-di(naphthalen-1-yl)-N1,N3-di(naphthalen-2-yl)benzene-1,3-diamine
반응물로, N-(naphthalen-2-yl)naphthalen-1-amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합물 27g을 얻었다.;As a reactant, 27 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that N-(naphthalen-2-yl)naphthalen-1-amine was used;
GC-Mass (이론치: 690.17 g/mol, 측정치: 측정치: 691.67 g/mol) GC-Mass (Theory: 690.17 g/mol, Measured: Measured: 691.67 g/mol)
[준비예 23][Preparation Example 23]
2-bromo-N1,N3-di(naphthalen-1-yl)-N1,N3-di(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-di(naphthalen-1-yl)-N1,N3-di(naphthalen-2-yl)benzene-1,3-diamine
반응물로, N-phenylphenanthren-9-amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합물 23g을 얻었다.;As a reactant, 23 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that N-phenylphenanthren-9-amine was used;
GC-Mass (이론치: 690.17 g/mol, 측정치: 측정치: 691.67 g/mol) GC-Mass (Theory: 690.17 g/mol, Measured: Measured: 691.67 g/mol)
[준비예 24][Preparation Example 24]
2-bromo-N1,N3-di(naphthalen-2-yl)-N1,N3-di(phenanthren-9-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-di(naphthalen-2-yl)-N1,N3-di(phenanthren-9-yl)benzene-1,3-diamine
반응물로, N-(naphthalen-2-yl)phenanthren-9-amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합물 32g을 얻었다.;As a reactant, 32 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that N-(naphthalen-2-yl)phenanthren-9-amine was used;
GC-Mass (이론치: 790.20 g/mol, 측정치: 측정치: 791.79 g/mol) GC-Mass (Theory: 790.20 g/mol, Measured: Measured: 791.79 g/mol)
[준비예 25][Preparation Example 25]
2-bromo-N1,N3-di(naphthalen-1-yl)-N1,N3-di(phenanthren-9-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-di(naphthalen-1-yl)-N1,N3-di(phenanthren-9-yl)benzene-1,3-diamine
반응물로, N-(naphthalen-1-yl)phenanthren-9-amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합물 31g을 얻었다.;As a reactant, 31 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that N-(naphthalen-1-yl)phenanthren-9-amine was used;
GC-Mass (이론치: 790.20 g/mol, 측정치: 측정치: 791.79 g/mol) GC-Mass (Theory: 790.20 g/mol, Measured: Measured: 791.79 g/mol)
[준비예 26][Preparation Example 26]
2-bromo-N1,N3-bis(4-(tert-butyl)phenyl)-N1,N3-di(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-bis(4-(tert-butyl)phenyl)-N1,N3-di(naphthalen-2-yl)benzene-1,3-diamine
반응물로, N-(4-(tert-butyl)phenyl)naphthalen-2-amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합26g을 얻었다.;As a reactant, 26 g of the desired compound was obtained in the same manner as in [Preparation Example 1] except that N-(4-(tert-butyl)phenyl)naphthalen-2-amine was used;
GC-Mass (이론치: 702.26 g/mol, 측정치: 측정치: 703.77 g/mol) GC-Mass (Theory: 702.26 g/mol, Measured: Measured: 703.77 g/mol)
[준비예 27][Preparation example 27]
2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-2-yl)benzene-1,3-diamine
반응물로, di(naphthalen-2-yl)amine, bis(4-(tert-butyl)phenyl)amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합31g을 얻었다.;As a reactant, 31 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(naphthalen-2-yl)amine and bis(4-(tert-butyl)phenyl)amine were used;
GC-Mass (이론치: 702.26 g/mol, 측정치: 측정치: 703.77 g/mol) GC-Mass (Theory: 702.26 g/mol, Measured: Measured: 703.77 g/mol)
[준비예 28][Preparation Example 28]
2-bromo-N1,N3-bis(4-(tert-butyl)phenyl)-N1,N3-di(naphthalen-1-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-bis(4-(tert-butyl)phenyl)-N1,N3-di(naphthalen-1-yl)benzene-1,3-diamine
반응물로, N-(4-(tert-butyl)phenyl)naphthalen-1-amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합35g을 얻었다.;As a reactant, 35 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that N-(4-(tert-butyl)phenyl)naphthalen-1-amine was used;
GC-Mass (이론치: 702.26 g/mol, 측정치: 측정치: 703.77 g/mol) GC-Mass (Theory: 702.26 g/mol, Measured: Measured: 703.77 g/mol)
[준비예 29][Preparation Example 29]
2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-1-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-1-yl)benzene-1,3-diamine
반응물로, N-(naphthalen-2-yl)naphthalen-1-amine, bis(4-(tert-butyl)phenyl)amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합32g을 얻었다.;As a reactant, 32 g of the target compound was obtained by performing the same procedure as in [Preparation Example 3] except that N-(naphthalen-2-yl)naphthalen-1-amine and bis(4-(tert-butyl)phenyl)amine were used. got;
GC-Mass (이론치: 702.26 g/mol, 측정치: 측정치: 703.77 g/mol) GC-Mass (Theory: 702.26 g/mol, Measured: Measured: 703.77 g/mol)
[준비예 30][Preparation example 30]
2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3-(naphthalen-1-yl)-N3-phenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3-(naphthalen-1-yl)-N3-phenylbenzene-1,3-diamine
반응물로, N-phenylnaphthalen-1-amine, bis(4-(tert-butyl)phenyl)amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합28g을 얻었다.;As a reactant, 28 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that N-phenylnaphthalen-1-amine and bis(4-(tert-butyl)phenyl)amine were used;
GC-Mass (이론치: 752.25 g/mol, 측정치: 측정치: 633.71 g/mol) GC-Mass (Theory: 752.25 g/mol, Measured: Measured: 633.71 g/mol)
[준비예 31][Preparation Example 31]
2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3-(naphthalen-1-yl)-N3-(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3-(naphthalen-1-yl)-N3-(naphthalen-2-yl)benzene-1,3-diamine
반응물로, N-(naphthalen-2-yl)naphthalen-1-amine, bis(4-(tert-butyl)phenyl)amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합29g을 얻었다.;As a reactant, 29 g of the target compound was obtained by performing the same procedure as in [Preparation Example 3] except that N-(naphthalen-2-yl)naphthalen-1-amine and bis(4-(tert-butyl)phenyl)amine were used. got;
GC-Mass (이론치: 702.26 g/mol, 측정치: 측정치: 703.77 g/mol) GC-Mass (Theory: 702.26 g/mol, Measured: Measured: 703.77 g/mol)
[준비예 32][Preparation example 32]
2-bromo-N1,N3-bis(4-(tert-butyl)phenyl)-N1-(naphthalen-1-yl)-N3-(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-bis(4-(tert-butyl)phenyl)-N1-(naphthalen-1-yl)-N3-(naphthalen-2-yl)benzene-1,3-diamine
반응물로, N-(4-(tert-butyl)phenyl)naphthalen-1-amine, N-(4-(tert-butyl)phenyl)naphthalen-2-amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합28g을 얻었다.;As reactants, N-(4-(tert-butyl)phenyl)naphthalen-1-amine and N-(4-(tert-butyl)phenyl)naphthalen-2-amine are the same as in [Preparation Example 3] except that The procedure was carried out to obtain 28 g of the desired compound;
GC-Mass (이론치: 702.26 g/mol, 측정치: 측정치: 703.77 g/mol) GC-Mass (Theory: 702.26 g/mol, Measured: Measured: 703.77 g/mol)
[준비예 33][Preparation Example 33]
2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3-(phenanthren-9-yl)-N3-phenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3-(phenanthren-9-yl)-N3-phenylbenzene-1,3-diamine
반응물로, N-phenylphenanthren-9-amine, bis(4-(tert-butyl)phenyl)amine사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합32g을 얻었다.;As reactants, N-phenylphenanthren-9-amine and bis(4-(tert-butyl)phenyl)amine were used, and the same procedure as in [Preparation Example 3] was followed to obtain 32 g of the target compound;
GC-Mass (이론치: 702.26 g/mol, 측정치: 측정치: 703.77 g/mol) GC-Mass (Theory: 702.26 g/mol, Measured: Measured: 703.77 g/mol)
[준비예 34][Preparation Example 34]
2-bromo-N1,N3-bis(4-(tert-butyl)phenyl)-N1,N3-di(phenanthren-9-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-bis(4-(tert-butyl)phenyl)-N1,N3-di(phenanthren-9-yl)benzene-1,3-diamine
반응물로, N-(4-(tert-butyl)phenyl)phenanthren-9-amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합29g을 얻었다.;As a reactant, 29 g of the desired compound was obtained in the same manner as in [Preparation Example 1] except that N-(4-(tert-butyl)phenyl)phenanthren-9-amine was used;
GC-Mass (이론치: 802.29 g/mol, 측정치: 측정치: 803.89 g/mol) GC-Mass (theoretical: 802.29 g/mol, measured: measured: 803.89 g/mol)
[준비예 35][Preparation Example 35]
2-bromo-N1,N1,N3,N3-tetra(isoquinolin-6-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1,N3,N3-tetra(isoquinolin-6-yl)benzene-1,3-diamine
반응물로, di(isoquinolin-6-yl)amine 사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합29g을 얻었다.;As a reactant, 29 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that di(isoquinolin-6-yl)amine was used;
GC-Mass (이론치: 694.15 g/mol, 측정치: 측정치: 695.62 g/mol) GC-Mass (Theory: 694.15 g/mol, Measured: Measured: 695.62 g/mol)
[준비예 36][Preparation Example 36]
2-bromo-N1,N1-di(isoquinolin-6-yl)-N3,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-di(isoquinolin-6-yl)-N3,N3-diphenylbenzene-1,3-diamine
반응물로, di(isoquinolin-6-yl)amine, diphenylamine 사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합17g을 얻었다.;As a reactant, di(isoquinolin-6-yl)amine and diphenylamine were used, and the same procedure as in [Preparation Example 3] was performed to obtain 17 g of the desired compound;
GC-Mass (이론치: 592.13 g/mol, 측정치: 측정치: 593.53 g/mol) GC-Mass (Theory: 592.13 g/mol, Measured: Measured: 593.53 g/mol)
[준비예 37][Preparation Example 37]
2-bromo-N1,N1,N3,N3-tetra(quinolin-5-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1,N3,N3-tetra(quinolin-5-yl)benzene-1,3-diamine
반응물로, di(quinolin-5-yl)amine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합15g을 얻었다.;As a reactant, 15 g of the desired compound was obtained in the same manner as in [Preparation Example 1] except that di(quinolin-5-yl)amine was used;
GC-Mass (이론치: 694.15 g/mol, 측정치: 측정치: 695.62 g/mol) GC-Mass (Theory: 694.15 g/mol, Measured: Measured: 695.62 g/mol)
[준비예 38][Preparation Example 38]
2-bromo-N1,N1-diphenyl-N3,N3-di(quinolin-5-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-diphenyl-N3,N3-di(quinolin-5-yl)benzene-1,3-diamine
반응물로, di(isoquinolin-5-yl)amine, diphenylamine 사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합14g을 얻었다.;As a reactant, 14 g of the target compound was obtained in the same manner as in [Preparation Example 3] except that di(isoquinolin-5-yl)amine and diphenylamine were used;
GC-Mass (이론치: 592.13 g/mol, 측정치: 측정치: 593.53 g/mol) GC-Mass (Theory: 592.13 g/mol, Measured: Measured: 593.53 g/mol)
[준비예 39][Preparation Example 39]
2-bromo-N1,N1-di(isoquinolin-6-yl)-N3,N3-di(quinolin-5-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-di(isoquinolin-6-yl)-N3,N3-di(quinolin-5-yl)benzene-1,3-diamine
반응물로, di(isoquinolin-6-yl)amine, di(quinolin-5-yl)amine 사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합15g을 얻었다.;As a reactant, di(isoquinolin-6-yl)amine and di(quinolin-5-yl)amine were used, and the same procedure as in [Preparation Example 3] was performed to obtain 15 g of the desired compound;
GC-Mass (이론치: 694.15 g/mol, 측정치: 측정치: 695.62 g/mol)GC-Mass (Theory: 694.15 g/mol, Measured: Measured: 695.62 g/mol)
[준비예 40][Preparation Example 40]
2-bromo-N1,N1,N3-tri(isoquinolin-6-yl)-N3-(quinolin-5-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1,N3-tri(isoquinolin-6-yl)-N3-(quinolin-5-yl)benzene-1,3-diamine
반응물로, di(isoquinolin-6-yl)amine, N-(isoquinolin-6-yl)quinolin-5-amine 사용한 것을 제외하고는 [준비예 3]과 동일한 과정을 수행하여 목적 화합16g을 얻었다.;As a reactant, di(isoquinolin-6-yl)amine and N-(isoquinolin-6-yl)quinolin-5-amine were used, and the same procedure as in [Preparation Example 3] was followed to obtain 16 g of the desired compound;
