WO2022131634A1 - Optical device for wavelength division multiplexing that eliminates defects caused by outgas - Google Patents

Optical device for wavelength division multiplexing that eliminates defects caused by outgas Download PDF

Info

Publication number
WO2022131634A1
WO2022131634A1 PCT/KR2021/018070 KR2021018070W WO2022131634A1 WO 2022131634 A1 WO2022131634 A1 WO 2022131634A1 KR 2021018070 W KR2021018070 W KR 2021018070W WO 2022131634 A1 WO2022131634 A1 WO 2022131634A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
lens
optical fiber
fixing member
light
Prior art date
Application number
PCT/KR2021/018070
Other languages
French (fr)
Korean (ko)
Inventor
강정규
Original Assignee
주식회사 에스엘테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200176286A external-priority patent/KR20220086133A/en
Priority claimed from KR1020210028551A external-priority patent/KR102303086B1/en
Application filed by 주식회사 에스엘테크놀로지 filed Critical 주식회사 에스엘테크놀로지
Publication of WO2022131634A1 publication Critical patent/WO2022131634A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Definitions

  • the present invention relates to an optical device for wavelength division multiplexing, and more particularly, to an optical device for wavelength division multiplexing using a film to prevent the occurrence of defects due to outgas.
  • Wavelength division multiplexing is a technology that uses different wavelengths of laser light to apply multiple carrier signals to a single optical fiber. Since a plurality of signals can be simultaneously transmitted to a single optical fiber, wavelength division multiplexing has an advantage in that data communication capacity can be increased in proportion to the number of wavelengths used.
  • an optical device for discriminating a plurality of wavelengths used is essential.
  • a filter type wavelength division multiplexing optical device hereinafter referred to as a 'wavelength division multiplexing filter'
  • AWG arrayed waveguide grating
  • a wavelength division multiplexing filter is used as an optical device for discriminating a plurality of wavelengths rather than an array type optical waveguide grating.
  • the wavelength division multiplexing filter includes optical elements bonded therein by using an adhesive such as epoxy during the manufacturing process. Outgas is generated in the process of curing the adhesive, and the outgas remains inside the wavelength division multiplexing filter.
  • the internal outgas has a problem of causing defects in the wavelength division multiplexing filter over time.
  • a first optical fiber receiving a first optical signal having a plurality of wavelengths and a second optical fiber receiving a second optical signal having a wavelength band remaining from the first optical signal except for a preset wavelength band
  • a filter that passes light of a preset wavelength band among the dual fiber fixing member fixing the light and incident light, but reflects the light of the remaining wavelength band in the direction of the second optical fiber and the light output from the dual fiber fixing member,
  • a first lens coupled to a filter and incident light reflected from the filter into the second optical fiber, a first bonding unit bonding the filter and the first lens to fix the first lens, the first bonding unit, and the filter;
  • a first film disposed between the first lens to close a gap formed between the filter and the first lens, and a second lens disposed physically apart from the filter and focusing the light passing through the filter a third optical fiber receiving the light focused by the second lens; a single fiber fixing member fixing the third optical fiber; a second bonding unit fixing the second lens and the single fiber fixing member by bonding;
  • the first film and the second film is characterized in that as the adhesive portion is applied to one surface, respectively, to close the formed gap.
  • 1 and 2 are diagrams illustrating an operation principle of dividing a plurality of wavelengths using a wavelength division multiplexing filter.
  • 3 is a cross-sectional view showing the configuration of a conventional wavelength division multiplexing filter.
  • FIG. 4 is an enlarged view showing a configuration of a conventional wavelength division multiplexing filter.
  • FIG. 5 is a diagram illustrating an optical path in a conventional wavelength division multiplexing filter.
  • FIG. 6 is a view of an optical fiber core in a conventional wavelength division multiplexing filter.
  • FIG. 7 is a cross-sectional view illustrating the configuration of a wavelength division multiplexing filter according to an embodiment of the present invention.
  • FIGS. 8 and 9 are cross-sectional views illustrating the configuration of a wavelength division multiplexing filter according to another embodiment of the present invention.
  • first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
  • each configuration, process, process or method included in each embodiment of the present invention may be shared within a range that does not technically contradict each other.
  • 1 and 2 are diagrams illustrating an operation principle of classifying a plurality of wavelengths using a wavelength division multiplexing filter.
  • wavelength division multiplexing filters capable of separating different wavelengths
  • 8 wavelengths may be separated.
  • optical signals of a plurality of wavelengths are applied to the first optical fiber 21 by a wavelength division multiplexing filter.
  • the applied optical signal passes through the first lens 23 and the thin film filter 24 , the light of a preset wavelength is outputted through the thin film filter 24 , and the light of the remaining wavelength is filtered by the thin film filter 24 . and reflected to the second optical fiber 26 .
  • the dual fiber fixing member 22 arranges and fixes the first optical fiber 21 and the second optical fiber 26 .
  • the wavelength division multiplexing filter includes an optical element such as a dual fiber fixing member 22 , a first lens 23 , and a thin film filter 24 .
  • each optical element is arranged at a predetermined distance, and each optical element is fixed to each other by an adhesive 25 such as epoxy.
  • 3 to 5 are cross-sectional views of a conventional wavelength division multiplexing filter 100 .
  • an optical signal is applied to the first optical fiber 110 in the conventional wavelength division multiplexing filter 100 .
  • the applied optical signal passes through the first lens 130 and the filter 140, and the light of a preset wavelength passes through the filter 140 and is output to the third optical fiber 118, and the light of the remaining wavelength passes through the filter ( It is filtered in 140 and reflected to the second optical fiber 114 .
  • the dual fiber fixing member 120 is fixed by disposing the first optical fiber 110 and the second optical fiber 114 therein.
  • the first lens 130 couples the light output from the dual fiber fixing member 120 to the filter 140 , and transmits the filtered light reflected from the filter 140 to the second optical fiber in the dual fiber fixing member 120 . It is made incident by focusing at (114).
  • a GRIN lens may be used as the first lens 130 , and the GRIN lens serves to create parallel light or focused light.
  • the first lens 130 couples the light output from the dual fiber fixing member 120 to the filter 140
  • the first lens 130 makes the light parallel light, and in the opposite direction makes the focused light.
  • the filter 140 passes only light of a preset wavelength band among the incident lights in the direction of the third optical fiber 118 , and reflects the light of the remaining wavelength band in the direction of the second optical fiber 114 .
  • a thin-film chip filter may be used as the filter 140 .
  • the second lens 150 is disposed physically apart from the filter 140 , and focuses the light passing through the filter 140 .
  • the second lens 150 is positioned on the side of the third optical fiber 118 so that the light passing through the filter 140 is completely incident on the third optical fiber 118 positioned on the single-fiber fixing member 160 .
  • the second lens 150 may be a collimating lens, and performs a function of focusing parallel light. That is, the second lens 150 focuses the parallel light passing through the filter 140 to the third optical fiber 118 .
  • the housing 170 is a configuration disposed at the outermost part of the wavelength division multiplexing filter 100, and physically protects the internal configuration of the wavelength division multiplexing filter 100 from external force and prevents the optical axis from being distorted by the external force.
  • the first bonding unit 180 is fixed by bonding the dual fiber fixing member 120 and the first lens 130 after forming the air gap 191 by a predetermined interval.
  • a bonding material such as epoxy is injected between the dual fiber fixing member 120 and the first lens 130 , and the bonding material is cured to complete the first bonding unit 180 .
  • the second bonding unit 182 bonds and fixes the first lens 130 and the filter 140 like the first bonding unit 180 .
  • the third bonding unit 184 bonds and fixes the second lens 150 and the single fiber fixing member 160 like the first bonding unit 180 .
  • the fourth bonding unit 186 bonds and fixes the housing 170 and the first and third optical fibers 110 and 114 .
  • the fifth bonding unit 188 bonds and fixes the housing 170 and the first and third optical fibers 118 .
  • An air gap portion 190 is formed in the first bonding portion 180 to the third bonding portion 184 during the bonding process. Since the air gap portion 190 has a refractive index of 1, the air gap portion 190 at a predetermined interval is essential for coupling light to the first lens 130 and the third optical fiber 118 in the single fiber fixing member 160 . to be.
  • the light output from the first optical fiber 110 spreads from the end of the dual fiber fixing member 120 by a predetermined angle (usually corresponding to the numerical aperture), and is transmitted from the first lens 130 by the air gap part 190.
  • the width is wide enough to make it into parallel light.
  • the beam width of the collimated light generated by the first lens 130 must ensure that the filter 140 can fully perform the wavelength division multiplexing function (crossstock, loss, wavelength division degree, etc.). That is, the beam width of the light is changed enough to allow the first lens 130 to create a completely parallel light by the air gap part 190 so that the filter 140 can perform a complete function.
  • the air gap portion 190 formed by the third bonding portion 184 must have a predetermined width so that the light focused by the second lens 150 can be completely coupled to the third optical fiber 118 . That is, the width of the air gap portion 190 formed by the third bonding portion 184 is the focal point of the second lens 150 considering the width of the core (the portion where light is coupled) to the third optical fiber 118 . become a distance
  • the bonding material used in the first to third bonding portions is typically an epoxy, which is a cationic light curing agent having a positive cation. Epoxy is applied to the area to be bonded and cured by light.
  • Epoxy releases outgas of up to 0.1% of the total epoxy used in proportion to the amount of surface used.
  • volatile condensed materials, unreacted photoinitiators, or saturated water vapor in the first to third bonding portions are released as outgas and are trapped in the air gap portion 190 .
  • the outgas is condensed at room temperature, and a kind of vaporized material 191 containing moisture and Radical is generated.
  • Radicals of the vaporized material 191 react with the lights 121 and 122 to become hydrophilic, and are gradually collected in the optical fiber core.
  • the light 121 and 122 having a light intensity distribution of a Gaussian profile is used because of the property of converging to a place where the intensity of light is strong, the vaporized material is more likely to be gathered to the center of the optical fiber.
  • the vaporized material 191 collected in the optical fiber core is photocured again by the lights 121 and 122 , and the photocured vaporized material 192 causes an effect that foreign substances are inserted into the air gap portion 190 .
  • the photocured foreign material 192 has a hemispherical shape and functions like a convex lens. Due to the photocured foreign material functioning as a convex lens, the aforementioned air gap part 190 cannot guarantee the focal length and the beam width extension distance. This problem causes a defect that increases the crosstalk value of the optical device for wavelength division multiplexing.
  • FIG. 6 is a view illustrating a defect in which a photocured foreign material is concentrated on an optical fiber core. It can be seen that most foreign substances are concentrated on the optical fiber core. As such, foreign substances concentrated on the optical fiber core interfere with securing the focal length and the beam width extension distance of the air gap portion 190, thereby causing defects.
  • FIG. 7 is a cross-sectional view illustrating the configuration of a wavelength division multiplexing filter according to an embodiment of the present invention.
  • the wavelength division multiplexing filter 100 includes a first optical fiber 110 , a second optical fiber 114 , a third optical fiber 118 , and a dual fiber fixing member 120 . , a first lens 130 , a filter 140 , a second lens 150 , a single fiber fixing member 160 , a housing 170 , bonding units 180 to 188 , and a gap filling unit 195 . .
  • the gap filling part 195 is disposed in close contact between the dual fiber fixing part 120 and the first lens 130 and between the second lens 150 and the single fiber fixing member 160 , respectively.
  • the gap filling part 195 is implemented with a component or composition having a refractive index of 1 or close to 1, such as epoxy, gel, or micro lens. Accordingly, the gap filling part 195 disposed between the dual fiber fixing part 120 and the first lens 130 (hereinafter referred to as a 'first gap filling part') is an air gap part ( 190), it is possible to secure an appropriate focal length and a fixed beam width of the light irradiated from the first optical fiber 110 .
  • both components 120 and 130 are bonded (cured, etc.) by the first bonding unit 180 . It is possible to physically prevent the generation of the vaporized substances 191 and 192 in the air or the concentration of the vaporized substances 191 and 192 into the core of the first optical fiber 110 . This is also the same for the gap filling part 195 (hereinafter, referred to as a 'second gap filling part') disposed between the second lens 150 and the single fiber fixing member 160 .
  • the second gap filling part 195 is also disposed between both components 150 and 160, vaporized material ( It is possible to physically prevent the occurrence of foreign substances 192 around the core of the third optical fiber 118 due to the occurrence of 191 ) or the generated vaporized material 191 .
  • FIGS. 8 and 9 are cross-sectional views illustrating the configuration of a wavelength division multiplexing filter according to another embodiment of the present invention.
  • the wavelength division multiplexing filter 100 includes a first optical fiber 110 , a second optical fiber 114 , a third optical fiber 118 , and a dual fiber fixing member ( 120), the first lens 130, the filter 140, the second lens 150, the single fiber fixing member 160, the housing 170, the bonding parts 180 to 188, the adhesive part 810 and the film ( 820).
  • the film 820 is disposed to seal (block) the air gap portion 190 from the outside, thereby sealing (blocking) the air gap portion 190 .
  • Gas is generated while the bonding units 180 to 188 are bonded.
  • the film 820 is disposed in both components (a fixing member and the first lens in FIG. 8) between which the air gap part 190 is positioned to seal the air gap part 190, thereby preventing the inflow of gas.
  • the inflow of gas is prevented by the film 820, and the generation of vaporized material causing a change in the optical path is prevented.
  • the film 820 may be implemented with a component similar to an optical fiber.
  • the film 820 may be implemented with Teflon or glass fiber.
  • the film 820 has a coefficient of thermal expansion or contraction similar to that of an optical fiber (glass material). Accordingly, even if the optical fiber thermally expands or contracts according to the temperature change and the distance between the air gap portions 190 is changed, the film 820 also expands or contracts with it and maintains the state disposed at both ends of the air gap portion 190 . can
  • An adhesive part 810 is applied to one end of the film 820 so that the film 820 can be disposed to block the air gap part 190 from the outside.
  • the film 820 surrounds the air gap portion 190 and is disposed to block the outside, and the portion 825 overlaps by a certain area between one end of the film 820 and the other end of the film 820. placed to exist. Accordingly, a surface facing the other surface of the film among the overlapping portions 825 in the film 820 is present.
  • An adhesive portion 810 is applied to the above-described surface of the overlapping portions 825 (within one end) of the film 820 . Accordingly, when the film 820 is disposed as shown in FIG. 9 , the film 820 may be fixed in a corresponding shape by the adhesive part 810 and disposed.
  • the film 820 when the film 820 is disposed, in order to prevent the air gap portion 190 from being completely sealed, the film 820 may be disposed as follows.
  • the film 820 may be implemented to be twice the length of the circumference of both components in which the air gap portion is located, so that it may be applied twice or more around the air gap portion. As such, when the film 820 is applied a plurality of times around the air gap portion, the air gap portion 190 may be completely sealed.
  • the film 820 has a property of being contracted when heat is applied, and may be implemented as long as the circumference of both components in which the air gap part is located. After the film 820 is applied around the air gap portion, heat may be applied to the film 820 . In this case, the film 820 may be contracted by heat and completely seal the air gap.
  • the adhesive part 810 may be implemented with a component having thermal conductivity (eg, Thermal Epoxy, etc.). Accordingly, all portions of the film 820 are thermally expanded or contracted.
  • a component having thermal conductivity eg, Thermal Epoxy, etc.
  • the bonding unit 180 is bonded to the outside of the film 820 (a direction away from the optical fiber). Accordingly, the film 820 may fundamentally block the vaporized material generated during the bonding process of the bonding unit from flowing into the air gap unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Disclosed is an optical device for wavelength division multiplexing that eliminates defects caused by outgas. According to one aspect of the present embodiment, a wavelength division multiplexing filter that prevents the occurrence of defects that may be caused by outgas in a wavelength division multiplexing filter is provided.