GC-Mass (이론치: 694.15 g/mol, 측정치: 측정치: 695.62 g/mol)GC-Mass (Theory: 694.15 g/mol, Measured: Measured: 695.62 g/mol)
[준비예 41][Preparation Example 41]
2-bromo-N1,N3-di(isoquinolin-6-yl)-N1,N3-di(quinolin-5-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N3-di(isoquinolin-6-yl)-N1,N3-di(quinolin-5-yl)benzene-1,3-diamine
반응물로, N-(isoquinolin-6-yl)quinolin-5-amine 사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합23g을 얻었다.;As a reactant, 23 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that N-(isoquinolin-6-yl)quinolin-5-amine was used;
GC-Mass (이론치: 694.15 g/mol, 측정치: 측정치: 695.62 g/mol)GC-Mass (Theory: 694.15 g/mol, Measured: Measured: 695.62 g/mol)
[준비예 42][Preparation Example 42]
2-bromo-5-methyl-N1,N1,N3,N3-tetra(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-5-methyl-N1,N1,N3,N3-tetra(naphthalen-2-yl)benzene-1,3-diamine
반응물로, 2-bromo-1,3-difluoro-5-methylbenzene사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합18g을 얻었다.;As a reactant, 18 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that 2-bromo-1,3-difluoro-5-methylbenzene was used;
GC-Mass (이론치: 704.18 g/mol, 측정치: 측정치: 705.70 g/mol)GC-Mass (Theory: 704.18 g/mol, Measured: Measured: 705.70 g/mol)
[준비예 43][Preparation Example 43]
2-bromo-5-methyl-N1,N1-di(naphthalen-2-yl)-N3,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-5-methyl-N1,N1-di(naphthalen-2-yl)-N3,N3-diphenylbenzene-1,3-diamine
반응물로, 2-bromo-1,3-difluoro-5-methylbenzene사용한 것을 제외하고는 [준비예 4]과 동일한 과정을 수행하여 목적 화합20g을 얻었다.;As a reactant, 20 g of the target compound was obtained in the same manner as in [Preparation Example 4] except that 2-bromo-1,3-difluoro-5-methylbenzene was used;
GC-Mass (이론치: 604.15 g/mol, 측정치: 측정치: 605.58 g/mol)GC-Mass (Theory: 604.15 g/mol, Measured: Measured: 605.58 g/mol)
[준비예 44][Preparation Example 44]
2-bromo-5-methyl-N1,N1-di(naphthalen-1-yl)-N3,N3-diphenylbenzene-1,3-diamine의 합성Synthesis of 2-bromo-5-methyl-N1,N1-di(naphthalen-1-yl)-N3,N3-diphenylbenzene-1,3-diamine
반응물로, 2-bromo-1,3-difluoro-5-methylbenzene사용한 것을 제외하고는 [준비예 13]과 동일한 과정을 수행하여 목적 화합15g을 얻었다.;15 g of the target compound was obtained in the same manner as in [Preparation Example 13] except that 2-bromo-1,3-difluoro-5-methylbenzene was used as a reactant;
GC-Mass (이론치: 604.15 g/mol, 측정치: 측정치: 605.58 g/mol)GC-Mass (Theory: 604.15 g/mol, Measured: Measured: 605.58 g/mol)
[준비예 45][Preparation Example 45]
2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-5-methyl-N3,N3-di(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-5-methyl-N3,N3-di(naphthalen-2-yl)benzene-1,3-diamine
반응물로, 2-bromo-1,3-difluoro-5-methylbenzene사용한 것을 제외하고는 [준비예 56]과 동일한 과정을 수행하여 목적 화합20g을 얻었다.;As a reactant, 20 g of the target compound was obtained in the same manner as in [Preparation Example 56] except that 2-bromo-1,3-difluoro-5-methylbenzene was used;
GC-Mass (이론치: 716.28 g/mol, 측정치: 측정치: 717.80 g/mol)GC-Mass (Theory: 716.28 g/mol, Measured: Measured: 717.80 g/mol)
[준비예 46][Preparation Example 46]
2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-5-methyl-N3,N3-di(naphthalen-1-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-5-methyl-N3,N3-di(naphthalen-1-yl)benzene-1,3-diamine
반응물로, 2-bromo-1,3-difluoro-5-methylbenzene사용한 것을 제외하고는 [준비예 60]과 동일한 과정을 수행하여 목적 화합15g을 얻었다.;As a reactant, 15 g of the target compound was obtained in the same manner as in [Preparation Example 60] except that 2-bromo-1,3-difluoro-5-methylbenzene was used;
GC-Mass (이론치: 716.28 g/mol, 측정치: 측정치: 717.80 g/mol)GC-Mass (Theory: 716.28 g/mol, Measured: Measured: 717.80 g/mol)
[준비예 47][Preparation Example 47]
2-bromo-5-(tert-butyl)-N1,N1,N3,N3-tetra(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-5-(tert-butyl)-N1,N1,N3,N3-tetra(naphthalen-2-yl)benzene-1,3-diamine
반응물로, 2-bromo-5-(tert-butyl)-1,3-difluorobenzene사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합26g을 얻었다.;The same procedure as in [Preparation Example 1] was performed except that 2-bromo-5-(tert-butyl)-1,3-difluorobenzene was used as a reactant to obtain 26 g of the desired compound;
GC-Mass (이론치: 746.23 g/mol, 측정치: 측정치: 747.28 g/mol)GC-Mass (Theory: 746.23 g/mol, Measured: Measured: 747.28 g/mol)
[준비예 48][Preparation example 48]
2-bromo-5-(tert-butyl)-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-2-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-5-(tert-butyl)-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-2-yl)benzene-1,3-diamine
반응물로, 2-bromo-5-(tert-butyl)-1,3-difluorobenzene사용한 것을 제외하고는 [준비예 56]과 동일한 과정을 수행하여 목적 화합13g을 얻었다.;As a reactant, 13 g of the target compound was obtained in the same manner as in [Preparation Example 56] except that 2-bromo-5-(tert-butyl)-1,3-difluorobenzene was used;
GC-Mass (이론치: 758.32 g/mol, 측정치: 측정치: 759.88 g/mol)GC-Mass (Theory: 758.32 g/mol, Measured: Measured: 759.88 g/mol)
[준비예 49][Preparation Example 49]
4-bromo-N3,N3,N5,N5-tetra(naphthalen-2-yl)-[1,1'-biphenyl]-3,5-diamine의 합성Synthesis of 4-bromo-N3,N3,N5,N5-tetra(naphthalen-2-yl)-[1,1'-biphenyl]-3,5-diamine
반응물로, 4-bromo-3,5-difluoro-1,1'-biphenyl사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합22g을 얻었다.;As a reactant, 22 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that 4-bromo-3,5-difluoro-1,1'-biphenyl was used;
GC-Mass (이론치: 766.20 g/mol, 측정치: 측정치: 767.77 g/mol)GC-Mass (Theory: 766.20 g/mol, Measured: Measured: 767.77 g/mol)
[준비예 50][Preparation example 50]
4-bromo-N3,N3-bis(4-(tert-butyl)phenyl)-N5,N5-di(naphthalen-2-yl)-[1,1'-biphenyl]-3,5-diamine의 합성Synthesis of 4-bromo-N3,N3-bis(4-(tert-butyl)phenyl)-N5,N5-di(naphthalen-2-yl)-[1,1'-biphenyl]-3,5-diamine
반응물로, 4-bromo-3,5-difluoro-1,1'-biphenyl사용한 것을 제외하고는 [준비예 56]과 동일한 과정을 수행하여 목적 화합11g을 얻었다.;As a reactant, 11 g of the target compound was obtained in the same manner as in [Preparation Example 56], except that 4-bromo-3,5-difluoro-1,1'-biphenyl was used;
GC-Mass (이론치: 778.29 g/mol, 측정치: 측정치: 779.87 g/mol)GC-Mass (Theory: 778.29 g/mol, Measured: Measured: 779.87 g/mol)
[준비예 51][Preparation Example 51]
2-bromo-N1,N1,N3,N3-tetra(naphthalen-2-yl)-5-(pyridin-3-yl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1,N3,N3-tetra(naphthalen-2-yl)-5-(pyridin-3-yl)benzene-1,3-diamine
반응물로, 3-(4-bromo-3,5-difluorophenyl)pyridine사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합26g을 얻었다.;As a reactant, 26 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that 3-(4-bromo-3,5-difluorophenyl)pyridine was used;
GC-Mass (이론치: 767.19 g/mol, 측정치: 측정치: 768.76 g/mol)GC-Mass (Theory: 767.19 g/mol, Measured: Measured: 768.76 g/mol)
[준비예 52][Preparation example 52]
2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-2-yl)-5-(pyridin-3-yl)benzene-1,3-diamine의 합성2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-2-yl)-5-(pyridin-3-yl)benzene-1,3-diamine synthesis
반응물로, 3-(4-bromo-3,5-difluorophenyl)pyridine사용한 것을 제외하고는 [준비예 56]과 동일한 과정을 수행하여 목적 화합13g을 얻었다.;As a reactant, 13 g of the target compound was obtained in the same manner as in [Preparation Example 56] except that 3-(4-bromo-3,5-difluorophenyl)pyridine was used;
GC-Mass (이론치: 779.29 g/mol, 측정치: 측정치: 768.75 g/mol)GC-Mass (Theory: 779.29 g/mol, Measured: Measured: 768.75 g/mol)
[준비예 53][Preparation Example 53]
4-bromo-N3,N3,N5,N5-tetra(naphthalen-2-yl)-3'-(trifluoromethyl)-[1,1'-biphenyl]-3,5-diamine의 합성Synthesis of 4-bromo-N3,N3,N5,N5-tetra(naphthalen-2-yl)-3'-(trifluoromethyl)-[1,1'-biphenyl]-3,5-diamine
반응물로, 4-bromo-3,5-difluoro-3'-(trifluoromethyl)-1,1'-biphenyl사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합31g을 얻었다.;As a reactant, 31 g of the target compound was obtained in the same manner as in [Preparation Example 1] except that 4-bromo-3,5-difluoro-3'-(trifluoromethyl)-1,1'-biphenyl was used;
GC-Mass (이론치: 846.28 g/mol, 측정치: 측정치: 847.86 g/mol)GC-Mass (theoretical: 846.28 g/mol, measured: measured: 847.86 g/mol)
[준비예 54][Preparation Example 54]
4-bromo-N3,N3-bis(4-(tert-butyl)phenyl)-N5,N5-di(naphthalen-2-yl)-3'-(trifluoromethyl)-[1,1'-biphenyl]-3,5-diamine의 합성4-bromo-N3,N3-bis(4-(tert-butyl)phenyl)-N5,N5-di(naphthalen-2-yl)-3'-(trifluoromethyl)-[1,1'-biphenyl]-3 Synthesis of ,5-diamine
반응물로, 4-bromo-3,5-difluoro-3'-(trifluoromethyl)-1,1'-biphenyl사용한 것을 제외하고는 [준비예 56]과 동일한 과정을 수행하여 목적 화합19g을 얻었다.;19 g of the target compound was obtained in the same manner as in [Preparation Example 56] except that 4-bromo-3,5-difluoro-3'-(trifluoromethyl)-1,1'-biphenyl was used as a reactant;
GC-Mass (이론치: 834.19 g/mol, 측정치: 측정치: 835.77 g/mol)GC-Mass (theoretical: 834.19 g/mol, measured: measured: 835.77 g/mol)
[준비예 55][Preparation Example 55]
2-bromo-N1,N1,N3,N3-tetra(naphthalen-2-yl)-5-(trimethylsilyl)benzene-1,3-diamine의 합성Synthesis of 2-bromo-N1,N1,N3,N3-tetra(naphthalen-2-yl)-5-(trimethylsilyl)benzene-1,3-diamine
반응물로, (4-bromo-3,5-difluorophenyl)trimethylsilane사용한 것을 제외하고는 [준비예 1]과 동일한 과정을 수행하여 목적 화합27g을 얻었다.;As a reactant, (4-bromo-3,5-difluorophenyl)trimethylsilane was used, and the same procedure as in [Preparation Example 1] was performed to obtain 27 g of the target compound;
GC-Mass (이론치: 762.21 g/mol, 측정치: 측정치: 763.85 g/mol)GC-Mass (Theory: 762.21 g/mol, Measured: Measured: 763.85 g/mol)
[준비예 56][Preparation Example 56]
[2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-2-yl)-5-(trimethylsilyl)benzene-1,3-diamine의 합성Synthesis of [2-bromo-N1,N1-bis(4-(tert-butyl)phenyl)-N3,N3-di(naphthalen-2-yl)-5-(trimethylsilyl)benzene-1,3-diamine
반응물로, (4-bromo-3,5-difluorophenyl)trimethylsilane사용한 것을 제외하고는 [준비예 56]과 동일한 과정을 수행하여 목적 화합16g을 얻었다.;As a reactant, 16 g of the target compound was obtained by performing the same procedure as in [Preparation Example 56] except that (4-bromo-3,5-difluorophenyl)trimethylsilane was used;
GC-Mass (이론치: 774.30 g/mol, 측정치: 측정치: 775.95 g/mol)GC-Mass (Theory: 774.30 g/mol, Measured: Measured: 775.95 g/mol)
[합성예 1] Mat 1의 합성[Synthesis Example 1] Synthesis of Mat 1
Figure PCTKR2021019005-appb-img-000025
Figure PCTKR2021019005-appb-img-000025