Description

아웃가스에 의한 불량을 제거한 파장 분할 다중화용 광소자Optical device for wavelength division multiplexing that eliminates defects caused by outgas
본 발명은 파장 분할 다중화용 광소자에 관한 것으로, 특히 필름을 이용해 아웃가스에 의한 결함의 발생을 방지한 파장 분할 다중화용 광소자에 관한 것이다.The present invention relates to an optical device for wavelength division multiplexing, and more particularly, to an optical device for wavelength division multiplexing using a film to prevent the occurrence of defects due to outgas.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.The content described in this section merely provides background information for the present embodiment and does not constitute the prior art.
파장 분할 다중(WDM: Wavelength Division Multiplexing) 또는 파장 분할 다중화는 레이저 빛의 다른 파장을 사용하여 여러 반송파 신호를 단일 광섬유에 적용하는 기술이다. 파장 분할 다중화는 단일 광섬유에 동시에 복수의 신호를 보낼 수 있기 때문에, 사용되는 파장의 개수의 비례해서 데이터 통신 용량을 증가시킬 수 있는 장점이 있다. Wavelength division multiplexing (WDM), or wavelength division multiplexing, is a technology that uses different wavelengths of laser light to apply multiple carrier signals to a single optical fiber. Since a plurality of signals can be simultaneously transmitted to a single optical fiber, wavelength division multiplexing has an advantage in that data communication capacity can be increased in proportion to the number of wavelengths used.
단일 광섬유 내에서 복수의 신호를 각각 수신하기 위해서는 사용되는 복수의 파장을 구분해 내는 광소자가 필수적이다. 파장 분할 다중화용 광소자는 대표적으로 필터형 파장 분할 다중화 광소자 (이하 '파장 분할 다중화 필터'라 함.)와 배열형 광도파로 격자(Arrayed Waveguide Grating, AWG)가 사용된다. In order to receive each of a plurality of signals within a single optical fiber, an optical device for discriminating a plurality of wavelengths used is essential. As for the optical device for wavelength division multiplexing, a filter type wavelength division multiplexing optical device (hereinafter referred to as a 'wavelength division multiplexing filter') and an arrayed waveguide grating (AWG) are typically used.
최근 5G 통신에서는 대용량 무선 신호를 기지국에서 유선으로 변환해서 송수신한다. 이 과정에서 파장 분할 다중화 기술을 이용해서 복수의 대용량 무선 신호를 동시에 전송한다. 5G 통신에서는 다양한 이유에서 배열형 광도파로 격자보다는 파장 분할 다중화 필터가 복수의 파장을 구분하는 광소자로 사용되고 있다.In recent 5G communication, large-capacity wireless signals are transmitted and received by converting them into wired ones at the base station. In this process, a plurality of large-capacity wireless signals are simultaneously transmitted using wavelength division multiplexing technology. In 5G communication, for various reasons, a wavelength division multiplexing filter is used as an optical device for discriminating a plurality of wavelengths rather than an array type optical waveguide grating.
이러한 파장 분할 다중화 필터는 제조과정에서 에폭시 등의 접착제가 사용되어 결합된 광소자들을 내부에 포함한다. 접착제를 경화하는 과정에서 아웃가스가 발생되고, 아웃가스가 파장 분할 다중화 필터 내부에 잔존하게 된다. 내부의 아웃가스는 시간이 지남에 따라 파장 분할 다중화 필터의 결함을 유발시키는 문제점이 있었다. The wavelength division multiplexing filter includes optical elements bonded therein by using an adhesive such as epoxy during the manufacturing process. Outgas is generated in the process of curing the adhesive, and the outgas remains inside the wavelength division multiplexing filter. The internal outgas has a problem of causing defects in the wavelength division multiplexing filter over time.
본 발명의 일 실시예는, 파장 분할 다중화 필터 내에 아웃가스에 의해 발생할 수 있는 결함의 발생을 방지하는 파장 분할 다중화 필터를 제공하는 데 일 목적이 있다.It is an object of the present invention to provide a wavelength division multiplexing filter that prevents the occurrence of defects that may be caused by outgas in the wavelength division multiplexing filter.
본 발명의 일 측면에 의하면, 복수의 파장을 갖는 제1 광신호를 인가받는 제1 광섬유와 제1 광신호로부터 기 설정된 파장대역을 제외한 나머지 파장대역을 갖는 제2 광신호를 인가받는 제2 광섬유를 고정하는 듀얼 파이버 고정부재와 입사되는 광 중 기 설정된 파장대역의 광은 통과시키되, 나머지 파장대역의 광은 상기 제2 광섬유의 방향으로 반사시키는 필터와 상기 듀얼 파이버 고정부재로부터 출력되는 광을 상기 필터로 커플링시키고, 상기 필터로부터 반사되는 광을 상기 제2 광섬유로 입사시키는 제1 렌즈와 상기 필터와 상기 제1 렌즈를 본딩하여 고정하는 제1 본딩부와 상기 제1 본딩부 및 상기 필터와 상기 제1 렌즈의 사이에 배치되어, 상기 필터와 상기 제1 렌즈 사이에 형성되는 갭을 밀폐시키는 제1 필름과 상기 필터와 물리적으로 떨어져 배치되며, 상기 필터를 통과한 광을 포커싱하는 제2 렌즈와 상기 제2 렌즈에서 포커싱된 광을 입사받는 제3 광섬유와 상기 제3 광섬유를 고정하는 싱글 파이버 고정부재와 상기 제2 렌즈와 상기 싱글 파이버 고정부재를 본딩하여 고정하는 제2 본딩부 및 상기 제2 본딩부 및 상기 제2 렌즈와 상기 싱글 파이버 고정부재의 사이에 배치되어, 상기 제2 렌즈와 상기 싱글 파이버 고정부재 사이에 형성되는 갭을 밀폐시키는 제2 필름을 포함하는 것을 특징으로 하는 파장 분할 다중화 필터를 제공한다.According to an aspect of the present invention, a first optical fiber receiving a first optical signal having a plurality of wavelengths and a second optical fiber receiving a second optical signal having a wavelength band remaining from the first optical signal except for a preset wavelength band A filter that passes light of a preset wavelength band among the dual fiber fixing member fixing the light and incident light, but reflects the light of the remaining wavelength band in the direction of the second optical fiber and the light output from the dual fiber fixing member, A first lens coupled to a filter and incident light reflected from the filter into the second optical fiber, a first bonding unit bonding the filter and the first lens to fix the first lens, the first bonding unit, and the filter; A first film disposed between the first lens to close a gap formed between the filter and the first lens, and a second lens disposed physically apart from the filter and focusing the light passing through the filter a third optical fiber receiving the light focused by the second lens; a single fiber fixing member fixing the third optical fiber; a second bonding unit fixing the second lens and the single fiber fixing member by bonding; Wavelength division comprising: two bonding units; and a second film disposed between the second lens and the single-fiber fixing member to close a gap formed between the second lens and the single-fiber fixing member; Provides a multiplexing filter.
본 발명의 일 측면에 의하면, 상기 제1 필름 및 상기 제2 필름은 각각 일면에 접착부가 도포됨에 따라, 형성되는 갭을 밀폐시키는 것을 특징으로 한다.According to one aspect of the present invention, the first film and the second film is characterized in that as the adhesive portion is applied to one surface, respectively, to close the formed gap.
이상에서 설명한 바와 같이, 본 발명의 일 측면에 따르면, 파장 분할 다중화 필터 내에서 아웃가스로 인한 결함의 발생을 방지할 수 있어, 불량을 최소화할 수 있는 장점이 있다.As described above, according to one aspect of the present invention, it is possible to prevent the occurrence of defects due to outgas in the wavelength division multiplexing filter, thereby minimizing defects.
도 1 및 2는 파장 분할 다중화 필터를 이용하여 복수의 파장을 구분하는 동작 원리를 개시한 도면이다.1 and 2 are diagrams illustrating an operation principle of dividing a plurality of wavelengths using a wavelength division multiplexing filter.
도 3은 종래의 파장 분할 다중화 필터의 구성을 도시한 단면도이다.3 is a cross-sectional view showing the configuration of a conventional wavelength division multiplexing filter.
도 4는 종래의 파장 분할 다중화 필터 내 일 구성을 확대한 확대도이다.4 is an enlarged view showing a configuration of a conventional wavelength division multiplexing filter.
도 5는 종래의 파장 분할 다중화 필터 내 광 경로를 도시한 도면이다.5 is a diagram illustrating an optical path in a conventional wavelength division multiplexing filter.
도 6은 종래의 파장 분할 다중화 필터 내 광섬유 코어를 촬영한 도면이다.6 is a view of an optical fiber core in a conventional wavelength division multiplexing filter.
도 7은 본 발명의 일 실시예에 따른 파장 분할 다중화 필터의 구성을 도시한 단면도이다.7 is a cross-sectional view illustrating the configuration of a wavelength division multiplexing filter according to an embodiment of the present invention.
도 8 및 도 9는 본 발명의 다른 일 실시예에 따른 파장 분할 다중화 필터의 구성을 도시한 단면도이다.8 and 9 are cross-sectional views illustrating the configuration of a wavelength division multiplexing filter according to another embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. and/or includes a combination of a plurality of related listed items or any of a plurality of related listed items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에서, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being “connected” or “connected” to another component, it may be directly connected or connected to the other component, but it is understood that other components may exist in between. it should be On the other hand, when a certain element is referred to as being “directly connected” or “directly connected” to another element, it should be understood that no other element is present in the middle.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. It should be understood that terms such as “comprise” or “have” in the present application do not preclude the possibility of addition or existence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification in advance. .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해서 일반적으로 이해되는 것과 동일한 의미를 가지고 있다.Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not
또한, 본 발명의 각 실시예에 포함된 각 구성, 과정, 공정 또는 방법 등은 기술적으로 상호 간 모순되지 않는 범위 내에서 공유될 수 있다.In addition, each configuration, process, process or method included in each embodiment of the present invention may be shared within a range that does not technically contradict each other.
도 1과 2는 파장 분할 다중화 필터를 이용하여 복수의 파장을 구분하는 동작 원리를 개시한 도면이다.1 and 2 are diagrams illustrating an operation principle of classifying a plurality of wavelengths using a wavelength division multiplexing filter.
도 1를 참조하면, 서로 다른 파장을 분리해 낼 수 있는 7개의 파장 분할 다중화 필터가 있는 경우, 8개의 파장을 분리해 낼 수 있다. Referring to FIG. 1 , if there are 7 wavelength division multiplexing filters capable of separating different wavelengths, 8 wavelengths may be separated.
도 2를 참조하면, 파장 분할 다중화 필터로 복수의 파장의 광신호들이 제1 광섬유(21)로 인가된다. 인가된 광신호는 제1 렌즈(23) 및 박막필터(24)를 거치되, 기 설정된 파장의 광은 박막필터(24)를 통과하여 출력되며, 나머지 파장의 광은 박막필터(24)에서 필터링되어 제2 광섬유(26)로 반사된다. Referring to FIG. 2 , optical signals of a plurality of wavelengths are applied to the first optical fiber 21 by a wavelength division multiplexing filter. The applied optical signal passes through the first lens 23 and the thin film filter 24 , the light of a preset wavelength is outputted through the thin film filter 24 , and the light of the remaining wavelength is filtered by the thin film filter 24 . and reflected to the second optical fiber 26 .
듀얼 파이버 고정부재(22)는 제1 광섬유(21)와 제2 광섬유(26)을 배치시켜 고정한다. The dual fiber fixing member 22 arranges and fixes the first optical fiber 21 and the second optical fiber 26 .
파장 분할 다중화 필터는 듀얼 파이버 고정부재(22), 제1 렌즈(23), 박막필터(24)와 같은 광소자를 포함한다. 종래의 파장 분할 다중화 필터내 각각의 광소자는 소정의 간격을 두고 배치되며, 각각의 광소자는 에폭시와 같은 접착제(25)에 의해 서로 고정된다. The wavelength division multiplexing filter includes an optical element such as a dual fiber fixing member 22 , a first lens 23 , and a thin film filter 24 . In the conventional wavelength division multiplexing filter, each optical element is arranged at a predetermined distance, and each optical element is fixed to each other by an adhesive 25 such as epoxy.
도 3 내지 5는 종래의 파장 분할 다중화 필터(100)의 단면도이다.3 to 5 are cross-sectional views of a conventional wavelength division multiplexing filter 100 .
도 3을 참조하면, 종래의 파장 분할 다중화 필터(100)에 광신호는 제1 광섬유(110)로 인가된다. 인가된 광신호는 제1 렌즈(130) 및 필터(140)를 거치되, 기 설정된 파장의 광은 필터(140)를 통과하여 제3 광섬유(118)로 출력되며, 나머지 파장의 광은 필터(140)에서 필터링되어 제2 광섬유(114)로 반사된다.Referring to FIG. 3 , an optical signal is applied to the first optical fiber 110 in the conventional wavelength division multiplexing filter 100 . The applied optical signal passes through the first lens 130 and the filter 140, and the light of a preset wavelength passes through the filter 140 and is output to the third optical fiber 118, and the light of the remaining wavelength passes through the filter ( It is filtered in 140 and reflected to the second optical fiber 114 .
듀얼 파이버 고정부재(120)는 내부에 제1 광섬유(110)와 제2 광섬유(114)를 배치시켜 고정한다.The dual fiber fixing member 120 is fixed by disposing the first optical fiber 110 and the second optical fiber 114 therein.
제1 렌즈(130)는 듀얼 파이버 고정부재(120)로부터 출력되는 광을 필터(140)로 커플링시키고, 필터(140)로부터 필터링되어 반사되는 광을 듀얼 파이버 고정부재(120) 내 제2 광섬유(114)로 포커싱시켜서 입사시킨다. 제1 렌즈(130)는 GRIN렌즈가 사용될 수 있으며, GRIN렌즈는 평행광을 만들거나, 포커싱된 광을 만드는 역할을 한다. 제1 렌즈(130)는 듀얼 파이버 고정부재(120)로부터 출력되는 광을 필터(140)로 커플링시킬 때는 광을 평행광으로 만들고, 그 반대의 방향의 경우에는 포커싱된 광을 만든다.The first lens 130 couples the light output from the dual fiber fixing member 120 to the filter 140 , and transmits the filtered light reflected from the filter 140 to the second optical fiber in the dual fiber fixing member 120 . It is made incident by focusing at (114). A GRIN lens may be used as the first lens 130 , and the GRIN lens serves to create parallel light or focused light. When the first lens 130 couples the light output from the dual fiber fixing member 120 to the filter 140 , the first lens 130 makes the light parallel light, and in the opposite direction makes the focused light.
필터(140)는 입사되는 광 중 기 설정된 파장대역의 광만을 제3 광섬유(118) 방향으로 통과시키고, 나머지 파장대역의 광은 제2 광섬유(114) 방향으로 반사시킨다. 필터(140)에 의해, 원하는 파장대역의 광만이 통과되며 원활히 송·수신측이 통신할 수 있다. 필터(140)는 박막 칩형태의 필터가 사용될 수 있다.The filter 140 passes only light of a preset wavelength band among the incident lights in the direction of the third optical fiber 118 , and reflects the light of the remaining wavelength band in the direction of the second optical fiber 114 . By means of the filter 140, only light of a desired wavelength band is passed, and the transmitting and receiving sides can communicate smoothly. As the filter 140 , a thin-film chip filter may be used.
제2 렌즈(150)는 필터(140)와 물리적으로 떨어져 배치되며, 필터(140)를 통과한 광을 포커싱한다. 제2 렌즈(150)는 제3 광섬유(118) 측에 위치하여, 필터(140)를 통과한 광이 온전히 싱글 파이버 고정부재(160)에 위치한 제3 광섬유(118)로 입사할 수 있도록 한다. 제2 렌즈(150)는 시준렌즈가 사용될 수 있으며, 평행광을 포커싱시키는 기능을 수행한다. 즉, 제2 렌즈(150)는 필터(140)를 통과한 평행광을 제3 광섬유(118)로 포커싱한다.The second lens 150 is disposed physically apart from the filter 140 , and focuses the light passing through the filter 140 . The second lens 150 is positioned on the side of the third optical fiber 118 so that the light passing through the filter 140 is completely incident on the third optical fiber 118 positioned on the single-fiber fixing member 160 . The second lens 150 may be a collimating lens, and performs a function of focusing parallel light. That is, the second lens 150 focuses the parallel light passing through the filter 140 to the third optical fiber 118 .
하우징(170)은 파장 분할 다중화 필터(100)의 최외곽에 배치되는 구성으로서, 파장 분할 다중화 필터(100) 내부의 구성을 외력으로부터 물리적으로 보호하고, 외력에 의해 광축이 틀어지는 것을 방지한다.The housing 170 is a configuration disposed at the outermost part of the wavelength division multiplexing filter 100, and physically protects the internal configuration of the wavelength division multiplexing filter 100 from external force and prevents the optical axis from being distorted by the external force.
제1 본딩부(180)는 소정의 간격 만큼 공기갭부(191)를 형성한 후 듀얼 파이버 고정부재(120)와 제1 렌즈(130)를 본딩하여 고정한다. 듀얼 파이버 고정부재(120)와 제1 렌즈(130) 사이에 에폭시 등 본딩물질이 주입되며, 본딩물질이 경화됨으로써 제1 본딩부(180)가 완성된다.The first bonding unit 180 is fixed by bonding the dual fiber fixing member 120 and the first lens 130 after forming the air gap 191 by a predetermined interval. A bonding material such as epoxy is injected between the dual fiber fixing member 120 and the first lens 130 , and the bonding material is cured to complete the first bonding unit 180 .
제2 본딩부(182)는 제1 본딩부(180)와 같이 제1 렌즈(130) 및 필터(140)를 본딩하여 고정한다.The second bonding unit 182 bonds and fixes the first lens 130 and the filter 140 like the first bonding unit 180 .
제3 본딩부(184)는 제1 본딩부(180)와 같이 제2 렌즈(150) 및 싱글 파이버 고정부재(160)를 본딩하여 고정한다.The third bonding unit 184 bonds and fixes the second lens 150 and the single fiber fixing member 160 like the first bonding unit 180 .
제4 본딩부(186)는 하우징(170)과 제1 및 제3 광섬유(110, 114)를 본딩하여 고정한다.The fourth bonding unit 186 bonds and fixes the housing 170 and the first and third optical fibers 110 and 114 .
제5 본딩부(188)는 하우징(170)과 제1 및 제3 광섬유(118)를 본딩하여 고정한다.The fifth bonding unit 188 bonds and fixes the housing 170 and the first and third optical fibers 118 .
제1 본딩부(180) 내지 제3 본딩부(184)에는 결합과정에서 공기갭부(190)가 형성이 된다. 공기갭부(190)는 굴절률이 1이므로, 소정의 간격의 공기갭부(190)는 제1 렌즈(130)와 싱글 파이버 고정부재(160) 내의 제3 광섬유(118)로 광을 커플링하는 데 필수적이다. An air gap portion 190 is formed in the first bonding portion 180 to the third bonding portion 184 during the bonding process. Since the air gap portion 190 has a refractive index of 1, the air gap portion 190 at a predetermined interval is essential for coupling light to the first lens 130 and the third optical fiber 118 in the single fiber fixing member 160 . to be.