질소기류하에서 0℃로 냉각시킨 Tert-butyllithium pentane solution(25.5ml, 1.7M, 43.35mmol)용액에 [준비예 1] 10g(14.45mmol)과 tert-butylbenzene 250 mL 혼합용액을 천천히 가하였다. 용액을 첨가 후 60℃에서 2시간 가열환류 하였다. 반응온도를 -40℃로 낮춘 후 Boron tribromide 10.8g(43.35mmol)을 천천히 첨가한 후 반응온도를 상온으로 천천히 올린다. 상온에서 30분 교반 후 온도를 0℃로 낮춘다. 0℃에서 N,N-Diisopropylethylamine 69g(68mmol)을 천천히 적가한 후 온도를 상온으로 올린다. 추가로 120℃에서 5시간 가열환류 한 후 온도를 상온으로 낮추고 sodium acetate dichloromethane용액으로 반응을 종결한다. 혼합액을 M.C 500 mL로 추출한 후, 증류수로 세척하였다. 얻어진 유기층을 무수 MgSO4로 건조하고, 감압증류하고 실리카겔 컬럼크로마토그래피로 정제하여 목적 화합물 4.9g(수율 55%)을 얻었다. 1H-NMR: 7.91~7.79 (m, 8H), 7.45~7.40(m, 14H), 7.27(t, 1H), 7.11(s, 4H), 6.84(m, 2H)[Preparation Example 1] 10g (14.45mmol) and 250 mL of tert-butylbenzene mixed solution was slowly added to a tert-butyllithium pentane solution (25.5ml, 1.7M, 43.35mmol) cooled to 0℃ under a nitrogen stream. After the solution was added, it was heated and refluxed at 60 °C for 2 hours. After lowering the reaction temperature to -40°C, 10.8 g (43.35 mmol) of boron tribromide was slowly added thereto, and then the reaction temperature was slowly raised to room temperature. After stirring at room temperature for 30 minutes, lower the temperature to 0°C. At 0°C, 69 g (68 mmol) of N,N-Diisopropylethylamine was slowly added dropwise, and then the temperature was raised to room temperature. Further, after heating and refluxing at 120°C for 5 hours, the temperature was lowered to room temperature and the reaction was terminated with sodium acetate dichloromethane solution. The mixture was extracted with MC 500 mL, and washed with distilled water. The obtained organic layer was dried over anhydrous MgSO 4 , distilled under reduced pressure, and purified by silica gel column chromatography to obtain 4.9 g (yield 55%) of the target compound. 1H-NMR: 7.91 to 7.79 (m, 8H), 7.45 to 7.40 (m, 14H), 7.27 (t, 1H), 7.11 (s, 4H), 6.84 (m, 2H)
[합성예 2] Mat 2의 합성[Synthesis Example 2] Synthesis of Mat 2
반응물로 [준비예2]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 3g을 얻었다.; HRMS [M]+: 520.443 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 2] was used as a reactant; HRMS [M]+: 520.44
[합성예 3] Mat 3의 합성[Synthesis Example 3] Synthesis of Mat 3
반응물로 [준비예2]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 1g을 얻었다.; HRMS [M]+: 520.441 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 2] was used as a reactant; HRMS [M]+: 520.44
[합성예 4] Mat 4의 합성[Synthesis Example 4] Synthesis of Mat 4
반응물로 [준비예3]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 1.3g을 얻었다.; HRMS [M]+: 520.441.3 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 3] was used as a reactant; HRMS [M]+: 520.44
[합성예 5] Mat 5의 합성[Synthesis Example 5] Synthesis of Mat 5
반응물로 [준비예4]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 1.1g을 얻었다.; HRMS [M]+: 470.381.1 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 4] was used as a reactant; HRMS [M]+: 470.38
[합성예 6] Mat 6의 합성[Synthesis Example 6] Synthesis of Mat 6
반응물로 [준비예4]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.8g을 얻었다.; HRMS [M]+: 470.380.8 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 4] was used as a reactant; HRMS [M]+: 470.38
[합성예 7] Mat 7의 합성[Synthesis Example 7] Synthesis of Mat 7
반응물로 [준비예5]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.5g을 얻었다.; HRMS [M]+: 570.500.5 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 5] was used as a reactant; HRMS [M]+: 570.50
[합성예 8] Mat 8의 합성[Synthesis Example 8] Synthesis of Mat 8
반응물로 [준비예5]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.4g을 얻었다.; HRMS [M]+: 570.500.4 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 5] was used as a reactant; HRMS [M]+: 570.50
[합성예 9] Mat 9의 합성[Synthesis Example 9] Synthesis of Mat 9
반응물로 [준비예2]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.35g을 얻었다.; HRMS [M]+: 520.440.35 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 2] was used as a reactant; HRMS [M]+: 520.44
[합성예 10] Mat 10의 합성[Synthesis Example 10] Synthesis of Mat 10
Figure PCTKR2021019005-appb-img-000026
Figure PCTKR2021019005-appb-img-000026
질소기류하에서 0℃로 냉각시킨 Tert-butyllithium pentane solution(25.5ml, 1.7M, 43.35mmol)용액에 [준비예 6] 10g(14.45mmol)과 tert-butylbenzene 250 mL 혼합용액을 천천히 가하였다. 용액을 첨가 후 60℃에서 2시간 가열환류 하였다. 반응온도를 -40℃로 낮춘 후 Boron tribromide 10.8g(43.35mmol)을 천천히 첨가한 후 반응온도를 상온으로 천천히 올린다. 상온에서 30분 교반 후 온도를 0℃로 낮춘다. 0℃에서 N,N-Diisopropylethylamine 69g(68mmol)을 천천히 적가한 후 온도를 상온으로 올린다. 추가로 120℃에서 5시간 가열환류 한 후 온도를 상온으로 낮추고 sodium acetate dichloromethane용액으로 반응을 종결한다. 혼합액을 M.C 500 mL로 추출한 후, 증류수로 세척하였다. 얻어진 유기층을 무수 MgSO4로 건조하고, 감압증류하고 실리카겔 컬럼크로마토그래피로 정제하여 목적 화합물 4.9g(수율 55%)을 얻었다. 1H-NMR: 7.91~7.79 (m, 8H), 7.45~7.40(m, 14H), 7.27(t, 1H), 7.11(s, 4H), 6.84(m, 2H)[Preparation Example 6] 10g (14.45mmol) and 250 mL of tert-butylbenzene mixed solution was slowly added to a tert-butyllithium pentane solution (25.5ml, 1.7M, 43.35mmol) cooled to 0°C under a nitrogen stream. After the solution was added, it was heated and refluxed at 60 °C for 2 hours. After lowering the reaction temperature to -40°C, 10.8 g (43.35 mmol) of boron tribromide was slowly added thereto, and then the reaction temperature was slowly raised to room temperature. After stirring at room temperature for 30 minutes, lower the temperature to 0°C. At 0°C, 69 g (68 mmol) of N,N-Diisopropylethylamine was slowly added dropwise, and then the temperature was raised to room temperature. Further, after heating and refluxing at 120°C for 5 hours, the temperature was lowered to room temperature and the reaction was terminated with sodium acetate dichloromethane solution. The mixture was extracted with MC 500 mL, and washed with distilled water. The obtained organic layer was dried over anhydrous MgSO 4 , distilled under reduced pressure, and purified by silica gel column chromatography to obtain 4.9 g (yield 55%) of the target compound. 1H-NMR: 7.91 to 7.79 (m, 8H), 7.45 to 7.40 (m, 14H), 7.27 (t, 1H), 7.11 (s, 4H), 6.84 (m, 2H)
[합성예 11] Mat 11의 합성[Synthesis Example 11] Synthesis of Mat 11
반응물로 [준비예7]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.8g을 얻었다.; HRMS [M]+: 520.440.8 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 7] was used as a reactant; HRMS [M]+: 520.44
[합성예 12] Mat 12의 합성[Synthesis Example 12] Synthesis of Mat 12
반응물로 [준비예7]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.32g을 얻었다.; HRMS [M]+: 520.440.32 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 7] was used as a reactant; HRMS [M]+: 520.44
[합성예 13] Mat 13의 합성[Synthesis Example 13] Synthesis of Mat 13
반응물로 [준비예8]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.40g을 얻었다.; HRMS [M]+: 520.440.40 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 8] was used as a reactant; HRMS [M]+: 520.44
[합성예 14] Mat 14의 합성[Synthesis Example 14] Synthesis of Mat 14
반응물로 [준비예9]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.51g을 얻었다.; HRMS [M]+: 470.380.51 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 9] was used as a reactant; HRMS [M]+: 470.38
[합성예 15] Mat 15의 합성[Synthesis Example 15] Synthesis of Mat 15
반응물로 [준비예9]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.22g을 얻었다.; HRMS [M]+: 470.380.22 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 9] was used as a reactant; HRMS [M]+: 470.38
[합성예 16] Mat 16의 합성[Synthesis Example 16] Synthesis of Mat 16
반응물로 [준비예10]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.47g을 얻었다.; HRMS [M]+: 570.500.47 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 10] was used as a reactant; HRMS [M]+: 570.50
[합성예 17] Mat 17의 합성[Synthesis Example 17] Synthesis of Mat 17
반응물로 [준비예10]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.25g을 얻었다.; HRMS [M]+: 570.500.25 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 10] was used as a reactant; HRMS [M]+: 570.50
[합성예 18] Mat 18의 합성[Synthesis Example 18] Synthesis of Mat 18
반응물로 [준비예7]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.33g을 얻었다.; HRMS [M]+: 520.440.33 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 7] was used as a reactant; HRMS [M]+: 520.44
[합성예 19] Mat 19의 합성[Synthesis Example 19] Synthesis of Mat 19
Figure PCTKR2021019005-appb-img-000027
Figure PCTKR2021019005-appb-img-000027
질소기류하에서 0℃로 냉각시킨 Tert-butyllithium pentane solution(25.5ml, 1.7M, 43.35mmol)용액에 [준비예 11] 10g(14.45mmol)과 tert-butylbenzene 250 mL 혼합용액을 천천히 가하였다. 용액을 첨가 후 60℃에서 2시간 가열환류 하였다. 반응온도를 -40℃로 낮춘 후 Boron tribromide 10.8g(43.35mmol)을 천천히 첨가한 후 반응온도를 상온으로 천천히 올린다. 상온에서 30분 교반 후 온도를 0℃로 낮춘다. 0℃에서 N,N-Diisopropylethylamine 69g(68mmol)을 천천히 적가한 후 온도를 상온으로 올린다. 추가로 120℃에서 5시간 가열환류 한 후 온도를 상온으로 낮추고 sodium acetate dichloromethane용액으로 반응을 종결한다. 혼합액을 M.C 500 mL로 추출한 후, 증류수로 세척하였다. 얻어진 유기층을 무수 MgSO4로 건조하고, 감압증류하고 실리카겔 컬럼크로마토그래피로 정제하여 목적 화합물 4.9g(수율 55%)을 얻었다. 1H-NMR: 7.91~7.79 (m, 8H), 7.45~7.40(m, 14H), 7.27(t, 1H), 7.11(s, 4H), 6.84(m, 2H)[Preparation Example 11] 10g (14.45mmol) and 250 mL of tert-butylbenzene mixed solution was slowly added to a tert-butyllithium pentane solution (25.5ml, 1.7M, 43.35mmol) cooled to 0°C under a nitrogen stream. After the solution was added, it was heated and refluxed at 60 °C for 2 hours. After lowering the reaction temperature to -40°C, 10.8 g (43.35 mmol) of boron tribromide was slowly added thereto, and then the reaction temperature was slowly raised to room temperature. After stirring at room temperature for 30 minutes, lower the temperature to 0°C. At 0°C, 69 g (68 mmol) of N,N-Diisopropylethylamine was slowly added dropwise, and then the temperature was raised to room temperature. Further, after heating and refluxing at 120°C for 5 hours, the temperature was lowered to room temperature and the reaction was terminated with sodium acetate dichloromethane solution. The mixture was extracted with MC 500 mL, and washed with distilled water. The obtained organic layer was dried over anhydrous MgSO 4 , distilled under reduced pressure, and purified by silica gel column chromatography to obtain 4.9 g (yield 55%) of the target compound. 1H-NMR: 7.91 to 7.79 (m, 8H), 7.45 to 7.40 (m, 14H), 7.27 (t, 1H), 7.11 (s, 4H), 6.84 (m, 2H)
[합성예 20] Mat 20의 합성[Synthesis Example 20] Synthesis of Mat 20
반응물로 [준비예12]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.47g을 얻었다.; HRMS [M]+: 520.440.47 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 12] was used as a reactant; HRMS [M]+: 520.44
[합성예 21] Mat 21의 합성[Synthesis Example 21] Synthesis of Mat 21
반응물로 [준비예13]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.28g을 얻었다.; HRMS [M]+: 570.550.28 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 13] was used as a reactant; HRMS [M]+: 570.55
[합성예 22] Mat 22의 합성[Synthesis Example 22] Synthesis of Mat 22
반응물로 [준비예13]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.22g을 얻었다.; HRMS [M]+: 570.550.22 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 13] was used as a reactant; HRMS [M]+: 570.55
[합성예 23] Mat 23의 합성[Synthesis Example 23] Synthesis of Mat 23
반응물로 [준비예14]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.29g을 얻었다.; HRMS [M]+: 570.550.29 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 14] was used as a reactant; HRMS [M]+: 570.55
[합성예 24] Mat 24의 합성[Synthesis Example 24] Synthesis of Mat 24
반응물로 [준비예15]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.17g을 얻었다.; HRMS [M]+: 520.440.17 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 15] was used as a reactant; HRMS [M]+: 520.44
[합성예 25] Mat 25의 합성[Synthesis Example 25] Synthesis of Mat 25
반응물로 [준비예15]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.31g을 얻었다.; HRMS [M]+: 520.440.31 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 15] was used as a reactant; HRMS [M]+: 520.44
[합성예 26] Mat 26의 합성[Synthesis Example 26] Synthesis of Mat 26
반응물로 [준비예16]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.44g을 얻었다.; HRMS [M]+: 620.560.44 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 16] was used as a reactant; HRMS [M]+: 620.56