제1 광섬유(110)에서 출력된 광은 듀얼 파이버 고정부재(120)의 끝단에서 소정의 각도만큼(통상 개구수에 해당하는 만큼) 퍼지며, 공기갭부(190)에 의해서 제1 렌즈(130)에서 평행광으로 만들 수 있을 만큼 폭이 확장된다. 제1 렌즈(130)에 의해서 만들어진 평행광의 빔폭은 필터(140)가 파장 분할 다중화 기능을 온전히 수행(크로스톡, 손실, 파장 분할 정도 등)할 수 있는 정도가 보장되어야 한다. 즉, 필터(140)가 온전한 기능을 할 수 있도록, 공기갭부(190)에 의해서 제1 렌즈(130)가 온전한 평행광을 만들 수 있을 만큼 광의 빔폭이 변화된다. The light output from the first optical fiber 110 spreads from the end of the dual fiber fixing member 120 by a predetermined angle (usually corresponding to the numerical aperture), and is transmitted from the first lens 130 by the air gap part 190. The width is wide enough to make it into parallel light. The beam width of the collimated light generated by the first lens 130 must ensure that the filter 140 can fully perform the wavelength division multiplexing function (crossstock, loss, wavelength division degree, etc.). That is, the beam width of the light is changed enough to allow the first lens 130 to create a completely parallel light by the air gap part 190 so that the filter 140 can perform a complete function.
제3 본딩부(184)에 의해서 형성된 공기갭부(190)는 소정의 폭이 보장되어야만, 제2 렌즈(150)에 의해서 포커싱된 광이 제3 광섬유(118)에 온전히 커플링될 수 있다. 즉, 제3 본딩부(184)에 의해서 형성된 공기갭부(190)의 폭은 광이 제3 광섬유(118)에 코어(광이 커플링되는 부분)의 폭을 고려한 제2 렌즈(150)의 초점 거리가 된다. The air gap portion 190 formed by the third bonding portion 184 must have a predetermined width so that the light focused by the second lens 150 can be completely coupled to the third optical fiber 118 . That is, the width of the air gap portion 190 formed by the third bonding portion 184 is the focal point of the second lens 150 considering the width of the core (the portion where light is coupled) to the third optical fiber 118 . become a distance
도 4를 참조하면, 제1 내지 3 본딩부에 사용되는 본딩 물질은 통상 양이온을 띄는 Cationic 광 경화제인 에폭시가 사용된다. 에폭시는 본딩하고자 하는 부위에 도포되고, 광에 의해 경화된다. Referring to FIG. 4 , the bonding material used in the first to third bonding portions is typically an epoxy, which is a cationic light curing agent having a positive cation. Epoxy is applied to the area to be bonded and cured by light.
에폭시에서는 사용된 표면양에 비례하여 전체 사용된 에폭시의 최대 0.1%정도의 아웃가스가 방출된다. 특히, 에폭시가 후공정에서 열경화되는 경우, 제1 내지 3 본딩부에서 휘발성 응축물질, 반응하지 않은 광개시제 또는 포화 수증기 등이 아웃가스로 방출되어 에어갭부(190)에 갇혀 있게 된다. 아웃가스는 상온에서 응축되며, 수분 성분과 Radical을 내포한 일종의 기화 물질(191)을 발생시킨다. Epoxy releases outgas of up to 0.1% of the total epoxy used in proportion to the amount of surface used. In particular, when the epoxy is thermally cured in the post-process, volatile condensed materials, unreacted photoinitiators, or saturated water vapor in the first to third bonding portions are released as outgas and are trapped in the air gap portion 190 . The outgas is condensed at room temperature, and a kind of vaporized material 191 containing moisture and Radical is generated.
기화 물질(191)의 radical이 광(121, 122)과 반응하여 친수성을 띄고 점차적으로 광섬유 코어로 모이게 된다. 특히, 광의 세기가 강한 곳으로 잘 모이는 성질 때문에, 가우시안 프로파일의 광세기 분포를 갖는 광(121, 122)이 사용되는 경우, 기화 물질은 광섬유의 코어의 중심으로 더 잘 모이게 된다. 광섬유 코어에 모인 기화 물질(191)은 광(121, 122)에 의해서 다시 광경화가 일어나며, 광경화된 기화 물질(192)은 에어갭부(190)에 이물질이 삽입되어 있는 효과를 유발한다. Radicals of the vaporized material 191 react with the lights 121 and 122 to become hydrophilic, and are gradually collected in the optical fiber core. In particular, when the light 121 and 122 having a light intensity distribution of a Gaussian profile is used because of the property of converging to a place where the intensity of light is strong, the vaporized material is more likely to be gathered to the center of the optical fiber. The vaporized material 191 collected in the optical fiber core is photocured again by the lights 121 and 122 , and the photocured vaporized material 192 causes an effect that foreign substances are inserted into the air gap portion 190 .
도 5에 개시된 것과 같이, 특히 가우시안 프로파일의 광세기 분포를 갖는 광(121, 122)을 사용하는 경우에는 광경화된 이물질(192)은 반구형태를 갖으며 볼록렌즈와 같은 기능을 하게 된다. 볼록렌즈 기능을 하는 광경화된 이물질때문에, 앞서 설명한 에어갭부(190)는 초점거리와 빔폭 확장 거리를 보장할 수 없다. 이러한 문제는 파장 분할 다중화용 광소자의 크로스토크 값을 상승시키는 불량을 야기시킨다. As shown in FIG. 5 , in particular, when the light 121 and 122 having the light intensity distribution of the Gaussian profile is used, the photocured foreign material 192 has a hemispherical shape and functions like a convex lens. Due to the photocured foreign material functioning as a convex lens, the aforementioned air gap part 190 cannot guarantee the focal length and the beam width extension distance. This problem causes a defect that increases the crosstalk value of the optical device for wavelength division multiplexing.
도 6은 광경화된 이물질이 광섬유 코어에 집중되어 불량을 촬영한 도면이다. 대부분의 이물질이 광섬유 코어에 집중되는 것을 확인할 수 있다. 이처럼 광섬유 코어에 집중되는 이물질은 에어갭부(190)의 초점거리와 빔폭 확장거리의 확보를 방해하여 불량을 야기한다. 6 is a view illustrating a defect in which a photocured foreign material is concentrated on an optical fiber core. It can be seen that most foreign substances are concentrated on the optical fiber core. As such, foreign substances concentrated on the optical fiber core interfere with securing the focal length and the beam width extension distance of the air gap portion 190, thereby causing defects.
도 7은 본 발명의 일 실시예에 따른 파장 분할 다중화 필터의 구성을 도시한 단면도이다.7 is a cross-sectional view illustrating the configuration of a wavelength division multiplexing filter according to an embodiment of the present invention.
도 7을 참조하면, 본 발명의 일 실시예에 따른 파장 분할 다중화 필터(100)는 제1 광섬유(110), 제2 광섬유(114), 제3 광섬유(118), 듀얼 파이버 고정부재(120), 제1 렌즈(130), 필터(140), 제2 렌즈(150), 싱글 파이버 고정부재(160), 하우징(170), 본딩부(180 내지 188) 및 갭 충진부(195)를 포함한다. Referring to FIG. 7 , the wavelength division multiplexing filter 100 according to an embodiment of the present invention includes a first optical fiber 110 , a second optical fiber 114 , a third optical fiber 118 , and a dual fiber fixing member 120 . , a first lens 130 , a filter 140 , a second lens 150 , a single fiber fixing member 160 , a housing 170 , bonding units 180 to 188 , and a gap filling unit 195 . .
갭 충진부(195)는 각각 듀얼 파이버 고정부(120)와 제1 렌즈(130)의 사이 및 제2 렌즈(150)와 싱글 파이버 고정부재(160)의 사이에 밀착하여 배치된다. 갭 충진부(195)는 에폭시, 젤(Gel) 또는 마이크로 렌즈와 같이 굴절률이 1이거나 1에 근접한 성분 또는 구성으로 구현된다. 이에, 듀얼 파이버 고정부(120)와 제1 렌즈(130)의 사이에 배치된 갭 충진부(195, 이하에서 '제1 갭 충진부'라 칭함)는 종래의 파장 분할 다중화 필터 내 공기 갭부(190)와 같이 제1 광섬유(110)에서 조사되는 광의 적절한 초점거리와 빔폭 확정거리를 확보할 수 있도록 한다. The gap filling part 195 is disposed in close contact between the dual fiber fixing part 120 and the first lens 130 and between the second lens 150 and the single fiber fixing member 160 , respectively. The gap filling part 195 is implemented with a component or composition having a refractive index of 1 or close to 1, such as epoxy, gel, or micro lens. Accordingly, the gap filling part 195 disposed between the dual fiber fixing part 120 and the first lens 130 (hereinafter referred to as a 'first gap filling part') is an air gap part ( 190), it is possible to secure an appropriate focal length and a fixed beam width of the light irradiated from the first optical fiber 110 .
이와 동시에, 제1 갭 충진부(195)는 양 구성(120, 130)의 사이에 배치되기 때문에, 양 구성(120, 130)이 제1 본딩부(180)에 의해 본딩(경화 등)되는 과정에서 기화물질(191, 192)이 발생하는 것이나 발생한 기화물질(191, 192)이 제1 광섬유(110)의 코어로 집중되는 것을 물리적으로 방지할 수 있다. 이러한 점은 제2 렌즈(150)와 싱글 파이버 고정부재(160)의 사이에 배치된 갭 충진부(195, 이하에서 '제2 갭 충진부'라 칭함) 역시 마찬가지이다. 제2 갭 충진부(195)도 양 구성(150, 160) 사이에 배치되기 때문에, 양 구성(150, 160)이 제3 본딩부(184)에 의해 본딩(경화 등)되는 과정에서 기화물질(191)이 발생하는 것이나 발생한 기화물질(191)로 인해 제3 광섬유(118) 코어의 주변에 이물질(192)이 발생하는 것을 물리적으로 방지할 수 있다. At the same time, since the first gap filling part 195 is disposed between the two components 120 and 130 , both components 120 and 130 are bonded (cured, etc.) by the first bonding unit 180 . It is possible to physically prevent the generation of the vaporized substances 191 and 192 in the air or the concentration of the vaporized substances 191 and 192 into the core of the first optical fiber 110 . This is also the same for the gap filling part 195 (hereinafter, referred to as a 'second gap filling part') disposed between the second lens 150 and the single fiber fixing member 160 . Since the second gap filling part 195 is also disposed between both components 150 and 160, vaporized material ( It is possible to physically prevent the occurrence of foreign substances 192 around the core of the third optical fiber 118 due to the occurrence of 191 ) or the generated vaporized material 191 .