[합성예 27] Mat 27의 합성[Synthesis Example 27] Synthesis of Mat 27
반응물로 [준비예17]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.58g을 얻었다.; HRMS [M]+: 570.500.58 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 17] was used as a reactant; HRMS [M]+: 570.50
[합성예 28] Mat 28의 합성[Synthesis Example 28] Synthesis of Mat 28
반응물로 [준비예17]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.49g을 얻었다.; HRMS [M]+: 570.500.49 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 17] was used as a reactant; HRMS [M]+: 570.50
[합성예 29] Mat 29의 합성[Synthesis Example 29] Synthesis of Mat 29
반응물로 [준비예18]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.34g을 얻었다.; HRMS [M]+: 570.500.34 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 18] was used as a reactant; HRMS [M]+: 570.50
[합성예 30] Mat 30의 합성[Synthesis Example 30] Synthesis of Mat 30
반응물로 [준비예18]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.24g을 얻었다.; HRMS [M]+: 570.500.24 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 18] was used as a reactant; HRMS [M]+: 570.50
[합성예 31] Mat 31의 합성[Synthesis Example 31] Synthesis of Mat 31
반응물로 [준비예19]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.31g을 얻었다.; HRMS [M]+: 520.440.31 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 19] was used as a reactant; HRMS [M]+: 520.44
[합성예 32] Mat 32의 합성[Synthesis Example 32] Synthesis of Mat 32
반응물로 [준비예19]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.50g을 얻었다.; HRMS [M]+: 520.440.50 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 19] was used as a reactant; HRMS [M]+: 520.44
[합성예 33] Mat 33의 합성[Synthesis Example 33] Synthesis of Mat 33
반응물로 [준비예19]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.41g을 얻었다.; HRMS [M]+: 520.440.41 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 19] was used as a reactant; HRMS [M]+: 520.44
[합성예 34] Mat 34의 합성[Synthesis Example 34] Synthesis of Mat 34
반응물로 [준비예19]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.38g을 얻었다.; HRMS [M]+: 520.440.38 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 19] was used as a reactant; HRMS [M]+: 520.44
[합성예 35] Mat 35의 합성[Synthesis Example 35] Synthesis of Mat 35
Figure PCTKR2021019005-appb-img-000028
Figure PCTKR2021019005-appb-img-000028
질소기류하에서 0℃로 냉각시킨 Tert-butyllithium pentane solution(25.5ml, 1.7M, 43.35mmol)용액에 [준비예 20] 10g(14.45mmol)과 tert-butylbenzene 250 mL 혼합용액을 천천히 가하였다. 용액을 첨가 후 60℃에서 2시간 가열환류 하였다. 반응온도를 -40℃로 낮춘 후 Boron tribromide 10.8g(43.35mmol)을 천천히 첨가한 후 반응온도를 상온으로 천천히 올린다. 상온에서 30분 교반 후 온도를 0℃로 낮춘다. 0℃에서 N,N-Diisopropylethylamine 69g(68mmol)을 천천히 적가한 후 온도를 상온으로 올린다. 추가로 120℃에서 5시간 가열환류 한 후 온도를 상온으로 낮추고 sodium acetate dichloromethane용액으로 반응을 종결한다. 혼합액을 M.C 500 mL로 추출한 후, 증류수로 세척하였다. 얻어진 유기층을 무수 MgSO4로 건조하고, 감압증류하고 실리카겔 컬럼크로마토그래피로 정제하여 목적 화합물 4.9g(수율 55%)을 얻었다. 1H-NMR: 7.91~7.79 (m, 8H), 7.45~7.40(m, 14H), 7.27(t, 1H), 7.11(s, 4H), 6.84(m, 2H)[Preparation Example 20] 10g (14.45mmol) and 250 mL of tert-butylbenzene mixed solution was slowly added to a tert-butyllithium pentane solution (25.5ml, 1.7M, 43.35mmol) cooled to 0°C under a nitrogen stream. After the solution was added, it was heated and refluxed at 60 °C for 2 hours. After lowering the reaction temperature to -40°C, 10.8 g (43.35 mmol) of boron tribromide was slowly added thereto, and then the reaction temperature was slowly raised to room temperature. After stirring at room temperature for 30 minutes, lower the temperature to 0°C. At 0°C, 69 g (68 mmol) of N,N-Diisopropylethylamine was slowly added dropwise, and then the temperature was raised to room temperature. Further, after heating and refluxing at 120°C for 5 hours, the temperature was lowered to room temperature and the reaction was terminated with sodium acetate dichloromethane solution. The mixture was extracted with MC 500 mL, and washed with distilled water. The obtained organic layer was dried over anhydrous MgSO 4 , distilled under reduced pressure, and purified by silica gel column chromatography to obtain 4.9 g (yield 55%) of the target compound. 1H-NMR: 7.91 to 7.79 (m, 8H), 7.45 to 7.40 (m, 14H), 7.27 (t, 1H), 7.11 (s, 4H), 6.84 (m, 2H)
[합성예 36] Mat 36의 합성[Synthesis Example 36] Synthesis of Mat 36
반응물로 [준비예21]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.37g을 얻었다.; HRMS [M]+: 570.500.37 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 21] was used as a reactant; HRMS [M]+: 570.50
[합성예 37] Mat 37의 합성[Synthesis Example 37] Synthesis of Mat 37
반응물로 [준비예21]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.44g을 얻었다.; HRMS [M]+: 570.500.44 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 21] was used as a reactant; HRMS [M]+: 570.50
[합성예 38] Mat 38의 합성[Synthesis Example 38] Synthesis of Mat 38
반응물로 [준비예5]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.36g을 얻었다.; HRMS [M]+: 570.500.36 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 5] was used as a reactant; HRMS [M]+: 570.50
[합성예 39] Mat 39의 합성[Synthesis Example 39] Synthesis of Mat 39
반응물로 [준비예2]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.7g을 얻었다.; HRMS [M]+: 520.440.7 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 2] was used as a reactant; HRMS [M]+: 520.44
[합성예 40] Mat 40의 합성[Synthesis Example 40] Synthesis of Mat 40
반응물로 [준비예2]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.52g을 얻었다.; HRMS [M]+: 520.440.52 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 2] was used as a reactant; HRMS [M]+: 520.44
[합성예 41] Mat 41의 합성[Synthesis Example 41] Synthesis of Mat 41
반응물로 [준비예20]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.41g을 얻었다.; HRMS [M]+: 620.560.41 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 20] was used as a reactant; HRMS [M]+: 620.56
[합성예 42] Mat 42의 합성[Synthesis Example 42] Synthesis of Mat 42
반응물로 [준비예20]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.41g을 얻었다.; HRMS [M]+: 620.560.41 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 20] was used as a reactant; HRMS [M]+: 620.56
[합성예 43] Mat 43의 합성[Synthesis Example 43] Synthesis of Mat 43
반응물로 [준비예22]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.35g을 얻었다.; HRMS [M]+: 620.560.35 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 22] was used as a reactant; HRMS [M]+: 620.56
[합성예 44] Mat 44의 합성[Synthesis Example 44] Synthesis of Mat 44
반응물로 [준비예22]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.28g을 얻었다.; HRMS [M]+: 620.560.28 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 22] was used as a reactant; HRMS [M]+: 620.56
[합성예 45] Mat 45의 합성[Synthesis Example 45] Synthesis of Mat 45
반응물로 [준비예20]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.41g을 얻었다.; HRMS [M]+: 620.560.41 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 20] was used as a reactant; HRMS [M]+: 620.56
[합성예 46] Mat 46의 합성[Synthesis Example 46] Synthesis of Mat 46
반응물로 [준비예20]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.23g을 얻었다.; HRMS [M]+: 620.560.23 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 20] was used as a reactant; HRMS [M]+: 620.56
[합성예 47] Mat 47의 합성[Synthesis Example 47] Synthesis of Mat 47
반응물로 [준비예20]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.18g을 얻었다.; HRMS [M]+: 620.560.18 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 20] was used as a reactant; HRMS [M]+: 620.56
[합성예 48] Mat 48의 합성[Synthesis Example 48] Synthesis of Mat 48
반응물로 [준비예20]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.12g을 얻었다.; HRMS [M]+: 620.560.12 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 20] was used as a reactant; HRMS [M]+: 620.56
[합성예 49] Mat 49의 합성[Synthesis Example 49] Synthesis of Mat 49
반응물로 [준비예23]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.54g을 얻었다.; HRMS [M]+: 620.560.54 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 23] was used as a reactant; HRMS [M]+: 620.56
[합성예 50] Mat 50의 합성[Synthesis Example 50] Synthesis of Mat 50
반응물로 [준비예24]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.62g을 얻었다.; HRMS [M]+: 720.680.62 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 24] was used as a reactant; HRMS [M]+: 720.68
[합성예 51] Mat 51의 합성[Synthesis Example 51] Synthesis of Mat 51
반응물로 [준비예25]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.23g을 얻었다.; HRMS [M]+: 720.680.23 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 25] was used as a reactant; HRMS [M]+: 720.68
[합성예 52] Mat 52의 합성[Synthesis Example 52] Synthesis of Mat 52
반응물로 [준비예23]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.15g을 얻었다.; HRMS [M]+: 620.560.15 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 23] was used as a reactant; HRMS [M]+: 620.56
[합성예 53] Mat 53의 합성[Synthesis Example 53] Synthesis of Mat 53
반응물로 [준비예24]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.21g을 얻었다.; HRMS [M]+: 720.680.21 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 24] was used as a reactant; HRMS [M]+: 720.68
[합성예 54] Mat 54의 합성[Synthesis Example 54] Synthesis of Mat 54
반응물로 [준비예26]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.31g을 얻었다.; HRMS [M]+: 632.660.31 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 26] was used as a reactant; HRMS [M]+: 632.66
[합성예 55] Mat 55의 합성[Synthesis Example 55] Synthesis of Mat 55
Figure PCTKR2021019005-appb-img-000029
Figure PCTKR2021019005-appb-img-000029
질소기류하에서 0℃로 냉각시킨 Tert-butyllithium pentane solution(25.5ml, 1.7M, 43.35mmol)용액에 [준비예 26] 10g(13.02mmol)과 tert-butylbenzene 250 mL 혼합용액을 천천히 가하였다. 용액을 첨가 후 60℃에서 2시간 가열환류 하였다. 반응온도를 -40℃로 낮춘 후 Boron tribromide 10.8g(43.35mmol)을 천천히 첨가한 후 반응온도를 상온으로 천천히 올린다. 상온에서 30분 교반 후 온도를 0℃로 낮춘다. 0℃에서 N,N-Diisopropylethylamine 69g(68mmol)을 천천히 적가한 후 온도를 상온으로 올린다. 추가로 120℃에서 5시간 가열환류 한 후 온도를 상온으로 낮추고 sodium acetate dichloromethane용액으로 반응을 종결한다. 혼합액을 M.C 500 mL로 추출한 후, 증류수로 세척하였다. 얻어진 유기층을 무수 MgSO4로 건조하고, 감압증류하고 실리카겔 컬럼크로마토그래피로 정제하여 목적 화합물 4.9g(수율 70%)을 얻었다. 1H-NMR: 7.91~7.79 (m, 10H), 7.45~7.40(m, 17H), 7.27(t, 1H), 7.11(s, 4H), 6.84(m, 2H)[Preparation Example 26] A mixed solution of 10 g (13.02 mmol) and 250 mL of tert-butylbenzene was slowly added to a tert-butyllithium pentane solution (25.5 ml, 1.7M, 43.35 mmol) cooled to 0° C. under a nitrogen stream. After the solution was added, it was heated and refluxed at 60 °C for 2 hours. After lowering the reaction temperature to -40°C, 10.8 g (43.35 mmol) of boron tribromide was slowly added thereto, and then the reaction temperature was slowly raised to room temperature. After stirring at room temperature for 30 minutes, lower the temperature to 0°C. At 0°C, 69 g (68 mmol) of N,N-Diisopropylethylamine was slowly added dropwise, and then the temperature was raised to room temperature. Further, after heating and refluxing at 120°C for 5 hours, the temperature was lowered to room temperature and the reaction was terminated with sodium acetate dichloromethane solution. The mixture was extracted with MC 500 mL, and washed with distilled water. The obtained organic layer was dried over anhydrous MgSO 4 , distilled under reduced pressure, and purified by silica gel column chromatography to obtain 4.9 g (yield 70%) of the target compound. 1H-NMR: 7.91 to 7.79 (m, 10H), 7.45 to 7.40 (m, 17H), 7.27 (t, 1H), 7.11 (s, 4H), 6.84 (m, 2H)
[합성예 56] Mat 56의 합성[Synthesis Example 56] Synthesis of Mat 56
반응물로 [준비예27]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.22g을 얻었다.; HRMS [M]+: 632.660.22 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 27] was used as a reactant; HRMS [M]+: 632.66
[합성예 57] Mat 57의 합성[Synthesis Example 57] Synthesis of Mat 57
반응물로 [준비예26]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.14g을 얻었다.; HRMS [M]+: 632.660.14 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 26] was used as a reactant; HRMS [M]+: 632.66
[합성예 58] Mat 58의 합성[Synthesis Example 58] Synthesis of Mat 58
반응물로 [준비예28]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.34g을 얻었다.; HRMS [M]+: 632.660.34 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 28] was used as a reactant; HRMS [M]+: 632.66
[합성예 59] Mat 59의 합성[Synthesis Example 59] Synthesis of Mat 59
반응물로 [준비예28]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.16g을 얻었다.; HRMS [M]+: 632.660.16 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 28] was used as a reactant; HRMS [M]+: 632.66
[합성예 60] Mat 60의 합성[Synthesis Example 60] Synthesis of Mat 60
반응물로 [준비예29]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.41g을 얻었다.; HRMS [M]+: 632.660.41 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 29] was used as a reactant; HRMS [M]+: 632.66
[합성예 61] Mat 61의 합성[Synthesis Example 61] Synthesis of Mat 61
반응물로 [준비예30]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.26g을 얻었다.; HRMS [M]+: 582.600.26 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 30] was used as a reactant; HRMS [M]+: 582.60
[합성예 62] Mat 62의 합성[Synthesis Example 62] Synthesis of Mat 62
반응물로 [준비예30]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.14g을 얻었다.; HRMS [M]+: 582.600.14 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 30] was used as a reactant; HRMS [M]+: 582.60
[합성예 63] Mat 63의 합성[Synthesis Example 63] Synthesis of Mat 63
반응물로 [준비예31]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.23g을 얻었다.; HRMS [M]+: 632.660.23 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 31] was used as a reactant; HRMS [M]+: 632.66
[합성예 64] Mat 64의 합성[Synthesis Example 64] Synthesis of Mat 64
반응물로 [준비예32]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.27g을 얻었다.; HRMS [M]+: 632.660.27 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 32] was used as a reactant; HRMS [M]+: 632.66
[합성예 65] Mat 65의 합성[Synthesis Example 65] Synthesis of Mat 65
반응물로 [준비예32]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.30g을 얻었다.; HRMS [M]+: 632.660.30 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 32] was used as a reactant; HRMS [M]+: 632.66
[합성예 66] Mat 66의 합성[Synthesis Example 66] Synthesis of Mat 66
반응물로 [준비예32]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.36g을 얻었다.; HRMS [M]+: 632.660.36 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 32] was used as a reactant; HRMS [M]+: 632.66
[합성예 67] Mat 67의 합성[Synthesis Example 67] Synthesis of Mat 67
반응물로 [준비예32]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.41g을 얻었다.; HRMS [M]+: 632.660.41 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 32] was used as a reactant; HRMS [M]+: 632.66
[합성예 68] Mat 68의 합성[Synthesis Example 68] Synthesis of Mat 68
반응물로 [준비예32]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.24g을 얻었다.; HRMS [M]+: 632.660.24 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 32] was used as a reactant; HRMS [M]+: 632.66
[합성예 69] Mat 69의 합성[Synthesis Example 69] Synthesis of Mat 69
반응물로 [준비예26]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.14g을 얻었다.; HRMS [M]+: 632.660.14 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 26] was used as a reactant; HRMS [M]+: 632.66
[합성예 70] Mat 70의 합성[Synthesis Example 70] Synthesis of Mat 70
반응물로 [준비예26]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.12g을 얻었다.; HRMS [M]+: 632.660.12 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 26] was used as a reactant; HRMS [M]+: 632.66
[합성예 71] Mat 71의 합성[Synthesis Example 71] Synthesis of Mat 71
반응물로 [준비예33]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.33g을 얻었다.; HRMS [M]+: 632.660.33 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 33] was used as a reactant; HRMS [M]+: 632.66
[합성예 72] Mat 72의 합성[Synthesis Example 72] Synthesis of Mat 72
반응물로 [준비예34]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.17g을 얻었다.; HRMS [M]+: 632.660.17 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 34] was used as a reactant; HRMS [M]+: 632.66
[합성예 73] Mat 73의 합성[Synthesis Example 73] Synthesis of Mat 73
반응물로 [준비예35]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.17g을 얻었다.; HRMS [M]+: 624.510.17 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 35] was used as a reactant; HRMS [M]+: 624.51
[합성예 74] Mat 74의 합성[Synthesis Example 74] Synthesis of Mat 74
반응물로 [준비예36]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.24g을 얻었다.; HRMS [M]+: 522.420.24 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 36] was used as a reactant; HRMS [M]+: 522.42
[합성예 75] Mat 75의 합성[Synthesis Example 75] Synthesis of Mat 75
반응물로 [준비예37]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.32g을 얻었다.; HRMS [M]+: 624.510.32 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 37] was used as a reactant; HRMS [M]+: 624.51
[합성예 76] Mat 76의 합성[Synthesis Example 76] Synthesis of Mat 76
반응물로 [준비예38]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.20g을 얻었다.; HRMS [M]+: 522.420.20 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 38] was used as a reactant; HRMS [M]+: 522.42
[합성예 77] Mat 77의 합성[Synthesis Example 77] Synthesis of Mat 77
반응물로 [준비예39]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.15g을 얻었다.; HRMS [M]+: 624.510.15 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 39] was used as a reactant; HRMS [M]+: 624.51
[합성예 78] Mat 78의 합성[Synthesis Example 78] Synthesis of Mat 78
반응물로 [준비예40]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.19g을 얻었다.; HRMS [M]+: 624.510.19 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 40] was used as a reactant; HRMS [M]+: 624.51
[합성예 79] Mat 79의 합성[Synthesis Example 79] Synthesis of Mat 79
반응물로 [준비예40]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.21g을 얻었다.; HRMS [M]+: 624.510.21 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 40] was used as a reactant; HRMS [M]+: 624.51
[합성예 80] Mat 80의 합성[Synthesis Example 80] Synthesis of Mat 80
반응물로 [준비예41]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.14g을 얻었다.; HRMS [M]+: 624.510.14 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 41] was used as a reactant; HRMS [M]+: 624.51
[합성예 81] Mat 81의 합성[Synthesis Example 81] Synthesis of Mat 81
반응물로 [준비예42]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.51g을 얻었다.; HRMS [M]+: 634.590.51 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 42] was used as a reactant; HRMS [M]+: 634.59
[합성예 82] Mat 82의 합성[Synthesis Example 82] Synthesis of Mat 82
반응물로 [준비예43]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.48g을 얻었다.; HRMS [M]+: 534.470.48 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 43] was used as a reactant; HRMS [M]+: 534.47
[합성예 83] Mat 83의 합성[Synthesis Example 83] Synthesis of Mat 83
반응물로 [준비예44]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.36g을 얻었다.; HRMS [M]+: 534.470.36 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 44] was used as a reactant; HRMS [M]+: 534.47
[합성예 84] Mat 84의 합성[Synthesis Example 84] Synthesis of Mat 84
반응물로 [준비예45]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.34g을 얻었다.; HRMS [M]+: 646.690.34 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 45] was used as a reactant; HRMS [M]+: 646.69
[합성예 85] Mat 85의 합성[Synthesis Example 85] Synthesis of Mat 85
반응물로 [준비예46]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.41g을 얻었다.; HRMS [M]+: 646.690.41 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 46] was used as a reactant; HRMS [M]+: 646.69
[합성예 86] Mat 86의 합성[Synthesis Example 86] Synthesis of Mat 86
반응물로 [준비예47]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.38g을 얻었다.; HRMS [M]+: 676.670.38 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 47] was used as a reactant; HRMS [M]+: 676.67
[합성예 87] Mat 87의 합성[Synthesis Example 87] Synthesis of Mat 87
반응물로 [준비예48]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.36g을 얻었다.; HRMS [M]+: 688.770.36 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 48] was used as a reactant; HRMS [M]+: 688.77
[합성예 88] Mat 88의 합성[Synthesis Example 88] Synthesis of Mat 88
반응물로 [준비예49]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.43g을 얻었다.; HRMS [M]+: 696.660.43 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 49] was used as a reactant; HRMS [M]+: 696.66
[합성예 89] Mat 89의 합성[Synthesis Example 89] Synthesis of Mat 89
반응물로 [준비예50]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.18g을 얻었다.; HRMS [M]+: 708.760.18 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 50] was used as a reactant; HRMS [M]+: 708.76
[합성예 90] Mat 90의 합성[Synthesis Example 90] Synthesis of Mat 90
반응물로 [준비예51]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.25g을 얻었다.; HRMS [M]+: 697.650.25 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 51] was used as a reactant; HRMS [M]+: 697.65
[합성예 91] Mat 91의 합성[Synthesis Example 91] Synthesis of Mat 91
반응물로 [준비예52]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.15g을 얻었다.; HRMS [M]+: 709.740.15 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 52] was used as a reactant; HRMS [M]+: 709.74
[합성예 92] Mat 92의 합성[Synthesis Example 92] Synthesis of Mat 92
반응물로 [준비예53]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.25g을 얻었다.; HRMS [M]+: 764.660.25 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 53] was used as a reactant; HRMS [M]+: 764.66
[합성예 93] Mat 93의 합성[Synthesis Example 93] Synthesis of Mat 93
반응물로 [준비예54]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.34g을 얻었다.; HRMS [M]+: 776.750.34 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 54] was used as a reactant; HRMS [M]+: 776.75
[합성예 94] Mat 94의 합성[Synthesis Example 94] Synthesis of Mat 94
반응물로 [준비예55]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.63g을 얻었다.; HRMS [M]+: 692.740.63 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 55] was used as a reactant; HRMS [M]+: 692.74
[합성예 95] Mat 95의 합성[Synthesis Example 95] Synthesis of Mat 95
반응물로 [준비예56]을 사용한 것을 제외하고는 [합성예 1]과 동일한 과정을 수행하여 목적 화합물 0.58g을 얻었다.; HRMS [M]+: 704.840.58 g of the target compound was obtained in the same manner as in [Synthesis Example 1] except that [Preparation Example 56] was used as a reactant; HRMS [M]+: 704.84
[실시예 1 ~ 18] 녹색 유기 EL 소자의 제조[Examples 1 to 18] Preparation of green organic EL device