도 8 및 도 9는 본 발명의 다른 일 실시예에 따른 파장 분할 다중화 필터의 구성을 도시한 단면도이다.8 and 9 are cross-sectional views illustrating the configuration of a wavelength division multiplexing filter according to another embodiment of the present invention.
도 8 및 9를 참조하면, 본 발명의 일 실시예에 따른 파장 분할 다중화 필터(100)는 제1 광섬유(110), 제2 광섬유(114), 제3 광섬유(118), 듀얼 파이버 고정부재(120), 제1 렌즈(130), 필터(140), 제2 렌즈(150), 싱글 파이버 고정부재(160), 하우징(170), 본딩부(180 내지 188), 접착부(810) 및 필름(820)을 포함한다. 8 and 9 , the wavelength division multiplexing filter 100 according to an embodiment of the present invention includes a first optical fiber 110 , a second optical fiber 114 , a third optical fiber 118 , and a dual fiber fixing member ( 120), the first lens 130, the filter 140, the second lens 150, the single fiber fixing member 160, the housing 170, the bonding parts 180 to 188, the adhesive part 810 and the film ( 820).
필름(820)은 공기갭부(190)를 외부로부터 밀폐(차단)하는 형태로 배치되어, 공기갭부(190)를 밀폐(차단)시킨다. 본딩부(180 내지 188)가 본딩되는 과정에서 가스가 발생하게 된다. 필름(820)은 사이에 공기갭부(190)가 위치한 양 구성(도 8에서는 고정부재 및 제1 렌즈)에 각각 배치되어 공기갭부(190)를 밀폐시킴으로서 가스의 유입을 방지한다. 필름(820)에 의해 가스의 유입이 방지되며, 광 경로 변화를 야기하는 기화물질의 생성이 방지된다.The film 820 is disposed to seal (block) the air gap portion 190 from the outside, thereby sealing (blocking) the air gap portion 190 . Gas is generated while the bonding units 180 to 188 are bonded. The film 820 is disposed in both components (a fixing member and the first lens in FIG. 8) between which the air gap part 190 is positioned to seal the air gap part 190, thereby preventing the inflow of gas. The inflow of gas is prevented by the film 820, and the generation of vaporized material causing a change in the optical path is prevented.
여기서, 필름(820)은 광섬유와 유사한 성분으로 구현될 수 있다. 예를 들어, 필름(820)은 테프론 또는 유리섬유로 구현될 수 있다. 필름(820)이 광섬유와 유사한 성분으로 구현됨에 따라 광섬유(유리 재질)와 유사한 열팽창율 또는 수축율을 갖는다. 이에 따라, 온도 변화에 따라 광섬유가 열 팽창하거나 수축하며 공기갭부(190)간 간격이 달라지더라도, 필름(820)도 그와 함께 팽창하거나 수축하며 공기갭부(190) 양단에 배치된 상태를 유지할 수 있다.Here, the film 820 may be implemented with a component similar to an optical fiber. For example, the film 820 may be implemented with Teflon or glass fiber. As the film 820 is implemented with a component similar to that of an optical fiber, it has a coefficient of thermal expansion or contraction similar to that of an optical fiber (glass material). Accordingly, even if the optical fiber thermally expands or contracts according to the temperature change and the distance between the air gap portions 190 is changed, the film 820 also expands or contracts with it and maintains the state disposed at both ends of the air gap portion 190 . can
필름(820)이 공기갭부(190)를 외부와 차단하는 형태로 배치될 수 있도록, 필름(820)의 일 끝단에 접착부(810)가 도포된다. 도 9에 도시된 바와 같이, 필름(820)이 공기갭부(190)를 감싸며 외부와 차단하는 형태로 배치됨에 있어, 필름(820)의 일 끝단과 타 끝단 간에 일정 면적만큼 겹치는 부분(825)이 존재하도록 배치된다. 이에, 필름(820) 내 겹치는 부분(825) 중 필름의 다른 면과 마주하는 면이 존재하게 된다. 필름(820)의 (일 끝단 내) 겹치는 부분(825) 중 전술한 면에 접착부(810)가 도포된다. 이에 따라, 필름(820)이 도 9와 같이 배치될 경우, 접착부(810)에 의해 필름(820)이 해당 형태로 고정되며 배치될 수 있다. An adhesive part 810 is applied to one end of the film 820 so that the film 820 can be disposed to block the air gap part 190 from the outside. As shown in FIG. 9, the film 820 surrounds the air gap portion 190 and is disposed to block the outside, and the portion 825 overlaps by a certain area between one end of the film 820 and the other end of the film 820. placed to exist. Accordingly, a surface facing the other surface of the film among the overlapping portions 825 in the film 820 is present. An adhesive portion 810 is applied to the above-described surface of the overlapping portions 825 (within one end) of the film 820 . Accordingly, when the film 820 is disposed as shown in FIG. 9 , the film 820 may be fixed in a corresponding shape by the adhesive part 810 and disposed.
이때, 필름(820)이 배치됨에 있어, 공기갭부(190)를 온전히 밀폐시키지 못하는 것을 방지하기 위해, 필름(820)은 다음과 같이 배치될 수 있다. At this time, when the film 820 is disposed, in order to prevent the air gap portion 190 from being completely sealed, the film 820 may be disposed as follows.
일 방안으로, 필름(820)이 공기갭부가 위치한 양 구성의 둘레의 길이에 2배 이상으로 구현되어, 공기갭부 주변으로 2회 또는 그 이상 도포될 수 있다. 이처럼 필름(820)이 공기갭부 주변으로 복수 회 도포될 경우, 공기갭부(190)를 온전히 밀폐시킬 수 있다.As one method, the film 820 may be implemented to be twice the length of the circumference of both components in which the air gap portion is located, so that it may be applied twice or more around the air gap portion. As such, when the film 820 is applied a plurality of times around the air gap portion, the air gap portion 190 may be completely sealed.
다른 방안으로, 필름(820)이 열이 가해지면 수축되는 성질을 가지며, 공기갭부가 위치한 양 구성의 둘레의 길이만큼 구현될 수 있다. 필름(820)이 공기갭부 주변으로 도포된 후, 필름(820)으로 열이 가해질 수 있다. 이러할 경우, 필름(820)은 열에 의해 수축되며 온전히 공기갭부를 밀폐시킬 수 있다.Alternatively, the film 820 has a property of being contracted when heat is applied, and may be implemented as long as the circumference of both components in which the air gap part is located. After the film 820 is applied around the air gap portion, heat may be applied to the film 820 . In this case, the film 820 may be contracted by heat and completely seal the air gap.
접착부(810)는 열 전도성을 갖는 성분(예를 들어, Thermal Epoxy 등)으로 구현될 수 있다. 이에, 필름(820)의 모든 부분이 열팽창 또는 수축되도록 한다.The adhesive part 810 may be implemented with a component having thermal conductivity (eg, Thermal Epoxy, etc.). Accordingly, all portions of the film 820 are thermally expanded or contracted.
필름(820)이 배치된 후, 본딩부(180)가 필름(820)의 바깥(광섬유로부터 멀어지는 방향)으로 본딩된다. 이에 따라, 필름(820)이 본딩부의 본딩과정에서 발생하는 기화물질이 공기갭부에 유입되는 것을 원천적으로 차단할 수 있다.After the film 820 is disposed, the bonding unit 180 is bonded to the outside of the film 820 (a direction away from the optical fiber). Accordingly, the film 820 may fundamentally block the vaporized material generated during the bonding process of the bonding unit from flowing into the air gap unit.
도 8 및 9에는 본딩부(180)가 위치한 공기갭부(190)에 필름(820)이 배치되는 것으로 도시되어 있으나, 이에 한정되는 것은 아니고 나머지 본딩부가 위치한 공기갭부에도 모두 배치된다.8 and 9 show that the film 820 is disposed in the air gap portion 190 where the bonding portion 180 is located, but the present invention is not limited thereto.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of this embodiment, and a person skilled in the art to which this embodiment belongs may make various modifications and variations without departing from the essential characteristics of the present embodiment. Accordingly, the present embodiments are intended to explain rather than limit the technical spirit of the present embodiment, and the scope of the technical spirit of the present embodiment is not limited by these embodiments. The protection scope of this embodiment should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be interpreted as being included in the scope of the present embodiment.
본 특허는 2020년도 대한민국 정부(중소벤처기업부)의 재원으로 중소기업기술정보진흥원의 지원을 받아 수행된 연구 결과입니다.(과제 고유번호: 1425145509, 세부 과제번호: S2960276, 과제명: 5G+ 및 차세대 광통신 네트워크를 위한 고신뢰성 저손실 광 다중화기 개발).This patent is the result of research conducted with support from the Small and Medium Business Technology Information Promotion Agency with funding from the Korean government (Ministry of SMEs and Startups) in 2020. Development of high-reliability low-loss optical multiplexer for networks).
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2020년 12월 16일 한국에 출원한 특허출원번호 제10-2020-0176286호 및 2021년 3월 4일 한국에 출원한 특허출원번호 제10-2021-0028551에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application is based on U.S. Patent Act 119( If priority is claimed under section a) (35 U.S.C § 119(a)), all contents thereof are incorporated herein by reference. In addition, if this patent application claims priority for countries other than the United States for the same reason as above, all contents thereof are incorporated into this patent application by reference.