상기 합성예에서 합성한 화합물을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 녹색 유기 EL 소자를 제작하였다.After high-purity sublimation purification of the compound synthesized in the above synthesis example by a commonly known method, a green organic EL device was manufactured according to the following procedure.
먼저, ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 에탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.First, a glass substrate coated with indium tin oxide (ITO) to a thickness of 1500 Å was washed with distilled water ultrasonically. After washing with distilled water, it is ultrasonically cleaned with a solvent such as isopropyl alcohol, acetone, ethanol, etc., dried, transferred to a UV OZONE cleaner (Power sonic 405, Hwashin Tech), and then the substrate is cleaned using UV for 5 minutes and vacuum evaporator The substrate was transferred to
이렇게 준비된 ITO 투명 전극 위에 DS-205(두산 社) 80 nm 두께로 전공 주입층을 형성 하였고, 상기 전공수송층에 a-NPB(N,N' -Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4.4'-diamine) 30 nm 두께로 진공 층착하여 전공 수송층을 형성 하였다.A hole injection layer was formed with a thickness of 80 nm DS-205 (Doosan Corporation) on the prepared ITO transparent electrode, and a-NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl -(1,1'-biphenyl)-4.4'-diamine) was vacuum deposited to a thickness of 30 nm to form a hole transport layer.
그 위에 녹색 도판트 재료로 합성예 1 에서 97 에서 제조된 화합물들과 녹색 발광 호스트 재료로서 DS-H522 와 DS-TD-002 를 공통 호스트로 적용하여 발광층 30nm 두께로 형성 하였다. 이때 발광층의 도핑 비율은(DS-H522:DS-TD-002:합성예 1~97 = 75%:20%:5%)으로 일괄 적용 하였다. On it, the compounds prepared in Synthesis Examples 1 to 97 as a green dopant material and DS-H522 and DS-TD-002 as green light-emitting host materials were applied as common hosts to form a light-emitting layer with a thickness of 30 nm. At this time, the doping ratio of the light emitting layer (DS-H522:DS-TD-002:Synthesis Example 1-97 = 75%:20%:5%) was collectively applied.
상기 발광층 위에 전자 이송 물질인 TPBi(2,2' ,2"-(Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))를 30nm 두께로 하여 전자수송층을 형성하였다. 그후 LiF를 1nm 두께로 전자주입층을 형성하고 음극으로 Al 200 nm을 형성하여 소자를 제작하였다. An electron transport layer was formed on the light emitting layer by using an electron transport material, TPBi(2,2',2"-(Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) to a thickness of 30 nm. Then, LiF was applied to a thickness of 1 nm. A device was manufactured by forming an electron injection layer with a cathode and forming 200 nm of Al as a cathode.
[비교예][Comparative example]
녹색 발광재료로 대표되는 Alq3, C-545T 및 비교예 1을 사용하는 것을 제외하고는 상기 소자 제작예와 동일 한 방법으로 유기 전계 발광 소자를 제작하였고, 제작된 소자의 평가 결과는 표1에 기재하였다.An organic electroluminescent device was fabricated in the same manner as in the device fabrication example except for using Alq3, C-545T, and Comparative Example 1, which are represented by green light-emitting materials, and the evaluation results of the fabricated devices are described in Table 1. did
Figure PCTKR2021019005-appb-img-000030
Figure PCTKR2021019005-appb-img-000030
[평가예][Example of evaluation]
실시예1 내지 18 및 비교예 1, 2, 3 에서 제작한 각각의 유기 EL 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하고, 그 결과를 하기 표 1에 나타내었다.For each organic EL device manufactured in Examples 1 to 18 and Comparative Examples 1, 2, and 3, the driving voltage, current efficiency, and emission peak at a current density of 10 mA/cm 2 were measured, and the results are shown in Table 1 below. indicated.
샘플Sample 녹색 도판트green dopant 구동 전압(V)Driving voltage (V) EL 피크(nm)EL peak (nm) 전류효율(cd/A)Current efficiency (cd/A)
실시예 1Example 1 Mat2Mat2 5.205.20 530530 24.824.8
실시예 2Example 2 Mat3Mat3 5.015.01 531531 25.925.9
실시예 3Example 3 Mat4Mat4 5.185.18 537537 24.924.9
실시예 4Example 4 Mat11Mat11 5.065.06 535535 27.327.3
실시예 5Example 5 Mat13Mat13 5.75.7 536536 21.321.3
실시예 6Example 6 Mat18Mat18 5.725.72 538538 23.123.1
실시예 7Example 7 Mat32Mat32 5.225.22 536536 25.125.1
실시예 8Example 8 Mat40Mat40 5.665.66 534534 21.421.4
실시예 9Example 9 Mat54Mat54 5.325.32 536536 24.524.5
실시예 10Example 10 Mat56Mat56 5.885.88 535535 26.726.7
실시예 11Example 11 Mat61Mat61 5.195.19 537537 26.926.9
실시예 12Example 12 Mat64Mat64 5.045.04 541541 26.326.3
실시예 13Example 13 Mat68Mat68 5.665.66 529529 18.018.0
실시예 14Example 14 Mat74Mat74 5.295.29 528528 22.122.1
실시예 15Example 15 Mat85Mat85 5.275.27 530530 27.227.2
실시예 16Example 16 Mat87Mat87 5.375.37 531531 19.819.8
실시예 17Example 17 Mat93Mat93 5.225.22 533533 17.217.2
실시예 18Example 18 Mat95Mat95 5.305.30 527527 24.924.9
비교예 1Comparative Example 1 비교예 1Comparative Example 1 6.526.52 515515 14.914.9
비교예 2Comparative Example 2 C-545TC-545T 5.905.90 518518 15.515.5
비교예 3Comparative Example 3 Alq3Alq3 6.146.14 525525 12.812.8
상기 표 1로부터 실시예 1 내지 18에서 제조된 유기 발광 소자의 경우 강직한 화학 구조와 발광층 내 엑시톤 형성에 유리한 구조에 기인하여 구동전압, 발광피크 및 전류효율은 각각 비교예 1, 2, 3 에서 제조된 유기 발광 소자의 구동전압, 발광피크 및 전류효율에 비하여 우수함을 확인할 수 있다. From Table 1, in the case of the organic light-emitting devices manufactured in Examples 1 to 18, the driving voltage, the emission peak, and the current efficiency were obtained in Comparative Examples 1, 2, and 3, respectively, due to the rigid chemical structure and the structure favorable to the formation of excitons in the emission layer. It can be confirmed that it is superior to the driving voltage, emission peak, and current efficiency of the manufactured organic light emitting device.
[실시예 19 ~ 33] 적색 유기 EL 소자의 제조[Examples 19 to 33] Preparation of red organic EL device
상기 합성예에서 합성한 화합물을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후 아래의 과정에 따라 적색 유기 EL 소자를 제작하였다.After high-purity sublimation purification of the compound synthesized in the above synthesis example by a commonly known method, a red organic EL device was manufactured according to the following procedure.
먼저, ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 에탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음 UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.First, a glass substrate coated with indium tin oxide (ITO) to a thickness of 1500 Å was washed with distilled water ultrasonically. After washing with distilled water, it is ultrasonically cleaned with a solvent such as isopropyl alcohol, acetone, ethanol, etc., dried and transferred to a UV OZONE cleaner (Power sonic 405, Hwashin Tech). The substrate was transferred to
이렇게 준비된 ITO 투명 전극 위에 DS-205(두산 社) 80 nm 두께로 전공 주입층을 형성 하였고, 상기 전공수송층에 a-NPB(N,N' -Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4.4'-diamine) 30 nm 두께로 진공 층착하여 전공 수송층을 형성 하였다.A hole injection layer was formed with a thickness of 80 nm DS-205 (Doosan Corporation) on the prepared ITO transparent electrode, and a-NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl -(1,1'-biphenyl)-4.4'-diamine) was vacuum deposited to a thickness of 30 nm to form a hole transport layer.
그 위에 적색 도판트 재료로 합성예 1 에서 97 에서 제조된 화합물들과 적색 발광 호스트 재료로서 DS-H522 와 DS-TD-018 를 공통 호스트로 적용하여 발광층 30nm 두께로 형성 하였다. 이때 발광층의 도핑 비율은(DS-H522:DS-TD-018:합성예 1~97 = 75%:20%:5%)으로 일괄 적용 하였다. On it, the compounds prepared in Synthesis Examples 1 to 97 as a red dopant material and DS-H522 and DS-TD-018 as a red light-emitting host material were applied as a common host to form a light-emitting layer with a thickness of 30 nm. At this time, the doping ratio of the light emitting layer (DS-H522:DS-TD-018:Synthesis Example 1-97 = 75%:20%:5%) was collectively applied.
상기 발광층 위에 전자 이송 물질인 TPBi(2,2' ,2"-(Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))를 30nm 두께로 하여 전자수송층을 형성하였다. 그후 LiF 를 1nm 두께로 전자주입층을 형성하고 음극으로 Al 200 nm 을 형성하여 소자를 제작하였다. On the light emitting layer, an electron transporting material, TPBi(2,2',2"-(Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)), was applied to a thickness of 30 nm to form an electron transport layer. Then, LiF was applied to a thickness of 1 nm. A device was fabricated by forming an electron injection layer with a cathode and forming 200 nm of Al as a cathode.
[비교예][Comparative example]
적색 발광재료로 대표되는 DCM2, DCJTB 및 DCDDC을 사용하는 것을 제외하고는 상기 소자 제작예와 동일 한 방법으로 유기 전계 발광 소자를 제작하였고, 제작된 소자의 평가 결과는 표2 에 기재하였다.An organic electroluminescent device was fabricated in the same manner as in the device fabrication example except for using DCM2, DCJTB, and DCDDC, which are representative of red light emitting materials, and the evaluation results of the fabricated device are shown in Table 2.
Figure PCTKR2021019005-appb-img-000031
Figure PCTKR2021019005-appb-img-000031
[평가예][Example of evaluation]
실시예 19 내지 33 및 비교예 3, 4, 5 에서 제작한 각각의 유기 EL 소자에 대하여 전류밀도 10 mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하고, 그 결과를 하기 표 2에 나타내었다.For each organic EL device manufactured in Examples 19 to 33 and Comparative Examples 3, 4, and 5, the driving voltage, current efficiency, and emission peak at a current density of 10 mA/cm 2 were measured, and the results are shown in Table 2 below. indicated.
샘플Sample 적색 도판트red dopant 구동 전압(V)Driving voltage (V) EL 피크(nm)EL peak (nm) 전류효율(cd/A)Current efficiency (cd/A)
실시예 19Example 19 Mat 1Mat 1 5.205.20 618618 19.819.8
실시예 20Example 20 Mat 7Mat 7 5.015.01 620620 20.620.6
실시예 21Example 21 Mat 8Mat 8 5.185.18 619619 21.421.4
실시예 22Example 22 Mat 10 Mat 10 5.065.06 620620 20.820.8
실시예 23Example 23 Mat 16Mat 16 5.75.7 620620 21.421.4
실시예 24Example 24 Mat 28Mat 28 5.725.72 618618 23.523.5
실시예 25Example 25 Mat 35 Mat 35 5.225.22 618618 22.722.7
실시예 26Example 26 Mat 41Mat 41 5.665.66 619619 24.124.1
실시예 27Example 27 Mat 63Mat 63 5.325.32 620620 23.823.8
실시예 28Example 28 Mat 86Mat 86 5.885.88 620620 22.922.9
실시예 29Example 29 Mat 88Mat 88 5.195.19 618618 20.820.8
실시예 30Example 30 Mat 89Mat 89 5.045.04 618618 23.223.2
실시예 31Example 31 Mat 90Mat 90 5.665.66 619619 22.522.5
실시예 32Example 32 Mat 92Mat 92 5.295.29 620620 20.720.7
실시예 33Example 33 Mat 94Mat 94 5.275.27 620620 24.124.1
비교예 4Comparative Example 4 DCDDCDCDDC 6.526.52 627627 18.318.3
비교예 5Comparative Example 5 DCM2DCM2 5.905.90 623623 17.717.7
비교예 6Comparative Example 6 DCJTBDCJTB 6.146.14 628628 17.117.1
상기 표 2로부터 실시예 19 내지 33에서 제조된 유기 발광 소자의 경우 강직한 화학 구조와 발광층 내 엑시톤 형성에 유리한 구조에 기인하여 구동전압, 발광피크 및 전류효율은 각각 비교예 3, 4, 5 에서 제조된 유기 발광 소자의 구동전압, 발광피크 및 전류효율에 비하여 우수함을 확인할 수 있다. From Table 2, in the case of the organic light-emitting devices manufactured in Examples 19 to 33, the driving voltage, the emission peak, and the current efficiency were obtained in Comparative Examples 3, 4, and 5, respectively, due to the rigid chemical structure and the structure favorable to the formation of excitons in the emission layer. It can be confirmed that it is superior to the driving voltage, emission peak, and current efficiency of the manufactured organic light emitting device.
[부호의 설명][Explanation of code]
10: 양극 20: 음극10: positive electrode 20: negative electrode
30: 유기층 31: 정공 수송층30: organic layer 31: hole transport layer
32: 발광층 33: 정공 수송 보조층32: light emitting layer 33: hole transport auxiliary layer
34: 전자 수송층 35: 전자 수송 보조층34: electron transport layer 35: electron transport auxiliary layer
36: 전자 주입층 37: 정공 주입층36: electron injection layer 37: hole injection layer

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물:A compound represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2021019005-appb-img-000032
    Figure PCTKR2021019005-appb-img-000032
    상기 화학식 1에서,In Formula 1,
    Ar1 내지 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C30의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되고,Ar 1 To Ar 4 Are the same as or different from each other, and each independently a C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group, Heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 to C 30 aryl group, heteroaryl group having 2 to 30 nuclear atoms, C 1 to C 40 alkyloxy group, C 6 to C 60 aryloxy group , C 3 ~ C 40 Alkylsilyl group, C 6 ~ C 60 Arylsilyl group, C 1 ~ C 40 Alkyl boron group, C 6 ~ C 60 Aryl boron group, C 6 ~ C 60 Aryl phosphine group , C 6 ~ C 60 Mono or diarylphosphinyl group and C 6 ~ C 60 Selected from the group consisting of an arylamine group,
    상기 Ar1 내지 Ar4의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 모노 또는 디아릴포스피닐기 및 아릴아민기는 각각 독립적으로, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60개의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되거나 비치환되고, 복수 개의 치환기로 치환될 경우 이들은 서로 동일하거나 상이할 수 있으며,The Ar 1 To Ar 4 Alkyl group, cycloalkyl group, heterocycloalkyl group, aryl group, heteroaryl group, alkyloxy group, aryloxy group, alkylsilyl group, arylsilyl group, alkyl boron group, aryl boron group, aryl phosphine group , mono or diarylphosphinyl group and arylamine group are each independently a C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group , A heterocycloalkyl group having 3 to 40 nuclear atoms, a C 6 to C 60 aryl group, a heteroaryl group having 5 to 60 nuclear atoms, a C 1 to C 40 alkyloxy group, C 6 to C 60 Arylox Period, C 3 ~ C 40 Alkylsilyl group, C 6 ~ C 60 Arylsilyl group, C 1 ~ C 40 Alkyl boron group, C 6 ~ C 60 Aryl boron group, C 6 ~ C 60 Arylphos Pin group, C 6 ~ C 60 Mono or diarylphosphinyl group and C 6 ~ C 60 When substituted with one or more substituents selected from the group consisting of an arylamine group or unsubstituted, and substituted with a plurality of substituents, they are the same as each other or may be different,
    X는 수소, 중수소, 할로겐, 시아노기, 니트로기, 히드록실기, CF3기, B(OR5)2기, Si(R5)3 기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 헤테로시클로알킬기, C5~C40의 아릴기, 핵원자수 2 내지 30개의 헤테로아릴기, C1~C40의 알킬옥시기, C15~C40의 아릴옥시기, C15~C40의 헤테로아릴옥시기, C3~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C1~C10의 알칸설파이드기,C6~C60의 아릴포스핀기, C6~C60의 모노 또는 디아릴포스피닐기 및 C6~C60의 아릴아민기, C3~C10의 알칸 에테르기, C3~C10의 알콕시기, C3~C10의 티오알콕시기, C3~C10의 실릴기, C3~C10의 케토기, C3~C10의 알콕시카르보닐기, C3~C10의 아릴옥시 카르보닐기, C3~C10의 시아노기, C3~C10의 카르바모일기, C3~C10의 할로포르밀기, C3~C10의 포르밀기, C3~C10의 이소시아네이트기, C3~C10의 티오시아네이트기 및 C3~C10의 이소티오시아네이트기로 이루어진 군에서 선택되며,X is hydrogen, deuterium, halogen, cyano group, nitro group, hydroxyl group, CF 3 group, B(OR 5 ) 2 group, Si(R 5 ) 3 group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 3 ~ C 40 cycloalkyl group, heterocycloalkyl group having 3 to 40 nuclear atoms, C 5 ~ C 40 aryl group, 2 to 30 nuclear atoms Heteroaryl group, C 1 ~ C 40 Alkyloxy group, C 15 ~ C 40 Aryloxy group, C 15 ~ C 40 Heteroaryloxy group, C 3 ~ C 40 Alkylsilyl group, C 6 ~ C 60 of Arylsilyl group, C 1 ~ C 40 Alkyl boron group, C 6 ~ C 60 Aryl boron group, C 1 ~ C 10 Alkanesulfide group, C 6 ~ C 60 Aryl phosphine group, C 6 ~ C 60 of mono or diarylphosphinyl group and C 6 ~ C 60 arylamine group, C 3 ~ C 10 alkane ether group, C 3 ~ C 10 alkoxy group, C 3 ~ C 10 thioalkoxy group, C 3 ~ C 10 silyl group, C 3 ~ C 10 keto group, C 3 ~ C 10 alkoxycarbonyl group, C 3 ~ C 10 aryloxy carbonyl group, C 3 ~ C 10 cyano group, C 3 ~ C 10 Carbamoyl group, C 3 ~ C 10 Haloformyl group, C 3 ~ C 10 Formyl group, C 3 ~ C 10 Isocyanate group, C 3 ~ C 10 Thiocyanate group and C 3 ~ C 10 Iso It is selected from the group consisting of thiocyanate groups,
    상기 R5는 수소, 중수소, 할로겐, 시아노기, 니트로기, 치환 또는 비치환된 C1~C30의 알킬기, 치환 또는 비치환된 C2~C30의 알케닐기, 치환 또는 비치환된 C2~C30의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 치환 또는 비치환된 헤테로시클로알킬기, C6~C30의 치환 또는 비치환된 아릴기, 핵원자수 2 내지 30개의 치환 또는 비치환된 헤테로아릴기이다.Wherein R 5 is hydrogen, deuterium, halogen, cyano group, nitro group, substituted or unsubstituted C 1 ~ C 30 alkyl group, substituted or unsubstituted C 2 ~ C 30 alkenyl group, substituted or unsubstituted C 2 ~ C 30 alkynyl group, substituted or unsubstituted C 3 ~ C 40 cycloalkyl group, substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 ~ C 30 substituted or unsubstituted aryl group , a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
  2. 제 1항에 있어서,The method of claim 1,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2 내지 8로 표시되는 화합물로 이루어진 군에서 선택되는 화합물:The compound represented by Formula 1 is a compound selected from the group consisting of compounds represented by Formulas 2 to 8:
    [화학식 2][Formula 2]
    Figure PCTKR2021019005-appb-img-000033
    Figure PCTKR2021019005-appb-img-000033
    [화학식 3][Formula 3]
    Figure PCTKR2021019005-appb-img-000034
    Figure PCTKR2021019005-appb-img-000034
    [화학식 4] [Formula 4]
    Figure PCTKR2021019005-appb-img-000035
    Figure PCTKR2021019005-appb-img-000035
    [화학식 5] [Formula 5]
    Figure PCTKR2021019005-appb-img-000036
    Figure PCTKR2021019005-appb-img-000036
    [화학식 6] [Formula 6]
    Figure PCTKR2021019005-appb-img-000037
    Figure PCTKR2021019005-appb-img-000037
    [화학식 7] [Formula 7]
    Figure PCTKR2021019005-appb-img-000038
    Figure PCTKR2021019005-appb-img-000038
    [화학식 8] [Formula 8]
    Figure PCTKR2021019005-appb-img-000039
    Figure PCTKR2021019005-appb-img-000039
    상기 화학식 2 내지 8에서,In Formulas 2 to 8,
    Ar1 내지 Ar4은 제1항에서 정의한 바와 같다.Ar 1 to Ar 4 are as defined in claim 1.
  3. 제1항에 있어서,According to claim 1,
    상기 Ar1 내지 Ar2는 서로 동일하거나 상이하며, 각각 독립적으로 화학식A-1 내지 화학식 A-5 중 어느 하나로 표시되는 것을 특징으로 하는 화합물:Wherein Ar 1 To Ar 2 Are the same as or different from each other, each independently represented by any one of Formulas A-1 to A-5 A compound, characterized in that:
    [화학식 A-1][Formula A-1]
    Figure PCTKR2021019005-appb-img-000040
    Figure PCTKR2021019005-appb-img-000040
    [화학식 A-2][Formula A-2]
    Figure PCTKR2021019005-appb-img-000041
    Figure PCTKR2021019005-appb-img-000041
    [화학식 A-3][Formula A-3]
    Figure PCTKR2021019005-appb-img-000042
    Figure PCTKR2021019005-appb-img-000042
    [화학식 A-4][Formula A-4]
    Figure PCTKR2021019005-appb-img-000043
    Figure PCTKR2021019005-appb-img-000043
    [화학식 A-5][Formula A-5]
    Figure PCTKR2021019005-appb-img-000044
    Figure PCTKR2021019005-appb-img-000044
    상기 화학식 A-1 내지 화학식 A-5에서,In Formulas A-1 to A-5,
    점선은 축합이 이루어지는 부분을 의미하며,The dotted line means the part where the condensation takes place,
    Z1은 서로 동일하거나 상이하며, 각각 독립적으로, C 또는 N이고,Z 1 are the same as or different from each other, each independently C or N,
    R1 내지 R2는 서로 동일하거나 상이하며, 각각 독립적으로, 수소, 중수소, 할로겐, 시아노기, 니트로기, 치환 또는 비치환된 C1~C30의 알킬기, 치환 또는 비치환된 C2~C30의 알케닐기, 치환 또는 비치환된 C2~C30의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 치환 또는 비치환된 헤테로시클로알킬기, C6~C30의 치환 또는 비치환된 아릴기, 핵원자수 2 내지 30개의 치환 또는 비치환된 헤테로아릴기이다.R 1 To R 2 Are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, nitro group, substituted or unsubstituted C 1 ~ C 30 alkyl group, substituted or unsubstituted C 2 ~ C 30 alkenyl group, substituted or unsubstituted C 2 ~ C 30 alkynyl group, substituted or unsubstituted C 3 ~ C 40 cycloalkyl group, substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 ~ C 30 A substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
  4. 제1항에 있어서,The method of claim 1,
    상기 Ar3 내지 Ar4는 서로 동일하거나 상이하며, 각각 독립적으로 화학식B-1 내지 화학식 B-3 중 어느 하나로 표시되는 것을 특징으로 하는 화합물:Wherein Ar 3 To Ar 4 Are the same as or different from each other, and each independently a compound, characterized in that represented by any one of Formulas B-1 to B-3:
    [화학식 B-1][Formula B-1]
    Figure PCTKR2021019005-appb-img-000045
    Figure PCTKR2021019005-appb-img-000045
    [화학식 B-2][Formula B-2]
    Figure PCTKR2021019005-appb-img-000046
    Figure PCTKR2021019005-appb-img-000046
    [화학식 B-3][Formula B-3]
    Figure PCTKR2021019005-appb-img-000047
    Figure PCTKR2021019005-appb-img-000047
    상기 화학식 B-1 내지 화학식 B-3에서,In Formulas B-1 to B-3,
    *는 결합이 이루어지는 부분이고,* is the part where the bond is made,
    Z2는 서로 동일하거나 상이하며, 각각 독립적으로, C 또는 N이고,Z 2 are the same as or different from each other, each independently C or N,
    R3 내지 R4는 서로 동일하거나 상이하며, 각각 독립적으로, 수소, 중수소, 할로겐, 시아노기, 니트로기, 치환 또는 비치환된 C1~C30의 알킬기, 치환 또는 비치환된 C2~C30의 알케닐기, 치환 또는 비치환된 C2~C30의 알키닐기, 치환 또는 비치환된 C3~C40의 시클로알킬기, 핵원자수 3 내지 40개의 치환 또는 비치환된 헤테로시클로알킬기, C6~C30의 치환 또는 비치환된 아릴기, 핵원자수 2 내지 30개의 치환 또는 비치환된 헤테로아릴기이다.R 3 To R 4 Are the same as or different from each other, and each independently hydrogen, deuterium, halogen, cyano group, nitro group, substituted or unsubstituted C 1 ~ C 30 alkyl group, substituted or unsubstituted C 2 ~ C 30 alkenyl group, substituted or unsubstituted C 2 ~ C 30 alkynyl group, substituted or unsubstituted C 3 ~ C 40 cycloalkyl group, substituted or unsubstituted heterocycloalkyl group having 3 to 40 nuclear atoms, C 6 ~ C 30 A substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
  5. 제1항에 있어서,According to claim 1,
    상기 Ar1 내지 Ar4의 Z1 내지 Z2가 모두 C인 경우, R1 내지 R4 중 적어도 하나는 핵원자수 2 내지 30개의 치환 또는 비치환된 헤테로아릴기인 화합물.The Ar 1 To Ar 4 When Z 1 To Z 2 All are C, at least one of R 1 To R 4 A compound of which is a substituted or unsubstituted heteroaryl group having 2 to 30 nuclear atoms.
  6. [규칙 제91조에 의한 정정 20.01.2022] 
    제1항에 있어서,
    상기 화합물은 아래의 화합물로 이루어진 군에서 선택되는 것을 특징으로 하는 화합물:
    Figure WO-DOC-FIGURE-6661