Claims (4)

  1. 복수의 파장을 갖는 제1 광신호를 인가받는 제1 광섬유와 제1 광신호로부터 기 설정된 파장대역을 제외한 나머지 파장대역을 갖는 제2 광신호를 인가받는 제2 광섬유를 고정하는 듀얼 파이버 고정부재;a dual fiber fixing member for fixing a first optical fiber to which a first optical signal having a plurality of wavelengths is applied and a second optical signal to which a second optical signal having a wavelength band remaining from the first optical signal except for a preset wavelength band;
    입사되는 광 중 기 설정된 파장대역의 광은 통과시키되, 나머지 파장대역의 광은 상기 제2 광섬유의 방향으로 반사시키는 필터;a filter that passes light of a preset wavelength band among the incident lights and reflects light of the remaining wavelength band in the direction of the second optical fiber;
    상기 듀얼 파이버 고정부재로부터 출력되는 광을 상기 필터로 커플링시키고, 상기 필터로부터 반사되는 광을 상기 제2 광섬유로 입사시키는 제1 렌즈;a first lens coupling the light output from the dual-fiber fixing member to the filter and injecting the light reflected from the filter into the second optical fiber;
    상기 필터와 상기 제1 렌즈 사이에 밀착하여 배치되는 제1 갭 충진부;a first gap filling part disposed in close contact between the filter and the first lens;
    상기 필터와 상기 제1 렌즈를 본딩하여 고정하는 제1 본딩부;a first bonding unit for bonding and fixing the filter and the first lens;
    상기 필터와 물리적으로 떨어져 배치되며, 상기 필터를 통과한 광을 포커싱하는 제2 렌즈;a second lens disposed physically apart from the filter and focusing the light passing through the filter;
    상기 제2 렌즈에서 포커싱된 광을 입사받는 제3 광섬유;a third optical fiber receiving the light focused by the second lens;
    상기 제3 광섬유를 고정하는 싱글 파이버 고정부재;a single fiber fixing member for fixing the third optical fiber;
    상기 제2 렌즈와 상기 싱글 파이버 고정부재 사이에 밀착하여 배치되는 제2 갭 충진부; 및a second gap filling part disposed in close contact between the second lens and the single fiber fixing member; and
    상기 제2 렌즈와 상기 싱글 파이버 고정부재 를 본딩하여 고정하는 제1 본딩부A first bonding unit for bonding and fixing the second lens and the single fiber fixing member
    를 포함하는 것을 특징으로 하는 파장 분할 다중화 필터.Wavelength division multiplexing filter comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 제1 갭 충진부 및 상기 제2 갭 충진부는,The first gap filling part and the second gap filling part,
    굴절률이 1인 물질 또는 1로부터 기 설정된 오차범위 내인 물질로 구현되는 것을 특징으로 하는 파장 분할 다중화 필터.A wavelength division multiplexing filter, characterized in that it is implemented with a material having a refractive index of 1 or a material within a preset error range from 1.
  3. 복수의 파장을 갖는 제1 광신호를 인가받는 제1 광섬유와 제1 광신호로부터 기 설정된 파장대역을 제외한 나머지 파장대역을 갖는 제2 광신호를 인가받는 제2 광섬유를 고정하는 듀얼 파이버 고정부재;a dual fiber fixing member for fixing a first optical fiber to which a first optical signal having a plurality of wavelengths is applied and a second optical signal to which a second optical signal having a wavelength band remaining from the first optical signal except for a preset wavelength band;
    입사되는 광 중 기 설정된 파장대역의 광은 통과시키되, 나머지 파장대역의 광은 상기 제2 광섬유의 방향으로 반사시키는 필터;a filter that passes light of a preset wavelength band among the incident lights and reflects light of the remaining wavelength band in the direction of the second optical fiber;
    상기 듀얼 파이버 고정부재로부터 출력되는 광을 상기 필터로 커플링시키고, 상기 필터로부터 반사되는 광을 상기 제2 광섬유로 입사시키는 제1 렌즈;a first lens coupling the light output from the dual-fiber fixing member to the filter and injecting the light reflected from the filter into the second optical fiber;
    상기 필터와 상기 제1 렌즈를 본딩하여 고정하는 제1 본딩부;a first bonding unit for bonding and fixing the filter and the first lens;
    상기 제1 본딩부 및 상기 필터와 상기 제1 렌즈의 사이에 배치되어, 상기 필터와 상기 제1 렌즈 사이에 형성되는 갭을 밀폐시키는 제1 필름;a first film disposed between the first bonding unit and the filter and the first lens to seal a gap formed between the filter and the first lens;
    상기 필터와 물리적으로 떨어져 배치되며, 상기 필터를 통과한 광을 포커싱하는 제2 렌즈;a second lens disposed physically apart from the filter and focusing the light passing through the filter;
    상기 제2 렌즈에서 포커싱된 광을 입사받는 제3 광섬유;a third optical fiber receiving the light focused by the second lens;
    상기 제3 광섬유를 고정하는 싱글 파이버 고정부재;a single fiber fixing member for fixing the third optical fiber;
    상기 제2 렌즈와 상기 싱글 파이버 고정부재를 본딩하여 고정하는 제2 본딩부; 및a second bonding unit for bonding and fixing the second lens and the single fiber fixing member; and
    상기 제2 본딩부 및 상기 제2 렌즈와 상기 싱글 파이버 고정부재의 사이에 배치되어, 상기 제2 렌즈와 상기 싱글 파이버 고정부재 사이에 형성되는 갭을 밀폐시키는 제2 필름a second film disposed between the second bonding unit and the second lens and the single-fiber fixing member to close a gap formed between the second lens and the single-fiber fixing member
    을 포함하는 것을 특징으로 하는 파장 분할 다중화 필터.Wavelength division multiplexing filter comprising a.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 제1 필름 및 상기 제2 필름은,The first film and the second film,
    각각 일면에 접착부가 도포됨에 따라, 형성되는 갭을 밀폐시키는 것을 특징으로 하는 파장 분할 다중화 필터.A wavelength division multiplexing filter, characterized in that the gap is closed by applying an adhesive portion on one surface of each.
PCT/KR2021/018070 2020-12-16 2021-12-02 Optical device for wavelength division multiplexing that eliminates defects caused by outgas WO2022131634A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200176286A KR20220086133A (en) 2020-12-16 2020-12-16 Optical Device for Wavelength Division Multiplexing to Eliminate Defects caused by Outgas
KR10-2020-0176286 2020-12-16
KR1020210028551A KR102303086B1 (en) 2021-03-04 2021-03-04 Optical Device for Wavelength Division Multiplexing to Prevent the Occurrence of Defects Using Film
KR10-2021-0028551 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022131634A1 true WO2022131634A1 (en) 2022-06-23

Family

ID=82059667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018070 WO2022131634A1 (en) 2020-12-16 2021-12-02 Optical device for wavelength division multiplexing that eliminates defects caused by outgas

Country Status (1)

Country Link
WO (1) WO2022131634A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081067A1 (en) * 2000-06-22 2002-06-27 Brun Marc G. Multiple -port optical package and DWDM module
KR20040104064A (en) * 2003-06-03 2004-12-10 주식회사 오카스 Optical filter for optic telecommunication
US20050084205A1 (en) * 2003-10-17 2005-04-21 Hong Suk K. Wavelength division multiplexing system having built-in optical attenuator
US20050175276A1 (en) * 2004-02-06 2005-08-11 Hideki Hashizume Wavelength division multiplexing optical coupler
CN209148906U (en) * 2018-12-28 2019-07-23 长春市华信科瑞光电技术有限公司 Reflective wavelength division multiplexer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081067A1 (en) * 2000-06-22 2002-06-27 Brun Marc G. Multiple -port optical package and DWDM module
KR20040104064A (en) * 2003-06-03 2004-12-10 주식회사 오카스 Optical filter for optic telecommunication
US20050084205A1 (en) * 2003-10-17 2005-04-21 Hong Suk K. Wavelength division multiplexing system having built-in optical attenuator
US20050175276A1 (en) * 2004-02-06 2005-08-11 Hideki Hashizume Wavelength division multiplexing optical coupler
CN209148906U (en) * 2018-12-28 2019-07-23 长春市华信科瑞光电技术有限公司 Reflective wavelength division multiplexer

Similar Documents

Publication Publication Date Title
CN101755403B (en) Fiber array unit with integrated optical power monitor
JPH04212110A (en) Electronic and optical module of optical fiber
CN100403079C (en) Wavelength division multiplexing optical coupler
JPS5844414A (en) Wavelength multiplexer or wavelength demultiplexer
CN1327163A (en) Three core port optic fiber back reflective laser
US20040114932A1 (en) Filter module
US6961496B2 (en) Optical package with cascaded filtering
WO2022131634A1 (en) Optical device for wavelength division multiplexing that eliminates defects caused by outgas
KR102303086B1 (en) Optical Device for Wavelength Division Multiplexing to Prevent the Occurrence of Defects Using Film
CN203480077U (en) Miniaturization WDM wavelength division multiplexer
JP2001215349A (en) Multiplex/de-multiplex system for wavelength multiplex optical signal
US20240027688A1 (en) Wavelength-division multiplexing device and communications device
US7039271B2 (en) Reduced element optical add-drop multiplexer
US20050157982A1 (en) Signal cutout device, optical connector and optical fiber coupler
CN216285821U (en) Multichannel polarization-maintaining compact type wavelength division multiplexer module
CN211426856U (en) Optical device structure with lens and glue on optical path
CN212749310U (en) Hybrid device with superposed 1 x 2 single-stage isolator and WDM filter
US7184620B1 (en) 3-port optical add-drop multiplexer (OADM)
KR20220086133A (en) Optical Device for Wavelength Division Multiplexing to Eliminate Defects caused by Outgas
JP4319067B2 (en) Optical multiplexer / demultiplexer
CN212623192U (en) Multi-path wavelength division multiplexer assembly
US7412124B1 (en) Optical module with high reflection isolation and compact size
KR100518382B1 (en) High isolation WDM device using by mirror
US7356223B2 (en) Optical filter element and wavelength division multiplexing optical coupler
CN116256847A (en) WDM wave division multiplexing module and its making method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906939

Country of ref document: EP

Kind code of ref document: A1