    Figure WO-DOC-FIGURE-6662

    Figure WO-DOC-FIGURE-6663

    Figure WO-DOC-FIGURE-6664
    [Correction by Rule 91 20.01.2022]
    The method of claim 1,
    The compound is a compound characterized in that it is selected from the group consisting of:
    Figure WO-DOC-FIGURE-6661

    Figure WO-DOC-FIGURE-6662

    Figure WO-DOC-FIGURE-6663

    Figure WO-DOC-FIGURE-6664
  7. (i) 양극, (ii) 음극, 및 (iii) 상기 양극과 음극 사이에 개재된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, An organic electroluminescent device comprising (i) an anode, (ii) a cathode, and (iii) one or more organic material layers interposed between the anode and the cathode,
    상기 1층 이상의 유기물층 중에서 적어도 하나는 제1항의 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.At least one of the one or more organic material layers is an organic electroluminescent device comprising the compound represented by the formula (1) of claim 1.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 유기물층은 정공 주입층, 정공 수송층, 정공 수송 보조층, 전자 수송층, 전자 수송 보조층 및 발광층으로 이루어진 군에서 선택되는 하나 이상의 층을 포함하는, 유기 전계 발광 소자.The organic material layer comprises at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, a hole transport auxiliary layer, an electron transport layer, an electron transport auxiliary layer, and a light emitting layer, an organic electroluminescent device.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 발광층은 지연 형광을 방출하는 것을 특징으로 하는 유기 전계 발광 소자.The light emitting layer is an organic electroluminescent device, characterized in that for emitting delayed fluorescence.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 발광층은 호스트 및 도펀트를 포함하는 지연 형광 발광층이고,The light emitting layer is a delayed fluorescent light emitting layer including a host and a dopant,
    상기 도펀트는 제1항의 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.The dopant is an organic electroluminescent device comprising the compound represented by the formula (1) of claim 1.
  11. 제8항에 있어서,9. The method of claim 8,
    상기 발광층은 청색광을 방출하는 열활성 지연 형광 발광층인 것을 특징으로 하는 유기 전계 발광 소자.The light emitting layer is an organic electroluminescent device, characterized in that the thermally activated delayed fluorescent light emitting layer emitting blue light.
PCT/KR2021/019005 2020-12-14 2021-12-14 Organic light-emitting compound and organic electroluminescence element using same WO2022131768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0174795 2020-12-14
KR1020200174795A KR20220084871A (en) 2020-12-14 2020-12-14 Organic light-emitting compound and organic electroluminescent device using the same

Publications (1)

Publication Number Publication Date
WO2022131768A1 true WO2022131768A1 (en) 2022-06-23

Family

ID=82057921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019005 WO2022131768A1 (en) 2020-12-14 2021-12-14 Organic light-emitting compound and organic electroluminescence element using same

Country Status (2)

Country Link
KR (1) KR20220084871A (en)
WO (1) WO2022131768A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332978A (en) * 2023-05-30 2023-06-27 吉林奥来德光电材料股份有限公司 Organic compound, preparation method thereof and organic electroluminescent device comprising organic compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160119683A (en) * 2014-02-18 2016-10-14 가꼬우 호징 관세이 가쿠잉 Polycyclic aromatic compound
KR20180122298A (en) * 2017-05-02 2018-11-12 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
KR20190140421A (en) * 2018-06-11 2019-12-19 주식회사 엘지화학 Organic light emitting device
KR20200070141A (en) * 2018-12-07 2020-06-17 주식회사 엘지화학 Organic light emitting device
KR20210125621A (en) * 2020-04-07 2021-10-19 삼성디스플레이 주식회사 Organic light emitting device and apparatus comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150033082A (en) 2013-09-23 2015-04-01 에스케이케미칼주식회사 Compound for organic electroluminescent device and organic electroluminescent device comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160119683A (en) * 2014-02-18 2016-10-14 가꼬우 호징 관세이 가쿠잉 Polycyclic aromatic compound
KR20180122298A (en) * 2017-05-02 2018-11-12 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
KR20190140421A (en) * 2018-06-11 2019-12-19 주식회사 엘지화학 Organic light emitting device
KR20200070141A (en) * 2018-12-07 2020-06-17 주식회사 엘지화학 Organic light emitting device
KR20210125621A (en) * 2020-04-07 2021-10-19 삼성디스플레이 주식회사 Organic light emitting device and apparatus comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332978A (en) * 2023-05-30 2023-06-27 吉林奥来德光电材料股份有限公司 Organic compound, preparation method thereof and organic electroluminescent device comprising organic compound
CN116332978B (en) * 2023-05-30 2023-08-29 吉林奥来德光电材料股份有限公司 Organic compound, preparation method thereof and organic electroluminescent device comprising organic compound

Also Published As

Publication number Publication date
KR20220084871A (en) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2021107694A1 (en) Organic light-emitting element
WO2020017931A1 (en) Polycyclic compound and organic light-emitting device comprising same
WO2018186670A1 (en) Compound and organic light emitting element comprising same
WO2016167491A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic apparatus
WO2015156580A2 (en) Organic compound and organic electroluminescent element comprising same
WO2020050619A1 (en) Polycyclic compound and organic light-emitting device including same
WO2012111927A2 (en) Compound and organic electrical element using same, and electronic device and heat-resistance measuring method therewith
WO2018160003A1 (en) Heterocyclic compound and organic light-emitting device comprising same
WO2020159279A1 (en) Polycyclic compound and organic light-emitting element comprising same
WO2021172664A1 (en) Organic light-emitting device
WO2019135633A1 (en) Novel compound and organic light-emitting device comprising same
WO2016137068A1 (en) Hetero ring compound and organic luminescent element comprising same
WO2019078701A1 (en) Novel compound and organic light-emitting device comprising same
WO2017146483A1 (en) Heterocyclic compound and organic light emitting diode containing same
WO2022131547A1 (en) Heterocyclic compound, organic light-emitting device comprising same, manufacturing method therefor, and composition for organic layer
WO2022131768A1 (en) Organic light-emitting compound and organic electroluminescence element using same
WO2022131780A1 (en) Organic light-emitting compound and organic electroluminescent element using same
WO2021010631A1 (en) Heterocyclic compound and organic light emitting device comprising same
WO2021187923A1 (en) Organoelectroluminescent device using polycyclic aromatic derivative compounds
WO2022045817A1 (en) Phenanthrene derivatives and organic light emitting diodes comprising derivatives
WO2022050710A1 (en) Polycyclic aromatic derivative compound and organoelectroluminescent device using same
WO2021182888A1 (en) Amine compound having fused ring, and organic light-emitting device comprising same
WO2019117571A1 (en) Organic compound and organic electroluminescent device comprising same
WO2023229396A1 (en) Composition for organic electroluminescent element and organic electroluminescent element comprising same
WO2018004318A2 (en) Heterocyclic compound and organic light emitting element comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21907072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21907072

Country of ref document: EP

Kind code of ref document: A1